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Introduction: Least Squares Parameter Estimation

In Chapter-9, have introduced ‘Least Squares’ estimation as an alternative
(=based on observed data/signal samples) to optimal filter design
(=based on statistical information)...

filter input sequence : uy,ug,uz,... Wy
corresponding desired response sequence is : dy,do, d3, ..., d.
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— linear least squares problem : miny ||d — Uw/||3
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Introduction: Least Squares Parameter Estimation

‘Least Squares’ approach is also used in parameter estimation in a
linear regression model, where the problem statement is as follows...

Given...
k vectors of input variables (=regressors’)
k corresponding observations of a dependent variable d,.d,.d;,...d,
and assume a
linear regression/observation model =[S ARR:
where WP is an unknown parameter vector (=‘regression coefficients’)

and e is unknown additive observation/measurement noise
(see p.3 for definition of U and d)

u,u,,u,,..u,

Then the aim is to estimate w°
Q: can Least Squares (LS) estimate e reused here?
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Introduction: Least Squares Parameter Estimation

If the input variables u, are given/fixed () and the additive

noise e is a random vector with zero-mean

then the LS estimate is ‘unbiased’ i.e.

E{w,} = E{U'U)'U"d} = E{U'UY'U" (U.W' +e)} =W’ + E{U"U)'U" e}

= Wo

If in addition the noise e has unit covariance matrix

then the (estimation) error covariance matrix is

E{(W s—W").(W s — w )} = E{U'U)'U e UUU)"'}=U"U)'U E{ee" yUU"U)"

=u'uy! o

(*) Input variables can also be random variables, possibly correlated with the additive

noise, etc... Also regression coefficients can be random variables, etc...etc...
All this not considered here.
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Introduction: Least Squares Parameter Estimation

The Mean Squared Error (MSE) of the estimation is defined as

E{llw, ¢ —w’ [ E{trace[(W, s —W").(W ¢ — w1} = trace[(U"U) ™|

PS: This MSE is different from the one in Chapter-7, check formulas

Under the given assumptions, it is shown that amongst all
linear estimators, i.e. estimators of the form

(=linear function of d)

the LS estimator (with Z=(U™U)'UTand z=0) mimimizes the MSE
i.e. it is the Linear Minimum MSE (MMSE) estimator

Under the given assumptions, if furthermore e is a Gaussian
distributed random vector, it is shown that the LS estimator
is also the (‘general, i.e. not restricted to ‘linear’) MMSE estimator

Optional reading: https://en.wikipedia.org/wiki/Minimum_mean_square_error




Introduction: Least Squares Parameter Estimation

. - If noise e is zero-mean with non-unit covariance matrix

where V'2is the upper triangular Cholesky factor (‘square root’)
the Linear MMSE estimator & error covariance matrix are

E{(W—w).(W-w)"} = (U'V'0)"
which corresponds to the LS estimator for the so-called

pre-whitened observation model i i s
V7d=V ~U.w +V~ e

d U ¢
where the additive noise is indeed white.. FalgX3RYRTal) TIPSR ey,

Example: If V=02./ then w” =(UTU)-'UTd with error covariance matrix g2.(UTU)!
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Introduction: Least Squares Parameter Estimation

If an initial estimate is available (e.g. from previous
observations) With error covariance matrix

where P'2is the upper triangular Cholesky factor (‘square root’),
the Linear MMSE estimator & error covariance matrix are

w=r LevTv-luy (pw +UTvd) R— —
P P E{(w-w").(w-w") }=(P" +U V U)
U EXT UEXT U EXT d EXT

which corresponds to the LS estimator for the model

Example: P-'=0 corresponds to « variance of the initial estimate, i.e. back to p.7
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Kalman Filter Basics

A Kalman Filter also solves a parameter estimation problem,
but now the parameter vector is dynamic instead of static,
i.e. changes over time

The time-evolution of the parameter vector is described by
the ‘state equation’ in a state-space model, and the linear
regression model of p.4 then corrg; 3 out
equation’ of the state-space modelfde alls in next s’h‘des..)

