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Introduction: Least Squares Parameter Estimation

In Chapter-9, have introduced ‘Least Squares’ estimation as an alternative
(=based on observed data/signal samples) to optimal filter design
(=based on statistical information)...

filter input sequence : uy,ug,uz,... Wy
corresponding desired response sequence is : dy,do, d3, ..., d.
T
€ d, u,
d, | ul
€ d, ll:
v — —
error signal e d U

k
cost function J,s(W) = 26’2 = el = lla —ow]|:
=1

— linear least squares problem : miny ||d — Uw/||3

_x L
> WLS—NW N

=luu] ua
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Introduction: Least Squares Parameter Estimation

‘Least Squares’ approach is also used in parameter estimation in a linear
regression model, where the problem statement is as follows...

Given...
k vectors of input variables (='regressors’)
k corresponding observations of a dependent variable dy.d,.d;,...d,
and assume a

linear regression/observation model
where w? is an unknown parameter vector (=‘regression coefficients’)
and e,is unknown additive noise

Then...

the aim is to estimate w°
Least Suares (LS) estimate is (see previous page for definitions of U and d)

u,u,,u,,.u,

T 0
d,=u, W’ +e
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Introduction: Least Squares Parameter Estimation

* If the input variables u, are given/fixed (*) and the additive
noise e is a random vector with zero-mean
then the LS estimate is ‘unbiased’ i.e.
E{w,} = E{U'U)'U"d} = E{U'UY'U" (U.W' +e)} =W’ + E{U'U)"'U" e}

=w’

+ If in addition the noise e has unit covariance matrix
then the (estimation) error covariance matrix is
E{(W s—W").(W s — w) }= E{U'U)'U"e.e’UUU) "} =UU)'U"E{ee” }UUU)™"

=(UTU)—1

(*) Input variables can also be random variables, possibly correlated with the additive
noise, etc... Also regression coefficients can be random variables, etc...etc...
All this not considered here.

DSP-CIS 2019-2020 / Chapter-10: Kalman Filters

Introduction: Least Squares Parameter Estimation

* The Mean Squared Error (MSE) of the estimation is

E{llw, ¢ —w’ [ E{trace[(W, s —W").(W ¢ — w1} = trace[(U"U) ™|

PS: This MSE is different from the one in Chapter-7, check formulas

Under the given assumptions, it is shown that amongst all
linear estimators, i.e. estimators of the form

(=linear function of d)

the LS estimator (with Z=(U™U)-"UTand z=0) mimimizes the MSE
i.e. it is the Linear Minimum MSE (MMSE) estimator

Under the given assumptions, if furthermore e is a Gaussian
distributed random vector, it is shown that the LS estimator
is also the (‘general’, i.e. not restricted to ‘linear’) MMSE estimator.

Optional reading: https://en.wikipedia.org/wiki/Minimum_mean_square_error




Introduction: Least Squares Parameter Estimation

. -If noise e is zero-mean with non-unit covariance matrix

where V'2is the lower triangular Cholesky factor (‘square root),
the Linear MMSE estimator & error covariance matrix are

B ) WV U
which corresponds to the LS estimator for the so-called
pre-whitened observation model

V—1/2d — V—1/2U .WO + V—l/ze
— — ":_J

. . d U e
where the additive noise is indeed white..

E{ée"}=V "?E{ee’y V=1

Example: If V=02./ then w” =(U"U)-"U"d with error covariance matrix o2.(UTU)-
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Introduction: Least Squares Parameter Estimation

0 -If an initial estimate is available (e.g. from previous
observations) with error covariance matrix

E{(W° - wO).(W° —
(S
where P'2is the lower triangular Cholesky factor (‘square root),
the Linear MMSE estimator & error covariance matrix are
w= lruTvlyy (prwt +uTva)
U;XTUEXT U£XTdEXT E{(VAV — WO).(VAV - )T} = (P_l +UTV_1U)_1
which corresponds to the LS estimator for the model

Example: P-'=0 corresponds to « variance of the initial estimate, i.e. back to p.7

DSP-CIS 2019-2020 / Chapter-10: Kalman Filters 8/25




Introduction: Least Squares Parameter Estimation

A Kalman Filter also solves a parameter-estimation problem,
but now the parameter vector is dynamic instead of static,
i.e. changes over time

The time-evolution of the parameter vector is described by
the ‘state equation’ in a state-space model, and the linear
regression model of p.4 then corresponds to the ‘output
equation’ of the state-space model (details in next slides..)

