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Filter Design Process 

•  Step-1 : Define filter specs  
      Pass-band, stop-band, optimization criterion,… 

•  Step-2 : Derive optimal transfer function 
      FIR or IIR design                                                         

•  Step-3 : Filter realization (block scheme/flow graph) 
      Direct form realizations, lattice realizations,…  
•  Step-4 : Filter implementation (software/hardware) 

      Finite word-length issues, … 

      Question: implemented filter = designed filter ? 
          ‘You can’t always get what you want’ -Jagger/Richards (?) 

Chapter-4 

Chapter-5 

Chapter-6 
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Chapter-6 : Filter Implementation 

•  Introduction  
Filter implementation & finite wordlength problem 

•  Coefficient Quantization 
•  Arithmetic Operations 

Quantization noise 
Statistical Analysis 
Limit Cycles 
Scaling 

•  PS: Short version, does not include…  
Fixed & floating point representations, overflow, etc. (see literature) 
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Q:Why bother 
              about many different realizations  
                         for one and the same filter? 
 
 

Introduction 

Back to Chapter-5… 
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Introduction 

Filter implementation & finite word-length problem 
•  So far have assumed that signals/coefficients/arithmetic 

operations are represented/performed with infinite precision  
•  In practice, numbers are represented only to a finite 

precision, hence signals/coefficients/arithmetic operations 
are subject to quantization (truncation/rounding/...) errors 

•  Quantization effects relevant in fixed-point implementations 
with a `short’ word-length  (versus less of an issue when `sufficiently 
long’ word-length is used (e.g. 24 bits), or with floating-point representations and 
arithmetic) 

•  Investigate impact of… 
      - Quantization of filter coefficients 
      - Quantization in arithmetic operations 
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Introduction: Example 

Transfer function  

•  % IIR Elliptic Lowpass filter designed using  
•  % ELLIP function. 
•  % All frequency values are in Hz. 
•  Fs = 48000;     % Sampling Frequency 
•  L     = 8;           % Order 
•  Fpass = 9600;  % Passband Frequency 
•  Apass = 60;      % Passband Ripple (dB) 
•  Astop = 160;     % Stopband Attenuation (dB) 
•    

Poles & zeros  
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Introduction: Example 

Filter outputs… 

Direct form realization  
 @ infinite precision… 

Lattice-ladder realization  
 @ infinite precision… 

Difference… 
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Introduction: Example 

Filter outputs… 

Direct form realization  
 @ infinite precision… 

Direct form realization  
 @ 8-bit precision… 

Difference… 
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Introduction: Example 

Filter outputs… 

Direct form realization  
 @ infinite precision… 

Lattice-ladder realization  
 @ 8-bit precision… 

Difference… 

Better select a good realization ! 

DSP-CIS 2019-2020  /  Chapter-6: Filter Implementation   10 / 40 

Coefficient Quantization 

Coefficient quantization problem 
 
•  Filter design in Matlab (e.g.) provides filter coefficients to 

15 decimal digits (such that filter meets specifications) 
•  For implementation, have to quantize coefficients to the 

word-length used for the implementation 
•  As a result, implemented filter may fail to meet 

specifications…  
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Example from                            

Better select a good realization ! 
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Coefficient Quantization 

Coefficient quantization effect on pole locations 

•  Example : 2nd-order system (e.g. for cascade/direct form realization)  

    `Triangle of stability’ : denominator polynomial is stable (i.e.    
     roots inside unit circle) iff coefficients lie inside triangle… 
 
 
 
 
    Proof: Apply Schur-Cohn stability test (see Chapter-5).  
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Coefficient Quantization 

•  Example (continued)  
    With 5 bits per coefficient, all possible `quantized’ pole positions are...  

