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Chapter-2 : Signals & Systems Review

Discrete-Time/Digital Signals (10 siiges)
Sampling, quantization, reconstruction

Discrete-Time Systems (13 siices)
LTI, impulse response, convolution, z-transform, frequency
response, frequency spectrum, [IR/FIR

Discrete Fourier Transform  sides)
DFT-IDFT, FFT

Multi-Rate Systems (11 siides)
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Discrete-Time/Digital Signals 110

Analog signal processing

Analog domain

(continuous-time domain)

Analog
Signal

Analog IN Processing Analog OUT
Circuit

J“ﬁh Joseph Fourier (1768-1830)

UGH) =P} = fu(e)e 4 de Y(H)=Ey®} = [y e di

(Fourier Transform / spectrum, where f = frequency)
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Digital signal processing

Analog | Digital i Analog
domain domain domain

Digital-to-
Analog
Conversion

& quantization
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Discrete-Time/Digital Signals 3o

- -:7)
xlk|=x(kT
amplitude [ ] ( s)

amplitude
continuous-time discrete-time
signal

/\/

continuous-time (t)

It will turn out (p.24-25) that a spectrum can be

computed from x[k] (=discrete-time), which .
(remarkably) will be equal to the spectrum _ S

(=Fourier transform) of the (continuous-time) *p (1) = x(1). E o~ k‘Ts)
sequence of impulses k==
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So what does this spectrum of xp(t) look like...

+ Spectrum replication

— Time domain: =
x, (1) = x(1). 2 8(t-kT)

k=0

— Frequency domain:

X, ()= 3 X(F 1)

§ k=—

X(f)=B{x(1)} l magnitude Xp(f)=Fli, 0} l magnitude

A » A

frequency (f) frequency (f)
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Discrete-Time/Digital Signals so

« Sampling theorem
— Analog signal spectrum X(f) runs up to f ., Hz
— Spectrum replicas are separated by f,=1/T Hz

magnitude fmaT

— No spectral overlap if and only if
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Discrete-Time/Digital Signals e10

« Sampling theorem
— Analog signal spectrum X(f) runs up to f,, Hz
— Spectrum replicas are separated by f,=1/T, Hz

magnitude fmar

___wieTie
|’7; frequency
2

— Spectral overlap (=folding’, ‘aliasing’) if
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Discrete-Time/Digital Signals

« Sampling theorem | fs
— Terminology:
+ sampling frequency/rate f
» Nyquist frequency f./2
» sampling interval/period T,
— E.g. CD audio: f, = 44,1 kHz

« Anti-aliasing prefilters

—If fs < 2fmax then frequencies above the Nyquist
frequency are ‘folded’ into lower frequencies (=aliasing)

— To avoid aliasing, sampling is usually preceded by
(analog-domain) low-pass (=anti-aliasing) filtering

Harry Nyquist (1889 —1976)

(*) An equivalent formulation is fs > fmax-(-fmax) = fmax-fmin = ‘bandwidth’...will use this in p.36
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Discrete-Time/Digital Signals so

2. B-bit quantization quantized discrete-time signal
=discrete-amplitude&time signal
=digital signal

discrete-time signal

amplitude amplitude

3Q
ple]
Q

0

-Q

-2Q
-3Q

discrete time [K] discrete time [K]

range R

6dB per bit rule:

Number of bits B =log,(——————
quantization step Q

Ex: CD audio = 16bits ~ 96dB SNR
range R )=6B dB

Signal-to-QuantizationNoise-Ratio =20log,,(———————— o
: S0 quantization step Q (LP"s: 60dB SNR)
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Discrete-Time/Digital Signals 10

3. Reconstruction
— Reconstruction = ill the gaps’ between adjacent samples
— Example: staircase reconstructor

amplitude amplitude

discrete-time/ reconstructed
digital signal alog signal

discrete time [K] continuous time (t)

— In a practical realization xy(t) is generated first as an intermediate
signal by means of a D-to-A & sampler, which is then followed by
(analog domain) filtering (details omitted)
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« Complete scheme is...

Analog IN Analog OUT

anti- anti-
aliasing | image
prefilter postfilter
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Discrete-Time Systems 113

Discrete-time system is ‘sampled data’ system

ulk] y[K]

Input signal u[k] is a sequence of samples (=numbers)

..,u[—2],u[—1] u[1],u2],...

