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Black-box Security

● The model for classical Cryptanalysis (simplified view):

● Attack on channel between communicating parties

● Cryptographic operations in black boxes

● Protect link with strong cryptography

● Provable security, computational, information-theoretic, etc.
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Embedded Security

● The model for the embedded world (also simplified view):

● Attack on channel and endpoints

● Cryptographic operations in gray boxes

● Protect link with strong cryptography

● Protect cryptography with secure implementation
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Physical Attacks

● Physical attacks    ≠    classical cryptanalysis
(gray box, physics)         (black box, maths)

● Algorithm is an abstract mathematical object;
Implementation is a physical instance of the mathematical object

● Breaking the physical instance does not imply breaking the 
mathematical object (while the opposite holds)

● An embedded device is exposed to its possibly hostile environment
(interaction with external world, depends on power supply etc.)

● Physical attacks exploit weaknesses that were introduced when the 
algorithm was implemented
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Classification of Physical Attacks (1)

● Active versus passive 

– Active: Perturbate and conclude

– Passive: Observe and infer

● Invasive versus non-invasive

– Non-invasive: chip package remains intact

– Invasive: physical contact with chip

– Semi-invasive: chip package open but no
contact with circuit

Active vs. Passive

Non-Invasive

Invasive
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1. Side-channel: passive and non-invasive

– Very difficult to detect

– Cheap to set up

– Needs many measurements

2. Circuit modification: active and full-invasive

– Very expensive to detect an invasion
(you may be off power)

– Expensive equipment and a lot of expertise needed

– Very powerful (in-security à la carte)

● 1) and 2) are both difficult to detect, but for different reasons

Classification of Physical Attacks (2)

Active vs. Passive

Non-Invasive

Invasive

1

2
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Side-Channel Leakage and Attacks

● Typical Side-Channels:

– Timing (non-constant execution time)

– Power dissipation (data-dependency of dynamic power)

– Electromagnetic radiation (data-dependency of local radiation)

– Light, Accustic, Temperature and probably more

● Observe physical quantities in the device's vicinity and use the 
additional information during cryptanalysis

● "Attack" intermediate variables, which often depend on only a few 
key bits à divide and conquer

Input Output

Leakage
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Principle is nothing new...

"Breaking into a Safe is hard, because one 
has to solve a single, very hard problem..."

"Things are very different if it is possible to 
solve many small problems instead..."

"Divide et impera!"

B. Gierlichs Slide 10CryptArchi, Trégastel, June 2008

CMOS technology

● Low static power consumption

● Dynamic power consumption (switching) depends on circuit's 
activity

● Power analysis exploits that the instantaneous dynamic power 
consumption of a device depends on the data it processes

01à 1

charge1à 0

discharge0à 1

00à 0

OUTIN
Charge

Discharge

No change

No change
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Differential Power Analysis

● Problem: we want to learn key bits

● Idea: side-channel leakage contains information

● Approach:

– Obtain measurements, known input, unknown key

– Establish a power consumption model

– "Simulate" power dissipation at early stage of algorithm
known input + guess on key bits (divide and conquer)

– Compare simulation and reality by means of a statistical test to
reject / accept key hypotheses

The seminal paper by Kocher et al. [1]

Power Analysis Tutorial by Aigner and Oswald [2]

B. Gierlichs Slide 12CryptArchi, Trégastel, June 2008

Differential Power Attacks (generic) 

Model of side-
channel

Real key Key hypothesisReal side-
channel

Known input 

Real output Hypothetical output

Statistical analysis

Hypothesis correct?
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The Correlation Method (1)

● Exploits information leakage efficiently with few measurements

– Need for a power model: e.g. # bit flips = Hamming dist. ~ dyn. 
Power

– Works well, if power model is meaningful

– Simple power model: a x HW(datat-1 datat) + b  (CMOS)

● Intermediate result:

– Several bits that depend on a few key bits and the input

– Example AES: Sbox output in round one (1 Byte)

