
Orbit Control for a Power Generating Airfoil Based on Nonlin ear MPC
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Abstract— The Airborne Wind Energy paradigm proposes
to generate energy by flying a tethered airfoil across the wind
flow. An essential problem posed by Airborne Wind Energy
is the control of the tethered airfoil trajectory during pow er
generation. Tethered flight is a fast, strongly nonlinear, unstable
and constrained process, motivating control approaches based
on fast Nonlinear Model Predictive Control. In this paper,
a computationally efficient 6-DOF control model for a high
performance, large-scale, rigid airfoil is proposed. A control
scheme based on receding-horizon Nonlinear Model Predictive
Control to track reference trajectories is applied to the
proposed model. In order to make a real-time application
of Nonlinear Model Predictive Control possible, a Real-Time
Iteration scheme is proposed and its performance investigated.

Keywords : flight control, fast NMPC, trajectory tracking,
Real-time iteration, Optimal Control

I. INTRODUCTION

To overcome the major difficulties posed by the exponen-
tially growing size and mass of conventional wind turbine
generators [14], [2], the Airborne Wind Energy (AWE)
paradigm proposes to get rid of the structural elements
not directly involved in power generation. An emerging
consensus recognizes crosswind flight as the most efficient
approach to perform power generation [15]. Crosswind flight
essentially consists in extracting power from the airflow by
flying an airfoil tethered to the ground at a high velocity
across the wind direction. Power can be generated by (a)
performing a cyclical variation of the tether length, together
with cyclical variation of the tether tension or (b) by using
on-board turbines, transmitting the power to the ground via
the tether. In this paper, option (a) is considered.

Because it involves a much lighter structure, a major
advantage of power generation based on crosswind flight
over conventional wind turbines is that higher altitude can
be reached and a larger swept area can arguably be achieved,
hence reaching wind resources that cannot be tapped into by
conventional wind turbines.

While the potential efficiency of the principle is estab-
lished in theory, a major research effort is still required
to address the many engineering difficulties posed by its
implementation. Among the several issues that have been
identified so far, the control of tethered flight is a major
challenge. The control problems currently recognized as
most crucial are a) control during power generation b) control
during airfoil retrieval and c) control during airfoil launch.
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This paper addresses the problem of control during power
generation.

In [10], a reliable methodology for designing power
generating periodic trajectories (i.e. orbits) is presented.
Because the actuator limitations and process constraints are
significantly activated by the resulting orbits and becausethe
process dynamics are strongly nonlinear, this paper proposes
to tackle tethered flight control through Nonlinear Model
Predictive Control (NMPC).

Classical NMPC approaches suffer from two major draw-
backs when applied to fast processes: a) the computational
time required to compute input updates can be prohibitively
large in a real-time scenario, and b) the latency between
the computation of the process state estimation and the
corresponding process inputs update can be large, hence
imposing a significant delay between measurement and the
resulting control actions.

Because tethered flight is a fast, unstable and perturbed
process, both issues are critical for the applicability of the
NMPC scheme to a real AWE system. To address these
issues, the Real-Time Iteration (RTI) scheme has been pro-
posed in [7], [13]. RTI proposes to reduce the computational
time required by conventional NMPC scheme by performing
a single Newton-type iteration per control input update
instead of several SQP steps. Moreover, the RTI scheme
proposes to reduce the control update latency by preparing
most of the computations without a priori know-
ledge of the process state so as to perform the Newton-type
step in a negligible time when the process state estimation
becomes available.

In [6], a fast NMPC scheme based on RTI was successfully
tested in simulation for the control of a rudimentary power
generating kite model in the presence of perturbations of
the process initial conditions. Recently, a simple model was
shown to allow NMPC sampling time of 1 ms [9]. The model
considered the kite as a point-mass, assuming a) a perfect
control of the time derivative of the lift coefficient (CL), b) a
perfect control of the roll rate, c) that the side slip is perfectly
cancelled by some ad-hoc control, and d) that the yaw rate
is unbounded. Because these assumptions are not realistic in
practice, a more elaborate control model is required.

This paper proposes a model that considers the airfoil as
a rigid-body, 6-DOF object interacting with the air mass. It
is assumed in this model that the pitch-roll-yaw acceleration
rates are directly controlled, i.e. it is assumed that a fast
inner-loop controller is efficiently tracking the pitch-roll-yaw
rate references provided by the NMPC controller.

