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“Good” points for multivariate polynomial interpola-
tion and approximation

Marc Van Barel
Computer Science, KU Leuven, Belgium

For the interval [−1, 1], it is well-known that interpolating in Chebyshev
points is much better than using equidistant points in the same interval
(Runge phenomenon). This fact forms the basis of Chebfun, a Matlab-
toolbox that uses Chebyshev points for the interpolation and Chebyshev
polynomials for the representation of the interpolant. Quantitatively, the
fact that the Chebyshev points are “good” points for interpolation with a
polynomial of degree δ corresponds to the fact that the Lebesgue constant
grows as log δ while this Lebesgue constant grows much faster in case of
equidistant interpolation points. The Lebesgue constant is the maximum of
the Lebesgue-function on the geometry considered, in this case the interval
[−1, 1].

Also for the multivariate case and for different geometries, sets of “good”
points were investigated (e.g., Padua points on the unit square) and other
“good” point configurations were computed by optimization algorithms. In
this talk we will describe an alternative optimization method to compute
point configurations with a small Lebesgue constant for different geome-
tries. This method consists of several smaller optimization procedures, tak-
ing each more and more computational effort but leading to smaller and
smaller Lebesgue constants. It will turn out that the choice of a good basis
for a specific geometry is essential to be able to solve the polynomial in-
terpolation problem over that geometry. We will use an orthonormal basis
with respect to a discrete inner product where the points of the inner prod-
uct are lying in the geometry that we are considering at that moment. No
explicit representation for these basis polynomials will be computed but we
will evaluate them using a recurrence relation, generalizing the three-term
recurrence relation on the real line and the Szegö recurrence relation on the
complex unit circle.
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A Minimum Sobolev Norm Numerical Technique for
PDEs

Shivkumar Chandrasekaran
Electrical and Computer Engineering, University of California, Santa Barbara,

USA,
joint work with H. Mhaskar

We present a method for the numerical solution of PDEs based on finding
solutions that minimize a certain Sobolev norm. Fairly standard compact-
ness arguments establish convergence. The method prefers that the PDE is
presented in first order form. A single short Octave code is used to solve
problems that range from first-order Maxwell’s equations to fourth-order bi-
harmonic problems on complicated geometries. The method is high-order
convergent even on complex curved geometries.

Our method has its roots in generalized Birkhoff interpolation. Let xi denote
N points in Rd. Let f be an unknown function from Rd to Rq. Given N
point-wise (possibly vector-valued) linear observations of f :

g(xi) =

‖j‖1≤M∑
j∈Nd

Aj(xi) ∂
‖j‖1
j f(xi), (1)

the problem is to compute an approximation to f .

The above problem is well-posed for some special choices of the matrix co-
efficients Aj and points xi in the sense that, as N approaches infinity, only
the true solution can satisfy all the observations. In particular the numerical
solution of linear PDEs can be posed as generalized Birkhoff interpolation
problems. The classical approach to the above problem is to expand the un-
known solution as a finite linear combination of basis functions, such that
the constraints (1) become a system of square (or skinny) equations for the
unknown coefficients. Then the (least-squares) solution of these equations
is taken to be the computed solution for the unknown function. Our ap-
proach is almost the same, except that we pick more expansion coefficients
so that we obtain a fat system of linear equations. As our solution we pick
the one that minimizes a certain Sobolev norm. Assuming the true solution
satisfies all the interpolation constraints and has a finite Sobolev norm, we
can establish (see [1]) for the special case of classical interpolation) that
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there is a uniform bound on the Sobolev norm of our computed solution
independent of the number of constraints. It then follows from standard
compactness arguments that our computed solution will converge to the
true solution as the number of interpolation conditions increase.

[1 ] S. Chandrasekaran, H. N. Mhaskar and K. R. Jayaraman, “Minimum
Sobolev norm interpolation with trigonometric polynomials on the
torus,” accepted for publication in Journal of Computational Physics,
2013.
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Tensor Decompositions and Optimization Problems

Eugene Tyrtyshnikov
Numerical Mathematics, Russian Acamdemy of Sciences, Moscow, Russia

The main problem with data arrays in many dimensions is that we cannot
use them to represent the data in numerical algorithms. Structure and gen-
erators become the key issue, and make the construction of algorithms to
be kin to many works on structured matrices. The choice of generators is
crucial for solving optimization and approximation problems.