● Exhaustive search: for each sub-key hypothesis

– For each measurement: "simulate" power consumption

– Estimate Pearson correlation between simulation and measurements

– Best key guess maximises the correlation coefficient

Brier et al. [3]

⊕
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Hamming Distance Model

● Power

● Correlation

Targeted operation starts
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Countermeasures: Classification

● According to the level of implementation:

– Protocol countermeasures

– Software countermeasures

– Hardware countermeasures

● According to their applicability:

– Algorithm dependent

– Algorithm independent

● Trade-off

– Each countermeasure yields overhead (time, power, area)

– Choice depends on desired security level

● Never rely on a single countermeasure!
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DPA countermeasures (1)

● Some are very much algorithm dependent, for example:

– Implement algorithm with equal functionality (output as expected)

– But make it randomize data and/or key (masking, blinding)

– Idea is to live with side-channel leakage and to make it useless
(can be overcome with higher-order attacks)

● Some are less dependent:

– Identify independently computable values in algorithm

– Randomize the sequence in which these values are computed

– Idea: distribute the leakage over time

● Software: random order execution [4]

● Some are independent:

– Insert delays of random duration in the sequence

– Idea: distribute the leakage over time

● Software: dummy instructions, random process interrupts [5]

(can be overcome with re-synchronization, but difficult)
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DPA countermeasures (2)

● Some are independent:

– Tackle the problem of side-channel leakage at its root

– Implement in a secure logic style (Hiding, masking)

– Many logic styles proposed
and broken!

– Duplicate logic,
as suggested
by famous
cryptographers ...

IN IN OUT OUT

0   0 1   1 0 0

0   1 1   0 discharge charge

1   0 0   1 charge discharge

1   1 0   0 0 0

1-0
transition

 
0-1  

transition 
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DPA countermeasures (3)

● Wave Dynamic Differential Logic (WDDL)

● Principle: switch once per cycle (0,0) -> (1,0) or (0,1) -> (0,0)

● Difficulty: balance (1,0) and (0,1)

● Solution: fat fire routing (ASIC), D-WDDL (FPGA) [16]

● WDDL can increase the number
of measurements required by
orders of magnitude

● Suitable for FPGAs [6]

● Price to pay: area and power 
secure

WDDL
differential route

insecure 
single-
ended
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FPGA related literature

● First results for power analysis on FPGAs [7]

● Evaluation of FPGA specific DPA countermeasures [8,9]

● Fault injection attacks on FPGAs [10]

● FPGA evaluation platform for
power analysis resistance:
SASEBO [11]
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Active attacks

● Expose the device to physical stress and bypass or infer secrets

● Fault injection processes

– Non-invasive: Glitches, EM, Temperature

– Semi-invasive: Photons (e.g. laser)

– Invasive: Focused Ion Beam

● Less public literature than for side-channel analysis

● Non-invasive attacks have the disadvantage that one cannot target 
a specific part of the chip other than by timing

input error

[courtesy: H. Handschuh]

Input Output

Leakage

Stress
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Laser Fault Injection

● Focus on semi-invasive attacks and injection of transient faults (SEU)

● Adversarial model given by Lemke-Rust and Paar [12]

– ptime is probability to hit at the right instant

– Parea is probability to hit the right spot

– Pvolume is probability to penetrate
sufficiently deep

– p is overall probability of succesful
fault injection

– Random Fault Model

● The fault's effect cannot be controlled

● Interesting read: The Sorcerer’s
Apprentice Guide to Fault Attacks [13]

[www.new-wave.com]
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Differential Fault Analysis

● Ask for a cryptographic computation twice

– With any input and no fault (reference)

– With the same input and fault injection

● Infer information about the key from the output differential

● Allows to work in the Random Fault Model

Biham, Shamir [17]
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Active and Full-Invasive Attacks

– Modify circuit (worst nightmare...)

