Combined Attack on ECC using Points of Low Order

Benedikt Gierlichs
joint work with Junfeng Fan and Frederik Vercauteren

COSIC, Katholieke Universiteit Leuven, Belgium
• ECC: Elliptic curve over finite field
 – A set of points $P(x,y)$ and \mathcal{O} at infinity
• \mathcal{O} required to form an abelian group
• But in crypto you should never see \mathcal{O}
• \mathcal{O} is not easy to deal with in implementation
• But it should never occur anyway

So how does /would your implementation deal with \mathcal{O}?
Outline

• Context: embedded security

• Background: elliptic curves and their use in cryptography

• Our attack: principle, toy examples, requirements

• Popular countermeasures for ECC implementations and our attack

• Conclusion
Context
Embedded cryptography

• 98% of processor market are embedded processors
 – In 2008: over 10 billion embedded devices
• Over 100 embedded processors in a single modern luxury car
• More and more applications with security context
Classical security model (simplified)

- Encryption and cryptographic operations in *black* boxes
- Attack on channel *between* communicating parties
- Protection by strong mathematic algorithms and protocols
Embedded security

- Can cryptographic functions alone assure security?

- Cryptographic functions put a barrier between what must be protected and an adversary
The system is as secure as its weakest link
Embedded security

- Can cryptographic functions alone assure security?
- Not if it is easy to bypass them
Embedded security

- Devices are not mathematical functions

- Subject to physics
 - Physical properties leak information about the secret key
 - Devices react to physical stimulation

- Device in possession of user
 - User can be malicious (or device stolen)

- Device under physical control of adversary
 - No time constraints
New security model (simplified)

- Attack channel \textit{and} endpoints
- Encryption and cryptographic operations in \textit{gray} boxes
- Need \textit{both}:
 - Protection by strong mathematic algorithms and protocols
 - Protection by secure implementation
Why research on attacks?

- We have no way to prove that implementation is secure
- Instead, test if implementation resists all known attacks
 - In research and in standardized real-world evaluations
 - Problem similar to symmetric cryptography
- Problem: one can not know all attacks

- Attacks lead to new countermeasures and vice versa
Background
Elliptic curves
Elliptic curves
Elliptic curves over finite fields

The elliptic curve $y^2 = x^3 + x + 3 \mod 23$
ECC versus RSA

• ECC has several advantages on embedded platforms
• For the same security level
 – Shorter keys
 – Smaller operands

Example:

80-bit security
 • RSA with 1248-bit keys
 • ECC with 160-bit keys

128-bit security
 • RSA with 3248-bit keys
 • ECC with 256-bit keys
Elliptic curves over finite fields

- E over $F_p : y^2 = x^3 + ax + b \quad a, b \in F_p \quad 4a^3 + 27b^2 \neq 0$
- $E(K) := \{(x, y) \mid y^2 = x^3 + ax + b\} \cup \{O\}$
- $E(K)$ is abelian group
- $\#E(K) \simeq \#K$ with error $\leq 2\sqrt{\#K}$

- Use in crypto: scalar multiplication $k \cdot P$
 - EC discrete logarithm problem: given P and $k \cdot P$, find k
 - Hard because order of P huge on strong curves
 - Implemented as sequence of 'small' operations

$P \rightarrow k \cdot P$ scalar multiplication
Scalar multiplication on elliptic curves

- Given integer k and point P, compute $Q = k \cdot P$
- Consider k in its binary representation, e.g. $k = 10010...110_2$

Algorithm 1: Double and Add Left-to-Right

Input: P, $k = (k_{n-1}, k_{n-2}, \ldots, k_0)_2$

Output: $Q = k \cdot P$

$R \leftarrow P$;

for $i \leftarrow n - 2$ down to 0 do

$R \leftarrow 2 \cdot R$;

if $(k_i = 1)$ then $R \leftarrow R + P$;

end

return R
Group operations: point addition
Group operations: point doubling
Group law and implementation

• Addition: \(P + Q = (x_3, y_3) \) with
\[
x_3 = \left(\frac{y_2 - y_1}{x_2 - x_1} \right)^2 - x_1 - x_2
\]
if \(P \neq \pm Q \) else \(\mathcal{O} \) appears
\[
y_3 = \left(\frac{y_2 - y_1}{x_2 - x_1} \right)(x_1 - x_3) - y_1
\]

• Doubling: \(2P = (x_3, y_3) \) with
\[
x_3 = \left(\frac{3x_1^2 + a}{2y_1} \right) - x_1 - x_2
\]
if \(\text{ord}(P) > 2 \) else \(\mathcal{O} \) appears
\[
y_3 = \left(\frac{3x_1^2 + a}{2y_1} \right)(x_1 - x_3) - y_1
\]

• But these cases should never occur anyway
• Note that \(b \) is not used in the formulae
Group law and implementation (2)

• Implementations:
 – Coordinate system: affine, projective, Jacobian, etc.

