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What is Artificial Intelligence and Machine Learning?
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• Artificial intelligence
• “Intelligence” as demonstrated by a machine unlike ‘natural (animal, human) intelligence’
• Mimic the human mind in ‘cognitive functions’ and ‘problem solving’
• Mimic = by massive computing power, exploiting tsunami of data
• Inter/cross-disciplinary: mathematics, computer information science, control engineering, 

psychology, linguistics,…
• Emotionality ? (Self-)consciousness ?

• Machine Learning
• Computer algorithms that ‘improve’ their performance through experience/data processing
• Supervised (e.g. by providing classification labels) or unsupervised (e.g. data reduction)
• Interdisciplinary: mathematics, statistics, numerical optimization, …
• Training and validation data
• Generalization, Transfer Learning, Generative AI, …  



Moore’s law:
computing power
doubles
every 18 months

Connectivity &
bandwidth explosion

Bandwidth & 
Connectivity
evolve
exponentially
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Data
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1 million = 1 000 000
1 billion = 1 000 000 000
1 trillion = 1 000 000 000 000
1 quadrillion = 
1 000 000 000 000 000

1 kB   = 1 000 
1 MB = 1 000 000
1 GB  = 1 000 000 000
1 TB   = 1 000 000 000 000
1 PB   = 1 000 000 000 000 000   

1 TB 
= large university library
= 212 DVD discs 
= 1430 CDs
= 3 year music CD quality
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The Fourth Paradigm
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Paradigm Time Ago Method

First A millenium Empirical

Second A few centuries Theoretical

Third A few decades Computational

Fourth Today Data-driven

Evolution

Data first!

From To

I have a hypothesis

I need data to check it

I have data

Which hypotheses can I check?

Big Data

6
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AI Driven Data Science
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Single Cell Technologies
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• New technologies create novel and much richer data types that should be integrated and interpreted to yield novel biological insights
• Multimodal measurements at single cell resolution (genomics, transcriptomics, epigenomics, …)
• Spatial omics (convergence of ‘omics’ and imaging) and imaging cytometry

How normal and disease cells evolve and interact, including spatial resolution

Evolution over time Cell interactions New spatial dimension
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An AI revolution is brewing 
in medicine
Excitement seems to be growing 
about generalist medical artificial 
intelligence (AI). Unlike the tools 
available now, which serve specific 
functions such as detecting lung 
nodules in a chest scan, 
generalist models would act more 
like a physician. 
They could assess every anomaly 
in a scan and even create something
like a diagnosis. Inspired by the models
underlying chatbots such as ChatGPT, 
they would be trained on massive data
sets in the hope that it will give them
broad capabilities. 

https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=252fc2ba76&e=87c46a5001
https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=252fc2ba76&e=87c46a5001
https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=4598ea173f&e=87c46a5001
https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=4598ea173f&e=87c46a5001
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The objective of this use case is to provide disease-tailored treatments for each individual patient at the right
time according to their individual pathophysiological disease spectrum by harvesting multimodal and
heterogeneous data and allowing to dynamically update those predictions when additional data becomes available.

Digital Twin Cardio
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• During the recent years, several (isolated) demonstrator projects have shown the potential of the use of AI for improved RWE 
generation - Technical challenges that are tackled in specific demonstrators are not always use-case specific. It remains 
unclear how easily lessons learned from one use case can be leveraged to a variety of clinical research questions

• Urgent need to scale and speed-up the development of so called “AI solutions” and reduce recurring costs and increased time 
to address several clinical research questions 

Automate and generalize the development and implementation of AI solutions for Real-World-
Evidence generation for several complex clinical finalities

Multiple sclerosis

3 clinical finalities

Cardiovascular disorders Risk pregnancy
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AI and Systems & Control

• Numerical Linear Algebra
• Multidimensional (nD) systems
• Polynomial Optimization
• Systems and Control
• System identification
• Advanced process control (e.g., MPC)
• Optimal Estimation

For more info, please contact

Prof. Dr. Ir. Bart De Moor
Email: bart.demoor@kuleuven.be
Website: www.bartdemoor.be

Research  Topics

• Data driven applications in Industry 4.0 & 
Health 2.0

• Data Science, AI, Decision Support Systems 
• Data assimilation
• Machine learning
• Deep learning

Some Previous and Current projects

Back to the roots

Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the
throughput of the synthesis section of a urea plant, while satisfying the process constraints.
Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the
throughput of the synthesis section of a urea plant, while satisfying the process constraints.

The Demer in Hasselt

Control of the synthesis section of a Urea plant 
using MPC control techniques

Control of the synthesis section of a Urea plant 
using MPC control techniques

Implementation of a Nonlinear Model Predictive 
controller (NMPC) for the Demer

Implementation of a Nonlinear Model Predictive 
controller (NMPC) for the Demer

Flooded area during the flood event of 1998
Financial Damage: > 16 million euro!

