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Introduction: Least Squares Parameter Estimation

In Chapter-8, have introduced ‘Least Squares’ estimation as an alternative
(=based on observed data/signal samples) to optimal filter design
(=based on statistical information)...

filter input sequence : uy,ug,uz,... Wy

corresponding desired response sequence is : dy, do, d3

e d, u
€ _| 4
€ d, uy
error signal e d U
k
cost function J,.s(W) = 2612 = ||e||§ =lla—-uwl,
=1

— linear least squares problem : miny [|d — Uw||%

- [UTU]_I U'd

_wl.
> Wi _Nuu Na’u
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Introduction: Least Squares Parameter Estimation

‘Least Squares’ approach is also used in parameter estimation in a linear
regression model, where the problem statement is as follows...
Given...
k vectors of input variables (=regressors’)
k corresponding observations of a dependent variable d.d,.d;,...d,

u,u,,u,,..u,

and assume a P

linear regression/observation model
where w? is an unknown parameter vector (=‘regression coefficients’)
and e,is unknown additive noise

Then...

the aim is to estimate w°
Least Suares (LS) estimate is (see previous page for definitions of U and d)
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Introduction: Least Squares Parameter Estimation

-1

= [UTU] U'd

-1
W =NW-N

d
+ If the input variables u, are given/fixed (*) and the additive
noise e is a random vector with zero-mean
then the LS estimate is ‘unbiased’ i.e.
E{w, J}=E{U'U)'U"d} = E{U"UY'U"U.W’ +e)}=w’ + E{(U'U)"'U"e}
= WO
« If in addition the noise e has unit covariance matrix
then the (estimation) error covariance matrix is
E{(Wys—W").(W, s —W") }= E{LU"U)"'U e’ UU'U)"}=U'U)Y'U"E{ee" 3 UU U)"
- WUy

(*) Input variables can also be random variables, possibly correlated with the additive
noise, etc... Also regression coefficients can be random variables, etc...etc...
All this not considered here.
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Introduction: Least Squares Parameter Estimation

* The Mean Squared Error (MSE) of the estimation is

E{llw, ¢ —w"IP} = E{trace[(w, s —W").(W s —W") ]} = trace[(U"U)']

PS: This MSE is different from the one in Chapter-7, check formulas

Under the given assumptions, it is shown that amongst all
linear estimators, i.e. estimators of the form

(=linear function of d)

the LS estimator (with Z=UTU)"UTand z=0) mimimizes the MSE
i.e. it is the Linear Minimum MSE (MMSE) estimator

Under the given assumptions, if furthermore e is a Gaussian
distributed random vector, it is shown that the LS estimator
is also the (‘general’, i.e. not restricted to ‘linear’) MMSE estimator.

Optional reading: https://en.wikipedia.org/wiki/Minimum_mean_square_error




Introduction: Least Squares Parameter Estimation

. -If noise e is zero-mean with non-unit covariance matrix

where V'2is the lower triangular Cholesky factor (‘square root),
the Linear MMSE estimator & error covariance matrix are

E{(¥—w").(W-w")"} = 'V "'0)"
which corresponds to the LS estimator for the so-called
pre-whitened observation model

V—I/Zd — V—1/2U .WO + V—1/2e

" L. . d U €
where the additive noise is indeed white..

E{ee"} =V "’E{ee"}V " =1

Example: If V=02./ then w2 =(UTU)"U"d with error covariance matrix a2.(U"U)-!
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Introduction: Least Squares Parameter Estimation

. -If an initial estimate is available (e.g. from previous
observations) with error covariance matrix

E{(W’ —OWO)-(‘?V0 —wH'}=P=

e
where P'2is the lower triangular Cholesky factor (‘square root),
the Linear MMSE estimator & error covariance matrix are
w=r LevTvluy (pw +UTvd)

U;XTUEXT UEXTdEXT E{(W — WO).(W — w” )T} = (P_l i UTV_IU)_I

which corresponds to the LS estimator for the model

Example: P-'=0 corresponds to « variance of the initial estimate, i.e. back to p.7
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Introduction: Least Squares Parameter Estimation

A Kalman Filter also solves a parameter-estimation problem,
but now the parameter vector is dynamic instead of static,
i.e. changes over time

The time-evolution of the parameter vector is described by
the ‘state equation’ in a state-space model, and the linear
regression model of p.4 then corresponds to the ‘output
equation’ of the state-space model (details in next slides..)

