
1

DSP-CIS

Part-IV : Filter Banks & Time-Frequency Transforms

 Chapter-13 : Frequency Domain
Filtering

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven

marc.moonen@kuleuven.be
www.esat.kuleuven.be/stadius/

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 2 / 26

 Filter Bank Preliminaries

 Filter Bank Design

 Frequency Domain Filtering

•  Frequency Domain FIR Filter Realization
•  Frequency Domain Adaptive Filtering

 Time-Frequency Analysis & Scaling

Chapter-11

Chapter-12

Chapter-13

Chapter-14

Part-IV : Filter Banks & Time-Frequency Transforms

2

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 3 / 26

FIR Filter Realization

FIR Filter Realization
 =Construct (realize) LTI system (with delay elements,

adders and multipliers), such that I/O behavior is given by..

Several possibilities exist…

1. Direct form
2. Transposed direct form
3. Lattice realization (LPC lattice)
4. Lossless lattice realization

 5. Frequency domain realization: see Part IV

y[k]= b0.u[k]+ b1.u[k −1]+...+ bL−1.u[k − L +1]

 R
eturn to Chapter-5

ç

For convenience, number of fil
ter

coeffic
ients is now L instead of L+1

(…
easier fo

rmulas)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 4 / 26

Frequency Domain FIR Filter Realization

Have to know a theorem from linear algebra here:
•  A `circulant’ matrix is a matrix where each row is obtained from the
 previous row using a right-shift (by 1 position),
 the rightmost element which spills over is
 circulated back to become the leftmost element

•  The eigenvalue decomposition of a circulant matrix is always given as...
 (4x4 example)

 with F the DFT-matrix. This means that the eigenvectors are equal to
 the column-vectors of the IDFT-matrix, and that then eigenvalues are
 obtained as the DFT of the first column of the circulant matrix (proof by Matlab)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

d
c
b
a

F

D
C
B
A

F

D
C

B
A

F

abcd
dabc
cdab
bcda

. with ,.

000
000
000
000

.1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

abcd
dabc
cdab
bcda

3

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 5 / 26

Frequency Domain FIR Filter Realization

FIR Filter Realization (example L=4, similar for other L)

Consider a 'block processing’ where a block of LB output
samples are computed at once, with ‘block length’ LB=L:

y[k]= b0.u[k]+ b1.u[k −1]+ b2.u[k − 2]+ b3.u[k −3]

y[k]
y[k −1]
y[k − 2]
y[k −3]

"

#

$
$
$
$
$

%

&

'
'
'
'
'

=

b0 b1 b2 b3 0 0 0 0
0 b0 b1 b2 b3 0 0 0
0 0 b0 b1 b2 b3 0 0
0 0 0 b0 b1 b2 b3 0

"

#

$
$
$
$
$

%

&

'
'
'
'
'

.

u[k]
u[k −1]
u[k − 2]
u[k −3]
u[k − 4]
u[k − 5]
u[k − 6]
u[k − 7]

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

B(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 6 / 26

Frequency Domain FIR Filter Realization

Now some matrix manipulation…

y[k]
y[k −1]
y[k − 2]
y[k −3]

"

#

$
$
$
$
$

%

&

'
'
'
'
'

= 04x4 I4x4
"
#

%
& .

0 0 0 0 b0 b1 b2 b3

b3 0 0 0 0 b0 b1 b2

b2 b3 0 0 0 0 b0 b1

b1 b2 b3 0 0 0 0 b0

b0 b1 b2 b3 0 0 0 0
0 b0 b1 b2 b3 0 0 0
0 0 b0 b1 b2 b3 0 0
0 0 0 b0 b1 b2 b3 0

"

#

$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'

=circulant matrix! "####### $#######

 .

u[k]
u[k −1]
u[k − 2]
u[k −3]
u[k − 4]
u[k − 5]
u[k − 6]
u[k − 7]

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

 = 04x4 I4x4
"
#

%
&.F

−1.