The control goal was to avoid future floodings
of the Demer river in Belgium by using NMPC
The control goal was to avoid future floodings
of the Demer river in Belgium by using NMPC

Upstream part of the Demer modelled
and controlled in the preliminary study
carried out by STADIUS

Urea plant of Yara at 
Brunsbüttel (Germany)

Urea: nitrogenous fertilizer

Hard Capsule Machine (HCM)

Dipping process

Data assimilation in the Air‐quality model AuroraData assimilation in the Air‐quality model Aurora Temperature Control in the Dipping section  
of a Hard Capsule Machine

Temperature Control in the Dipping section  
of a Hard Capsule Machine

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.
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Measurements
Aurora (Model)
OI
DEnKF

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

‐Validation stations
‐ Assimilation stations

O3 air‐quality stations Average of the O3 concentration over 
the validation stations

Starting date: May 28th, 2005 at midnight

Day‐ahead consumption forecasting in the Low 
Voltage (LV) grid using Deep learning

Day‐ahead consumption forecasting in the Low 
Voltage (LV) grid using Deep learning

Robust days‐of‐year clustering of 
Smart meter data

Robust days‐of‐year clustering of 
Smart meter data

High
Voltage Medium

Voltage

Low Voltage
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Model: NARX Feedforward Neural Network

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead.

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead. The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid

simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid
simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

Smart meter

OMAM / 2021
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AI and Systems & Control

• Numerical Linear Algebra
• Multidimensional (nD) systems
• Polynomial Optimization
• Systems and Control
• System identification
• Advanced process control (e.g., MPC)
• Optimal Estimation
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The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.

 3 E  4 E  5 E  6 E 

 50 N 

 51 N 
2

46

40

73

22

78 4

1667

56

19

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

Co
nc

en
tra

tio
n 

[ u
g/

m
3 ]

Time [Hours]

 

 

Measurements
Aurora (Model)
OI
DEnKF

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

‐Validation stations
‐ Assimilation stations

O3 air‐quality stations Average of the O3 concentration over 
the validation stations

Starting date: May 28th, 2005 at midnight
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Model: NARX Feedforward Neural Network

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead.

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead. The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid

simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid
simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

Smart meter
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UC1 Smart Grid : challenges

24

FAIR1 : Methods that start from single type of energy domain data: grid GIS data, digital meter voltage or active power measurements
à Structurally beaten by energy experts
FAIR2 leap: Mimic human expert probabilistic reasoning on multimodal data from within and outside the energy domain
• Uncertainty quantification, modeling and forecasting of grid usage by emerging new energy transition appliances
• Complete and correct the knowledge on the layout of the LV grids 
• Human in the loop decision support for the DSO on the configuration and planning of the LV grids

Where are the open points?Which house is connected
to what cable?

Which house is connected
to what phase? How do heat pumps 

and electrical cars 
behave?How to optimize the grid layout 

with minimal operator actions?

Artificial intelligence top-tech 
research challenges

17

USE CASE EXAMPLE: INDUSTRY 4.0
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AI and Systems & Control

• Numerical Linear Algebra
• Multidimensional (nD) systems
• Polynomial Optimization
• Systems and Control
• System identification
• Advanced process control (e.g., MPC)
• Optimal Estimation

For more info, please contact

Prof. Dr. Ir. Bart De Moor
Email: bart.demoor@kuleuven.be
Website: www.bartdemoor.be

Research  Topics

• Data driven applications in Industry 4.0 & 
Health 2.0

• Data Science, AI, Decision Support Systems 
• Data assimilation
• Machine learning
• Deep learning

Some Previous and Current projects

Back to the roots

Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the
throughput of the synthesis section of a urea plant, while satisfying the process constraints.
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Flooded area during the flood event of 1998
Financial Damage: > 16 million euro!

The control goal was to avoid future floodings
of the Demer river in Belgium by using NMPC
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Upstream part of the Demer modelled
and controlled in the preliminary study
carried out by STADIUS

Urea plant of Yara at 
Brunsbüttel (Germany)

Urea: nitrogenous fertilizer

Hard Capsule Machine (HCM)

Dipping process

Data assimilation in the Air‐quality model AuroraData assimilation in the Air‐quality model Aurora Temperature Control in the Dipping section  
of a Hard Capsule Machine

Temperature Control in the Dipping section  
of a Hard Capsule Machine

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.
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Measurements
Aurora (Model)
OI
DEnKF

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

‐Validation stations
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O3 air‐quality stations Average of the O3 concentration over 
the validation stations
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Model: NARX Feedforward Neural Network

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead.

