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Filter Bank Design Problem Statement

Perfect Reconstruction (PR) condition (D=N and D<N)
(based on polyphase representation of analysis/synthesis bank))

|R<z>.E(z) = z"SIDI

Beautifully Simple!!
Will use this for Perfect Reconstruction Filter Bank (PR-FB) Design
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Filter Bank Design Problem Statement

Two design targets :

© Filter specifications, e.g. stopband attenuation,
passband ripple, transition band, etc.
(for each (analysis) filter!)
© Perfect reconstruction (PR) property.
Challenge will be in addressing two design targets at once

(e.g- ‘PR only’ (without filter specs) is easy, see ex. Chapter-11)

PS: Can also do ‘Near-Perfect Reconstruction Filter Bank Design’, i.e.
optimize filter specifications and at the same time minimize aliasing/
distortion (=numerical optimization). Not covered here...
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General PR-FB Design: Maximum Decimation (p=n)

(= N-by-N matrices)

» Design Procedure:

1. Design all analysis filters (see Part-Il).
2. This determines E(z) (=polyphase matrix).
3. Assuming E(z) can be inverted (?), synthesis filters are

-6 -1
R(Z) =z E (Z) (delta to make synthesis causal, see ex. p.7)

Will consider only FIR analysis filters, leading to simple polyphase
decompositions (see Chapter-2)

However, FIR E(z) then generally leads to IR R(z), where'
concern...
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General PR-FB Design: Maximum Decimation (p=n)

PS: Inversion of matrix transfer functions ?...

— The inverse of a scalar (i.e. 1-by-1 matrix) FIR transfer function is
always IIR (except for contrived examples)

E(z)=(2- z'l) =R(z) = E'l(z) =
— ...but the inverse of an N-by-N (n>1) FIR transfer function can be FIR
-2
E(z)=|"
2z
det(E(z)) =1
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General PR-FB Design: Maximum Decimation (p=n)

Question: all E
Can we build FIR E(Z)’S (N-by-N)
that have an FIR inverse?

Answer:
YES, ‘unimodular’ E(z)'s, i.e. matrices with determinant=constant*z?

: E(z)=EL.[ Ina ].EL_I.[
0

-1
R(z)=Eg'.[ Iy O
| o 1

= R().E(x)=z"".1,

where the EI’ s are constant (= not a function of z) invertible matrices
Design Procedure:

Optimize Er’ s to meet filter specs (ripple, etc.) for all analysis filters (at once)
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General PR-FB Design: Maximum Decimation (p=n)

An interesting special case of o ANE@)s

this is obtained when the Ei’ s
are orthogonal (=real) matrices

or unitary (=complex) matrices

= R().E()=z"1,

E(z) and R(z) are then ‘paraunitary’ (definition omitted) and
the analysis and synthesis FB are said to be ‘paraunitary’ FBs

PS: Before proceeding compare formulas with lossless lattice realizations in Chapter-5...
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General PR-FB Design: Maximum Decimation (p=n)

Paraunitary PR-FBs have great properties: (proofs omitted)

* If polyphase matrix E(z) is paranunitary, then
analysis filters are power complementary (=form lossless 1-input/N-output system)

N-1
L2 (see Chapter 5)
E |H 5 (6‘ e )| =1 (or other constant)

n=0
Synthesis filters are obtained from analysis filters by conjugating the
analysis filter coefficients + reversing the order

filkl=h[L-k], O=n=N-1
Hence magnitude response of synthesis filter Fn is the same as
magnitude response of corresponding analysis filter Hn

Fn(ej“’)|=|Hn(ej‘”)|, O<sn=N-1

...and so synthesis filters are also power complementary
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General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) =77 J

» Design Procedure:

1. Design all analysis filters (see Part-Il).
2. This determines E(z) (=polyphase matrix).
3. Find R(z) such that PR condition is satisfied (how? read on...)

= easy if step-3 is doable...

» Will consider only FIR analysis filters, leading to simple polyphase
decompositions (see Chapter-2)

|t will turn out that when D<N an FIR R(z) can always be found (except
in contrived cases)...

DSP-CIS 2019-2020 / Chapter-12: Filter Bank Design




General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) = z"SIDJ

* Given E(z) how can R(z) be computed?

