
An introduction to MATLAB

by Maarten Vergauwen, modified for H05F2a and H05F4a by Paschalis Tsiaflakis∗

and Alexander Bertrand

October, 2013

Contents

1 What is Matlab ? 2

2 Getting started, getting stopped 3

2.1 Starting a Matlab session . 3
2.2 Stopping a Matlab session . 3

3 Setting your Matlab-path 3

4 Getting help 4

5 Use of special keys 4

5.1 Stopping a command . 4
5.2 Using arrow-keys . 5

6 Entering data 5

6.1 Constants . 5
6.2 Creating a vector . 5
6.3 Creating a matrix . 6
6.4 The size of a matrix . 6

7 Selecting data 6

8 Matrix arithmetics and functions 7

8.1 Basic matrix arithmetics . 7
8.2 Elementwise functions . 7
8.3 Matrix functions, based on svd 8
8.4 Elementary math functions 8

∗For questions or remarks: paschalis.tsiaflakis@esat.kuleuven.be

2

9 Operations on the data stack 8

9.1 Viewing the current variables 8
9.2 Saving variables into a data file 9
9.3 Loading a data file . 9
9.4 Clearing variables . 9

10 Graphics 9

10.1 Making a plot . 9
10.2 Zooming . 10
10.3 Handling figures . 10
10.4 Using subplots . 11
10.5 How to print a screen plot . 11

11 M-files 12

11.1 Creating an M-file . 12
11.2 Asking for input . 12

12 Functions 12

13 Control structures 13

13.1 The “for” loop . 13
13.2 The “while” loop . 14
13.3 The “if” statement . 14
13.4 Pre-allocation . 14

14 Useful commands 15

15 Exercises 17

15.1 Exercise 1: Sum of sines . 17
15.2 Exercise 2: Discrete system 18
15.3 Exercise 3: Three sequences 18
15.4 Exercise 4: Square and sawtooth 20
15.5 Exercise 5: Median filter . 21
15.6 Exercise 6: The musical scale (Dutch: ‘de toonladder’) 24
15.7 Exercise 7: Half-wave rectification 24

1 What is Matlab ?

Matlab is a high-performance language for technical computing. It inte-
grates computation, visualization, and programming in an easy-to-use envi-
ronment where problems and solutions are expressed in familiar mathemat-
ical notation.

3

Matlab is an interactive system whose basic data element is an array that
does not require dimensioning. This allows to solve many technical com-
puting problems, especially those with matrix and vector formulations, in a
fraction of the time it would take to write a program in a scalar noninter-
active language such as C or Fortran.
Matlab has evolved over a period of years with input from many users. In
university environments, it is the standard instructional tool for introductory
and advanced courses in mathematics, engineering, and science. In industry,
Matlab is the tool of choice for high-productivity research, development, and
analysis.
Matlab features a family of application-specific solutions called toolboxes.
Very important to most users of Matlab, toolboxes allow you to learn and
apply specialized technology. Toolboxes are comprehensive collections of
Matlab functions (M-files) that extend the Matlab environment to solve
particular classes of problems. Areas in which toolboxes are available include
signal processing, control systems, neural networks, fuzzy logic, wavelets,
simulation, and many others.

2 Getting started, getting stopped

2.1 Starting a Matlab session

• In Linux: Type matlab in a terminal to start Matlab.

• In Windows: Matlab should be in the programs list.

2.2 Stopping a Matlab session

• type quit or exit.

3 Setting your Matlab-path

• Matlab has access to all files in the current directory. You can query
this directory with the command pwd and change it with the cd com-
mand, like in a UNIX terminal. If you want Matlab to search not only
the current directory for files, you can set the Matlab-path. This is
a variable in Matlab containing a list of directories where Matlab will
search for files or commands. You can use the addpath command to
add directories to the Matlab-path.

• Alternative: in the Matlab directory toolbar, you see the ‘current di-
rectory’. Here you can type the path you need or you can press the
Browse button on the left to select it from a list.

4

• Create a new directory for this exercise session, and set the path of
Matlab to this directory.

4 Getting help

• To get an overview of all packages, type help.

