DSP-CIS

Part-1V : Filter Banks & Time-Frequency Transforms

Chapter-13 : Frequency Domain
Filtering

Marc Moonen
Dept. E.E./ESAT-STADIUS, KU Leuven
marc.moonen@kuleuven.be
www.esat.kuleuven.be/stadius/

Part-1V : Filter Banks & Time-Frequency Transforms

Chapter-11

Chapter-12

(of FT Y& K Frequency Domain Filtering
> P Freguency Domain FIR Filter'Realization

* Frequency Domain Adaptive Filtering
P

Chapter-14

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

FIR Filter Realization

FIR Filter Realization

.
Several possibilities e\iSY...
1. Direct fo
2. Tr @ direct form
. &3 realization (LPC lattice)

ssless lattice realization
5. Frequency domain realization: see Part IV <=

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

Have to know a theorem from linear algebra here:

» A ‘circulant’ matrix is a matrix where each row is obtained from the
previous row using a right-shift (by 1 position),
the rightmost element which spills over is
circulated back to become the leftmost element

The eigenvalue decomposition of a circulant matrix is always given as...
(4x4 example)

with F the DFT-matrix. This means that the eigenvectors are equal to
the column-vectors of the IDFT-matrix, and that then eigenvalues are
obtained as the DFT of the first column of the circulant matrix (roof by Matiab)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 4126

Frequency Domain FIR Filter Realization

FIR Filter Realization (example L=4, similar for other L)
yIk]=b,.ulk]+ b,.ulk =11+ b, .ulk — 2]+ b,.ulk — 3]

Consider a 'block processing’ where a block of Lg output
samples are computed at once, with ‘block length’ Lg=L:

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

Now some matrix manipulation...

=circulant matrix

S & & o

SS &S oo
& S o o o
S ocoocoof&
S oo oo S S

&
S oococodS S
cococoSS S S

&

)

&
SSFSF oococo

c oo
o o
o &
&

N

» o

cocoocoocoooM™
©coocooW®oo
cocooMNMooo
oo oo o oo

© oo ooo
©coo®Woooo
oo Wooooo
oM oocoocoo

m

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

» This means that a block of Lgz=L output samples can be
computed as follows (read previous formula from right to left) :

— Compute DFT of 2L input samples, i.e. last L samples combined
(‘overlapped’) with previous L samples

&>
§ o

— Perform component-wise multiplication with...
(=freq.domain representation of the FIR filter)

ST~
S s &

w

— Compute IDFT

EOUW
[eNeNe)

— Throw away 15t half of result, select (‘save’) 2" half

* This is referred to as an ‘overlap-save’ procedure
(and ‘frequency domain filter realization’ because of the DFT/IDFT)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

» This corresponds to a filter bank-type realization as follows...

gl 1
(14 B~ v
4B

(141 |

Analysis bank:

Subband processing:
H(z) =diag{B,.B,,...B,}

Synthesis bank: R(z) = [0 Ja]F'l
- 4x4

This is a 2L-channel filter bank, with L-fold downsampling
The analysis FB is a 2L-channel uniform DFT filter bank (see Chapter 11)

The synthesis FB is matched to the analysis bank, for PR: § {Y€&3R N €3 Ea=auy S8

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 8/26

Frequency Domain FIR Filter Realization

© Overlap-save procedure is very efficient for large L :

— Computational complexity (with FFT/IFFT i.o. DFT/IDFT) is
2.[a.2L.log(2L)] + 2L multiplications for L output samples, i.e.
O(log(L)) per sample for large L

— Compare to computational complexity for direct form realization:
L multiplications per output sample, i.e. O(L) per sample

® Overlap-save procedure introduces O(L) processing
delay/latency (e.g. y[k-L+1] only available sometime after time k)

Conclusion: For large L, complexity reduction is large, but
latency is also large

Will derive ‘intermediate’ realizations, with a smaller latency
at the expense of a smaller complexity reduction. This will
be based on an Nt order polyphase decomposition of B(z)...

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 9/26

Frequency Domain FIR Filter Realization

A compact derivation will rely on a result from filter bank theory
(return to Chapter-11...)