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead. The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid

simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid
simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

Smart meter

OMAM / 2021

Spinoffs:

with risks. These include misapplication 
by researchers who are unfamiliar with the 
details, and the use of poorly trained mod-
els or badly designed input data sets, which 
deliver unreliable results and can even cause 
unintended harm. For example, if reports of 
weather events — such as tornadoes — are used 
to build a predictive tool, the training data are 
likely to be biased towards heavily populated 
regions, where more events are observed 
and reported. In turn, the model is likely to 
over-predict tornadoes in urban areas and 
under-predict them in rural areas, leading to 
unsuitable responses7.

Data sets differ widely, yet the same ques-
tions arise in all fields: when, and to what 
extent, can researchers trust the outcomes 
of AI and mitigate harm? To explore such ques-
tions, the AGU, with the support of NASA, last 
year convened a community of researchers 
and ethicists (including us) at a series of work-
shops. The aim was to develop a set of princi-
ples and guidelines around the use of AI and 
ML tools in the Earth, space and environmental 
sciences, and to disseminate them (see ‘Six 
principles to help build trust’)6. 

Answers will evolve as AI develops, but 
the principles and guidelines will remain 
grounded in the basics of good science — 
how data are collected, treated and used. To 
guide the scientific community, here we make 
practical recommendations for embedding 
openness, transparency and curation in the 
research process, and thus helping to build 
trust in AI-derived findings. 

Watch out for gaps and biases
It is crucial for researchers to fully understand 
the training and input data sets used in an 
AI-driven model. This includes any inherent 
biases — especially when the model’s outputs 
serve as the basis of actions such as disaster 

responses or preparation, investments or 
health-care decisions. Data sets that are poorly 
thought out or insufficiently described increase 
the risk of ‘garbage in, garbage out’ studies and 
the propagation of biases, rendering outcomes 
meaningless or, even worse, dangerous. 

For example, many environmental data have 
better coverage or fidelity in some regions or 
communities than in others. Areas that are 
often under cloud cover, such as tropical rain-
forests, or that have fewer in situ sensors or 
satellite coverage, such as the polar regions, 
will be less well represented. Similar dispari-
ties across regions and communities exist for 
health and social-science data. 

The abundance and quality of data sets are 
known to be biased, often unintentionally, 
towards wealthier areas and populations and 
against vulnerable or marginalized commu-
nities, including those that have historically 
been discriminated against7,8. In health data, 
for instance, AI-based dermatology algorithms 
have been shown to diagnose skin lesions and 
rashes less accurately in Black people than in 
white people, because the models are trained 
on data predominantly collected from white 
populations8. 

Such problems can be exacerbated when 
data sources are combined — as is often 
required to provide actionable advice to the 
public, businesses and policymakers. Assess-
ing the impact of air pollution9 or urban heat10 
on the health of communities, for example, 
relies on environmental data as well as on 
economic, health or social-science data. 

Unintended harmful outcomes can occur 
when confidential information is revealed, 
such as the location of protected resources or 
endangered species. Worryingly, the diversity 
of data sets now being used increases the risks 
of adversarial attacks that corrupt or degrade 
the data without researchers being aware11. AI 
and ML tools can be used maliciously, fraudu-
lently or in error — all of which can be difficult 
to detect. Noise or interference can be added, 
inadvertently or on purpose, to public data 
sets made up of images or other content. This 
can alter a model’s outputs and the conclu-
sions that can be drawn. Furthermore, out-
comes from one AI or ML model can serve 
as input for another, which multiplies their 
value but also multiplies the risks through 
error propagation. 

Our recommendations for data deposition 
(see ref. 6 and ‘Six principles to help build 
trust’) can help to reduce or mitigate these risks 
in individual studies. Institutions should also 
ensure that researchers are trained to assess 
data and models for spurious and inaccurate 

Following these best practices will help to 
avert harm when using AI in research. 

Researchers 
1. Transparency. Clearly document and 
report participants, data sets, models, bias 
and uncertainties. 
2. Intentionality. Ensure that the AI model 
and its implementations are explained, 
replicable and reusable.
3. Risk. Consider and manage the possible 
risks and biases that data sets and 
algorithms are susceptible to, and how 
they might affect the outcomes or have 
unintended consequences. 
4. Participatory methods. Ensure inclusive 
research design, engage with communities 
at risk and include domain expertise. 

Scholarly organizations (including 
research institutions, publishers, societies 
and funders)
5. Outreach, training, and leading practices. 
Provide for all roles and career stages. 
6. Sustained effort. Implement, review and 
advance these guidelines.

More detailed recommendations are 
available in the community report6 
facilitated by the American Geophysical 
Union, and are organized into modules for 
ease of distribution, use in teaching and 
continued improvement. 