A NMPC scheme based on the proposed model and
tracking a power generating trajectory is presented, resulting



in computational performance that is suitable for a real-time
application. So as to propose a realistic scenario, the case
study presented in the simulations considers a turbulent wind
velocity as the process disturbance.

This paper is organized as follows. The process model is
presented in Section II, the NMPC scheme is proposed in
Section III. Simulation results are presented in Section IV.
Future developments and conclusions are proposed in Sec-
tion V.

Contribution of the paper: this paper proposes a 6-DOF
model for tethered flight control, for which a NMPC control
scheme based on the RTI technique is developed and tested
in simulations in the presence of turbulent wind.

II. PROCESSMODEL

The airfoil is considered as a rigid body having 6 degrees
of freedom (DOF). An orthonormal reference framee =
{ex,ey,ez} attached to the ground is chosen to generate
the Cartesian coordinate system defining the position of the
airfoil center of mass. The framee is chosen s.t. a) the wind
is blowing in theex-direction, b) the vectorez is opposed
to the gravitational acceleration vectorg, and c) vectorey is
defined byey = ez × ex. The origin of the coordinate system
coincides with the generator. Defining the set of coordinates
{x,y,z}, the position of the airfoil center of mass is given
by P = xex + yey + zez. In the following, the coordinate
vector X ∈ R

3 is defined asX := [x, y, z]T . The tether is
approximated as a rigid link of (time-varying) lengthr that
constrainsX (i.e. the airfoil center of mass) to evolve on
the 2-dimensional manifoldC = 1

2

(

XT X − r2
)

= 0. Such an
assumption requires that the tether is always under tension.
In this paper, it is assumed that the second time derivative
of the tether length, i.e. ¨r ∈ R is a control variable.

Spherical coordinates can appear as a more reasonable
choice to describe the proposed system, yet the choice of
Cartesian coordinates can be motivated by the following
features:

• the computational complexity of the model equations
in Cartesian coordinates is lower than in spherical
coordinates

• a model based on cartesian coordinates is better suited
for further model developments, i.e. for including a)
tether dynamics, b) a tether attached to a moving point
on the ground, used to transfer energy to the airfoil [8],
and c) the modeling of dual (or multiple) airfoil systems

An orthonormal reference frameE = {Ex,Ey,Ez} is at-
tached to the airfoil s.t. a) the basis vectorEx spans the
airfoil longitudinal axis, pointing in the forward direction
and is aligned with the airfoil chord, b) the basis vectorEz

spans the vertical axis, pointing in the upward direction, and
c) the basis vectorEy is given byEy = Ez ×Ex. The origin
of E is attached to the center of mass of the airfoil. The
description of the airfoil attitude is given by the operator
performing the change of reference frameE→ e′, wheree′

is a translation ofe to the airfoil center of mass. In order
to avoid model singularities resulting from a representation
based on Euler angles, quaternions are preferred [17]. The

change of reference frameE→ e′ is obtained by the rotation
matrix R:

R = EGT ,

G =





−q1 q0 q3 −q2

−q2 −q3 q0 q1

−q3 q2 −q1 q0



 ,

E =





−q1 q0 −q3 q2

−q2 q3 q0 −q1

−q3 −q2 q1 q0



 . (1)

Because the set of coordinates{x,y,z} describes the po-
sition of the center of mass of the airfoil, the translational
dynamics and the rotational dynamics are separable. It is
assumed in the proposed formulation that the airfoil pitch-
roll-yaw accelerations are directly controlled, i.e. defining ω
as the projection of the airfoil angular velocity vector in the
airfoil frameE, the airfoil rotational dynamics reduce to:

q̇ =
1
2

GT ω , ω̇ = T,
(

qT q
)

t=0 = 1, (2)

whereT ∈R
3 is a set of control variables. BecauseqT q̇ = 0,

the quaternion norm constraintqT q = 1 is preserved by the
dynamics (2). Yet, for long integration times, a correctionof
the numerical drift of the quaternion norm may be needed.