4Bl | D
4 Pa |
(...and now let B(z) take the place of ‘distortion function’ T(z))
This means that a filter (specified with N-fold polyphase decomposition)

T(2)*ulk-3]

B(2) = p,(zH)+ 7' p (e + 27 p, (2 + 27 py(2Y)
can be realized in a multirate structure, based on a

pseudo-circulant matrix
Po(2) »(2) p,(2) ps(2)

z7pi(2) pe(2) (@ [PG
Z_l-pz(z) Zil~p3(z) Po(2) pi(2)
zp(2) (2B z7pi(2) py(2)

PS: formulas given for N=4, for conciseness (but without loss of generality) 10/26

Frequency Domain FIR Filter Realization

Now some matrix manipulation... (compare to p.6)

Po(2) p(2) py(2)
0 Po(2) pi(2)
0 0 Po(2)
0 0
0 0

0

~ ©
Wl
N o o
3]
8

o

“ oo o
N

&

)

' oo oo

N

&

oo oo o

o

=

N

<
©ooo0o0oo

===}
oo oo oo

©o o oo o
oo o o

o oo

o o
oi—?oooooo

N
=
N

2

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

* An (8-channel) filter bank representation of this is...
| B | 9 ylk]
l

Analysis bank:

Subband processing: H(2) = diag P, (2). P.(2)...P(2)}

Synthesis bank: R(z) = [0 7]F‘l
4x4

This is a 2N-channel filter bank, with N-fold downsampling (see Chapter 13)
The analysis FB is a 2N-channel DFT filter bank (see Chapter 11)
The synthesis FB is matched to the analysis bank, for PR: § : Y€ N E) Tat=at 4

4x4]

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 12126

Frequency Domain FIR Filter Realization

« This is again known as an “overlap-save’ realization :

— Analysis bank: performs 2N-point DFT (FFT) of a block of (N=4)
samples, together with the previous block of (N) samples
(hence “overlap’)

— Synthesis bank: performs 2N-point IDFT (IFFT), throws away the
1st half of the result, saves the 2" half

(hence 'save’) FYENM N ANF-E

— Subband processing corresponds to ‘frequency domain’ operation

* Complexity/latency? See p.16...

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

Derivation on p.10 can also be modified as follows...

0
0
0
T(Z)=[- AP])
P2(2)
pi(2)
Po(2)
0

:c
~ © © ©
~N

~
~ © © © ©
N
&
S O © © O © O

Pyl
o~ oo oo oo

Py
© o hoo00o0oo0

© o oo
© o o
]

=

N

<

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

« This is known as an ‘overlap-add’ realization :

— Analysis bank: performs 2N-point DFT (FFT) of a block of (N=4)
samples, padded with N zero samples

— Synthesis bank: performs 2N-point IDFT (IFFT), adds 2" half
of the result to 1st half of previous IDFT

(hence ‘add’) R(z)= Z_l.]4x4 I4x4 F!

— Subband processing corresponds to “frequency domain’ operation

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

Computational complexity is (with FFT/IFFT i.o. DFT/IDFT, plus
subband processing) 2.[a.2N.log(2N)] + 2L multiplications for N output
samples, i.e. O(log(N))+O(L/N) per sample

© For large N=L this is O(log(L)) i.e. dominated by FFT/IFFT (cheap!)
® For N<<L this is O(L), i.e. dominated by subband processing

Processing delay/latency is O(N)

Standard "overlap-add’ and “overlap-save’ (=p.7) realizations are
derived when 0th order poly-phase components are used in the above
derivation (N=L, i.e. each poly-phase component has only 1 filter
coefficient). For large L, this leads to a large complexity reduction, but
also a large latency (=O(L))

In the more general case, with higher-order polyphase components
(N<L, i.e. each poly-phase component has >1 filter coefficients) a
smaller complexity reduction is achieved, but the latency is also smaller
(=O(N)).

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

* A similar derivation can be made for LMS-based adaptive
filtering with block processing ('Block-LMS'). The adaptive

filter then consist in a filtering operation plus an adaptation
operation, which corresponds to a correlation operation.

