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Abstract

This paper scans a large class of one-parameter families of elliptic curves for efficient arithmetic. The

construction of the class is inspired by toric geometry, which provides a natural framework for the

study of various forms of elliptic curves. The class both encompasses many prominent known forms and

includes thousands of new forms. A powerful algorithm is described that automatically computes the

most compact group operation formulas for any parameterized family of elliptic curves. The generality of

this algorithm is further illustrated by computing uniform addition formulas and formulas for generalized

Montgomery arithmetic.

1 Introduction

Since Lenstra’s discovery of the elliptic curve factorization method [28] and the introduction of
elliptic curve cryptography by Miller [29] and Koblitz [25], there has been a continuous interest
in speeding up addition/doubling and (multi)-scalar multiplication on elliptic curves. Whereas
Lenstra and Koblitz suggested to simply use the short Weierstrass equation and normal affine
coordinates, Miller already proposed the use of Jacobian coordinates.

In a plethora of papers, many new coordinate systems and different forms were proposed. The
most notable proposals are the following: Chudnovsky Jacobian coordinates [14] and modified
Jacobian coordinates [16] (both using the short Weierstrass equation), Jacobi intersections [14,
27], the Hessian form [21, 35], the Jacobi quartic form [14, 9], the Montgomery form [31], the
Doche/Icart/Kohel forms [17] and finally, the Edwards and twisted Edwards forms [6, 4]. All
these forms and coordinate systems have been gathered in the Explicit Formulas Database by
Bernstein and Lange [5], which also includes numerous speed-ups, mainly due to Bernstein and
Lange themselves, and to Hisil et al. [23, 24]

The discovery of these different forms raises the question whether there are more unknown
forms of interest and if so, if any of these forms lead to more efficient arithmetic. The goal of this
paper is to provide an answer within a certain large class of forms. In this, we will always assume
that we work over a field of sufficiently large characteristic. The class is inspired by results from
toric geometry that give a natural classification of elliptic curves based on the Newton polytope
of the defining polynomial, provided the latter satisfies a certain generic condition. This idea
was presented by the first author at [10] – it subsequently proved useful in the construction of
a characteristic 2 variant of Edwards arithmetic [7]. On the highest level, there are 16 non-
equivalent base forms, only 6 of which seem to have appeared in the literature so far. On a
somewhat lower level, i.e. by using unimodular transformations and specializing coefficients, one
obtains an infinite number of forms, out of which we selected our class. It consists of over 50000
one-parameter families of elliptic curves, all of which we scanned for efficient arithmetic.

Of course, computing group operation formulas, let alone efficient formulas, in a large number
of parameterized families soon becomes impossible by hand. To solve this problem, we propose
a very general algorithm to compute efficient group operation formulas based on a combination
of interpolation and lattice reduction. Alternatively, we could have used a rational simplication
algorithm due to Monagan and Pearce [30], but our method is much more robust and avoids
capricious Gröbner basis computations. To illustrate the robustness of our algorithm, we show
how uniform addition formulas, i.e. formulas that can also be used for doubling, can be easily
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computed. Furthermore, we study generalized Montgomery arithmetic by considering the index 2
subfield of the function field of the curve that is invariant under negation. This notion generalizes
x-coordinate only arithmetic on Montgomery curves. Again we provide non-trivial examples
obtained by our algorithm.

At no point in this article, we claim immediate cryptographic applicability, neither are we
blind for the current limitations of our scan: we restrict to prime fields of large enough charac-
teristic, we restrict to affine formulas, some well-known forms are not covered by our class, and
we tightly link efficiency with compactness. But the main aim of this paper is to provide tech-
niques towards a more systematic approach in the search for efficient elliptic curve arithmetic.
In particular, we emphasize that these limitations are not intrinsic to our method.

Nevertheless, there are some interesting conclusions to be drawn. First, we prove that within
our class, the Edwards form is essentially the only form admitting quadratic doubling and addition
formulas. Although our class is finite, it seems big enough to detect patterns, and in Proposition 9
we will give some theoretical evidence suggesting that the above conclusion is not a coincidence.

Another conclusion is that relatively good formulas are very common, so that designers for
which other curve features are more important should not feel limited to the list of well-known
forms. Our algorithm can then serve in finding efficient formulas for arithmetic.

Along the way, we obtain a number of theoretical results and side-way observations, regardless
of our class. For instance, we obtain a good understanding of what can be expected from
Montgomery arithmetic (in its most general setting) and we prove that one can never improve
upon Montgomery’s doubling formula, in the rough sense explained in Proposition 10. We show
that many prominent known forms fit in our framework, and we illustrate that by studying
the toric resolution of the curve, one can often guess good candidates for projective coordinate
systems suited for efficient arithmetic. An off-topic contribution is the proof of various statistics
concerning the number of isomorphism and isogeny classes of elliptic curves in certain families
(Section 2.2).

The remainder of this paper is organized as follows. Section 2 recalls the notions of elliptic
curve, addition formulas, doubling formulas, uniformity, and completeness. Five well-known
and well-working examples are discussed, and some according statistics are proven. Generalized
Montgomery arithmetic is introduced. Section 3 presents our framework based on toric geometry,
along with the construction of our class of over 50000 forms. It is shown that many prominent
known forms are contained in this class, including our five selected examples. Section 4 describes
our interpolation algorithm to compute efficient addition/doubling formulas on families of elliptic
curves and Section 5 illustrates the generality of this algorithm by providing addition/doubling
formulas for several new families, uniform addition formulas for the short Weierstrass equation
and generalized Montgomery arithmetic for the Jacobi quartic. Section 6 discusses the results of
our scan. We also prove some prudent optimality results on Edwards and Montgomery arithmetic.
Finally, Section 8 concludes the paper and presents avenues for future research.

2 Elliptic curves, addition, and doubling

2.1 Theoretical framework

Throughout this article, k denotes a perfect field (typically a finite field or a field containing Q)
and k denotes an algebraic closure.

An elliptic curve over k is a pair (E,O). Here E is a curve of geometric genus one in P2,
defined by the homogenization of an absolutely irreducible polynomial C(x, y) ∈ k[x, y]. We do
not impose E to be non-singular: this is not standard, but it allows us to consider e.g. Edwards
curves and Jacobian quartics as elliptic curves in a more natural way. In any case, there always
exists a non-singular curve Ẽ/k along with a k-rational birational morphism λ : Ẽ → E under

which the non-singular part Ens of E can be identified with a Zariski open subset of Ẽ, i.e.
λ|λ−1(Ens) is an isomorphism. The points of Ẽ are called places of E, and a place P is said
to dominate λ(P). The singular points of E may be dominated by several places. The second
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parameter O is a k-rational place of E. By the above identification this is typically just a
non-singular k-rational point.

The curve Ẽ is endowed with unique k-rational morphisms ψ : Ẽ×Ẽ → Ẽ and χ : Ẽ → Ẽ that
can be interpreted as addition and negation, turning Ẽ = Ẽ(k) into an abelian group in which
O serves as neutral element. Note that, for each intermediate field k ⊂ k′ ⊂ k, the k′-rational
points Ẽ(k′) form a subgroup of Ẽ. We will write P+Q for ψ(P ,Q) and −P for χ(P). Changing
the base place boils down to translating the group law: let O′ be a new base place inducing new
operations +′ and −′, then P +′ Q = ((P − O′) + (Q −O′)) +O′ and −′P = −(P − O′) +O′.
For each n ∈ Z the notation [n]P abbreviates

sgn(n) ·
(
P + · · ·+ P︸ ︷︷ ︸

)
.

|n| times

The map ϕn : Ẽ → Ẽ : P → [n]P is a degree n2 morphism. We will be particularly interested in
the doubling map ϕ2.

