DSP-CIS

Part-IV : Filter Banks & Time-Frequency Transforms

Chapter-13 : Frequency Domain Filtering

Marc Moonen

Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@kuleuven.be www.esat.kuleuven.be/stadius/

w some matrix mani									
	pula	atio	n						
			=cir	cula	nt m	atrix			
$\begin{bmatrix} y[k] \\ y[k-1] \\ y[k-2] \\ y[k-3] \end{bmatrix} = \begin{bmatrix} 0_{4x4} & I_{4x4} \end{bmatrix} .$	0	0	0	0	b_0	b_1	b_2	b_3	$\begin{bmatrix} u[k] \end{bmatrix}$
	b_3	0	0	0	0	b_0	b_1	b_2	u[k-1]
	b_2	b_3	0	0	0	0	b_0	b_1	u[k-2]
	b_1	b_2	b_3	0	0	0	0	b_0	u[k-3]
	b_0	b_1	b_2	b_3	0	0	0	0	u[k-4]
	0	b_0	b_1	b_2	b_3	0	0	0	u[k-5]
	0	0	b_0	b_1	b_2	b_3	0	0	u[k-6]
	0	0	0	b_0	b_1	b_2	b_3	0	$\left[u[k-7] \right]$
$= \begin{bmatrix} 0_{4x4} & I_{4x4} \end{bmatrix} . F^{-1}.$	B_0	0	0	0	0	0	0	0	$\begin{bmatrix} u[k] \end{bmatrix}$
	0	B_1	0	0	0	0	0	0	u[k-1]
	0	0	B_2	0	0	0	0	0	u[k-2]
	0	0	0	B_3	0	0	0	0	u[k-3]
	0	0	0	0	B_4	0	0	0	[.r] u[k-4]
	0	0	0	0	0	B_5	0	0	u[k-5]
	0	0	0	0	0	0	B_6	0	u[k-6]
	0	0	0	0	0	0	0	B_7	u[k-7]
	_								, · ·

Frequency Domain FIR Filter Realization

- This means that a block of L_B=L output samples can be computed as follows (read previous formula from right to left):
 - Compute DFT of 2L input samples, i.e. last L samples combined (<u>'overlapped</u>') with previous L samples
 - Perform component-wise multiplication with...
 (=freq.domain representation of the FIR filter)
 - Compute IDFT

- Throw away 1st half of result, select ('save') 2nd half
- This is referred to as an '<u>overlap-save</u>' procedure (and 'frequency domain filter realization' because of the DFT/IDFT)

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

9/26

DSP-CIS 2019-2020 / Chapter-13: Frequency Domain Filtering

Frequency Domain FIR Filter Realization

Now some matrix manipulation... (compare to p.6)

Frequency Domain FIR Filter Realization											
Derivation on p.10) can	also	o be	mod	lified	as f	ollov	/S			
]	0	0	0	0	$p_0(z)$	$p_1(z)$	$p_2(z)$	$p_3(z)$]		
	$p_3(z)$	0	0	0	0	$p_0(z)$	$p_1(z)$	$p_2(z)$			
	$p_2(z)$	$p_3(z)$	0	0	0	0	$p_0(z)$	$p_1(z)$			
$\mathbf{T}(\tau)$ [$\frac{1}{2}$, τ]	$p_1(z)$	$p_2(z)$	$p_3(z)$	0	0	0	0	$p_0(z)$			
$\mathbf{I}(\mathcal{L}) = \begin{bmatrix} z & I_{4x4} & I_{4x4} \end{bmatrix}.$	$p_0(z)$	$p_1(z)$	$p_2(z)$	$p_3(z)$	0	0	0	0	· 0 _{4x4}		
	0	$p_0(z)$	$p_1(z)$	$p_2(z)$	$p_3(z)$	0	0	0			
	0	0	$p_0(z)$	$p_1(z)$	$p_2(z)$	$p_3(z)$	0	0			
	0	0	0	$p_0(z)$	$p_1(z)$	$p_2(z)$	$p_3(z)$	0]		
	$P_{0}(z)$	0	0	0	0	0	0	0	1		
	0	$P_{i}(z)$	0	0	0	0	0	0			
	0	0	$P_2(z)$	0	0	0	0	0			
[0	0	0	$P_3(z)$	0	0	0	0	$\begin{bmatrix} I_{4x4} \end{bmatrix}$		
$= \begin{bmatrix} z^{-1} I_{4x4} & I_{4x4} \end{bmatrix} F^{-1}.$	0	0	0	0	$P_{A}(z)$	0	0	0	$F_{A_{A_A}}$		
$\mathbf{R}(z)$	0	0	0	0	0	$P_5(z)$	0	0	E(-)		
	0	0	0	0	0	0	$P_6(z)$	0	$\mathbf{E}(z)$		
	0	0	0	0	0	0	0	$P(\tau)$			

Frequency Domain Adaptive Filtering

- A similar derivation can be made for LMS-based adaptive filtering with block processing ('Block-LMS'). The adaptive filter then consist in a <u>filtering operation</u> plus an adaptation operation, which corresponds to a <u>correlation operation</u>. Both operations can be performed cheaply in the frequency domain..
- Starting point is the LMS update equation

Frequency Domain Adaptive Filtering

Will consider case where block length L_B = filter length L The update formulas are then given as follows

1) Compute a priori residuals (example L_B=L=4, similar for other L)

