

B. Gierlichs A cautionary note about MDPL security

Introduction Attack strategy Experimental results Conclusion Motivation Masked Dual-rail Pre-charge Logic

• Power analysis threatens black-box secure cryptography implemented in embedded devices (due to CMOS)

Countermeasures at software level:

- Ountermeasures at circuit level:

• Countermeasures at gate level:

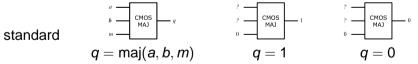
Introduction Attack strategy Experimental results Conclusion Motivation Masked Dual-rail Pre-charge Logic

- Power analysis threatens black-box secure cryptography implemented in embedded devices (due to CMOS)
- Countermeasures at software level:
 - randomize the link between leakage and processed data (masking)
 - hide the leakage in the time domain (random order execution, random process interrupts)
- Ountermeasures at circuit level:

• Countermeasures at gate level:

B. Gierlichs

A cautionary note about MDPL security

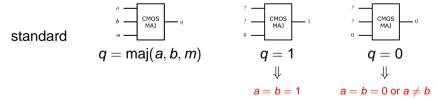

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

2/22

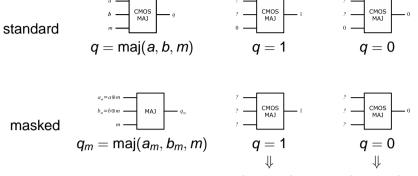
◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

- Power analysis threatens black-box secure cryptography implemented in embedded devices (due to CMOS)
- Countermeasures at software level:
 - randomize the link between leakage and processed data (masking)
 - hide the leakage in the time domain (random order execution, random process interrupts)
- Countermeasures at circuit level:
 - hide the leakage in the time domain (sliding clock, asynchronous designs)
 - reduce the SNR (noise generators, current scramblers)
- Countermeasures at gate level:
 - randomize the link between leakage and processed data (masking)
 - reduce the leakage (SABL, WDDL, CML, etc.)

- Power analysis threatens black-box secure cryptography implemented in embedded devices (due to CMOS)
- Countermeasures at software level:
 - randomize the link between leakage and processed data (masking)
 - hide the leakage in the time domain (random order execution, random process interrupts)
- Countermeasures at circuit level:
 - hide the leakage in the time domain (sliding clock, asynchronous designs)
 - reduce the SNR (noise generators, current scramblers)


• Countermeasures at gate level:

- randomize the link between leakage and processed data (masking)
- reduce the leakage (SABL, WDDL, CML, etc.)

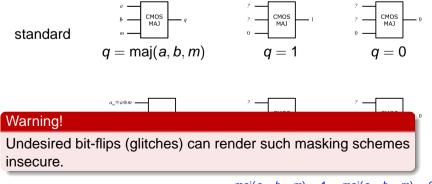

B. Gierlichs	A cautionary note about MDPL security	CHES 2007, Vienna	2/22

Introduction Attack strategy Experimental results Conclusion Motivation Masked Dual-rail Pre-charge Logic

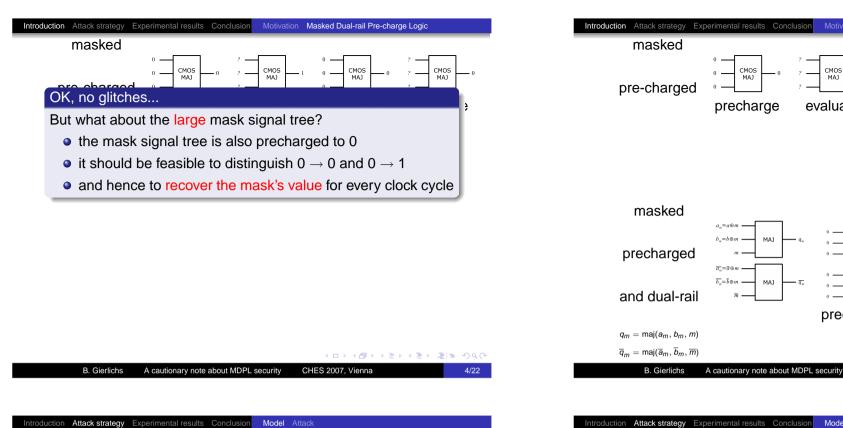
 MDPL is a masked logic style and builds up on standard CMOS cells (however, eventually it adopts masking and DRP)