 
     Low density of `quantized’ pole locations at z=1, z=-1,                    

hence problem for narrow-band LP and HP filters in (transposed) direct 
form (see Chapter-4).  
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Coefficient Quantization 

•  Example (continued)  
     Possible remedy: `coupled realization’ 
      Poles are               where                         are realized/quantized 
      hence ‘quantized’ pole locations are (5 bits) 
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Coefficient Quantization 

Coefficient quantization effect on pole locations  
•  Fact: For high-order polynomials, roots can be very sensitive 

to small changes in coefficient values  
•  Famous example:  
    Wilkinson’s polynomial  

    Roots                  Roots after multiplying coefficient of z19 by 1.000001 
 
 
 
 

                “Speaking for myself I regard it as the most traumatic experience in   
                 my career as a numerical analyst” James H. Wilkinson, 1984 

A(z) = (z − n)
n=1

20
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Coefficient Quantization 

Coefficient quantization effect on pole locations  
•  Higher-order systems (first-order analysis) 

     
 
 
 
 
 
  è Tightly spaced poles (e.g. for narrow band filters) imply    
       high sensitivity of pole locations to coefficient quantization 
  è  Hence preference for low-order systems (e.g. in parallel/cascade)   

polynomial :  1+ a1.z
−1 + a2.z

−2 +...+ aL.z
−L

roots are : p1, p2,..., pL

`quantized' polynomial:  1+ â1.z
−1 + â2.z

−2 +...+ âL.z
−L

`quantized' roots are:  p̂1, p̂2,..., p̂L

p̂l − pl ≈ −
pl
L−i

(pl − pj )
j≠l
∏

.(âi − ai )
i=1

L

∑
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Coefficient Quantization 

Coefficient quantization effect on zero locations  
•  Analog filter design + bilinear transformation often  lead to numerator 

polynomial of the form (e.g. 2nd-order cascade realization)                 
                                      hence with zeros always on the unit circle  
     
   
 
 
   Quantization of  the coefficient               
               shifts zeros on the unit circle,  
   which mostly has only minor effect  
   on the filter characteristic.  
   Hence mostly ignored… 
 

21.cos21 −− +− zziθ

iθcos2

-1.5 -1 -0.5 0 0.5 1 1.5
-1.5

-1

-0.5

0

0.5

1

1.5

DSP-CIS 2019-2020  /  Chapter-6: Filter Implementation   18 / 40 

 Coefficient Quantization 

Coefficient quantization in lossless lattice realizations  
         
  
 
 
 
 
 
 

  In lossless lattice, all coefficients are sines and cosines, hence all 
    values between –1 and +1…, i.e. `dynamic range’ and coefficient  
    quantization error well under control.  

o = original transfer function 
   + = transfer function after 8-bit 

           truncation of lossless lattice 
filter coefficients         

   - = transfer function after 8-bit  
      truncation of direct-form   
      coefficients (bi’s)             
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Arithmetic Operations 

Quantization noise problem  
•  If two B-bit numbers are added, the result is a B+1 bit number.  
•  If two B-bit numbers are multiplied, the result is a 2B-1 bit number.  
•  Typically (especially so in an IIR (feedback) filter), the result of an 

addition/multiplication has to be represented again as a B’-bit number 
(e.g. B’=B). Hence have to remove least significant bits (*). 

•  Rounding/truncation/… to B’ bits introduces quantization noise. 

•  The effect of quantization noise is usually analyzed in a statistical 
manner (see p.20-25) 

•  Quantization, however, is a deterministic non-linear effect, which may 
give rise to limit cycle oscillations (see p.26-30)  

                                                   (*) ..and/or most significant bits - not considered here 
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Quantization Noise / Statistical Analysis 

Quantization mechanisms  
              Rounding               Truncation           Magnitude Truncation  

 
 
    mean=0                            mean=(-0.5)LSB (biased!)      mean=0 
     variance=(1/12)LSB^2      variance=(1/12)LSB^2            variance=(1/6)LSB^2 
 
     PS: …assuming input to quantization is uniformly distributed (is it?) 

input 

probability 

error 

output 
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Quantization Noise / Statistical Analysis 

Statistical analysis is based on the following assumptions : 
 - Each quantization error is random, i.e. uncorrelated/independent of the 

number that is quantized, and with uniform probability distribution 
function (see previous slide) (ps: model more suited for multipliers than for adders) 

 - Successive quantization errors at the output of a given multiplier/adder 
are uncorrelated/independent (=white noise assumption) 

 - Quantization errors at the outputs of different multipliers/adders are 
uncorrelated/independent (=independent sources assumption) 

 

èA noise source (representing quantization) is inserted  
    after each (ideal, then) multiplier/adder   
èSince the filter is a linear filter the  
    output noise generated by each noise source  
    is added to the output signal       

Δ
y[k] 

u[k] + 

x 
-.99 

+ e1[k] 

