
1

DSP-CIS

Part-IV : Filter Banks & Time-Frequency Transforms

 Chapter-14 :
Time-Frequency Analysis & Scaling

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven

marc.moonen@kuleuven.be
www.esat.kuleuven.be/stadius/

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 2 / 40

 Filter Bank Preliminaries

 Filter Bank Design

 Frequency Domain Filtering

 Time-Frequency Analysis & Scaling

Chapter-11

Chapter-12

Chapter-14

Chapter-13

Part-IV : Filter Banks & Time-Frequency Transforms

2

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 3 / 40

Time-Frequency Analysis
•  Short-time Fourier Transform (STFT)
•  Weighted OverLap-Add (WOLA)
•  Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of Speech/Audio Signals
•  Problem Statement & Approaches
•  STFT-Based Time Scaling

Overview

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 4 / 40

Starting point is Discrete-Time Fourier Transform

 = infinitely long sequence u[k] is evaluated at infinitely many frequencies

Inversion/reconstruction/synthesis (=filter bank jargon) is..

 = u[k] represented as weighted sum of (orthogonal) basis functions

•  Notion of `spectrum that varies with time’ not accommodated
 (e.g. `short lived sine’ will correspond to non-localized spectrum)

Short-Time Fourier Transform

U(e jω) = u[k]⋅e− jωk
k=−∞

+∞

∑ 0 ≤ω ≤ 2π

u[k]= 1
2π

U(e jω) ⋅e jωk dω
0

2π

∫

e jωk

3

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 5 / 40

U(e jω,k) = u[k].w[k − k].e− jωk
k=−∞

+∞

∑ 0 ≤ω ≤ 2π , −∞ < k < +∞

Short-Time Fourier Transform

Tool to fill this need = Short-Time Fourier Transform
 Starting point is now…

 where w[k] is your favorite window function
 typically with `compact support’ (=FIR), e.g. …

•  Reversed (check formula) window slides past the data
 For each window position k, compute Discrete-Time Fourier Transform

 PS: If w[k]=1 (all k) then this is just Discrete-Time Fourier Transform, for all window positions

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 6 / 40

U(e jω,k) = u[k].w[k − k].e− jωk
k=−∞

+∞

∑ 0 ≤ω ≤ 2π , −∞ < k < +∞

Tool to fill this need = Short-Time Fourier Transform
 Starting point is now…

Question: What would an inversion formula look like, here?

 In the following slides, will provide a

 filter bank derivation of STFT,
 also leading to a simple

 inversion formula (based on perfect reconstruction theory)

Short-Time Fourier Transform

4

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 7 / 40

Short-Time Fourier Transform

First, rewrite formula as…

 where the phase factor can effectively be removed
 Interpretation-1: ‘windowed’ signal segment with window positioned at time k is shifted to
 time zero (*) before computing discrete-time Fourier transform (DTFT) , so that the DTFT
 indeed gets multiplied by

 Interpretation-2: modulate window instead of input signal

So from now on will use

e− jωk = z−k
z=e jω

U(e jω,k) = e− jωk. u[k].w[k − k].e jω (k−k)
k=−∞

+∞

∑

U(e jω,k) = u[k].w[k − k].e jω (k−k)
k=−∞

+∞

∑

e jωk = zk
z=e jω

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 8 / 40

Short-Time Fourier Transform

This correspond to performing a convolution of u[k] with (infinitely many) filters

In practice, will compute this for a discrete set of (N) frequencies…
 n=0,…,N-1

 leading to a finite set of filters…
This is a DFT-modulated analysis bank (Chapter-12, p.14)

 N channels, prototype defined by window function, with subband signals

hω[k]= w[k].e jωk 0 ≤ω ≤ 2π

hn[k]= h0[k].e j (n.2π /N).k , h0[k]= w[k]

ωn = n.
2π
N

U(e jω,k) = u[k].w[k − k].e jω (k−k)
k=−∞

+∞

∑

xn[k]= u[k].hn[k − k]
k=−∞

+∞

∑ n = 0,...,N −1

5

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 9 / 40

Short-Time Fourier Transform

Hence, can use efficient implementation based on
polyphase decomposition of prototype Ho(z) (Chapter-12, p.17)

u[k]
Δ

Δ

Δ

w3

w2

w1

w0 x0[k]

x1[k]

x2[k]

x3[k]

