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FIR Filter Realization 

FIR Filter Realization  
  =Construct (realize) LTI system (with delay elements,  

adders and multipliers), such that I/O behavior is given by.. 
 
 
Several possibilities exist… 

1. Direct form 
2. Transposed direct form 
3. Lattice realization (LPC lattice) 
4. Lossless lattice realization       

      5. Frequency domain realization: see Part IV 

y[k]= b0.u[k]+ b1.u[k −1]+...+ bL−1.u[k − L +1]

   R
eturn to Chapter-5 

ç 

For convenience, number of fil
ter 

coeffic
ients is now L instead of L+1  

(…
easier fo

rmulas) 
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Frequency Domain FIR Filter Realization 

Have to know a theorem from linear algebra here:  
•  A `circulant’ matrix is a matrix where each row is obtained from the  
     previous row using a right-shift (by 1 position),  
     the rightmost element which spills over is  
     circulated back to become the leftmost element 
                                                               
•  The eigenvalue decomposition of a circulant matrix is always given as...   
      (4x4 example) 
       
 
 
     with F the DFT-matrix. This means that the eigenvectors are equal to  
     the column-vectors of the IDFT-matrix, and that then eigenvalues are  
     obtained as the DFT of the first column of the circulant matrix (proof by Matlab) 
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Frequency Domain FIR Filter Realization 

FIR Filter Realization (example L=4, similar for other L)  

   
 

Consider a 'block processing’ where a block of LB output 
samples are computed at once, with ‘block length’ LB=L: 
   
 

 
 
 
 
 

y[k]= b0.u[k]+ b1.u[k −1]+ b2.u[k − 2]+ b3.u[k −3]

  

y[k]
y[k −1]
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y[k −3]
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B(z) = b0 + b1z
−1 + b2z

−2 + b3z
−3
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Frequency Domain FIR Filter Realization 

Now some matrix manipulation…  
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Frequency Domain FIR Filter Realization 

•  This means that a block of LB=L output samples can be 
computed as follows (read previous formula from right to left) : 

–  Compute DFT of 2L input samples, i.e. last L samples combined 
(‘overlapped’) with previous L samples 

–  Perform component-wise multiplication with…   
   (=freq.domain representation of the FIR filter) 

–  Compute IDFT 

–  Throw away 1st half of result, select (‘save’) 2nd half 

•  This is referred to as an ‘overlap-save’ procedure 
    (and ‘frequency domain filter realization’ because of the DFT/IDFT) 
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Frequency Domain FIR Filter Realization 

•  This corresponds to a filter bank-type realization as follows... 

                                                                
 
 
 
      Analysis bank: 
 
      Subband processing: 
 
      Synthesis bank: 
 
    This is a 2L-channel filter bank, with L-fold downsampling  
    The analysis FB is a 2L-channel uniform DFT filter bank (see Chapter 11)  
    The synthesis FB is matched to the analysis bank, for PR:                                          

.
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)(zR)(zH)(zE

H(z) = diag{B0,B1,...B7}
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1)().( xIzzz −=ER
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Frequency Domain FIR Filter Realization 

•  J  Overlap-save procedure is very efficient for large L :  
–  Computational complexity (with FFT/IFFT i.o. DFT/IDFT)  is                                              

2.[α.2L.log(2L)] + 2L multiplications for L output samples, i.e. 
O(log(L)) per sample for large L 

–  Compare to computational complexity for direct form realization:                                                   
L multiplications per output sample, i.e. O(L) per sample 

•  L  Overlap-save procedure introduces O(L) processing    
         delay/latency  (e.g.  y[k-L+1] only available sometime after time k) 

•  Conclusion: For large L, complexity reduction is large, but 
latency is also large 

•  Will derive ‘intermediate’ realizations, with a smaller latency 
at the expense of a smaller complexity reduction. This will 
be based on an Nth order polyphase decomposition of B(z)… 
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Frequency Domain FIR Filter Realization 

A compact derivation will rely on a result from filter bank theory          
  (return to Chapter-11…) 
 
 
 
  (…and now let B(z) take the place of ‘distortion function’ T(z))  
This means that a filter (specified with N-fold polyphase decomposition)                                                      
 
can be realized in a multirate structure, based on a         
pseudo-circulant matrix 
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PS: formulas given for N=4, for conciseness (but without loss of generality)  
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Frequency Domain FIR Filter Realization 