* In the next slides, the general formulation
of the (Standard) Kalman Filter is given

* |np.16 it is seen how this relates to
Least Squares estimation

Kalman Filters are used everywhere! (aerospace, economics,
manufacturing, instrumentation, weather forecasting, navigation, ..%)

Rudolf Emil Kélman (1930 -2016 )
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Standard Kalman Filter

State space model

of a time-varying discrete-time system

state vector input signal vector process noise

A[K] x[k]+ B[k] k] + VK]

Clk1.x[k]+D[k].u[k]+w[k]

output signal measurement noise
(PS: can also have multiple outputs)

where v[k] and w[k] are mutually uncorrelated, zero mean, white noises

vIk]] Vikl 0 VIk] = VIKI VIKT®
{ wlk] ][ v[l]H W[Z]H ]} = 6"" 0 W[k] = Cholesky/square-root factorization
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Standard Kalman Filter

« Example: lIR filter ulk]

xlk+])
x[k+1]

xlk+1] |
0
0

M
k]

ikl

X
y[k]=[bl—a,b‘, b-ab, b-ah b-apb, ] +byalk

x,[k]

H(z)=C.(:I-A)' B+D=..= 2@

o

A(z) (no process/measurement noise here)
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Standard Kalman Filter

State estimation problem

state vector

X[k +1] Alk]x[k]+B[k].u[k]+ v[k]
Clk] x[k]+D[k]ulk]+wl[k]

] Y ][ - ]}= 5| V10 ]

wik] 0 Wk

Given... A[K], BIk], C[k], D[k], V[k], W[K], k=0,1,2,...
and input/output observations u[k],y[k], k=0,1,2,...

Then... estimate the internal states x[k], k=0,1,2,...
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Standard Kalman Filter

PS: will use shorthand notation xx, yk ,.. instead of x[k], y[k],.. from now on

A

Definition: KM = Linear MMSE-estimate of xk using all
available data up until time |

« FILTERING' = estimate

» 'PREDICTION’ = estimate
- "SMOOTHING’ = estimate
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Standard Kalman Filter

The ‘Standard Kalman Filter’ (or ‘Conventional Kalman Filter’)
operation @ time k (k=0,1,2,..) is as follows:

Given a prediction of the state vector @ time k
based on previous observations (up to time k-1)
with corresponding error covariance matrix

Step-1: Measurement Update
=Compute an improved (filtered) estimate
based on ‘output equation’ @ time Kk (=observation y[k])
Step-2: Time Update
=Compute a prediction of the next state vector
based on ‘state equation’ X P

k+llk > ™ k+llk
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Standard Kalman Filter

The ‘Standard Kalman Filter’ formulas are as follows (without proof)

Initalization: E{"‘T’} " .
E{(i0|—1 —XO)(i0|—1 -X)'} = Poj-1 = P()2|_1P07]_1
€
For k=0,1,2,...
Step-1: Measurement Update
‘Pk|k = Pt = Pip-1Cf (Wi + CiPagp1 C )_1CkPk|k—1‘

‘ik\k = K1 + PyC{ Wi - (6 = CiRtuge1 — D) ‘

€compare to standard RLS!
(consider W,=1)

Step-2: Time Update
‘Pk+l|k = APyrAf + Vk‘

€Try to derive this from state equation

Xe+ 1)k = Ax* K + Bre- u|
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Standard Kalman Filter

PS: ‘Standard RLS’ is a special case of ‘Standard KF’

Special case of the state space equations :

Wis1 = I-wp+0+0 & Internal state vector is FIR filter
dp = uf-w+0+m coefficients vector, which is
assumed to be time-invariant

with
E{n?}y=1.

