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Direction for improvements #1
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This talk: 2 ECRYPT results in these lines 2

» Leakage-resilient PRFs with parallelism

* CHES 2012 + new results
 S. Belaid, F. De Santis, J. Heyszl, A. Joux, S. Mangard,
M. Medwed, J. Schmidt, FX Standaert, S. Tillich

» Theory and Practice of a
Leakage Resilient Masking Scheme

« ASIACRYPT 2012
- J. Balasch, S. Faust, B. Gierlichs, |. Verbauwhede

Direction for improvements #2
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More realistic models
More efficient constructions
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D More rigorous analyses
Propose sound assumptions

. ~ | CORR Instantiate constructions

dual- rall Ioglc styles masking
(aka secret sharing) [GP00,CJRR99, ...]
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1. Leakage-Resilient PRFs
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Motivation 3

+ Why PRFs (not PRPs)?
* One of the most important primitives in
symmetric cryptography (see Goldreich’s book)
» Enough for encryption / authentication
» Needed for init. of stream ciphers
« Stateless primitive!
+ Can be combined with fresh re-keying

Secure — in what sense? 4

» Main focus so far: # of measurements
* e.g. noise addition: # of measurements
increases linearly with the noise variance
* e.9. masking: # of measurements may increase
exponentially with the number of masks
* But requires hardware assumptions
(e.g. leakage of shares must be independent)

Motivation 3

» Main question: can leakage-resilient PRFs be
» Secure (super-exponential security)?
« Efficient (compared to other countermeasures)?

Secure — in what sense? 4

» Leakage-resilient PRFs approach:
» Bound the data complexity by design
 Try to guarantee high time complexity
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1. Tree-based PRF (GGM 86)
2. Efficiently exploiting parallelism

a. Previous leakage-resilient PRFs

b. Our tweak: carefully chosen plaintexts
3. Instantiation issues

a. Power measurements

b. Block cipher design

c. EM radiation

Tree-based PRF (GGM 86) 5
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stage 1 (x[0]=0)
stage 2 (x[1]=1)
smgespzn  ©: 2-bounded data complexity

o sages  ©: 128 AES per 128-bit input

stages 5-126

stage 127

stage 128

Fx(x=01110...10)

Tree-based PRF (GGM 86) 5
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stage 1 (x[0]=0)

stage 2 (x[1]=1)

stage 3 (x/2]=1)

Efficiency / security tradeoff 6

stage 1 (x[0:7]=5F)

stage 2 (x[8:15]=C3)

©: 16 AES per
,,,,,,,,,,,,, s : 128-bit input

e P ®: 256-bounded
—————————————————————————— data complexity?

stage 15 (x[112:119]=5F)

stage 16 (x[120:127]=87)

Fx(x=5FC3F8...2A87)

28.11.2012



1. Tree-based PRF (GGM 86)
2. Efficiently exploiting parallelism

a. Previous leakage-resilient PRFs

b. Our tweak: carefully chosen plaintexts
3. Instantiation issues

a. Power measurements

b. Block cipher design

c. EM radiation

Algorithmic noise (standard DPA) Y

Algorithmic noise (standard DPA) 7

Algorithmic noise (standard DPA) 7

28.11.2012
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Single S-box attack results 9
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» Noise can be averaged by measuring more ®

Our tweak: carefully chosen plaintexts (I) 10
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Our tweak: carefully chosen plaintexts (I) 10

same input plaintext for all bytes
14 p P p
S & D
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e.g. CPA + HW model: same predictions for 16 key bytes

Our tweak: carefully chosen plaintexts (ll) 11

* Intuition #2: assume the leakage functions are
(roughly) identical for all S-boxes

» Then the models in standard DPA attacks are
also identical for all S-boxes

Our tweak: carefully chosen plaintexts (ll) 11

* Intuition #1: algorithmic noise is key dependent
=> Divide & conquer attacks hardly apply

Our tweak: carefully chosen plaintexts (ll) 11

» Even in the (unlikely) situation where the Ns
key bytes are rated in the first Ns positions by
DPA, it remains to enumerate Ns! Permutations

* e.g. 161=2"44, 24|=2179, 321=2"17
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Single S-box attack results 12
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» Even with 256 meas., noise cannot be averaged ©

Main question 13

« Do different S-boxes leak the same?
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* Power measurements

Main question 13 Main question 13
» Do different S-boxes leak the same? » Do different S-boxes leak the same?
» FPGA case study with two types of S-boxes » FPGA case study with two types of S-boxes
» Power measurements » Power measurements
» Using the RAM blocks of modern FPGAs » Using the RAM blocks of modern FPGAs

» Combinatorial (from Canright, CHES 2005)

Corr(S-box1,8-box2) = 0.996
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Can we exploit different leakage models? 14

» Case study using the Canright S-boxes
» Template attacks, correlation attacks
 Both using the Ns different models
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» Case study using the Canright S-boxes
» Template attacks, correlation attacks
* Both using the Ns different models
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Which underlying block cipher? 15 Which underlying block cipher? 15

» AES not best suited for LR-PRF designs
* MixColumn allows “easier” 2nd-round attacks

* New candidate: PRESENT-like cipher

Which underlying block cipher? 15 Which underlying block cipher? 15
* New candidate: PRESENT-like cipher * New candidate: PRESENT-like cipher
» With 32 4-bit S-boxes (best tradeoff between » With 32 4-bit S-boxes (best tradeoff between
time and data complexity of attacks) time and data complexity of attacks)

» Wire crossing with improved “regularity”
* e.g. the first bits of the S-box outputs should
end up in the same position after permutation
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2. Efficiently exploiting parallelism

a. Previous leakage-resilient PRFs

b. Our tweak: carefully chosen plaintexts
3. Instantiation issues
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Localization of S-boxes?