• To get help on a specific topic (a command or a package), type help

topic. This is very important and you should do this very frequently.
A certain command often has a lot of possible uses and outputs, and
can have a different meaning when applied to a vector or a matrix. For
instance, the min command returns the minimum of a vector, or the
minimum of every column (not row!) of a matrix. It can also be used
to find the indices in the vector/matrix where this minimum occurs.
Therefore, the only way to know the right use of min for your case,
just type help min.

• The lookfor command allows you to search for functions based on
a keyword. It searches through the first line of help text for each
matlab function. For example: if you try help inverse, matlab will
tell you that there is no file called “inverse.m”. If you type in lookfor

inverse, you will get over a dozen matches.

• If you have some time left at the end of this session and you want to
see some matlab examples, type demo. From the menu displayed, run
the demos that interest you, and follow the instructions on the screen.

• The help pages in Matlab are very good. If you have problems with
the syntax or the behavior of a certain function, check the help page
of this function first, before asking.

• Similarly you can also consult the reference pages in the Help browser
by typing doc topic.

5 Use of special keys

5.1 Stopping a command

• To interrupt the execution of a command, type <CONTROL>–C.
Example: type i=1:0.001:1000 and press <CONTROL>–C to inter-
rupt.

5

5.2 Using arrow-keys

• To get former commands back, use the up-arrow. This is very interest-
ing for editing long commands. Example: Type a=[1:0.1:10;5:0.1:14).
This will raise an error. Then press the up-arrow and change the ’)’
into ’]’.

• If it has been a while since you entered the command you want to
review, type in the first characters of that command. Pressing the up-
arrow will then only browse through the commands which start with
those characters.

6 Entering data

6.1 Constants

• Some important constants exist in Matlab.

– pi is 3.14159265. . . Example: check that cos(pi) =−1.

– i or j is the imaginary unit
√
−1. It is a good idea to never use i

or j as variables. However, Matlab allows this, so pay attention.

– Inf is infinity.

– NaN is Not-a-number. Example: check that Inf/Inf equals NaN.

6.2 Creating a vector

Vectors are one-dimensional matrices and are often used in Matlab. They
are created as follows.

• Type v=[1 2 3] or v=[1,2,3] to create a horizontal vector.

• Type v=[1;2;3] to create a vertical vector.

• Type v=[1:10] to create a vector with elements 1 to 10.

• Type v=[1:0.5:10] to create a vector with elements from 1 to 10 with
a step of 0.5.

• Typing a semicolon (;) after a command will suppress the print-out
of the result to the screen. See the difference between the following
statements by trying them out: v=[1:5] and v=[1:5];

6

6.3 Creating a matrix

Matrices are the basic features in matlab (in fact everything, even numbers
or vectors, is stored as a matrix. That’s where the name “Matlab” comes
from: MATrix LABoratory).

• Type m=[0 1 2;1 2 3] to create a matrix with two rows and three
columns.

• Type m=[0:2:20;1:0.1:1] to see that all rows (and columns) must
have the same number of elements. Type m=[0:2:20;1:0.1:2] to get
the correct matrix (don’t forget the arrow-keys ;-))

• To create a matrix with 10 rows and 2 columns which is filled with
zeros, type m=zeros(10,2).

• To create a matrix with 10 rows and 2 columns which is filled with
ones, type m=ones(10,2).

• To create a unity matrix of rank 5, type m=eye(5).

• Everything together: Create the following matrix:

m =




5 1 0 1 0
3 1 0 0 1
1 1 1 1 1
0 0 0 0 0




A short expression for this is
m=[[5 1 0;3 1 0] eye(2);ones(1,5);zeros(1,5)].

6.4 The size of a matrix

• Type size(m) to see the numbers of rows and columns of the matrix
m.

• Type length(v) to see the number of elements in the vector v.

7 Selecting data

• Type m to see the current value of the variable m.

• Type m(i,j) to select the element on the i-th row and the j-th column
of m.

• Type m(i,:) to select the i-th row of m.

7

• Type m(:,j) to select the j-th column of m.

• Type m([1 3],:) to get a new matrix containing the first and third
row of m.

• Type diag(m) to get a vector that holds the diagonal of m.

8 Matrix arithmetics and functions

8.1 Basic matrix arithmetics

Always keep in mind that most operators are matrix operators, e.g. multi-
plication performs a matrix multiplication.

