Templates vs. Stochastic Methods A Performance Analysis For Side Channel Cryptanalysis

B. Gierlichs^{1,2,*} K. Lemke-Rust^{2,**} C. Paar²

¹ESAT / COSIC, Katholieke Universiteit Leuven, Belgium ²Horst Görtz Institute, Ruhr-University Bochum, Germany

*The research was done in cooperation with gemalto.

**Supported by the European Commission through the IST Contract IST-2002-507932 ECRYPT, the European Network of Excellence in Cryptology.

Templates vs. Stochastic Methods

1 Introduction

- 2 Performance Evaluation
 - Experimental Framework
 - Platforms, Parameter Values

3 Experimental Evaluation

- Results for Original Attacks Profiling
- Results for Original Attacks Classification
- Optimizations Template Attack
- Optimizations Stochastic Model

4 Conclusion

Motivation Template Attack on AES Stochastic Model on AES Compendium of differences (context: 8-bit AES)

- Given one or few power traces from an unknown implementation, what's the method of choice?
- Attacks with profiling step, previous work...
 - Inferential Power Analysis, Fahn, Pearson, CHES 1999
 - Template Attacks, Chari, Rao, Rohatgi, CHES 2002
 - Stochastic Model, Schindler, Lemke, Paar, CHES 2005

"The strongest form of side channel attack possible in an information theoretic sense" [1]

"More efficient than Templates in the profiling step but less precise in the classification step" [2]

Motivation Template Attack on AES Stochastic Model on AES Compendium of differences (context: 8-bit AES)

- Given one or few power traces from an unknown implementation, what's the method of choice?
- Attacks with profiling step, previous work...
 - Inferential Power Analysis, Fahn, Pearson, CHES 1999
 - Template Attacks, Chari, Rao, Rohatgi, CHES 2002
 - Stochastic Model, Schindler, Lemke, Paar, CHES 2005

"The strongest form of side channel attack possible in an information theoretic sense" [1]

"More efficient than Templates in the profiling step but less precise in the classification step" [2]

Introduction Motivation Performance Evaluation **Template Attack on AES** Experimental Evaluation Stochastic Model on AES Conclusion Compendium of differences (context: 8-bit AES)

- (sub-)key dependent operation O_i (i = 1...K)
- Template *T_i* characterization of noise in the side-channel assuming a multivariate Gaussian distribution:

•
$$\mathcal{P}_{O_i}(z) = \frac{1}{\sqrt{(2\pi)^p |C_i|}} \exp{-\frac{1}{2}(z-m_i)^T C_i^{-1}(z-m_i)}$$

- Profiling (device characterization)
 - m_i by averaging
 - compute $\sum_{i,j=1}^{K} m_i m_j$ (j > i) to select p points of interest
 - C_i as empirical $(p \times p)$ covariance matrix
- Classification of a sample S
 - maximum likelihood hypothesis test
 - best candidate $O_i^* = \operatorname{argmax}_{O_i} \mathcal{P}_{O_i}(S)$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ●

Introduction	Motivation
Performance Evaluation	Template Attack on AES
Experimental Evaluation	Stochastic Model on AES
Conclusion	Compendium of differences (context: 8-bit AES)

 Choose a (small) vector subspace, e.g., *F*₉ → linear, bitwise coefficient model [2]

•
$$\mathcal{P}_k(z) = \frac{1}{\sqrt{(2\pi)^p |C|}} \exp{-\frac{1}{2}(z - \tilde{h}^*(x, k))^T C^{-1}(z - \tilde{h}^*(x, k))}$$

Profiling (device characterization)

- compile a system of linear equations:
 b₀ · β₀ + · · · + b₇ · β₇+ const = ĥ*(x, k)
- solving the system yields a power consumption coefficient for each bit and the constant term at each instant
- compute differential trace to select p points of interest
- C as empirical $(p \times p)$ covariance matrix
- Classification of a sample S
 - maximum likelihood hypothesis test
 - best candidate $k^* = \operatorname{argmax}_k \mathcal{P}_k(S)$

Introduction Motivation Performance Evaluation Template Attack on AES Experimental Evaluation Stochastic Model on AES Conclusion Compendium of differences (context: 8-bit AES)

Choose a (small) vector subspace, e.g., *F*₉ → linear, bitwise coefficient model [2]

•
$$\mathcal{P}_k(z) = \frac{1}{\sqrt{(2\pi)^p |C|}} \exp{-\frac{1}{2}(z - \tilde{h}^*(x, k))^T C^{-1}(z - \tilde{h}^*(x, k))}$$

