DSP-CIS

Part-III: Optimal & Adaptive Filters

Chapter-10: Kalman Filters

Marc Moonen

Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@kuleuven.be www.esat.kuleuven.be/stadius/

Part-III: Optimal & Adaptive Filters

Chapter-7

Wieners Filters & the LMS Algorithm

- Introduction / General Set-Up
- Applications
- Optimal Filtering: Wiener Filters
- Adaptive Filtering: LMS Algorithm

Chapter-8

Recursive Least Squares Algorithms

- Least Squares Estimation
- Recursive Least Squares (RLS)
- Square Root Algorithms

Chapter-9

Fast Recursive Least Squares Algorithms

Chapter-10

Kalman Filters

- Introduction Least Squares Parameter Estimation
- · Standard Kalman Filter
- Square-Root Kalman Filter

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

In Chapter-8, have introduced 'Least Squares' estimation as an alternative (=based on observed data/signal samples) to optimal filter design (=based on statistical information)...

> filter input sequence : $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots \ \mathbf{u}_k$ corresponding desired response sequence is : $d_1, d_2, d_3, \ldots, d_k$

$$\begin{bmatrix} e_1 \\ e_2 \\ \vdots \\ e_k \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_k \end{bmatrix} - \begin{bmatrix} \mathbf{u}_1^T \\ \mathbf{u}_2^T \\ \vdots \\ \mathbf{u}_k^T \end{bmatrix} \cdot \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_L \end{bmatrix}$$
error signal \mathbf{e}

$$\mathbf{d}$$

$$V$$

cost function
$$J_{LS}(\mathbf{w}) = \sum_{i=1}^{k} e_i^2 = \|\mathbf{e}\|_2^2 = \|\mathbf{d} - U\mathbf{w}\|_2^2$$

 \rightarrow linear least squares problem: $\min_{\mathbf{w}} \|\mathbf{d} - U\mathbf{w}\|_2^2$

$$\mathbf{w}_{LS} = \aleph_{uu}^{-1} \cdot \aleph_{du} = \left[U^T U \right]^{-1} \cdot U^T \mathbf{d}$$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

Introduction: Least Squares Parameter Estimation

'Least Squares' approach is also used in parameter estimation in a linear regression model, where the problem statement is as follows...

Given...

k vectors of input variables (='regressors')

$$\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, ... \mathbf{u}_{k}$$

k corresponding observations of a dependent variable $d_1, d_2, d_3, \dots d_k$ and assume a

$$d_1, d_2, d_3, ...d_k$$

linear regression/observation model

$$d_I = \mathbf{u}_I^T \cdot \mathbf{w}^0 + e_I$$

where \mathbf{w}^0 is an unknown parameter vector (='regression coefficients') and e_i is unknown additive noise

Then...

the aim is to estimate **w**o

Least Squares (LS) estimate is (see previous page for definitions of U and d)

$$\mathbf{w}_{LS} = \aleph_{uu}^{-1} \cdot \aleph_{du} = \left[U^T U \right]^{-1} \cdot U^T \mathbf{d}$$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

$$\mathbf{w}_{LS} = \aleph_{uu}^{-1} \cdot \aleph_{du} = \left[U^T U \right]^{-1} \cdot U^T \mathbf{d}$$

If the input variables u_i are given/fixed (*) and the additive noise e is a random vector with zero-mean E{e} = 0 then the LS estimate is 'unbiased' i.e.

$$E\{\mathbf{w}_{LS}\} = E\{(U^T U)^{-1} U^T \mathbf{d}\} = E\{(U^T U)^{-1} U^T (U \cdot \mathbf{w}^0 + \mathbf{e})\} = \mathbf{w}^0 + E\{(U^T U)^{-1} U^T \mathbf{e}\}$$
$$= \mathbf{w}^0$$

• If in addition the noise **e** has unit covariance matrix $E\{e.e^T\} = I$ then the (estimation) error covariance matrix is

$$E\{(\mathbf{w}_{LS} - \mathbf{w}^{\circ}).(\mathbf{w}_{LS} - \mathbf{w}^{\circ})^{T}\} = E\{(U^{T}U)^{-1}U^{T}\mathbf{e}.\mathbf{e}^{T}U(U^{T}U)^{-1}\} = (U^{T}U)^{-1}U^{T}E\{\mathbf{e}.\mathbf{e}^{T}\}U(U^{T}U)^{-1}$$
$$= (U^{T}U)^{-1}$$

(*) Input variables can also be random variables, possibly correlated with the additive noise, etc... Also regression coefficients can be random variables, etc...etc... All this not considered here.