We consider how matrix approximation results [3] transform into efficient
optimization techniques for multi-index arrays with the tensor-train gen-
erators [1,2] and virtual dimensions [4]. A new approach based on the
TT-CROSS algorithm [2] will be presented for the global optimization task
arising in the docking problem.

[1 ] I.Oseledets, E.Tyrtyshnikov, Recursive decomposition of multidimen-
sional tensors, Doklady Mathematics, vol. 80, no. 1 (2009), pp. 460-
462.

[2 ] I.Oseledets, E. Tyrtyshnikov, TT-cross approximation for multidimen-
sional arrays, Linear Algebra Appl., 432 (2010), pp. 70-88.

[3 ] S.Goreinov, E.Tyrtyshnikov, Quasioptimality of Skeleton Approxima-
tion of a Matrix in the Chebyshev Norm, Doklady Mathematics, vol.
83, no. 3 (2011), pp. 1-2.

[4 ] E.Tyrtyshnikov, Tensor approximations of matrices generated by asymp-
totically smooth functions, Sbornik Mathematics, vol. 194, no. 5-6
(2003), pp. 941-954.
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Back to the Roots: Numerically Solving Polynomial
Systems

Bart De Moor
ESAT-SISTA, KU Leuven, Belgium

We will demonstrate that the common roots of sets of multivariate polyno-
mials can be calculated by solving (generalized) eigenvalue problems. The
required insights derive from simple linear algebra (dependent and indepen-
dent variables in sets of linear homogeneous equations), modelling the null
space of the so-called Macaulay matrix using insights from nD-realization
theory, and exploiting, just like in realization theory, the so-called shift struc-
ture of that null space, to obtain the (generalized) eigenvalue problems.

These insights open a wide avenue for numerical linear algebra algorithms
to calculate the roots of multivariate polynomials (instead of the symbolic
algebraic geometry algorithms that are widely used now), by exploiting the
sparsity of the Macaulay matrix and the shift structure of the null space.
In particular, when solving multivariate polynomial optimization problems
(polynomial objective function with polynomial constraints), one only needs
to find the mminimizing root. In addition, the solution to many other issues
(such as conditioning, sensitivity, etc...) comes within reach.

In particular, we will show that many identification problems (e.g. predic-
tion error methods) boil down to solving a large scale eigenvalue problem.
We will also elaborate on many other matrix approximation problems, which
in essence are polynomial optimization problems (e.g. noisy realization, dy-
namic total least squares, misfit versus latency models, etc.)
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Numerical Tensor Methods in Higher Dimensions

Ivan Oseledets
Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia

I will give an overview of the recent developments in numerical multilin-
ear algebra. Novel tensor formats (Tensor Train and Hierarchical Tucker
formats) allow for stable algorithms and enormous complexity reduction in
different applications in physics, chemistry and data mining. I will discuss,
how tensor-based models emerge in these applications, present algorithms
for solving linear systems, interpolation problems, eigenvalue problems and
non-stationary problems, as well as some applications (including global op-
timization).
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A Low-Rank Tensor Method for Large-Scale Markov
Chains

Daniel Kressner
Mathematics, ETH Zurich, Switzerland

joint work with Francisco Macedo

A number of practical applications lead to Markov Chains with extremely
large state spaces. Such an instance arises from models for calcium chan-
nels, which are structures in the body that allow cells to transmit electrical
charges to each other. These charges are carried on a calcium ion which
can travel freely back and forth through the calcium channel. The state
space of a Markov process describing these interactions typically grows ex-
ponentially with the number of cells. More generally, Stochastic Automata
Networks (SANs) are networks of interacting stochastic automata and the
dimension of the resulting state space grows exponentially with the number
of involved automata. Several techniques have been established to arrive at
a formulation such that the transition matrix has Kronecker product struc-
ture. This allows, for example, for efficient matrix-vector multiplications.
However, the number of possible automata is still severely limited by the
need of representing a single vector (e.g., the stationary vector) explicitly.
We propose the use of low-rank tensor techniques to avoid this barrier. More
specifically, an algorithm will be presented that allows to approximate the
solution of certain SANs very efficiently in a low-rank tensor format.
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Low Rank Tensor Reconstruction by Sampling

Lars Grasedyck
Mathematics, RWTH Aachen, Germany

joint work with Markus Bachmayr, Jonas Ballani, Wolfgang Dahmen, Ron
DeVore, Melanie Kluge