B0 0 0 0 0 0 0 0
0 B1 0 0 0 0 0 0
0 0 B2 0 0 0 0 0
0 0 0 B3 0 0 0 0
0 0 0 0 B4 0 0 0
0 0 0 0 0 B5 0 0
0 0 0 0 0 0 B6 0
0 0 0 0 0 0 0 B7

"

#

$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'

.F.

u[k]
u[k −1]
u[k − 2]
u[k −3]
u[k − 4]
u[k − 5]
u[k − 6]
u[k − 7]

"

#

$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'

4

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 7 / 26

Frequency Domain FIR Filter Realization

•  This means that a block of LB=L output samples can be
computed as follows (read previous formula from right to left) :

–  Compute DFT of 2L input samples, i.e. last L samples combined
(‘overlapped’) with previous L samples

–  Perform component-wise multiplication with…
 (=freq.domain representation of the FIR filter)

–  Compute IDFT

–  Throw away 1st half of result, select (‘save’) 2nd half

•  This is referred to as an ‘overlap-save’ procedure
 (and ‘frequency domain filter realization’ because of the DFT/IDFT)

B0

B1

B2

B3

B4

B5

B6

B7

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

= F.

0
b3

b2

b1

b0

0
0
0

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 8 / 26

Frequency Domain FIR Filter Realization

•  This corresponds to a filter bank-type realization as follows...

 Analysis bank:

 Subband processing:

 Synthesis bank:

 This is a 2L-channel filter bank, with L-fold downsampling
 The analysis FB is a 2L-channel uniform DFT filter bank (see Chapter 11)
 The synthesis FB is matched to the analysis bank, for PR:

.
.

.)(
44

1
44
⎥
⎦

⎤
⎢
⎣

⎡
= −

x

x

Iz
I

FzE

[] 1
44 .0)(−= FIz xR

1−z
2−z
3−z

1

u[k] 4
4
4

4 4
4
4
4

+ y[k]
1−z

2−z

3−z

1

)(zR)(zH)(zE

H(z) = diag{B0,B1,...B7}

44
1)().(xIzzz −=ER

5

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 9 / 26

Frequency Domain FIR Filter Realization

•  J Overlap-save procedure is very efficient for large L :
–  Computational complexity (with FFT/IFFT i.o. DFT/IDFT) is

2.[α.2L.log(2L)] + 2L multiplications for L output samples, i.e.
O(log(L)) per sample for large L

–  Compare to computational complexity for direct form realization:
L multiplications per output sample, i.e. O(L) per sample

•  L Overlap-save procedure introduces O(L) processing
 delay/latency (e.g. y[k-L+1] only available sometime after time k)

•  Conclusion: For large L, complexity reduction is large, but
latency is also large

•  Will derive ‘intermediate’ realizations, with a smaller latency
at the expense of a smaller complexity reduction. This will
be based on an Nth order polyphase decomposition of B(z)…

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 10 / 26

Frequency Domain FIR Filter Realization

A compact derivation will rely on a result from filter bank theory
 (return to Chapter-11…)

 (…and now let B(z) take the place of ‘distortion function’ T(z))
This means that a filter (specified with N-fold polyphase decomposition)

can be realized in a multirate structure, based on a
pseudo-circulant matrix

T(z)*u[k-3] 1−z
2−z
3−z

1
u[k] 4

4
4

4 4
4
4
4

+ 1−z

2−z

3−z

1

)(zT

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−−

−−

−

)()(.)(.)(.
)()()(.)(.
)()()()(.
)()()()(

)(

03
1

2
1

1
1

103
1

2
1

2103
1

3210

zpzpzzpzzpz
zpzpzpzzpz
zpzpzpzpz
zpzpzpzp

zT

B(z) = p0 (z
4)+ z−1p1(z

4)+ z−2p2 (z
4)+ z−3p3(z

4)

PS: formulas given for N=4, for conciseness (but without loss of generality)

6

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 11 / 26

Frequency Domain FIR Filter Realization

Now some matrix manipulation… (compare to p.6)

 T(z)= 0 I4x4
!
"

#
$.

0 0 0 0 p0 (z) p1(z) p2 (z) p3(z)
p3(z) 0 0 0 0 p0 (z) p1(z) p2 (z)
p2 (z) p3(z) 0 0 0 0 p0 (z) p1(z)
p1(z) p2 (z) p3(z) 0 0 0 0 p0 (z)
p0 (z) p1(z) p2 (z) p3(z) 0 0 0 0

0 p0 (z) p1(z) p2 (z) p3(z) 0 0 0
0 0 p0 (z) p1(z) p2 (z) p3(z) 0 0
0 0 0 p0 (z) p1(z) p2 (z) p3(z) 0

!

"

%
%
%
%
%
%
%
%
%
%
%
%

#

$

&
&
&
&
&
&
&
&
&
&
&
&

.
I4x4

z−1.I4x4

!

