DSP-CIS

Part-I: Introduction

Chapter-3: Acoustic Modem Project

Marc Moonen

Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@kuleuven.be www.esat.kuleuven.be/stadius/

Chapter-3: Acoustic Modem Project Introduction Overview & Target

Work Plan

Week-1

Week-2: Channel modeling & evaluation

Week 3-4: OFDM modulation

Week 5-6

Week 7-8

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

Work Plan

8 Weeks:

- Week 0: Introduction Matlab/Simulink
- Week 1: Audio playback, recording and analysis
- Week 2: Acoustic channel measurement & modeling *deliverable*
- Week 3-4: OFDM transmitter/receiver design *deliverable*
- Week 5-6: OFDM over acoustic channel
 deliverable
- Week 7-8: OFDM with adaptive equalization
 deliverable

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

11 / 40

Week 0 / Introduction to Matlab & Simulink | Matlab tutorial provided.. | Self-test = exercise 6 (IF 'failure', THEN 'brush up your Matlab skills!')

Week 2 / Channel Modeling & Evaluation

Acoustic channel ('room acoustics'):

Acoustic path between loudspeaker and microphone is represented by the acoustic impulse response (which can be recorded/measured)

- First there is a dead time
- Then come the direct path impulse and some <u>early reflections</u>, which depend on the geometry of the room
- Finally there is an exponentially decaying tail called reverberation, corresponding to multiple reflections on walls, objects,...

15 / 40

Week 2 / Channel Modeling & Evaluation

Complete transmission channel will be modeled by a discrete-time (FIR `finite impulse response') transfer function

$$H(z) = h_0 + h_1 \cdot z^{-1} + h_2 \cdot z^{-2} + \dots + h_L \cdot z^{-L}$$

- Pragmatic & good-enough approximation
- Model order L depends on sampling rate (e.g. L=100...1000...)

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

 $h_k,\,x_k,\,y_k$, instead of $h[k],\,x[k],\,y[k]$

Week 2 / Channel Modeling & Evaluation

When a discrete-time (Tx) signal
$$x_k$$
 is sent over a channel...

$$H(z) = h_0 + h_1 \cdot z^{-1} + h_2 \cdot z^{-2} + \dots + h_L \cdot z^{-L}$$
..then channel output signal (=Rx input signal) y_k is

$$\begin{bmatrix} y_k \\ y_{k+1} \\ y_{k+2} \\ y_{k+3} \\ y_{k+4} \\ \vdots \\ y_{k+K} \end{bmatrix} = \begin{bmatrix} x_k & x_{k-1} & x_{k-2} & \cdots & x_{k-L} \\ x_{k+1} & x_k & x_{k-1} & \cdots & x_{k+1-L} \\ x_{k+2} & x_{k+1} & x_k & \cdots & x_{k+2-L} \\ x_{k+3} & x_{k+2} & x_{k+1} & \cdots & x_{k+3-L} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{k+K} & x_{k+K-1} & x_{k+K-2} & \cdots & x_{k+K-L} \end{bmatrix} \begin{bmatrix} h_0 \\ h_1 \\ h_2 \\ \vdots \\ h_L \end{bmatrix}$$

= `convolution'

Week 3-4 / OFDM modulation

OFDM – Orthogonal Frequency Division Multiplexing

DMT – Discrete Multitone Modulation

Basic idea is to (QAM-)modulate (many) different carriers with low-rate bit streams. The modulated carriers are summed and then transmitted. A high-rate bit stream is thus carried by dividing it into hundreds of low-rate streams.

Modulation/demodulation is performed by FFT/IFFT (see below)

Now 14 pages of (simple) maths/theory...

