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Prototype optimal filtering set-up :

filter input
Design filter such that for a given
(i.e. ‘statistical info available’)
input signal, filter output signal is (] filter parameters
‘optimally close’ (to be defined)
to a given ‘desired output signal’. filizr @nijpui

Norbert Wiener (1894-1964)

desired signal
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Recap 25

d[k], e=elK],

FIR filters (=tapped-delay line filter/‘transversal’ filter)
filter input u [k]

=y[k] ) dk

ulk-1] ulk-2] ulk-3]

ulk], yi

L
_ T T
Y= Wil =W 0, =0, W
10

where

a+tbw

Filter coefficients (‘weights’) are w, (replacing b, of
For adaptive filters w, also have a time index w,[K]

PS: Shorthand notation uy
previous chapters)
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Recap 35

filter input u[k]

<:| filter parameters

filter output y[k]

O= e+

Quadratic cost function : error e[k] desired signal d[k]

minimum mean-square error (MMSE) criterion
= minimize

Juas )= E{et } -, =)'} - B -l

E{x} is ‘expected value’ (mean) of =
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Recap 45

MMSE cost function can
be expanded as... continue)

Iasp(w) = E{di} +w! E{wu}w — 2w’ 5{§kdk:} :
Xuu du

cost function is convex, with a (mostly) unique minimum,
obtained by setting the gradient equal to zero:

OJpsp(wW) 2 <
0= [T}w:wwp = [QquW - 2Xdu]w:wwzp
Wiener-Hopf equations :
Xuw - Wi r = Xgu Wiy = X&}Xdu ..... simple enough!

This is the ‘Wiener Filter’ solution

DSP-CIS 2019-2020 / Chapter-8: Adaptive Filters - LMS & RLS




Recap si5

Prototype adaptive filtering set-up :

filter input
Basic operation involves 2 processes :
1. filtering process

) |:> filter parameters
2. adaptation process

adjusting filter parameters to filter output
(time-varying) environment

adaptation is steered by error signal
error desired signal

® Depending on the application, either the filter parameters, the filter output
or the error signal is of interest
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Adaptive Filters: LMS

1d ADALINE. Part | - The LMS algorithm

L = W ‘,“('?
> Won = wpe9 ™\
W,y = Wy Lu(lt,%,) \

[(Wjy=war2rE;
€y= 45-)(:51

Bernard Widrow 1965 (https://www.youtube.com/watch?v=hc2Zj55j1zU)

142,
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Adaptive Filters: LMS

How do we compute the Wiener filter?

1) Cfr supra: By solving Wiener-Hopf equations (L+1 equations in L+1 unknowns)

Xuu - Wi r =Xy

2) Can also apply iterative procedure to minimize MMSE criterion, e.g.

Steepest-descent iterations :
I
+1) = wn) + 5. T]
w(n+1) = w(n)+ 2 1 v wew(n)
= w(n - — Xy w(n))

here n is iteration index

M is ‘stepsize’ (to be tuned..)
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Adaptive Filters: LMS

Steepest-descent iterations :

wn+1)=w(n)+pu- (Xdu = quw(n))
Stability ?

wn+1)—wyp] = {1 — N}:gml.) - [w(n) — wyp]
= (I — pXon)" - [W(0) — Wiy p]
stable iff (A; = eigenvalues of X,,,)

~1 29 a2l %

0< pu< )\L => large A_max implies
—— a small stepsize
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Adaptive Filters: LMS

Transient behavior 7

w(n+1) = wiyp] = (I — pKu)™ - [w(0) — wiy £l

with (symmetric eigenvalue decomposition)
qu = Q‘uuAuuQ{u quQuu =1
Wn+1) - wyp] = Quull - NAuu)nHQ?:u. - [w(0) = wyyp]
Quulwn+1) = wyyp] = diag{l — pA}" Q1 - [W(0) — wiv ]
{ J {

T . Y
error vector projected onto eigenvectors initial error vector projected onto eigenvectors

]

le. (1-— ,U)\l')n for ‘mode’ 7 (=projection on i-th eigenvector)

=> small A, implies slow convergence (1-pA; close to 1) for mode i
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Adaptive Filters: LMS

Hence slowest convergence for A=A,

With upper bound for p (see p11) :
1-2(A i/ Amax) < 1-pA < 1

Hence A,;,<<A,. (i.€. large ‘eigenvalue spread’)
implies very slow convergence

Ain<<A..ax Whenever input signal u[K] is very ‘colored’

(Amin=Amax for ‘white’ input signal (i.e. autocorrelation matrix = [))

DSP-CIS 2019-2020 / Chapter-8: Adaptive Filters - LMS & RLS

Adaptive Filters: LMS

LMS is derived from WF steepest-descent iterations as follows
Replace n+1 by n for convenience...

wn)=wn-1)+u(B{u,.d }-E{u, u; }.wrn-1)

Then replace iteration index n by time index k
(i.e. perform 1 iteration per sampling interval)

T
wlk]=w[k-1]+u.(E{u, .d, } —-E{u u }.wlk-1])
Then leave out expectation operators
(i.e. replace expected values by instantaneous estimates)