– Disconnect security mechanism

– Deactivate security sensors

– RNG stuck at a fixed value

– Reconstruct blown fuses

– Very expensive to detect an
invasion (you may be off power)

– Very powerful (in-security
à la carte)

[www.fa-mal.com]

Out               0

RNG 
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Fault Attack Countermeasures

● Type 1: make it difficult to exploit a fault – do not react

– Make it hard to inject at fault at the right time (and/or the right spot)

– In software: random order execution, dummy cycles

● Type 2: detect an injected fault - react after attack

– Add redundancy and check for errors

– Compute twice (serial, parallel) and compare results

– Dual-rail logic with dedicated error state

● Type 3: prevent fault injection – react during attack (not covered)

– Secure packaging, dedicated sensors

– For example: monitor Vdd, Clk, etc.

– Detect light in package, detect that package is opened, etc. 
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System Overview

● Platform: Xilinx Virtex-II pro

● What do we need to enable partial dynamic reconfiguration?

– Internal Configuration Access
Port (ICAP)

– MicroBlaze (µB), code in BRAM

– Storage for bitstreams (flash)

– Randomness (TRNG)

– Crypto core (AES)

● Focus on security of crypto core
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Reference Architecture

● Assumption: the cryptographic algorithm is a repetetive instruction 
composed of a number n of subfunctions

● This is realistic for secret key and public key crypto systems
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Architecture,  AES example
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Temporal Jitter (1)

● Classical countermeasure for software implementations

● Random process interrupts / Dummy cycles

● Random order execution

● Differential Power Analysis

● Need synchronized measurements
(re-synchronization is sometimes feasible but expensive)

● Countermeasure's effect: de-synchronized measurements; repeated 
invocations don't lead to the same sequence of operations over time

● Fault injection

● Needs correct timing

● Countermeasure's effect: hard to hit at the right moment
(you may get a faulty output, but which operation has been faulted?)
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Temporal Jitter (2)

● It is hard to realize temporal jitter in hardware since hardware 
cannot morph

– [8] proposes pipelining and processing of random inputs

– Effect is not the same: sequence of operations is constant but 
adversary cannot predict meaningful Hamming distances

● Desired effect is to make things happen at varying time indexes

● Can we make morphing hardware? Yes, dynamic reconfiguration!

● What causes delay in hardware?

– A register causes a delay of one clock cycle

– Propagation delay in logic (more complex logic à more delay)
(For simplicity we disregard delays due to wires)
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Temporal Jitter (3)

● Dynamically change position(s) of register(s)

● Dynamically re-order functional blocks if applicable

● Naïve approach

– Multiple implementations of the entire architecture

– Expensive in terms of bitstream size and reconfiguration time

● Better approach

– Change only the wiring of functional blocks and registers

– Reconfigurable central switch matrix

– Advantage: smaller bitstreams, faster reconfiguration
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Temporal Jitter, AES example (1)
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Temporal Jitter, AES example (1)
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Temporal Jitter, AES example (1)
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Temporal Jitter, AES example (2)

● # of configurations depends on # of functional blocks (n) and # of 
registers (m)

– Increases if we allow cascaded registers between functional blocks

● In the example: n = 4 blocks, m = 2 registers (cascading allowed)

● Number of distinct configurations

● Active configuration determined by secure TRNG

● Probability to observe a given configuration is 1/c

● Number of temporal shifts is bounded above by c

● Bottlenecks

– More configuration options require more bitstreams and memory

– More registers increase processing time

10
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Temporal Jitter, performance

● Implementation results on Virtex-II pro

● Static design with 1 register, dynamic design with 2 registers

● Reconfiguration time 3ms, modern FPGAs at least 10x faster

● Max. clock frequency decreases due to communication between 
static and dynamic part

● Prototype's static part is larger than fully static design due to 
additional register and communication logic
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Temporal Jitter, Security

● Obvious approach to circumvent the countermeasure is to 
distinguish the different configurations

● Can Timing Analysis [14] distinguish configurations?

– No, execution time is constant 11 * m clock cycles

● Can Simple Power Analysis [1] distinguish configurations?