We consider the problem to reconstruct (resp. approximate) a tensor from
just a few samples (pointwise entries) under the assumption (or constraint)
that the tensor has small tensor rank in the sense of the hierarchical or MPS
ranks. The situations we consider are threefold: 1) If the samples are given
and more or less random, then an alternating directions fit is appropriate,
but the reliability and convergence of the iterative scheme is not satisfac-
torial. Nonetheless, it typically dominates other more technically advanced
methods. 2) If we are allowed to provide some extra rules on how the sam-
ples should be taken (quasi-random), then the situation changes entirely
and the reconstruction is often close to perfect and fast. 3) If the samples
are taken consecutively and adaptively, i.e. each sample position is allowed
to depend on the previous samples, then the situation is as good as it gets
and we can nicely reconstruct tensors. In both cases 2) and 3) we are able
to prove optimality of the method in the rank one case, and we provide ex-
amples and counterexamples that underline the sharpness of the results for
rank one and higher rank.

All results are valid for the case that the network is a tree, and we provide a
method that aims at finding this tree structure.
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Tensor Methods for Structured Vectors and Matrices

Thomas Huckle
Computer Science / Mathematics, Technische Universität München, Garching,

Germany

We describe how symmetries can be used in quantic tensor train (or matrix
product state) representations of vectors and matrices. Besides the well-
known physical symmetries we also consider mathematical properties re-
lated to the underlying matrix. Furthermore, in related numerical methods
like eigenvector computations or vector approximations these symmetries
can be used to derive more efficient numerical algorithms that lead to faster
convergence and better representations. By a well-known similar approach
the numerical treatment of the periodic boundary case can be reduced to the
open boundary case. Addiditonally, we discus the use of tensor methods for
approximating sparse data. This approach might be useful for application
like compressed sensing in order to recover sparse signals.
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Sparse stabilization and control of consensus models

Massimo Fornasier
Mathematics, Technische Universität München, Germany

From a mathematical point of view self-organization can be described as
patterns to which certain dynamical systems modeling social dynamics tend
spontaneously to be attracted. In this talk we explore situations beyond
self-organization, in particular how to externally control such dynamical sys-
tems in order to eventually enforce pattern formation also in those situations
where this wished phenomenon does not result from spontaneous conver-
gence. Our focus is on dynamical systems of Cucker-Smale type, modeling
consensus emergence, and we question the existence of stabilization and
optimal control strategies which require the minimal amount of external
interven- tion for nevertheless inducing consensus in a group of interact-
ing agents. First we follow a greedy approach, by designing instantaneous
feedback controls with two different sparsity properties: com- ponentwise
sparsity, meaning that the controls have at most one nonzero component
at every instant of time and their implementation is based on a variational
criterion involving l1-norm penalization terms; time sparsity, meaning that
the number of switchings is bounded on every compact interval of time, and
such controls are realized by means of a sample-and-hold procedure. Con-
trols sharing these two sparsity features are very realistic and convenient
for practical issues. Moreover we show that among the controls built out of
the mentioned variational principle, the maximally sparse ones are instanta-
neously optimal in terms of the decay rate of a suitably designed Lyapunov
functional, measuring the distance from consensus. As a consequence we
provide a mathematical justification to the general principle according to
which ”sparse is better” in the sense that a policy maker, who is not allowed
to predict future developments, should always consider more favorable to
intervene with stronger action on the fewest possible instantaneous optimal
leaders rather than trying to control more agents with minor strength in or-
der to achieve group consensus. We then establish local and global sparse
controllability properties to consensus. Finally, we analyze the sparsity of
solutions of the finite time optimal control problem where the minimiza-
tion criterion is a combina- tion of the distance from consensus and of the
l1-norm of the control. Such an optimization models the situation where
the policy maker is actually allowed to observe future developments. We
show that the lacunarity of sparsity is related to the codimension of certain
manifolds in the space of cotangent vectors.
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Video is a Cube or Even More

Klaus Diepold
Electrical Engineering and Information Technology, Technische Universität

München, Germany

In this contribution we are concerned with the development of video quality
metrics using multiway data analysis tools aka as tensor based data analysis.
Video quality metrics have the purpose to predict the subjectively perceived
quality of a video sequence if it is judged by a human observer using only
technically measurable quantities extracted form the video. Video is often
considered to be a simple extension of still images, i.e. video consists of
a sequence of individual images. However, the temporal dimension makes
all the difference between still images and video. In many video processing
tasks and in video qualimetrics in particular, the current state of the art of al-
gorithms extract features individual image or frames of the video. Each such
image is represented as a two-dimensional matrix. This way, effects which
happen along the time axis are neglected and the temporal dimension is
managed by temporal pooling. Temporal pooling means that the features
throughout the video are mapped into one feature value, which is taken to
represent the whole video sequence. The metric then determines its values
on the basis of such pooled features. Alternatively, the values of the metric
are determined for each frame of the video individually and then these val-
ues are pooled temporally over all frames to gain one metric value for the
whole sequence. Any type of pooling strategy obscures the influence of tem-
poral effects on the human perception of quality, as intrinsic dependencies
and structures in the temporal dimension are disregarded.