The function fields of Ẽ and Ẽ × Ẽ are identified with the fraction fields of

k[x, y]

(C(x, y))
and

k[x1, y1, x2, y2]

(C(x1, y1), C(x2, y2))

respectively. We define a set of addition formulas on an elliptic curve (E,O) to be a quartet of
nonzero polynomials f1, g1, f2, g2 ∈ k[x1, y1, x2, y2] such that

x ◦ ψ =
f1
g1
, y ◦ ψ =

f2
g2

inside the function field k(Ẽ× Ẽ). A set of doubling formulas is a quartet of nonzero polynomials
f1, g1, f2, g2 ∈ k[x, y] such that

x ◦ ϕ2 =
f1
g1
, y ◦ ϕ2 =

f2
g2

inside the function field k(Ẽ).
Let Uns = Ens ∩ A2. Then addition formulas and doubling formulas can be used to perform

arithmetic on generically chosen points of Uns. For instance, let f1, g1, f2, g2 be a set of addition
formulas and take points P = (p1, p2),Q = (q1, q2) ∈ Uns. Then unless the denominators are
zero, it makes sense to compute

(
f1(p1, p2, q1, q2)

g1(p1, p2, q1, q2)
,
f2(p1, p2, q1, q2)

g2(p1, p2, q1, q2)

)
.

If the result is in Uns again, this exactly matches with P+Q. Point pairs of (Ẽ×Ẽ)\(Uns×Uns),
as well as point pairs of Uns × Uns where the above method fails, are called exceptional point
pairs with respect to the given addition formulas. With respect to doubling formulas, it is
straightforward to define the similar notion of exceptional points. Exceptional point (pair) sets
are always of co-dimension ≥ 1.

2.2 Some well-known examples

Here are five famous shapes of elliptic curves. Evidently, the existing literature contains a lot
more forms that have proven useful (see the references in the introduction), but the examples
below are very classical – even the Edwards form, which in fact dates back to Gauss – and illus-
trative for the remainder of this paper.
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(1) Assume char k 6= 2, 3. A Weierstrass curve is an elliptic curve E defined by

C(x, y) = y2 − x3 −Ax−B ∈ k[x, y], 4A3 + 27B2 6= 0,

along with the unique point O = (0, 1, 0) at infinity. Such a curve is non-singular (thus Ẽ = E
and λ = id) and the group operations can be described using the well-known tangent-chord
method. A naive calculation then gives the following addition formulas:

x ◦ ψ =

(
y2 − y1
x2 − x1

)2

− x1 − x2, y ◦ ψ =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1,

where x3 abbreviates x ◦ ψ. Note that all point pairs for which x1 = x2 are exceptional. In
particular, the above expressions are unsuitable for doubling, for which instead

x3 = x ◦ ϕ2 =

(
3x2 +A

2y

)2

− 2x, y ◦ ϕ2 =

(
3x2 +A

2y

)
(x− x3)− y

can be used.

(2) Assume char k 6= 3. A Hessian curve is an elliptic curve E defined by

C(x, y) = x3 + y3 + 1− 3dxy ∈ k[x, y], d3 6= 1,

along with O = (−1, 1, 0). Hessian curves are non-singular, and again tangent-chord arithmetic
applies. We refer to [21] for details on how to obtain the addition formulas

x ◦ ψ =
y2
1x2 − y2

2x1

x2y2 − x1y1
, y ◦ ψ =

x2
1y2 − x2

2y1
x2y2 − x1y1

and for explicit doubling formulas. An interesting property of Hessian curves is that, although
the diagonal of Uns × Uns belongs to the exceptional locus of the addition formulas, these can
nevertheless be used to perform doubling, using the relation [2](α, β, γ) = (γ, α, β) + (β, γ, α).
This feature is interesting against side-channel attacks. See also [35].

(3) Assume chark 6= 2. An Edwards curve is an elliptic curve E which is defined by a polynomial

C(x, y) = x2 + y2 − 1− dx2y2 ∈ k[x, y], d 6= 0, 1,

along with the non-singular affine point O = (0, 1). Edwards curves allow the following elegant
addition formulas:

x ◦ ψ =
x1y2 + y1x2

1 + dx1x2y1y2
, y ◦ ψ =

y1y2 − x1x2

1− dx1x2y1y2
.

These are uniform, in the sense that under x1, x2 7→ x and y1, y2 7→ y they specialize to doubling
formulas (see also Section 2.3). The curve E has two singular points, namely (1, 0, 0) and (0, 1, 0).
It desingularizes to an intersection of quadrics

Ẽ :

{
xy − zw = 0

x2 + y2 − z2 − dw2 = 0

in P3, which naturally projects onto E ⊂ P2 (the projection λ : Ẽ → E corresponds to substi-
tuting x ← xz, y ← yz, z ← z2, w ← xy). The place dominating O is (0, 1, 1, 0). The places
dominating (1, 0, 0) are (

√
d, 0, 0, 1) and (−

√
d, 0, 0, 1), and the places dominating (0, 1, 0) are

(0,
√
d, 0, 1) and (0,−

√
d, 0, 1). Note that if d is a non-square, then Ẽ(k) ⊂ A2, which is related

to the completeness of Edwards addition in that case (see Section 2.3). The main references on
Edwards arithmetic are [6, 4].
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(4) Assume char k 6= 2. A Jacobi quartic is an elliptic curve E defined by

C(x, y) = y2 − x4 + 2Ax2 − 1 ∈ k[x, y], A 6= ±2,

along with the affine point O = (0, 1). In [9], Billet and Joye computed the following formulas:

x ◦ ψ =
x1y2 + x2y1

1− x2
1x

2
2

, y ◦ ψ =

(
1 + x2

1x
2
2

)
(y1y2 − 2Ax1x2) + 2x1x2

(
x2

1 + x2
2

)

1− x2
1x

2
2

,

which are again uniform. The Jacobi quartic has a singular point (0, 1, 0) at infinity. The desin-
gularization map λ is the projection from the intersection in P3 of the quadrics x2 − zw and
y2−w2 +2Ax2−z2 to P2 (corresponding to substituting x← xz, y ← yz, z ← z2, w← x2). The
place dominating O is (0, 1, 1, 0). The places dominating (0, 1, 0) are (0, 1, 0, 1) and (0,−1, 0, 1).

(5) Assume char k 6= 2. A Montgomery curve is an elliptic curve E defined by a polynomial

C(x, y) = By2 − x3 −Ax2 − x ∈ k[x, y], B 6= 0, A 6= ±2

along with the unique point O = (0, 1, 0) at infinity. Tangent-chord arithmetic applies and it is
easy to see that k(x) is the index 2 subfield invariant under negation, so one can take t = x.
Montgomery [31] proved the following formulas:

x ◦ ϕ2 =
(x+ 1)2(x− 1)2

4x((x − 1)2 + A+2
4 ((x+ 1)2 − (x− 1)2))

xm+nxm−n =
((xm − 1)(xn + 1) + (xm + 1)(xn − 1))2

((xm − 1)(xn + 1)− (xm + 1)(xn − 1))2
,

where xi = x ◦ ϕi.

Intermezzo: classification of the above forms.

In the following discussion, we always assume that k is a finite field having an appropriate char-
acteristic (char k ≥ 5 will work everywhere). It is well-known that every elliptic curve is in
k-rational birational equivalence with a Weierstrass curve, but the same is no longer true for the
other forms (2-5). In this intermezzo, we will give a brief classification, both up to k-birational
equivalence and up to k-isogeny, and prove according statistics. It is essentially a summary of
existing (yet fragmentary) material. Similar statistics have been observed, without proofs or
references, in [4, Section 4]. Classication up to k-birational equivalence can be done through a
j-invariant computation, which was carried out in [34] in a limited number of cases. Note that
in the concluding section of [34], classification up to k-isogeny is presented as an open problem.

(2) If (E,O) is Hessian, then Ẽ(k) has a subgroup {O, (−1, 0, 1), (0,−1, 1)} of order 3. In

particular, 3 | #Ẽ(k) is a necessary condition for an elliptic curve (E,O) to be k-birationally
equivalent to a Hessian curve. If #k ≡ 2 mod 3 then this condition is also sufficient [15, 13.1.5.b].

If #k ≡ 1 mod 3, then (E,O) is Hessian if and only if Ẽ(k) contains all nine 3-torsion points

of Ẽ(k). For the if-part, the proof goes as follows. Take a model in which O is a flex (e.g. a
Weierstrass model). Then by the tangent-chord rule, its other flexes are exactly its other 3-torsion
points, hence k-rational. But then an additional projective transformation puts our curve into
Hessian form [20, Lemma 11.36]. For the only-if-part it suffices to observe that the flexes of a
Hessian curve are precisely the intersection points with the three coordinate axes, all of them
being rational if #k ≡ 1 mod 3.