The kinetic and potential energy functions associated to
the translational dynamics of the airfoil read:

TA = 1
2FAẊT Ẋ , VA = FAgz,

whereFA is the mass of the airfoil. The kinetic and potential
energy functions associated to the translational dynamicsof
the tether read:

TT = 1
2

∫ 1
0 σ2ẊT Ẋµrdσ = 1

6µrẊT Ẋ , VT = 1
2µrgz,

whereµ is the tether linear density. The Lagrangian associ-
ated to the translational dynamics of the system reads:

L= TA +TT−VA −VT +λC,

whereλ is the Lagrange multiplier associated to the algebraic
constraintC. With V=VA +VT, using the Lagrange equation

d
dt

∂L
∂ Ẋ

−
∂L
∂X

= F,

the system translational dynamics are given by the following
index-3 DAE:

mẌ + ṁẊ +VX = F +λ X , C = 0, (3)

whereVT
X = ∇XV=

[

0 0
(

FA + 1
2µr

)

g
]

, F is the coor-
dinate vector of generalized forces associated to{x,y,z} and
m = FA + 1

3µr.
As an alternative to using (3), an index-reduction allows

to reformulate (3) as a set of ODEs. For anyt0 ∈ R, using
C̈(t) = 0,Ċ(t0) = 0,C(t0) = 0, the resulting index reduction



of (3) yields the index-1 DAE (together with the consistency
conditions):

M

[

Ẍ
λ

]

=

[

F −VX − ṁẊ
ẊT Ẋ − ṙ2− rr̈

]

, (4)

M =

[

m · I3 −X
−XT 0

]

,

2C(t0) =
(

XT X − r2)

t=t0
= 0,

Ċ(t0) =
(

XT Ẋ − rṙ
)

t=t0
= 0,

whereI3 is the 3×3 identity matrix. Because the algebraic
stateλ appears linearly in (4), the accelerationsẌ and the
Lagrange multiplierλ are given by:

[

Ẍ
λ

]

= M−1
[

F −VX − ṁẊ
ẊT Ẋ − ṙ2− rr̈

]

, (5)

M−1 =
1

XT X

[

1
m

(

XT XI3−XXT
)

−X
−XT −m

]

,

hence the translational dynamics can be treated as a set of
ODEs. Similarly to (2), a correction of the numerical drift
of C may be required for long integration times. The force
in the tether is readily given by

FT = ‖λ X‖= λ r. (6)

Because a Cartesian coordinate system is used, the gener-
alized forcesF in (4) are given by the sum of the aerody-
namic forces acting at the airfoil center of mass, projectedin
framee. Introducing the relative velocityv, i.e. the velocity
of the airfoil w.r.t the air mass given by:

v = (ẋ−W)ex + ẏey + żez ,

whereW ∈W ∈R is the local wind velocity field projected
in frame e, the norms of the lift and drag forces are given
by [17]:

‖FL‖=
1
2

ρACL‖v‖2, ‖FD‖=
1
2

ρACD‖v‖2,

whereCL andCD are the lift and drag coefficient respectively,
ρ is the air density andA the airfoil surface.

The lift force is orthogonal to the relative velocityv.
Moreover, it is assumed in this model that the lift force
is orthogonal to the airfoil transversal axis spanned byEy,
therefore the lift force is collinear to the vectorL given by:

L = v×Ey.

Note thatL is normed to‖v‖. The drag force is defined as
collinear and opposed to the relative velocityv. The lift and
drag forces,FL and FD acting on the airfoil are therefore
given by:

FL =
1
2

ρACL‖v‖L, FD =−
1
2

ρACD‖v‖v.

In order to compute the lift and drag forces in framee,
vectorsEy and v shall be projected ine. These projections
are given by:

[Ey]e = R ·1y, [v]e =
[

ẋ−W ẏ ż
]T

,

where R is given by (1) and1y = [Ey]E =
[

0 1 0
]T

.
The resulting total aerodynamic force in the ground framee,
i.e. FA = [FL +FD]e is:

FA =
1
2

ρA(CL [v]e ×R ·1y −CD [v]e)‖v‖,

‖v‖=
(

(ẋ−W)2+ ẏ2+ ż2)
1
2 .