» Feasible with (worst-case) profiling
» Key under control to detect “hot spots”

Localization of S-boxes? 17

» Feasible with (worst-case) profiling
» Key under control to detect “hot spots”
» Leakage models indeed different ®, e.g.

Key nibble 00 Key nibble 13
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Leakage exploitation 18

 Putting things together, key-dependent algorithmic
noise still more difficult to exploit
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 Putting things together, key-dependent algorithmic
noise still more difficult to exploit
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+ Current experimental results suggest security
bounds around 2780 time complexity ©

2. Theory and Practice of a Leakage
Resilient Masking Scheme

Motivation 19

Leakage resilient crypto Masking / blinding

¢« Proofs * Proofs

* Resist "arbitrary" » Resist specific attacks
adversaries

* Theoretical « Practice oriented

« Strong, abstract + Concrete requirements

requirements for physical
behaviour of
implementation

» Complex, impractical,
large implementation
overhead

for physical behaviour of
implementation

» Simple, practical, efficient

28.11.2012
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Theory and Practice of a
Leakage Resilient Masking Scheme

Narrow the gap between theory and practice

» One masking scheme in both worlds
— Large value of security parameter: leakage resilient

— Small value of security parameter: feasible on 8-bit
microcontroller, secure enough?

Learn what parts make a scheme inefficient

What parts are needed only for theoretical
security

20

Theory side
X:L1®R1@-'-@L71®Rn

» 2 processors Pgand P,
with independent leakage

» Leakage resilient for n > 130

— Adversary may learn up to 3n bits from each
processor
— Non-adaptive leakage: adversary may learn L and 3n
bits about R
« Example: adversary may learn L and Hamming weight of
each Ri

* Impractical

22

Inner-product Masking

« Secret value X is masked as
X:L1®R1@--~@L71®Rn

* X, L, R are field elements, || > 2
* L, Rjrandom, L;#0

* n22is security parameter

» Focus on GF(28) to protect AES

+ Closely related to boolean, multiplicative, affine,
polynomial masking

21

Theory side
X:L1®R1@--~@L71®Rn

+ Security of operations in masked domain

— Addition, multiplication, squaring, re-randomization
« Simplified or new, more efficient operations
» Simplified re-randomization

— Theoretical but not practical attack

— For proof we assume that it does not leak

23
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Practice side 24
X:L1®R1@-'-@L71®Rn

« |IP masking with 2n=d+1 is secure against n-1t"
or (d+1)/2-1t order attacks
— n =2 -> secure against 1t order attacks
— 2 order flaw appears with probability 2-8n

» Complex dependency between shares and
secret

» Expect higher security than from Boolean
masking with same number of shares

Practice side 25

+ Comparison of information leakage
— IP masking n=2 (4 shares)
— Boolean masking (2, 3 and 4 shares)
— Polynomial masking (4 and 6 shares, including the
public constants)
+ Simulations
— Hamming weight leakage of each share
— Independent Gaussian noise

+ Estimate mutual information I(leakages;secret)

Practice side 26

Comparison of information leakage

| —+— bool. d=1 —6— bool. d=2 —*— bool. d=3 —&— IP n=2 —=— poly. d=2 —&— poly. d=3|

Logw(mutual information)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Noise standard deviation

Practice side 27

» Comparison of attack success
— Multivariate MIA attacks (using HW model)
— Key recovery: S(p+k) with AES S-box,
— Leakage simulation as before but no noise

» Estimate number of traces for 90% SR

Masking type Number of traces

Boolean, 2 shares 90
Boolean, 3 shares 200
Boolean, 4 shares 600
Polynomial, 4 shares 280k
Polynomial, 6 shares ~15M
Inner product, 4 shares ~15M

28.11.2012
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Practice side 28 Practice side 29
» Performance in 8-bit software » Performance in 8-bit software
+ Only one processor: temporal separation — Including masked key schedule
* Masked AES-128 encr in assembly
— 1536 bytes of LUTs AddRoundKey 8,796
— Constant time and flow, no branches SubBytes - inverse 45,632
SubBytes - affine 72,128 117,760
ShiftRows 200
» S-box MixColumns 27,468
— Compute inverse(x) as x25*
— Affine transform: polynomial over GF(28) Full AES-128 encr LS00
AffTrans[X] = {05} @ X' ¢ {09} @ X & {9} 0 X*? & {25} @ X s
{frexta{illeX'e{}oX?e {8/} @ X ¢ {63} » Unprotected AES-128 encr: ~3,000 cycles
Conclusion and future research 30

» Provide input to theory community
— Implement schemes, identify performance bottlenecks
— Analyze schemes for security overkill

— Leakage assumptions that can be practically verified I H A N KS
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