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Filter Design Process

Step-1 : Define filter specs
Pass-band, stop-band, optimization criterion,...
Step-2 : Derive optimal transfer function
FIR or IIR design

Step-3 : Filter realization (block scheme/flow graph)

Direct form realizations, lattice realizations,... FediETd G 6
Step-4 : Filter implementation (software/hardware)

Finite word-length issues, ... Chapter-6

Question: implemented filter-= designed filter ?

‘You can’t always get what you want’ -dagger/Richards (?)
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Chapter-6 : Filter Implementation

* Introduction
Filter implementation & finite wordlength problem

» Coefficient Quantization

» Arithmetic Operations

Quantization noise
Statistical Analysis
Limit Cycles
Scaling

PS: Short version, does not include...
Fixed & floating point representations, overflow, etc. (see literature)
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Introduction

Back to Chapter-5...

Q: Why bother

many different realizations
one and the same filter?
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Introduction

Filter implementation & finite word-length problem

» So far have assumed that signals/coefficients/arithmetic
operations are fepresented/performed with infinite precision

In practice, numbers are represented only to a finite
precision, hence signals/ceefficients/arithmetic operations
are subject to quantization (truncation/rounding/s..) €fFOrS

Quantization efiects relevant in fixed-point implementations
with a “short’ gth (versus less of an issue when “sufficiently

long’ word-length is bits), or with floating=pointirepresentations and
arithmetic)

* Investigate im
- Quantizatio
- Quantizatio
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Introduction: Example

IR filter
T

% lIR Elliptic Lowpass filter designed using
% ELLIP function.

% All frequency values are in Hz.

Fs =48000; % Sampling Frequency

L =8; % Order

Fpass = 9600; % Passband Frequency
Apass =60; % Passband Ripple (dB)
Astop = 160; % Stopband Attenuation (dB)

o

Magnitude(dB)

&
=]
T

Imaginary Part

pif2
Circular frequency (Radians)

Transfer function

Poles & zeros Real Part
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Introduction: Example

Filter outputs...

Direct form realization
@ infinite precision...

Arnplitude

Lattice-ladder realization
@ infinite precision... : 7

Samples
Error difference: -161.5704 dB

— Difference IIR-Lattice

Amplitude

Armnplitude

Difference...

Samples
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Introduction: Example

Filter outputs...

Filter output

Direct form realization
@ infinite precision...

Amplitude

Direct form realization
@ 8-bit precision... : 3

Amplitude

Samples
Error difference: -0.13965 dB

— Difference lIR-QuantizellR

Difference...

Armnplitude

Samples
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Introduction: Example

Filter outputs...

Filter output
T T

Direct form realization
@ infinite precision...

Arnplitude

Lattice-ladder realization

Amplitude

@ 8-bit precision...

Samples

Error difference: -21.3498 dB

Difference lIR-QuantizeLattice

Armnplitude

Difference...

5
0
5

Better selecta good
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Coefficient Quantization

Coefficient quantization problem

oh !

9/40

 Filter design in Matlab (e.g.) provides filter coefficients to
15 decimal digits (such that filter meets specifications)

* For implementation, have to quantize coefficients to the
word-length used for the implementation

* As aresult, implemented filter may fail to meet

specifications...
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Discrete-Time Signal Processing, Third Edition
Exa m p I e fro m Alan V. Oppenheim * Ronald W. Schafer

Figure 6.47 IR coefficient quantization example. (a) Log magnitude for unquantized elliptic bandpass filter.
(b) Magnitude in passband for unquantized (solid line) and 16-bit quantized cascade form (dashed line).

Ve

Figure 6.48 IIR coefficient quantization example. (a) Poles and zeros of H(z) for unquantized coefficients. (b) Poles
and zeros for 16-bit quantization of the direct form coefficients.

I | I | |
) 0lw 027 037 04w 0
Radian frec

(a)

T T
——— Ungquantized and 16-bit parallel form

037 0327 0347
Radian frec

Better selec a good realization !
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Coefficient Quantization
Coefficient quantization effect on pole locations

O Example : 2nd-order SyStem (e.g. for cascade/direct form realization)

“Triangle of stability’ : denominator polynomial is stable (i.e.
roots inside unit circle) iff coefficients lie inside triangle...