Six principles to 
help build trust

results, and to view their work through a lens 
of environmental justice, social inequity and 
implications for sovereign nations12,13. Institu-
tional review boards should include expertise 
that enables them to oversee both AI models 
and their use in policy decisions. 

Develop ways to explain how AI 
models work
When studies using classical models are pub-
lished, researchers are usually expected to 
provide access to the underlying code, and any 
relevant specifications. Protocols for report-
ing limitations and assumptions for AI models 
are not yet well established, however. AI tools 
often lack explainability — that is, transpar-
ency and interpretability of their programs. It 
is often impossible to fully understand how a 

GROWING AI USE IN
EARTH AND SPACE SCIENCE
A rising proportion of abstracts for the annual meeting 
of the American Geophysical Union mention artificial 
intelligence (AI) or machine learning (ML) — a trend 
seen across all areas of geoscience.
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UC5 Geoplatform – Urban : challenges

59

• Data transformations for heterogeneous data
• Integrated information extraction from 

imagery, databases, graphs, …
• Multimodal data exploration and modeling

• Dealing with limited ground truth
• Incorporate spatial structure cues
• Expert knowledge-based learning
• Explainable to human experts

• Dense representation learning
• Unsupervised learning at object level
• Efficient data acquisition strategies
• 3D shape/volume extraction

Heterogeneous data Human expertise Scalability Uncertainty

Remote sensing  

Streetview

3D models

GIS Databases

Material passports
& simulation

Materials experts

Spatial Sp
ec
tr
al

Temporal

Acquisition
Labeling

Processing
Storage

Latencies

Diversity

Environmental conditions

Obstacles

• Uncertainty aware decision making
• Scene decomposition
• Continual learning
• Domain shifts

AI in and for urban and geographical research
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of sensors through optimal data collection designs. We aim to get the best view on spatio-temporal 
variability in Flanders. 
 
Data engineering is focused in this use case on AI assisted pre-processing. This will be integrated 
for time series modelling of water quality to deal with failing sensors and significant data gaps. Machine 
learning is needed to make the step from sparse water sensors to frequent and continuous water quality 
predictions in river systems, and to create high resolution maps of soil and groundwater to better 
understand spatiotemporal dynamics. Another topic of interest is the landscape responses to climate 
change. Generative modelling will be explored to fill in data gaps in time series or generate realistic 
precipitation maps under a changing climate. 
 
Model building focusses here on new AI algorithms for environmental models and optimization of the 
involved parameters. We aim to speed up model calculations, apply AI techniques to extrapolate results 
without the need of explicitly running the models and exploit the spatial structures of data to do better 
informed predictions. To achieve these goals, we’ll explore the use of kernel methods on high 
dimension datasets and graph neural networks as a way to include spatial dependency. This will firstly 
be done for sensor data for river water quality predictions. 
 
Additionally, model verificiation techniques will be explored. Reasoning about the model methods is 
becoming increasingly important as this enables gaining insights into model behavior that is not apparent 
when using traditional performance metrics such as accuracy, precision-recall curves, run time or model 
size. For example, it is often desirable to know if a model's predictions are sensitive to small 
perturbations of the data. 
 
To further valorize the wealth of environmental data, AI can also support the decision making 
process. Multi-agent systems and reinforcement learning will be applied to study the impact of 
heat action plans and heat warning systems on health impact and mortality. Future climate scenarios and 
combined actions and measures can be tested for their efficiency in mitigating the health impact of 
increasingly severe heat waves. 
 
For each research challenge a primary focus on either air quality, water or heat stress is chosen. The 
concepts will however be addressed in a generic way for integration in other environmental models. A 
wealth of monitoring data, model results and supporting data for air quality, water and heat stress are 
available to have an efficient start of this use case and support cross-domain learning between air quality, 
water, heat stress and other environmental topics. 
 
The involved researchers are well experienced in offering decision support to the Flemish and other 
environmental administrations and agencies. To ensure all AI based improvements are suited for uptake 
in the environmental modelling and policy processes, several organizations have been invited to this use 
case as external parties to contribute to evaluation of the research outcomes. 
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AI and Systems & Control

• Numerical Linear Algebra
• Multidimensional (nD) systems
• Polynomial Optimization
• Systems and Control
• System identification
• Advanced process control (e.g., MPC)
• Optimal Estimation

For more info, please contact

Prof. Dr. Ir. Bart De Moor
Email: bart.demoor@kuleuven.be
Website: www.bartdemoor.be

Research  Topics

• Data driven applications in Industry 4.0 & 
Health 2.0

• Data Science, AI, Decision Support Systems 
• Data assimilation
• Machine learning
• Deep learning

Some Previous and Current projects

Back to the roots

Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the
throughput of the synthesis section of a urea plant, while satisfying the process constraints.
Model Predictive Control (MPC) strategies were used for stabilizing and maximizing the
throughput of the synthesis section of a urea plant, while satisfying the process constraints.

