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Starting point is Discrete-Time Fourier Transform 
 

  = infinitely long sequence u[k] is evaluated at infinitely many frequencies 

Inversion/reconstruction/synthesis (=filter bank jargon) is.. 
 
 

    = u[k] represented as weighted sum of (orthogonal) basis functions 

•  Notion of `spectrum that varies with time’ not accommodated  
     (e.g. `short lived sine’ will correspond to non-localized spectrum) 

 

Short-Time Fourier Transform 

U(e jω ) = u[k]⋅e− jωk
k=−∞

+∞

∑       0 ≤ω ≤ 2π

u[k]= 1
2π

U(e jω ) ⋅e jωk dω
0

2π

∫

e jωk
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U(e jω,k) = u[k ].w[k − k ].e− jωk
k=−∞

+∞

∑     0 ≤ω ≤ 2π   ,  −∞ < k < +∞

Short-Time Fourier Transform 

Tool to fill this need = Short-Time Fourier Transform          
       Starting point is now… 
 
                                                                                                                       

 
      where w[k] is your favorite window function 
      typically with `compact support’ (=FIR), e.g. … 
 
•  Reversed (check formula) window slides past the data   
     For each window position k, compute Discrete-Time Fourier Transform 
 

   PS: If w[k]=1 (all k) then this is just Discrete-Time Fourier Transform, for all window positions 
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U(e jω,k) = u[k ].w[k − k ].e− jωk
k=−∞

+∞

∑     0 ≤ω ≤ 2π   ,  −∞ < k < +∞

Tool to fill this need = Short-Time Fourier Transform          
       Starting point is now… 
 
                                                                                                                       

  
Question: What would an inversion formula look like, here? 

      In the following slides, will provide a  

    filter bank derivation of STFT,  
    also leading to a simple  

    inversion formula   (based on perfect reconstruction theory) 
 

Short-Time Fourier Transform 
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Short-Time Fourier Transform 

First, rewrite formula as… 
 
 
 
 

  where the phase factor                  can effectively be removed  
   Interpretation-1: ‘windowed’ signal segment with window positioned at time k is shifted to 
   time zero (*) before computing discrete-time Fourier transform (DTFT) , so that the DTFT 
   indeed gets multiplied by   

   Interpretation-2: modulate window instead of input signal  

So from now on will use  
 
 
  

e− jωk = z−k
z=e jω

U(e jω,k) = e− jωk. u[k ].w[k − k ].e jω (k−k )
k=−∞

+∞

∑

U(e jω,k) = u[k ].w[k − k ].e jω (k−k )
k=−∞

+∞

∑

e jωk = zk
z=e jω
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Short-Time Fourier Transform 
 

  
  
This correspond to performing a convolution of u[k] with (infinitely many) filters 

 
In practice, will compute this for a discrete set of (N) frequencies…                                  
                                                                      n=0,…,N-1 

   leading to a finite set of filters… 
This is a DFT-modulated analysis bank (Chapter-12, p.14) 

      N channels, prototype defined by window function, with subband signals 
   
 

hω[k]= w[k].e jωk     0 ≤ω ≤ 2π

hn[k]= h0[k].e j (n.2π /N ).k  ,   h0[k]= w[k]

ωn = n.
2π
N

U(e jω,k) = u[k ].w[k − k ].e jω (k−k )
k=−∞

+∞

∑

xn[k]= u[k ].hn[k − k ]      
k=−∞

+∞

∑ n = 0,...,N −1
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Short-Time Fourier Transform 

 
 

Hence, can use efficient implementation based on  
polyphase decomposition of prototype Ho(z)          (Chapter-12, p.17) 
 
 
 
 
 
 
 
     
 
 
 

u[k] 
Δ

Δ

Δ

w3

w2

w1

w0 x0[k]

x1[k]

x2[k]

x3[k]
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window length/N 
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Short-Time Fourier Transform 

 
 

In practice, mostly  window length=freq.resolution=N 

 
 
 
 
 
 
 
    (=DFT-modulated FB with 1-tap polyphase components of prototype) 

       PS: also remember F-1 (inverse DFT-matrix) is not very different from F (DFT-matrix) … 
 Will use this from now on... 
 

shorthand notation w[k]≡ wk    

u[k] 
Δ

Δ

Δ

w3
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x3[k]
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Short-Time Fourier Transform 

In practice analysis is done only for k=0,D,2D,... 
(i.e. decimation D = ‘window shift’ > 1) 