- Profiling (device characterization)
 - compile a system of linear equations:

$$b_0 \cdot eta_0 + \dots + b_7 \cdot eta_7 + ext{const} = ilde{h}^*(x,k)$$

Example

Sample represents x = 113, k = 1, x \oplus k = 112 Selection Function Sbox(x \oplus k) = 81 = 01010001₂ $\tilde{h}^*(x, k) = b_6 \cdot \beta_6 + b_4 \cdot \beta_4 + b_0 \cdot \beta_0 + \text{const}$

- solving the system yields a power consumption coefficient for each bit and the constant term at each instant
- compute differential trace to select p points of interest
- *C* as empirical $(p \times p)$ covariance matrix
- Classification of a sample S
 - maximum likelihood hypothesis test < □ > <률 > < ≣ > < 불 > 불 < ੭ <
 - best candidate $k^* = \operatorname{argmax}_{\iota} \mathcal{P}_{\iota}(S)$

Introduction	Motivation
Performance Evaluation	Template Attack on AES
Experimental Evaluation	Stochastic Model on AES
Conclusion	Compendium of differences (context: 8-bit AES)

 Choose a (small) vector subspace, e.g., *F*₉ → linear, bitwise coefficient model [2]

•
$$\mathcal{P}_k(z) = \frac{1}{\sqrt{(2\pi)^p |C|}} \exp{-\frac{1}{2}(z - \tilde{h}^*(x, k))^T C^{-1}(z - \tilde{h}^*(x, k))}$$

Profiling (device characterization)

- compile a system of linear equations: $b_0 \cdot \beta_0 + \cdots + b_7 \cdot \beta_7 + \text{const} = \tilde{h}^*(x, k)$
- solving the system yields a power consumption coefficient for each bit and the constant term at each instant
- compute differential trace to select p points of interest
- C as empirical $(p \times p)$ covariance matrix
- Classification of a sample S
 - maximum likelihood hypothesis test
 - best candidate $k^* = \operatorname{argmax}_k \mathcal{P}_k(S)$

Motivation Template Attack on AES Stochastic Model on AES Compendium of differences (context: 8-bit AES)

Template Attack

- signal: estimation of key-dependent signal
 - \rightarrow 256 averaged signals
- noise: assumed to be key-dependent, characterized
 - \rightarrow 256 covariance matrices

Stochastic Model

- signal: linear approximation of key-dependent signal in chosen subspace \mathcal{F}_9
 - \rightarrow 9 sub-signals (8 bits + 1 non data-dependent)
- noise: assumed to be non key-dependent, characterized
 → 1 covariance matrix

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ヨヨ のへの

Experimental Framework Platforms, Parameter Values

- Attack efficiency depends on (amongst others)
 - the quantity of the leakage (chip dependent)
 - the quality of the measurement setup (lab dependent)
 - the attack's ability to extract information (attack dependent)
- Selected parameters:
 - Methodical approach
 - Number of curves in the profiling step
 - Number of curves in the classification step
 - Number and composition of points of interest for multivariate noise probability density

▲□▶ ▲□▶ ▲□▶ ▲□▶ 三回 のなる

Experimental Framework Platforms, Parameter Values

- Metrics:
 - 1) Profiling, before point selection: Correlation coefficient $\rho_N = \frac{1}{K} \sum_{i=1}^{K} \text{Corr}_e(m_{i,N}, m_{i,N_{max}})$ $(m_{i,N} \text{ is approximated using } \tilde{h}_N^*(\cdot, \cdot) \text{ for Stochastic Methods})$
 - Profiling, at point selection: Compares the set of selected points obtained using N samples to the reference set obtained from N_{max} samples; returns the percentage of points located in the correct clock cycle
 - 3) Classification: success rate to obtain the correct key value

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○

Experimental Framework Platforms, Parameter Values

Setup	A	B (low-noise)
μο	ATMega163	Industrial Smartcard μc
Algorithm	AES-128 (software)	AES-128 (software)
Countermeasures	_	_
# of curves for		
Profiling	231k, 50k, 40k, 30k, 25k 20k 10k 5k 2k ² 1k ² 200 ²	50k ¹ , 10k, 5k, 500 ² , 100 ²
Classification	10, 5, 2, 1 randomly	5, 2, 1 randomly
	selected from 3000	selected from 100
Points of interest	9, 6, 3, optimal	optimal

¹ Template attack only

² Stochastic Model only, Template Attack caused numerical problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ 三回 のへぐ

 Introduction
 Results for Original Attacks – Profiling

 Performance Evaluation
 Results for Original Attacks – Classification

 Experimental Evaluation
 Optimizations – Template Attack

 Conclusion
 Optimizations – Stochastic Model

metric 2	231k	50k	40k	30k	25k	20k	10k	5k
Template Attack	1	0.89	0.89	0.78	0.67	0.56	0.23	0.23
Stochastic Model	1	1	1	1	1	1	0.67	0.78