The Demer in Hasselt

Control of the synthesis section of a Urea plant 
using MPC control techniques

Control of the synthesis section of a Urea plant 
using MPC control techniques

Implementation of a Nonlinear Model Predictive 
controller (NMPC) for the Demer

Implementation of a Nonlinear Model Predictive 
controller (NMPC) for the Demer

Flooded area during the flood event of 1998
Financial Damage: > 16 million euro!

The control goal was to avoid future floodings
of the Demer river in Belgium by using NMPC
The control goal was to avoid future floodings
of the Demer river in Belgium by using NMPC

Upstream part of the Demer modelled
and controlled in the preliminary study
carried out by STADIUS

Urea plant of Yara at 
Brunsbüttel (Germany)

Urea: nitrogenous fertilizer

Hard Capsule Machine (HCM)

Dipping process

Data assimilation in the Air‐quality model AuroraData assimilation in the Air‐quality model Aurora Temperature Control in the Dipping section  
of a Hard Capsule Machine

Temperature Control in the Dipping section  
of a Hard Capsule Machine

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.

The control goal was to keep the gelatin temperature
on its nominal value despite the disturbances
affecting the process.
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Measurements
Aurora (Model)
OI
DEnKF

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

The objective was to improve the concentration estimates of the air‐quality model Aurora by
using data assimilation techniques such as Optimal Interpolation (OI), and the Deterministic
Ensemble Kalman Filter (DEnKF).

‐Validation stations
‐ Assimilation stations

O3 air‐quality stations Average of the O3 concentration over 
the validation stations

Starting date: May 28th, 2005 at midnight

Day‐ahead consumption forecasting in the Low 
Voltage (LV) grid using Deep learning

Day‐ahead consumption forecasting in the Low 
Voltage (LV) grid using Deep learning

Robust days‐of‐year clustering of 
Smart meter data

Robust days‐of‐year clustering of 
Smart meter data
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The electricity transmission and distribution system
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Model: NARX Feedforward Neural Network

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead.

The goal is to build data‐
driven mathematical models
to forecast the electricity
consumption of households
one day ahead. The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid

simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

The aim is to reduce the high computational cost of year‐ahead country‐scale Low‐Voltage grid
simulations, by carrying out simulations only on representative days obtained using clustering
techniques.

Smart meter

OMAM / 2021

Spinoffs:



AI helps to save endangered species (Nature) 
• Artificial intelligence (AI) can help to fight biodiversity loss by analysing rainforest 

soundscapes or sifting through tens of thousands of camera-trap images. A neural 
network that can pick out bird species from audio recordings could be crucial for 
forest-restoration projects that must demonstrate success to secure continued 
funding. And an AI that analyses footage in real time has already caught a pangolin 
poacher in the act. Although scientists should be aware that AI is imperfect and has 
its own environmental impacts, it’s “clearly the way to go”, says Nicolas Miailhe, 
founder of an AI-governance non-profit.

22

https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=1ad7348431&e=87c46a5001
https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=d4829527a5&e=87c46a5001
https://nature.us17.list-manage.com/track/click?u=2c6057c528fdc6f73fa196d9d&id=d4829527a5&e=87c46a5001
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With the  Digital Humanities use case we intend to support research across the different branches of the 
Humanities: Artificial Intelligence aids in collecting data, putting the pieces of the puzzle together and 
exhibiting our Flemish cultural heritage. 
 
In this use case the following applications will be considered: 
 

• Unlocking GLAM (Galleries Libraries Archives and Museums) collections:  Augment 
recommender systems. 

• Unlocking Polyphony:  Cultural heritage digitization, unlocking and restoration. 

• Unlocking Cultural Heritage Artefacts: Automated Structure Understanding 

− Acoustics as intangible cultural heritage: Archiving and interactive auralization of historically 
valuable acoustics. 

• The old university:  Reconstruction of the life and society of the Old University of Leuven. 

− Curation of spoken documents:  Automatic transcription of old spoken documents. 

• Digital Heritage: Digitalization of 2D and 3D cultural heritage. 
 

 

AI Transcription of an old manuscript 
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Menu 

- AI: what, when, how ? 