In this context we discuss the introduction of an additional temporal di-
mension directly in the design of the video quality metrics an show that
this extension can improve the prediction performance for the quality met-
ric. We propose therefore to consider video in its natural 3-D structure as a
cube. Extending the data analysis approach, we add an additional dimen-
sion to our data set and thus arrive at multidimensional data analysis, an
extension of the two dimensional data analysis. In doing so, we gain a bet-
ter understanding of the video’s properties and will thus be able to interpret
the extracted features better. We no longer employ an a priori temporal
pooling step but use the whole video cube to generate the prediction model
for the visual quality, and thus consider the temporal dimension of video
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more appropriately. If we extend this point of view to stereo video or even
multi view video, we end up at more than a cube - a hyper cube
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Computational Challenges in the Control of Intercon-
nected Systems

Uwe Helmke
Mathematics, Universität Würzburg, Germany

Abstract: The control of interconnected dynamical systems is an exciting
research area that has widespread applications to e.g. biological systems,
quantum control, robotics and computer science. The need for constructing
distributed control laws for large scale networks poses new computational
challenges to the theory, requiring a combination of methods from numeri-
cal linear algebra, graph theory and control theory. This talk addresses some
of these system-theoretic and computational issues.
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A New Indefinite Matrix Decomposition and its Appli-
cations

Paul Van Dooren
Mathematical Engineering, Catholic University of Louvain, Belgium,

joint work with N. Mastronardi

Indefinite symmetric matrices occur in many applications, such as optimiza-
tion, least squares problems, partial differential equations, and variational
problems. In these applications one is often interested in computing a fac-
torization of the indefinite matrix that puts into evidence the inertia of the
matrix or possibly provides an estimate of its eigenvalues. We propose an
algorithm that provides this information for any symmetric indefinite matrix
by transforming it to a block antitriangular form using orthogonal similar-
ity transformations. We show that the algorithm is backward stable and
has a complexity that is comparable to existing matrix decompositions for
dense indefinite matrices. On the other hand, for sparse matrices that typ-
ically come from saddle point problems or from model predictive control
problems, this factorization, implemented in a suitable way, can be very ef-
ficient. References : [1] N. Mastronardi, P. Van Dooren, The anti-triangular
factorization of symmetric matrices, SIAM Journal on Matrix Analysis and
Applications, to appear. [2] C. Kirches, H. Bock, J.P. Schloder, S. Sager, A
factorization with update procedures for a KKT matrix arising in direct op-
timal control, Mathematical Programming Computation, 3(4), pp.319348,
2011 [3] Y. Wang, S. Boyd, Fast Model Predictive Control Using Online Opti-
mization, IEEE Transactions on Control Systems Technology, 18(2), pp.267-
278, 2010
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Can and should tensor algebra, geometry and visuali-
sation methods meet each other for data, signals and
systems?

Joos Vandewalle
ESAT/SCD, KU Leuven, Belgium

It is the intention of the talk to reflect about the evolution in the past 40
years in our research field where several tendencies have diverged rather
than converged. Algebra, geometry and visualizations have indeed diverged
for many pragmatic reasons. Widespread use of computers and progress
in computer power have been pushing for impressive algorithmic develop-
ments based on strong algebraic approaches, thereby often neglecting the
geometry and the visualisation. Higher dimensional data sets have natu-
rally moved users away from any visualization, and left them with a black
box feeling. It is however for the researchers, practictioners, educators and
users reconciling, and beneficiary if algebra, geometry and visualization can
meet. In the talk we will highlight a couple of efforts that work on this
reconciliation: the parallel coordinates ([1]), multilinear singular value de-
composition ([2]), tensor decompositions, their generalizations, data fusion
and signal separation techniques ([3-5]).

References:

[1 ] A. Inselberg, Parallel Coordinates: Visual Multidimensional Geome-
try and its Applications. Springer, 2009.