FN×N
−1

fre
q.

re
so

lu
tio

n
N

)(4
0 zE

E1(z
4)

)(4
2 zE

)(4
3 zE

H0 (z) = z−n.En (z
N)

n=0

N−1

∑

window length/N

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 10 / 40

Short-Time Fourier Transform

In practice, mostly window length=freq.resolution=N

 (=DFT-modulated FB with 1-tap polyphase components of prototype)

 PS: also remember F-1 (inverse DFT-matrix) is not very different from F (DFT-matrix) …
 Will use this from now on...

shorthand notation w[k]≡ wk

u[k]
Δ

Δ

Δ

w3

w2

w1

w0

FN×N
−1

fre
q.

re
so

lu
tio

n
N

w
in

do
w

 le
ng

th
 N

x0[k]

x1[k]

x2[k]

x3[k]

6

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 11 / 40

Short-Time Fourier Transform

In practice analysis is done only for k=0,D,2D,...
(i.e. decimation D = ‘window shift’ > 1)

•  If maximally decimated (D=N) then analysis FB operation
 corresponds to Short-Time Fourier Transform (STFT)

 xn[k] = decimated subband signals
 = `STFT-coefficients’
 = infinitely long sequence u[k] is
 evaluated at N frequencies,
 infinitely many times (i.e. for
 infinitely many window positions)
 ...to be compared to p.4

xn[k]= u[k].hn[N.k − k]
k=−∞

+∞

∑ n = 0,...,N −1

u[k]
Δ

Δ

Δ

F−1

4
4

4
4

w3

w2

w1

w0

E(z)

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 12 / 40

Short-Time Fourier Transform

•  Corresponding (PR) DFT-modulated synthesis FB is

 i.e. synthesis prototype filter fo[k]
 = ‘synthesis window’
 =

•  Synthesis FB operation then corresponds to Inverse STFT

 ...to be compared to p.4

u[k]= xn[k].
k=−∞

+∞

∑ fn[k − N.k]
n=0

N−1

∑

E(z) = F−1.diag wi[] ⇒ R(z) = diag wi
−1#$ %&.F

w0
−1,w1

−1,w2
−1,...,wN−1

−1

4
4
4
4

Δ

+
Δ

+
Δ

+

w0
−1

w1
−1

w 2
−1

w3
−1

F
R(z)

7

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 13 / 40

Time-Frequency Analysis
•  Short-time Fourier Transform (STFT)
•  Weighted OverLap-Add (WOLA)
•  Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of speech/audio signals
•  Problem Statement & Approaches
•  STFT-Based Time Scaling

Overview

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 14 / 40

Weighted OverLap-Add

•  If oversampled (D=N/d), then analysis FB operation is

 d=2,3,4,.. corresponds to decimation D (=window shift) of N/2, N/3, N/4,..
 i.e. 50%, 66%, 75%,.. ‘window overlap’

 Example: N=4, d=2, D=2

xn[k]= u[k].hn[
N
d

.k − k]
k=−∞

+∞

∑ n = 0,...,N −1

u[k]
Δ

Δ

Δ

w3

w2

w1

w0

F−1

2
2

2
2

u[k]
Δ

F−1

2
2

w0 0
0 w1

w2z
−1 0

0 w3z
−1

"

#

$
$
$
$
$

%

&

'
'
'
'
'=
E(z)

Continued from p.12…

8

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 15 / 40

Weighted OverLap-Add

 Example: N=4, d=2, D=2 (continued)
 Corresponding (PR) synthesis filter bank (also DFT-modulated) is..