• Addition: x=a+b

• Subtraction: x=a-b

• Multiplication: x=a*b

• Inversion: x=inv(a)

• Division: x=a\b solves ax = b. Notice that this statement is equivalent
to x=inv(a)*b. If a is not invertible or ill-conditioned, a Warning
message will appear. If a has more rows than columns, the solution
is given in least-squares sense (do you remember the formula for the
least-squares solution?).

• Transposition: x=a’. Always keep in mind that for complex numbers,
this will also apply a complex conjugate together with the transposi-
tion. In that way, this command is equivalent to taking the conjugate
transpose of a matrix. A Hermitian matrix is invariant under this
operator. For real numbers, a Hermitian matrix is a symmetric ma-
trix. To transpose a complex matrix, without applying the conjugate
operator, use x=a.’.

• Exponentiation: x=a^n

8.2 Elementwise functions

Adding a dot in front of the operator makes it element-wise:

• Multiplication: x=a.*b yields xij = aij ∗ bij.

• Division: x=a./b yields xij =
aij

bij

.

8

• Exponentiation: x=a.^n yields xij = an
ij .

• Absolute value (or modulus for complex numbers): x=abs(a) yields
xij = |aij|.

• Minimum:

x=min(a) yields a vector with the minimum of each column.

x=min(min(a)) yields x = min(aij).

• Maximum:

x=min(a) yields a vector with the maximum of each column.

x=max(max(a)) yields x = max(aij).

8.3 Matrix functions, based on svd

• Type [V,D]=eig(m) to get the eigenvalues of matrix m (stored in D)
and the corresponding eigenvectors (stored in V).

• Type [U,S,V]=svd(m) to get the singular values of matrix m (stored in
S) and the corresponding left and right singular vectors (respectively
stored in U and V).

• Type rank(m) to compute the rank of matrix m. Remember, however,
that this is not a very robust way to compute the rank. It is better to
check the singular values.

• Type det(m) to compute the determinant of matrix m.

8.4 Elementary math functions

• Type cos(m) to get the cosine of all elements of matrix m.

• In the same manner, sin, tan, exp, asin, acos, atan, log, sqrt,

... can be used. Type help elfun to see all possible elementary
functions.

9 Operations on the data stack

9.1 Viewing the current variables

• Type who to see the names of all defined variables.

• Type whos to see the names and sizes of all the variables.

9

9.2 Saving variables into a data file

• Type save data to save all the variables in the file data.mat.

• Type save data m v to save the variables m and v in the file data.mat.

9.3 Loading a data file

• Type load data to load the file data.mat.

9.4 Clearing variables

• Type clear m v to clear variables m and v.

• Type clear to clear all variables.

10 Graphics

10.1 Making a plot

• First make a vector x and a vector y with the same length. For exam-
ple, type x=[0:0.1:10]; and y=sin(x);

Remark the typical Matlab procedure here: one can not define “con-
tinuous functions” in matlab but one has to create a discrete x-vector
with a certain number of values. For each of these values one can
compute the value of the function.

• Type plot(x,y) to plot the y-values against the x-values.

• Type hold on after a plot if you want the next plot be plotted together
with the current plot.
Type hold off to turn this off. Example: plot sin(x) and sin(2x) on
the same plot by typing the following commands: plot(x,sin(x));

hold on ; plot(x,sin(2*x)).

• Type hold off; plot(x,sin(x),’y’); hold on; plot(x,sin(2*x),’r’);

to plot sin(x) in yellow and sin(2x) in red.

• Type title(’drawing’) to put the title drawing above your plot.

• Type xlabel(’position’) to indicate that each x-value corresponds
to a position.

• Type ylabel(’sine-wave’) to indicate that the y-values correspond
to a sine–wave.

10

• Type grid to make a grid on your plot.

• Type axis([xmin,xmax,ymin,ymax]) to set the x-axis limits to [xmin, xmax]
and the y-axis limits to [ymin, ymax].

• Type semilogx(x,y) to plot y against x. The only difference with
plot is that a logarithmic scale (base 10) is used for the X-axis.

• Type semilogy(x,y) for a plot with a logarithmic scale for the Y-axis.

• Type loglog(x,y) for a plot with logarithmic scales for both the X-
and Y-axes.

• clf clears the current figure.