System then produces a sequence of output samples y[K]

Y21y 11 (Y0 yI11.yi2], ...

Example: 'DSP’ block in previous slide
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Will consider linear time-invariant (LTI) systems

ulk] ylk]
Linear :

input u1[k] -> output y1[k]
input u2[k] -> output y2[k]
hence a.u1[k]+b.u2[k]-> a.y1[k]+b.y2[K]

Time-invariant (shift-invariant)
input u[k] -> output y[k]
hence input u[k-T] -> output y[k-T]
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Discrete-Time Systems 313

Will consider causal systems
iff for all input signals with u[k]=0,k<0 -> output y[k]=0,k<0
Impulse response

K=0
input ...,o,o,m,o,o,o,...» output ...,0,0,[A[0]h[11,h[2]K(3],...
General input u[0],u[1],u[2],u[3] (cfr. linearity & shifffinvariance!)

A0 O 0 0]
m1] [A[O] O O
h[2] [A[1] h[0O] O
0 A[2] A[1] A[O]|
0 0  A[2] A[1] A this issealled a
0 [0 0 A2 = Toeplitz" matrix

Otto Toeplitz (1881-1940)
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Discrete-Time Systems 413

Convolution

U[O],u“],U[Z]’U[@mw
0] 0 0 0 ]

M1 A[0] 0 0 h[0],h[1],h[2],0,0,...
W21 K] HO] O
0 A2] 1] HoO]|
0 0 H2] HI
0 0 0 #H2]

_ _ A . ! )
y[k] = : : h[k - k ]'u[k ] = h[k] * u[k] ;1orteccgv£:>e{181LETELpo\hgwaﬁxl-:ort'gon
E when considering (\nfmilely)q\ong input and impulse
response sequences
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Discrete-Time Systems 513

Z-Transform of system h[k] and signals u[k],y[K]

Definition: A A A
H ()= Y hlkl.z* JU ()= Y ulkl.z™* [ Y ()= yik].2™*

Input/output relation:

0] Al0] O 0 0

il W1 AO] 00 |[ulo]
SPRLL o o e )M A HOL 0 | ull

3] 0 21 Al HO]||ul2]

V4] 0 0 A[2] AM]||ul3]
VIS] 0 0 0 H2]

Y(2) H (z).[l z-1 z=2 z-3

=Y (z) = H(z).U(2) GO IS AT
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Discrete-Time Systems ¢/13

Z-Transform
« Easy input-output relation: Y(Z) = H(Z)U(Z)

« May be viewed as “shorthand’ notation

(for convolution operation/Toeplitz-vector product)
 Stability

=bounded input u[k] leads to bounded output y[k]

--iff
Z k]| < o

--iff all the poles of H(z) lie inside the unit circle
(now z=complex variable)
(for causal, rational systems, see below)
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Discrete-Time Systems 713

Example-1 : "Delay operator’ uk]  yIKJ=ulk-1]
Impulse response is ...,0,0,@,1 ,0,0,0,... —

Transfer function is H(z)= A

Pole at z=0
Example-2 : Delay + feedback
Impulse response is ...,0,0,@,1,a,a"2,a’\3... IZI

ulk]

Transfer function is H(D) =z +az2 4+ 27 + a2 +.. a
Pole at z=a a
=simple rational function

realized with a delay element,
a multiplier and an adder
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Discrete-Time Systems s:3

Will consider only rational transfer functions:

byz" +bz" ' +...+b, b,+bz ' +..+bz "

ZF+az" . +a, l+az "' +...+a,z "

* L poles (zeros of A(z)) , L zeros (zeros of B(z))
» Corresponds to difference equation

Y(z)=H(2).U(z)= A(z).Y(z) = B(z2).U(z) = ...