 PR condition then defines synthesis window vk

 ..which has many solutions. A usefull solution (see below) will be (**)

E(z) = F−1.

w0 0

0 w1

w2z
−1 0

0 w3z
−1

"

#

$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'

 ⇒ R(z) = v0z
−1 0 v2 0

0 v1z
−1 0 v3

"

#

$
$
$
$

%

&

'
'
'
'

.F

R(z).E(z) = z−δ.I ⇒
δ=1

w0v0 +w2v2 =1
w1v1 +w3v3 =1

#
$
%

&%

v0 =
w0

w0
2 +w2

2 , v2 =
w2

w0
2 +w2

2 , v1 =
w1

w1
2 +w3

2 , v3 =
w3

w1
2 +w3

2

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 16 / 40

Weighted OverLap-Add

•  PR condition
 can be generalized for other oversampling factors D=N/d

•  Synthesis FB operation corresponds to Inverse Transform

(w
i+N
d
k
).(v

i+N
d
k
)

k=−∞

∞

∑ =1 for i = 0..(N
d
−1)

This analysis/synthesis is referred to as

Weighted OverLap-Add (WOLA)

u[k]= xn[k].
k =−∞

+∞

∑ fn[k −
N
d
.k]

n=0

N−1

∑

9

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 17 / 40

A WOLA filter bank is often used for ‘subband processing’…
 (a.k.a. ‘frequency domain processing’)
Example:

 …where the scalar multipliers (A,BC,D) for instance result from a per-
 subband noise reduction strategy (see Speech&Audio course)

Input-output characteristic then approximates
a linear time-invariant filtering
(better approximation with better (more frequency selective) analysis/synthesis filters)

…

Weighted OverLap-Add

Δ
2
2

w0 0
0 w1

w2z
−1 0

0 w3z
−1

"

#

$
$
$
$
$

%

&

'
'
'
'
'

F−1

x
A

x
B

x
C

x
D

F v0z
−1 0 v2 0

0 v1z
−1 0 v3

"

#

$
$
$
$

%

&

'
'
'
'

Δ
2
2 +

u[k]

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 18 / 40

Weighted OverLap-Add

A WOLA filter bank is often used for ‘subband processing’…
 (a.k.a. ‘frequency domain processing’)

A special case for d=2 (50% overlap) is the ‘overlap-save’...

…and ‘overlap-add’ filter bank

as used for frequency domain filter realizations (see Chapter 13)

E(z) = F−1. I
z−1.I

"

#
$
$

%

&
'
'

R(z) = 0 I!
"

#
$.F

E(z) = F−1. I
0

"

#
$

%

&
' R(z) = z−1I I"

#$
%
&'
.F

10

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 19 / 40

Weighted OverLap-Add

 Hence note that with an (unweighted) overlap-add (or –save) FB...

 (despite the poor analysis/synthesis filter bank characteristics!)
 …the subband processing with (e.g.) scalar multipliers (A,B,C,D) can be
 made to correspond exactly to a linear time-invariant filtering,
 iff the scalars jointly satisfy a specific condition (see Chapter 13)

u[k]
Δ

2
2

1 0
0 1
0 0
0 0

!

"

#
#
#
#

$

%

&
&
&
&

F−1

x
A

x
B

x
C

x
D

F z−1 0 1 0

0 z−1 0 1

"

#

$
$
$

%

&

'
'
'

Δ
2
2 +

E(z) = F−1. I
0

"

#
$

%

&
' R(z) = z−1I I"

#$
%
&'
.F

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 20 / 40

Time-Frequency Analysis
•  Short-time Fourier Transform (STFT)
•  Weighted OverLap-Add (WOLA)
•  Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of speech/audio signals
•  Problem Statement & Approaches
•  STFT-Based Time Scaling

Overview

11

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 21 / 40

Wavelet Filter Banks & Wavelets

For some time-frequency analysis applications (e.g. in audio),
would like to have a non-uniform filter bank
(instead of the uniform DFT-modulated filter bank of STFT)
hence also with non-uniform (maximum) decimation, e.g…

•  Non-uniform filters = low frequency resolution at high frequencies,
high frequency resolution at low frequencies (as human hearing)

•  Non-uniform decimation = high time resolution at high frequencies,
low time resolution at low frequencies

H2(z)
H3(z)

4
2

H0(z)
H1(z)