• [x,y]=ginput gathers the x- and y-coordinates of data points that
are entered by pressing a mouse button in the current plot until the
return key is pressed.

• For more information and other plot commands, type help plot.

10.2 Zooming

• You can zoom in and out in the current figure. Type zoom on to enable
zooming. Now, go to the current figure and press the left mouse button
to zoom. The right mouse button is used to zoom out again.

• You can also zoom in on a rectangular part of the figure. To accomplish
this, move the mouse while pressing the left mouse button.

• To turn off the zoom-feature, just type zoom off.

10.3 Handling figures

• If you want a new figure, type figure.

• When more than one figure is present and you want to change one of
them, you have to tell Matlab which figure you want to work on. You
can do so by typing figure(n) with the n the number of the figure
you want to work on.

• If you want to delete a figure, type close(n) with n the number of
the figure you want to delete.

• To delete all figures, type close all.

11

Figure 1: Two plots in one window, using subplot

10.4 Using subplots

• You can put different drawings in one plot with the command subplot.

• Type subplot(2,1,1) to indicate that you want two plots vertically,
one plot horizontally and select the first of the two. Type plot(x,sin(x))
to plot sin(x) there.

• Type subplot(2,1,2) to indicate that you want to select the second
of the two. Type plot(x,sin(2*x)) to plot sin(2x) there. The result
should look like figure 1.

10.5 How to print a screen plot

• Draw a plot as described above.

• If you have more than one figure on your screen, type figure(n) to
select the n-th figure.

• Type print -dps plotname.ps to make a postscript file of your plot.

12

11 M-files

A very important aspect of Matlab is the ability to create M-files. These
are files, written by the user, enabling him to execute a number of commands
sequentially without the need of typing them in at the Matlab-prompt. It
is also possible to write functions. More details about this feature can be
found in paragraph 12.

11.1 Creating an M-file

• Copy the file example.m from Toledo to your directory for this session
and open it. Or create a new m-file example.m and copy the following
code:
x=[0:0.01:10];

y=sin(5*x);

plot(x,y);

title(’sine wave’);

• start the M-file by typing example at the Matlab prompt.

• At this point, if you want to change the scale of x, the frequency of the
sine-wave, the title, . . . , you only have to change it in the M-file, save
it and run it again. Example: Change x into x=[0:0.01:3]. Save and
run it.

• Remark the difference between a M-file and a Mat-file. The former
is a file which holds a “program” which can be executed in Matlab.
The latter contains “data” which can be loaded and saved.

11.2 Asking for input

• You can ask the user for input with the command input;

• Type n = input(’Give in an odd number’); in an m-file. This will
ask for an odd number and assign the result to n.

12 Functions

The biggest drawback in using M-files is the fact that you can’t parametrize
your code except by asking for input which stops the process until the user
responds. To alleviate this problem, you can use functions.

• Copy the file examplefunc.m from Toledo to your directory.

13

• Open the file.

• This is an example of a function file for Matlab. It contains the fol-
lowing code:
function [t,y] = examplefunc(freq);

freq sample=10*freq;

t=[0:1/freq sample:0.1];

y=sin(freq*2*pi*t);

plot(t,y);

title(’sine wave’);

• Call the function by typing examplefunc(100). The function will
then execute. First it computes the sampling frequency as 5 times
the Nyquist frequency to get a nice plotting result. Then t and y are
generated and the plot is made.

• The function also gives a return value. This can be used to call the
function in a slightly different way: Type [T Y] = examplefunc(40).
The t and y variables are then stored in the (global) variables T and
Y .

13 Control structures

Matlab knows about different control structures. You can compare them
to their counterparts in any programming language (like C, C++, Pascal,
Basic, . . .).

13.1 The “for” loop

• This control structure is ideal to execute a certain command or set of
commands a fixed number of times.

• If we want to make the following vector for instance

v =




1
1/2
1/4
1/8




we type
for i=0:3,

v(i+1) = (1/2)^i;

end

14

13.2 The “while” loop

• This control structure is ideal to execute a certain command or set of
commands until a condition is fulfilled.

• If we want to create the vector v of the previous example but keep
adding elements until they are smaller than 10−4 we type
a = 1;

i = 0; while(a > 1e-4),

a = (1/2)^i;

v(i+1) = a;

i = i+1;

end

13.3 The “if” statement

• There are times when you want your code to make a decision. For
example you want to accept only an odd number and reject an even
number. For this the if statement is used.