+ e2[k] 

DSP-CIS 2019-2020  /  Chapter-6: Filter Implementation   22 / 40 

Quantization Noise / Statistical Analysis 

Effect on the output signal of a noise generated at a particular 
point in the filter is computed as follows: 
    - Noise is e[k], assumed white (=flat PSD) with mean & variance   
    - Transfer function from from e[k] to filter output is G(z),g[k]                 
      (=‘noise transfer function’) 
    - Noise mean at the output is 
    - Noise variance at the output is 

 Repeat procedure for each noise source… 
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Quantization Noise / Statistical Analysis 
 

PS: In a transposed direct form realization all noise transfer  
       functions are equal (up to delay), hence all noise sources  
       can be lumped into one equivalent noise source 
 

 
 
 
 
 
     …which simplifies analysis considerably 
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Quantization Noise / Statistical Analysis 

PS: In a direct form realization all noise sources can be  
       lumped into two equivalent noise sources 
 

 
 
 
 
   …which simplifies analysis considerably 

 
 
 
   

e1[k] 

Δ Δ Δ Δ

x 
bo 

x 
b4 

x 
b3 

x 
b2 

x 
b1 

+ + + + 
y[k] 

+ + + + 

x 
-a4 

x 
-a3 

x 
-a2 

x 
-a1 

x1[k] x2[k] x3[k] x4[k] 

u[k] 

e2[k] 



13 

DSP-CIS 2019-2020  /  Chapter-6: Filter Implementation   25 / 40 

Quantization Noise / Statistical Analysis 

PS: Quantization noise of A/D-converters can be modeled/
analyzed in a similar fashion.  

    Noise transfer function is filter transfer function H(z) 
 
PS: Quantization noise of D/A-converters can be modeled/

analyzed in a similar fashion.  
    Non-zero quantization noise if D/A converter wordlength is 

shorter than filter wordlength. 
    Noise transfer function = 1 
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Quantization Noise / Limit Cycles 

Statistical analysis is simple/convenient, but quantization is 
truly a non-linear effect, and should be analyzed as a 
deterministic process  

 
Though very difficult, such analysis may reveal odd behavior :  
          Example:   y[k] = -0.625.y[k-1]+u[k] 
                            4-bit rounding arithmetic 
                            input u[k]=0, y[0]=3/8 
                            output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,.. 

  
Oscillations in the absence of input (u[k]=0) are called  

`zero-input limit cycle oscillations’ 
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Quantization Noise / Limit Cycles 

Example:   y[k] = -0.625.y[k-1]+u[k] 
                            4-bit truncation (instead of rounding) 
                            input u[k]=0, y[0]=3/8 
                            output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!) 
Example:   y[k] = 0.625.y[k-1]+u[k] 
                            4-bit rounding 
                            input u[k]=0, y[0]=3/8 
                            output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,.. 
Example:   y[k] = 0.625.y[k-1]+u[k] 
                            4-bit truncation 
                            input u[k]=0, y[0]=-3/8 
                            output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,.. 
Conclusion: weird, weird, weird,… ! 
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Quantization Noise / Limit Cycles 

•  Limit cycle oscillations are clearly unwanted (e.g. may be 
audible in speech/audio applications)  

•  Limit cycle oscillations can only appear if the filter has 
feedback. Hence FIR filters cannot have limit cycle 
oscillations 

•  Mathematical analysis is very difficult L 
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Quantization Noise / Limit Cycles 

•  Truncation often helps to avoid limit cycles (e.g. 
magnitude truncation, where absolute value of quantizer 
output is never larger than absolute value of quantizer input 
(=`passive quantizer’)) 

•  Some filter realizations can be made limit cycle free, e.g. 
coupled realization, orthogonal filters (details omitted) 
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Here’s the good news:  

For a.. 
–  lossless lattice realization of a general IIR filter  
–  lattice-ladder realization of a general IIR filter 
and when 
–  magnitude truncation (=`passive quantization’) is used 
the filter is guaranteed to be free of limit cycles !  

 
(details omitted) 
Intuition: magnitude truncation consumes energy/power, orthogonal filter 
operations do not generate power to feed limit cycle 

Quantization Noise / Limit Cycles 
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Scaling 

The scaling problem 
 
•  Finite word-length implementation implies maximum representable 

number. Whenever a signal (output or internal) exceeds this value, 
overflow occurs. 

