
Acoustic modem project

Session 5: OFDM over the acoustic channel: channel
estimation and equalization

Paschalis Tsiaflakis, Hanne Deprez 1

November 2017

Goal: Using the OFDM modem over an acoustic channel. Estimating and
equalizing the channel response based on training symbols.

Requirements: Matlab/Simulink in Windows, a sound card, a loudspeaker
and a microphone.

Required files from DSP-CIS website: recplay.mdl (see session 1)
Required files from previous sessions: initparams.m, qam mod.m, qam demod.m,

ofdm mod.m, ofdm demod.m, ber.m
Outcome: 4 m-files (+1 optional) ofdm channelest.m, ofdm demod.m (up-

dated), initparams.m (updated), alignIO.m, ofdm channelest pilots.m (optional)
Deliverables: See session 5

1 Exercise 5-1: Using training frames for chan-
nel estimation and equalization

Following exercise 4-2 (point 6), it should be clear that an OFDM modem has to
include a compensation for the channel filtering operation. This compensation
is often referred to as channel equalization. In session 4, we have constructed
the equalizer based on an a-priori known channel response. However, in real-life
applications, this channel response is not known and needs to be estimated.
In session 2, we have estimated the channel impulse response (time-domain),
based on a least-squares (LS) procedure (remember the Toeplitz matrix?). For-
tunately, this can be done more efficiently inside an OFDM framework, based
on a frame-based frequency domain procedure, avoiding the computationally-
intensive time-domain LS estimation from session 2. Channel estimation in
OFDM uses so-called training frames, which consist of training (QAM) symbols
that are known to both the transmitter and receiver.

Exercise: create an m-file ofdm channelest.m in which the following steps
are implemented:

1. Let N denote the DFT-size that will be used by your modem (this vari-
able should be set in the beginning of the m-file, make sure you can easily
change it later). Generate a vector trainblock that contains N

2 − 1 ran-
dom QAM symbols (e.g., use qam mod.m on a random bit stream).

1For questions and remarks: hanne.deprez@esat.kuleuven.be

1



2. Using ofdm mod.m, generate an OFDM time-domain signal Tx of length
100N , in which all OFDM frames are identical and contain the QAM
symbols from trainblock.

3. Filter (=convolve) the signal Tx with the acoustic channel impulse re-
sponse (saved in vector h) that was measured in session 2 based on IR2.m.
Save this (simulated) received signal in the variable Rx.

4. Modify the function ofdm demod.m such that it estimates the channel
frequency response in the frequency domain, based on trainblock and
the received signal Rx (use a separate least-squares procedure for each
frequency point). Use this estimate to construct a channel equalizer and
apply it to the received data in Rx (see also exercise 4-2, point 6).

The function ofdm demod.m should return the following outputs: the de-
modulated QAM-symbol stream and the estimate of the channel frequency
response.

5. Generate a figure with 2 subplots containing 1) the acoustic impulse re-
sponse h (see step 3), and 2) its frequency response.

6. Generate a second figure with 2 subplots containing 1) the estimated chan-
nel impulse response (after transformation from the frequency domain to
the time domain), and 2) the estimated channel frequency response.

7. Use qam demod.m to generate the demodulated bitstream and compare
with the initial random bitstream using ber.m.

Only if the BER is equal to zero, and if the generated figures are
the same, you can proceed to the next exercise! (the frequency re-
sponse on both figures should be exactly the same, except for the two
frequency bins which are set to zero)

2 Exercise 5-2: OFDM over the acoustic chan-
nel

1. First, we need an automatic synchronization procedure that aligns the
audio input and output:

• Modify the function [simin,nbsecs,fs]=initparams(toplay,fs) such that
it adds a synchronization pulse (= the signal pulse) in front of the
signal toplay (after the 2 seconds of silence). Also add as many zeros
as the length of the IR after the pulse to avoid that its response mixes
up with the signal. The choice for the shape of the pulse is up to
you.