 $maj(a_m, b_m, m) = 0$ $maj(a_m, b_m, m) = 1$


				NOC EIE < E >
B. Gierlichs	A cautionary note about MDPL	security	CHES 2007, Vienna	3/22
Introduction Attack strategy E	experimental results Conclusion	Motivation	Masked Dual-rail Pre-char	ge Logic
masked				
pre-charged		valuate		² 2 2 2 evaluate

• MDPL is a masked logic style and builds up on standard CMOS cells (however, eventually it adopts masking and DRP) CMOS CMOS



Introduction Attack strategy Experimental results Conclusion Motivation Masked Dual-rail Pre-charge Logic

• MDPL is a masked logic style and builds up on standard CMOS cells (however, eventually it adopts masking and DRP)

 $maj(a_m, b_m, m) = 1$ $maj(a_m, b_m, m) = 0$

AND

MAJ

MAJ

 $\overline{q_m}$

 a_m

b,,,-

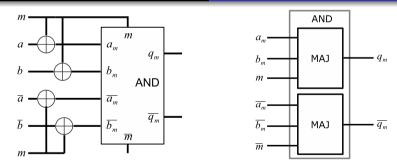
т

 $\overline{a_m}$

 \overline{h}

 \overline{m}

CMOS


MAJ

MAJ

MAJ

 $-q_{m}$

precharge

Motivation Masked Dual-rail Pre-charge Logic

CMOS

MAJ

precharge

evaluate

CHES 2007, Vienna

CMOS

MAJ

evaluate

precharge

CMOS

MAJ

evaluate

- we develop a probabilistic model of switching activity
- **A**, **B** are uniform on $S := \{0, 1\}$

B. Gierlichs

- M's distribution on S depends on bias α in the PRNG
- **T** is output transition on wire q_m , $\mathcal{T} := \{0 \rightarrow 0, 0 \rightarrow 1\}$
- $E(\mathbf{T} = t)$ is observable output transition energy
- $E(\mathbf{T} = \mathbf{0} \rightarrow \mathbf{1}) = \delta, E(\overline{\mathbf{T}} = \mathbf{0} \rightarrow \mathbf{1}) = \gamma$
- δ and γ are gate specific \Rightarrow attack a single AND gate

A cautionary note about MDPL security CHES 2007, Vienna

m

т

 q_m

 $\overline{q_m}$

• we develop a probabilistic model of switching activity

• M's distribution on S depends on bias α in the PRNG

• **T** is output transition on wire q_m , $\mathcal{T} := \{0 \rightarrow 0, 0 \rightarrow 1\}$

• δ and γ are gate specific \Rightarrow attack a single AND gate

• $E(\mathbf{T} = t)$ is observable output transition energy

• $E(\mathbf{T} = \mathbf{0} \rightarrow \mathbf{1}) = \delta, E(\mathbf{\overline{T}} = \mathbf{0} \rightarrow \mathbf{1}) = \gamma$

AND

 a_m

 b_m

 $\overline{a_m}$

 $\overline{b_m}$

 \overline{m}

• **A**, **B** are uniform on $S := \{0, 1\}$

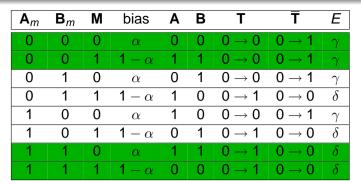
B. Gierlichs

Introduction Attack strategy Experimental results Conclusion

A _m	B _m	М	bias	Α	В	Т	T	Е
0	0	0	α	0	0	0 ightarrow 0	0 ightarrow 1	γ
0	0	1	$1 - \alpha$	1	1	0 ightarrow 0	0 ightarrow 1	γ
0	1	0	α	0	1	0 ightarrow 0	$0 \rightarrow 1$	γ
0	1	1	$1 - \alpha$	1	0	$0 \rightarrow 1$	0 ightarrow 0	δ
1	0	0	α	1	0	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
1	0	1	$1 - \alpha$	0	1	$0 \rightarrow 1$	0 ightarrow 0	δ
1	1	0	α	1	1	$0 \rightarrow 1$	0 ightarrow 0	δ
1	1	1	$1 - \alpha$	0	0	0 ightarrow 1	0 ightarrow 0	δ