- Inspiring examples of AI in science

- Issues in ‘AI in science’ policies and science policy for AI

 

Safe & mobile

Precision agriculture

Personalised medicine

Lifelong learning

Flexibility and improvement of 
productivity in manufacturing 

industry 

Energy transition
Energy distribution and production

SOCIETYHEALTH INDUSTRY PLANET & 
ENERGY

Use cases in four domains 
Selection of use cases
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AI in support of living a healthier life for longer

AI in support of Industry 5.0:  sustainable, resilient, and 
human-centered

AI in support of a human-centered prosperous digital 
future for society

AI for sustainability, AI taking care of our planet and 
supporting the energy transition

Responsible AI

2024-2028

Foto: 
KU Leuven

Foto: Flanders Make

Foto: VUB
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Acquired by Agilent
Data handling & mining for clinical genetics 
(2008)
https://www.agilent.com/

Data mining software & services
for process industry 

(2008)http://www.dsquare.be/
(won in 2009 the award of  "best 
spin-off of the year”)

Transport & Mobility research & mgt 
(2002)
http://www.tmleuven.be/

3

patient tele-monitoring 

Specialized in modelling and control of 
multivariable industrial processes (chemical 
and power plants, oil exploration) 
automation & optimization (1995)
http://www.ipcos.com/en

Payment fraud detection (2000)
(in 2004 acquired by Norkom Technologies ; 

in 2011 Norkom Techn. was acquired by 
Detica NetReveal , Bus. Division of BAE 
Systems Detica. 
http://www.deticanetreveal.com/en/about-
us.html

In silico drug
discovery (2005)

Spin-Off Companies (personal track record)  

TrendMiner: Formerly Dsquare, is the 
Belgian big-data in process industry 
company that has been acquired by 
Software AG.

UgenTec delivers an independent diagnostic 
software platform to help molecular labs 
with their DNA (PCR) analyses. It offers The 
FastFinder 2.0 analysis software for helping 
lab technicians in their analysis of PCR data. 
It serves biotech companies, labs, and IT 
companies. 
https://www.ugentec.com/

https://www.aspect-analytics.com 

Timeseer: Industrial process monitoring

Software for mass spectrometry imaging 

https://www.timeseer.ai/ 1

https://www.trendminer.com/ 

Succesful high-tech spinoff = TTT = Technology, Team, Traction 
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with risks. These include misapplication 
by researchers who are unfamiliar with the 
details, and the use of poorly trained mod-
els or badly designed input data sets, which 
deliver unreliable results and can even cause 
unintended harm. For example, if reports of 
weather events — such as tornadoes — are used 
to build a predictive tool, the training data are 
likely to be biased towards heavily populated 
regions, where more events are observed 
and reported. In turn, the model is likely to 
over-predict tornadoes in urban areas and 
under-predict them in rural areas, leading to 
unsuitable responses7.

Data sets differ widely, yet the same ques-
tions arise in all fields: when, and to what 
extent, can researchers trust the outcomes 
of AI and mitigate harm? To explore such ques-
tions, the AGU, with the support of NASA, last 
year convened a community of researchers 
and ethicists (including us) at a series of work-
shops. The aim was to develop a set of princi-
ples and guidelines around the use of AI and 
ML tools in the Earth, space and environmental 
sciences, and to disseminate them (see ‘Six 
principles to help build trust’)6. 

Answers will evolve as AI develops, but 
the principles and guidelines will remain 
grounded in the basics of good science — 
how data are collected, treated and used. To 
guide the scientific community, here we make 
practical recommendations for embedding 
openness, transparency and curation in the 
research process, and thus helping to build 
trust in AI-derived findings. 

Watch out for gaps and biases
It is crucial for researchers to fully understand 
the training and input data sets used in an 
AI-driven model. This includes any inherent 
biases — especially when the model’s outputs 
serve as the basis of actions such as disaster 

responses or preparation, investments or 
health-care decisions. Data sets that are poorly 
thought out or insufficiently described increase 
the risk of ‘garbage in, garbage out’ studies and 
the propagation of biases, rendering outcomes 
meaningless or, even worse, dangerous. 

For example, many environmental data have 
better coverage or fidelity in some regions or 
communities than in others. Areas that are 
often under cloud cover, such as tropical rain-
forests, or that have fewer in situ sensors or 
satellite coverage, such as the polar regions, 
will be less well represented. Similar dispari-
ties across regions and communities exist for 
health and social-science data. 

The abundance and quality of data sets are 
known to be biased, often unintentionally, 
towards wealthier areas and populations and 
against vulnerable or marginalized commu-
nities, including those that have historically 
been discriminated against7,8. In health data, 
for instance, AI-based dermatology algorithms 
have been shown to diagnose skin lesions and 
rashes less accurately in Black people than in 
white people, because the models are trained 
on data predominantly collected from white 
populations8. 

Such problems can be exacerbated when 
data sources are combined — as is often 
required to provide actionable advice to the 
public, businesses and policymakers. Assess-
ing the impact of air pollution9 or urban heat10 
on the health of communities, for example, 
relies on environmental data as well as on 
economic, health or social-science data. 

