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Back to the roots of my interactions with Bart
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Let's investigate
health records!




Research at STADIUS

My PhD on machine learning, promoted by Bart De Moor



Project: text mining health insurance records
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Project: text mining health insurance records
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Project: diabetes screening via insurance records

Bart De Moor (promotor)

Frank De Smet
(copromotor)

Chantal Mathieu

Johan Suykens

Jesse Davis
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Marc = Piranha
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From research to industry

A brief overview of Aspect Analytics.



In Digital We Trust !

Make sure to
make impact!
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Aspect
A Analytics

Aspect Analytics in a nutshell

Mission

« Dedicated software solutions for mass spectrometry imaging (MSI)
« focus on high-throughput applications
« enabling integration with other imaging modalities
« scalable by design if and when necessary

Our core offering

« Bioinformatics & machine learning
« Cloud-based software platform
« Customized workflows & integrations
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Same same, but different

A brief overview of Aspect Analytics.



Aspect

Customer segmentation Y Analytics

Focus on industrial, high-throughput applications of MSI| technology.

Big Pharma & Instrument vendors Biomarker discovery &

biotech companies & service providers clinical diagnostics ’



Aspect
Analytics

The pharmaceutical R&D pipeline

Lead
optimization ,

Target
identification ,

Target
validation  /

Preclinical

Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical R&D efficiency." Nature reviews Drug discovery 11.3 (2012): 191.
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Aspect
Analytics

The pharmaceutical R&D pipeline

T ' B \ - H (—_— & - Decline in

arget arget arget it to ea _— inical trials approved drug
identification validation to hit lead optimization pleclinical Phase |, D

Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical R&D efficiency." Natu jlews Drug discovery 11.3 (2012): 191.

N

Only 12% of compounds entering clinical
trials are ultimately approved by the FDA'*
e inadequate efficiency (57%)?
e safety concerns (17%)?
e commercial reasons (22%)?

1. Pharmaceutical Research and Manufacturers of America. 2016 biopharmaceutical research industry profile.
2.  Hwang, Thomas J, et al. "Failure of investigational drugs in late-stage clinical development and publication of trial results.” JAMA internal
medicine 176.12 (2016): 1826-1833.
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Aspect
Analytics

The pharmaceutical R&D pipeline

Target
identification

Target
validation

Lead
optimization ,

Preclinical

Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical pfficiency.” Nature reviews Drug discovery 11.3 (2012): 191.

N

Opportunities in preclinical research:

e “fail fast™ culling unfit compounds early avoids major costs

e deeper biological insights can improve entire process
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Key challenges in high-throughput

Optimizing human efficiency via workflows

« Full digital pipeline is split into work items

« Individual roles based on expertise

« Streamline communication & collaboration

« Automate data analysis steps when possible

Detecting potential issues via data-driven QC I!m setting up a big MSI study |aVou/have a system in place
involving lots of experiments. § 'for data-driven QC, right?

« Pivotal for robust, high-throughput usage
« Requires deep knowledge of application
« Supported by detailed metadata
 |deally fully automated

,A}ou have a system in place
“for'data-driven QC, right?
F
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When you try to fail and you succeed ...

‘When you operate at scale, failure is the norm.” - distributed computing adage

In the context of MS imaging, failures can come in many forms, e.g..

- bad data: problems with sample / sample prep, instrument issues, ...
- poor data analysis: information leaks, problematic assumptions, bad fit, ...
* human error: errors in data input / copying, communication issues, ...

How to deal with impending failures

« observability: can we identify the presence of certain issues? e.g., bad spectral quality
« traceability: can we identify the root cause of an issue? e.g., broken laser
« prevention: how to avoid this issue moving forward? e.g., laser QC protocol
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Aspect

Observability reduces risk pl NS
high observability low observability
(issues can be detected reliably) (issues cannot be detected reliably)

low impact

(probably does not affect conclusions)

high impact

(may significantly affect conclusions)
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Data-driven QC is key

Spend time once to gain time permanently
« (Check key assumptions for each sample / batch in an automated way
« Run data-driven QC as a background task, notify team upon anomalies only

Improve reliability and confidence in core outputs

« Rest assured that large swaths of problems are checked by default
« Avoid structural failures that can compromise long-term success

Data-driven QC requires well-curated meta-data

« info on all relevant levels: sample / ROI / measurement / ...
« e.g,control vs. treated animal, technical/biological replicates, # laser shots, ...
« data lineage to enable traceability
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Conclusion

What a long, strange trip it's been
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What a long, strange trip it's been
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Let's go back
to the roots!
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