Assume every entry in E(z) is Lg-th order FIR (i.e. Lg +1 coefficients)
Assume every entry in R(z) is Lg-th order FIR (i.e. Lg +1 coefficients)
Hence number of unknown coefficients in R(z) is D.N.(Lg +1)

Every entry in R(z).E(z) is (LgtLg)-th order FIR (i.e. Lg+Lg+1
coefficients) (cfr. polynomial multiplication / linear convolution)

Hence PR condition is equivalent to D.D.(Lg+Lg+1) linear equations
in the unknown coefficients (*)

Can be solved (except in contrived cases) i

(*) Try to write down these equations!
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General PR-FB Design: Oversampled FBs (p<n)

IR(z).E(z) =77 J

» Given E(z) how can R(z) be computed?

— (continued) ...

— Can be solved (except in contrived cases

) if
>

— If D<N, then L can be made sufficiently large so that the
(underdetermined) set of equations can be solved, i.e. an R(z) can
be found (!).

— Note that if D=N, then Ly in general has to be infinitely large, i.e. R(z)
in general has to be IR (see p.5)
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DFT-Modulated FBs

- All design procedures so far involve monitoring of
characteristics (passband ripple, stopband suppression,...)
of all (analysis) filters, which may be tedious.

- Design complexity may be reduced through usage of

“uniform’ and “modulated  filter banks.
* DFT-modulated FBs (read on..)
» Cosine-modulated FBs (not covered, but interesting design!)

- Will consider
- Maximally decimated DFT-modulated FBs
- Oversampled DFT-modulated FBs
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Maximally Decimated DFT-Modulated FBs (p=n)

Uniform versus non-uniform (analysis) filter bank:

N=4
uniform HO H1 H2 HS3

non-uniform HO_';<1 H2  H3

e\

* N-channel uniform FB: ey S e N Sy |

i.e. frequency responses are uniformly shifted over the unit circle
Ho(z)= "prototype’ filter (=one and only filter that has to be designed)

Time domain equivalent is: h,[k]= h,[k].e’>"™ "N

» Non-uniform = everything that is not uniform
e.g. for speech & audio applications (cfr. human hearing)
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Maximally Decimated DFT-Modulated FBs (p=n)

Uniform filter banks can be realized cheaply based on
olhase decomositions + DFT(FFT) (hence name 'DFT-modulated FB)

1. Analysis FB ulk]

H,(2),H,(2),...H, (z) with H (z)=H,(z.e>™")

Hy@)= 2" E, (")

7i=0 (N-fold polyphase decomposition)

N-1 )

H,(z)=H,(z.e>™") = EZ'" PPN B (Y e 2NN
=0
Nel ) '
EZ_n.W_"".Eﬁ(ZN) ,  with W= o I2TIN

n=0
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NF'

| w° we WO
H,(z) we w2 W
H,(z) |U(2)= we w e |

HN_.,(z) WO WD e e

W = 27N

where F is NxN DFT-matrix

This means that filtering with the Hn’ s can be implemented by first filtering
with the polyphase components and then applying an inverse DFT

PS: To simplify formulas the factor N in N.F- will be left out from now on
(i.e. absorbed in the polyphase components)
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Maximally Decimated DFT-Modulated FBs (p=n)

Conclusion: economy in...
— Implementation complexity (for EIR filters):
N filters for the price of 1, plus inverse DFT (=FFT) !
— Design complexity:
Design “prototype’ Ho(z), then other Hn(z) s are
automatically "co-designed’ (same passband ripple, etc...) !
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Maximally Decimated DFT-Modulated FBs (p=n)

» Special case: DFT-filter bank, if all En(z)=1
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Maximally Decimated DFT-Modulated FBs (p=n)

+ DFT-modulated analysis FB + maximal decimation

= efficient realization !
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Maximally Decimated DFT-Modulated FBs (p=n)

2. Synthesis FB

phase shift added
for convenience

P YK

Fy(2).F(2),Fy () with F,(2) L(ze )

N-1
Fy(2)= Y 2" Ry(2") = N TTWIDR ()

n=0
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Maximally Decimated DFT-Modulated FBs (p=n)

Similarly simple derivation then leads to...
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Maximally Decimated DFT-Modulated FBs (p=n)

» Expansion + DFT-modulated synthesis FB :

= efficient realization !