* In the next slides, the general formulation
of the (Standard) Kalman Filter is given

* |np.16 it is seen how this relates to
Least Squares estimation

Kalman Filters are used everywhere! (aerospace, economics,
manufacturing, instrumentation, weather forecasting, navigation, ..%)

Rudolf Emil Kélman (1930 -2016 )
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Standard Kalman Filter

State space model

of a time-varying discrete-time system

state vector input signal vector process noise

A[k]x[k] '+ B[k]u[k] + v[k]

C[k].x[k]+ D[k].u[k]+ w[k]

output signal measurement noise
(PS: can also have multiple outputs)

where v[k] and w[k] are mutually uncorrelated, zero mean, white noises

vIk]] " " Vikl] 0 VikI= VAP VKT
2 wlk] ][ viZ] wl] ]} = 6’<" 0 WIk] = Cholesky/square-root factorization
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Standard Kalman Filter

Example: IIR filter ulk]

OO

4 T4
% [k+l]
xlk+1]
x,[k+1]

y[k] b ab, b-ab, b-ab, b- ab]l o [

x,[k]

H(z)=C.(:I-A)" B+D=..= 2@

A(2) (no process/measurement noise here)
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Standard Kalman Filter

State estimation problem

state vector

x|k +1] ALkl x[k]+B[k].u[k]+ V[k]
ylk] Clk]lx[k]+D[k].ulk]+w[k]

E{[ VI ][ v wli” ]}=5k,‘ Vik) 0 ]

wlk] 0 W[k]

Given... A[K], B[K], C[k], D[k], V[k], W[K], k=0,1,2,...
and input/output observations u[k],y[k], k=0,1,2,...

Then... estimate the internal states x[k], k=0,1,2,...
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Standard Kalman Filter

PS: will use shorthand notation xx, yk ,.. instead of x[k], y[k],.. from now on

A

Definition: = Linear MMSE-estimate of xk using all
available data up until time |

* FILTERING’ = estimate

« 'PREDICTION’ = estimate
« 'SMOOTHING =estlmate
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Standard Kalman Filter

The ‘Standard Kalman Filter’ (or ‘Conventional Kalman Filter’)
operation @ time k (k=0,1,2,..) is as follows:

Given a prediction of the state vector @ time k
based on previous observations (up to time k-1)
with corresponding error covariance matrix

Step-1: Measurement Update
=Compute an improved (filtered) estimate
based on ‘output equation’ @ time Kk (=observation y[k])
Step-2: Time Update
=Compute a prediction of the next state vector

based on ‘state equation’ R P
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Standard Kalman Filter

The ‘Standard Kalman Filter’ formulas are as follows (without proof)

Initalization: E{xo}
E{(%0l-1—%0)(Rol-1 - %)} =
e
For k=0,1,2,...
Step-1: Measurement Update
‘Pk|k = Pt = Pip-1Cf (Wi + CiPrge-1CF )_ICkPk|k—1‘

‘i‘k\k = Rt + PyCEWE - (= Cilteen _Dkuk)‘ €compare to standard RLS!

(consider W,=1)

Step-2: Time Update
‘Pk+1|k = ArPyrAf + Vk‘

€Try to derive this from state equation

Xe+ 1)k = Ax* K + Br- ur
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Standard Kalman Filter

PS: ‘Standard RLS’ is a special case of ‘Standard KF’

Special case of the state space equations :

Wir1 = I-we+0+0 € Internal state vector is FIR filter
dp = ul-wi+0+my coefficients vector, which is
assumed to be time-invariant

with
E{ni}=1.

