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My trajectory to PhD with BDM
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Phd @ Esat

* | learned the concept of a PhD from classmates during master
of Al and started contacting faculty.

* | met Bart in the summer of 2004 one day before a two week
holiday
— | did not say much ©

e When | came back | had a voice mail from Bart

124

— “You can start October 15t ...




Bioinformatics @ ESAT

« 2"d generation of Bioinformatics students at ESAT

— Co-advised by Dr. Dirk Timmerman, UZ Leuven

— Co-mentored by 15t generation student: Frank De Smet (CM)

e Other 1st generation students who had just finished PhD

— Gert Thijs (#22, Silicos, Cartagenia, Agilent, first bioinformatics |
student) 7

— Stein Aerts (#23, VIB/KUL)




Initial steps in data fusion

* Thesis topic: Bayesian networks for
fusion of clinical, ultrasound and
microarray data
— White box model with probabilistic

interpretation

— Classification based on an arbitrary
instantiation of the genes

— Bayesian networks are popular for
modelling gene networks

— Not too abstract (vs. boolean models)
and not too detailed (vs. differential

equations)
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Definition

* A Bayesian network consists of two parts
— Structure: directed acyclic graph
— Parameters: conditional probability tables (CPT)

Chronic bronchitis
P(X,IX,)= 25%
PX,1X,)= 5%

% A ,
(X;) (X.) P(X,X,)=0.3%

History of smoking
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(X
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Microarray technology

°cDNA microarray technology —
Patrick Brown - Stanford University

1981

Commercial technology by
Affymetrix.
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Microarray technology

ining a laser light at GeneChip® array causes tagged DNA fragments that hybridized to glow

High dimensional data

No tools & methods to analyze
them

Accelerated the field of
bioinformatics

Supervised & unsupervised
machine learning of RNA
expression data became very
popular




Bayesian data fusion

e Several “types” of data fusion
— Early vs. late data fusion

— Supervised vs. unsupervised
— Multi-modal & multi-scale

* My thesis was focused on data fusion implementation with Bayesian
networks




Early data fusion

gene clinical variable
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Bioinformatics on the rise @ Biol/SISTA/ESAT

e Group of several students working on similar topics ,ﬁ-

— Thomas Dhollander (Dsquare, Trendminer)

— Tim Van Den Bulcke (#56, UA, J&J & Galapagos)
— Karen Lemmens (#50, CropDesign, Bayer, BASF)
— Raf Van de Plas (#62, Vanderbilt University & TU Delft)




Bioinformatics on the rise @ Biol/SISTA/ESAT

e Group of several students working on similar topics ,ﬁ-

— Thomas Dhollander (Dsquare, Trendminer)

— Tim Van Den Bulcke (#56, UA, J&J & Galapagos)
— Karen Lemmens (#50, CropDesign, Bayer, BASF)
— Raf Van de Plas (#62, Vanderbilt University & TU Delft)
— Peter Van Loo (#52, KUL, Francis Crick, MD Anderson)




Integration of Bayes nets
with Text Mining

Gene expression )
data Prior

Posterior Likelihood Prior ?




Structure prior
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Alternative framework:
Kernel Data Fusion

 Kernel data fusion
as alternative to
Bayes nets
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Anneleen Daemen (#60, UC Berkeley, Genentech)



Early kernel fusion

 Kernel data fusion
as alternative to
Bayes nets

e Parallel
implementation of
early, intermediate
& late integration




End of Phd

 PhD Defense December 2008
“Framework for Bayesian network integration of biomedical data”

Medical decision support modeling
Traditional cancer management
Patient history

T ‘ 1 Diagnosis
characteristics | 9

Ultrasound ;
A ) ) Prognosis
characteristics | |

| Responseto |
Tumor markers a

- r
Proteomics data ‘L— -

Extension to BIOmedical
decision support
modeling




Road to Stanford

e After postdoc ~1 year with Bart

* Joined Stanford radiology dept in January 2010.
Support from Belgian American Educational Foundation (BAEF) & FWO
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Journey @ Stanford

e Postdoc: 2010-2013 with Sylvia Plevritis — Stanford Radiology
e Staff: 2013-2015

Gatched data Image \
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Medical imaging

 CT, MRI data have
complementary
information

— Size, location and
morphology

* Part of diagnostic routine

Potential to describe anatomical, functional and
physiological properties of patients




Faculty @ Stanford

e Stanford Center for Biomedical Informatics Research @
Department of Medicine

— Assistant Professor: 2015-2022
— Associate Professor: 2022-now




First phd Student

* Haruka Itakura (#1, Stanford faculty)

* Quantitative imaging as basis for subtype
discovery




Subtype Discovery
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RESEARCH ARTICLE

CANCER

* Cluster 1: Magnetic resonance image features identify
e UIETEaE glioblastoma phenotypic subtypes with distinct
— Many conca molecular pathway activities

Haruka Itakura,’ Achal S. Achrol,? Lex A. Mitchell,? Joshua J. Loy'a,2 Tiffany Liu,’

Erick M. Westbroek,* Abdullah H. Feroze,? Scott I:lodriguez,2 Sebastian Echegaray,5

Tej D. Azad,” Kristen W. Yeom,? Sandy Napel,? Daniel L. Rubin,"? Steven D. Chang,?
° Cl u Ste r 2: Griffith R. Harsh IV,?* Olivier Gevaert'*'

