
Multi-modal data fusion
in biomedicine

and my road from PhD student to Stanford 

Olivier Gevaert, Ph.D.
Associate Professor

Stanford Center for Biomedical Informatics Research (BMIR)
Department of Medicine

& Department of Biomedical Data Science
Stanford University



Multi-modal data fusion
in biomedicine

and my road from PhD student to Stanford 

Olivier Gevaert, Ph.D.
Associate Professor

Stanford Center for Biomedical Informatics Research (BMIR)
Department of Medicine

& Department of Biomedical Data Science
Stanford University



My trajectory to PhD with BDM

• Industrial engineering ICT – KAHO 
Sint-Lieven Ghent

• Erasmus – Konstanz 
Fachhochschule - EuropaHaus

• MaNaMa - Master of Artificial 
Intelligence – KU Leuven



Phd @ Esat

• I learned the concept of a PhD from classmates during master 
of AI and started contacting faculty. 

• I met Bart in the summer of 2004 one day before a two week 
holiday
– I did not say much 

• When I came back I had a voice mail from Bart
– “You can start October 1st …”



Bioinformatics @ ESAT

• 2nd generation of Bioinformatics students at ESAT
– Co-advised by Dr. Dirk Timmerman, UZ Leuven
– Co-mentored by 1st generation student: Frank De Smet (CM)

• Other 1st generation students who had just finished PhD
– Gert Thijs (#22, Silicos, Cartagenia, Agilent, first bioinformatics 

student)
– Stein Aerts (#23, VIB/KUL) 



Initial steps in data fusion

• Thesis topic: Bayesian networks for 
fusion of clinical, ultrasound and 
microarray data
– White box model with probabilistic 

interpretation
– Classification based on an arbitrary 

instantiation of the genes
– Bayesian networks are popular for 

modelling gene networks
– Not too abstract (vs. boolean models) 

and not too detailed (vs. differential 
equations)



Definition
• A Bayesian network consists of two parts

– Structure: directed acyclic graph
– Parameters: conditional probability tables (CPT)



Microarray technology

°cDNA microarray  technology –
Patrick Brown - Stanford University 
1981

Commercial technology by 
Affymetrix. 



Microarray technology



Microarray technology

• High dimensional data
• No tools & methods to analyze 

them
• Accelerated the field of 

bioinformatics
• Supervised & unsupervised 

machine learning of RNA 
expression data became very 
popular 



Bayesian data fusion

• Several “types” of data fusion
– Early vs. late data fusion
– Supervised vs. unsupervised
– Multi-modal & multi-scale

• My thesis was focused on data fusion implementation with Bayesian 
networks
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Microarray data Clinical data 

gene clinical variable

patient

Outcome

Markov blanket

One dataset P(Outcome|MB+c(Outcome))

Learning Bayesian network
K2

Early data fusion



Bioinformatics on the rise @ BioI/SISTA/ESAT

• Group of several students working on similar topics
– Thomas Dhollander (Dsquare, Trendminer)
– Tim Van Den Bulcke (#56, UA, J&J & Galapagos)
– Karen Lemmens (#50, CropDesign, Bayer, BASF)
– Raf Van de Plas (#62, Vanderbilt University & TU Delft)
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Integration of Bayes nets
with Text Mining
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Gene expression
data Prior

Likelihood PriorPosterior

with Steven Van Vooren (#57, Cartagenia)



Structure prior
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Alternative framework:
Kernel Data Fusion

• Kernel data fusion 
as alternative to 
Bayes nets

Anneleen Daemen (#60, UC Berkeley,  Genentech)



Early kernel fusion

• Kernel data fusion 
as alternative to 
Bayes nets

• Parallel 
implementation of 
early, intermediate 
& late integration



End of Phd

• PhD Defense December 2008
“Framework for Bayesian network integration of biomedical data”



Road to Stanford

• After postdoc ~1 year with Bart
• Joined Stanford radiology dept in January 2010. 