8
8 u[k] H0 H3 H2 H1

π
2
π

8
π
4
π

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 22 / 40

Wavelet Filter Banks & Wavelets

This can be built as a tree-structure, based on a
2-channel filter bank with

H0 H3 H2 H1

π
2
π

8
π
4
π

)(zHLP)(zHHP

u[k]
2

2)(zHHP

)(zHLP

2

2)(zHHP

)(zHLP

2

2)(zHHP

)(zHLP

)().().()(
)().().()(

)().()(

)()(

24
0

24
1

2
2

3

zHzHzHzH
zHzHzHzH

zHzHzH
zHzH

LPLPLP

LPLPHP

LPHP

HP

=

=

=

=

)(),(zHzH HPLP

(b
y

ap
pl

yi
ng

 N
ob

le
 id

en
tit

ie
s)

12

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 23 / 40

Wavelet Filter Banks & Wavelets

Similar synthesis bank can be constructed with

•  If and form a PR FB (delay δ=0),
then the complete analysis/synthesis structure is PR (why?)

•  Example : `Haar’ wavelet (after Alfred Haar) (compare to 2-channel DFT)

)(),(zFzF HPLP

2

2 +

2

2 + 2

2 +)(zFLP

)(zFHP

)(zFLP

)(zFLP)(zFHP

)(zFHP

)(),(zFzF HPLP)(),(zHzH HPLP

HHaar = HHP =
1
2

(1− z−1) HLP =
1
2

(1+ z−1)

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 24 / 40

x0[k]= u[k].h0[2
N−1.k − k]

k=−∞

+∞

∑

xn[k]= u[k].hn[2
N−n.k − k]

k=−∞

+∞

∑ n =1,...,N −1 -∞ < k < +∞

Wavelet Filter Banks & Wavelets

•  Analysis bank corresponds to
 Discrete-Time Wavelet Transform (DTWT)

•  With a corresponding (PR) synthesis filter bank, the
reconstruction/synthesis formula (inverse DTWT) is

 …to be compared to p.4 & p.11-12

u[k]= x0[k].
k=−∞

+∞

∑ f0[k − 2
N−1.k]+ xn[k].

k=−∞

+∞

∑ fn[k − 2
N−n.k]

n=1

N−1

∑

xk[n] = `DTWT-coefficients’

13

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 25 / 40

Wavelet Filter Banks & Wavelets

•  Reconstruction formula may be viewed as an expansion of
u[k], using a set of basis functions (infinitely many)

•  If the 2-channel filter bank is paraunitary, then this basis is
orthonormal (which is a desirable property) :

 =`Orthonormal wavelet basis’

b0,m[k]= f0[k − 2N−1.m]

bn,m[k]= fn[k − 2N−n.m] n =1...N −1 , m = −∞...+∞

bn,m[k].bn ',m '
* [k]

k=−∞

+∞

∑ = δ(n− n ').δ(m−m ')

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 26 / 40

Wavelet Filter Banks & Wavelets

Not treated here…
•  `Continuous wavelet transform’ (CWT) of a continuous-time function u(t)

 h(t)=prototype
 p,q are real-valued continuous variables
 p introduces `dilation’ of prototype, q introduces `shift’ of prototype

•  `Discrete wavelet transform’ (DWT) is CWT with discretized p,q

 T is sampling interval
 p-bar, q-bar are real-valued integer variables mostly a=2

∫
∞

∞−

−
= dt

p
tqhtu

p
qpxCWT)().(1),(

xDWT (p,q) = xCWT (a
p,ap.Tq) = a− p/2 u(t).h(Tq − a− pt).dt

−∞

∞

∫

Skip this slide

14

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 27 / 40

Time-Frequency Analysis
•  Short-time Fourier Transform (STFT)
•  Weighted OverLap-Add (WOLA)
•  Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of speech/audio signals
•  Problem Statement & Approaches
•  STFT-Based Time Scaling

Overview

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 28 / 40

Time Scaling & Frequency Scaling

•  Time Scaling
–  Modify time domain attributes (tempo/duration) of a speech/audio

signal, without modifying perceived frequency domain attributes
(pitch), i.e. without introducing frequency distortion

–  Compression/expansion
–  Applications : movie post-synchronization (synchronization with
 video signal), dictation (synchronization with typing speed),
 fast rendering (e.g. in answering machines) ,…