Proof: Apply Schur-Cohn stability test (see Chapter-5).
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Coefficient Quantization

» Example (continued)

With 5 bits per coefficient, all possible "quantized’ pole positions are...

fory, = —2:0.1250: 2
fors, = —1:0.0625: 1 . g@ %}%ﬁﬁ

plot(poles) (if stable) teRtsseesst

* *, * *, * ¥

et et e e g

SN S hg ALt S

end -0. izg«*u‘******igg
end

Low density of “quantized’ pole locations at z=1, z=-1,
hence problem for narrow-band LP and HP filters in (transposed) direct
form (see Chapter-4).
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Coefficient Quantization

+ Example (continued)
Possible remedy: ‘coupled realization’

Poles are where [EER/N/ARY are realized/quantized

hence ‘quantized’ pole locations are (5 bits)

coefficient precision = pole precision
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Coefficient Quantization

Coefficient quantization effect on pole locations

» Fact: For high-order polynomials, roots can be very sensitive
to small changes in coefficient values

* Famous example: A(2) =ﬁ(2_n)
Wilkinson’s polynomial -l

Roots Roots after multiplying coefficient of z'° by 1.000001

00000000000000000000 ©6888800000000000000

“Speaking for myself | regard it as the most traumatic experience in
my career as a numerical analyst” James H. Wilkinson, 1984
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Coefficient Quantization

Coefficient quantization effect on pole locations
» Higher-order systems (first-order analysis)

polynomial : 1+a,.z7" ' +a,.27° +...+a,.2 "

roots are : p,, p,
“quantized' polynomial: 1+4a,.z27"' +@,.27> +...+d,.z7"

“quantized' roots are: p,,p,

L—I
T _2 ]—[(p, P

=l

=» Tightly spaced poles (e.g. for narrow band filters) imply
high sensitivity of pole locations to coefficient quantization
=>» Hence preference for low-order systems (e.g. in parallel/cascade)
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Coefficient Quantization

Coefficient quantization effect on zero locations

* Analog filter design + bilinear transformation often lead to numerator
polynomial of the form (e.g. 2nd-order cascade realization)

hence with zeros always on the unit circle

Quantization of the coefficient

shifts zeros on the unit circle,
which mostly has only minor effect
on the filter characteristic.

Hence mostly ignored...

DSP-CIS 2019-2020 / Chapter-6: Filter Implementation

Coefficient Quantization

Coefficient quantization in lossless lattice realizations

o = original transfer function

+ = transfer function after 8-bit
truncation of lossless lattice
filter coefficients

- = transfer function after 8-bit
truncation of direct-form
coefficients (bi’ s)

Phase (deg); Magritude (dB)

Frequency (rad/sec)

In lossless lattice, all coefficients are sines and cosines, hence all

values between —1 and +1..., i.e. "dynamic range’ and coefficient
quantization error well under control.
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Arithmetic Operations

Quantization noise problem

If two B-bit numbers are added, the result is a B+1 bit number.
If two B-bit numbers are multiplied, the result is a 2B-1 bit number.

Typically (especially so in an IIR (feedback) filter), the result of an
addition/multiplication has to be represented again as a B’ -bit number
(e.g. B’ =B). Hence have to remove least significant bits (*).

Rounding/truncation/... to B’ bits introduces quantization noise.

The effect of quantization noise is usually analyzed in a statistical
manner (see p.20-25)

Quantization, however, is a deterministic non-linear effect, which may
give rise to limit cycle oscillations (see p.26-30)
(*) ..and/or most significant bits - not considered here
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Quantization Noise / Statistical Analysis

Quantization mechanisms
Rounding Truncation Magnitude Truncation

TR
0. o

probability

mean=0 mean=(-0.5)LSB (biased!) = mean=0
variance=(1/12)LSB*2  variance=(1/12)LSB"2 variance=(1/6)LSB"2

PS: ...assuming input to quantization is uniformly distributed (is it?)
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Quantization Noise / Statistical Analysis

Statistical analysis is based on the following assumptions :

- Each quantization error is random, i.e. uncorrelated/independent of the
number that is quantized, and with uniform probability distribution
function (see previous inde) (ps: model more suited for multipliers than for adders)

- Successive quantization errors at the output of a given multiplier/adder
are uncorrelated/independent (=white noise assumption)