Hence rational H(z) can be realized with finite number of delay
elements, multipliers and adders

In general, this is a “infinitely long impulse response’ ('lIR” ) system
(as in example-2)
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Discrete-Time Systems 913

Special case is

H(z)= BZ(LZ) =b,+bz ' +...+b, 7"

L poles at the origin z=0 (hence guaranteed stability)
L zeros (zeros of B(z)) = all zero’ filter
Corresponds to difference equation

Y(z2)=H(2).U(z) = ylk]l=b,.ulk]+b,.ulk —1]+...+ b, .ulk — L]
="moving average’ (MA) filter

Impulse response h[K] is

0,0,0,b,,b,,...,b, ,,b,,0,0,0,...
= “finite impulse response’ ('FIR’) filter
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Discrete-Time Systems 1013

H(z) & frequency response:
* Given a system H(z)
* Given an input signal = complex exponential ul2]
ulk]=e’* —oo<k=<o
= cos(wk) + j.sin(wk)

(where w=radial frequency)

* Output signal :

YLk] = Shiklutk-k] = Zh[l?].ejw(k_lz)wja)kZh[l?].e_ja”? =ulk] .H(ejw)
X X X

) = ‘frequency response’
H(efw) = complex function of radial frequency w
= H(z) evaluated on the unit circle
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Discrete-Time Systems 1113

H(z) & frequency response: H(ejw)
Periodic with period =

For a real-valued impulse response h[k]

- magnitude response |H(ef‘w)| is even function
- phase response ” is odd function
LH(e™) )

(=2 samples/period) N

» Example-2: All-pass filter ‘H(ejw)‘ =1 “

jOk
e’ LLLLLL..
DSP-CIS 2019-2020 / Chapter-2: Signals & Systems Review

Discrete-Time Systems 12113

» Z-Transform & Discrete-Time Fourier Transform

Y(2)=H@).U®Z) kdl Y(e'”)=H(e)U(e’™)

- is frequency response of the LTI system
- is frequency spectrum (‘Discrete-Time Fourier Transform’)
of input signal

+00 +00

U@ =U@)|_. = D ulklz™| = ulkle™*

k=— —e/ k=—00
(compare to Fourier Transform, see p.3)
- is frequency spectrum of the output signal
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Discrete-Time Systems 1313

o Z-Transform & Fourier Transform itis proved that...

— The frequency response of an LTI system is equal to the
Fourier transform of the continuous-time impulse -
sequence (see p.5) constructed with h[k] £

H() = .= Fhy (0} = LS LG~k T}, @= 2::%\
k v
— The frequency spectrum [ZCEEXSRLCP] of a discrete-time signal
is equal to the Fourier transform of the continuous-time impulse
sequence constructed with u[k] or y[k]

U(e™)=...= Pluy(t)} = F{zu[k].é(t -kT)} , o= 2n%‘

— RSP OIERRNOIRRCMOMN corresponds to continuous-time
Y(fH)=H).U)RNU ). Y (f), H(f) BEIENE o [Tagli=Te NETREIEERE)
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Discrete/Fast Fourier Transform 14

* DFT definition:

— The "Discrete-time Fourier Transform’ of a discrete-time
system/signal x[K] is a (periodic) continuous function of
the radial frequency w (see p.28)

+00

X(e”) = x[k].z™*
|:k=2_oo

— The "Discrete Fourier Transform’ (DFT) is a discretized
version of this, obtained by sampling w at N uniformly
spaced frequencies (n=0,1,..,N-1)
and by truncating x[k] to N samples (k=0,1,..,N-1)
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Discrete/Fast Fourier Transform 2

 DFT & Inverse DFT (IDFT):
— An N-point DFT sequence can be calculated from an
N-point time sequence:

— Conversely, an N-point time sequence can be calculated
from an N-point DFT sequence:
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Discrete/Fast Fourier Transform 3

« DFT/IDFT in matrix form

Xin] =
— Using shorthand notation..

Wy =
— ..the DFT can be rewritten as

x| _w@ o owhr o o wVTV | ]

2N — 1]

{ X[0] wy o owg o .. WY { 2[0]

X[N -1 0 w(N-1)  (N-1)2
V-1 wg w oW

— ..the IDFT can be rewritten as

2[0] wy o WR N
of1] | _ 1wy owyt o o owRth Y X
TN o : : :
z[N -1 0 p—(N-1) —(N-1)2| | X[N
o[N —1] w9 Wy o Wy [
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Discrete/Fast Fourier Transform 4

approach:
+ Split up two N/2 p0|nt DFT’ s in four N/4-point DFT’ s
. Spht up N/2 Z)pomt DFT s in N 1-point DFT’ s

. Calculate N1 -point DFT’ s
+ Rebuild'N/2 promt DFT’ s from N 1-point DFT’ s
==

« Rebuild two N/2- -point DFT’ s from four N/4-point DFT’ s
+ Rebuild N-point DFT from two N/2-point DFT’ s

— DFT cqmplexny of N? multlpllcatlons 5 reduced‘

Carl Friedrich Gauss (1777-1855)

John W.Tukey

Similar IFET =
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+ Decimation : decimator (=downsampler)

u[O],u[1],u[2]... ﬁ u[0], u[D], u[2D]...