In this model, it is assumed that the lift and drag coef-
ficients CL and CD depend on the angle of attackα and
side-slip angleβ only. For some rangeαmin ≤ α ≤ αmax and
−βmax ≤ β ≤ βmax, CL and CD are well approximated by
[17], [4]:

CL = Cα
L α,

CD = C0
D +CI

D (CL)
2+Cβ

Dβ 2,

whereC0
D, CI

D andCβ
D are the airfoil drag, the induced drag,

and the side slip drag coefficients respectively, whileCα
L is

the lift coefficient slope. The proposed quadratic dependence
of CL on β arises from the symmetry of the system and a
Taylor expansion of the drag coefficient with respect toβ ;
note that [17] neglects this contribution, while [4] proposes
a linear dependence w.r.t.|β |.

Defining ν = [νx, νy, νz]
T as the coordinate vector of the

relative velocityv projected in the airfoil frameE, i.e.:

ν = [v]
E
= RT [v]e ,

for small anglesα andβ can be approximated by [17]:

α = − tan−1
(

νz

νx

)

≈−
νz

νx
,

β = tan−1





νy
(

ν2
x +ν2

z

) 1
2



≈
νy

(

ν2
x +ν2

z

) 1
2

.

Assuming a laminar wind flow with a logarithmic wind
shear model blowing in the uniformex-direction,W is given
by [16]:

W (z) =W0
log(z/zr)

log(z0/zr)
,

whereW0 ∈R is the wind velocity at altitudez0 andzr is the
ground roughness. For the sake of simplicity, in this paper
only the wind along thex-axis is considered. A generalization
of this formulation to a 3D wind field is straightforward.

In this paper, the approximate tether drag model proposed
in [11] is used. The tether drag is lumped into a single
equivalent forceFD

T (projected in framee) acting at the airfoil
center of mass (see [11]) given by :

FD
T =−

1
8

ρDTCTr‖ [v]e − ṙer‖([v]e − ṙer) ,

where er = r−1
[

x, y, z
]T

, DT is the tether diameter,
and CT the tether drag coefficient. The sum of the forces
F in (5) acting at the airfoil center of mass is given by
F =FA+FD

T . Using (6), the generated energy is readily given
by Ė =−ṙ FT.



The following boundary conditions are required for the
consistency of the model dynamics:

(

XT X − r2)

t=t0
= 0,

(

XT Ẋ − rṙ
)

t=t0
= 0,

(

qT q−1
)

t=t0
= 0. (7)

In the following, the process dynamics and the process
boundary conditions (7) will be put in the form:

Ẋ= f (X,U,W0) , g(X(t0)) = 0,

where f lumps together the process dynamics
described in this section, U = [r̈, T1,T2,T3]

T ∈
R

4 are the process control input, andX =
[x, y, z, ẋ, ẏ, ż, q0, q1, q2, q3, ω1, ω2, ω3, r, ṙ]T ∈ R

15 are
the process state trajectories.

A. Summary of the process model assumptions and limita-
tions

Assumptions
The proposed model is based on the following assump-

tions:
1) tether elasticity and dynamics are neglected, the tether

drag is approximated using a linear wind shear model,
the tether is always under tension

2) direct control of the Roll/Pitch/Yaw accelerations
3) lift force is orthogonal to the airfoil transversal axis
4) lift and drag coefficients depend on the angle of attack

α and the side-slip angleβ only
5) angle of attackα and side-slip angleβ are small
6) linear-lift model, quadratic drag model
Limitations
The proposed model is singular for the degenerate scenar-

ios a) X = 0 (airfoil collapses to the origin) and b)νx = 0
(airfoil longitudinal speed drops to zero). Moreover, the wind
shear model prohibitsz≤ zr (airfoil very close to the ground).

B. Process Constraints

We propose the following control input bounds:

−40deg/s2 ≤ Tk ≤ 40deg/s2, k = 1,2,3

−5m/s2 ≤ r̈ ≤ 5m/s2, (8)

and the following path constraints:

−40deg/s ≤ ωk ≤ 40deg/s, k = 1,2,3

−10m/s ≤ ṙ ≤ 10m/s. (9)

In the following, (8) and (9) are lumped together as the
inequality constraintsh(X,U)≤ 0.

In addition, in order to keep the process in the region
where the model assumptions are valid, the following path
constraints need to be considered:

0 ≤ CL (X,W0) ≤ 1,

λ (X,W0) ≤ 0. (10)

Constraintλ ≤ 0 is required to keep the tether under tension
(model Assumption 1), and constraint 0≤CL ≤ 1 is required
to keep the airfoil in the linear-lift region [17] (model
Assumption 6). Note that the actual bounds on the linear-
lift region depend on the airfoil used.