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

5/2

Introduction: Least Squares Parameter Estimation

• The Mean Squared Error (MSE) of the estimation is

$$E\{\|\mathbf{w}_{LS} - \mathbf{w}^{\scriptscriptstyle 0}\|^2\} = E\{\operatorname{trace}[(\mathbf{w}_{LS} - \mathbf{w}^{\scriptscriptstyle 0}).(\mathbf{w}_{LS} - \mathbf{w}^{\scriptscriptstyle 0})^T]\} = \operatorname{trace}[(U^T U)^{-1}]$$

PS: This MSE is different from the one in Chapter-7, check formulas

 Under the given assumptions, it is shown that amongst all linear estimators, i.e. estimators of the form

$$\hat{\mathbf{w}} = Z.\mathbf{d} + \mathbf{z}$$
 (=linear function of **d**)

- the **LS estimator** (with $Z = (U^T U)^{-1} U^T$ and z = 0) mimimizes the MSE i.e. it is the Linear Minimum MSE (MMSE) estimator
- Under the given assumptions, if furthermore **e** is a Gaussian distributed random vector, it is shown that the **LS estimator** is also the ('general', i.e. not restricted to 'linear') <u>MMSE estimator</u>.

Optional reading: https://en.wikipedia.org/wiki/Minimum_mean_square_error

• PS₁: If noise **e** is zero-mean with non-unit covariance matrix

$$E\{\mathbf{e}.\mathbf{e}^T\} = V = V^{1/2}.V^{T/2}$$

where $V^{1/2}$ is the lower triangular Cholesky factor ('square root'), the Linear MMSE estimator & error covariance matrix are

$$\hat{\mathbf{w}} = (U^T V^{-1} U)^{-1} U^T V^{-1} \mathbf{d}$$
 $E\{(\hat{\mathbf{w}} - \mathbf{w}^0).(\hat{\mathbf{w}} - \mathbf{w}^0)^T\} = (U^T V^{-1} U)^{-1}$

which corresponds to the <u>LS estimator</u> for the so-called <u>pre-whitened</u> observation model <u>V-1/2 J V-1/2 J V-</u>

where the additive noise is indeed white.. $\frac{V^{-1/2}\mathbf{d}}{\tilde{\mathbf{d}}} = \frac{V^{-1/2}U}{\tilde{\mathbf{w}}} \cdot \mathbf{w}^0 + \frac{V^{-1/2}\mathbf{e}}{\tilde{\mathbf{e}}}$

$$E\{\tilde{\mathbf{e}}.\tilde{\mathbf{e}}^T\} = V^{-1/2}E\{\mathbf{e}.\mathbf{e}^T\}V^{-T/2} = I$$

Example: If $V=\sigma^2$. I then $\mathbf{w}^{\Lambda} = (U^T U)^{-1} U^T \mathbf{d}$ with error covariance matrix $\sigma^2 \cdot (U^T U)^{-1}$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

7/2

Introduction: Least Squares Parameter Estimation

• <u>PS</u>₂: If an initial estimate $\hat{\mathbf{w}}^0$ is available (e.g. from previous observations) with error covariance matrix

$$E\{(\underbrace{\hat{\mathbf{w}}^0 - \mathbf{w}^0}_{\mathbf{e}^0}).(\hat{\mathbf{w}}^0 - \mathbf{w}^0)^T\} = P = P^{1/2}.P^{T/2}$$

where $P^{1/2}$ is the lower triangular Cholesky factor ('square root'), the Linear MMSE estimator & error covariance matrix are

$$\hat{\mathbf{w}} = (\underbrace{P^{-1} + U^{T} V^{-1} U}_{U_{\text{EXT}}^{T} U_{\text{EXT}}})^{-1} \cdot (\underbrace{P^{-1} \hat{\mathbf{w}}^{0} + U^{T} V^{-1} \mathbf{d}}_{\text{EXT}})$$