Same substitutions in the conventional KF :

P, wul P,
Pur — Puipy — rle=1%% P
K|k Klk-1 1+“1{Pk|k—l“k

Wik = Wit + Pty (die =0 Wi1) |

Pr1jk = Pu

Witk = Wilk|-

‘void’
= standard RLS algorithm
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Standard Kalman Filter

PS: ‘Standard RLS’ is a special case of ‘Standard KF’

Standard RLS is not numerically stable (see Chapter-8),

hence (similarly) the Standard KF is not numerically stable
(i.e. finite precision implementation diverges from infinite precision implementation)

Will therefore again derive an alternative

Square-Root Algorithm

which can be shown to be numerically stable

(i.e. distance between finite precision implementation and infinite precision
implementation is bounded)
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Square-Root Kalman Filter

The state estimation/prediction @ time k corresponds to a parameter
estimation problem in a linear regression model (p.4), where the

parameter vector contains all previous state vectors...
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Square-Root Kalman Filter
If the covariances for ey, v; and w; differ from
the identity, i.e. €compare to p.7
E{e-eT} #£1

it is necessary to perform a pre-whitening :

1T
F 0[31"‘0I-1
~Boo
Fo—Douo

o%x St

—Blul
Y1-Duy

. =<

—Ekuk
L Jx—Diur |

Similar derivation, but not considered here for clarity...

(i.e. stick to previous page)
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Square-Root Kalman Filter

 Linear MMSE |state estimation problem now comes down to
computing the least squares solution to this overdeter-
mined set of linear equations, which may be done by ap-
plying the ORD method .

The least squares solution is obtained by first perform-
ing a OR-factorization and then a backsubstitution.

The end result is

<T
Xi+1)k
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Square-Root Kalman Filter

Triangular factor & right-ha
propagated from time k-1 t

Recursive implementation :
is then developed as follows

Kok
X1k
X2k

o -B,
Xk,
ik+l|k Ve = Dy
— update = triangularization + backsubstitution
..hence requires only lower-right/lower part ! (explain)
Kok .
X1k :
Rop | Ls H
Kk
i\fk+1|k
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Square-Root Kalman Filter
““Propagated from |

relevant sub-problem is time k-1 to time k

[z o [
A :

-1

Rk ] Ls
0

Xe+1lk

compare to p.8=>»

Kipe | Ls
Xi+1Jk ~Bu,

Vi — Dy

— update = triangularization + backsubstitution
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Square-Root Kalman Filter

Final algorithm is as follows:

Propagated from
(fork=0,1,...,) time k-1 to time k

Propagated from * *
time k to time k+1

_l 1
! i Py i

1 1 -
-2 2 &
Pl || P 11k -1 -B.u,

0 : 0 y.-Du,

post:frirray pre-array

- _1 A ‘ - .
Restpe = (Pelyp) ™ (Pl ppRer 1) €backsubstitution
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Square-Root Kalman Filter

Remark QRD- RLS algorithm is a special case
of square-root KF

2 LI =T
0 |Plipl|| PredpWer1k k

0 0

0
post-array \Q—may
. See p-16 and 19

With V, = O this leads to :

1 1 1 _1
P2 ‘ ’P 2 W P} P2 W,
k+1lk| || k1 Wk+1]k T klk-1 klk—1 Wk|k-1
<= Ok l
0 : u{ dy

post-array pre-array

=QRD- RLS
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Standard Kalman Filter (revisited)

Remark : Conventional Kalman filter
can be derived from square-root KF equations

Core problem is

k -1 -Bu,

-1 1
P} 0 R P2 %k
klk-1 |: RKee :| Ié klk-1 klk-1

A Xit 1]k
C Y Yi =Dy

n+1 equations in X : can be worked into measurement update eq.
n equations in &, : can be worked into state update eq.

[details omitted]
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