- Quantization errors at the outputs of different multipliers/adders are

uncorrelated/independent (=independent sources assumption)
] N ulk] ~(+
-)A noise source (representing quantization) IS |nserted

after each (ea, nen) multiplier/adder
=>Since the filter is a linear filter the
output noise generated by each noise source

is added to the output signal y[k]
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Quantization Noise / Statistical Analysis

Effect on the output signal of a noise generated at a particular

point in the filter is computed as follows:
- Noise is e[K], assumed white (=flat PSD) with mean & variance A

- Transfer function from from e[k] to filter output is G(z),g[k]

(= ‘noise transfer function” )
- Noise mean at the output is [IRGLCEF-CILVESTINE{€9] N

- Noise variance at the output is

o’ .(noise - gain') = aj.(L f|G(ej'”)|2dw)
2 J]

- a§-2|g[k]|2 XA

Repeat procedure for each noise source...
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Quantization Noise / Statistical Analysis

PS: In a transposed direct form realization all noise transfer
functions are equal (up to delay), hence all noise sources
can be lumped into one equivalent noise source

...which simplifies analysis considerably

ylK]
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Quantization Noise / Statistical Analysis

PS: In a direct form realization all noise sources can be
lumped into two equivalent noise sources
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Quantization Noise / Statistical Analysis

PS: Quantization noise of A/D-converters can be modeled/
analyzed in a similar fashion.

Noise transfer function is filter transfer function H(z)

PS: Quantization noise of D/A-converters can be modeled/
analyzed in a similar fashion.

Non-zero quantization noise if D/A converter wordlength is
shorter than filter wordlength.

Noise transfer function = 1
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Quantization Noise / Limit Cycles

Statistical analysis is simple/convenient, but quantization is
truly a non-linear effect, and should be analyzed as a
deterministic process

Though very difficult, such analysis may reveal odd behavior :
Example: y[k] = -0.625.y[k-1]+u[K]
4-bit rounding arithmetic
input u[k]=0, y[0]=3/8
output y[k] = 3/8, -1/4, 1/8, -1/8, 1/8, -1/8, 1/8, -1/8, 1/8,..

Oscillations in the absence of input (u[k]=0) are called
"zero-input limit cycle oscillations’
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Quantization Noise / Limit Cycles

Example: y[k] =-0.625.y[k-1]+u[k]

4-bit truncation (instead of rounding)

input u[k]=0, y[0]=3/8

output y[k] = 3/8, -1/4, 1/8, 0, 0, 0,.. (no limit cycle!)
Example: y[k] = 0.625.y[k-1]+u[K]

4-bit rounding

input u[k]=0, y[0]=3/8

output y[k] = 3/8, 1/4, 1/8, 1/8, 1/8, 1/8,..
Example: y[k] = 0.625.y[k-1]+u[k]

4-bit truncation

input u[k]=0, y[0]=-3/8

output y[k] = -3/8, -1/4, -1/8, -1/8, -1/8, -1/8,..
Conclusion: weird, weird, weird,... !
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Quantization Noise / Limit Cycles

» Limit cycle oscillations are clearly unwanted (e.g. may be
audible in speech/audio applications)

» Limit cycle oscillations can only appear if the filter has
feedback. Hence FIR filters cannot have limit cycle
oscillations

+ Mathematical analysis is very difficult ®
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Quantization Noise / Limit Cycles

» Truncation often helps to avoid limit cycles (e.g.
magnitude truncation, where absolute value of quantizer
output is never larger than absolute value of quantizer input
(="passive quantizer’))

Some filter realizations can be made limit cycle free, e.g.
coupled realization, orthogonal filters (details omitted)
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Quantization Noise / Limit Cycles

Here’s the good news:

For a..

— lossless lattice realization of a general IIR filter

— lattice-ladder realization of a general IIR filter

and when

— magnitude truncation (="passive quantization’) is used
the filter is guaranteed to be free of limit cycles !

(details omitted)

Intuition: magnitude truncation consumes energy/power, orthogonal filter
operations do not generate power to feed limit cycle
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Scaling

The scaling problem

Finite word-length implementation implies m x»ur, representable
number. Whenever a signal (output or internal* - .ceeds this value,
overflow occurs.

Digital overflow may lead (« 7 .. 2. ‘-t..nplement arithmetic) to polarity
reversal (instead of satur * 21 su. \ @s in analog circuits), hence may
be very harmful.

Avoid overflos _tk * tg ‘proper signal scaling, implemented by bit shift-
operatio”s 2”)p. Ya. ~_.«gnals, or by scaling of filter coefficients, or..