•  Frequency Scaling (=‘dual’ problem)
–  Modify frequency domain attributes (pitch) of a speech/audio signal,

without modifying perceived time domain attributes (tempo/duration)
–  A.k.a. `Pitch shifting’
–  Applications : games, karaoke, Doppler-effects in 3D audio…

15

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 29 / 40

Time Scaling & Frequency Scaling

•  Remember:

 scaling with alpha in the time domain ~ scaling with 1/alpha in frequency domain

Hence straightforward scaling in the time or frequency domain does not
provide a solution for the intended time or frequency scaling

•  PS: Continuous-time signal u’(t)=u(α.t) is obtained by α times faster
(α>1) or slower (α<1) playback of u(t).

•  PS: Discrete-time signal (when sampling rate is to be kept constant and
α can be non-integer) u’[k]=u[α.k] is obtained by re-sampling/digital
interpolation of u[k] (ps: watch out for aliasing when α>1 !)

•  Will consider only Time Scaling. Frequency Scaling can then be done
as follows: If u^(t) is a time-scaled version of u(t) (e.g. duration increased by
factor α, frequency attributes unchanged), then u^(α.t) is a frequency-scaled
version of u(t) (i.e. duration unchanged, frequency attributes scaled by α).

)(.1).()()(
αα

α
Ω

↔⇒Ω↔ UtuUtu
FTFT

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 30 / 40

Time Scaling

•  Different approaches
–  Signal modeling based (`parametric’)

•  Example : speech production model (LPC), …
•  Not treated here

–  Time/Frequency-analysis based (`non-parametric’)
•  STFT-based
•  Wavelet transform based
• …

Will consider STFT-based approach only…

16

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 31 / 40

Time-Frequency Analysis
•  Short-time Fourier Transform (STFT)
•  Weighted OverLap-Add (WOLA)
•  Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of speech/audio signals
•  Problem Statement & Approaches
•  STFT-Based Time Scaling

Overview

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 32 / 40

General procedure is…

1. Apply STFT to input signal u[k] (p.7, with (n,k) instead of (k,k) for clarity)

 =estimates frequency content in neighborhood of n (for n € grid)

2. Apply time axis transformation

 Will use simple transformation here…

3. Apply inverse STFT (to be defined)

PS: requires interpolation
ç if α.n is non-integer

STFT-Based Time Scaling

USTFT (e
jω,n) = u[k].w[n− k].e jω (n−k)

k=−∞

+∞

∑

)},({),(neUfneU j
STFT

jscaled
STFT

ωω =

...][=kuscaled

).,(),(neUneU j
STFT

jscaled
STFT αωω =

17

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 33 / 40

STFT-Based Time Scaling

How to compute inverse STFT here?
Usually, parameters are chosen such that

corresponds to an oversampled STFT (=WOLA)
In an oversampled STFT (p.14), the number of `subband

samples’ is larger than number of full-band samples
(=time-domain samples), hence STFT is `redundant’
and so not straightforwardly invertible…

In general, there does not exist any for which
 is the STFT (for all n)
 (≈ overdetermined set of linear equations)

èCompute `maximally close’ time-domain signal, in a
 least squares sense !

),(neU jscaled
STFT

ω

][kuscaled

),(neU jscaled
STFT

ω

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 34 / 40

STFT-Based Time Scaling

Least Squares Problem is…
 Given
 compute time-domain sequence with

 such that

In words:
Compute a time-domain sequence such that its STFT
is optimally close to for all (i.e. summed over all) window
positions n € grid

USTFT
scaled (e jω,n) n ∈ grid

),(ˆ][ˆ neUku j
STFT

STFT
ω↔

{ ÛSTFT (e jω,n)−USTFT
scaled (e jω,n)

2
dω

0

2π

∫
n∈grid
∑ } is minimized

),(neU jscaled
STFT

ω

û[k]

û[k]

18

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 35 / 40

STFT-Based Time Scaling

For each n € grid define as inverse DTFT(p.4) of
followed by a shift to time n
(to compensate for (*) p.7)

 so that…

 Then with…
 the least-squares
 criterion…

can be replaced by…
 (=Parceval’s theorem)