Unintended harmful outcomes can occur 
when confidential information is revealed, 
such as the location of protected resources or 
endangered species. Worryingly, the diversity 
of data sets now being used increases the risks 
of adversarial attacks that corrupt or degrade 
the data without researchers being aware11. AI 
and ML tools can be used maliciously, fraudu-
lently or in error — all of which can be difficult 
to detect. Noise or interference can be added, 
inadvertently or on purpose, to public data 
sets made up of images or other content. This 
can alter a model’s outputs and the conclu-
sions that can be drawn. Furthermore, out-
comes from one AI or ML model can serve 
as input for another, which multiplies their 
value but also multiplies the risks through 
error propagation. 

Our recommendations for data deposition 
(see ref. 6 and ‘Six principles to help build 
trust’) can help to reduce or mitigate these risks 
in individual studies. Institutions should also 
ensure that researchers are trained to assess 
data and models for spurious and inaccurate 

Following these best practices will help to 
avert harm when using AI in research. 

Researchers 
1. Transparency. Clearly document and 
report participants, data sets, models, bias 
and uncertainties. 
2. Intentionality. Ensure that the AI model 
and its implementations are explained, 
replicable and reusable.
3. Risk. Consider and manage the possible 
risks and biases that data sets and 
algorithms are susceptible to, and how 
they might affect the outcomes or have 
unintended consequences. 
4. Participatory methods. Ensure inclusive 
research design, engage with communities 
at risk and include domain expertise. 

Scholarly organizations (including 
research institutions, publishers, societies 
and funders)
5. Outreach, training, and leading practices. 
Provide for all roles and career stages. 
6. Sustained effort. Implement, review and 
advance these guidelines.

More detailed recommendations are 
available in the community report6 
facilitated by the American Geophysical 
Union, and are organized into modules for 
ease of distribution, use in teaching and 
continued improvement. 

Six principles to 
help build trust

results, and to view their work through a lens 
of environmental justice, social inequity and 
implications for sovereign nations12,13. Institu-
tional review boards should include expertise 
that enables them to oversee both AI models 
and their use in policy decisions. 

Develop ways to explain how AI 
models work
When studies using classical models are pub-
lished, researchers are usually expected to 
provide access to the underlying code, and any 
relevant specifications. Protocols for report-
ing limitations and assumptions for AI models 
are not yet well established, however. AI tools 
often lack explainability — that is, transpar-
ency and interpretability of their programs. It 
is often impossible to fully understand how a 

GROWING AI USE IN
EARTH AND SPACE SCIENCE
A rising proportion of abstracts for the annual meeting 
of the American Geophysical Union mention artificial 
intelligence (AI) or machine learning (ML) — a trend 
seen across all areas of geoscience.
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Science is producing data in amounts 
so large as to be unfathomable. 
Advances in artificial intelligence (AI) 
are increasingly needed to make sense 
of all this information (see ref. 1 and 

Nature Rev. Phys. 4, 353; 2022). For example, 
through training on copious quantities of data, 
machine-learning (ML) methods get better 
at finding patterns without being explicitly 
programmed to do so. 

In our field of Earth, space and environmen-
tal sciences, technologies ranging from sen-
sors to satellites are providing detailed views 
of the planet, its life and its history, at all scales. 
And AI tools are being applied ever more widely 

— for weather forecasting2 and climate model-
ling3, for managing energy and water4, and for 
assessing damage during disasters to speed 
up aid responses and reconstruction efforts.

The rise of AI in the field is clear from track-
ing abstracts5 at the annual conference of the 
American Geophysical Union (AGU) — which 
typically gathers some 25,000 Earth and space 
scientists from more than 100 countries. The 
number of abstracts that mention AI or ML has 
increased more than tenfold between 2015 and 
2022: from less than 100 to around 1,200 (that 
is, from 0.4% to more than 6%; see ‘Growing AI 
use in Earth and space science’)6. 

Yet, despite its power, AI also comes 

Artificial-intelligence tools 
are transforming data-driven 
science — better ethical 
standards and more robust 
data curation are needed to 
fuel the boom and prevent 
a bust.

Garbage in, garbage out: mitigating risks 
and maximizing bene!ts of AI in research
Brooks Hanson, Shelley Stall, Joel Cutcher-Gershenfeld, Kristina Vrouwenvelder, Christopher Wirz,  
Yuhan (Douglas) Rao & Ge Peng

Artificial-intelligence models require the vast computing power of supercomputers, such as this one at the University of California, San Diego.
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Setting the agenda in research

Comment
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Can AI systems learn/ be taught to make ethical choices ?
 
Can AI systems be thaught to deal with differing opinons ?  

