DSP-CIS

Part-1ll : Optimal & Adaptive Filters

Chapter-9 :
Square Root and Fast RLS Algorithms

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven
marc.moonen@kuleuven.be
www.esat.kuleuven.be/stadius/

Part-lll : Optimal & Adaptive Filters

Chapter-7

Chapter-8

Chapter-9

Chapter-10

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Recap 15

1. Least Squares (LS) Estimation

Prototype optimal/adaptive filter revisited

filter structure ? filter input

— FIR filters

(=pragmatic choice)
<:| filter parameters

cost function ?

. 5 . filter output
— quadratic cost function ®

. . .
(=pragmatic choice) 0‘79‘70

error desired signal

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Recap 25

1. Least Squares (LS) Estimation

Quadratic cost function

MMSE : (see Lecture 8)
Juse W) =B{e} }=E{(d, -v,)'} = E{(dk - ugw)z}

Least-squares(LS) criterion

if statistical info is not available, may use an alternative ‘data-based’ criterion...

Interpretation? : see below

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Recap 35

1. Least Squares (LS) Estimation

filter input sequence : uyp, g, uz, ...

corresponding desired response sequence is :
T
& d u,
T
e, d u,
& d u,
S — ——

1
2
k
error signal e d U w

IS
cost function J, (W) = 2(,’ =|le f =|a-uwl|,

I=1

. . o2
— linear least squares problem : miny ||d — Uw||5

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Recap 455

2.1 Standard RLS

. e N N [h— T > N -
It is observed that N, [K1=X | [k=11+u,u] Gnd X, [K]=X, [k=1]+u,d,)

The matriz inversion lemma states that
1

—————)kk[wih k=X (k=11""u,
+u[R [k=11""u, b

=il =l
N AT =R k-1

'Kalman gain vector' 1 priori residual’

wilkl=wlk=11+ N1k e, (do—ulwlk—1D

1
()k,
LeulN,, (A=1]"u, *

= standard recursive least squares (RLS) algorithm

Remark : O(LZ) instead of 0(L3) operations per time update

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Recap si5

Computational Complexity:
Standard RLS algorithm has O(L2) computational complexity per update

In Chapter-9, will present ‘Fast RLS’ algorithms with
O(L) computational complexity

Numerical Analysis/Stability:
Standard RLS algorithm has been shown to have unstable quantization
error propagation (in low-precision implementation)

In Chapter-9, will present ‘Square-Root RLS’ algorithms which
are shown to be perfectly stable numerically

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Part-lll : Optimal & Adaptive Filters

Chapter-7

.

Chapter-8 |Ada ilters - LMS & RLS ‘
t Means Squa iS) Algorithm .
scursive Leas S) Algor

Chapter-9

Chapter-10

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

Standard RLS algorithm has been shown to have
unstable quantization error propagation (in low-
precision implementation)

i.e. when an infinite precision version is run next to a finite precision version

(both fed with the same input signals), then after xx iterations the finite precision
version produces results (far) away from the infinite precision results

Better (‘square root’) algorithms are based on
orthogonal transformations and ‘QR decomposition’

Starting point is again least squares (LS) estimation---

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QR Decomposition for LS estimation
least squares problem
minw [|d — Uw|[3

‘square-root algorithms’ based on QR decomposition (QRD):

0

[
kx(L+1)
square * rectangular rectangular * square

QT -Q =1, @ isorthogonal R is upper triangular

U:Q.[

=~
Kr(L+1) s

]=Q.R

o
QC.1:L+1) (L+1)x(L+1)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

FEverything you need to know about QR decomposition

o

0.182 0.816 0.174
0.365 0.408 —0.619
0.547 0 0.716
0.730 —0.408 —0.270

R
0.477 14.605 —5.112
0 4.082 8981
0 0 20.668

Remark : QRD ~ Gram-Schmidt

Remark : UT-U=RT.R
R is Cholesky factor or square-root of UL - U

— ‘square-root” algorithms !

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QRD for LS estimation
if
@ .I: o :|= Q . 5
ke(L+1) et 0 QCaTaly (LADX(L+D)
SN

then

2
min, ||d - Uw]| Crmin_ o™ a- Uw)”z = min,, [! } - [g]w

2

with this
-1 T -1 T
R.WLS=Z=>WLS=R °Z=[Q U] 'Qd

-1
This is a numerically better way of computing the LS solution, better than w, ¢ = [UTU] -U'd

(**) orthogonal transformation preserves norm

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

PS: This (= QRD + backsubstitution) iS also the way Matlab™
solves LS problems (cfr “x=A\b” or “x=midivide(A,b)")

Now back to
recursive least squares (RLS) estimation---

This will be based on ‘recursive QRD’, i.e.