ÛSTFT (e jω,n) =

 STFT
(page7)

û[k].w[n− k].e jω (n−k)

k=−∞

+∞

∑

{ û[k]⋅w[n− k]−un
scaled[k]

2

k=−∞

+∞

∑ }
n∈grid
∑

{ ÛSTFT (e
jω,n)−USTFT

scaled (e jω,n)
2
dω

0

2π

∫
n∈grid
∑ }

un
scaled[k + n] =

 inv.DTFT
 & shift
 1

2π
USTFT

scaled (e jω,n) ⋅e jωk.dω
0

2π

∫

USTFT
scaled (e jω,n) =

 shift &
 DTFT

un
scaled[k].e jω (n−k)

k=−∞

+∞

∑

USTFT
scaled (e jω,n)un

scaled[k]

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 36 / 40

STFT-Based Time Scaling

Now

which corresponds to a separate least-squares problem for
each , i.e.

Least-squares solution is (see Chapter-8, p.7)

{ û[k]⋅w[n− k]−un
scaled[k]

2

k=−∞

+∞

∑
n∈grid
∑ }

 = { û[k]⋅w[n− k]−un
scaled[k]

2

n∈grid
∑

k=−∞

+∞

∑ }

û[k]⋅w[n− k]−un
scaled[k]

2

n∈grid
∑

û[k]

û[k]=
w[n− k].un

scaled[k]
n∈grid
∑

w[n− k]2
n∈grid
∑

19

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 37 / 40

STFT-Based Time Scaling

In words: For each considered window position n € grid, compute inverse
 Fourier transform of and shift to position n, resulting in
 signals . Then u^[k] is a weighted sum of these sequences.

PS: Compare weights in this formula to (**) p.15 & try to establish link…!

PS: Procedure corresponds to STFT inversion if is a valid
 STFT (then) and (**) p.15 provides PR.

un
scaled[k]

),(neU jscaled
STFT

ω

),(neU jscaled
STFT

ω

un
scaled[k]= w[n− k].û[k], ∀n

û[k]=
w[n− k].un

scaled[k]
n∈grid
∑

w[n− k]2
n∈grid
∑

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 38 / 40

STFT-Based Time Scaling

•  Method-1: OLA synthesis (`overlap-add’)
Observe that Fourier- and inverse Fourier cancel each other…

This leads to simple time-domain (OLA) procedure:

100

k

w[k]

0 k 50 100

Example: α = 2

200

un
scaled[k + n] =

p.35 1
2π

USTFT
scaled (e jω,n) ⋅e jωk.dω =

p.32 1
2π

USTFT (e jω,α.n) ⋅e jωk.dω =
p.7
u[k +α.n].w[k]

0

2π

∫
0

2π

∫

⇒ un
scaled[(k − n)+ n]= u[(k − n)+α.n].w[(k − n)]

⇒ un
scaled[k]= u[k + (α −1).n].w[k − n]

û[k]=
w[n−k].un

scaled [k]
n∈grid
∑

w[n−k]2

n∈grid
∑

 =
w[n− k]2.u[k + (α −1).n]

n∈grid
∑

w[n− k]2

n∈grid
∑

0

n = 0 n = 50 n =100

PS: requires interpolation if α.n is non-integer

20

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 39 / 40

STFT-Based Time Scaling

•  Method-1: Does not seem to work well, because repositioning of signal
segments destroys time structure (phase relation) across segments (example :
applying procedure to a pure sine, results in harmonic distortion)

Hence in practice variants are used…

•  Method-2: Only use magnitude information from STFT, add phase
information based on an iterative procedure

•  Method-3: Synchronized OLA, `SOLA’
 Reposition segments as in OLA, but then apply small additional re-alignment

such that each re-aligned segment has maximum correlation with already
formed portion of output signal (to restore phase relation across segments)

•  Method-4: Pitch-Synchronous OLA, `PSOLA’, …

•  Method-5: Waveform Similarity OLA, `WSOLA’, …

•  etc… (details omitted)

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 40 / 40

Last Slide