III. NMPC A LGORITHM

A. NMPC Formulation

It is proposed here to formulate a receding horizon NMPC
scheme using a least squares (LSQ) function penalizing the
deviation of the process control input and states from the
periodic power-generating reference trajectories. Because a
small side-slip angleβ is crucial for the process performance
and for an efficient trajectory tracking, a penalty onβ is
introduced in the NMPC cost function.

The inequality constraints 0≤CL ≤ 1 andλ ≤ 0 in (10) are
pure state constraints and are directly affected by the wind
velocityW0, therefore wind turbulences can drive the process
trajectories out of the feasible domain. This is especially
a problem for the constraintCL ≤ 1 which is active at
the power-generation reference trajectories. To tackle this
issue, the following slack reformulation of constraints (10)
is proposed:

CL − S1 ≤ 1, CL + S1 ≥ 0, λ − S2 ≤ 0, S1,2 ≥ 0,

and aL1 penalty on the slack variablesSk is included in the
NMPC cost function. In the presence of process disturbances,
violations of the original constraints 0≤CL ≤ 1 andλ ≤ 0
cannot be excluded. Thus some robustness w.r.t. violationsof
constraints (10) need to be considered in the system design,
e.g. the airfoil shall be designed such that a transition to a
stall situation (CL becomes too large) occurs smoothly and
can be easily recovered from [4].

The NMPC is based on repeatedly (i= 0,1, ...) solving the
following optimal control problem (OCP):

min
Ui(.),S

WSS+
∫ ti+TH

ti

(

‖X− X̄‖2
Q + ‖Ui − Ū‖2

R

+Qβ β 2)dt, (11)

s.t. Ẋ= f (X,U,W0) , h(X,U,W0)≤ 0,

X(ti) = X̂(ti) , W0 = Ŵ0 (ti) , S ≥ 0,

CL − S1 ≤ 1, CL + S1 ≥ 0, λ − S2 ≤ 0,

where ti = iTs and Ts is the NMPC sampling time,TH the
NMPC prediction horizon,̄X(t +To) = X̄(t) andŪ (t +To)=
Ū (t), ∀t ∈ R are the state and input reference trajectories
computed off-line,C̄L(·) =CL

(

X̄, Ū,W0
)

is the correspond-
ing reference trajectory for the lift coefficient,Q and R are
constant positive-definite weighting matrices,QCL and Qβ
are positive constant weights. VectorS =

[

S1 S2
]T

is the
set of slack variables, andWS ≥ 0 the corresponding row
vector of positive weights. VectorŝX(ti) andŴ0 (ti) are the
estimated process state and wind velocity at time instantti.

Note that the process state estimate must satisfy the
consistency conditiong

(

X̂(ti)
)

= 0.
The methodology used to compute the power generating

reference orbits is similar to the one presented in [11]. For
the sake of brevity the details are omitted in this paper.

B. NMPC Implementation

Approximate solutions to OCP (11) are computed using
the software packageACADO [12]. A piecewise-constant
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Fig. 1. Perturbed wind velocityW0 (plain line) and reference wind velocity
(dashed line), in (m/s).

control vector parametrization (CVP) of the process control
inputU(.) is used. The chosen NMPC prediction horizon was
set toTH = To/2, whereTo = 22.94s. The CVP is based on
N = 20 elements of uniform durationTcvp= TH/N. The OCP
is discretized using a multiple-shooting method [1], usingthe
CVP time grid. The process dynamicsf are discretized over
the shooting intervals via the Runge-Kutta 45 integration
method. The NMPC sampling timeTs= ti− ti−1 was chosen
asTs = Tcvp. Matrix Q was chosen diagonal, with:

diag{Q}= 10−4 · [3.6, 0.08, 0.22, 5, 5, 5,

10, 10, 10, 10, 10, 10, 10, 0, 1] .

The remaining weights in (11) were chosen as diag{R} =
[

4 ·10−4, 20, 20, 20
]

, WS =
[

102 102
]

, and Qβ = 103.
Note that the units of the weights are defined consistently
with the variables they correspond to, so as to yield a
dimensionless cost.