Einstein Foundation Award 2023 — The Einstein Foundation Berlin awards €500,000 prize to 
enhance quality in research
The Einstein Foundation Berlin is to honor Belgian bioinformatician Yves Moreau, the 
Berkeley Initiative for Transparency in the Social Sciences, and the Responsible Research 
Assessment Initiative with this year’s Einstein Foundation Award for Promoting Quality in 
Research 2023.

The recipient of the Individual Award is Yves Moreau from the Katholieke Universiteit 
Leuven. Moreau ranks among the most ardent advocates for ethical standards in the 
utilization of human DNA data in the age of artificial intelligence and big data. He designs 
algorithms that protect personal privacy during the analysis of genetic data.
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In June OECD published a report on applying AI to accelerate productivity in research, in which it says, “While AI is
penetrating all domains and stages of science, its full potential is far from realised. Policy makers and actors across
research systems can do much to accelerate and deepen the uptake of AI in science, magnifying its positive
contributions to research.”

National Institutes of Health (NIH) in the US has placed limits on generative AI in its peer review processes 

US national Science Foundation has put together an internal working group to find out if there are ways to integrate
AI tools in the production of science 

A recent workshop at the National Academies explored the present and future of artificial intelligence In 
advancing discovery across a range of scientific fields, from physics to neurology to meteorology.

While the EU is in the process of finalising its first regulation on artificial intelligence, the scientific community 
is yet to come up with a unified response on how generative AI could be used higher education and research 

European Commision (new unit E4: Industry 5.0 and AI in Science): To develop new policy  on how to use AI 
improve scientific productivity and avoid misuse copyright and academic dishonesty  (“CHATGPT detector catches AI-
generated papers with unprecedented accuracy”). 

 
 

AI &  Science Policy 
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EU Commission (policy brief preview) 
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President Biden Issues Executive Order on Safe, Secure, and Trustworthy AI

•Require that developers of the most powerful AI systems share their safety test results and other critical information 
with the U.S. government.
•Develop standards, tools, and tests to help ensure that AI systems are safe, secure, and trustworthy.
•Protect against the risks of using AI to engineer dangerous biological materials
•Protect Americans from AI-enabled fraud and deception by establishing standards and best practices 
for detecting AI-generated content and authenticating official content. 
•Establish an advanced cybersecurity program to develop AI tools to find and fix vulnerabilities in critical software,
•Order the development of a National Security Memorandum that directs further actions on AI and security.
•Protect Americans’ privacy by prioritizing support for accelerating the development and use of privacy-preserving techniques 
•Strengthen privacy-preserving research and technologies,
•Evaluate how agencies collect and use commercially available information
•Develop guidelines for federal agencies to evaluate the effectiveness of privacy-preserving techniques,
•Provide clear guidance to landlords, Federal benefits programs, and federal contractors
•Address algorithmic discrimination
•Ensure fairness throughout the criminal justice system
•Advance the responsible use of AI in healthcare and the development of affordable and life-saving drugs.
•Shape AI’s potential to transform education
•Develop principles and best practices to mitigate the harms and maximize the benefits of AI for workers
•Produce a report on AI’s potential labor-market impacts,
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President Biden Issues Executive Order on Safe, Secure, and Trustworthy AI

•Catalyze AI research across the United States
•Promote a fair, open, and competitive AI ecosystem
•Use existing authorities to expand the ability of highly skilled immigrants and nonimmigrants

with expertise in critical areas to study, stay, and work in the United States
•Expand bilateral, multilateral, and multistakeholder engagements to collaborate on AI.
•Accelerate development and implementation of vital AI standards
•Promote the safe, responsible, and rights-affirming development and deployment of AI abroad to solve global challenges
•Issue guidance for agencies’ use of AI
•Help agencies acquire specified AI products and services
•Accelerate the rapid hiring of AI professionals

The US innovates
China imitates
Europe regulates

True ??? 
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To open or not to open the sources of AI ?
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AI risk assessment related to technology security and technology leakage
Guidelines and questionnaire for reporting on findings

The Commission Recommendation C(2023) 6689 of 3 October 2023 on critical technology areas for the EU’s 
economic security for further risk assessment with Member States (hereafter ‘the Recommendation’) proposes 
that Member States, together with the Commission, perform a risk assessment, by the end of 2023, related to 
technology security and technology leakage risks on the artificial intelligence, high-performance computing, cloud 
and edge computing technology areas. 

Dual use ?? 
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Menu 

- AI: what, when, how ? 

- Inspiring examples of AI in science

- Issues in ‘AI in science’ policies and science policy for AI

 

Safe & mobile

Precision agriculture

Personalised medicine

Lifelong learning

Flexibility and improvement of 
productivity in manufacturing 

industry 

Energy transition
Energy distribution and production

SOCIETYHEALTH INDUSTRY PLANET & 
ENERGY

Use cases in four domains 
Selection of use cases