$$E\{(\hat{\mathbf{w}} - \mathbf{w}^{0}) \cdot (\hat{\mathbf{w}} - \mathbf{w}^{0})^{T}\} = (P^{-1} + U^{T} V^{-1} U)^{-1}$$

which corresponds to the LS estimator for the model

$$\begin{bmatrix}
\mathbf{d}_{\text{EXT}} & U_{\text{EXT}} \\
\hline
P^{-1/2}\hat{\mathbf{w}}^{0} \\
V^{-1/2}\mathbf{d}
\end{bmatrix} = \begin{bmatrix}
P^{-1/2}I \\
V^{-1/2}U
\end{bmatrix} \cdot \mathbf{w}^{0} + \begin{bmatrix}
P^{-1/2}\mathbf{e}^{0} \\
V^{-1/2}\mathbf{e}
\end{bmatrix}$$

Example: P-1=0 corresponds to ∞ variance of the initial estimate, i.e. back to p.7

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

A **Kalman Filter** also solves a parameter estimation problem, but now the parameter vector is **dynamic** instead of static, i.e. changes over time

The time-evolution of the parameter vector is described by the 'state equation' in a <u>state-space model</u>, and the linear regression model of p.4 then corresponds to the 'output equation' of the state-space model (details in next slides..)

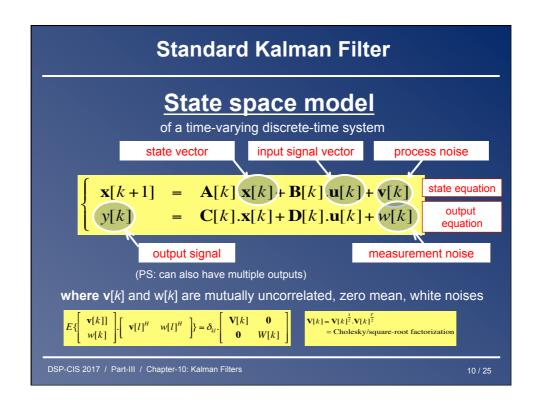
- In the next slides, the general formulation of the (Standard) Kalman Filter is given
- In p.16 it is seen how this relates to Least Squares estimation

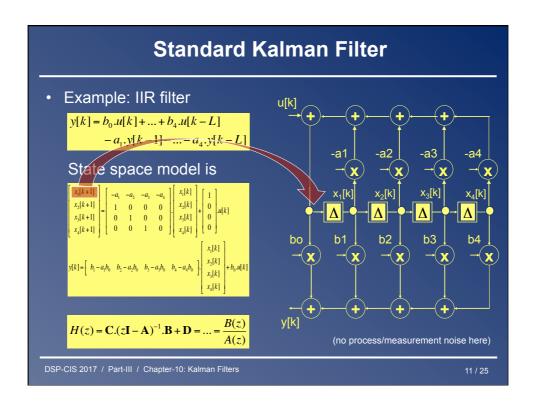
Kalman Filters are used everywhere! (aerospace, economics, manufacturing, instrumentation, weather forecasting, navigation, ...)

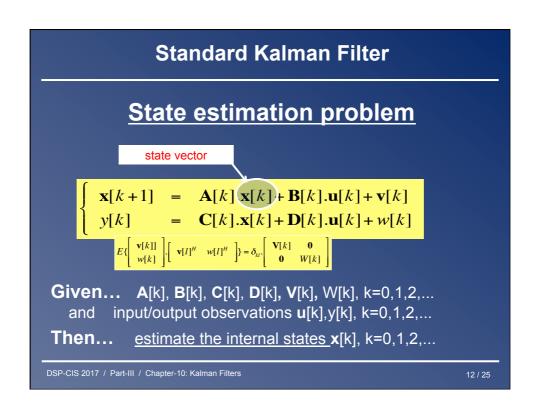
DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

9 / 25

Rudolf Emil Kálmán (1930-2016)







Standard Kalman Filter

PS: will use shorthand notation \boldsymbol{x}_k , y_k ,.. instead of $\boldsymbol{x}[k]$, y[k],.. from now on

Definition:

= Linear MMSE-estimate of **x**k using all available data up until time I

- ` $\underline{FILTERING}$ ' = estimate $\hat{\mathbf{X}}_{klk}$
- `PREDICTION' = estimate $\hat{\mathbf{x}}_{k|k-n}, n > 0$
- `SMOOTHING' = estimate $\hat{\mathbf{x}}_{klk+n}, n > 0$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