"YIK]
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Maximally Decimated DFT-Modulated FBs (p=n)

How to achieve Perfect Reconstruction (PR)
with maximally decimated DFT-modulated FBs?

N=4
[ﬂ_.
—.

4
Tl o)

R(2)E(z) = z71,| | P YEG) - F ' digg [ E,2)] = R()=7"E"(2)= 2" diag|E;'(2)| F

— R (2)=z" ENln(Z)

Polyphase components of synthesis bank prototype filter are obtained
by inverting polyphase components of analysis bank prototype filter
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Maximally Decimated DFT-Modulated FBs (p=n)

Design Procedure:
1. Design prototype analysis filter Ho(z) (see Part-Il).
2. This determines En(z) (=polyphase components).
3. Assuming all En(z)’s can be inverted (?), choose synthesis filters

R (2)=7".Ey,_ (2)

Will consider only FIR prototype analysis filter, leading to simple
polyphase decomposition (Chapter-2).

However, FIR En(z)’ s generally again lead to IR Ra(z)’ s, where
is a concern...
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Maximally Decimated DFT-Modulated FBs (p=n)

This does not leave much design freedom...
* FIR & Unimodular E(Z)? ..such that Rn(z) are also FIR

Only obtained when each E (z) is ‘unimodular’, i.e. E,(z)=constant.z¢

Simple example is PRGOS MGEI \Where wn's

are constants, which leads to ‘windowed’ IDFT/DFT bank,
a.k.a. ‘short-time Fourier transform’ (see Chapter-14)

all E(z)'s

FIR unimodular E(z)’s

E(z)=F'.diag{..}
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Maximally Decimated DFT-Modulated FBs (p=n)

This does not leave much design freedom...

* FIR & Paraunitary E(Z)?
..such that Rn(z) are FIR + power complementary FB’s.
Only obtained when each E,(z) is paraunitary (i.e. all-pass) (and FIR),
i.e. En(z)=%1.z4.

i.e. only trivial modifications of IDET/DFT filter bank !

— all E(z)'s

FIR unimodular E(z)’s
FIR paraunitary E(z)'s
E(z)=F-'.diag{..}
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Maximally Decimated DFT-Modulated FBs (p=n)

+ Bad news: Not much design freedom for maximally
decimated DFT-modulated FB's...
* Good news: More design freedom with...

— Cosine-modulated FB’ s (not covered, but interesting design!)
Po(z) is prototype lowpass filter, cutoff at for N filters

Then... Po
0.5)Z . j(+0.5) 2% =
¥y +ap. Bz TN

Ho
+0.5)% . j(1+0.5) %
M+, B(z.e &)

—j
H (z)=0,.B(z.e
(2) = B ( —_—

etc.. [\ [\ il

PS: Real-valued filter coefficients here!

J(

Hy(2) = a,.P(ze

(¢!

— Oversampled DFT-modulated FB’ s (read on..)
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Oversampled DFT-Modulated FBs (p<n)

* In maximally decimated DFT-modulated FB, we had

E(z) = F_l.diag[En (z)] R(z) = diag[RN_l_n(Z)].F (N-by-N matrices)
In oversampled DFT-modulated FB, will have

N-by-D N-by-N N-by-D D-by-N D-by-N N-by-N

— f—’: — —— — A

E(z)= F' .B(z)R(2)=C(z) .F
with B(z) (ai-thinyand C(z) snort-fat) Structured/sparse matrices
Will give 2 examples in next slides, other cases are similar..
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Oversampled DFT-Modulated FBs (p<n)

Example-1: #channels N =8  analysis FB Ho(z),H1(z)....,H7(2)
decimation D =4
prototype analysis filter Ho(z)
will consider N’ -fold polyphase expansion, with

Should not try
to understand this...

3 7 0
Hy@)= Y hlkl.z* = 32" E (2 ,  E )= Y h[8k+nls"
n'=0

k=-00 k=—

PS: A scale factor N will again absorbed in polyphase components (see p.16)
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Oversampled DFT-Modulated FBs (p<n)

Example-1: Define B(z)... and construct FB as...

| FEE. o
0 7E(Z) 0
0 0 ZE@)n. 0
0 0 B

4 decimation
8 channels

D
N
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Oversampled DFT-Modulated FBs (p<n)

Example-1: With 4-fold decimation, this is...