Now some matrix manipulation… (compare to p.6)  

 
 
 
 
 
 
 
 
 
 

 

 T(z)= 0 I4x4
!
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0 0 0 0 p0 (z) p1(z) p2 (z) p3(z)
p3(z) 0 0 0 0 p0 (z) p1(z) p2 (z)
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0 p0 (z) p1(z) p2 (z) p3(z) 0 0 0
0 0 p0 (z) p1(z) p2 (z) p3(z) 0 0
0 0 0 p0 (z) p1(z) p2 (z) p3(z) 0

!

"

%
%
%
%
%
%
%
%
%
%
%
%

#

$

&
&
&
&
&
&
&
&
&
&
&
&

.   
I4x4

z−1.I4x4

!

"

%
%

#

$

&
&

    = 0 I4x4
!
"

#
$.F

−1

R(z)
! "## $##
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0 P1(z) 0 0 0 0 0 0
0 0 P2 (z) 0 0 0 0 0
0 0 0 P3(z) 0 0 0 0
0 0 0 0 P4 (z) 0 0 0
0 0 0 0 0 P5(z) 0 0
0 0 0 0 0 0 P6 (z) 0
0 0 0 0 0 0 0 P7(z)
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Frequency Domain FIR Filter Realization 

•  An (8-channel) filter bank representation of this is... 

                                                                
 
 
 
      Analysis bank: 
 
      Subband processing: 
 
      Synthesis bank: 
 
    This is a 2N-channel filter bank, with N-fold downsampling (see Chapter 13)  
    The analysis FB is a 2N-channel DFT filter bank (see Chapter 11)  
    The synthesis FB is matched to the analysis bank, for PR:                                          
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Frequency Domain FIR Filter Realization 

•  This is again known as an `overlap-save’ realization : 
–  Analysis bank: performs 2N-point DFT (FFT) of a block of (N=4) 

samples, together with the previous block of (N) samples  
     (hence `overlap’) 

 
–  Synthesis bank:  performs 2N-point IDFT (IFFT), throws away the 

1st half of the result, saves the 2nd half 
     (hence `save’)  
 
 
–  Subband processing corresponds to `frequency domain’ operation 

•  Complexity/latency? See p.16…                                                                                             
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Frequency Domain FIR Filter Realization 

Derivation on p.10 can also be modified as follows… 
 
 
 
 
 
 
 
 
 
 

 

 T(z)= z−1.I4x4 I4x4
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0 P1(z) 0 0 0 0 0 0
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0 0 0 0 0 0 0 P7(z)
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Frequency Domain FIR Filter Realization 

•  This is known as an `overlap-add’ realization : 
–  Analysis bank:    performs 2N-point DFT (FFT) of a block of (N=4) 

samples, padded with N zero samples  
      

–  Synthesis bank:  performs 2N-point IDFT (IFFT), adds 2nd half   
    of the result to 1st half of previous IDFT 
    (hence `add’)  
 
 
–  Subband processing corresponds to `frequency domain’ operation 

.
0
.)(

44
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⎥
⎦

⎤
⎢
⎣

⎡
=

x

xIFzE `block’ 
`zero padding’ 

[ ] 1
4444

1 ..)( −−= FIIzz xxR

`add’ `overlap’ 
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Frequency Domain FIR Filter Realization 

•  Computational complexity is (with FFT/IFFT i.o. DFT/IDFT, plus 
subband processing)  2.[α.2N.log(2N)] + 2L multiplications for N output 
samples, i.e. O(log(N))+O(L/N) per sample   

     J For large N≈L this is O(log(L)) i.e. dominated by FFT/IFFT (cheap!)  
     L For N<<L this is O(L), i.e. dominated by subband processing 

•  Processing delay/latency is O(N) 
•  Standard `overlap-add’ and `overlap-save’(=p.7) realizations are 

derived when 0th order poly-phase components are used in the above 
derivation (N=L, i.e. each poly-phase component has only 1 filter 
coefficient). For large L, this leads to a large complexity reduction, but 
also a large latency (=O(L))  

•  In the more general case, with higher-order polyphase components 
(N<L, i.e. each poly-phase component has >1 filter coefficients) a 
smaller complexity reduction is achieved, but the latency is also smaller 
(=O(N)). 
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•  A similar derivation can be made for LMS-based adaptive 
filtering with block processing ('Block-LMS'). The adaptive 
filter then consist in a filtering operation plus an adaptation 
operation, which corresponds to a correlation operation.   
Both operations can be performed cheaply in the frequency 
domain.. 