• **Full domain correct:**
 – Implementation computes \(P+Q \) and \(2 \cdot P \) correctly on the whole domain
 – For Weierstrass curves this typically requires IF statements

• **Partial domain correct**: not full domain correct
 – For some inputs, implementation
 • Crashes, e.g. division by zero for affine coordinates
 • No crash but gets stuck at fixed / invalid point for Jacobian and projective coord.
Group law and implementation (3)

Equation:

\[E(\mathbb{F}_p): y^2 = x^3 + ax + b \]

<table>
<thead>
<tr>
<th>Coordinate System</th>
<th>Operation</th>
<th>Using a</th>
<th>Using b</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projective</td>
<td>PA((P_1, P_2))</td>
<td>-</td>
<td>-</td>
<td>(P_1 = P_2)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = -P_2)</td>
<td>(0,*,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (0,*,0))</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>PD((P_1))</td>
<td>+</td>
<td>-</td>
<td>Order((P_1) = 2)</td>
<td>(0,*,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (0,*,0))</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td>Jacobian</td>
<td>PA((P_1, P_2))</td>
<td>-</td>
<td>-</td>
<td>(P_1 = P_2)</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = -P_2)</td>
<td>(,,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (,,0))</td>
<td>(,,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (0,0,0))</td>
<td>(0,0,0)</td>
</tr>
<tr>
<td></td>
<td>PD((P_1))</td>
<td>+</td>
<td>-</td>
<td>Order((P_1) = 2)</td>
<td>(,,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (,,0))</td>
<td>(,,0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(P_1 = (0,0,0))</td>
<td>(0,0,0)</td>
</tr>
</tbody>
</table>

Borderline cases for projective and Jacobian coordinates
Our attack
The attack

- Setting: target computes $k \cdot P$ for any given P, k is secret

- Idea: choose rogue, valid input P s.t. a fault ϵ turns it into P'
 - P' is point of very low order
Points with low-order neighbours

- Given curve $E: y^2 = x^3 + ax + b$, integers l and δ
- Construct $P(x_p,y_p)$ on E s.t.
 - \exists curve $E': y^2 = x^3 + ax + b'$
 - With $P'(x_p',y_p')$ of order l on E'
 - Hamming dist. of bit representations $x_p || y_p$ and $x_p' || y_p'$ is δ
- If $\delta = 1$ we call P and P' neighbours

- Input: E, l, δ
- Output: P and P'
Points with low-order neighbours

- NIST P-192 curve over \mathbb{F}_p with $p = 2^{192} - 2^{64} - 1$, $a = -3$ and $b = 0x64210519E59C80E70FA7E9AB72243049FEB8DEECC146B9B1

<table>
<thead>
<tr>
<th>Order</th>
<th>P</th>
<th>bit-flip</th>
</tr>
</thead>
</table>
| 2 | $xP = 0x6D9D789820A2C19237C96AD4B8D86B87FB49D4D6C728B84F$
| | $yP = 0x1$ | 0 |
| 3 | $xP = 0x8E1EBDD009F11449C7BC2C02509F8E432ED15F10C2D33$
| | $yP = 0x7A568946EFA602B3624A61E513E57869CAF2AE854E1A17B$ | 2 |
| 4 | $xP = 0xB317D7BBD023E6293F1506221F5BC4A23D4BE2E05328C5F7$
| | $yP = 0xC70D48794F4065097620C0865B7D567329728C634CA6AE$ | 0 |
| 5 | $xP = 0xCC9BCC0061F64371E3C3BDE165DAD5380A7DC1919765940$
| | $yP = 0xCCB36B372834B8AFD7A9FCCFB40773E94A4178093458$ | 8 |
| 6 | $xP = 0xC3F76445E6A52138E283E485092F005BE0821C3F9E96B05E$
| | $yP = 0x535DBCCB593D72E7885B66E5FDF13A8FF9C57A8F8B91CE48$ | 1 |
| 7 | $xP = 0x5C003567728CCBC9F4C06620B9973193837BAEC67A29E43A$
| | $yP = 0x408D0C3135006B03EFF80961394D890F0E86D9FD1BA4E6C6$ | 3 |
| 8 | $xP = 0x74FD6A1AD39479C75A85305FA786E1DBDC845E03754E723E$
| | $yP = 0x6EF58ABFC071047BA4F425652B3EC1746EBE8FE16FEA1F5$ | 1 |
Attack against a toy implementation

• Full domain correct
 – \mathcal{O} and all following computations will be handled correctly
• Double and add scalar multiplication

• Input P with neighbour P' of order 4, inject fault and measure
• Doubling: $2 \cdot P'$, $2 \cdot 2P'$, $2 \cdot 3P'$ or $2 \cdot \mathcal{O}$ (borderline cases)
• Addition: generates always odd multiples of P', never \mathcal{O}
• \mathcal{O} occurs only after 2 consecutive doublings
• If \mathcal{O} occurs during processing of bit k_i, bit k_{i+1} must be 0
• Uniquely identifies all 0 key bits (possibly except LSB)
Attack against a toy implementation