_ S h . | | " Glioblastoma (GBM) is the most common and highly lethal primary malignant brain tumor in adults. There is a
p erica S dire need for easily accessible, noninvasive biomarkers that can delineate underlying molecular activities and
predict response to therapy. To this end, we sought to identify subtypes of GBM, differentiated solely by quan-
—_ Reg u I ar e d g titative magnetic resonance (MR) imaging features, that could be used for better management of GBM patients.
Quantitative image features capturing the shape, texture, and edge sharpness of each lesion were extracted from
MR images of 121 single-institution patients with de novo, solitary, unilateral GBM. Three distinct phenotypic
“clusters” emerged in the development cohort using consensus clustering with 10,000 iterations on these image
features. These three clusters—pre-multifocal, spherical, and rim-enhancing, names reflecting their image
b Cl u Ste r 3 : features—were validated in an independent cohort consisting of 144 multi-institution patients with similar tumor
characteristics from The Cancer Genome Atlas (TCGA). Each cluster mapped to a unique set of molecular signaling
—_ B I u rry ed ge « pathways using pathway activity estimates derived from the analysis of TCGA tumor copy number and gene ex-
pression data with the PARADIGM (Pathway Recognition Algorithm Using Data Integration on Genomic Models)
_ R| m en h an C| algorithm. Distinct pathways, such as c-Kit and FOXA, were enriched in each cluster, indicating differential molecular
activities as determined by the image features. Each cluster also demonstrated differential probabilities of sur-
vival, indicating prognostic importance. Our imaging method offers a noninvasive approach to stratify GBM
patients and also provides unique sets of molecular signatures to inform targeted therapy and personalized

treatment of GBM.

Iltakura et al. 2015 Science Translational Medicine




ColINcIDE: A framework for discovery of patient
subtypes across multiple datasets

samples samples

 Meta-analysis
clustering

subtype 1

* Applied on set of
ovarian cancer data
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Katie Planey (#2, CTO Mantra Bio)




AMARETTO: module networks
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Single cell data

AMARETTO: multi-omics data fusion/

Gevaert O, et al. Interface Focus 2013
Manolakos et al. BMC Genomics 2014




Pancancer AMARETTO

Smoking community
Immune response community

Cell cycle community

Champion et al. EBioMedicine, 2018




Validation of GPX2

GPX2 is pancancer driver of
smoking community module

LINCS project evaluates genetic

shRNA1
shRNA2

P-val<0.05

O IO T~ NN~ O~

- OO0 ~©O© AU O

1 B (1] T O
perturbations and measures its FD:.:%,,%I g E E I
effect on gene expression ShRNA1

consensus

GPX2 is part of the LINCS study

Measu red in a Iung Cancer Ce” measured/total>50%
line




Data fusion frameworks with deep learning

Whole Slide Image Patches Features

Resnet50 | Cox Risk
Module Score

Risk
Score

Resnet50

Average
Resnet50

Cox
Resnet50 Module

Multi-layer Cox
Perceptron Module

Multi-layer . Cox
Perceptron Module

Lina Qiu (#3, Remesh



Regulatory
networks’

Sparse Gaussian
Mixture Model

Applied on
normal liver &
liver cancer data

Entropy of
genes

SparseGMM

@ TCGA RNASeq data GTEx RNASeq data "

L}

List of candidate
regulators [
Gy, ..., Gy

!

Building gene modules and associating modules with regulator genes
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Visiting students @ Stanford

* Ongoing interactions with BDM bioinformatics graduates:
— Spring 2020: visit Robin Van Daele — PhD student Dr. Tijl De Bie (#24).
— Spring 2020: visit Tina Smets (#86, UgenTec, currently last student)

— 2022: visit Marija Pizurica — PhD student Dr. Kathleen Marchal
(Postdoc)




Deep learning & Convolutional Neural Networks

* Convolution operation done by using a kernel on an image

e Often used for blurring, sharpening, edge detection, and more




Convolutional Neural Network
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Convolutional Neural Network
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Convolutional Neural Network
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Convolutional Neural Network
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Convolutional Neural Network
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Edge detection

Sharpen

Gaussian blur
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Deep learning

* Successfully used on medical images

— Radiographic images (Mukherjee et al.
2021 Nat Mac Intel)

— Digital pathology (Perez et al. In prep.)

— Dermatology images (Sadee et al. In
Prep)




Deep learning (r)evolution

* From CNNs, to VAE, GANs and Diffusion models.

Generative Adversarial Networks

C
Pre-trained Encoder

... generator

2048 (2048

Ideally they ai
X~AX
Probabilistic Encoder

q4(z|x) Gene expression

2 e Tile obtention
Convolutional ' ~E | !

X2

o ) ‘\\

An compres
z=p+oQe representation of e INput.

e~ N(0,I)

Std. dev

Variational Auto-encoders Diffusion models




Biomedical data fusion &
Multi-modal data

. Molecular data *  Tissue data
. Genome . Radiographic
. Transcriptome images

. Methylome
. Proteome

. Cellular data . Clinical data
. Histopathology . EHR
. Clinical notes

Can we use multi-modal data for cancer patients
to predict overall survival?




Tissue level

Cellular level

Molecular level

Multi modal data fusion

ACLUCHN
extraction

Feature vector

Size ~102
Feature
extraction
Feature vector
size ~102
: Omics data
. Methvlome integration

https://github.com/gevaertlab/MultimodalPrognosis

Multi-scale
data fusion




Summary

* Entire cohort of bioinformatics students have been trained by
Bart De Moor
— Ended up in key academic, spin-off and industry positions.

e Bioinformatics, biomedical data has evolved tremendously in
the past ~20 years

 Amount of data biomedical data keeps exploding

— Molecular Single cell
— Routinely collected imaging data
— Spatial technologies: spatial transcriptomics & proteomics




Summary

e Our research themes
— Data Representation
— Data fusion
— Visualization & Interpretation

* More info: http://gevaertlab.stanford.edu

* Disclaimers

— Apologies for anyone who | did not mention

— Rankings of BDM PhDs are based on the
“Mathematics Genealogy Project”