The probability that a randomly chosen Weierstrass curve can be shaped into Hessian form
can then be estimated as

P (3 |#Ẽ(k)) ≈ 1

2
if #k ≡ 2 mod 3
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P (Ẽ[3](k) ∼= Z/3Z⊕ Z/3Z) ≈ 1

#SL2(Z/3Z)
=

1

24
if #k ≡ 1 mod 3,

following [13, Theorems 1 and 2]. The error term is O(#k−1/2).

Two elliptic curves (E,O) and (E′,O′) are k-isogenous if and only if #Ẽ(k) = #Ẽ′(k) by
Tate’s theorem. So if #k ≡ 2 mod 3, a necessary and sufficient condition for an elliptic curve
(E,O) to be k-isogenous to a Hessian curve is 3 | #Ẽ(k). If #k ≡ 1 mod 3, then the condition

9 | #Ẽ(k) is necessary and almost always sufficient. This follows from a very general theorem
due to Tsfasman et al. [36, Theorem 3.3.15]. The exceptions are all supersingular.

(5) Montgomery curves can be intrinsically characterized by the existence of a point P ∈ Ẽ(k)

for which
(
Ẽ/〈P〉

)
(k) contains all four 2-torsion points: combine [32, Proposition 5] with Vélu’s

formulas to see this. Equivalently, an elliptic curve (E,O) is Montgomery if the curve or its
quadratic twist have a k-rational point of order 4; see also [4, Theorems 3.2 and 3.3]. In case
#k ≡ 3 mod 4, it suffices to check whether (E,O) itself has a point of order 4 [4, Theorem 3.4].

In case #k ≡ 1 mod 4, the curve (E,O) is Montgomery if and only if 4 | #Ẽ(k): it suffices to
verify that every (2× 2)-matrix over Z/4Z having trace 2 and determinant #k ≡ 1 is conjugated
to a matrix of the form (

1 w

0 1

)
or of the form

(
−1 w

0 −1

)

(implying that (E,O) resp. its quadratic twist have a k-rational point of order 4).
The probability that a randomly chosen Weierstrass curve can be shaped into Montgomery

form can then be estimated as

P (Ẽ(k) contains point of order 4) ≈ 3

8
if #k ≡ 3 mod 4

P (4 |#Ẽ(k)) ≈ 5

12
if #k ≡ 1 mod 4,

following [13, Theorems 1 and 3]. The error term is O(#k−1/2).
Clearly, a necessary condition for an elliptic curve (E,O) to be k-isogenous to a Montgomery

curve is 4 | #Ẽ(k). This is also sufficient: an explicit isogeny is given in [4, Theorem 5.1].

(3) Up to k-rational birational equivalence, Edwards curves are precisely those elliptic curves
having a k-rational point of order 4, see [4, Theorem 3.3]. Note that in particular, every Edwards
curve is a Montgomery curve and, conversely, every Montgomery curve is a twist of an Edwards
curve.

The probability that a randomly chosen Weierstrass curve can be shaped into Edwards form
can then be estimated as

P (Ẽ(k) contains point of order 4) ≈ 3

8
if #k ≡ 3 mod 4

P (Ẽ(k) contains point of order 4) ≈ 1

3
if #k ≡ 1 mod 4,

following [13, Theorems 1 and 3]. The error term is O(#k−1/2).
In the case where k is finite, an application of [36, Theorem 3.3.15] classifies Edwards curves

up to isogeny: if 4 | #Ẽ(k), then (E,O) only fails to be k-isogenous to an Edwards curve if #k

is a square and Ẽ is a supersingular curve having (
√

#k ± 1)2 rational points, the sign to be
chosen such that 4 ∤

√
#k± 1. In particular, if #k ≡ 3 mod 4, then #k is never a square and an

explicit k-isogeny can be constructed following [4, Theorems 3.2, 3.4 and 5.1].

(4) A Weierstrass curve can be k-birationally transformed to a Jacobi quartic if and only if all
2-torsion points are k-rational. This can be read along the lines in [9, Section 3]. Using [13,
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Theorem 2], the proportion of Weierstrass curves shapable into Jacobi quartic form is then given
by

P (Ẽ[2](k) ∼= Z/2Z⊕ Z/2Z) ≈ 1

#SL2(Z/2Z)
=

1

6
.

The error term is O(#k−1/2).
Again by [36, Theorem 3.3.15], apart from some explicitly known supersingular exceptions, if

4 | #Ẽ(k) then (E,O) is k-isogenous to a Jacobi quartic.

2.3 Uniformity and completeness

We call a set of addition formulas uniform if they specialize under xi 7→ x, yi 7→ y (i = 1, 2) to a
set of doubling formulas. This will be the case whenever g1 and g2 do not identically vanish (over
k) on the diagonal of Uns×Uns. Uniform addition formulas always exist (whatever E and O are),
simply because ψ is a morphism. Indeed, it suffices to take a point P ∈ Uns(k) such that x◦ψ and
y◦ψ are defined on (P ,P). Then there exists an open neighborhoodW ∋ (P ,P) in Uns×Uns and
polynomials f1, g1, f2, g2 ∈ k[x1, y1, x2, y2] for which x ◦ ψ = f1/g1 and y ◦ ψ = f2/g2, such that
g1, g2 nowhere vanish on W . Uniformity is an interesting feature against side-channel attacks.
We already encountered uniform addition formulas for Edwards and Jacobi quartic curves. In
Section 5.3 we provide an example for the short Weierstrass form computed by the algorithm
described in Section 4.

A set of addition formulas (resp. doubling formulas) is said to be complete if Uns(k)×Uns(k)
(resp. Uns(k)) contains no exceptional point pairs (resp. exceptional points). As soon as Uns(k) 6=
∅, complete addition formulas are automatically uniform. However, whereas uniformity is a
property that is invariant under base field extension, completeness is not.

Lemma 1: If k = k, then complete addition or doubling formulas do not exist.

Proof. Uns = Uns(k) 6= ∅, thus it suffices to prove that complete doubling formulas cannot

exist. Let P be a place above a point at infinity. Since Ẽ \Uns is finite, there is a minimal r such
that ϕ−1

2r {P} contains a point Q ∈ Uns. This will be an exceptional point. �

The best-known example of complete addition formulas (and hence of complete doubling formu-
las) is provided by Edwards addition, as described above. Indeed, if d is taken to be non-square,
then dx1x2y1y2 can never be ±1. See [6, Theorem 3.3] for details.

2.4 Generalized Montgomery arithmetic

Let (E,O) be an elliptic curve. The subfield of k(Ẽ) consisting of functions f that satisfy

f = f ◦ χ is of the form k(t) for a non-constant function t ∈ k(Ẽ). Equivalently, k(t) consists of
all functions f that satisfy f(P) = f(−P) for all pairs ±P at which f is defined. It is a subfield

of index 2, corresponding to a degree 2 morphism Ẽ → P1. For example, in (1) the Weierstrass
setting, the map f 7→ f ◦χ is determined by x 7→ x, y 7→ −y. So the subfield is just k(x), and one
can take t = x. In (2) the Hessian setting, the map f 7→ f ◦ χ is determined by x 7→ y, y 7→ x
and one can take t = x + y. In (3) the Edwards setting, we have x 7→ −x, y 7→ y so we can
take t = y. In (4) the Jacobi quartic setting, the map is x 7→ −x, y 7→ y and one can take
t = (y+1)/x2. Note that k(y) ( k(t). Finally, (5) for Montgomery curves one can take t = x as
in the Weierstrass setting. The following lemma is easy to prove by noting that ϕn ◦χ = χ ◦ϕn.

Lemma 2: For all n ∈ Z, we have t ◦ ϕn ∈ k(t).

A t-only doubling formula is a couple of nonzero polynomials f, g ∈ k[t] such that t ◦ ϕ2 = f/g
inside k(t). Concerning addition, it is in general impossible to derive t(P + Q) from t(P) and
t(Q). Instead, one makes use of the next statement, which is easy to verify using the classical
Weierstrass addition formulas (it holds in any characteristic).
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Lemma 3: There exists a bivariate rational function F over k such that for all m,n ∈ Z

(t ◦ ϕm+n)(t ◦ ϕm−n) = F (t ◦ ϕn, t ◦ ϕm) in k(t). (1)

A t-only addition formula is a couple of nonzero polynomials f, g ∈ k[tn, tm] such that F = f/g
satisfies (1). Here tn and tm are formal variables.