•  If maximally decimated (D=N) then analysis FB operation 
    corresponds to Short-Time Fourier Transform (STFT) 

 

     xn[k] = decimated subband signals  
             = `STFT-coefficients’ 
              = infinitely long sequence u[k] is  
                    evaluated at N frequencies,  
                    infinitely many times (i.e. for  
                    infinitely many window positions) 
       ...to be compared to p.4 

xn[k]= u[k ].hn[N.k − k ]
k=−∞

+∞

∑       n = 0,...,N −1

u[k] 
Δ

Δ

Δ

F−1

4 
4 

4 
4 

w3

w2

w1

w0

E(z)
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Short-Time Fourier Transform 
 
•  Corresponding (PR) DFT-modulated synthesis FB is 

     i.e. synthesis prototype filter fo[k] 
       = ‘synthesis window’  
       =       
 

•  Synthesis FB operation then corresponds to Inverse STFT  
 
                                                                          ...to be compared to p.4 
 
 

u[k]= xn[k ].
k=−∞

+∞

∑ fn[k − N.k ]
n=0

N−1

∑

E(z) = F−1.diag wi[ ]    ⇒     R(z) = diag wi
−1#$ %&.F

w0
−1,w1

−1,w2
−1,...,wN−1

−1

4
4
4
4

Δ

+ 
Δ

+ 
Δ

+ 

w0
−1

w1
−1

w 2
−1

w3
−1

F
R(z)
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Weighted OverLap-Add 

•  If oversampled (D=N/d), then analysis FB operation is 

 

    d=2,3,4,.. corresponds to decimation D (=window shift) of N/2, N/3, N/4,..   
      i.e. 50%, 66%, 75%,.. ‘window overlap’   

    Example: N=4, d=2, D=2 
 
 
 
 

 
      

xn[k]= u[k ].hn[
N
d

.k − k ]
k=−∞

+∞

∑       n = 0,...,N −1

u[k] 
Δ
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w3

w2

w1

w0

F−1
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2 
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Continued from p.12… 
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Weighted OverLap-Add 
   

     Example: N=4, d=2, D=2 (continued) 
     Corresponding (PR) synthesis filter bank (also DFT-modulated) is.. 
 
 
 
   
   PR condition then defines synthesis window vk 
 
 
 
 
     ..which has many solutions. A usefull solution (see below) will be   (**) 
     
 
                                                             
 

E(z) = F−1. 

w0 0

0 w1

w2z
−1 0

0 w3z
−1
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#
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  ⇒     R(z) = v0z
−1 0 v2 0

0 v1z
−1 0 v3

"

#

$
$
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%

&

'
'
'
'

.F

R(z).E(z)  = z−δ.I ⇒
δ=1

 
w0v0 +w2v2 =1
w1v1 +w3v3 =1

#
$
%

&%
    

v0 =
w0

w0
2 +w2

2 ,       v2 =
w2
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2 +w2
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2 ,      v3 =
w3
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2
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Weighted OverLap-Add 

•  PR condition 
     can be generalized for other oversampling factors D=N/d  
 
 
 
 

•  Synthesis FB operation corresponds to Inverse Transform 

(w
i+N
d
k
).(v

i+N
d
k
)

k=−∞

∞

∑ =1   for   i = 0..(N
d
−1)

This analysis/synthesis is referred to as  

Weighted OverLap-Add  (WOLA) 

u[k]= xn[k ].
k =−∞

+∞

∑ fn[k −
N
d
.k ]

n=0

N−1

∑
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A WOLA filter bank is often used for ‘subband processing’…  
                                                                  (a.k.a. ‘frequency domain processing’) 
Example: 
 
 
 
 
 

   …where the scalar multipliers (A,BC,D) for instance result from a per-  
       subband noise reduction strategy (see Speech&Audio course) 

Input-output characteristic then approximates  
a linear time-invariant filtering  
(better approximation with better (more frequency selective) analysis/synthesis filters)  

…  

Weighted OverLap-Add 
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Weighted OverLap-Add 

A WOLA filter bank is often used for ‘subband processing’…  
                                                           (a.k.a. ‘frequency domain processing’) 
 

A special case for d=2 (50% overlap) is the ‘overlap-save’... 
 
 

…and  ‘overlap-add’  filter bank 
 
                                                             

 

as used for frequency domain filter realizations  (see Chapter 13) 

 

E(z) = F−1. I
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Weighted OverLap-Add 

 Hence note that with an (unweighted) overlap-add (or –save) FB... 
 
