Side channel attacks on cryptographic devices as a classification problem
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Abstract

In this contribution we examine three data reduction techniques
in the context of Template Attacks. The Template Attack is a
powerful two-step side channel attack which models an almost
omnipotent adversary in the profiling step, but restricts him to a
single observation in the classification step. The profiling step
requires data reduction due to computational complexity and
vast amounts of data. Here we examine the inter class variance,
the Spearman correlation coefficient, and principal component
analysis. The classification step requires a distinguisher, which
we implemented by linear discriminant analysis. Our results
lead to the conclusion that PCA in combination with LDA gives
the highest classification accuracies on unseen data from the
tried linear classifier methods.

1. Introduction

Secure cryptographic algorithms are what is noted as black-box
secure, i.e. an adversary cannot gather information from observ-
ing the inputs and/or outputs of the algorithm. However, in this
vision an algorithm is a purely abstract mathematical object.

To satisfy nowadays great demand for instant secure elec-
tronic communication, secure embedded devices such as mobile
phones and PDAs, and secure financial and identity tokens, e.g.
banking cards, SIM cards, identity cards, cryptographic algo-
rithms are implemented in electronic devices. In the last decade
a whole new class of attacks, not against cryptographic algo-
rithms but against their physical implementations, has received
much attention: side channel attacks.

A side channel is formed by the physical realization of a
cryptographic algorithm. It exists due to the fact that the elec-
tronic device has a certain influence on physical observables
in its vicinity. For example: an electronic device emits elec-
tromagnetic radiation while processing and dissipates a certain
amount of power. Since these physical observables depend on
the data words processed by the device which in turn depend on
secret information, e.g. cryptographic keys, a side channel leaks
sensitive information. Side channel attacks aim at exploiting
this information leakage to reveal the secret.

The Template Attack [1] is a so called two-step side channel
attack. During the first step, an adversary has full access to and
control over a training device which he uses to build templates.
More precisely he builds a template, i.e. a characterization of
the typical behavior of the side channel, for a certain set of in-
structions and/or data words. In the second step, the adversary
has access to only a single observation of the side channel and

uses the prior built templates to deduce, which instruction re-
spectively data word has been processed by the target device.

The remainder of the paper is organized as follows. In
Section 2 we introduce the two steps of our template attack:
the classification method and the dimensionality reduction tech-
niques. Section 3 describes the experiments and the classifica-
tion results. In Section 4 we conclude the paper.

2. Template Attack

In this section we explain how to use Linear Discriminant
Analysis (LDA) in the context of template attacks. It is assumed
that the secret key information leakage is mainly hidden in the
local variability of the mean time series. It is therefore appro-
priate to work only in a subspace of the original input space.
Therefore, we examined three different dimensionality reduc-
tion techniques in combination with LDA.

In Section 2.1 we explain Linear Discriminant Analysis.
The reduction techniques are discussed in Section 2.2.

2.1. Linear Discriminant Analysis

After introducing some notations, we recall the principles of
linear discriminant analysis [3]. Suppose we have a multi-
class problem with C classes (C' > 2) with a training set
{(zs,y:)}L, € R x {1,2,...,C} with N samples, where
input samples x; are i.i.d. from an unknown probability dis-
tribution over the random vectors (X,Y). Suppose f.(z) is
the class-conditional density of X in class Y = ¢, denoted as
Pr(Y = ¢|]X = z), and let 7. be the prior probability of class
¢, with Ecczl m. = 1. A simple application of Bayes theorem
gives us
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In LDA we model each class density as a multivariate gaussian

Pr(Y=¢cX=2)= (1)
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The covariance matrix of the different classes is assumed to be
equal in LDA, 3. = ¥, Vec. In comparing two classes ¢ and , it



is sufficient to look at the log-ratio,
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It is seen that this equation is linear in z. The equal covariance
matrices cause the normalization factors to cancel, as well as the
quadratic part in the exponents. This log-odds function implies
that the decision boundary between any two classes ¢ and [ is
linear. From (3) we obtain the linear discriminant functions
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forc=1,...,C.
Using these functions we can define the classification rule
arg max 6. (x). Q)]
cel,..., C

In practice the parameters of the Gaussian distributions are
not known and have to be estimated using the training data. The
empirical mean, covariance and prior are defined as follows
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where N, is the number of observations of class ¢ and D =
{(zs,y:)}1L;, D =D1UD2U...UDc, D; ND;j = B, Vi # j
and y; = ¢,x; € De.

2.2. Dimensionality reduction

To retain sufficient side channel information from the record-
ing device, which usually has high clock rates, the number of
samples d per time series is large. This leads to excessive com-
putational loads and large memory requirements. However, as
previously said, the expected number of relevant time samples
is limited. We have tried three different dimensionality reduc-
tion methods. The first is to select time samples showing the
largest difference between the mean time series vectors, the sec-
ond uses Spearman rank correlation and the third does a dimen-
sionality reduction via principal component analysis.