"

%
%

#

$

&
&

 = 0 I4x4
!
"

#
$.F

−1

R(z)
! "## $##

.

P0 (z) 0 0 0 0 0 0 0
0 P1(z) 0 0 0 0 0 0
0 0 P2 (z) 0 0 0 0 0
0 0 0 P3(z) 0 0 0 0
0 0 0 0 P4 (z) 0 0 0
0 0 0 0 0 P5(z) 0 0
0 0 0 0 0 0 P6 (z) 0
0 0 0 0 0 0 0 P7(z)

!

"

%
%
%
%
%
%
%
%
%
%
%
%

#

$

&
&
&
&
&
&
&
&
&
&
&
&

.F.
I4x4

z−1.I4x4

!

"

%
%

#

$

&
&

E(z)
! "## $##

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 12 / 26

Frequency Domain FIR Filter Realization

•  An (8-channel) filter bank representation of this is...

 Analysis bank:

 Subband processing:

 Synthesis bank:

 This is a 2N-channel filter bank, with N-fold downsampling (see Chapter 13)
 The analysis FB is a 2N-channel DFT filter bank (see Chapter 11)
 The synthesis FB is matched to the analysis bank, for PR:

.
.

.)(
44

1
44
⎥
⎦

⎤
⎢
⎣

⎡
= −

x

x

Iz
I

FzE

[] 1
44 .0)(−= FIz xR

1−z
2−z
3−z

1

u[k] 4
4
4

4 4
4
4
4

+ y[k]
1−z

2−z

3−z

1

)(zR)(zH)(zE

H(z) = diag{P0 (z),P1(z),...P7(z)}

44
1)().(xIzzz −=ER

7

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 13 / 26

Frequency Domain FIR Filter Realization

•  This is again known as an `overlap-save’ realization :
–  Analysis bank: performs 2N-point DFT (FFT) of a block of (N=4)

samples, together with the previous block of (N) samples
 (hence `overlap’)

–  Synthesis bank: performs 2N-point IDFT (IFFT), throws away the

1st half of the result, saves the 2nd half
 (hence `save’)

–  Subband processing corresponds to `frequency domain’ operation

•  Complexity/latency? See p.16…

.
.

.)(
44

1
44
⎥
⎦

⎤
⎢
⎣

⎡
= −

x

x

Iz
I

FzE
`block’
`previous block’

[] 1
44 .0)(−= FIz xR

`save’ `throw away’

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 14 / 26

Frequency Domain FIR Filter Realization

Derivation on p.10 can also be modified as follows…

 T(z)= z−1.I4x4 I4x4
"
#$

%
&'
 .

0 0 0 0 p0 (z) p1(z) p2 (z) p3(z)
p3(z) 0 0 0 0 p0 (z) p1(z) p2 (z)
p2 (z) p3(z) 0 0 0 0 p0 (z) p1(z)
p1(z) p2 (z) p3(z) 0 0 0 0 p0 (z)
p0 (z) p1(z) p2 (z) p3(z) 0 0 0 0

0 p0 (z) p1(z) p2 (z) p3(z) 0 0 0
0 0 p0 (z) p1(z) p2 (z) p3(z) 0 0
0 0 0 p0 (z) p1(z) p2 (z) p3(z) 0

"

#

$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'

.
I4x4

04x4

"

#
$
$

%

&
'
'

 = z−1.I4x4 I4x4
"
#$

%
&'
.F−1

R(z)
! "### $###

.

P0 (z) 0 0 0 0 0 0 0
0 P1(z) 0 0 0 0 0 0
0 0 P2 (z) 0 0 0 0 0
0 0 0 P3(z) 0 0 0 0
0 0 0 0 P4 (z) 0 0 0
0 0 0 0 0 P5(z) 0 0
0 0 0 0 0 0 P6 (z) 0
0 0 0 0 0 0 0 P7(z)

"

#

$
$
$
$
$
$
$
$
$
$
$
$

%

&

'
'
'
'
'
'
'
'
'
'
'
'

.F.
I4x4

04x4

"

#
$
$

%

&
'
'

E(z)
! "# $#

8

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 15 / 26

Frequency Domain FIR Filter Realization

•  This is known as an `overlap-add’ realization :
–  Analysis bank: performs 2N-point DFT (FFT) of a block of (N=4)

samples, padded with N zero samples

–  Synthesis bank: performs 2N-point IDFT (IFFT), adds 2nd half
 of the result to 1st half of previous IDFT
 (hence `add’)