$\mathbb{P}_{\mathbf{T}} = \{\mathbf{0} \to \mathbf{1} : \mathbf{0.75} - \mathbf{0.5}\alpha, \quad \mathbf{0} \to \mathbf{0} : \mathbf{0.25} + \mathbf{0.5}\alpha\}$

		<□> < □> < □> < ≥>	(目) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
B. Gierlie	chs A cautionary note about MDPL s	security CHES 2007, Vienna	6/22


Model Attack

A _m	B _m	М	bias	Α	в	т	T	Е
0	0	0	α	0	0	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
0	0	1	$1 - \alpha$	1	1	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
0	1	0	α	0	1	0 ightarrow 0	$0 \rightarrow 1$	γ
0	1	1	$1 - \alpha$	1	0	$0 \rightarrow 1$	0 ightarrow 0	δ
1	0	0	α	1	0	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
1	0	1	$1 - \alpha$	0	1	$0 \rightarrow 1$	$0 \rightarrow 0$	δ
1	1	0	α	1	1	$0 \rightarrow 1$	$0 \rightarrow 0$	δ
1	1	1	$1 - \alpha$	0	0	$0 \rightarrow 1$	$0 \rightarrow 0$	δ

Suppose bits a and b are key-dependent intermediate results; based on a key guess, filter $a \neq b$

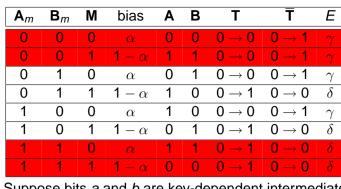
 $\Theta = E(\mathbf{T}|a = b = 0) - E(\mathbf{T}|a = b = 1)$ correct guess: $\Theta = 2\alpha\gamma - 2\alpha\delta + \delta - \gamma$

Introduction Attack strategy Experimental results Conclusion Model Attack

Suppose bits a and b are key-dependent intermediate results; based on a key guess, filter $a \neq b$

 $\Theta = E(\mathbf{T}|a = b = 0) - E(\mathbf{T}|a = b = 1)$

		《曰》《聞》《臣》《臣》 봄	= ~~~
B. Gierlichs	A cautionary note about MDPL security	CHES 2007, Vienna	7/22


Introduction Attack strategy Experimental results Conclusion Model Attack

A <i>m</i>	B _m	Μ	bias	Α	В	Т	T	Ε
0	0	0	α	0	0	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
0	0	1	$1 - \alpha$	1	1	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
0	1	0	α	0	1	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
0	1	1	$1 - \alpha$	1	0	0 → 1	$0 \rightarrow 0$	δ
1	0	0	α	1	0	$0 \rightarrow 0$	$0 \rightarrow 1$	γ
1	0	1	$1 - \alpha$	0	1	$0 \rightarrow 1$	$0 \rightarrow 0$	δ
1	1	0	α	1	1	0 ightarrow 1	0 ightarrow 0	δ
1	1	1	$1 - \alpha$	0	0	$0 \rightarrow 1$	0 ightarrow 0	δ

Suppose bits a and b are key-dependent intermediate results; based on a key guess, filter $a \neq b$

 $\Theta = E(\mathbf{T}|a=0, b=0) - E(\mathbf{T}|a=1, b=1)$ correct guess: $\Theta = 2\alpha\gamma - 2\alpha\delta + \delta - \gamma$ 1 bit wrong: $\Theta = 0$

B. Gierlichs

Suppose bits a and b are key-dependent intermediate results; based on a key guess, filter $a \neq b$

 $\Theta = E(\mathbf{T}|a=0, b=0) - E(\mathbf{T}|a=1, b=1)$ correct guess: $\Theta = 2\alpha\gamma - 2\alpha\delta + \delta - \gamma$ 1 bit wrong: $\Theta = 0$ both bits wrong: $\Theta = 2\alpha\delta - 2\alpha\gamma + \gamma - \delta$ <ロト < 団 > < 豆 > < 豆 > 三目目 のQC

B. Gierlichs	A cautionary note about MDPL security	CHES 2007, Vienna
--------------	---------------------------------------	-------------------

Introduction Attack strategy Experimental results Conclusion Model Attack

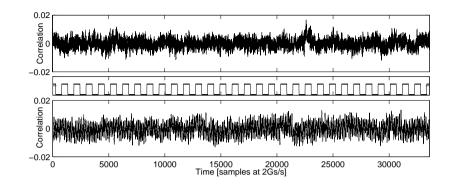
- DPA peak correct guess: $\Theta = 2\alpha\gamma 2\alpha\delta + \delta \gamma$
- DPA peak both bits wrong: $\Theta = 2\alpha\delta 2\alpha\gamma + \gamma \delta$
- DPA peak 1 bit wrong: $\Theta = 0$
- for any bias $\alpha \neq 0.5$ and $\delta \neq \gamma$ (no differential routing)
 - three different values for Θ possible
 - a guess that is wrong in 1 bit is distinguishable without further knowledge about α , δ , γ
 - this property can be exploited to sieve key candidates!