Same substitutions in the conventional KF :

P wul A
P — Py — Delie1 %8 Pe—1
K|k Klk-1 l+u{Pk|k_luk

IV”Vk]k = W1 + P - (dic — 0 Wie-1) I

Pri1jk = Prk

Wit 1k = Wikl

‘void’
= standard RLS algorithm
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Standard Kalman Filter

PS: ‘Standard RLS’ is a special case of ‘Standard KF’

Standard RLS is not numerically stable (see Chapter-8),

hence (similarly) the Standard KF is not numerically stable
(i.e. finite precision implementation diverges from infinite precision implementation)

Will therefore again derive an alternative

Square-Root Algorithm

which can be shown to be numerically stable

(i.e. distance between finite precision implementation and infinite precision
implementation is bounded)
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Square-Root Kalman Filter

The state estimation/prediction @ time k corresponds to a parameter
estimation problem in a linear regression model (p.4), where the
parameter vector contains all previous state vectors...
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Square-Root Kalman Filter
If the covariances for eg, v; and w; differ from
the identity, i.e. €compare to p.7
E{e-eT} #£1

it is necessary to perform a pre-whitening :

PO-[%I ° i0|—1
—Eguo
Fo—Douo
—l}lul
Y1 _Dlul

. St oEx St &

—Bkuk
L Jx— Dy |

Similar derivation, but not considered here for clarity...

(i.e. stick to previous page)
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Square-Root Kalman Filter

state estimation problem now comes down to
computing the least squares solution to this overdeter-
mined set of linear equations, which may be done by ap-
plying the ORD method .

The least squares solution is obtained by first perform-
ing a QR-factorization and then a backsubstitution.

The end result is

oT
Xi+1lk
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Square-Root Kalman Filter

Triangular factor & right-ha

Recursive implementation : propagated from time k-1 t

is then developed as follows

Kok
X1k
X2k

o -Bu,

Xx|k

RKie+1lk Y= Dty

— update = triangularization + backsubstitution

..hence requires only lower-right/lower part ! (explain)

Kok
K1k
Kok

Kk
Xr+1[k
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Square-Root Kalman Filter
~“Propagated from

relevant sub-problem is time k-1 to time k

o [l

K
-1 A
Xi+1]k

—B,

X1k

_1 1
compare to p.8=>» 2 W
- Kepe | Ls Pji1Xi-1
1
0

Yie = Dyt

— update = triangularization + backsubstitution
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Square-Root Kalman Filter

Final algorithm is as follows:

Propagated from
(fork=0,1,...,) time k-1 to time k

Propagated from * *
time k to time k+1

_l _1
i K Py L

1 1 -
N 2 &
Pl || P 11k A -1 -Bu,
0 : G 0 y-Du

post-array pre-array

_l 1 ot e
R 1o <= (Pkfl|k)‘1- (Pkfukxkﬂlk) . €backsubstitution
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Square-Root Kalman Filter

Remark QRD- RLS algorithm is a special case
of square-root KF

1 1
Y ’Pkfl]k‘ Pkfukwk*rllk‘

0 0

0
post-array \g—array
. See pi16 and 19

With V, = O this leads to :

_1 _1 1 1
P2 ‘ ‘P 2 W P} Pz W,
k+1]k k+1)k W k+1k T klk—1 Kklic—1 Wklk-1
<of | L
0 : IJZ‘ di

post-array pre-array

=QRD- RLS
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Standard Kalman Filter (revisited)

Remark : Conventional Kalman filter
can be derived from square-root KF equations

Core problem is

1
1.
P, Klic-1%k|k-1

A

k

_1
Pyl O {

Xk | LS
-1 Xi+1lk
Gy 0 Vi — Dy,

-B,u,

n+1 equations in X : can be worked into measurement update eq.
n equations in &1 : can be worked into state update eq.

[details omitted]
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