Even Faster Hashing on the Pentium

Antoon Bosselaers

Katholieke Universiteit Leuven, Dept. Electrical Engineering-ESAT
Kardinaal Mercierlaan 94, B-3001 Heverlee, Belgium

antoon.bosselaers@esat.kuleuven.ac.be

13 May 1997, updated 13 November 1997

Abstract. In this short note we present an improvement of about 15% over our performance figures
for the MD4-family of hash functions as presented at Crypto’96. The improvement is obtained by
substituting n-cycle instructions by n 1-cycle instructions, and reducing the number of instructions
by means of the super-add instruction lea, thereby carefully avoiding the dreaded AGI.

In [BGV96] we presented optimized implementations of MD4, MD5, SHA-1, RIPEMD, RIPEMD-128
and RIPEMD-160 on Intel’s Pentium processor. The goal of this short note is to present an improvement
of about 15% over these figures. We refer to [BGV96] for an explanation of the terminology used, and to
[BGVI7] for a detailed critical path analysis of these algorithms.

In terms of processor pipeline stages the critical path of these new implementations is slightly longer
(on the average about 16 stages). However, this lengthening allows us to substitute the single remaining
2-cycle instruction in each step by 2 single cycle instructions. This in itself doesn’t reduce the total number
of clock cycles (and moreover requires an additional auxiliary register), but if we can move one of these
instructions partially or entirely out of the critical path by pairing it with another single cycle instruction,
then the overall effect will be a reduction of the total number of clock cycles. In view of the already high
percentage of simple paired instructions of the old implementations [BGV96, Table 4], this seems to be
an impossible task. However, here the super-add instruction lea comes to our rescue, by allowing us to
combine 2 single cycle add instructions into a single instruction taking only 1 cycle, provided the 1-cycle
address generation interlock (AGI) penalty can be avoided. Miraculously, this turns out to be the case, as
illustrated in Table 2 for a round 1 step of MD5, updating [BGV96, Table 3].

Table 3 is the updated version of [BGV96, Table 4]. All implementations now only use 1-cycle instruc-
tions, except for SHA-1 that uses the bswap instruction taking an additional cycle to decode due to the
OF,-prefix. A value for the cycles per instruction (CPI) of close to 0.5 is therefore an indication of the
high percentage of simple paired instructions in the code. Table 1 gives a better idea of the resulting
improvement.

Algorithm Size | Speed (Mbit/s) Factor
(bytes)|[BGVI6] this note|this note-[BGV96]
MD4 1190 166.8 190.6 1.14
MD5 1713 113.7 136.2 1.20
SHA-1 4323 48.7 54.9 1.13
RIPEMD 2291 82.7 95.7 1.16
RIPEMD-128|| 2929 64.0 77.6 1.21
RIPEMD-160|| 4808 39.9 45.3 1.14

Table 1. Code size and hashing speeds of the different compression functions on a 90 MHz Pentium for our Assembly
implementations of both [BGV96] and this note. The code size only refers to the improved implementations. Code
and data are assumed to reside in the on-chip caches. The figures are independent of the buffer size as long as it,
together with the local data, fits in the 8-Kbyte on-chip cache.

A=B+(A+(BAC)V(BAD)) +X; + K)<*

Instructions ‘Cycles‘ llnstructions ‘Cycles‘ lInstructions ‘Cycles‘
add ebx,ecx 1 add ebx,ecx 1 add ebx,ecx 1
mov edi,ecx paired ||xor edi,edx paired ||xor edi,edx paired
xor edi,edx 1 add eax,X[esi] 2 lea eax, [eax+ebp+K]|1l
and edi,ebx 1 and edi,ebx paired ||and edi,ebx paired
xor edi,edx 1 add eax,K 1 mov ebp, [esi+4] 1
add eax,edi 1 xor edi,edx paired ||xor edi,edx paired
add eax,X[esi] 2 add eax,edi 1 add eax,edi 1
add eax,K 1 mov edi,ebx paired ||mov edi,ebx paired
rol eax,s 1 rol eax,s 1 rol eax,s 1
add eax,ebx 1 add eax,ebx 1 add eax,ebx 1
mov edi,ebx paired ||xor edi,ecx paired ||xor edi,ecx paired
Cycles per instr. 1.00||Cycles per instr. 0.67||Cycles per instr. 0.56
V pipe use 11%||V pipe use 44%||V pipe use 44%
Paired simple instr.| 25%||Paired simple instr.| 100%||Paired simple instr. 100%

Table 2. Implementation of a round 1 step of MD5 on a Pentium processor. The chaining variable A, B, C, D is
stored in registers eax through edx. The optimized expression ((C' @ D) A B) @ D for the multiplexer is used. The
left column shows the straightforward implementation. In the middle column the instructions are rearranged in
such a way that all pairable instructions are paired. In the right column the 2-cycle instruction add eax,X[esil
is substituted by the 2 1-cycle instructions mov ebp,X[esi] and add eax,ebp. Subsequently, the latter instruction
is combined with add eax,K by means of the super-add instruction lea into a single 1l-cycle instruction: lea
eax, [eax+ebp+K]. Memory read access is as indicated if the data resides in the on-chip cache.

Algorithm MD4 MD5 SHA-1 RwmD RMD-128 RMD-160
Instructions 417 577 1469 832 1024 1639
% instr. in V pipe 42.21 4159 44.11 42.31 42.19 38.19
% Paired simple instr.|| 95.39 93.57 99.46 95.65 96.54 94.92
% Memory ref.’s 13.88 12.82 25.80 13.94 14.45 13.18
Cycles 241 337 837 480 592 1013
Cycles per instr. 0.58 0.58 0.57 0.58 0.58 0.62
Speed-up factor 1.73 1.71 1.76 1.73 1.73 1.62

Table 3. Performance figures on a Pentium for the improved implementations of the compression function of the
6 members of the MD4 hash function family. Both code and data are assumed to reside in the on-chip caches.
All figures are independent of the processor’s clock speed. The speed-up factor is with respect to a (hypothetical)
execution of the same code on a non-parallel architecture under otherwise unchanged conditions.

References

[BGVY6] A. Bosselaers, R. Govaerts, J. Vandewalle, “Fast hashing on the Pentium,” Advances in Cryptology,
Proceedings Crypto’96, LNCS 1109, N. Koblitz, Ed., Springer-Verlag, 1996, pp. 298-312.

[BGV9I7] A. Bosselaers, R. Govaerts, J. Vandewalle, “SHA: a design for parallel architectures?,” Advances in
Cryptology, Proceedings Eurocrypt’97, LNCS 1233, W. Fumy, Ed., Springer-Verlag, 1997, pp. 348-362.

[RMD160] http://www.esat.kuleuven.ac.be/ bosselae/ripemd160.html contains more information on the
MD4 hash function family, in particular on RIPEMD-160.