Support from Belgian American Educational Foundation (BAEF) & FWO



Journey @ Stanford
• Postdoc: 2010-2013 with Sylvia Plevritis – Stanford Radiology
• Staff: 2013-2015

Matched data

Metagenes
Modules

Genes

Extract features

Image
features

Dim Dim 
Reduction

Integrative 
analysis

Radiogenomics &  
quantitative 

imaging



Medical imaging

• CT, MRI data have 
complementary 
information
– Size, location and 

morphology

• Part of diagnostic routine 

Potential to describe anatomical, functional and 
physiological properties of patients



Faculty @ Stanford

• Stanford Center for Biomedical Informatics Research @ 
Department of Medicine
– Assistant Professor: 2015-2022
– Associate Professor: 2022-now



First phd Student

• Haruka Itakura (#1, Stanford faculty)
• Quantitative imaging as basis for subtype 

discovery
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Imaging subtypes
• Cluster 1: 

– Irregular shape
– Many concavities

• Cluster 2:
– Spherical lesions
– Regular edges

• Cluster 3:
– Blurry edges
– Rim enhancing

Itakura et al. 2015 Science Translational Medicine



CoINcIDE: A framework for discovery of patient 
subtypes across multiple datasets

• Meta-analysis 
clustering

• Applied on set of 
ovarian cancer data 
sets

• Validation of 
subtypes across 
cohorts

1. cluster N datasets 

true subtypes 
subtype 1 

subtype 2 

subtype 3 

subtype 4 
2. compute similari es between all clusters 

3. Assign edges 
4. Derive 

metacluster 
networks 
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AMARETTO: module networks
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Gevaert O, et al. Interface Focus 2013
Manolakos et al. BMC Genomics 2014
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Single cell data



Pancancer AMARETTO

• with Nathalie Pochet (#43, Harvard & Broad institute)
• 

Champion et al. EBioMedicine, 2018

Cell cycle community 

Immune response community 

Smoking community 

b 



Validation of GPX2

• GPX2 is pancancer driver of 
smoking community

• LINCS project evaluates genetic 
perturbations and measures its 
effect on gene expression

• GPX2 is part of the LINCS study
• Measured in a lung cancer cell 

line

b 



Data fusion frameworks with deep learning
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SparseGMM

• Regulatory 
networks’

• Sparse Gaussian 
Mixture Model

• Applied on 
normal liver & 
liver cancer data

• Entropy of 
genes

Shaimaa
Bakr (#4) 

Type equation here.

Cancer 
modules

Normal liver 
modules

Building gene modules and associating modules with regulator genes 
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Visiting students @ Stanford

• Ongoing interactions with BDM bioinformatics graduates: 
– Spring 2020: visit Robin Van Daele – PhD student Dr. Tijl De Bie (#24). 
– Spring 2020: visit Tina Smets (#86, UgenTec, currently last student) 
– 2022: visit Marija Pizurica – PhD student Dr. Kathleen Marchal

(Postdoc)



Deep learning & Convolutional Neural Networks

• Convolution operation done by using a kernel on an image
• Often used for blurring, sharpening, edge detection, and more



Convolutional Neural Network



Convolutional Neural Network
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Convolutional Neural Network



Convolutional Neural Network



Convolutional Neural Network



Convolutions

Identity

Edge detection

Sharpen

Gaussian blur



Deep learning

• Successfully used on medical images
– Radiographic images (Mukherjee et al.  

2021 Nat Mac Intel)
– Digital pathology (Perez et al. In prep.)
– Dermatology images (Sadee et al. In 

Prep)



Deep learning  (r)evolution

• From CNNs, to VAE, GANs and Diffusion models. 

Convolutional neural networks

Variational Auto-encoders

Generative Adversarial Networks

Diffusion models



Biomedical data fusion & 
Multi-modal data

• Molecular data
• Genome
• Transcriptome
• Methylome
• Proteome

• Cellular data
• Histopathology

• Tissue data
• Radiographic 

images

• Clinical data
• EHR 
• Clinical notes

Can we use multi-modal data for cancer patients 
to predict overall survival? 



Multi modal data fusion
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https://github.com/gevaertlab/MultimodalPrognosis



Summary

• Entire cohort of bioinformatics students have been trained by 
Bart De Moor
– Ended up in key academic, spin-off and industry positions.

• Bioinformatics, biomedical data has evolved tremendously in 
the past ~20 years

• Amount of data biomedical data keeps exploding
– Molecular Single cell 
– Routinely collected imaging data
– Spatial technologies: spatial transcriptomics & proteomics



Summary

• Our research themes
– Data Representation
– Data fusion
– Visualization & Interpretation

• More info: http://gevaertlab.stanford.edu
• Disclaimers

– Apologies for anyone who I did not mention
– Rankings of BDM PhDs are based on the 

“Mathematics Genealogy Project”