W,slkl1=w, o [k=11+uu, .(d, —u,.w,,k-1])

‘a priori error’
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Adaptive Filters: LMS

W, skl =W, [k=1]1+uu, (d, - ui.WLMS[k ~1])

Note that this matches
with the prototype
adaptive filter set-up (p7)

filter input

[> filter parameters

filter output
R

error desired signal
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Adaptive Filters: LMS

W, slkl=w,[k=11+uu .(d, -u,.w,,[k-1])
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Adaptive Filters: LMS

W, skl =W, [k=11+uu, .(d, -u,.w,,k-1])

Simple algorithm, can even draw
signal flow graph (=realization)...

input signal

ulk-1] u[k-2] u[k-3]

DA D=0 A D= A

. wO[k-1] wl[k-1] w2[k-1] w3[k-1] . 5
output signal J N desired signal

wO[k] wl[k] w2[K]
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Adaptive Filters: LMS

LMS analysis in a nutshell

LMS : stability/covergence ? (proofs/details omitted)

e ‘expected behavior’
= average over oo I'uns
= steepest-descent behavior

hence

0<u<)‘—nfax

e ‘noisy gradients’ (next page)
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Adaptive Filters: LMS

LMS analysis in a nutshell

‘Noisy gradients’
Whenever LMS has reached the WF solution
the expected value of

(d,-u]. k-1
Ui =W Wys e =1D) (=estimated gradient in update formula)

is zero

but the instantaneous value

is generally non-zero (=noisy),

and hence LMS will again move away from the WF solution!
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Adaptive Filters: LMS

LMS analysis in a nutshell

e ‘noisy gradients’ — Jyrgp(wiel ) > Jysp(wWivr)

results in excess MSE J¢;(0c0) and mismatch M :

Imse(wiel) = Jysp(wwr) + Jea(W [1),

L
H
~IMSE(WWF)S E A
i—0

M

L
PS: FIR case E,—=0 A = trace{Xyy} = L Zyu(0) = L S{u%}
0.2 CE—
LE{u}
means step size has to be much smaller...!

EX: for max 10% excess MSE : &4 <
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Adaptive Filters: LMS

LMS is an extremely popular algorithm
many LMS-variants have been developed (cheaperitaster...). ...

e Normalized LMS
)73

W onims LK1= W sk =11+ —————.a, .(d, — w, W sk =11
a+ul.u,

e Transform domain LMS

e Block LMS : K is block index, Ly is block size
Ly
Worns [ K1 =W g0 [K =11+ %'Em Wiety.2,0 Lk Lt — Wg-y.Lei- W praes[ K —1D)

e Frequency domain LMS
e Subband (LMS) adaptive filtering
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Adaptive Filters: LMS

normalized LMS (NLMS) =LMS with normalized step size
(mostly used in practice)

W slk] =W,k =11+ u.(d, —ua,.w,, . [k-1])

a+ug.u,

Computational complexity is larger
=3L instead of =2L multiplications per time update
(except when u,Tu, is computed recursively)
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Adaptive Filters: LMS

normalized LMS (NLMS) = LMS with normalized step size
(mostly used in practice)

Wus LK1= Wl k =11+ ———,(d, —u.W [k -1])
a+u,.u,

Step size tuning for NLMS is much easier---
e stability /convergence ? :
convergence if 0 < 1 < 2

max. 10% excess MSE obtained with i < 0.2

DSP-CIS 2019-2020 / Chapter-8: Adaptive Filters - LMS & RLS

Adaptive Filters: LMS

normalized LMS (NLMS) =LMS with normalized step size
(mostly used in practice)

Wans Lkl = Wopslk =11+ —5 — w, (d, —ul.w [k -1])

o+u .,

e NLMS (for i = 1) also solves a specific optimization problem:
2 T 2
[k - 1]”2 +(d, -] .wlk])

For instance with (normalized step size=1 and) a=»0, the NLMS
solution at time k sets the a posteriori error to zero, with minimal
change with respect to previous NLMS solution at time k-1

min,,,, J(w[k])= a.Hw[k] —w

NLMS
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Part-lll : Optimal & Adaptive Filters

Chapter-7

Chapter-10
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1. Least Squares (LS) Estimation

Prototype optimal/adaptive filter revisited

filter structure ? filter input

— FIR filters

=pragmatic choice
( prag ) <:| filter parameters

cost function ?

. . filter output
— quadratic cost function - P
+

(=pragmatic choice) g

error desired signal
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1. Least Squares (LS) Estimation

Quadratic cost function

MMSE :
Tuss W) = E{el} =E{(d, =3.)'} = E{ (4, - ulw)'}

Least-squares(LS) criterion

if statistical info is not available, may use an alternative ‘data-based” criterion...