Both operations can be performed cheaply in the frequency
domain..

Starting point is the LMS update equation

W, =W, +ux, . (dkl-x;w,)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

Consider block processing with so-called 'Block-LMS'

» Remember that LMS is a ‘stochastic gradient’ algorithm, where
instantaneous estimates of the autocorrelation matrix and cross-
correlation vector are used to compute a gradient (=steepest descent vector)

Block-LMS uses averaged estimates, with averaging over a block of
Lz (='block length’) samples, and hence an averaged gradient.

nL,+L,
wn+l = Wn + ‘u E Xk(d[k] - ngn)
k=nL,+1

The update formula is then..

where n is the block index

Compared to LMS, Block-LMS does fewer updates (one per Lg
samples), but with (presumably) better gradient estimates.
Overall, convergence could be faster or slower (=unpredictable).

» The important thing is that Block-LMS can be realized cheaply...

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

Will consider case where block length Lg = filter length L
The update formulas are then given as follows
1) Compute a priori residuals (example Lg=L=4, similar for other L)

e[4n+4] dl4n+4] w0l will w[2] w3] 0 0 0
e[4n+3] d[4n+3] 0 w0l w[ll w[2] w[3] O 0
e[4n+2] dl4n+2] 0 0 w0l wlll w[2] w[3] O
e[4n+1] dl4n+1] 0 0 0 w0l wll] w[2] w[3]

x[4n+4]
x[4n+3]
x[4n+2]
x[4n+1]
x[4n]
x[4n—1]
x[4n—-2]
x[4n-3]

dl4n+4]
d[4n+3]
d[4n+2]
d[4n+1]

frequency domain filtering

“

coooococoF
©cooooco=Xo

cooooXoo
cocoocooFooo
cooFoooo
cofooooo
cfococooooo

with Wi=_..

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

Will consider case where block length Lg = filter length L
The update formulas are then given as follows
2) Filter update (example Lg=L=4 , similar for other L)

wil]
wi2]
w[3]

n

x[4n+3] x[4n+2] x[4n+1] x[4n]
x[4n+2] x[4n+1] x[4n] x[4n—1]
x[4n+11 x[4n] x[4n—11 x[4n—2]

el4n+3]
| el4n+2]
e[4n+1]

w[O0] x[4n+4] x[4n+3] x[4n+2] x[4n+1] e[4n+4]
+

x[4n+4]
x[4n+3]

eldn+4] el4n+3] el4n+2] e[4n+1] o o o x[4n+2]

u o eldn+4] e[4n+3] e[4n+2] e[4n+1] o o | xtan+1
o o e[4n+4] e[4n+3] e[4n+2] e[4n+1] o x[4n]

" o o o eldn+4] el4n+3] el4n+2] el4n+1] xl4n—1]
x[4n—2]

x[4n—3]

&

x[4n+4]
x[4n+3]
x[4n+2]
x[4n+1]
x[4n]
x[4n—1]
x[4n—2]
x[4n—3]

frequency domain correlation

coocoooo
cocoocoohlo
cooocoMoo
coocolMooo
cooMoooo
coMooooo
oMooococoo
Mooooooo

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)

» FDAF is functionally equivalent to Block-LMS
(but cheaper, see below)

» Convergence: Instead of using one and the same stepsize
u for all ‘frequency bins’, frequency dependent stepsizes
can be applied..

— In the update formula, u is removed and E;is replaced by w;.E;
— Stepsize w, dependent on the energy in the it" frequency bin
— Leads to increased convergence speed at only a small extra cost

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)

+ Complexity =5 (I)FFT’s (size 2L)
per block of L output samples (check!)

Hence for large L, FDAF is very efficient/cheap, only O(log(L))
multiplications per output sample (compared to O(L) for (Block-)LMS)

cost LMS ~20
Example: L;=L=1024, then [S¥=SayYN

* Processing delay/latency is again O(L).
Example: Lg=L=1024 and f;=8000Hz, then delay is 256 ms !

