Linear Algebra and Complementarity Problems

Lieven Vandenberghe

Department of Electrical and Computer Engineering, UCLA

Back to the Roots Leuven, July 8, 2022

Linear complementarity problem (LCP)

$$s = Mx + q, \qquad 0 \le x \perp s \ge 0$$

- variables are *n*-vectors *x*, *s*
- $x \perp s$ is the *complementarity* condition: $x_k s_k = 0$ for k = 1, ..., n

recognized and studied as a fundamental problem in optimization since 1960s

[Cottle and Dantzig, 1968]

Applications

Early applications (1960s)

- extends linear and quadratic programming
- Nash equilibrium in bimatrix games

Equilibrium models (economics, game theory, traffic networks, ...)

Engineering applications

- piecewise-linear circuits and systems
- hybrid systems
- contact mechanics

Primal:minimize $c^T x$ Dual:maximize $-b^T y$ subject to $Ax \le b$ subject to $-A^T y \le c$ $x \ge 0$ $y \ge 0$

Optimality conditions

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 0 & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} c \\ b \end{bmatrix}, \qquad 0 \le \begin{bmatrix} x \\ y \end{bmatrix} \perp \begin{bmatrix} u \\ v \end{bmatrix} \ge 0$$

an LCP with skew-symmetric coefficient matrix

minimize
$$\frac{1}{2}x^T P x + q^T x$$

subject to $Ax \le b$
 $x \ge 0$

(*P* symmetric positive semidefinite)

Optimality conditions

$$\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} P & A^T \\ -A & 0 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} q \\ b \end{bmatrix}, \qquad 0 \le \begin{bmatrix} x \\ y \end{bmatrix} \perp \begin{bmatrix} u \\ v \end{bmatrix} \ge 0$$

an LCP with (nonsymmetric) positive semidefinite coefficient matrix

Algorithms

Monotone LCP: *M* positive semidefinite (not necessarily symmetric)

- interior-point methods
- first-order splitting methods

Copositive LCP: *M* is a copositive matrix

 $x^T M x \ge 0$ for all $x \ge 0$

- Lemke's pivoting algorithm (1965): a continuation (homotopy) algorithm
- also useful as a constructive proof of an important existence theorem

Local methods: various first and second order methods

Complete solution: algorithm by Bart De Moor and Joos Vandewalle (1987)

finds all extreme points of a polyhedron defined by linear inequalities

Example: polyhedral cone described by

$$x \ge 0,$$
 $a_1^T x = 0,$ $a_2^T x = 0,$..., $a_m^T x = 0$

- define $V_k = \{x \mid x \ge 0, a_1^T x = 0, \dots, a_k^T x = 0\}$
- algorithm constructs extreme rays of V_k from extreme rays of V_{k-1}
- extreme rays of V_k are convex combinations of adjacent extreme rays of V_{k-1} on opposite sides of hyperplane $a_k^T x = 0$

Double description method to find all solutions of LCP

[De Moor and Vandewalle, 1987] [De Moor, Vandenberghe, Vandewalle, 1992]

Generalized LCP

$$x \ge 0,$$
 $Ax = 0,$ $\prod_{i \in I_k} x_i = 0,$ $k = 1, ..., l$

variable x is *n*-vector; I_1, \ldots, I_l are subsets of $\{1, 2, \ldots, n\}$

- solution set is a union of polyhedral cones
- at each step of DDM, discard extreme solutions that are not complementary
- this actually improves the efficiency
- further generalizations in Ph.D. of Bart De Schutter [De Schutter and De Moor, 1995]

Example in piecewise-linear circuit analysis

Fig. 1. Series connection of two piecewise linear resistors and their respective current-voltage characteristics.

Fig. 2. Resulting current-voltage characteristic of the series connection circuit in Figure 1.

$$s = Mx + q, \qquad 0 \le x \perp s \ge_* 0$$

- $x \ge 0$ means $x \in K$, where K is a convex cone
- $s \geq_* 0$ means $s \in K^*$, where K^* is the dual cone
- important example: $K = K^*$ is product of second order cones

$$Q = \{(v, w) \in \mathbf{R}^m \times \mathbf{R} \mid ||v|| \le w\}$$

Conic LCP in mechanics: contact with Coulomb friction

States per contact (friction coefficient μ)		
Stick	$\ \lambda_t\ \le \mu \lambda_n$	$(v_{\rm t}, v_{\rm n}) = 0$
Sliding	$\ \lambda_t\ = \mu \lambda_n$	$v_{\rm t} \propto -\lambda_{\rm t}, v_{\rm n} = 0$
Take off	$(\lambda_t, \lambda_n) = 0$	$v_{\rm n} \ge 0$

- $v_n \in \mathbf{R}$ is normal velocity, $v_t \in \mathbf{R}^2$ is tangential velocity
- $\lambda_n \in {I\!\!R}$ is normal force, $\lambda_t \in {I\!\!R}^2$ is tangential force

Frictional contact in two dimensions

Conic LCP in mechanics

- frictional contact can be modeled via conic complementarity (2nd order cone)
- leads to dynamical systems with inequality and complementarity constraints
- simulation requires solution of sequences of LCPs
- applications in computer animation and robotics
- important motivation for J.J. Moreau's pioneering work in convex analysis