Interpretation? : see below
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1. Least Squares (LS) Estimation

filter input sequence : uy,ug,ugz,... wy

corresponding desired response sequence is : dy, do, ds, . .., d
T
€ d, I
e, | 4, ug

]
€ d, u,

. %f_/
error signal e d U w

k
cost function J,s(W) = Eezz = ||e||§ =|la- UW”;

=1

— linear least squares problem : miny [|d — Uw||%
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1. Least Squares (LS) Estimation

k
Jis(W)= e} = le|; =e”.e=]a-Uw|;

I=1
minimum obtained by setting gradient = 0 :

0J 0
0= [%}w:wm = (T d WU Uw = 2w U7 ),

T T
- [2UX Uw — z%g}w:ww
UL du

-1
‘Normal equations’ ‘Least Squares Solution’

(L+1 equations in L+1 unknowns)
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1. Least Squares (LS) Estimation

Note : correspondences with Wiener filter theory ?

& estimate Xy, and X, by time-averaging (ergodicity!)

estimate{}_(uu}=%.§u,. u, = % u'u ;.NW
I=1

k
estimate{R,,, } = %.Zu,. d, = % U'd = %-NW
I=1

leads to same optimal filter :

estimate{wWF} = (%qu)_l : (%Xdu) = X;ul Xau=WLs
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1. Least Squares (LS) Estimation

Note : correspondences with Wiener filter theory ? (continued)

& Furthermore (for ergodic processes!) :

so that

lim,_  w,,=w,.
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Least Squares (LS) Estimation

In words:

Whenever statistical info (autocorrelation and
crosscorrelation) is missing, this can be estimated
from observed data (assuming ergodicity)

The Wiener filter solution, with true statistical
quantities replaced by estimated quantities, then
turns out to be the same as the LS solution

LS approach in itself optimizes a different (LS)
criterion, without any need for statistical
assumptions (e.g. ergodicity..)
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2. Recursive Least Squares (RLS)

For a fixed data segment 1... k least squares problem is

2

minw[ X

with time index added

-1

WIk] = s s 0= [U,Z Uk: U'd,

=]
Matrices and vectors now

Wanted : recursive/adaptive algorithms

Can LS solution @ time k be computed from solution @ time k-1 ?
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2.1 Standard RLS

It is observed that Nuu[k] = Nuu[k -1+ uk-lﬁ and Ndu[k] = Ndu[k -1]+u,.d,)

The matriz inversion lemma states that (che atrix inversion lemma’ in Wikipedia)
1

-1 -1
NS V3 LS VS 00 ) Y R S
it u euR k=11,

Ykl with k=X k-1,
With this it is proved that:

'Kalman gain vector' 14 priori residual’

Wkl =w,lk—1+ R [& 'u,  (d—uiw,[k—1D

1

[
« 1+uf R, (k=11 "u, )k

= standard recursive least squares (RLS) algorithm

Remark : O( Lz) instead of O( L3) operations per time update
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Next to a mechanism for adding new observations, also need a mechanism
for removing old observations. First approach is as follows::-

2.2 Sliding Window RLS

Sliding window RLS

L
Js(W) = Y kor_pe1€r

M = length of the data window

WLS(L)

with
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2.2 Sliding Window RLS

It is observed that X, (L + 1) = X,,,(L) — uy— \I+1UL Ma

L\L+1
X

e leads to : updating (cfr supra) + similar downd LLtn

\J
o downdating is not well behaved num:\ e to be avoided...

o simple alternative : expo
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Next to a mechanism for adding new observations, also need a mechanism
for removing old observations. Simpler approach is as follows:--

2.3 Exponentially Weighted RLS

Exponentially weighted RLS : Goal is to give a smaller weight to ‘older’ data, i.e.
k
Ty = 3 2200
=1

0 < A < 1is weighting factor or forget factor

ﬁ is a ‘measure of the memory of the algorithm’

Which leads to...
AM'd, A al Wo
. Ad, Aul w,
mmw[k] X = X Jd .

lou: W
. 2

U, wlk]

-1
WIk]=x 1w x,m = [UkTUk] .Udek
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2.3 Exponentially Weighted RLS

“« ohserved t _ 2 _ T _ 2 _
It is observed that Nuu[k] A .NW[k 1]+u,u, (and Kdu[k] A .Xdu[k 1]+u,.d,)

hence

VK with  k =—-X [k-1]"lu,

13 g /) -,

uu A2 uu

1
1oL u'R k-1t
+7u,c uu[ =11 "u,

woslkl =Wk =11+R [k (d, —ufw, [k =1])

i.e. exponential weighting hardly changes RLS formulas.. (easy!)
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Recursive Least Squares (RLS) Algorithm

Computational Complexity:

Standard RLS algorithm (with exponential weighting)
has O(L?) computational complexity per time update

Compare to O(L) for LMS (=cheaper, but slow convergence)

In Chapter-9, will present ‘Fast RLS’ algorithms

with O(L) computational complexity (and without
compromising convergence properties)
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Recursive Least Squares (RLS) Algorithm

Numerical Analysis/Stability:

Standard RLS algorithm (even with exponential weighting)
has been shown to have unstable quantization error
propagation (in low-precision implementation)

In Chapter-9, will present ‘Square Root RLS’ algorithms

which are shown to be perfectly stable numerically
(without compromising complexity & convergence properties)
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