- DPA peak correct quess: $\Theta = 2\alpha\gamma 2\alpha\delta + \delta \gamma$
- DPA peak both bits wrong: $\Theta = 2\alpha\delta 2\alpha\gamma + \gamma \delta$
- DPA peak 1 bit wrong: $\Theta = 0$
- for any bias $\alpha \neq 0.5$ and $\delta \neq \gamma$ (no differential routing)
 - three different values for Θ possible
 - a guess that is wrong in 1 bit is distinguishable without
 - this property can be exploited to sieve key candidates!

				< □ ► <		<u>হ।</u> = ৩৭
B. Gierlichs	A cautionary note	about MDPL :	security	CHES 2007, Vie	nna	10/2:
	Experimental results	Conclusion	Platform	Standard Attack	Our attack	

- Side Channel Analysis Resistant Design flow SCARD
- 8051 μ C + AES-128 co-processor in CMOS and several secured logic styles, incl. MDPL
- Masks for MDPL generated on chip by controllable PRNG
- Measurements represent current drain in dedicated core VDD
- 2 sets of measurements:

B. Gierlichs


- 100 000 traces, 2GS/s, PRNG bias $\alpha = 1$ (m = 0)
- 200 000 traces, 2GS/s, PRNG bias α = unknown

9/22

A cautionary note about MDPL security CHES 2007, Vienna

Masking disabled ($\alpha = 1$)

- Attack: correlation
- Target: simultaneous transition of four 8 bit registers
- prediction: $H_i = HW(R_i \oplus D_i)$, flip-flops not precharged
- Attacking 8 key bytes in parallel is not practical, however we want to
 - show that MDPL with disabled masking is vulnerable to a "standard" attack
 - show that MDPL with enabled masking resists the same "standard" attack
 - $\Rightarrow\,$ verify that the PRNG has been setup and started correctly

Masking enabled ($\alpha =$?)

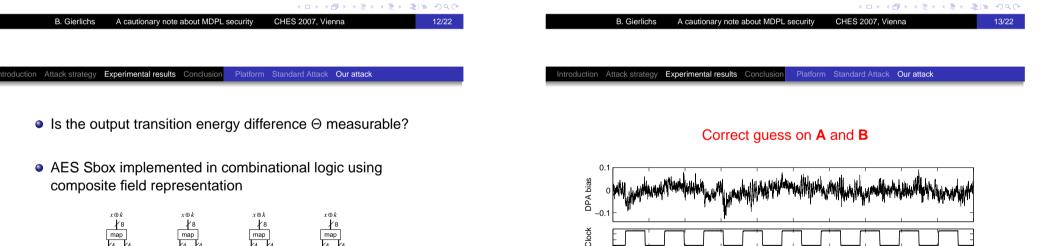
(Correlation attack, correct key, 32 bit intermediate result)

5000

Time [samples at 2GS/s]

Wrong guess in either A or B

4000


A cautionary note about MDPL security

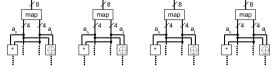
6000

7000

CHES 2007, Vienna

8000

DPA bias

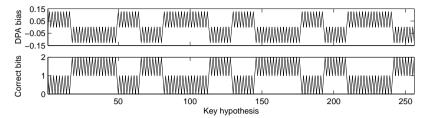

0

1000

B. Gierlichs

2000

3000



- One 4 × 4-bit multiplier comprises 16 AND gates
- DPA against a single AND gate in a parallelized, pipelined, and MDPL protected VLSI circuit

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

9000

10000

- All key guesses which lead to a guess that is incorrect in 1 bit can be rejected without knowledge of α, δ, γ
- We verify that leakage occurs and can be exploited
- Attack next AND gate for further sieving...

A cautionary note about MDPL s

So what is the bias α ?

We don't know...