•  Digital overflow may lead (e.g. in 2’s-complement arithmetic) to polarity 
reversal (instead of saturation such as in analog circuits), hence may 
be very harmful. 

•  Avoid overflow through proper signal scaling,  implemented by bit shift-
operations applied to signals, or by scaling of filter coefficients, or.. 

•  Scaled transfer function may be c.H(z) instead of H(z)  (hence need 
proper tracing of scaling factors) Skip this slide 
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Scaling 

Time domain (‘deterministic’) scaling: 
 
•  Assume input signal is bounded in magnitude 

   i.e. u-max is the largest number that can  be represented  in the 
`words’ reserved for the input signal  

•  Then output signal is bounded by 

    ps : stability of the filter h implies that its 1-norm is finite 

max][ uku ≤

y[k] = h[k ].u[k − k ]
k=0

∞

∑ ≤ h[k ] . u[k − k ]
k=0

∞

∑ ≤ umax. h[k ]
k=0

∞

∑ = umax. h 1

Skip this slide 
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Scaling 

Time domain (‘deterministic’) scaling: (continued) 
 
•  Assume input signal is bounded in magnitude 

•  Then output signal is bounded by 

•  To satisfy    
         i.e. y-max is the largest number that can be represented  in the  
         `words’ reserved for the output signal 

     we have to scale H(z) to c.H(z), with 

 

max][ uku ≤

max][ yky ≤

1max

max

. hu
yc =

y[k] = umax. h 1

Skip this slide 
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Scaling 

 
•  Example: 

•  assume u[k] produced by 12-bit A/D-converter 
•  assume we use 16-bit arithmetic for y[k] & multiplier 

•  hence inputs u[k] have to be shifted by  
     3 bits to the  right before entering the filter  

     (=remove 3 LSB’s)     
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Scaling 

Time domain (‘deterministic’) scaling: 
 
Frequency domain (‘deterministic’) scaling:   
•  Frequency-domain analysis leads to alternative scaling factors, e.g... 

    
    ...or... 
 
 
 
    …which may (or may not) be less conservative 
   -> proper choice of scaling factor in general is a difficult problem 
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Scaling 

L2-scaling:   (`scaling in L2 sense’, `probabilistic scaling’) 
•  Time-domain scaling is simple & guarantees that overflow will never 

occur, but often over-conservative (=too small c) 
•  Define L2-norm : 

•  If input signal u[k] is (`wide sense’) stationary signal with power 
spectral density (`PSD’, i.e. Fourier transform of its covariance 
sequence) 

     then variance of output signal y[k] is bounded: 
 
 
•  Leads to scaling factor 
                                                       
     where alpha defines overflow probability 
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•  So far considered scaling of H(z), i.e. transfer function from 
u[k] to y[k].   

•  In practice, have to consider overflow and scaling of 
each internal signal, i.e. scaling  

    of transfer function from u[k]  
    to each and every internal signal ! 
    May require quite some thinking…  
     (but doable) 
 

 

 

Scaling 
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Scaling 

•  Something that may help: If 2’s-complement arithmetic is 
used, and if the sum of K numbers (K>2) is guaranteed not 
to overflow, then overflows in partial sums cancel out and 
do not affect the final result (similar to `modulo arithmetic’) 

•  Example:  
     if x1+x2+x3+x4 is guaranteed not to  
     overflow, then if in (((x1+x2)+x3)+x4)  
     the sum (x1+x2) overflows, this overflow  
     can be ignored, without affecting the  
     final result. 
•  As a result (1), in a direct form realization,  
     only 2 signals have to be  
     considered in view of scaling : 
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Scaling 

•  As a result (2), in a transposed direct form realization, 
    only 1 signal has to be considered in view of scaling: 
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Scaling 

•  As a result (3), in a state space realization 
    only output signal + internal states have to  
    be considered in view of scaling: 
      
    -Matrix    
 
      defines transfer from input to internal states  
      ( i-th row has impulse response from input u[k] to i-th internal state) 
    -Internal states can be re-scaled by means of diagonal transformation 

T, such that 
 
 
    -If T is such that all rows of this tilde-matrix have equal L2-norm, then  
     overflow probability is the same in all states.                                       
     This is referred to as ‘L2 scaled realization’   
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