Then t-only arithmetic can be used to compute [n]P by subsequently obtaining ([n]P , [n+1]P)
from ([⌊n/2⌋]P , [⌊n/2⌋ + 1]P), using one t-only doubling and one t-only addition. This is the
so-called Montgomery ladder ; for more details we refer to [15, 13.2.3]. Montgomery proposed
this method [31] in the context of speeding up Lenstra’s elliptic curve factorization method [28],
although soon after it found its way to cryptography (e.g. in Bernstein’s curve25519 [3]).

2.5 Projective coordinates

To avoid time-costly field inversions, addition and doubling are commonly done using projective
coordinates, see for instance [15, 13.2.1.b]. The same principle is used for Montgomery arithmetic:
one then works on the projective t-line P1. Now instead of projective coordinates, one can often
gain a speed-up using alternative coordinate systems, the most famous being weighted projective
coordinates. E.g., in the Weierstrass setting, it is more natural to work in P(2; 3; 1), these are
called Jacobian coordinates ; see [15, 13.2.1.c] for some details. Similarly, one preferably works
in a P(1; 2; 1)-related coordinate system for Jacobi quartics. It can also be useful to work with
hyperboloidal coordinates, i.e. to work on P1 × P1 (which is the quadric xy = zw in P3). For
that, one embeds a point (x, y) as (x, y, 1, xy). This setting gave some of the best operation
counts so far for Edwards arithmetic [24]. We refer to the Explicit Formulas Database [5] for an
overview of the various other inversion-free coordinate systems that have been proposed.

3 Toric forms of elliptic curves

3.1 Nondegenerate polynomials, lattice polytopes, and equivalence

For the general background on toric varieties and nondegenerate polynomials, we refer to [18, 1].
Let C(x, y) ∈ k[x, y] be an absolutely irreducible polynomial. Let S ∈ Z2 be the set of

exponent vectors appearing in C, and denote with ∆ its convex hull in R2. It is called the
Newton polytope of C, which is an example of a lattice polytope, i.e. a convex polytope whose
vertices lie in Z2. A face of ∆ is either ∆ itself, either a non-empty intersection of ∆ with a
line aX + bY = c for which ∆ ⊂ {(X,Y ) ∈ R2 | aX + bY ≤ c}. The 1-dimensional faces are
called edges, the 0-dimensional faces are referred to as vertices. The union over the edges of ∆
is called the boundary and is denoted by ∂∆. For each subset τ ⊂ R2, let Cτ (x, y) be obtained
from C(x, y) by erasing all terms whose exponent vectors lie outside of τ .

Definition/Theorem 4: [11, Corollary 2.8] Suppose that for each face τ ⊂ ∆, the system of equa-
tions

Cτ (x, y) =
∂

∂x
Cτ (x, y) =

∂

∂y
Cτ (x, y) = 0

has no solutions in the torus T2 = (k\0)2 ⊂ A2, then C(x, y) is called nondegenerate with respect
to its Newton polytope. In that case, the geometric genus of the curve defined by C(x, y) = 0
equals #((∆ \ ∂∆) ∩ Z2).

Regardless of the condition of nondegeneracy, #((∆ \ ∂∆) ∩ Z2) is an upper bound for the
geometric genus of the curve defined by C(x, y) = 0. This is called Baker’s inequality, for a proof
see [2, Theorem 4.2].

We now consider Z-affine maps

f : R2 → R2 :

[
X

Y

]
7→ A ·

[
X

Y

]
+

[
a

b

]
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for a, b ∈ Z and A ∈ GL2(Z). Two lattice polytopes ∆,∆′ ⊂ R2 are called equivalent if
there exists a Z-affine map f such that f(∆) = ∆′. Two absolutely irreducible polynomials
C(x, y), C′(x, y) ∈ k[x, y] are called equivalent if C′ can be obtained from C by applying a Z-
affine map to its exponent vectors. This procedure actually induces an isomorphism between
their respective loci in T2. Equivalent polynomials have equivalent Newton polytopes, and share
their being nondegenerate or not.

In the spirit of Theorem 4, we define the genus of a lattice polytope ∆ to be #((∆\∂∆)∩Z2).
For a fixed g ≥ 1, there is a finite number of equivalence classes of lattice polytopes of genus
g. If g = 1, there are 16 equivalence classes. Lattice polytopes representing these are shown in
Figure 1 below, which was taken from [33].

(i) (ii) (iii) (iv) (v) (vi) (vii) (viii)

(ix) (x) (xi) (xii) (xiii) (xiv) (xv) (xvi)

Figure 1: The 16 equivalence classes of lattice polytopes of genus 1

Using the above theory, we can prove the following simple observation, which seems new.

Lemma 5: Let k be a field of characteristic 0. Any geometric genus one curve over k which is
defined by a bivariate trinomial has j-invariant 0 or 1728.

Proof. After rescaling and applying a suitable Z-affine map to the exponent vectors, one sees
that the locus in T2 is isomorphic to a curve defined by

1 + αyj + βxkyℓ ∈ k[x, y],

with α, β 6= 0 and j, k > 0. The k-isomorphism

x← α
ℓ

jk β− 1

k x, y ← α− 1

j y

transforms the defining polynomial into

1 + yj + xkyℓ,

which is nondegenerate with respect to its Newton polytope. This Newton polytope therefore
contains exactly one interior lattice point. According to Figure 1, up to a Z-affine map we remain
with one of the following forms:

y2 + y + x3, y2 + x3 + x, y2 + x3 + 1, y3 + x3 + 1, y2 + x4 + 1.

Their j-invariants are 0, 1728, 0, 0 and 1728 respectively. �

It follows from the proof that the lemma is still true if k is of sufficiently large finite charac-
teristic (when compared to the degree of the trinomial).

3.2 The non-singular model of a toric form

From now on, we fix an irreducible polynomial C(x, y) ∈ k[x, y], and we assume that it is
nondegenerate with respect to its Newton polytope ∆. We also assume that C(x, y) defines a
curve E ⊂ P2 of geometric genus one, although most of the statements below are true for arbitrary
genus. By Theorem 4, ∆ has exactly one Z2-point in its interior. Hence up to equivalence, it is
one of the polytopes listed in Figure 1.
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We will follow the notation introduced in Section 2.1. The desingularization map

λ : Ẽ → E

can be described very explicitly. To each point (i, j) ∈ ∆∩Z2, associate a variable zij . These will
be considered as coordinate functions on PN , where N = #(∆∩Z2)−1. The combinatorics of ∆
gives rise to a set of binomial relations in k[zij ]: for α1(i1, j1)+α2(i2, j2) = β1(k1, ℓ1)+β2(k2, ℓ2),
where the αi and βi are integers satisfying α1 + α2 = β1 + β2, we have the relation

zα1

i1j1
zα2

i2j2
− zβ1

k1ℓ1
zβ2

k2ℓ2
= 0. (2)

These relations can be shown to define a projective surface X(∆) ⊂ PN , which is called the toric
surface associated to ∆. The torus T2 can be canonically embedded in X(∆) by

T2 →֒ X(∆) : (x, y) 7→ (xiyj)(i,j)∈∆∩Z2 . (3)

One can prove that it suffices to restrict to α1 + α2 ≤ 3 and even to α1 + α2 ≤ 2 whenever
#(∂∆ ∩ Z2) > 3 [26].

The faces τ ⊂ ∆ naturally partition X(∆) into sets of the form

O(τ) =
{

(αij)(i,j)∈∆∩Z2 ∈ X(∆)
∣∣ αij 6= 0 ⇐⇒ (i, j) ∈ τ

}
,

which are called the toric orbits of X(∆). Note that O(∆) is precisely the image of the above
map (3), hence it has the structure of a torus T2. More generally, each orbit O(τ) is canonically
isomorphic to a torus Tdim τ . Points in X(∆) \O(∆) are said to lie at toric infinity.

Now C(x, y) itself defines one additional, linear relation in PN : if

C(x, y) =
∑

(i,j)∈∆∩Z2

cijx
iyj , then it is

∑

(i,j)∈∆∩Z2

cijzij = 0.