Sc7 .wdra . “funciLon may be c.H(z) instead of H(z) (hence need
pre, . %Sh Jof scaling factors)

DSP-CIS 2019-2020 / Chapter-6: Filter Implementation

Scaling

Time domain ( ‘deterministic’ ) scaling:

* Assume input signal is bounded in m «-* le |u[k]| sU,.

i.e. u-max is the largest number wat =~ “e represented in the

‘words’ reserved for the in; & .

* Then output signal i ow \dud by

W 1= §|h[l? 1|-|ulk - K7 < um.i|h[i€ 1| =ty |1,
N k=0 k=0

ps : s..wility of the filter h implies that its 1-norm is finite
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Scaling

Time domain ( ‘deterministic’ ) scaling: (continuec’

» Assume input signal is bounded in magnitude

* Then output signal is bounded by

EERR ™ 4
* To sati-fy Wﬁ%

I ay<ma. 5. 2uargest number that can be represented in the
‘weraS) eserved for the output signal

we have to scale H(z) to c.H(z), with
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Scaling

1
N (z)=——
Example: [l

assume u[k] produced by 12-bit A" - _.»v :rter
assume we use 16-bit arithr. -~ ac "o k] & multiplier

qlb . U[kT 0.99

hep~ "p t ik, Ja > to be shifted by @
3b . e right before entering the filter

(=ren..ve 3 LSB’s) LY
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Scaling

Time domain ( ‘deterministic’ ) scaling: %

Frequency domain ( ‘deterministic’ ) sce s

* Frequency-domain analysis leads to a*~rnativ~ _caling factors, e.qg...

], = 5 fitr e o

c Ol =5 flU e

...W. _.a 2) (Or may not) be less conservative
-> pro,._..choice of scaling factor in general is a difficult problem
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Scaling

L2-scaling: (‘scaling in L2 sense’, “probabilistic . 52 r-,")
» Time-domain scaling is simple & guarantees that c .erf \w. ‘ih..cver
occur, but often over—conservatlve =too small c)

Define L2-norm :

If input signal u[k] is (‘wide sense \s S ary S|gnal with power
spectral density (PSD’, i.e & _ “ie. ‘re..sform of its covariance
sequence)
then variance of oufnut sig, =l y[k] is bounded:
) 2
o, = |A,. max P.(w)

—TT=W=JT

Le' 4stn s  in.4 factor A-Yinax
where alpha defines overflow probability
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Scaling

» So far considered scaling of H(z), i.e. transfer ft \¢t' o from
u[k] to y[k].

 In practice, have to consider overflow an 's ~a...«g of
each internal signal, i.e. scaling
of transfer function from u[k?
to each and every inter-al ~ig a!'
May require quite sor : 1. ink.ng..
(but doable)
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Scaling

« Something that may help: If 2’ s-complement ‘ri >~.atic is
used, and if the sum of K numbers (K>2V i, qu are “teed not
to overflow, then overflows in partial sum. c. v out and
do not affect the final result (similar t¢ = ¢ Jlo arithmetic’)

+ Example:
if x1+x2+x3+x4 is guarante~d rat .
overflow, then ifin ((x14 7)~ 3). 4,
the sum (x1+x2) overflows, “Pis overflow
can be ignore 4. v. " ho, * affecting the
final resu *.
As «resul 1y, ‘1@ direct form realization
only-z'sir 1als have to be
consiaered in view of scaling :
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Scaling

* As aresult (2), in a transposed direct form re 'liz 1 _n,

only 1 signal has to be considered in view Jf ¢ sai y.

x1[k] | x2[K]
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Scaling

As a result (3), in a state space realization W‘,
only output signal + internal states have te - Y200

be considered in view of scaling: - :
u[k] = ) @ C
RS0 B 4B A’B A'B_ .. 1 oI
defines transfer from input 2% “=n 1\l __utes
(i-th row has impulse re ~ 21 ‘e\ Yminput u[k] to i-th internal state)

-Internal states can be re-s. V<u by means of diagonal transformation
T, such that

la 7 NP5 5 .|-.-1')0o B 4B £B 4B

-If ) & __ 't )at all rows of this tilde-matrix have equal L2-norm, then
over! ~_probability is the same in all states.
This is referred to as ‘L2 scaled realization’
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