- We simulated a gate-level netlist of the PRNG
- Statistical analysis of 1 million output bits shows $\alpha = 0.5001$
- This is not a bias, let's call α a deviation

• Open questions:

- Does the chip conform to the simulation?
- Is such α enough to enable our attack strategy? \rightarrow distinguish $2\alpha\gamma - 2\alpha\delta + \delta - \gamma$ from 0
- If not: is it possible that our attack unintentionally exploited circuit anomalies?
- Thorough investigation in the near future...

<□> <四> <回> <回> <回> <回> <回> <回> <回> <				<日 > < 四 > < 四 > < 回 > < 回 > < 回 > < 回 > 三日 =				
security	CHES 2007, Vienna	16/22	B. Gierlichs	A cautionary note about MDPL security	CHES 2007, Vienna	17/22		

Platform Standard Attack Our attack Experi

So what is the bias α ?

roduction Attack strategy Experimental results Conclusion

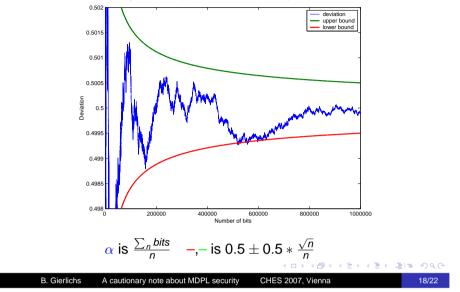
B. Gierlichs

- We don't know...
- We simulated a gate-level netlist of the PRNG
- Statistical analysis of 1 million output bits shows $\alpha = 0.5001$
- This is not a bias, let's call α a deviation
- Open questions:
 - Does the chip conform to the simulation'
 - Is such α enough to enable our attack strategy? \rightarrow distinguish $2\alpha\gamma - 2\alpha\delta + \delta - \gamma$ from 0
 - If not: is it possible that our attack unintentionally exploited circuit anomalies?
- Thorough investigation in the near future...

ntroduction Attack strategy Experimental results Conclusion Platform Standard Attack Our attack

So what is the bias α ?

- We don't know...
- We simulated a gate-level netlist of the PRNG
- Statistical analysis of 1 million output bits shows $\alpha = 0.5001$
- This is not a bias, let's call α a deviation
- Open questions:

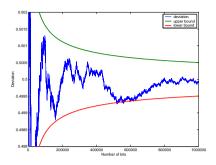

B. Gierlichs

- Does the chip conform to the simulation?
- Is such α enough to enable our attack strategy? \rightarrow distinguish $2\alpha\gamma - 2\alpha\delta + \delta - \gamma$ from 0
- If not: is it possible that our attack unintentionally exploited circuit anomalies?
- Thorough investigation in the near future...

A cautionary note about MDPL security

CHES 2007, Vienna

• Statistical analysis of up to 1 million output bits shows


Introduction Attack strategy Experimental results Conclusion

Conclusion

- Probabilistic model for the output transition energy of non-linear MDPL gates
- Depends on the bias α in the source of the randomness
- Output transition energy difference Θ can be exploited
- Requirements for our attack methodology:
 - slight and realistic PRNG "deviations"
 - unbalanced differential routing
 - knowledge about the circuit layout
- Theoretic approach is verified by experimental results based on a prototype chip

Introduction Attack strategy Experimental results Conclusion Platform Standard Attack Our attack

Update

- we pick each n^{th} bit \rightarrow new distribution, same properties
- for 200k samples we have $0.4989 \le \alpha \le 0.5011$
- $\rightarrow \alpha$ gains \sim one order of magnitude
- number of curves is crucial for a successful attack
- attack might not work even for a "good" α, choose a different gate with a better δ γ contrast

B. Gierlichs A cautionary note about MDPL security CHES 2007, Vienna

<ロ> <0</p>

21/22

19/22

Introduction Attack strategy Experimental results Conclusion

B. Gierlichs

Appendix Bibliography I

T. Popp, S. Mangard: Masked Dual-Rail Pre-charge Logic. In: J. R. Rao and B. Sunar (eds.): Cryptographic Hardware and Embedded Systems – CHES 2005, LNCS 3659, pp. 172–186, Springer, 2005

Bibliography

 Benedikt Gierlichs: DPA-Resistance without routing constraints? In: P. Paillier and I. Verbauwhede (eds.): Cryptographic Hardware and Embedded Systems – CHES 2007, LNCS 4727, pp. 107–120, Springer, 2007