•  Starting point is the LMS update equation 
 
 
 

 
 
 

wk+1 =wk +µ.xk.(d[k]− xk
Twk )

xk =
x[k]
!

x[k − L +1]

"

#

$
$
$

%

&

'
'
'
, wk =

w[0]
!

w[L −1]

"

#

$
$
$

%

&

'
'
'

Frequency Domain Adaptive Filtering 
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Frequency Domain Adaptive Filtering 

Consider block processing with so-called 'Block-LMS' 
•  Remember that LMS is a ‘stochastic gradient’ algorithm, where 

instantaneous estimates of the autocorrelation matrix and cross-
correlation vector are used to compute a gradient (=steepest descent vector)  

•  Block-LMS uses averaged estimates, with averaging over a block of     
LB (=‘block length’) samples, and hence an averaged gradient.                              

 
    The update formula is then.. 

    where n is the block index 
 
•  Compared to LMS, Block-LMS does fewer updates (one per LB 

samples), but with (presumably) better gradient estimates.          
Overall, convergence could be faster or slower (=unpredictable). 

•  The important thing is that Block-LMS can be realized cheaply… 

wn+1 =wn +µ. xk.(d[k]− xk
Twn )

k = nLB +1

nLB + LB
∑
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Frequency Domain Adaptive Filtering 
 
Will consider case where block length LB = filter length L  
The update formulas are then given as follows 

    1) Compute a priori residuals (example LB=L=4 , similar for other L)  

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]
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w[0] w[1] w[2] w[3] 0 0 0 0
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0 0 0 w[0] w[1] w[2] w[3] 0
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 as on p.6
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Frequency Domain Adaptive Filtering 
 
Will consider case where block length LB = filter length L 
The update formulas are then given as follows 

    2) Filter update (example LB=L=4 , similar for other L)  

w[0]
w[1]
w[2]
w[3]
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x[4n+ 4] x[4n+3] x[4n+ 2] x[4n+1]
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Frequency Domain Adaptive Filtering 

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)  
 

•  FDAF is functionally equivalent to Block-LMS                  
(but cheaper, see below) 

•  Convergence: Instead of using one and the same stepsize 
µ for all ‘frequency bins’, frequency dependent stepsizes 
can be applied.. 
–  In the update formula, µ is removed and Ei is replaced by µi.Ei 
–  Stepsize µi dependent on the energy in the ith  frequency bin 
–  Leads to increased convergence speed at only a small extra cost 
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Frequency Domain Adaptive Filtering 

This is referred to as FDAF (’Frequency Domain Adaptive Filtering’)  

•  Complexity ≈ 5 (I)FFT’s (size 2L)  
                                   per block of L output samples (check!) 

Hence for large L, FDAF is very efficient/cheap, only O(log(L)) 
multiplications per output sample (compared to O(L) for (Block-)LMS) 
 

      Example: LB=L=1024, then                           ! 

•  Processing delay/latency is again O(L). 

      Example: LB=L=1024 and fs=8000Hz, then delay is 256 ms ! 

In cases where this is objectionable (e.g. acoustic echo cancellation), 
need ‘intermediate’ algorithms with smaller latency and smaller 
complexity reduction, based on a polyphase decomposition…(read on) 

costLMS
cost FDAF

≈ 20
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Frequency Domain Adaptive Filtering 

For large L, a block length of LB=L may lead to a too large latency 

If an Nthorder polyphase decomposition of the adaptive filter 
is considered (hence with LP=L/N coefficients per polyphase 
component),  then a frequency domain adaptive filtering 
algorithm with block length LB=N can derived as follows... 
(where “N takes the place of L”) 

Example LB=N=4, i.e. (as on p.9)  

 

                    with  

 