13 / 25

Standard Kalman Filter

The 'Standard Kalman Filter' (or 'Conventional Kalman Filter') operation @ time k (k=0,1,2,..) is as follows:

Given a prediction of the state vector @ time k based on previous observations (up to time k-1) with corresponding error covariance matrix

Step-1: Measurement Update

=Compute an improved (filtered) estimate $\hat{\mathbf{x}}_{klk}, \mathbf{P}_{klk}$ based on 'output equation' @ time k (=observation y[k])

Step-2: Time Update

=Compute a prediction of the next state vector based on 'state equation' $\hat{\mathbf{x}}_{k+\parallel k}, \mathbf{P}_{k+\parallel k}$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

Standard Kalman Filter

The 'Standard Kalman Filter' formulas are as follows (without proof)

Initalization:

$$E\{\mathbf{x}_0\} = \mathbf{\hat{x}}_{0|-1}$$

$$E\{\underbrace{(\mathbf{\hat{x}}_{0|-1} - \mathbf{x}_0)}_{\mathbf{e}_0}(\mathbf{\hat{x}}_{0|-1} - \mathbf{x}_0)^T\} = P_{0|-1}^{\frac{1}{2}} = P_{0|-1}^{\frac{7}{2}} = P_{0|-1}^{\frac{7}{2}}$$

For k=0,1,2,...

Step-1: Measurement Update

$$\begin{split} & \left[P_{k|k} = P_{k|k-1} - P_{k|k-1} C_k^T (W_k + C_k P_{k|k-1} C_k^T)^{-1} C_k P_{k|k-1} \right] \\ & \\ & \left[\mathbf{\hat{x}}_{k|k} = \mathbf{\hat{x}}_{k|k-1} + P_{k|k} C_k^T W_k^{-1} \cdot (y_k - C_k \mathbf{\hat{x}}_{k|k-1} - D_k u_k) \right] \end{split}$$

←compare to standard RLS! (consider W_k =1)

Step-2: Time Update

$$P_{k+1|k} = A_k P_{k|k} A_k^T + V_k$$

←Try to derive this from state equation

$$\mathbf{\hat{x}}_{k+1|k} = A_k \cdot \mathbf{\hat{x}}_{k|k} + B_k \cdot u_k$$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

15 / 25

Standard Kalman Filter

PS: 'Standard RLS' is a special case of 'Standard KF'

Special case of the state space equations:

$$\mathbf{w}_{k+1} = I \cdot \mathbf{w}_k + 0 + 0$$
$$d_k = \mathbf{u}_k^T \cdot \mathbf{w}_k + 0 + n_k$$

Internal state vector is FIR filter coefficients vector, which is assumed to be time-invariant

with

$$\mathcal{E}\{n_k^2\}=1.$$

Same substitutions in the conventional KF:

$$P_{k|k} = P_{k|k-1} - \frac{P_{k|k-1}\mathbf{u}_k\mathbf{u}_k^T P_{k|k-1}}{1 + \mathbf{u}_k^T P_{k|k-1}\mathbf{u}_k}$$

$$\mathbf{\hat{w}}_{k|k} = \mathbf{\hat{w}}_{k|k-1} + P_{k|k}\mathbf{u}_k \cdot (d_k - \mathbf{u}_k^T\mathbf{\hat{w}}_{k|k-1})$$

$$egin{array}{c} [P_{k+1|k}=P_{k|k}] \ [\hat{\mathbf{w}}_{k+1|k}=\hat{\mathbf{w}}_{k|k}]. \end{array}
ight\}$$
 'void

= standard RLS algorithm

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

Standard Kalman Filter

PS: 'Standard RLS' is a special case of 'Standard KF'

Standard RLS is not numerically stable (see Chapter-8), hence (similarly) the Standard KF is not numerically stable (i.e. finite precision implementation diverges from infinite precision implementation)

Will therefore again derive an alternative

Square-Root Algorithm

which can be shown to be numerically stable

(i.e. distance between finite precision implementation and infinite precision implementation is bounded)

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

17 / 25

Square-Root Kalman Filter

The state estimation/prediction @ time k corresponds to a parameter estimation problem in a <u>linear regression model</u> (p.4), where the parameter vector contains all previous state vectors...