–  Subband processing corresponds to `frequency domain’ operation

.
0
.)(

44

44
⎥
⎦

⎤
⎢
⎣

⎡
=

x

xIFzE `block’
`zero padding’

[] 1
4444

1 ..)(−−= FIIzz xxR

`add’ `overlap’

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 16 / 26

Frequency Domain FIR Filter Realization

•  Computational complexity is (with FFT/IFFT i.o. DFT/IDFT, plus
subband processing) 2.[α.2N.log(2N)] + 2L multiplications for N output
samples, i.e. O(log(N))+O(L/N) per sample

 J For large N≈L this is O(log(L)) i.e. dominated by FFT/IFFT (cheap!)
 L For N<<L this is O(L), i.e. dominated by subband processing

•  Processing delay/latency is O(N)
•  Standard `overlap-add’ and `overlap-save’(=p.7) realizations are

derived when 0th order poly-phase components are used in the above
derivation (N=L, i.e. each poly-phase component has only 1 filter
coefficient). For large L, this leads to a large complexity reduction, but
also a large latency (=O(L))

•  In the more general case, with higher-order polyphase components
(N<L, i.e. each poly-phase component has >1 filter coefficients) a
smaller complexity reduction is achieved, but the latency is also smaller
(=O(N)).

9

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 17 / 26

•  A similar derivation can be made for LMS-based adaptive
filtering with block processing ('Block-LMS'). The adaptive
filter then consist in a filtering operation plus an adaptation
operation, which corresponds to a correlation operation.
Both operations can be performed cheaply in the frequency
domain..

•  Starting point is the LMS update equation

wk+1 =wk +µ.xk.(d[k]− xk
Twk)

xk =
x[k]
!

x[k − L +1]

"

#

$
$
$

%

&

'
'
'
, wk =

w[0]
!

w[L −1]

"

#

$
$
$

%

&

'
'
'

Frequency Domain Adaptive Filtering

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 18 / 26

Frequency Domain Adaptive Filtering

Consider block processing with so-called 'Block-LMS'
•  Remember that LMS is a ‘stochastic gradient’ algorithm, where

instantaneous estimates of the autocorrelation matrix and cross-
correlation vector are used to compute a gradient (=steepest descent vector)

•  Block-LMS uses averaged estimates, with averaging over a block of
LB (=‘block length’) samples, and hence an averaged gradient.

 The update formula is then..

 where n is the block index

•  Compared to LMS, Block-LMS does fewer updates (one per LB

samples), but with (presumably) better gradient estimates.
Overall, convergence could be faster or slower (=unpredictable).

•  The important thing is that Block-LMS can be realized cheaply…

wn+1 =wn +µ. xk.(d[k]− xk
Twn)

k = nLB +1

nLB + LB
∑

10

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 19 / 26

Frequency Domain Adaptive Filtering

Will consider case where block length LB = filter length L
The update formulas are then given as follows

 1) Compute a priori residuals (example LB=L=4 , similar for other L)

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

d[4n+ 4]
d[4n+3]
d[4n+ 2]
d[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

−

w[0] w[1] w[2] w[3] 0 0 0 0
0 w[0] w[1] w[2] w[3] 0 0 0
0 0 w[0] w[1] w[2] w[3] 0 0
0 0 0 w[0] w[1] w[2] w[3] 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

.

x[4n+ 4]
x[4n+3]
x[4n+ 2]
x[4n+1]
x[4n]
x[4n−1]
x[4n− 2]
x[4n−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

 =
 as on p.6

d[4n+ 4]
d[4n+3]
d[4n+ 2]
d[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

− 04x4 I4x4
!
"

$
%.F

−1.

W0 0 0 0 0 0 0 0
0 W1 0 0 0 0 0 0
0 0 W2 0 0 0 0 0
0 0 0 W3 0 0 0 0
0 0 0 0 W4 0 0 0
0 0 0 0 0 W5 0 0
0 0 0 0 0 0 W6 0
0 0 0 0 0 0 0 W7

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

.F.

x[4n+ 4]
x[4n+3]
x[4n+ 2]
x[4n+1]
x[4n]
x[4n−1]
x[4n− 2]
x[4n−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

with Wi=…

=f
re

qu
en

cy
 d

om
ai

n
fil

te
rin

g

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 20 / 26

Frequency Domain Adaptive Filtering

Will consider case where block length LB = filter length L
The update formulas are then given as follows

 2) Filter update (example LB=L=4 , similar for other L)

w[0]
w[1]
w[2]
w[3]

!