 

W (z) = p0 (z
4 )+ z−1p1(z

4 )+ z−2p2 (z
4 )+ z−3p3(z

4 )

p0 (z) = p0
0 + p0

1z−1 + p0
2z−2 +...+ p0

Lp+1z−Lp+1

p1(z) =  etc.
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Frequency Domain Adaptive Filtering 
 
(compare to p.19-20) 

The update formulas are given as follows 

    1) Compute a priori residuals (example LB=N=4 , similar for other N)  
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Frequency Domain Adaptive Filtering 
 
(compare to p.18-19) 

The update formulas are given as follows 

    2) Filter update (example LB=N=4 , similar for other N)  

p0 (z4 )

p1(z
4 )

p2 (z4 )

p3(z4 )

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n+1

=

p0 (z4 )

p1(z
4 )

p2 (z4 )

p3(z4 )

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ. z−4i  

x[4(n− i)+ 4] x[4(n− i)+3] x[4(n− i)+ 2] x[4(n− i)+1]
x[4(n− i)+3] x[4(n− i)+ 2] x[4(n− i)+1] x[4(n− i)]
x[4(n− i)+ 2] x[4(n− i)+1] x[4(n− i)] x[4(n− i)−1]
x[4(n− i)+1] x[4(n− i)] x[4(n− i)−1] x[4(n− i)− 2]

 

!

"

#
#
#
#
#

$

%

&
&
&
&
&

i = 0

LP
∑

)

*

+
+

,

+
+

-

.

+
+

/

+
+

.

e[4n+ 4]
e[4n+3]
e[4n+ 2]
e[4n+1]

!

"

#
#
#
#
#

$

%

&
&
&
&
&

                   =

p0 (z4 )

p1(z
4 )

p2 (z4 )

p3(z4 )

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ.

e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0 0
0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0 0
0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0 0
0 0 0 e[4n+ 4] e[4n+3] e[4n+ 2] e[4n+1] 0

!

"

#
#
#
#
#

$

%

&
&
&
&
&

. z−4i

i=0

LP
∑

x[4(n− i)+ 4]
x[4(n− i)+3]
x[4(n− i)+ 2]
x[4(n− i)+1]
x[4(n− i)]
x[4(n− i)−1]
x[4(n− i)− 2]
x[4(n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

)

*

+
+
+
+
+

,

+
+
+
+
+

-

.

+
+
+
+
+

/

+
+
+
+
+

    =
 as on p.6

 

p0 (z4 )

p1(z
4 )

p2 (z4 )

p3(z4 )

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&n

+µ. 04x4 I4x4
!
"

$
%.F

−1.

E0 0 0 0 0 0 0 0
0 E1 0 0 0 0 0 0
0 0 E2 0 0 0 0 0
0 0 0 E3 0 0 0 0
0 0 0 0 E4 0 0 0
0 0 0 0 0 E5 0 0
0 0 0 0 0 0 E6 0
0 0 0 0 0 0 0 E7

!

"

#
#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&
&

.F. z−4i

i=0

LP
∑

x[4(n− i)+ 4]
x[4(n− i)+3]
x[4(n− i)+ 2]
x[4(n− i)+1]
x[4(n− i)]
x[4(n− i)−1]
x[4(n− i)− 2]
x[4(n− i)−3]

!

"

#
#
#
#
#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&
&
&
&
&

)

*

+
+
+
+
+

,

+
+
+
+
+

-

.

+
+
+
+
+

/

+
+
+
+
+

DSP-CIS 2019-2020  / Chapter-13: Frequency Domain Filtering   26 / 26 

Frequency Domain Adaptive Filtering 

This is referred to as PB-FDAF  
(’Partitioned Block Frequency Domain Adaptive Filtering’)  
 

•  PB-FDAF is functionally equivalent to Block-LMS 

•  Complexity ≈ 3+2.LP   (I)FFT’s (size 2N))       

                                     per block of N output samples (check!)  

 
      Example: L=1024, N=128, then                            ! 

•  Processing delay/latency is O(N). 

      Example: L=1024, N=128 and fs=8000Hz, then delay is 32 ms  
      (used in commercial acoustic echo cancellers) 

costLMS
cost PB-FDAF

≈ 6