– No, but we have to pre-load the intermediate registers with random 
data to hide their position

Config. 1

Config. 2
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Temporal Jitter, DPA resistance

● Mangard studied the effect of temporal jitter as a countermeasure 
against standard DPA [15]

● Number S of measurements needed
to break the implementation

● is a confidence interval

● p' is the correlation coefficient at an unprotected implementation

● is the probability that a certain temporal jitter occurs

● We can interchange the order of SB and SR, thus c=20

● But only 8 different temporal shifts, worst case    =6/20

● Under conservative assumptions, S increased by ~5
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Temporal Jitter, Fault resistance

● Conservative assumption: pvolume = 1, parea = 1

● 8 different temporal shifts, worst case ptime = 6/20

● Probability to inject a fault at the right spot at the right time
p = pvolume x parea x ptime = 0.3

● Adversary cannot distingush (non-)successful fault injections

● Some cryptanalytical methods require several succesful fault 
injections and may sieve out the correct key if input data is bad

● Fault on the switch matrix remains only until reconfiguration

● Fault on functional blocks may remain until reset

– But exploitable modification highly unlikely in random fault model

● Functional blocks can be further protected
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Spatial and Temporal Jitter (1)

● Desired effect is to make things happen at varying locations and 
varying time indexes

● Dynamically re-locate functional blocks and registers
on chip area (temporal jitter as before)

● Our approach

– Prepare multiple bitstreams (with/without register)
per functional block

– TRNG determines which of them is implemented
in which reconfigurable region
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Spatial and Temporal Jitter (2)

● Suppose we have n functional blocks with fixed order

● One block can be mapped to one out of n areas à n options

● Countermeasure aims at preventing local fault injection
e.g. laser fault injection

● Probability to inject a fault at the right spot parea = 1/n

● Suppose each block can be followed by at most one register

● Probability to inject a fault at the right time ptime

bounded below by 1/(m+1)
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Spatial and Temporal Jitter,
AES example (1)

● n = 4 functional blocks à 4 reconfigurable areas

● Design contains m = 2 registers

● For each functional block 2 bitstreams (with/without register)

● We could interchange the order of SB and SR to get more options

● Bottlenecks:

– Significantly higher reconfiguration time due to more regions

– More bitstreams need to be stored
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Temporal Jitter, AES example (2)

ARK

SB SR

MC
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Temporal Jitter, AES example (2)

ARK SB

SRMC
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Spatial and Temporal Jitter, 
Security

● Resistance against local fault injection processes:

– pvolume = 1

– parea = 1/4

– Ptime = 1/3

– p = pvolume x parea x ptime = 1 x 1/4 x 1/3 = 1/12

● Side effect: since all functional blocks are implemented in 
reconfigurable regions, the entire circuit can recover from transient 
faults

● Tradeoff security vs. reconfiguration delay should be decided 
having fault injection frequency in mind (laser typically < 50Hz)
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Fault Detection

● Can be realized in FPGAs by reading back bitstream(s) and 
comparing them with the reference copy

● Comparison can be done via protected logic, CRC check, etc. inside
the FPGA and at runtime

● Procedure detects faults only if reference bitstream cannot be 
altered in the same way (highly unlikely in the random fault model)

● Scheme can be complemented with traditional fault detection 
mechanisms

– Dual-rail with error state, execute twice and compare results, etc.

● Designer's choice how to react to an alarm signal

● Note: for some attacks checking after outputting is
already too late!
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Conclusions

● Power and Fault Analysis Resistance in Hardware through Dynamic 
Reconfiguration

● Temporal Jitter can be generated by changing the location of 
registers between functional blocks and by re-ordering blocks

● Spatial Jitter can be generated by re-locating functional blocks on 
the chip area at runtime

● Both types of jitter can be combined

● Fault detection with negligible area overhead

● Bottlenecks in general:

– Reconfiguration time

– Memory needed for bitstreams
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Thank you for your attention!

Questions?

Part of this talk is based on

Mentens, Gierlichs, Verbauwhede: Power and fault analysis resistance in 
hardware through dynamic reconfiguration, CHES 2008
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