DSP-CIS

Part-III : Optimal & Adaptive Filters Chapter-7 : Optimal Filters - Wiener Filters

Marc Moonen

Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@kuleuven.be www.esat.kuleuven.be/stadius/

Part-III : Optimal & Adaptive Filters		
Chapter-7	Optimal Filters - Wiener Filters Introduction : General Set-Up & Applications Wiener Filters 	
Chapter-8	 Adaptive Filters - LMS & RLS Least Means Squares (LMS) Algorithm Recursive Least Squares (RLS) Algorithm 	
Chapter-9	 Square Root & Fast RLS Algorithms Square Root Algorithms Fast Algorithms 	$\lambda/$
Chapter-10	 Kalman Filters Introduction – Least Squares Parameter Estimation Standard Kalman Filter Square Root Kalman Filter 	
DSP-CIS 2019-2020 / Chapter-7: Optimal Filters - Wiener Filters		2 / 40

Optimal Filtering : Wiener Filters

PS: 'Unrealizable Wiener Filter'

In the case of FIR filters, it is interesting to investigate the effect of the chosen filter length L on the overall outcome. We have assumed from the start that the Wiener filter is a causal, finite-length FIR filter, and therefore realizable in real-time. Let us now remove the real-time realizability condition and assume that the filter is

$$\overset{\infty}{W}_{WF}(z) = \sum_{k=-\infty}^{\infty} \overset{\infty}{w}_k \cdot z^{-k}.$$

DSP-CIS 2019-2020 / Chapter-7: Optimal Filters - Wiener Filters

This is referred to as the **unrealizable Wiener filter**, which is indicated here by means of the ∞ -superscript. The corresponding Wiener-Hopf equations are

33 / 40

$$\sum_{m=-\infty}^{\infty} \bar{x}_{uu}(k-m)w_m = \bar{x}_{du}(k) \quad k = \dots, -2, -1, 0, 1, 2, \dots$$

Optimal Filtering : Wiener Filters

PS: 'Unrealizable Wiener Filter' (continued)

The left-hand side infinite matrix-vector product may be viewed as a convolution of $\{\bar{x}_{uu}(k)\}$ with $\{w_k\}$. By taking the *z*-transform, one obtains

$$\bar{\mathbb{X}}_{uu}(z) \cdot \overset{\infty}{W}_{WF}(z) = \bar{\mathbb{X}}_{du}(z)$$

where

$$\bar{\mathbb{X}}_{uu}(z) = \sum_{\delta = -\infty}^{\infty} \bar{x}_{uu}(\delta) z^{-\delta}$$

is the *power spectral density*, or *power spectrum*, of the process u_k , and

$$\bar{\mathbb{X}}_{du}(z) = \sum_{\delta = -\infty}^{\infty} \bar{x}_{du}(\delta) z^{-\delta}$$

is the *cross-power spectrum* of d_k and u_k . So finally, we obtain a simple expression for the unrealizable Wiener filter

 $\overset{\infty}{W}_{WF}(z) = \frac{\mathbb{X}_{du}(z)}{\mathbb{X}_{uu}(z)}$. Co

Compare to WF solution on p24

<text><text><text><equation-block><equation-block><equation-block><equation-block><text><text>