 
 
 
 
 
 
 
    (despite the poor analysis/synthesis filter bank characteristics!)  
    …the subband processing with (e.g.) scalar multipliers (A,B,C,D) can be  
    made to correspond exactly to a linear time-invariant filtering,                 
    iff the scalars jointly satisfy a specific condition (see Chapter 13)  
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Wavelet Filter Banks & Wavelets 

For some time-frequency analysis applications (e.g. in audio),  
would like to have a non-uniform filter bank                      
(instead of the uniform DFT-modulated filter bank of STFT)  
hence also with non-uniform (maximum) decimation, e.g… 

 

•  Non-uniform filters = low frequency resolution at high frequencies, 
high frequency resolution at low frequencies (as human hearing) 

•  Non-uniform decimation = high time resolution at high frequencies, 
low time resolution at low frequencies 

H2(z) 
H3(z) 

4 
2 

H0(z) 
H1(z) 

8 
8 u[k] H0 H3 H2 H1 

π
2
π

8
π
4
π
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Wavelet Filter Banks & Wavelets 

This can be built as a tree-structure, based on a  
2-channel filter bank with 
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Wavelet Filter Banks & Wavelets 

Similar synthesis bank can be constructed with 
 

 
 
 
 

•  If                       and                      form a PR FB (delay δ=0), 
then the complete analysis/synthesis structure is PR (why?) 

•  Example : `Haar’ wavelet (after Alfred Haar) (compare to 2-channel DFT) 

 
 

)(),( zFzF HPLP

2 

2 + 

2 

2 + 2 

2 + )(zFLP

)(zFHP

)(zFLP

)(zFLP)(zFHP
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x0[k]= u[k ].h0[2
N−1.k − k ]

k=−∞

+∞

∑       

xn[k]= u[k ].hn[2
N−n.k − k ]

k=−∞

+∞

∑       n =1,...,N −1   -∞ < k < +∞

Wavelet Filter Banks & Wavelets 

•  Analysis bank corresponds to  
    Discrete-Time Wavelet Transform (DTWT) 
 

     
 

•  With a corresponding (PR) synthesis filter bank, the 
reconstruction/synthesis formula (inverse DTWT) is 

 
 
 
    …to be compared to p.4 & p.11-12 

u[k]= x0[k ].
k=−∞

+∞

∑ f0[k − 2
N−1.k ]+ xn[k ].

k=−∞

+∞

∑ fn[k − 2
N−n.k ]

n=1

N−1

∑

xk[n] = `DTWT-coefficients’ 
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Wavelet Filter Banks & Wavelets 

•  Reconstruction formula may be viewed as an expansion of 
u[k], using a set of basis functions (infinitely many)   

•  If the 2-channel filter bank is paraunitary, then this basis is 
orthonormal (which is a desirable property) : 

 

    =`Orthonormal wavelet basis’ 

b0,m[k]= f0[k − 2N−1.m]

bn,m[k]= fn[k − 2N−n.m]      n =1...N −1  ,   m = −∞...+∞

bn,m[k].bn ',m '
* [k]

k=−∞

+∞

∑ = δ(n− n ').δ(m−m ')
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Wavelet Filter Banks & Wavelets 

Not treated here… 
•  `Continuous wavelet transform’ (CWT)  of a continuous-time function u(t) 
 
 
 
         h(t)=prototype      
          p,q are real-valued continuous variables 
          p introduces `dilation’ of prototype, q introduces `shift’ of prototype   

•  `Discrete wavelet transform’ (DWT) is CWT with discretized p,q 
 
 
 
          
         T is sampling interval 
         p-bar, q-bar are real-valued integer variables         mostly  a=2 

∫
∞

∞−

−
= dt

p
tqhtu

p
qpxCWT )().(1),(

xDWT (p,q ) = xCWT (a
p,ap.Tq ) = a− p/2 u(t).h(Tq − a− pt).dt

−∞

∞

∫

Skip this slide 



14 

DSP-CIS 2019-2020  /  Chapter-14: Time-Frequency Analysis & Scaling  27 / 40 

Time-Frequency Analysis 
•  Short-time Fourier Transform (STFT) 
•  Weighted OverLap-Add (WOLA) 
•  Wavelet Analysis & Wavelet Filter Banks 

Time/Frequency Scaling of speech/audio signals 
•  Problem Statement & Approaches 
•  STFT-Based Time Scaling 