Introduction Results for Original Attacks – Profiling Performance Evaluation Results for Original Attacks – Classification Experimental Evaluation Optimizations – Template Attack Conclusion Optimizations – Stochastic Model

Results for Original Attacks – Profiling Results for Original Attacks – Classification **Optimizations – Template Attack** Optimizations – Stochastic Model

Results for Original Attacks – Profiling Results for Original Attacks – Classification **Optimizations – Template Attack** Optimizations – Stochastic Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Results for Original Attacks – Profiling Results for Original Attacks – Classification Optimizations – Template Attack Optimizations – Stochastic Model

Introduction	Results for Original Attacks – Profiling
Performance Evaluation	Results for Original Attacks – Classification
Experimental Evaluation	Optimizations – Template Attack
Conclusion	Optimizations - Stachastic Madel

Profiling

metric 2	231k	50k	40k	30k	20k	10k	5k
Template Attack	1	0.89	0.89	0.78	0.56	0.23	0.23
T-Test Templates	1	1	1	1	1	1	1

Classification

 Introduction
 Results for Original Attacks – Profiling

 Performance Evaluation
 Results for Original Attacks – Classification

 Experimental Evaluation
 Optimizations – Template Attack

 Conclusion
 Optimizations – Stochastic Model

$$g_{l}(x \oplus k) = \begin{cases} 1 & \text{if } l = 0 \\ l \text{-th bit of S-box}(x \oplus k) & \text{if } 1 \le l \le 8 \end{cases}$$

13/18

▲□▶▲□▶▲□▶▲□▶ 三日 のへで

Introduction Results for Original Attacks – Pro Performance Evaluation Experimental Evaluation Optimizations – Template Attack Conclusion Optimizations – Stochastic Model

and T-Test based approach

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ●

Introduction	Results for Original Attacks – Profiling
Performance Evaluation	Results for Original Attacks – Classification
Experimental Evaluation	Optimizations – Template Attack
Conclusion	Optimizations – Stochastic Model

Profiling

metric 2	231k	50k	40k	30k	25k	20k	10k	5k
Stochastic Model	1	1	1	1	1	1	0.67	0.78
T-Test based Model	1	1	1	1	1	1	1	0.9

Classification

Results for Original Attacks – Profiling Results for Original Attacks – Classification Optimizations – Template Attack Optimizations – Stochastic Model

Platform A vs. Platform B The small print!

T-Test based Templates

metric 3		50k	10k	5k	500	100
Platform A	$N_3 = 1$	17.6	9.4	-	-	-
	$N_3 = 5$	96.7	83.0	-	-	-
Platform B	$N_3 = 1$	94.8	93.0	88.2	-	-
	$N_3 = 5$	100.0	100.0	100.0	-	-

T-Test based Stochastic Model

metric 3		50k	10k	5k	500	100
Platform A	$N_3 = 1$	-	7.2	7.7	7.3	2.8
	$N_3 = 5$	-	63.2	73.9	78.9	40.7
Platform B	$N_3 = 1$	-	57.5	60.1	46.8	27.1
	$N_3 = 5$	-	100.0	99.9	100.0	96.5

Conclusion

- Identified parameters with impact on attack efficiency
- Defined experimental framework for selected parameters
- Systematic experimental performance analysis of Template Attacks and Stochastic Model
- Experimentally verified optimizations
 - T-Test based Templates
 - \rightarrow increased performance towards low number of profiling samples
 - High-order T-Test based Stochastic Methods
 - \rightarrow increased overall performance
- $\rightarrow\,$ T-Test based Templates are method of choice
 - Work in progress:
 - what is the optimal vector subspace in an 8-bit context ?
 - efficient selection of points of interest

Thank you for your attention.

Questions?

{gierlichs, lemke, cpaar}@crypto.rub.de benedikt.gierlichs@esat.kuleuven.be

▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

Bibliography I

- S. Chari, J.R. Rao, P. Rohatgi: Template Attacks. In: B.S. Kaliski Jr., Ç.K. Koç, C. Paar (eds.): Cryptographic Hardware and Embedded Systems CHES 2002, Springer, LNCS 2523, 2003, 13–28.
- W. Schindler, K. Lemke, C. Paar: A Stochastic Model for Differential Side Channel Cryptanalysis. In: J.R. Rao, B. Sunar (eds.): Cryptographic Hardware and Embedded Systems — CHES 2005, Springer, LNCS 3659, 2005, 30–46.

・ロト (周) (E) (E) (E) (E)