7 E(Z) 0
0 7 E(2) 0

0 0 7! .Eq @) 0
0 0

0 z'l.E7(ZZ)

E(z)=F'B(2)
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Oversampled DFT-Modulated FBs (p<n)

Example-1: Synthesis FB is similarly derived...

R(z)=C().F

Z\R(") 0 0
0 7" Ry(2%) 0
0 7 R(2%) 0

R(2) 0
0 0

TR, 0 R
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Oversampled DFT-Modulated FBs (p<n)

Example-1: Perfect Reconstruction?

27°I =R(2).E(z) = C(2).F.F ' B(2) = C(2).B(z)

R 0 [
0 R(Z) O 7 E, (%)
0 0 Ry 0 27 Ey(2%)
0 [ 77 Es(2)
0 0 0 2LE,(2)
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Oversampled DFT-Modulated FBs (p<n)

Example-1: Perfect Reconstruction?

E(z)=F'B(z) MR(z)=C(2).F

z'T=R(2)E(z)
R7(zz).E0(zz) + RJ(ZZ)E4(22) =1
RG(ZZ).EI(ZZ) + RZ(ZZ)ES(ZZ) =1

etc.
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Oversampled DFT-Modulated FBs (p<n)

Example-1: Perfect Reconstruction?

Design Procedure :
1. Design FIR prototype analysis filter Ho(z)

2. This determines En(z) (=polyphase components)
3. Compute pairs of FIR Rn(z)’s (Lg+1 coefficients each) from pairs of FIR
En(Z)’S (Lg+1 coefficients each)

® *) Lg+Lg+1 equations in 2(Lg+1) unknowns
Ry(2).E\ () + Ry(DE () =1 Ots'te R
7@ Ey () + Ry(2)E, () can be solved if Lg-1 < Lg

Ry(2*).E\(z")+R,(z")Ey(*) =1 (except in contrived cases)

etc.

DSP-CIS 2019-2020 / Chapter-12: Filter Bank Design

Oversampled DFT-Modulated FBs (p<n)

Example-1: Perfect Reconstruction?

Design Procedure :
PS: If in addition [ZHEJEUIFIMNEI] (n=0,1,2,3) are

designed to be power complementary

(i.e. form a lossless 1 input/2 output system) then the
analysis and synthesis FB are paraunitary, i.e with

power complementary analysis filters and
power complementary synthesis filters (proof omitted)
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Oversampled DFT-Modulated FBs (p<n)

T Loss! 1-in/2-out EEE—
.thatis

» Design Procedure: Optimize parameters (=angles) of 4 (=D)
FIR lossless lattices (defining polyphase components of Ho(z) )
such that Ho(z) satisfies specifications.

= not-so-easy but DOABLE !
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Oversampled DFT-Modulated FBs (p<n)

Example-2 (non-integer oversampling) :
#channels N =6 analysis filters Ho(z),H1(z)

decimation D = 4
prototype analysis filter Ho(z)

will consider N’ -fold polyphase expansion, with

Should not try
to understand this...

Hy@)= Y hlkl.z* =Y 2" E, (%) , E ()= Y hl12k+n.2"

k=-00 n'=0 k=-0
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Oversampled DFT-Modulated FBs (p<n)

Example-2: Define B(z)... and construct FB as...
ulk]

E,(z%)+z°.Ey(z'7)
Z'E (2 +z7 E,(2')
2 E,(22)+ 28 Ey(2'?)
27 E (2 + 270 . Ey(2'?)

ZE(22)+27°.E ;0 (2'?)

Z_5E5(Z12)+Z_“.E”(Z]2)

F' B(z"). Uz)=

=6-fold polyphase decomposition

DSP-CIS 2019-2020 / Chapter-12: Filter Bank Design

Oversampled DFT-Modulated FBs (p<n)

Example-2: With 4-fold decimation, this is...

E\(2) 0 7 E(2") 0
0 E(2) 0 7E(2)

(]
-2 3 3 —

0 T E,(2) 0 E\(Z’)
E(z)=F'B(2)

7 E(Z) 0 72E(2) 0
0 7 E(2) 0 72.E,\(Z)
PR conditions similarly derived, leading to undetermined sets of
equations to compute synthesis prototype from analysis prototype (try it)

Paraunitary (power complementary) analysis and synthesis filter bank
also possible (details omitted)

Synthesis FB R(z)=C(z).F similarly derived
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