DSP-CIS

Part-IV : Filter Banks & Time-Frequency Transforms

Chapter-14 : Time-Frequency Analysis & Scaling

Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@kuleuven.be www.esat.kuleuven.be/stadius/

Time-Frequency Analysis

- Short-time Fourier Transform (STFT)
- Weighted OverLap-Add (WOLA)
- Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of Speech/Audio Signals

3/40

- Problem Statement & Approaches
- STFT-Based Time Scaling

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling

<section-header><equation-block><equation-block><equation-block><equation-block><text><text><equation-block><equation-block><equation-block>

Short-Time Fourier Transform
First, rewrite formula as…
$U(e^{j\omega},k) = e^{-j\omega k} \cdot \sum_{\overline{k}=-\infty}^{+\infty} u[\overline{k}] \cdot w[k-\overline{k}] \cdot e^{j\omega(k-\overline{k})}$
where the phase factor $\frac{e^{-j\omega k}}{ z-e^{i\omega} }$ can effectively be <u>removed</u>
Interpretation-1: 'windowed' signal segment with window positioned at time k is shifted to time zero (*) before computing discrete-time Fourier transform (DTFT), so that the DTFT indeed gets multiplied by $\frac{e^{j\omega k} = z^k \Big _{z=e^{j\omega}}}{ z=e^{j\omega} _{z=e^{j\omega}}}$
Interpretation-2: modulate window instead of input signal
So from now on will use
$U(e^{j\omega},k) = \sum_{\overline{k}=-\infty}^{+\infty} u[\overline{k}].w[k-\overline{k}].e^{j\omega(k-\overline{k})}$
DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling 7 / 40

Overview

Time-Frequency Analysis

- Short-time Fourier Transform (STFT)
- Weighted OverLap-Add (WOLA)
- Wavelet Analysis & Wavelet Filter Banks

Time/Frequency Scaling of speech/audio signals

- Problem Statement & Approaches
- STFT-Based Time Scaling

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling

Time Scaling & Frequency Scaling

<u>Time Scaling</u>

- Modify time domain attributes (tempo/duration) of a speech/audio signal, without modifying perceived frequency domain attributes (pitch), i.e. without introducing frequency distortion
- Compression/expansion
- Applications : movie post-synchronization (synchronization with video signal), dictation (synchronization with typing speed), fast rendering (e.g. in answering machines) ,...

• Frequency Scaling (='dual' problem)

- Modify frequency domain attributes (pitch) of a speech/audio signal, without modifying perceived time domain attributes (tempo/duration)
- A.k.a. `Pitch shifting'
- Applications : games, karaoke, Doppler-effects in 3D audio...

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling

28 / 40

In words: For each considered window position $n \in \text{grid}$, compute inverse Fourier transform of $U_{STFT}^{scaled}(e^{j\omega}, n)$ and shift to position n, resulting in signals $u_n^{scaled}[k]$. Then $u^{[k]}$ is a weighted sum of these sequences.

PS: Compare weights in this formula to (**) p.15 & try to establish link...! **PS**: Procedure corresponds to STFT inversion if $U_{STFT}^{scaled}(e^{i\omega}, n)$ is a valid STFT (then $u_n^{scaled}[k] = w[n-k].\hat{u}[k], \forall n$) and (**) p.15 provides PR.

37 / 40

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling

STFT-Based Time Scaling

• **Method-1**: Does not seem to work well, because repositioning of signal segments destroys time structure (phase relation) across segments (example : applying procedure to a pure sine, results in harmonic distortion)

Hence in practice variants are used...

- **Method-2:** Only use magnitude information from STFT, add phase information based on an iterative procedure
- **Method-3:** <u>Synchronized OLA, `SOLA'</u> Reposition segments as in OLA, but then apply small additional re-alignment such that each re-aligned segment has maximum correlation with already formed portion of output signal (to restore phase relation across segments)
- Method-4: Pitch-Synchronous OLA, `PSOLA', ...
- Method-5: Waveform Similarity OLA, `WSOLA', ...
- etc... (details omitted)

DSP-CIS 2019-2020 / Chapter-14: Time-Frequency Analysis & Scaling

39 / 40