This cuts out a curve Ẽ in X(∆) which is birationally equivalent to E: this is easy to see using (3).
More generally, for a positive integer n, we define the Minkowski multiple n∆ of a lattice polytope
∆ as the lattice polytope obtained by ‘dilating ∆ with a factor n’, i.e. by taking the convex hull
in R2 of all points (na, nb) for which (a, b) ∈ ∆. A straightforward calculation shows that there
is a natural isomorphism X(∆) → X(n∆) such that the torus embedding T2 →֒ X(n∆) is in
fact the composition of the torus embedding T2 →֒ X(∆) with this isomorphism. Now suppose
the Newton polytope of C(x, y) is n∆. Then its image in X(∆) is cut out by a hypersurface of

degree n. We still denote this image by Ẽ.
The following theorem is the main statement on nondegenerate polynomials.

Theorem 6: The curve Ẽ is non-singular and intersects the 1-dimensional orbits O(τ) (corre-
sponding to the edges τ of ∆) transversally in #(τ ∩ Z2) − 1 points. It does not contain the
0-dimensional orbits (corresponding to the vertices of ∆). In particular, the number of points at
toric infinity equals #(∂∆∩Z2). Moreover, these properties fully characterize the nondegeneracy
of C(x, y).

We can now describe the desingularization map λ : Ẽ → E. The restriction map λ |O(∆) is
an isomorphism onto E ∩ T2 ⊂ Uns whose inverse is given by the embedding (3). Now suppose

P ∈ O(τ) ∩ Ẽ for an edge τ ⊂ ∆. Let θ ∈ [0, 2π[ be such that (cos θ, sin θ) is a normal vector on
τ that points towards the interior of ∆. Write P = (αij)(i,j)∈∆∩Z2 . Then

1. if θ = 0, then λ(P ) = (0, α0,k, α0,k−1) where (0, k), (0, k − 1) ∈ τ ∩ Z2;

2. if θ ∈ ]0, π/2[, then λ(P ) = (0, 0, 1);

3. if θ = π/2, then λ(P ) = (αk,0, 0, αk−1,0) where (k, 0), (k − 1, 0) ∈ τ ∩ Z2;

4. if θ ∈ ]π/2, 5π/4[, then λ(P ) = (1, 0, 0);

5. if θ = 5π/4, then λ(P ) = (αk+1,ℓ, αk,ℓ+1, 0) where (k + 1, ℓ), (k, ℓ+ 1) ∈ τ ∩ Z2;

6. if θ ∈ ]5π/4, 2π[, then λ(P ) = (0, 1, 0).

In cases (a), (c) and (e), the restriction map λ |O(τ) is one-to-one.
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3.3 The toric framework of well-known forms

The reader can verify that the basic forms (1-5) of Section 2.2 all fit in the above setting, i.e. they
are all defined by a nondegenerate polynomial whose Newton polytope is therefore contained in
Figure 1 (up to Z-affine equivalence): Weierstrass curves are represented by (vii), Hessian curves
by (xvi), Edwards curves by (xv), Jacobi quartics by (xiii) and Montgomery curves by (v). These
five polytope classes seem to be the only cases that have been addressed in the literature so far,
with the recent exception of binary Edwards curves [7], represented by (xii), that were designed
for usage over fields of characteristic two only. Note that the nondegeneracy of Weierstrass poly-
nomials proves that every elliptic curve can be shaped into a nondegenerate form, at least if
char k > 3. This is true for any k [12, Section 4]. Also note that in all cases, the base point O
lies at toric infinity. Let us have look at the toric picture of these forms in closer detail.

(1) The Newton polytope ∆W of a Weierstrass curve E defines the toric surface

X(∆W ) : z00z20 = z2
10, z10z20 = z00z30, z11z00 = z10z0,1, z02z00 = z2

01

in P6. The hyperplane z02 = z30 + Az10 + Bz00 cuts out a nonsingular model Ẽ of E, which of
course was itself already nonsingular. The unique place dominatingO = (0, 1, 0) is (0, 0, 0, 1, 0, 0, 1),
where the 1’s correspond to the variables z30 and z02. Now for practical applications, we do not
suggest to work with coordinates in P6. But we remark that X(∆W ) is exactly how the weighted
projective space P(2; 3; 1) is canonically realized as a projective surface: it is the image of

ϕ : P(2; 3; 1) →֒ P6 : (x, y, z) 7→ (z6, xz4, x2z2, x3, yz3, xyz, y2)

and under this map, the natural embedding of E in P(2; 3; 1) is precisely sent to Ẽ. Thus, the
toric picture of a Weierstrass curve is its natural embedding in P(2; 3; 1).

(2) The Newton polytope of a Hessian curve E is ∆H = Conv {(0, 0), (3, 0), (0, 3)}, which is 3Σ,
where Σ is the standard 2-simplex in R2. The toric surface X(Σ) is simply P2, and the toric

model Ẽ is cut out by the cubic relation

z3
00 + z3

10 + z3
01 = 3dz10z01z00,

hence the toric picture of a Hessian curve is the curve itself. One can verify that X(∆H) is the
3-uple embedding of P2 in P9, where the Hessian curve becomes a hyperplane section.

(3) The Newton polytope of an Edwards curve E is ∆E = Conv {(0, 0), (2, 0), (0, 2), (2, 2)}, which
is the Minkowski double of � = Conv {(0, 0), (1, 0), (0, 1), (1, 1)}. The toric surface X(�) is the

surface in P3 defined by z01z10 = z00z11, that is: it is P1×P1. The toric model Ẽ of E is cut out
by an additional quadratic relation

z2
10 + z2

01 = z2
00 + dz2

11.

Renaming z00 ← z, z10 ← x, z10 ← y, z11 ← w reveals a complete match with the description of
Edwards curves given in Section 2.2, to which we refer for the rest of the story.

(4) Similarly, one can verify that the toric surface associated to the Newton Polytope ∆J of a

Jacobi quartic E is the conic z2
10 = z00z10 (which is in fact P(1; 2; 1)) and that Ẽ is cut out by

z2
01 = z2

20 +Az2
10 + z2

00. Again compare this with the description given Section 2.2.

(5) The toric surface associated to the Newton polytope of a Montgomery curve is the blow-up
of P(2; 3; 1) in (0, 0, 0). The blow-up is only necessary to ensure that the Montgomery curve does
not contain the 0-dimensional toric orbit (0, 0, 0); cf. Theorem 6.
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Toric surfaces are generalizations of projective space, and can serve as an inspiration for
the choice of a coordinate system in which to perform efficient arithmetic (see also Section 2.5).
Weighted projective coordinates for Weierstrass curves (X(∆W ) ∼= P(2; 3; 1)) and Jacobi quartics
(X(∆J) ∼= P(1; 2; 1)) have proven to be useful [14]. It is probably not a coincidence that Hisil et al.
established their speed-records for Edwards curve arithmetic [24] using hyperboloidal coordinates
(X(∆E) ∼= P1 × P1) and that ordinary projective coordinates remain in many aspects the better
system for Hessian curves (X(∆H) ∼= P2).

3.4 A vast class of toric forms

We will now algorithmically describe a large class of families of elliptic curves, that will be scanned
for efficient arithmetic in Section 4. For sake of simplicity, all families depend on one parameter,
which appears as the coefficient of a certain fixed monomial. Especially the latter property is a
severe constraint. Fix an integer d ≥ 3.

(i) First enumerate all lattice polytopes that

1. have exactly one interior lattice point (genus one);

2. have at least one vertex on the X-axis and one vertex on the Y -axis, not necessarily
distinct (irreducibility);

3. are contained in Σd = Conv{(0, 0), (d, 0), (0, d)} (degree at most d).

This can be done fairly naively, by iteratively adjoining a vertex (note that all forms have
at most six vertices due to Figure 1). The numbers of such lattice polytopes for d = 3, . . . , 8
are 79, 208, 433, 650, 884, 1244.

(ii) For each such polytope ∆ and each edge τb ⊂ ∆ (called the base edge), we label the interior
lattice points of τb with 0, the most clockwise oriented vertex of τb with 1, and the most
counter-clockwise oriented vertex of τb with −1.

(iii) For each such partially labeled pair (∆, τb), complete the labeling in all possible ways in
accordance with the following rules.

1. One lattice point vC of ∆ \ τb gets the label ‘A’;

2. The vertices of ∆ that were not labeled so far, become equipped with a ‘1’.

3. The lattice points of ∆ that were not labeled so far, get a ‘0’ or a ‘1’.

(iv) Finally, to each completely labeled pair (∆, τb), associate a polynomial

CA(x, y) =
∑

(i,j)∈∆∩Z2

(label of (i, j)) · xiyj ∈ Q(A)[x, y].