• Create a Matlab function [out aligned]=alignIO(out,pulse) that aligns
the output signal out with the signal pulse. This function calculates

2



the maximum of the cross-correlation function of the two signals in
order to determine the delay introduced in the output signal. This
information is used to synchronize the two signals.

• The output signal out aligned contains the vector out where the si-
lence period and the synchronization pulse are cut off. However,
make sure that you do not cut off anything from the actual data
samples, i.e., leave a safety margin of about 20 samples! Basically,
this means that the first data sample of toplay should (more or less)
correspond to sample 20 of the signal out.

• Explain why this alignment is important for the modem (see also
exercise 2-2).

• An alternative for estimating the delay is to detect the synchroniza-
tion pulse, based on a user-defined threshold. In this case the func-
tion becomes [out aligned]=alignIO(out,threshold). What could be
the disadvantage of this approach?

2. Modify your m-file ofdm channelest.m from exercise 5-1 as follows.

• Feed the signal Tx to the function initparams as the input toplay. Run
the simulink model recplay.m. Align the microphone output signal
by applying the function alignIO.m. The resulting signal vector is
stored in Rx.

• Besides the generation of Rx, everything remains the same as in the
previous exercise. Only the figure showing the estimated channel
responses is plotted (since the true channel responses are not known).

• Make a pragmatic choice for the DFT-size, the CP length, and the
QAM constellation.

3. Run the ofdm channelest.m, and check the channel impulse response and
frequency response. Does it look ok? Also, check the BER. Try to optimize
your settings for the DFT-size, the CP length, and the QAM constellation.

4. Which method do you prefer for channel estimation: the one used in
this exercise (frequency domain), or the time-domain estimation with the
Toeplitz matrix (in terms of memory usage, computational complexity,
and performance).

5. What happens if you put your hand in front of the microphone? How does
this affect the channel response? How does this affect the BER? Try to
answer first, then confirm experimentally.

6. How does the sampling frequency affect the performance of your modem?

3



3 Exercise 5-3 (Extra): Channel estimation based
on pilot tones

In general, the DFT-size used by OFDM is much larger than the length of
the channel impulse response (why?). However, this means that the frequency
response of the channel is oversampled, yielding a rather smooth frequency re-
sponse (why?). Therefore, it is not necessary to estimate the frequency response
in all the frequencies or tones. One can estimate the channel by only transmit-
ting training symbols over a selection of tones, and interpolate between them
to estimate the channel in the intermediate tones. The tones that are used for
training are called ‘pilot tones’. In the other tones, not used for training, one
can then transmit actual data symbols.

Exercise: create a new m-file ofdm channelest pilots.m that estimates the
channel frequency response in only half of the tones (in a uniform spacing, e.g.,
use the odd tones as pilot tones). The channel response in the intermediate
frequencies is then estimated based on interpolation. You do not have to put
actual data in the intermediate tones (this will be covered in the next session).

Hint: You may consider using linear or polynomial interpolation, but here
an optimal interpolation can be devised by exploiting the fact that the time-
domain channel impulse response is short (i.e., has a non-zero part with length
equal to (at most) the CP length, and hence a zero tail of N−CPlength samples).
Using the IDFT matrix, you can set up a linear system of equations (with the
channel response on the non-pilot tones as unknowns) that forces this tail to be
zero. Furthermore, if a uniform spacing of pilot tones is used, one can rely on
resampling theory to implement the same optimal interpolation with a simple
and efficient IFFT/FFT operation. Try and find out how this can be done.2.

2Think of a time-domain signal that needs to be upsampled. First, zeros are inserted
between subsequent samples, generating additional mirror images in the frequency domain.
Then, a low-pass filtering is used, i.e., a multiplication with a rectangular window in the
frequency domain, to remove these mirror images. This effectively results in an interpolation
in the time domain. Use duality between time domain and frequency domain to perform a
similar interpolation for the pilot-tone case, i.e, in the frequency domain.

4