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

21 / 40

OFDM Modulation

1/14

Consider the <u>modulation</u> of a complex exponential carrier (with period N)

 $c_k = (e^{j2\pi/N})^k$ for k = 0, 1, ...

by a 'symbol sequence' (see p.27)

 $X_{\tilde{k}}$ for $\tilde{k} = 0, 1, \dots$

defined as

 $x_k = c_k . X_{\tilde{k}}$ for k = 0, 1, ... and $\tilde{k} =$

 $X_{\tilde{k}}$ symbol

sequence

(i.e. "1 symbol per N samples of the carrier")

• PS: remember that modulation of sines and cosines is similar/related to modulation of complex exponentials (see also p.26, 2nd 'PS')

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

OFDM Modulation

5/14

- PS: Note that $\frac{X_k^{(0)}}{k}$ modulates a DC signal (hence often set to zero)
- PS: To ensure time-domain signal is real-valued, have to choose

$$X_{\tilde{k}}^{(N-1)} = \left(X_{\tilde{k}}^{(1)}\right)^*$$
 , $X_{\tilde{k}}^{(N-2)} = \left(X_{\tilde{k}}^{(2)}\right)^*$, ...

- PS: The <u>IDFT matrix</u> is a cool matrix:
 - For any chosen dimension N, an IDFT matrix can be constructed as given on the previous slide.
 - Its inverse is the DFT matrix (symbol `F').
 DFT and IDFT matrices are unitary (up to a scalar), i.e.

$$F = (IDFT - matrix)^{-1} = N.(IDFT - matrix)^{H}$$

 The structure of the IDFT matrix allows for a cheap (complexity N.logN instead of N.N) algorithm to compute the matrix-vector product on the previous slide (=<u>IFFT</u> =inverse fast Fourier transform)

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

OFDM Modulation

10/14

- PS: Cyclic prefix converts a (<u>linear</u>) <u>convolution</u> (see p.29) into a so-called '<u>circular convolution</u>' (see p.30)
- Circulant matrices are cool matrices...

A weird property (proof by Matlab!) is that when a circulant matrix H is pre-/post-multiplied by the DFT/IDFT matrix, a diagonal matrix is always obtained: **FH.F**⁻¹ = [diagonal matrix]

Hence, a circulant matrix can **always** be written as

(=eigenvalue decomposition!)

$$\mathbf{H} = \mathbf{F}^{-1}. \begin{bmatrix} H_0 & 0 & \dots & 0 \\ 0 & H_1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \dots & H_{N-1} \end{bmatrix} \mathbf{F}$$

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

OFDM Modulation

13/14

PS: It can be shown (check first column of F.H = [diagonal matrix].F) that
 Hn is the channel frequency response evaluated at the n-th carrier!

$$\begin{bmatrix} H_0 \\ H_1 \\ H_2 \\ H_3 \\ \vdots \\ H_{N-1} \end{bmatrix} = \mathbf{F}. \ (1^{st} \text{column of } \mathbf{H}) = \mathbf{F}. \begin{bmatrix} h_0 \\ h_1 \\ \vdots \\ h_L \\ 0 \\ \vdots \\ 0 \end{bmatrix} \implies H_n = H(z)|_{z=e^{f2\pi m/N}}$$

`Channel equalization' may then be performed after the DFT (=in the frequency domain), by <u>component-wise division</u> (divide by Hn for carrier-n). This is referred to as `1-tap FEQ' (Freq.-domain EQualization)

$$Y_{\tilde{k}}^{(n)} = H_n. \ X_{\tilde{k}}^{(n)} \implies \text{estimate}\{X_{\tilde{k}}^{(n)}\} = (H_n)^{-1}.Y_{\tilde{k}}^{(n)}$$

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

35 / 40

OFDM Modulation

14/14

• Conclusion: DMT-modulation with cyclic prefix leads to a simple (trivial) channel equalization problem (!!)

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

Week 3-4

Target Week 3-4:

- Study/understand OFDM scheme
 Surf around, use IEEE Xplore, Wikipedia, etc.
- Simulate basic <u>OFDM Transceiver in Matlab</u>
 First without channel dispersion & without noise, then with noise, then with channel (model from Week-2)
- Optional: Extend OFDM Tx/Rx with `bit-loading '
 =Carriers with a high SNR transmit more bits/sec

DSP-CIS 2019-2020 / Chapter-3: Acoustic Modem Project

37 / 40

Week 5-6 Target Week 5-6: - OFDM over acoustic channel, with basic Simulink (Real-time Workshop) scheme (Week-1) - Extend OFDM Tx/Rx with mechanism for channel estimation and/or equalizer (FEQ) initialization/updating based on transmitted training symbols Tx D-to-A A-to-D Rx