In the spirit of Lemma 5, erase all trinomials from this list: such ‘families’ will define the
same elliptic curve for each specialized choice of A.

All pairs (CA, τb) are collected in the output set Sd. The numbers of elements of Sd for d = 3, . . . , 8
are 5292, 14553, 32643, 55758, 73332, 103908. In practice we will take d = 6.

Lemma 7: Every (CA, τb) ∈ Sd defines a smooth genus one curve in X(∆) over Q(A), where
∆ = ∆(CA). It contains the point O = (αij)(i,j)∈∆∩Z2 , where αij = 1 if (i, j) ∈ τb and αij = 0 if
(i, j) /∈ τb.

Proof. It suffices to verify the statement up to Z-affine equivalence. Hence, since all polytopes
of Figure 1 have a representative in Σ4, it suffices to prove the statement for d = 4. A finite com-
putation then shows that all (CA, τb) ∈ S4 define a curve of geometric genus one. In particular,
the curve defined by CA can have no singularities in T2. Indeed, modulo a Z-affine equivalence
we may assume that the Newton polytope of CA is contained in Conv{(0, 0), (2, 0), (0, 2), (2, 2)},
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in Conv{(0, 0), (4, 0), (0, 2)} or in Σ3. Suppose (x0, y0) ∈ T2 is a singular point. Then the Newton
polytope of C(x− x0, y − y0) can have no lattice points in its interior. By Baker’s inequality we
run into a contradiction.

In particular, for CA the nondegeneracy condition with respect to ∆ itself is fulfilled. The
nondegeneracy conditions with respect to the vertices are immediate. Verifying the nondegener-
acy conditions with respect to the edges boils down to verifying the squarefreeness of polynomials
of the form

xk − 1 and α4x
4 + α3x

3 + α2x
2 + α1x+ 1

with the αi ∈ {0, 1, A} (at most one αi equalling A). In the former case, this is immediate.
In the latter case, if α4 = 0 then a finite computation proves squarefreeness. This proves full
nondegeneracy as soon as ∆ is not of type (xiii) in Figure 1, and the lemma follows in that case.

It remains to deal with the subtle case where ∆ is of type (xiii). Then CA may accidentally
fail to be nondegenerate: CA(x, y) = −y2 +Ay+ x4 + x3 + x+ 1 is an example. However, again
following a reasoning using Baker’s inequality one can prove that the nondegeneracy failure can
only be due to tangency with toric infinity. In particular, the curve defined by CA(x, y) = 0 still
embeds smoothly in X(∆). �

The point O will be called the base point of (CA, τb), and when speaking about arithmetic
on (CA, τb) it will always be with respect to this base point. In Section 6, we will report on
an exhaustive scan of all (CA, τb) ∈ S6 for efficient arithmetic over Q(A). Note that doubling
and/or addition formulas over Q(A) suit for arithmetic over any finite field k of sufficiently large
characteristic, for almost all specializations of A in k.

Of course, the finite class Sd has its limitations. But we tried to make a choice that is both
practical and natural. We remark that:

- The methods for finding efficient arithmetic, explained in Section 4, do not depend on the
particular construction of Sd.

- In the search for efficient arithmetic, it is a priori sufficient to consider 1-parameter families
only. If a family depending on 2 parameters has some remarkable arithmetical properties,
then specializing one of the parameters will result in a 1-parameter family having the same
remarkable arithmetical properties.

- The fact that all constants are ‘0’, ‘1’ or ‘-1’ is less restrictive than it seems at first sight.
The efficiency of doubling and/or addition formulas is hardly affected by substitutions of
the type x← αx, y ← βy, for small α, β ∈ k.
Conversely, as in the proof of Lemma 5, up to three non-zero coefficients (whose corre-
sponding exponent vectors are not collinear) can always be transformed to ‘1’ for some
suitable choice of α, β ∈ k. In general however, this might involve the introduction of large
constants that are defined over an extension field only.

With these remarks in mind, Sd essentially contains all our working examples (if d ≥ 4).

Form CA(x, y) τb Fig. 1

(1) Weierstrass (with B = 1) −y2 + x3 +Ax+ 1 [< 3, 0 >,< 0, 2 >] (vii)

(2) Hessian (modulo y ← −y) x3 − y3 + 1 +Axy [< 3, 0 >,< 0, 3 >] (xvi)

(3) Edwards x2 + y2 − 1 +Ax2y2 [< 0, 2 >,< 0, 0 >] (xv)

(4) Jacobi quartic −y2 + x4 +Ax2 + 1 [< 4, 0 >,< 0, 2 >] (xiii)

(5) Montgomery (with B = 1) −y2 + x3 +Ax2 + x [< 3, 0 >,< 0, 2 >] (v)

Of course, we also indirectly cover the doubly parameterized twisted Edwards curves [4] and
twisted Hessian curves [5]. Thus, despite its apparent narrowness, Sd contains most of the
prominent known forms whose arithmetical properties have been studied in the literature so far
(over fields of large characteristic). The Doche/Icart/Kohel forms [17] are the most important
absentees.
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3.5 Efficient preliminary arithmetic on toric forms

The main prerequisite of the algorithm described in Section 4 is a relatively efficient method to
perform arithmetic on the above toric forms. Very general algorithms based on Riemann-Roch
computations are currently too slow for this purpose. Let (CA, τb) be one of the above forms.
Then our method consists of, using an appropriate Z-affine map, transforming the curve to ei-
ther an intersection of quadrics in P3 (corresponding to the cases (xiii) and (xv) of Figure 1),
or a plane cubic in P2 (corresponding to the other cases), and perform arithmetic there. This
can be done very quickly: in the plane cubic case tangent-chord applies, whereas in the quadric
intersection case a projection from the base point takes us to the plane cubic case [22, Example
18.16]. We go into more detail for two exemplary situations:

Example. CA(x, y) = A+ y + x2y − x2y2, τb = [< 2, 1 >,< 2, 2 >]

Let P be a T2-point of the curve defined by C(x, y), and let n be a positive integer. Suppose we
wish to compute the sequence P , [2]P , [4]P , . . . , [2n]P , in order to interpolate doubling formulas
(see Section 4). Note that ∆(CA) has 4 lattice points v1, . . . , v4 (enumerated counterclockwise)
on the boundary, all of which are vertices. Together with the relation v1 + v3 = v2 + v4, this
implies that ∆(CA) is of type (iv). The transformation

f : R2 → R2 :

[
X

Y

]
7→
[

1 −1

0 1

]
·
[

X

Y

]
+

[
1

0

]

is a corresponding Z-affine map, taking CA(x, y) to C′
A(x, y) = Ax + y + x2y − xy2. The point

P = (a, b) is sent to

P ′ =

[
1 −1

0 1

]−1 [
a

b

]
.

The base edge becomes [< 2, 1 >,< 1, 2 >] and, following the explicit description of λ given in
Section 3.2, this corresponds to taking O′ = (1, 1, 0) as neutral element. Now using tangent-chord
arithmetic, one can compute P ′, [2]P ′, [4]P ′, . . . , [2n]P ′. Transforming back gives the requested
answer.

Example. CA(x, y) = x4 − x4y2 + x3y2 + y2 +Ax3y, τb = [< 4, 0 >,< 4, 2 >]

Let P be a T2-point of the curve defined by CA(x, y), and let n be a positive integer. Suppose we
wish to compute the sequence P , [2]P , [3]P , . . . , [n]P , in order to interpolate addition formulas
(see Section 4). Note that ∆(CA) has an edge containing 5 lattice points, hence it is of type
(xiii). For this type, we use the representative Conv{(0, 0), (4, 0), (0, 2)}, the Newton polytope
of a Jacobi quartic form. Then under an appropriate Z-affine transformation, our polynomial
is sent to C′

A(x, y) = y2 − 1 + Axy + x + x4. Note that ∆(C′
A) = 2Γ for the smaller triangle

Γ = Conv{(0, 0), (2, 0), (1, 0)}: then the non-singular model of C′
A(x, y) can be realized by a

quadratic relation
z2
10 − z2

00 +Az10z01 + z00z10 + z2
20

in X(Γ) : z2
10−z00z20 in P3. The desingularization map λ can again be described explicitly, which

allows one to trace back the neutral element O′ and the place of interest P ′. Now projecting
from O, one obtains a plane cubic in which it is possible to use tangent-chord arithmetic. As
such, one can quickly compute P ′, [2]P ′, [3]P ′, . . . , [n]P ′. Transforming back gives the requested
answer.