 

Overview 

DSP-CIS 2019-2020  /  Chapter-14: Time-Frequency Analysis & Scaling  28 / 40 

Time Scaling & Frequency Scaling 

•  Time Scaling   
–  Modify time domain attributes (tempo/duration) of a speech/audio 

signal, without modifying perceived frequency domain attributes 
(pitch), i.e. without introducing frequency distortion 

–  Compression/expansion 
–  Applications : movie post-synchronization (synchronization with  
    video signal), dictation (synchronization with typing speed), 
    fast rendering (e.g. in answering machines) ,… 

•  Frequency Scaling (=‘dual’ problem) 
–  Modify frequency domain attributes (pitch) of a speech/audio signal, 

without modifying perceived time domain attributes (tempo/duration) 
–  A.k.a. `Pitch shifting’ 
–  Applications : games, karaoke, Doppler-effects in 3D audio… 
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Time Scaling & Frequency Scaling 

 
 
 

•  Remember:                                                                                                                
 
           scaling with alpha in the time domain ~ scaling with 1/alpha in frequency domain  

Hence straightforward scaling in the time or frequency domain does not 
provide a solution for the intended time or frequency scaling 

•  PS: Continuous-time signal u’(t)=u(α.t) is obtained by α times faster 
(α>1) or slower (α<1) playback of u(t).  

•  PS: Discrete-time signal (when sampling rate is to be kept constant and 
α can be non-integer) u’[k]=u[α.k] is obtained by re-sampling/digital 
interpolation of u[k] (ps:  watch out for aliasing when α>1 !) 

•  Will consider only Time Scaling.  Frequency Scaling can then be done 
as follows: If u^(t) is a time-scaled version of u(t) (e.g. duration increased by 
factor α, frequency attributes unchanged), then u^(α.t) is a frequency-scaled 
version of u(t) (i.e. duration unchanged, frequency attributes scaled by α).   

     
 
 
 

)(.1).(            )()(
αα

α
Ω

↔⇒Ω↔ UtuUtu
FTFT
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Time Scaling 

•  Different approaches  
–  Signal modeling based (`parametric’) 

•  Example : speech production model (LPC), … 
•  Not treated here 

–  Time/Frequency-analysis based (`non-parametric’) 
•  STFT-based 
•  Wavelet transform based 
• … 
 

Will consider STFT-based approach only… 
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General procedure is…  

1.  Apply STFT to input signal u[k] (p.7, with (n,k) instead of (k,k) for clarity)                                        

 
 
       =estimates frequency content in neighborhood of n (for n € grid) 

2.  Apply time axis transformation 

     Will use simple transformation here… 
 

3.  Apply inverse STFT (to be defined) 

PS: requires interpolation  
ç        if α.n is non-integer 

STFT-Based Time Scaling 

USTFT (e
jω,n) = u[k].w[n− k].e jω (n−k )

k=−∞

+∞

∑

)},({),( neUfneU j
STFT

jscaled
STFT

ωω =

...][ =kuscaled

).,(),( neUneU j
STFT

jscaled
STFT αωω =
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STFT-Based Time Scaling 

How to compute inverse STFT here? 
Usually, parameters are chosen such that                                 

corresponds to an oversampled STFT (=WOLA)  
In an oversampled STFT (p.14), the number of `subband 

samples’  is larger than number of full-band samples 
(=time-domain samples),  hence STFT is `redundant’   
and so not straightforwardly invertible…  

In general, there does not exist any               for which 
                         is the STFT (for all n)  
     ( ≈ overdetermined set of linear equations) 

èCompute `maximally close’ time-domain signal, in a       
     least squares sense ! 

),( neU jscaled
STFT

ω

][kuscaled

),( neU jscaled
STFT

ω
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STFT-Based Time Scaling 
 

Least Squares Problem is… 
              Given 
            compute time-domain sequence          with 
 
 
            such that  
 
 

In words:  
Compute a time-domain sequence          such that its STFT  
is optimally close to                 for all (i.e. summed over all) window  
positions n € grid 

USTFT
scaled (e jω,n)      n ∈ grid

),(ˆ][ˆ neUku j
STFT

STFT
ω↔

{ ÛSTFT (e jω,n)−USTFT
scaled (e jω,n)

2
dω

0

2π

∫
n∈grid
∑ }   is minimized

),( neU jscaled
STFT

ω

û[k]

û[k]
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STFT-Based Time Scaling 