Example : u[k]: 1,2,3,4,5,6,7,8,9,...
2-fold downsampling: 1,3,5,7,9,...

* Interpolation : expander (=upsampler)

u0], u[1], uf2l,... ﬁ u[0],0,..0,u[11,0,...,0,u[2]...

Example : ulk]: 1,2,3,4,5,6,7,8,9,...
2-fold upsampling: 1,0,2,0,3,0,4,0,5,0...
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Multi-Rate Systems 211

+ Z-transform & frequency domain analysis of expander

uf0], u[1], u[2],... - u[0],0...0,u[1],0,...,0,u[2]...

W8 - e

"Expansion in time domain ~ compression in frequency domain’
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Multi-Rate Systems 3n1

+ Z-transform & frequency domain analysis of expander

u[0], uf], u[2l.... _ u[0],0,..0,u[1],0,...,0,u[2]...

Expander mostly followed by “interpolation filter’ to remove images
(and “interpolate the zeros’)

Interpolation filter can be low-/band-/high-pass (see p.35-36 and Chapter-10)
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Multi-Rate Systems 411

+ Z-transform & frequency domain analysis of decimator
u[O],u[1],u[2]... _. u[0], u[D], u[2D]...
GE (o EXSEm

13-

=~ xHz

*Compression in time domain ~ expansion in frequency domain’

PS: Note that is periodic with period while is periodic with period
The summation with d=0...D-1 restores the periodicity with period !

DSP-CIS 2019-2020 / Chapter-2: Signals & Systems Review

Multi-Rate Systems sn1

+ Z-transform & frequency domain analysis of decimator

u[0],u[1],uf2]... u[0], u[D], u[2D]...

Decimation introduces ALIASING if input signal occupies frequency band
larger than , hence mostly preceded by anti-aliasing (decimation)
filter

~~

=~ xHz

Anti-aliasing filter can be low-/band-/high-pass (see p.35-36 and Chapter-10)
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Multi-Rate Systems 611

* Example: LP anti-aliasing / down / up / LP interpolation

fmax

1
—

Will be used in Part IV on ‘Filterbanks’

(*) Corresponds to Nyquist theorem: 3-fold reduction fmax & 3-fold reduction fs

Multi-Rate Systems 711

+ Example: HP anti-aliasing / down / up / HP interpolation

Will be used in Part IV on ‘Filterbanks’

(*) Corresponds to Nyquist theorem for ‘passband’ signals: fs > fmax-fmin (as in footnote p.9, now fmin # -fmax )




Multi-Rate Systems so

» Interconnection of multi-rate building blocks

< fiok-

u1[ﬂ@ ut[k] +)
u2[K] u2[K] ]

u1[ki@ u1[K] )
u2[k] u2[K] I

i.e. all filter operations can be performed at the lowest rate!
Identities also hold if decimators are replaced by expanders
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» “Noble identities ‘(only for rational functions)
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Multi-Rate Systems 1010

Application of “noble identities : efficient multi-rate realizations of FIR filters through...

+ Polyphase decomposition:
Example : (2-fold decomposition)
H(z) = A[0]+ A[1].z7" + A[2].z7 + A[3].27> + h[4].z™* + A[5].z7° + h[6].z"°
= (A[0]+ A[2].z7> + A[4].z"* + A[6].27%) + z 7 (A[1] + A[3].z> + A[S5].z™*)
Eo(7) £ (%)
Example : (3-fold decomposition)
H(z) = h[0]+ A[1].z™" + A[2].27% + h[3].z 7> + A[4].z™* + A[5].z° + A[6].2"°
= (A[0]+ A[3].z7° + A[6].z"°) + z " (Al1] + A[4].z7°) + z > (A[2] + A[5].= ")

Ey(2°) Ey(2) E>(2%)

General: (D-fold decomposition)

o D-1 3
H()= > hlkl.z* = >z E, (") E, ()= > hDk+d].z™
d=0

k=—00 k=—c0
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* Polyphase decomposition:

Example : efficient realization of FIR decimation/interpolation filter

i.e. all filter operations can be performed at the lowest rate!
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