‘QRD-updating’

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QR-updating for RLS estimation

Assume we have computed the QRD at time k-1

[Rlk—1] z[k—1]]= Olk—171" [U, d_,]
The corresponding LS solution is Wyslk —1]1= R[k - 117 ok -1]
Our aim is to update the QRD into

| Rl 211 |=Owr [U, a, |

and then compute w,[k]= R[k]" - z[k]
LS

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QR-updating for RLS estimation

It is proved that the relevant QRD-updating problem is
RO 21k Rl AR
RO A 1 | RO
0---0 = w4,

PS: This is based on a QR-factorization as follows:
Rlk-1] }
T =

u

o | A

L 0
(L+2)x(L42)
(L+2)x(L+1) (L+2)x(L+1)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QR-updating for RLS estimation

= Q[k]" - T
u, dk

R[k] z[k]
0---0

Rlk—1] z[k—1] l

wo[k]=Rk]™" - 2[k] =‘triangular backsubstitution’

= square-root (information matriz) RLS

Remark . with exponential weighting

A-R[k—-1] A-z[k-1
— oy | HRETH Areel
u d,

RIk] z[k]
0---0 =

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

Will now look into the details of how the Q[k] can be constructed
QRD updating

R[k -1 k-1
— oy | ST AR

0---0 u’ d,

Rl[k] z[k]
ES
basic tool is Givens rotation
J
! !
0 0

0
cosf 0 sind 0
0 [j—i—l 0 0
—sinf 0 cosd 0
0 0 Iy

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QRD updating

Givens rotation applied to a vector x = G j 9 X

; = cosf-x;+sinb -,
j = —sinf-x;+cosb-x;

Tp=a; for l#14,j

Fj=0ff tanf =32 |

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

QRD updating

R[k] z[k] -~ | RLIk—1]1 z[k—1]
=0O[k]" -
[0---0 =] otk u; d,

k

QO [k is constructed as a product/sequence of

Givens transformations

X

3-by-3 example

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

A graphical representation (i.e. a ‘realization’) of the
QRD updating process is presented in the next slide

This is also referred to as a ‘signal flow graph’ (SFG)

The SFG in the next slide will be further developed in
later slides, and also used explicitly for the (graphical)
derivation of a ‘fast’ RLS algorithm (p.27)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

3 u; d;

[RIK] zlk]]=Q[k]T-[RIk—1] z[k-1]]

ulk] uk-1] ulk-2] u[k-3]
rotation cell

memory cell

(delay)

4-by-4 example

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

Residual Extraction

So far, the “star” (*) in the update equation
(also appearing at the bottom of the SFG)

has not been considered/defined/used

It will turn out that this “star” can be used to compute
least squares residuals
(without explicitly computing the least squares filter vector!)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Square Root RLS Algorithms

Residual extraction

Rlk—1] z[k—-1]
] = O[kT" - 7

R[k] z[k]
u,; d,

o---0 W

From this it is proved that the ‘a posteriori residual’ is

d, —u,w,[k]l=¢" HL: cos(6,)

and the ‘a priori residual’ is
T
d,—u,w,|k—-1]= . .
Hence ¢ is geometric mean of
a posteriori & a priori residual

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Residual extraction (v1.0) :

) ulk] ulk-1] ulk-2] ulk-3]

rotation cell

memory cell
(delay)

d, —ulw,[k]l=¢- H:l cos(6,)

output

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Residual extraction (v1.1):

ulkl ulk-1] uk-2] ulk-3] d[k]

rotation cell

memory cell
(delay)y B

SR

d, —ualw, [k]l=¢- n:l cos(6,)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

far-end signal

Example

ulk-1] ulk-2] ulk-3]

near-end signal
+ residual echo

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Part-lll : Optimal & Adaptive Filters

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

RLS and square-root RLS : O(7*) per time update

When the adaptive filter is an FIR filter, the computational cost
may be reduced to O(L) per time update, by exploiting the
time-shift structure of the input vectors/signals !