• The syntax is easy:
if(statement),

command to be executed if statement is non-nil;

else

command to be executed if statement is nil;

end

• For the above mentioned example the code would be:
n = input(’Give in an odd number: ’);

if (rem(n,2))

disp(’Thank you’);

else

disp(’This is not an odd number !!!’);

end

• use ==, ˜=, >=, <=, >, <, &&, || to denote the logic opera-
tors =, 6=,≥,≤, >,<, and, or.

13.4 Pre-allocation

If you use a matrix or vector variable, and do not know its content before-
hand, it is often a good idea to pre-allocate this matrix as an all-zero matrix

15

(using the command zeros). Often it is tempting to fill a matrix like in this
example:
received bits=[];

for k=1:number of segments

received bits=[received bits bitsegment(k,:)];

end

This is easy since you don’t have to think about what size received bits

will have after all bitsegments are added, and the code is simple. However,
this kind of programming significantly slows down the execution time of the
code, because Matlab must copy the current version of received bits to a
new version of received bits at another place in the memory. The follow-
ing code does the same and has faster execution time:
segmentlength=size(bitsegment,2);

received bits=zeros(1,number of segments*segmentlength);

for k=1:number of segments

received bits((k-1)*segmentlength+1:k*segmentlength)=bitsegment(k,:);

end

14 Useful commands

Here is a list of some useful, not yet mentioned commands that you might
need during the project. Use the help command to know how they work.
Re-read this list regularly to fresh up your memory. It can save you a lot of
implementation time!

• rem (rest after division, i.e. modulo operator)

• real, imag (real part and imaginary part of complex numbers)

• conj (takes conjugate of complex numbers)

• angle (return phase angles of complex numbers in radians)

• conv (convolution)

• toeplitz (create a toeplitz-matrix, handy to represent convolutions
as matrix multiplications)

• fft, ifft (FFT and inverse FFT)

• fftfilt (filter a signal with a given filter in an efficient way)

• rand,randn (create uniform random noise, create Gaussian random
noise). Note: this function always uses the same seed when Matlab

16

starts up. This means that the same noise string will be produced
when you restart Matlab. If you want a time dependent seed, use the
help command for more information.

• find (find all elements in a matrix that satisfy a certain logic expres-
sion, e.g. x > 0)

• round, ceil, floor (make integer value out of non-integer value)

• reshape (change the shape of a matrix or vector)

• spectrogram (create a spectrogram of a given input signal. A spec-
trogram shows information on the frequency content of the signal over
time. Carefully consider the parameters you use in this command!)

• break (go out of a loop immediately)

• norm (calculate any norm of a vector or matrix)

• image (display a matrix as an image, where the matrix values define
the color of each pixel)

• imagesc (ditto, but now the matrix elements are scaled first to use
the full color map. See also help colormap)

• colorbar (add a colorbar to the image to visualize the mapping be-
tween colors and numerical values)

• soundsc (plays an audio signal, and scales it to use full dynamic range)

• tic,toc (determining the execution time of Matlab-code inbetween
tic ... toc)

• (:) (this matrix argument transforms a matrix into a vector formed
by stacking all matrix columns)

• fliplr,flipud (flip vector or matrix in left/right or up/down direc-
tion)

• repmat (creates a large matrix by tiling copies of a given matrix)

• buffer (buffer a signal vector into a matrix of data frames)

17

Figure 2: Results of exercise 1

15 Exercises

15.1 Exercise 1: Sum of sines

• Make a time vector t which starts at 0, runs until 1 sec with a sampling
frequency of 10000 Hz.

• Create three sine-waves with frequencies 10, 500 and 510 Hz.

• Create y and z which respectively are the sum of the sine-waves of 10
and 500 Hz. and 500 and 510 Hz.

• Make a plot of y and of z (make sure you can read the time on the x-
axis, and not the vector index of the signals). Give both an appropriate
title and save them. Zoom in if necessary.

• Plot the function f(t) defined as:

f(t) = sin(500t)e−7t

Save the plot as f-plot.