For each n € grid define          as inverse DTFT(p.4) of   
followed by a shift to time n  
(to compensate for (*) p.7)     
 
                                 so that… 

 

               Then with…  
   the least-squares  
                  criterion…    

can be replaced by…  
          (=Parceval’s theorem) 

ÛSTFT (e jω,n) =

  STFT
( page7)

û[k].w[n− k].e jω (n−k )

k=−∞

+∞

∑

{ û[k]⋅w[n− k]−un
scaled[k]

2

k=−∞

+∞

∑ }
n∈grid
∑

{ ÛSTFT (e
jω,n)−USTFT

scaled (e jω,n)
2
dω

0

2π

∫
n∈grid
∑ }

un
scaled[k + n] =

   inv.DTFT
     & shift
  1

2π
USTFT

scaled (e jω,n) ⋅e jωk.dω
0

2π

∫

USTFT
scaled (e jω,n) =

  shift &
   DTFT
  

un
scaled[k].e jω (n−k )

k=−∞

+∞

∑

USTFT
scaled (e jω,n)un

scaled[k]

DSP-CIS 2019-2020  /  Chapter-14: Time-Frequency Analysis & Scaling  36 / 40 

STFT-Based Time Scaling 

Now 

 
 
 

which corresponds to a separate least-squares problem for 
each          , i.e. 
 
Least-squares solution is (see Chapter-8, p.7)  

 
 
 
  

{ û[k]⋅w[n− k]−un
scaled[k]

2

k=−∞

+∞

∑
n∈grid
∑ }

             = { û[k]⋅w[n− k]−un
scaled[k]

2

n∈grid
∑

k=−∞

+∞

∑ }

û[k]⋅w[n− k]−un
scaled[k]

2

n∈grid
∑

û[k]

û[k]=
w[n− k].un

scaled[k]
n∈grid
∑

w[n− k]2
n∈grid
∑
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In words: For each considered window position n € grid, compute inverse  
  Fourier transform of                          and shift to position n,  resulting in  
  signals            . Then u^[k] is a weighted sum of these sequences. 
 
PS: Compare weights in this formula to (**) p.15 & try to establish link…! 

PS: Procedure corresponds to STFT inversion if                       is a valid  
        STFT  (then                                      ) and (**) p.15 provides PR. 

un
scaled[k]

),( neU jscaled
STFT

ω

),( neU jscaled
STFT

ω

un
scaled[k]= w[n− k].û[k],      ∀n

û[k]=
w[n− k].un

scaled[k]
n∈grid
∑

w[n− k]2
n∈grid
∑
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•  Method-1: OLA synthesis  (`overlap-add’) 
Observe that Fourier- and inverse Fourier cancel each other… 

 
 
 
This leads to simple time-domain (OLA) procedure: 

 
                               
 
 
 
 
 
 

100 

k 

w[k] 

0 k 50 100 

Example: α = 2

200 

un
scaled[k + n] =

p.35 1
2π

USTFT
scaled (e jω,n) ⋅e jωk.dω  =

p.32 1
2π

USTFT (e jω,α.n) ⋅e jωk.dω =
p.7
u[k +α.n].w[k] 

0

2π

∫    
0

2π

∫

⇒ un
scaled[(k − n)+ n]= u[(k − n)+α.n].w[(k − n)]

⇒ un
scaled[k]= u[k + (α −1).n].w[k − n]

û[k]=
w[n−k ].un

scaled [ k ]
n∈grid
∑

w[n−k ]2

n∈grid
∑

       =
w[n− k]2.u[k + (α −1).n]

n∈grid
∑

w[n− k]2

n∈grid
∑

0 

n = 0 n = 50 n =100

PS: requires interpolation if α.n is non-integer 
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•  Method-1: Does not seem to work well, because repositioning of signal 
segments destroys time structure (phase relation) across segments (example : 
applying procedure to a pure sine, results in harmonic distortion) 

Hence in practice variants are used… 

•  Method-2: Only use magnitude information from STFT, add phase 
information based on an iterative procedure 

•  Method-3: Synchronized OLA, `SOLA’ 
        Reposition segments as in OLA, but then apply small additional re-alignment 

such that each re-aligned segment has maximum correlation with already 
formed portion of output signal (to restore phase relation across segments) 

•  Method-4: Pitch-Synchronous OLA, `PSOLA’,  … 

•  Method-5: Waveform Similarity OLA, `WSOLA’, … 

•  etc… (details omitted)  
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