* Inthe next slides, the general

Kalman Filter problem statement is given
* Inp.14 it is seen how this relates to

previous fixed parameter estimation problem Y \'

Kalman Filters are used everywhere! (aerospace, ecofiomics,
manufacturing, instrumentation, weather forecasting, navigation, ...)\

Rudolf Emil Kalman (1930 -
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Kalman Filter Basics

State space model

of a time-invariant discrete-time system

state vector input signal

Lo State equation

output

€ .
equation

output signal

— This is single-input/single-output (‘SISO’), can also have multiple
inputs and multiple outputs (‘MIMQO’)

— For L-th order system, x[k] is L-vector (then A=LxL, B=Lx1, C=1xL, D=1x1)
— State-space model describes input-output behavior, and is

equivalent to transfer function: F{E) T eXe: YRS : ¥ )
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Kalman Filter Basics

» Example: IIR filter

H—B——
-al -% -a3 -a_4®

N xdkﬂ x| il m[kl]

.”.

x[k]

| 5
x[k]
x,[k]

o o o -

x[k]
x,[k]

y[k]:[ b-ab, b,-a,b, b,-ab, b,-ab, } k] +by.ulk]
3!

x[k]

H(z)=C.(zI-A)'B+D-=...

PS: Remember we mostly use shorthand notation, i.e. x,, y, ... instead of x[k], y[k],..

Kalman Filter Basics

Will consider a more general
State space model
of a time-varying discrete-time system + noise

process noise

ék,xk + B.k.uk +V, state equation
C.x +D u +w output
- g« £ equation

measurement noise

where v, and w, are mutually uncorrelated, zero mean, white noises

T
Ef] Vi [ viowl ]} S Vk 0 V,=Vve
. ! 1 = Cu = . izati
w, 0 VVk Cholesky/square-root factorization
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Kalman Filter Basics

State estimation problem

state vector

AA X, ok }Bk.uk +V,

Ck.xk +Dk.uk +w,

Given... A, B,, C,, D, V,, W,, k=0,1,2,...
and input/output observations u,,y,, k=0,1,2,...
Then... estimate the internal state vectors x,, k=0,1,2,...
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Kalman Filter Basics

Fixed parameter estimation (see p.4) is seen to be a special case, with

State space model

Parameter vector we takes
the place of the state vector,
but is assumed to be
time-invariant
WO =WO

uT, takes the place of C, !

With the above substitutions, Kalman filter
algorithms will be turned into Recursive Least
Sq uares algorith IMS (standard (p. 25) & square-root (p. 22)) -

DSP-CIS 2019-2020 / Chapter-10: Kalman Filters




Kalman Filter Basics

* Definition: g% Linear MMSE-estimate of xk using all
ad available data up until time |

‘FILTERING’ estimate h

'PREDICTION’ = estimate
'SMOOTHING = estimate

* Kalman filter will compute pPOMEUNSERE @ time k

For every estimate, a corresponding error covariance
matrix will be defined/computed, i.e.

P, =P P =E{(X, —x )X, —x)"}

K|k K|k klk

P, = PPl = E{(f‘knvc - Xk+1)'(f(k+1\k - Xk+1)T}

e+l kR kel

DSP-CIS 2019-2020 / Chapter-10: Kalman Filters

Kalman Filter Algorithms

First, the state estimation @ time k corresponds to a (large)

parameter estimation problem in a linear regression model
(see p.4), Where the parameter vector contains all state

vectors Xy X1 ,i.€.

E{x0} = %ol-1

PS: x4 is initial estimate in the sense of p.8  EACIERDICIRE I —PiPL,
€
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Kalman Filter Algorithms

If the covariances for ey, v; and w; differ from
the identity, i.e.

E{e-eT} #£1

it is necessary to perform a pre-whitening :

1T
F 0|31'X0I-1
~Bouo
Fo—Douo

oEl St

—Blul
Y1-Duy

. =<

—Ekuk
L Jx—Diur |

Similar derivation, but not considered here (exceptp.22) for clarity...

(i.e. stick to previous page)
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Kalman Filter Algorithms

Linear regression model (p.16 or 17) has L+(k+1).(L+1)
equations in (k+17).L unknowns, i.e. corresponds to an

overdetermined set of linear equations

2 Linear MMSE |state estimation problem now comes down to

computing the least squares solution to this overdeter-
mined set of linear equations, which may be done by ap-
plying the ORD method .