- Full domain correct
- Double and add scalar multiplication
- Input P with neighbour P' of order 4, inject fault and measure
- $k = 5405 = \overline{1010100011101}_2$

<table>
<thead>
<tr>
<th>i</th>
<th>11</th>
<th>10</th>
<th>9</th>
<th>8</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>k_i</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| step 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| step 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |

- Obtain all of k with a single trace!
Attack against a toy implementation

• Affine coordinates, partial domain correct (crash at 1st O)
• Double and add scalar multiplication

• First occurrence of O leaks, then no more information
• For P' of order \(l \), we obtain index I(\(l \)) s.t. the first I(\(l \)) bits of k form an integer divisible by \(l \)
 – Also information if not divisible by \(l \)

• Repeat with P' of increasing orders \(l \)
 – Requires several traces with the same k
• Incremental search algorithm, obtain almost all of k
Feasibility of attack

• Need to be able to choose input P s.t. P' is of low order
 – El Gamal encryption/decryption, static Diffie-Hellman, etc.
• Or: system with fixed base point where P is already rogue
 – Nice back-door: impossible to check all error patterns

• Fault injection: need a specific error ε
 – ε is 1 bit-flip, 256 random byte faults, only ε leads to P' and ◯
 – ε can be adjusted to any likely error pattern, in all coordinates
 – Precise timing

• Side channel: need leakage
 – We assume leakage by IFs, crashes, zero-value coordinates, etc.
• Group law implementation
 – Attack does not apply if all curve coefficients are used in PA/PD formulas
Our attack against protected implementations
Attacks on scalar multiplication and countermeasures

- **SPA**
 - Solution: regular algorithm / implementation (atomicity)

- **DPA**
 - Solution: key, field, curve and point randomization

- **Faults**
 - Solution: check output point and curve parameter validity

- **Low-order attack (weak curve attack)**
 - Solution: check input point validity
 - Small co-factor check (all NIST curves have co-factor 1)
Attack against protected implementations

• Input point validity check
 – No problem if we can inject fault after check but before mult

• Output point / curve parameters validity check
 – No problem, we already got the info
Attack against protected implementations

• Regular exponentiation algorithms / implementations to protect against SPA
 – Attack is fairly independent of scalar multiplication algorithm
 – Each algorithm computes some multiples of P that depend on k
 – If so, the attack applies

• Example: Montgomery powering ladder
Montgomery powering ladder

Algorithm 3: Montgomery powering ladder

Input: \(P, k = (k_{n-1}, k_{n-2}, \ldots, k_0)_2 \)
Output: \(Q = k \cdot P \)

\[R_0 \leftarrow P, \quad R_1 \leftarrow 2 \cdot P \]

for \(i \leftarrow n - 2 \) down to 0 do

\[R_{-k_i} \leftarrow R_{k_i} + R_{-k_i}, \quad R_{k_i} \leftarrow 2 \cdot R_{k_i} \]

end

return \(R_0 \)

• 2 registers \(R_0 \) and \(R_1 = R_0 + P \)
 – Input \(P \) with neighbour \(P' \) of order 4
 – If 2 consecutive key bits are equal, \(R_0 \) or \(R_1 \) doubled twice, \(\bigcirc \) occurs
 – If 2 consecutive key bits are different, ordinary doublings
 – \(\bigcirc \) can never be the result of an addition

• Obtain almost all of \(k \) with a single trace
More in the paper

• Countermeasures we looked at
 – Random scalar splitting: \(k = k_1 + k_2, \ k \cdot P = k_1 \cdot P + k_2 \cdot P \)
 – Scalar blinding: \(k' = k + r \cdot \#E \)
 – Ephemeral keys
 – Coordinate randomization, e.g. random projective coordinates
 – Random elliptic curve isomorphisms
 – Base point blinding

• Binary curves
 – Applicability of attack depends on coordinate system
 – Affine and standard projective coord.: attack applies since only a used
 – Jacobian: attack does not apply since a and b are used
 – Lopez-Dahab: attack does not apply; only b is used but changing a
 results in isomorphic curve over its quadratic twist
Conclusion

• Our attack:
 – Input rogue P and inject fault after initial checks
 – P turns into P' of low order
 – $k \cdot P'$ leads to ⊗ which can be detected via side channels
• Requires chosen inputs (or rogue fixed base point)
• Very powerful attack on full domain correct implementations
 – Defeats many countermeasures, requires only a single trace
• Combining countermeasures does not automatically protect against combined attacks
• Countermeasures that prevent our attack:
 – Sensors, concurrent validity checks, base point blinding, etc.
Thank you. Questions?

So how does / would your implementation deal with \mathcal{O}?