
Linear Algebra and Complementarity Problems

Lieven Vandenberghe

Department of Electrical and Computer Engineering, UCLA

Back to the Roots
Leuven, July 8, 2022



Linear complementarity problem (LCP)

𝑠 = 𝑀𝑥 + 𝑞, 0 ≤ 𝑥 ⊥ 𝑠 ≥ 0

• variables are 𝑛-vectors 𝑥, 𝑠

• 𝑥 ⊥ 𝑠 is the complementarity condition: 𝑥𝑘𝑠𝑘 = 0 for 𝑘 = 1, . . . , 𝑛

𝑥1

𝑥2

𝑀𝑥 + 𝑞 = 𝑠
𝑥

recognized and studied as a fundamental problem in optimization since 1960s

[Cottle and Dantzig, 1968]
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Applications

Early applications (1960s)

• extends linear and quadratic programming

• Nash equilibrium in bimatrix games

Equilibrium models (economics, game theory, traffic networks, . . . )

Engineering applications

• piecewise-linear circuits and systems

• hybrid systems

• contact mechanics

2



Linear program as LCP

Primal: minimize 𝑐𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0

Dual: maximize −𝑏𝑇 𝑦
subject to −𝐴𝑇 𝑦 ≤ 𝑐

𝑦 ≥ 0

Optimality conditions[
𝑢

𝑣

]
=

[
0 𝐴𝑇

−𝐴 0

] [
𝑥

𝑦

]
+
[
𝑐

𝑏

]
, 0 ≤

[
𝑥

𝑦

]
⊥

[
𝑢

𝑣

]
≥ 0

an LCP with skew-symmetric coefficient matrix
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Quadratic program as LCP

minimize 1
2𝑥
𝑇𝑃𝑥 + 𝑞𝑇𝑥

subject to 𝐴𝑥 ≤ 𝑏

𝑥 ≥ 0
(𝑃 symmetric positive semidefinite)

Optimality conditions[
𝑢

𝑣

]
=

[
𝑃 𝐴𝑇

−𝐴 0

] [
𝑥

𝑦

]
+
[
𝑞

𝑏

]
, 0 ≤

[
𝑥

𝑦

]
⊥

[
𝑢

𝑣

]
≥ 0

an LCP with (nonsymmetric) positive semidefinite coefficient matrix
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Algorithms

Monotone LCP: 𝑀 positive semidefinite (not necessarily symmetric)

• interior-point methods

• first-order splitting methods

Copositive LCP: 𝑀 is a copositive matrix

𝑥𝑇𝑀𝑥 ≥ 0 for all 𝑥 ≥ 0

• Lemke’s pivoting algorithm (1965): a continuation (homotopy) algorithm

• also useful as a constructive proof of an important existence theorem

Local methods: various first and second order methods

Complete solution: algorithm by Bart De Moor and Joos Vandewalle (1987)
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Double description method [Motzkin, Raiffa, Thompson, Thrall, 1953]

finds all extreme points of a polyhedron defined by linear inequalities

Example: polyhedral cone described by

𝑥 ≥ 0, 𝑎𝑇1𝑥 = 0, 𝑎𝑇2𝑥 = 0, . . . , 𝑎𝑇𝑚𝑥 = 0

• define 𝑉𝑘 = {𝑥 | 𝑥 ≥ 0, 𝑎𝑇1𝑥 = 0, . . . , 𝑎𝑇
𝑘
𝑥 = 0}

• algorithm constructs extreme rays of 𝑉𝑘 from extreme rays of 𝑉𝑘−1

• extreme rays of 𝑉𝑘 are convex combinations of adjacent extreme rays of
𝑉𝑘−1 on opposite sides of hyperplane 𝑎𝑇

𝑘
𝑥 = 0

𝑉𝑘−1
𝑎𝑇
𝑘
𝑥 = 0
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Double description method to find all solutions of LCP

[De Moor and Vandewalle, 1987] [De Moor, Vandenberghe, Vandewalle, 1992]

Generalized LCP

𝑥 ≥ 0, 𝐴𝑥 = 0,
∏
𝑖∈𝐼𝑘

𝑥𝑖 = 0, 𝑘 = 1, . . . , 𝑙

variable 𝑥 is 𝑛-vector; 𝐼1, . . . , 𝐼𝑙 are subsets of {1, 2, . . . , 𝑛}

• solution set is a union of polyhedral cones

• at each step of DDM, discard extreme solutions that are not complementary

• this actually improves the efficiency

• further generalizations in Ph.D. of Bart De Schutter
[De Schutter and De Moor, 1995]
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Example in piecewise-linear circuit analysis
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Conic LCP

𝑠 = 𝑀𝑥 + 𝑞, 0 ⪯ 𝑥 ⊥ 𝑠 ⪰∗ 0

• 𝑥 ⪰ 0 means 𝑥 ∈ 𝐾, where 𝐾 is a convex cone

• 𝑠 ⪰∗ 0 means 𝑠 ∈ 𝐾∗, where 𝐾∗ is the dual cone

• important example: 𝐾 = 𝐾∗ is product of second order cones

Q = {(𝑣, 𝑤) ∈ R𝑚 × R | ∥𝑣∥ ≤ 𝑤}

−1 0 1 −1
0

1
0

1

𝑣1
𝑣2

𝑤
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Conic LCP in mechanics: contact with Coulomb friction

States per contact (friction coefficient 𝜇)

Stick ∥𝜆t∥ ≤ 𝜇𝜆n (𝑣t, 𝑣n) = 0
Sliding ∥𝜆t∥ = 𝜇𝜆n 𝑣t ∝ −𝜆t, 𝑣n = 0
Take off (𝜆t, 𝜆n) = 0 𝑣n ≥ 0

• 𝑣n ∈ R is normal velocity, 𝑣t ∈ R2 is tangential velocity

• 𝜆n ∈ R is normal force, 𝜆t ∈ R2 is tangential force

Stick/sliding

Take off

𝜆n

𝑣n

𝜇𝜆n

−𝜇𝜆n

Sliding

Sliding

Stick 𝜆t

𝑣t

Frictional contact in two dimensions
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Conic LCP in mechanics

• frictional contact can be modeled via conic complementarity (2nd order cone)

• leads to dynamical systems with inequality and complementarity constraints

• simulation requires solution of sequences of LCPs

• applications in computer animation and robotics

• important motivation for J.J. Moreau’s pioneering work in convex analysis
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