• Save the variables t, y and z in a file called exc1.mat

18

15.2 Exercise 2: Discrete system

• A certain discrete system has an input-output function described by

y[n] = 0.5

(
y[n − 1] +

x[n]

y[n − 1]

)
, n > 0

• Find what the output y converges to for n → ∞ if y[0] = 1 and
x[n] = α. Do this by simulating y for different values of alpha and
plotting y. Of course it’s impossible to simulate the function for all
values of n up to ∞; just choose a maximum value of n and see if the
function has converged. If it hasn’t, increase your maximum value of
n. You can then read the value the function converges to from the
plot with the command ginput.

• Determine the settling-time, i.e. the sample-index after which the
output signal is always less than 2% from the equilibrium point. Make
sure this happens automatically (i.e. without manually checking on a
plot).

15.3 Exercise 3: Three sequences

• Write a Matlab program (called sequences.m) to generate the following
sequences.

1. The unit sample sequence δ[n]

2. The unit step sequence µ[n]

3. The ramp sequence nµ[n]

• The input parameter specified by the user is the desired length. Be
careful: half the samples should lie before 0 and the other half after 0.
Write the program only for odd lengths. (You can check if a number
if odd or even with the function rem. Read the help page for an
explanation on this function).

• Use this program to generate the first 101 samples of the three func-
tions.

• Plot these samples with the command stem. Type help stem to see
what this function does.

• Now plot the same data, but leave out all odd sample-times. Note that
this can be done easily with only one (plot)-command, so you don’t
need commands like rem and such.

19

Figure 3: Results of exercise 3

20

Figure 4: Results of exercise 4

15.4 Exercise 4: Square and sawtooth

• The square wave and the sawtooth are two periodic sequences.

• Write two Matlab programs to generate the two sequences displayed
and plot them using the function stem.

• The input parameters specified by the user are the desired length L
of the sequence, the peak value A and the period N . For the square
wave sequence there’s one extra parameter: the duty-cycle which is
the percent of the period for which the signal is positive.

• Use this program to generate the first 100 samples of the two sequences
with a peak value of 8, a period of 11 and a duty-cycle of 40%.

21

15.5 Exercise 5: Median filter

• The median filter is a non-linear filter that is often used in image-
processing to smooth images while at the same time preserving the
edges. For usage in image-processing one needs the 2D-version of the
filter. We will implement the 1D-version.

• The median filter has only one parameter: the length. We will only
worry about filters with odd lengths (i.e. length mod 2 is 1).

• To get the result of the filter we slide a window with the given length
over the vector we want to filter. We order the values of this window
in ascending order and take the middle one. The original value of
the element in the middle of the window is replaced by this “median”
value. Then we slide the window one place further and repeat the
process. The first and last (length − 1)/2 values are not changed.
Figure 5 will make things clear.

• For the sorting the function sort can be useful.

• Your task is to write a function “median”
function out = median(length,in). The result (stored in out) should
be the median filtered version of the vector “in” with a median filter of
length “length”. Obviously, you may not use the pre-defined command
median.

• Check the filter on the vector v as given in the file medianvector.mat
on Toledo. The original and filtered vector with a median filter of
length 5 look like figure 6.

22

3 5 4 845 2 7 3

7

3 57

..........

-4

5

53-17

35-17

-4

7

5 8 5 32 4 3

5

3 75

OUT 1 5

72IN -757 14 5 320-43 5-171187 3

Figure 5: the median filter

23

Figure 6: Results of exercise 5

24

15.6 Exercise 6: The musical scale (Dutch: ‘de toonladder’)

• Play the complete musical scale on your computer loudspeakers using
Matlab, or compose your own song. All tones are given below (starting
with ‘do’=C):

C 262 Hz
D 294 Hz
E 330 Hz
F 349 Hz
G 392 Hz
A 440 Hz
B 494 Hz
C 523 Hz

• Generate a colored image of the spectrogram of this signal. The ver-
tical axis should indicate the frequencies in Hertz, the horizontal axis
should indicate the time in seconds. Your colleagues should be able to
interpret the spectrogram and write down the ‘music’ you generated.

15.7 Exercise 7: Half-wave rectification

• Generate a white-noise signal that produces approximately the same
number of negative and positive values.

• Half-wave rectify this signal, without using a control structure (=for,
while, if,...). (If you don’t know what half-rectification is, google is
your friend...)