The least squares solution is obtained by first perform-
ing a OR-factorization and then a backsubstitution.

The end result is

T
[ ST %5 - %5 ]|
explain subscripts
* Note that # equations as well as # unknowns grows with time, hence

need (cheaper) recursive anrithm (with QRD updating as in Chapter-9) !
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Kalman Filter Algorithms

\ . Triangular factor & right
A RECU RSIVE Imp|ementatl0n propagated from time k-

is then developed as follows &
RKo|k
Kk
Kok

v

o B,
Xkl|k ‘
& l Vi =Dy,
Xr+1lk

— update = triangularization + backsubstitution
---is seen to require only lower-right/lower part ! (explain)
Kok :
K1k :
Rop | s || ]
Rl
ikk+1|k
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Kalman Filter Algorithms

LxL triangular factor & right-hand
relevant sub-problem is propagated from time k-1 to time

-B.u,

] ¥
o
| R | Ls H
A -1 2 =
- Xi+-1/k
0

: 1
Explain! & \_7—,\
2 P Xk
(compare to p.8 Kilk ] LS klk—1%klk-1

and @ p.5) Xt 1k ~ By
Yie = Dyyy

Vi — Dy,

— update = triangularization + backsubstitution
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Kalman Filter Algorithms

®* Recursive algorithm is then as follows (‘Square-Root Kalman Filter’):

(fork=0,1,...,) Propagated from
time k-1 to time k

Propagated from N7 N7
time k to time k+1 l_"_

1
i Y Pt A

1 1 -
N 2 o
PeZsie || [P ipXet e -1 -Bu,

0 : 0 y-Du,

post-‘array pre-Erray

1 i
& "3 \-1.(p2 & -
R 1fe <= (Pefye) ™ IH% ABMY] € backsubstitution
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Kalman Filter Algorithms

For special case of fixed parameter estimation (p.14)
‘Square-Root RLS’ formulas (chapter-9) can be derived as a
special case of ‘Square-Root Kalman Filter’ formulas (p.21):

1 I
0 0 H
post-array

See p:14 and 17
With V; = O this leads to :

_1 1 1 1

Pk431|k Pkfukwkﬂlk — Q{ i Pk\f—lwklk—l

0 : dx
post-array

= QRD-RLS algorithm
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Kalman Filter Algorithms

* In textbooks, mostly ‘Standard (a.k.a. conventional) Kalman Filter’
formulas are given, i.e.

Initialization:

For k=0,1,2,...
Step-1: Measurement Update (corresponding to output equation)

‘Pk\k = Pi-1 — Pefp-1Cx (Wi +CkPk\k—1C£)_lckPk|k—l‘

‘s‘k|k = K1 + PpCrWi !+ (v — Cikage— — D) |

Step-2: Time Update (corresponding to state equation)

Py e = AkPuAT + Vi

(K1) = Ar Kk + Br - ua|
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Kalman Filter Algorithms

‘Standard Kalman Filter’ formulas (p.23) are straightforwardly
derived from ‘Square-Root Kalman Filter’ formulas (p.21):

Core problem is

_1 1
2 7 &
P [ R ]L_s Fo-rRie

Ay -1 ik+1|k -B,u,

Gy Y ‘ Vi — Dy

L+1  equations in X;; can be worked into measurement update eq.
L equations in X;1x can be worked into state update eq.

[details omitted]

In infinite precision, algorithms are equivalent
In finite precision, square-root algorithm is preferred
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Kalman Filter Algorithms

For special case of fixed parameter estimation (p.14)
‘Standard RLS’ formulas (chapter-8) are straightforwardly derived
as a special case of ‘Standard Kalman Filter’ formulas (p.23):

E{el}=1

Same substitutions in the conventional KF :

P, wul A
Py = P g — Klk=10M Tilk-1
K|k Klk—1 1+u{Pk|k_1nk

~ A _ Ta
‘Wk\k = Wik-1 + Pz - (dp—uf Wk|k-1)|

Pr1jk = P

Wit 1k = Wilk |

‘void’
= standard RLS algorithm
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