$$\begin{bmatrix} \hat{\mathbf{x}}_{0|-1} \\ -B_0 u_0 \\ y_0 - D_0 u_0 \\ -B_1 u_1 \\ y_1 - D_1 u_1 \\ \vdots \\ -B_k u_k \\ y_k - D_k u_k \end{bmatrix} = \begin{bmatrix} \boxed{\begin{bmatrix} \boxed{I} & 0 & 0 & \dots & 0 \\ A_0 & -I & 0 & \dots & 0 \\ C_0 & 0 & 0 & \dots & 0 \\ 0 & A_1 & -I & \dots & 0 \\ 0 & C_1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \hline 0 & 0 & 0 & A_k & -I \\ 0 & 0 & 0 & C_k & 0 \end{bmatrix}} \cdot \begin{bmatrix} \mathbf{x}_0 \\ \mathbf{x}_1 \\ \mathbf{x}_2 \\ \vdots \\ \mathbf{x}_{k+1} \end{bmatrix} + \underbrace{\begin{bmatrix} \mathbf{e}_0 \\ \mathbf{v}_0 \\ \mathbf{w}_0 \\ \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_k \\ \mathbf{w}_k \end{bmatrix}}_{\mathbf{e}}.$$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

If the covariances for \mathbf{e}_0 , \mathbf{v}_i and w_i differ from the identity, i.e.

←compare to p.7

$$E\{\mathbf{e}\cdot\mathbf{e}^T\}\neq I$$

it is necessary to perform a pre-whitening:

$$\begin{bmatrix} P_{0|-1}^{-\frac{1}{2}} \cdot \hat{\mathbf{x}}_{0|-1} \\ -\tilde{B}_{0}u_{0} \\ \tilde{y}_{0} - \tilde{D}_{0}u_{0} \\ -\tilde{B}_{1}u_{1} \\ \tilde{y}_{1} - \tilde{D}_{1}u_{1} \\ \vdots \\ \tilde{B}_{k}u_{k} \\ \tilde{y}_{k} - \tilde{D}_{k}u_{k} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \boxed{P_{0|-1}^{-\frac{1}{2}}} & 0 & 0 & \dots & 0 \\ \tilde{A}_{0} & -V_{0}^{-\frac{1}{2}} & 0 & \dots & 0 \\ \tilde{A}_{0} & -V_{0}^{-\frac{1}{2}} & 0 & \dots & 0 \\ 0 & \tilde{A}_{1} & -V_{1}^{-\frac{1}{2}} & \dots & 0 \\ 0 & \tilde{C}_{1} & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \tilde{A}_{k} & -V_{k}^{-\frac{1}{2}} \\ 0 & 0 & 0 & \tilde{C}_{k} & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathbf{x}_{0} \\ \tilde{\mathbf{x}}_{1} \\ \mathbf{x}_{2} \\ \vdots \\ \tilde{\mathbf{x}}_{k+1} \end{bmatrix} + \underbrace{\begin{bmatrix} \tilde{e}_{0} \\ \tilde{v}_{0} \\ \tilde{w}_{0} \\ \tilde{v}_{1} \\ \vdots \\ \tilde{v}_{k} \\ \tilde{w}_{k} \end{bmatrix}}_{\tilde{\mathbf{e}}}$$

where $ilde{\mathbf{e}}_0 \ = \ P_{0|-1}^{-rac{1}{2}} \cdot \mathbf{e}_0$ $ilde{A}_i \ = \ V_i^{-rac{1}{2}} \cdot A_i$ $\vdots \ = \ dots$ so that $E\{ ilde{\mathbf{e}}\cdot ilde{\mathbf{e}}^T\} = I$.

Similar derivation, but not considered here for clarity...

(i.e. stick to previous page)

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters

19 / 25

Square-Root Kalman Filter

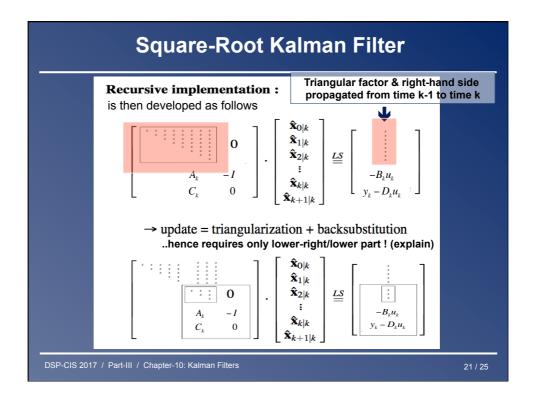
<u>Linear MMSE</u> state estimation problem now comes down to computing the <u>least squares</u> solution to this overdetermined set of linear equations, which may be done by applying the *QRD* method.