4 Efficient formulas via lattice reduction

In Section 3.4 we computed a vast list of families of elliptic curves of the form (CA, σb). For each
(CA, σb) there exist many doubling and addition formulas, but we are typically only interested in
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the most efficient ones in affine or projective coordinates, or in efficient generalized Montgomery
arithmetic or in efficient uniform addition formulas. Furthermore, we require that these formulas
are valid over Q such that they can be used for all finite fields of large enough characteristic.
In this section, we describe an extremely simple but very powerful algorithm that is capable of
computing these formulas in parameterized form (i.e. depending on the parameter A) and also
automatically selects the most efficient ones.

To simplify the exposition, we first describe the algorithm for computing efficient doubling
formulas in affine coordinates. Other applications of this strategy will be discussed in Section 5.
Given a family of curves (CA, σb) defined over Q, we need to compute a quartet of nonzero
polynomials f1, g1, f2, g2 ∈ Q[A][x, y] such that

x ◦ ϕ2 =
f1
g1
, y ◦ ϕ2 =

f2
g2

inside the function field Q(C̃A). To do this, we first select a support set S of monomials in A, x, y
that are allowed to appear in the fi, gi. Note that the parameter A could appear non-linearly in
the support set S. The polynomials fi, gi can then be written as Q-linear combinations of the
monomials in S, i.e.

x ◦ ϕ2 =
f1
g1

=

∑
mi∈S f1,i ·mi∑
mi∈S g1,i ·mi

, y ◦ ϕ2 =
f2
g2

=

∑
mi∈S f2,i ·mi∑
mi∈S g2,i ·mi

.

To obtain a description of all possible doubling laws, we would like to use an evaluation strategy
to compute a linear system of equations in the unknown coefficients. For this we need to find
a point P on CA and need to be able to compute P, [2]P, · · · , [2n]P . Even if we specialize the
family CA in a value Ā ∈ Q, we still need to find a rational point on the elliptic curve CĀ over Q
which is known to be hard. To solve this and other related problems coming from working over
Q, we reduce the whole setup modulo a large prime p and work over the finite field Fp.

Therefore, choose a large prime p and choose a large random Ā ∈ Fp to obtain the curve C̄Ā

over Fp. Now it becomes trivial to find a point P̄ on C̄Ā and using the algorithms described
in Section 3.5, we obtain the sequence P̄ , [2]P̄ , · · · , [2n]P̄ . Let m̄i,j denote the evaluation of the
monomial mi in Ā and the coordinates of [2j]P̄ . Each tuple ([2j ]P̄ , [2j+1]P̄ ) results in two linear
equations

x([2j+1]P̄ )
∑

mi∈S

g1,i · m̄i,j −
∑

mi∈S

f1,i · m̄i,j = 0

y([2j+1]P̄ )
∑

mi∈S

g2,i · m̄i,j −
∑

mi∈S

f2,i · m̄i,j = 0 .

Therefore if n ≫ 2#S we obtain an overdetermined system Mx (resp. My) of linear equations
over Fp such that all possible formulas for the x-coordinate (resp. y-coordinate) of the doubling
for the curve C̄Ā are contained in Ker(Mx) (resp. Ker(My)).

Two problems remain: how to find the most efficient parameterized doubling formulas in
the kernel and how to lift the situation from Fp back to Q. Both problems can be solved
simultaneously by finding short vectors in the following lattice over Z spanned by the columns of

[
b1, b2, · · · , bn, pI2|S|

]
,

where {b1, · · · , bn} is a basis of Ker(Mx) (resp. Ker(My)) with bi ∈ F
2|S|
p and In denotes the

n×n identity matrix. Finding short vectors indeed solves both problems: firstly, a formula with
only a few monomials will lead to a shorter vector than a formula consisting of many monomials.
Secondly, since Ā was chosen randomly and large, the lattice reduction will automatically make
the correct choice between using a large coefficient in front of a monomial not involving A and
using a small coefficient in front of the corresponding monomial with A included.
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Example. To illustrate this behaviour, assume that in the final formula, there is monomial of
the form (A + 2)xy. Let mu = xy and mv = Axy, then over the finite field Fp the monomial
(Ā+ 2)xy can be written as any of the following linear combinations of m̄u and m̄v, namely

(Ā+ 2)xy = (α+ 2)m̄u + (1− αĀ−1)m̄v , α ∈ Fp .

However, it is easy to see that the shortest linear combination corresponds precisely to the choice
α = 0, since for α 6= 0, either α or αĀ−1 will be large.

If the set S contains all monomials appearing in the equation of the curve, the kernel of Mx

(resp. My) will also contain short vectors that correspond to polynomials fi and gi that are zero
in the function field, i.e. are multiples of the equation of the curve. Therefore, when f1/g1 (resp.
f2/g2) is computed, a final verification is necessary to ensure that the formula is not one of these
trivial cases.

Note that the length of the vectors bi appearing in the lattice is 2|S|, so when S contains many
monomials, finding a short vector in the lattice becomes a major bottleneck of the algorithm.
One solution to overcome this problem is to assign several different small values to Ā (since we
want the corresponding vectors to be short), run the lattice reduction to obtain efficient formulas
for the different curves CĀ and then use interpolation to find expressions for the coefficients that
depend on A.

As a result, we obtain parameterized negation, doubling and adding formulas for the family
(CA, σb) that are efficient and at the same time valid over Q and thus in particular, valid over
any finite field of large enough characteristic.

5 Applications

5.1 Results for a new family

In this paragraph we provide a fully worked example for one family out of the many we have
tested. The family corresponds to type (ii) in Figure 1 and is defined by the equation

CA = Ax+ x2 − xy2 + 1 σb = [< 2, 0 >,< 1, 2 >] .

Negation is simply given by −(x, y) = (x,−y) and affine doubling is

[2](x, y) =

(
(x2 − 1)2

(2xy)2
,
−(x2 − 1)2 + 2xy2(x2 + 1)

2xy(x2 − 1)

)
.

Affine addition formulas are as follows:

(x1, y1) + (x2, y2) =

(
(x1x2 − 1)2

x1x2(y1 + y2)2
,
x1x2(x1y2 − x2y1) + (x1y1 − x2y2)

x1x2(y2
1 − y2

2)

)
.

Note that the formula for the x-coordinate of addition is uniform, i.e. by setting x1 = x2 and
y1 = y2 we obtain the x-coordinate of the double. The negation formula implies that k(x) is the
index 2 invariant subfield, so x-only arithmetic is possible. The resulting formulas are:

x2n =
(x2

n − 1)2

4xn(x2
n +Axn + 1)

xm−nxm+n =
(xmxn − 1)2

(xm − xn)2

5.2 Generalized Montgomery arithmetic

To provide a non-trivial example of generalized Montgomery arithmetic, we revisit the Jacobi
quartic. In this case, the invariant index 2 subfield is generated by t = (y + 1)/x2, and t-only
doubling and addition formulas are:

t2n =
t4n − (2tn −A)2 + 2t2n + 1

(2t2n + 2)(2tn −A)

tm+ntm−n =
(tmtn − 1)2 + 2A(tm + tn)−A2

(tm − tn)2
.
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5.3 Uniform addition formulas

Recall that addition formulas are called uniform if they can also be used for doubling. The
algorithm in Section 4 can be easily adapted to return uniform addition formulas by generating
half of the total number of linear equations using ψ(P,Q) with P 6= Q and half of them using
ψ(P, P ). As such, the resulting addition formulas will automatically be uniform.

To illustrate this approach, we give uniform addition formulas for the Weierstrass curve
y2 − x3 −Ax−B over a field k of characteristic > 3, where as usual O is the point at infinity:

x ◦ ψ =
(x1x2 − 2A)x1x2 − 4B(x1 + x2) +A2

(x1x2 +A)(x1 + x2) + 2y1y2 + 2B

y ◦ ψ =
x1x2(x1 + x2)− x3

(
(x1 + x2)

2 − x1x2 +A
)
− y1y2 −B

y1 + y2

here x3 abbreviates x◦ψ. Note that here we used the technique described at the end of Section 4,
i.e. we first derived the above formulas for different small values ofA andB using lattice reduction,
and then used interpolation to recover the coefficients that depend on A and B. We remark that
similar uniform Weierstrass addition formulas were already devised by hand [8, Corollary 1].