"

#
#
#
#
#

$

%

&
&
&
&
&n+1

=

w[0]
w[1]
w[2]
w[3]

!

"

#
#
#
#
#

$

%

&
&
&
&
&n

+µ.

x[4n+ 4] x[4n+3] x[4n+ 2] x[4n+1]
x[4n+3] x[4n+ 2] x[4n+1] x[4n]
x[4n+ 2] x[4n+1] x[4n] x[4n−1]
x[4n+1] x[4n] x[4n−1] x[4n− 2]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

.

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 =

w[0]
w[1]
w[2]
w[3]

!

"

#
#
#
#
#

$

%

&
&
&
&
&n

+µ.

e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0 0
0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0
0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0
0 0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

.

x[4n+ 4]
x[4n+3]
x[4n+ 2]
x[4n+1]
x[4n]
x[4n−1]
x[4n− 2]
x[4n−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

 =
 as on p.6

w[0]
w[1]
w[2]
w[3]

!

"

#
#
#
#
#

$

%

&
&
&
&
&n

+µ. 04x4 I4x4
!
"

$
%.F

−1.

E0 0 0 0 0 0 0 0
0 E1 0 0 0 0 0 0
0 0 E2 0 0 0 0 0
0 0 0 E3 0 0 0 0
0 0 0 0 E4 0 0 0
0 0 0 0 0 E5 0 0
0 0 0 0 0 0 E6 0
0 0 0 0 0 0 0 E7

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

.F.

x[4n+ 4]
x[4n+3]
x[4n+ 2]
x[4n+1]
x[4n]
x[4n−1]
x[4n− 2]
x[4n−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
& =f

re
qu

en
cy

 d
om

ai
n

co
rr

el
at

io
n

with Ei=…

11

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 21 / 26

Frequency Domain Adaptive Filtering

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)

•  FDAF is functionally equivalent to Block-LMS
(but cheaper, see below)

•  Convergence: Instead of using one and the same stepsize
µ for all ‘frequency bins’, frequency dependent stepsizes
can be applied..
–  In the update formula, µ is removed and Ei is replaced by µi.Ei
–  Stepsize µi dependent on the energy in the ith frequency bin
–  Leads to increased convergence speed at only a small extra cost

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 22 / 26

Frequency Domain Adaptive Filtering

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)

•  Complexity ≈ 5 (I)FFT’s (size 2L)
 per block of L output samples (check!)

Hence for large L, FDAF is very efficient/cheap, only O(log(L))
multiplications per output sample (compared to O(L) for (Block-)LMS)

 Example: LB=L=1024, then !

•  Processing delay/latency is again O(L).

 Example: LB=L=1024 and fs=8000Hz, then delay is 256 ms !

In cases where this is objectionable (e.g. acoustic echo cancellation),
need ‘intermediate’ algorithms with smaller latency and smaller
complexity reduction, based on a polyphase decomposition…(read on)

costLMS
cost FDAF

≈ 20

12

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 23 / 26

Frequency Domain Adaptive Filtering

For large L, a block length of LB=L may lead to a too large latency

If an Nthorder polyphase decomposition of the adaptive filter
is considered (hence with LP=L/N coefficients per polyphase
component), then a frequency domain adaptive filtering
algorithm with block length LB=N can derived as follows...
(where “N takes the place of L”)

Example LB=N=4, i.e. (as on p.9)

 with

W (z) = p0 (z
4)+ z−1p1(z

4)+ z−2p2 (z
4)+ z−3p3(z

4)

p0 (z) = p0
0 + p0

1z−1 + p0
2z−2 +...+ p0

Lp+1z−Lp+1

p1(z) = etc.

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 24 / 26

Frequency Domain Adaptive Filtering

(compare to p.19-20)

The update formulas are given as follows

 1) Compute a priori residuals (example LB=N=4 , similar for other N)

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

d[4n+ 4]
d[4n+3]
d[4n+ 2]
d[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

−

p0
i p1

i p2
i p3

i 0 0 0 0

0 p0
i p1

i p2
i p3

i 0 0 0

0 0 p0
i p1

i p2
i p3

i 0 0

0 0 0 p0
i p1

i p2
i p3

i 0

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

.

x[4(n− i)+ 4]
x[4n− i)+3]
x[4n− i)+ 2]
x[4n− i)+1]
x[4n− i)]
x[4n− i)−1]
x[4n− i)− 2]
x[4n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

(

)

*
*
*
*
*

+

*
*
*
*
*

,

-

*
*
*
*
*

.