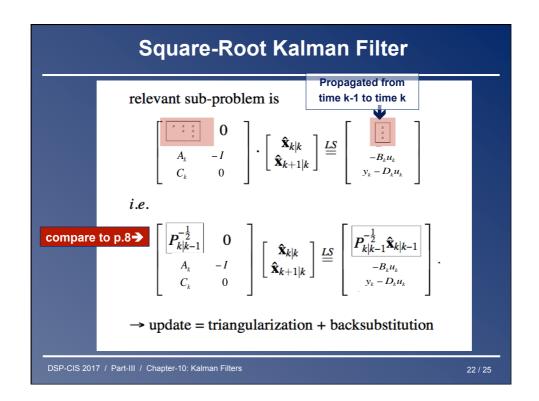
The least squares solution is obtained by first performing a *QR-factorization* and then a *backsubstitution*.

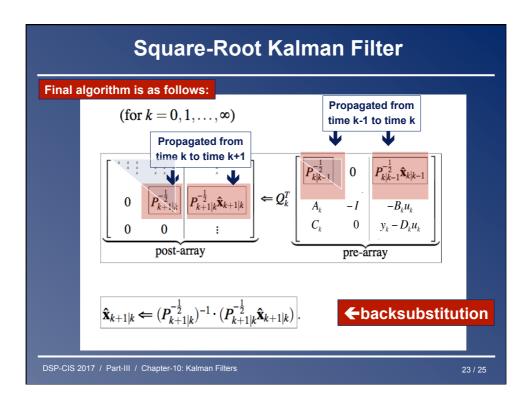
The end result is

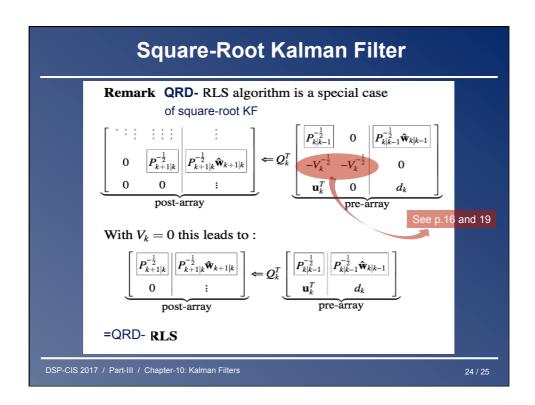
$$\left[\begin{array}{cccc} \mathbf{\hat{x}}_{0|k}^T & \mathbf{\hat{x}}_{1|k}^T & \mathbf{\hat{x}}_{2|k}^T & \dots & \mathbf{\hat{x}}_{k|k}^T \\ \hline \mathbf{\hat{x}}_{\text{explain subscript}} & \mathbf{\hat{x}}_{k+1|k}^T \end{array} \right]^T$$

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters









Standard Kalman Filter (revisited)

Remark : Conventional Kalman filter

can be derived from square-root KF equations

Core problem is

$$\begin{bmatrix} \boxed{P_{k|k-1}^{-\frac{1}{2}}} & 0 \\ A_k & -I \\ C_k & 0 \end{bmatrix} \begin{bmatrix} \mathbf{\hat{x}}_{k|k} \\ \mathbf{\hat{x}}_{k+1|k} \end{bmatrix} \stackrel{LS}{=} \begin{bmatrix} \boxed{P_{k|k-1}^{-\frac{1}{2}} \mathbf{\hat{x}}_{k|k-1}} \\ -B_k u_k \\ y_k - D_k u_k \end{bmatrix}.$$

n+l equations in $\mathbf{\hat{x}}_{k|k}$: can be worked into measurement update eq. n equations in $\mathbf{\hat{x}}_{k+1|k}$: can be worked into state update eq.

[details omitted]

DSP-CIS 2017 / Part-III / Chapter-10: Kalman Filters