6 Quasi-optimality of Edwards doubling

Using the equation of the curve, the doubling law on an Edwards curve C(x, y) = x2 + y2 − 1−
dx2y2 can be rewritten as (see Appendix A)

(x, y) 7→
(

2xy

x2 + y2
,

(y2 − x2)

2− (x2 + y2)

)
.

Thus Edwards curves allow for doubling formulas consisting of quadratic polynomials, which is
an attractive property putting Edwards curves among the most efficient known-to-date models
for point doubling in characteristic 6= 2. One can immediately deduce more families of curves
having this property: translates C(x− x0, y − y0) for x0, y0 ∈ k, flips of the type y2C(x, y−1) or
x2C(x−1, y), and combinations of these. However, using the above machinery, we computation-
ally proved:

Proposition 8: S6 does not contain any non-Edwards-related families having quadratic doubling
formulas.

The following proposition prudently suggests that this is not a coincidence.

Proposition 9: Let k be a field and let C(x, y) ∈ k[x, y] be a nondegenerate polynomial defining
a curve E of geometric genus one. Let O be a k-rational place of E, and suppose there are
polynomials f1, g1, f2, g2 ∈ k[x, y] of degree at most two defining a set of doubling formulas on
(E,O). Then the Newton polytope of C(x, y) is contained in one of the following:

2

2(i)

3

3(ii)

3

3(iii)

3

3(iv).

Moreover, in each case the bold-marked lattice points appear as vertices.

Proof. Write ∆ for the Newton polytope of C(x, y). By the irreducibility of C(x, y), ∆ has at
least one vertex on the X-axis and at least one vertex on the Y -axis. Inheriting the notation of
Section 2.1, we will denote the doubling morphism on (E,O) by ϕ2. This proof only makes use
of the fact that ϕ2 is a degree 4 morphism. In particular, O plays no role. We will write E′ for
E ∩A2

k.
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We first prove that there is an m ∈ Z≥2 for which (m;m) appears as a vertex of ∆, such that
∆ is in its turn contained in

Conv {(0; 0), (m; 0), (0;m), (m;m)} .

This property, as well as the property of having quadratic doubling formulas, is invariant under
replacing C by C(x− x0, y− y0) for any x0, y0 ∈ k. The replacement might spoil the property of
nondegeneracy, but we will not use this. We may therefore assume that E′ satisfies the following
generic conditions:

1. the x-axis intersects E′ in degy C points (counting multiplicities),

2. the y-axis intersects E′ in degx C points (counting multiplicities),

3. none of the coordinate axes contains singular points of E′, or regular points P ∈ E′ for
which there is a place Q above a singularity or at infinity such that ϕ2(Q) = P .

The first assumption implies that div(x) = D0−D∞ for effective degree degy C divisors D0 and
D∞ that are supported on E′ and E \ E′ respectively. Then

div(x ◦ ϕ2) = ϕ∗
2D0 − ϕ∗

2D∞

is the difference of two effective degree 4 degy C divisors with disjoint support, so in particular
x ◦ ϕ2 has 4 degy C zeroes. By our third assumption these are all in the affine part E′ of E,
hence they must be realized as zeroes of f1. By Bezout’s theorem, this number is bounded by
2 degC and we conclude 2 degy C ≤ degC. Similarly, 2 degx C ≤ degC. When combined, these
inequalities are seen to become equalities, and the statement follows with m = degxC = degy C.
Since E is of geometric genus one, it is immediate that m ≥ 2.

Now if m = 2 then we are in situation (i). Therefore suppose m ≥ 3. As mentioned above,
∆ contains at least one point of the form (a; 0) and one point of the form (0; b) (not necessarily
distinct). Suppose a, b 6= 0, then a non-empty part of the line segment connecting (0; 0) and
(m;m) is contained in the interior of ∆(f). This part contains two or more lattice points unless
m = a = b = 3, hence we are in situation (ii). Suppose on the other hand that ∆ contains (0; 0).
Since the line segment connecting (0; 0) and (m;m) contains m− 1 ≥ 2 interior lattice points, it
must be an edge. From Figure 1, we see that the maximal number of lattice points in the interior
of an edge is 2. Therefore, m = 3 and we are in situation (iii) or (iv). �

We were not able to eliminate the cases (ii) − (iv), neither could we construct quadratic
doubling laws corresponding to such a Newton polytope. Apart from that, it is possible to
obtain alternative quadratic formulas if one allows the y-coordinate to depend on x3 = x ◦ ϕ2.
For example let CA(x, y) = A+ x3y − x2y2 + x2 and τb = [< 3, 1 >,< 2, 2 >], then

x3 = x ◦ ϕ2 =
−x2 − 4xy + 4y2 − 4

2x− 4y
, y ◦ ϕ2 =

x2 + xx3 − 2yx3

2x3
.

These and many similar formulas were computed using the methods described in Section 4.

7 Quasi-optimality of Montgomery arithmetic

A crucial observation in t-only arithmetic is that the specific form of the elliptic curve is actual of
little importance. Indeed, let (E′,O′) be isomorphic to (E,O). Then there is an isomorphism of

function fields ψ : k(Ẽ)→ k(Ẽ′) such that k(ψ(t)) is exactly the set of functions f ∈ k(Ẽ′) that

satisfy f = f ◦ χ′ (where χ′ is the negation morphism on Ẽ′). Therefore, the ψ(t)-only doubling
and addition formulas on (E′,O′) are exact copies of the t-only doubling and addition formulas
on (E,O).
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What does matter, is the choice of the transcendental generator t. Every function generating
k(t) corresponds to an automorphism of P1 and is of the form

t′ =
at+ b

ct+ d
, a, b, c, d ∈ k, ad− bc 6= 0, or conversely, t =

dt′ − b
−ct′ + a

.

With x↔ t and x′ ↔ t′, one can verify that on the Montgomery curve (see Appendix A)

x′ ◦ ϕ2 =
α4x

′4 + α3x
′3 + α2x

′2 + α1x
′ + α0

β4x′4 + β3x′3 + β2x′2 + β1x′ + β0
, (4)

where the αi, βi are long (but manageable) polynomial expressions in a, b, c, d and the curve
parameter A. A Gröbner basis computation shows that the ideal generated by α4 and β4 contains
(c− d)2(c+ d)2(ad− bc). If c = d 6= 0 then β4 can only vanish if A = 1, and if c = −d 6= 0 then
β4 can only vanish if A = 0. Hence for generic A, it is impossible to let α4 and β4 vanish at
the same time. Similarly, it is impossible that both α0 and β0 vanish and to get rid of the curve
parameter A. An interesting corollary is the following (somewhat loosely stated) proposition:

Proposition 10: Let char k 6= 2. On a randomly chosen elliptic curve in any nontrivial family over
k, it is impossible to do t-only doubling using projective coordinates (t, z) in less than five field
multiplications (which include squarings and multiplications with curve constants).

Proof. By the above discussion, t◦ϕ2 must be of the form (4), with x′ ↔ t (note that, although
t◦ϕ2 ∈ k(t), it might be possible that a, b, c, d live in an extension field, since an isomorphism with
a Montgomery curve might not exist over k). Now α4 6= 0 or β4 6= 0 and α0 6= 0 or β0 6= 0, so one
at least has to compute a term in x4 and in t4, already accounting for 4 multiplications. Since the
curve is randomly chosen, the constantA will account for at least one additional multiplication. �

Montgomery’s doubling formula attains this bound, so in this sense it is optimal. But note
that the above statement does not make a distinction between ordinary field multiplications, field
squarings (considerably faster), and multiplications with curve constants (often chosen small,
often to be multiplied with multiple times). And indeed, from a practical point of view, there
is room for improvement over Montgomery arithmetic. For small curve parameters, the current
way to go seems due to Gaudry and Lubicz [19, Section 6.2].

8 Conclusion

In this paper we introduced a theoretical framework based on toric geometry to study different
forms of elliptic curves. Using this framework, we obtained a very large class of 50000 different
elliptic curve forms. To compute the most compact group law for each of these forms, we
described a simple but very powerful algorithm based on interpolation and lattice reduction and
illustrated its use by computing addition/doubling laws, generalized Montgomery formulas and
uniform group laws.
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