*
*
*
*
*

i = 0

LP
∑

 =
 as on p.6

d[4n+ 4]
d[4n+3]
d[4n+ 2]
d[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

− 04x4 I4x4
!
"

$
%.F

−1.

P0
i 0 0 0 0 0 0 0

0 P1
i 0 0 0 0 0 0

0 0 P2
i 0 0 0 0 0

0 0 0 P3
i 0 0 0 0

0 0 0 0 P4
i 0 0 0

0 0 0 0 0 P5
i 0 0

0 0 0 0 0 0 P6
i 0

0 0 0 0 0 0 0 P7
i

!

"

#
#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&
&

.F.

x[4(n− i)+ 4]
x[4(n− i)+3]
x[4(n− i)+ 2]
x[4(n− i)+1]
x[4(n− i)]
x[4(n− i)−1]
x[4(n− i)− 2]
x[4(n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

(

)

*
*
*
*
*
*

+

*
*
*
*
*
*

,

-

*
*
*
*
*
*

.

*
*
*
*
*
*

i = 0

LP
∑

with Pi
j=…

13

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 25 / 26

Frequency Domain Adaptive Filtering

(compare to p.18-19)

The update formulas are given as follows

 2) Filter update (example LB=N=4 , similar for other N)

p0 (z4)

p1(z
4)

p2 (z4)

p3(z4)

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n+1

=

p0 (z4)

p1(z
4)

p2 (z4)

p3(z4)

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ. z−4i

x[4(n− i)+ 4] x[4(n− i)+3] x[4(n− i)+ 2] x[4(n− i)+1]
x[4(n− i)+3] x[4(n− i)+ 2] x[4(n− i)+1] x[4(n− i)]
x[4(n− i)+ 2] x[4(n− i)+1] x[4(n− i)] x[4(n− i)−1]
x[4(n− i)+1] x[4(n− i)] x[4(n− i)−1] x[4(n− i)− 2]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

i = 0

LP
∑

)

*

+
+

,

+
+

-

.

+
+

/

+
+

.

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

 =

p0 (z4)

p1(z
4)

p2 (z4)

p3(z4)

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ.

e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0 0
0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0
0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0
0 0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. z−4i

i=0

LP
∑

x[4(n− i)+ 4]
x[4(n− i)+3]
x[4(n− i)+ 2]
x[4(n− i)+1]
x[4(n− i)]
x[4(n− i)−1]
x[4(n− i)− 2]
x[4(n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

)

*

+
+
+
+
+

,

+
+
+
+
+

-

.

+
+
+
+
+

/

+
+
+
+
+

 =
 as on p.6

p0 (z4)

p1(z
4)

p2 (z4)

p3(z4)

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ. 04x4 I4x4
!
"

$
%.F

−1.

E0 0 0 0 0 0 0 0
0 E1 0 0 0 0 0 0
0 0 E2 0 0 0 0 0
0 0 0 E3 0 0 0 0
0 0 0 0 E4 0 0 0
0 0 0 0 0 E5 0 0
0 0 0 0 0 0 E6 0
0 0 0 0 0 0 0 E7

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

.F. z−4i

i=0

LP
∑

x[4(n− i)+ 4]
x[4(n− i)+3]
x[4(n− i)+ 2]
x[4(n− i)+1]
x[4(n− i)]
x[4(n− i)−1]
x[4(n− i)− 2]
x[4(n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

)

*

+
+
+
+
+

,

+
+
+
+
+

-

.

+
+
+
+
+

/

+
+
+
+
+

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 26 / 26

Frequency Domain Adaptive Filtering

This is referred to as PB-FDAF
(’Partitioned Block Frequency Domain Adaptive Filtering’)

•  PB-FDAF is functionally equivalent to Block-LMS

•  Complexity ≈ 3+2.LP (I)FFT’s (size 2N))

 per block of N output samples (check!)

 Example: L=1024, N=128, then !

•  Processing delay/latency is O(N).

 Example: L=1024, N=128 and fs=8000Hz, then delay is 32 ms
 (used in commercial acoustic echo cancellers)

costLMS
cost PB-FDAF

≈ 6