2.2.1. Mean class variances

A first simple rule proposed by [1] is to select time samples
which show the largest difference between the class mean time
series vectors.

2.2.2. Spearman correlation

The Spearman rank correlation test investigates the correlation
on the basis of the ordinal rank score of two independent vari-
ables [5]. The goal is to verify how significantly dependent the
scores of the two variables are. This is expressed by Spearman’s
rank correlation coefficient
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where t; is the difference between each rank of corresponding
values of x and y.

2.2.3. Principal Component Analysis

A well-known and frequently used technique for dimensionality
reduction is linear Principal Components Analysis (PCA) [4].
Suppose one wants to map vectors € R? into lower dimen-
sional vectors z € R™ with m < m. One proceeds then by
estimating the covariance matrix 3 of all training data and com-
putes the eigenvalue decomposition

By selecting the m largest eigenvalues and the corresponding
eigenvectors, one obtains the transformed variables (score vari-
ables)

zi = ulT(x — ), )
for ¢ = 1,...,m. One has to note, however, that these trans-
formed variables are no longer real physical variables. The er-
ror Zf:m 11 Ai resulting from the dimensionality reduction is
determined by the values of the neglected components.

3. Experiments

Our experimental platform is an 8-bit ATmegal63 micro con-
troller which performs AES-128 (also known as Rijndael) [2]
encryption in software. Our side channel measurements rep-
resent the voltage drop over a 50f2 resistor inserted in the
chip’s ground line. We sample the power dissipation during the
first round of AES-128 encryption at a sampling frequency of
200MS/s.

For the profiling step, we stored an AES key &, in the de-
vice and obtained a set of 20.000 measurements from the en-
cryption of uniformly chosen random plaintexts. For the profil-
ing step, we stored a different key k> in the device and obtained
a set of 500 measurements from the encryption of uniformly
chosen random plaintexts. As intermediate result, our attacks
focus on the Sbox output for the first byte of the AES state in
the first round, denoted by the random variable X. Accordingly,
the voltage drop over the resistor at one specific sampling point
is denoted by Y.

Table 1 shows the classification accuracies when using the
three different dimensionality reduction techniques as explained
before in cooperation with the LDA classifier. For each of these
techniques we have to empirically determine the number of se-
lected dimensions () (time instants or principal components).
In order to tune this m we divided our measurements set in a
training set, which consists of 15,000 data points, and validation
set, including 5,000 data points, and select the m which gives
the highest classification accuracy on the validation set. For the
mean class variance dimensionality reduction (Section 2.2.1)
we retained the 300 time instants with highest variance within
the class means (see Fig. 1). Using Spearman’s method (Sec-
tion 2.2.2) we selected the 1000 time instants with the highest
correlation coefficients (see Fig. 2). In Fig. 3 the classification
accuracies in function of the number of selected principal com-
ponents (Section 2.2.3) are shown. The classification accuracies
in the figure are those on the validation set. From the figure we
see that a dimensionality reduction from 9,000 to 400 seems to
produce good results.

4. Conclusions

In this paper we presented LDA in cooperation with three
different dimensionality reduction techniques for the task of
template attacks. In our experiments PCA in combination



20

Class mean vector variance

10
\

[ R U Nl Doy M S

[u] {000 2000 3000 4000 S000 SJDD
Time instants

i

PR 1 Y WP v "
7000 EO00 9000

Figure 1: The variance between the class means of each separate
time instant.
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Figure 2: The Spearman rank correlation coefficients of the in-
put vectors and the class labels for each separate time instant.
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Figure 3: Classification accuracy of LDA on test set of 5,000
time series not included in the training process, which consists
of 15,000 input vectors, in function of the number principal
components.

acc (%) | 10-best (%)
PCA 28.4 74.4
MCVAR 28 73
SPEARMAN 5.8 34.6

Table 1: LDA classification accuracies on the test set of 500 un-
seen measurements with three different dimensionality reduc-
tion techniques. The acronym PCA stands for Principal Com-
ponent Analysis (Section 2.2.3), MCVAR stands for Mean class
variances (Section 2.2.1) and SPEARMAN for Spearman’s rank
correlation (Section 2.2.2). The column ace gives the percent-
age of correctly classified measurements. The percentages in
the 10-best column are equal to the proportion of measurements
for which the correct class was one of the 10 most probable
classes.

with LDA gives the highest classification accuracies on unseen
data. In the future we will examine the use of Support Vector
Machines on side-channel data for template attacks because
in many different application areas this technique is known to
produce good classification results.
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