Will consider/derive 1 ‘fast’ algorithm here:
e QRD least squares lattice (QRD-LSL)
Other :

e Least-squares lattice (LLSL)

e ‘Fast QR’

e Fast transversal filter (FTF)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

Preliminaries
e vast literature available on fast least squares algorithms

o the derivation of fast algorithms is Aighly mathematical
(see page 32)

e we show how fast (QRD-based) algorithms can be derived
using signal flow graph (SFG) manipulation

e In doing so we provide additional insight to the algorithmic
structure

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

9.2.1. QRD-based Least Squares Lattice algorithm.
START

INITIALISE {all variables} := 0;

FOR n FROM 1 DO

Example (he adache?) LET a gy(n) = x(n): ap gn-1) 3= x(n-1); ag(a-1) = y(a-1): ypla-1) = L

FOR q FROM 1 TO p DO

LET ey g yta-D) = (B 50 =2))"+ o, (- D
IF £ g y(n-1) =0 THEN LET g5 o= L 5p =0
ELSE LET ¢1 g = Pep g1 (-2)/ £ gy (n-1)i Sp g 2= @t g1 (0-1) /£ 5 (0-1)
END_IF;
LET g g 1) i=cp g Bug g (0-1) + Sp g g g
g () =g g g 1(0) - g g Bhg g (1%

H-1(n-1) = op g BHg.1(n-2) + sy, £ @1
ag(n1) = o g ag 1 (1) - 5pg Brig 1 (0-2):
Yq@n-1) = cpq 1g-1(a-1:
COMMENT prediction residual eg p(n.n) = 7q(n-1) af g(n) COMMENT
ep(0-1.0-1) = yg(n-1) cg(n-1) COMMENT g-th order filtered residual COMMENT
LET g g1 = Jf(Beg - 1) + oy, @|*:
IF ¢f,q1(") =0 THEN LET cp g 2= Li sp g 1= O

ELSELET cp g 1= Beg g 1(n-1)/ £, 1(0) 1 5p g 2= cf g 1) F £ 1 (1)
END_IF;

See p.39 for a signal
flow graph of this

LET up g.1n-1) = b g Bit q-10-2) + Sy, @b g1 (-1
M) 2= b g @b q-1(8-1) - 5p,q Bitpg-1(a-2):
COMMENT 14(n) = cp g Yoy (n-1): backward prediction residual oy, o(n.n) = Y(n) ay, o(n) COMMENT
END_DO
END_DO
FINISH

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

Preliminaries

¢ LS residuals are not changed after a permutation of the input
signals (see page 32)

¢ This allows for a compact notation (¢-notation) for all inter-
mediate signals in the SFG :
Every intermediate signal corresponds to the ‘c-signal’ of an
embedded LS problem.
Then in the e-notation, the superscript refers to the (time-
index of the) ‘right-hand side signal’ of this LS problem, the
subscript (Matlab-like notation) refers to the (time indices of
the) set of ‘left-hand side signals’ of this LS problem
(see page 33)

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

filter input desired response
w1} u(k-2) u(k-3) w(k-4) k)

Preliminaries

w =argmin, Ild-U.wI=(U".U)"'U".d

= W = argming lld — (UIT).w I}= (IT"U".UI) ' IT"U".d = IT"'w
e[k]=d[k]—u[k]".w

= &[k]=d[k]—u[k] TLW = d[k]—u[k]" TLIT 'w = e[k]

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Preliminaries : s-notation

a a*cos 6 +b*sin 8
u(k-2) u(k-3) u(k-4)

L] A @_

-a*sin @ +b*cos®

a*cos @ +b*sin 8 @

LS residual

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

QRD least squares lattice (QRD-LSL)

o SFG derivation (=3 figures)

e Page 35: [ty to understand the equation with the ¢’s.

k-3

filter input desired response

dk)

e Page 36: ;. is generated in the left-hand side part, hence
its original generation (everything above R4) can be left out.

e Page 37 : Apply this trick in each column...

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

filter input desired response
ugk+1) ugk-1) u(k-2) u(k-3) u(k-4) am)
Theorem

LS residual

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

filter input desired response
u(k+1) u(k) uk-1) u(k-2) u(k-3) ugk-4) d(k)

The Main Trick S

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Result = QRD Lattice = O(L) complexity [

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Fast RLS Algorithms

Number of ‘layers’ = filter order L +1

Six rotations per layer, four multiplications per
rotation, hence overall complexity is =24(L+1)
(compare to LMS & (standard) RLS)

Each layer has the same structure (see next slide)
Epsilon’s correspond to forward and backward prediction
problems applied to input signal u[k]

By multiplying epsilon’s with cosine-products true forward
(f) and backward (b) residuals are obtained

Prediction order is increased when going from one layer to
the next lower layer

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

QRD-LSL layer (with forward/backward residuals extraction)

k-n k+1 k
€ € &
k-n+1:k k-n+1:k k-n+1:k

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

Conclusion

e Many ‘fast’ RLS algorithms available
(QRD-lattice, LSL, Fast-QR, FTF.,...)

¢ High performance (cfr. RLS) at low cost
(O(L) ,i.e. almost as cheap as LMS)

e Derivation is very mathematical...

e .but SFG’s may help.

DSP-CIS 2019-2020 / Chapter-9: Square Root and Fast RLS Algorithms