In cases where this is objectionable (e.g. acoustic echo cancellation),
need ‘intermediate’ algorithms with smaller latency and smaller
complexity reduction, based on a polyphase decomposition...(read on)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering 22 /26

Frequency Domain Adaptive Filtering

For large L, a block length of Lz=L may lead to a too large latency

If an Nthorder polyphase decomposition of the adaptive filter
is considered (hence with L,=L/N coefficients per polyphase

component), then a frequency domain adaptive filtering
algorithm with block length Lg=N can derived as follows...

(where “N takes the place of L")

Example LB=N=4, i.e. (as on p.9)

W(2)=p,(z)+ 2" p, e+ 272p, (2 + 27 py (2"

with

0 1 _-1 2 -2 L +1 —L +1
Po(2) =Py +Poz” +Poz +.tpyt 2 "

pl (Z) = etc.

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

(compare to p.19-20)
The update formulas are given as follows
1) Compute a priori residuals (example Lg=N=4, similar for other N)

x[4(n—i)+ 4]

x[4n—i)+3]

d[4n+4] s 5 Pi P> P x[4n—i)+2]

dlan+3] | EP o P PP x[4n—i)+1]
i=0

e[4n+ 3]
e[4n+2]
e[4n+1]

d[4n+2] x[4n—i)]
d[4n+1] i ; i i x[4n—i)—1]
x[4n—-i)—-2]
x[4n—i)—3]

el4n+4] ‘

0 x[4(n—i)+4]

x[4(n—-i)+3]
x[4(n—-i)+2]
x[4(n—-i)+1]
x[4(n-D)]
x[4(n—-i)—1]
x[4(n—-i)—2]
x[4(n—-i)-3]

dl4n+4]

asonpo | g[an+3)
B d[4n+2]
dl4n+1]

©o0oo0oofo oo
o © O o o o oC

oo oo oo o
©oowWo oo oo

©oo0oocoood
©oo0oo0oooNo o

X

with Pi=...

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain Adaptive Filtering

(compare to p.18-19)
The update formulas are given as follows

2) Filter update (example Lg=N=4, similar for other N)

P _| mH
Pa(z") P2z
P | Pz

Po(z)] \ pu(z‘)] x4n—+4] x[4(n-D+3] x[4(n—D+2] x[4(n—i)
= +
xAn—-D+21 *[4n—D+11 x[4n—-D1 *[4(—i)
+1

_| Y o elan+4] el4n+3] e[4n+2] e[4n+1] o o
Pa(zt) o o el4n+4] el4n+3] e[4n+2] el4n+1] o

Po(zh) el4n+4] e[4n+3] e[4n+2] e[4n+1] o o o
+u
Palzh) o o o eld4n+4] e[4n+3] e[4n+2] el4n
h n

as on p.6

coococoooM
coococooMo
coococoMoo
cococolMooo
cocoMMoooo
cofMooococo
oMoooooo
Mooooooo

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

+1] e[4n+4]
Li = x[4(n—i)+3] xl4n—-i)+2] x[4(n—-i)+1] x[4(n—D)] e[4n+3]
) -1 | el4n+21

x[4(n—i)+1] x[4(n -] x[4(n—i)—1] x[4(n—-i)—2]

e[4n+1]

o

o

o |'|&
+1] 0

XA —i)+4]
xl4(n—i)+3]
x[4(n—i)+2]

4| xl4(n—D+1]

x[4(n -]
x4 —i)—11
x[4(n—i)—2]
x[4(n—i)—3]

|

x[4(n—i)+4]
x[4(n—i)+3]
x[4(n—i)+2]

| xa—id+1)

x[4(n— D]
x[4(n—i)—1]
x[4(n—i)—2]
x[4(n—i)—3]

Frequency Domain Adaptive Filtering

This is referred to as PB-FDAF
(’Partitioned Block Frequency Domain Adaptive Filtering’

)

» PB-FDAF is functionally equivalent to Block-LMS

+ Complexity = 3+2.L, (I)FFT’s (size 2N))

per block of N output samples (check!)

cost LMS
Example: L=1024, N=128, then

* Processing delay/latency is O(N).

Example: L=1024, N=128 and f;=8000Hz, then delay is 32 ms

(used in commercial acoustic echo cancellers)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