A real-time implementation of the NMPC scheme requires
that the time needed to provide a solution to the NLP
approximating (11) is consistently less thanTs. The NLP
was repeatedly solved via the RTI method where a) at each
sampling timeti the control inputs are updated using a single
Newton step instead of several SQP iterations, resulting in
approximate but faster control input updates, and b) most
of the linear algebra involved in the QP providing the
control input update is prepared without knowledge of the
future process state and parameter estimation, resulting in a
negligible control latency. See [7], [13], [6] for a detailed
description of the RTI scheme.

IV. SIMULATION RESULTS

In this Section, the simulation results obtained for the
model proposed in Section II and the control algorithm
proposed in Section III are presented. The model parameters
are summarized in Table I. The proposed scenario considers a
turbulent wind velocity as the process disturbance. Standard
turbulent wind models for wind energy are available in the
literature [3], yet for sake of simplicity a simple perturbation
of W0 = 10m/s was considered in this paper, based on a
Gaussian random walk smoothened by a first-order filter. The
perturbed wind velocity profile is displayed in Fig. 1.

In order to clearly distinguish the control problem from
the state estimation problem, it is assumed here that exact
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Fig. 2. Simulated trajectories for the airfoily-z position: NMPC trajectories
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Fig. 3. Left: Simulated trajectory for the lift coefficient (CL ) and reference
C̄L (dashed line).Right: simulated trajectory for the side-slip angle (β ) (plain
line) and reference (dashed line), in (deg).

knowledge of the process state is available. However, because
the estimation of the local wind velocity for AWE systems
is still a fully open question, it was assumed here that
no estimation of the actual wind velocity is available, i.e.
Ŵ0(ti) =W0 was used in the NMPC formulation.

The proposed simulation was run over the duration of three
orbits. They-z trajectory is presented in Fig. 2, alongside
with the y-z reference trajectory on the multiple-shooting
grid points. The lift coefficientCL and side slip angleβ are
displayed in Fig. 3. The averaged power generationP̄=E/To

can be seen in Fig. 4.
The time required for the computation of the NMPC input

updates was of the order of the NMPC sampling frequency
Ts. It should be underlined here that this computational per-
formance can be significantly improved via auto-generated
C-code [9].

V. CONCLUSION & FURTHER DEVELOPMENTS

This paper has proposed a computationally efficient 6-
DOF control model dedicated to the control of tethered flight
specific to the Airborne Wind Energy concept. The model is
well suited for an integration into a NMPC scheme acting
as a high-level controller providing pitch-roll-yaw reference
trajectories to a lower-level controller. The proposed model
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TABLE I

MODEL PARAMETERS

Parameter Value Unit
mA 5·103 (kg)
A 500 (m2)

Cα
L 5.67 -

C0
D 10−2 -

CI
D 10−2 -

Cβ
D 10−1 -

ρ 1.23 (kg·m−3)
DT 5·10−2 (m)
CT 1 -
µ 2.84 (kg·m−1)
zr 10−2 (m ·s−1)
z0 100 (m)

was integrated into a fast NMPC algorithm based on the
Real-Time Iteration scheme performing the tracking of a
power-generating reference trajectory. The control scheme
was successfully tested in simulation in the presence of a
turbulent wind velocity.

A. Further developments

Tether dynamics have been neglected in this paper. How-
ever, for large scale AWE systems, the tether dynamics are
likely to have a significant impact on the process behavior.
The development of a computationally efficient tether dy-
namics model and the integration of such a model into the
NMPC scheme are the object of current research.

The computational performance can significantly be im-
proved via auto-generated C-code [9]. In addition, because
multiple-shooting is an ideal framework for a parallelization
of the highly time-consuming sensitivity evaluations, future
research will consider the implementation of fast NMPC
schemes for tethered flight on multi-core platforms, hence
dividing the time required for the sensitivity evaluation by a
corresponding factor.

The process performance is sensitive to process distur-
bances. It has been observed in simulations that a low side-
slip angleβ is crucial for both the trajectory tracking and
the power generation. However, future research will consider
a more formal approach to performance tracking, by e.g.
casting the control problem in the framework of Economic

MPC [5].
Finally, simulations based on state-of-the-art 3D turbulent

flow models are the object of future research.
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