[2 ] Lieven De Lathauwer, Bart De Moor and Joos Vandewalle ”A multilin-
ear Singular Value Decomposition”. SIAM Journal on Matrix Analysis
and Applications 21, April 2000.

[3 ] M. Vetterli and V. Goyal ”Teaching signal processing with geometry”,
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2012/Confe-
rence/Tutorials/Tutorial% 1201/T1 SlideHandout.pdf

[4 ] J. Suykens, J. Vandewalle, ”Least squares support vector machine
classifiers”, Neural processing letters, Vol. 9, 1999.

[5 ] L Omberg, GH Golub, O Alter, ”A tensor higher-order singular value
decomposition for integrative analysis of DNA microarray data from
different studies”, Proceedings of the National Acad Sciences PNAS,
2007.
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Subspace Intersection Tracking Using GSVD and the
Signed URV Algorithm

Alle-Jan van der Veen
Electrical Engineering, Delft University of Technology, Netherlands

joint work with Mu Zhou

We consider the separation of partially overlapping data packets by an an-
tenna array in narrowband communication systems. This problem occurs
in asynchronous communication systems and several transponder systems
such as RFID, AIS and ADS-B. Arbitrary arrival times of interfering data
packets cause nonstationary scenarios and makes it difficult to identify the
interfering signals using standard blind beamforming techniques.

We propose subspace-based algorithms to suppress the intermittent inter-
ference. The algorithms are based on subspace intersection and oblique
projections, and computed using generalized SVD (GSVD) and generalized
eigenvalue (GEV) decompositions.

In the second part of the talk, these algorithms are refined using a recently
developed subspace estimation tool, the Signed URV algorithm, which is in
the class of “Schur subspace estimators”. This class provides a complete
parametrization of all “principal subspace estimates”, defined as the column
spans of corresponding low-rank matrix approximants that lie within a spec-
ified 2-norm distance of a given matrix. The parametrization is in terms of
a two-sided hyperbolic decomposition, which can be computed using hy-
perbolic rotations. Although such rotations are commonly associated with
numerical instabilities, the proposed SURV algorithm implicitly imposes cer-
tain constraints such that important norm bounds are achieved that guaran-
tee stability. The algorithm is also non-iterative and the decomposition can
be updated efficiently (similar to QR updates), and downdated in exactly
the same way. The subspace estimates are close to the principal subspace
provided by the SVD (which is a special case within the class). As we will
show, the decomposition can be used to implement a ”truncated Generalized
SVD”.
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Semantics-Preserving Implementations of Embedded
Control Systems

Samarjit Chakraborty
Institute for Real-Time Computer Systems, Technische Universität München,

Germany

Control systems design usually starts with high-level models where most
of the implementation-level realities are abstracted away. Often, many of
these assumptions do not hold true in software implementations of the
designed controllers, thereby leading to instability or poor control perfor-
mance. These might stem from computation times, delays in distributed
implementations or the limited numerical accuracy available. We will dis-
cuss some of these problems and methods to address them.
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Numerical Methods for the Computation of the Non-
linear Fourier Transform

Mansoor I. Yousefi
Institute for Advanced Study, Technische Universität München, Germany

The nonlinear Fourier transform (NFT), a powerful tool in soliton theory
and exactly solvable models, is a method for solving integrable partial dif-
ferential equations governing wave propagation in certain nonlinear media.
The NFT decorrelates signal degrees-of-freedom in such models, in much
the same way that the Fourier transform does for linear systems. Just as
the (ordinary) Fourier transform converts a convolution into a multiplica-
tion operator in the frequency domain, the nonlinear Fourier transform con-
verts a nonlinear dispersive equation described by a Lax convolution into a
multiplication operator in the nonlinear spectral domain. In this talk, nu-
merical methods are suggested to compute the discrete and the continuous
spectrum of a signal with respect to the Zakharov-Shabat system, a Lax op-
erator underlying numerous integrable equations including the nonlinear
Schrödinger equation, modeling pulse propagation in optical fibers. These
methods are subsequently tested and their ability to estimate the spectrum
are compared against each other. These methods are used to compute the
spectrum of various pulses commonly used in the optical fiber communica-
tions.



20

Biological signalling cascades and tensor factorisations

Markus Hegland
Mathematics, Australian National University, Canberra, Australia

joint work with Jochen Garcke (Uni Bonn and Frauenhofer Institute)

While molecular biological systems may contain large numbers of chemical
reactions, the number of copies of each substance involved is often relatively
small. Thus the randomness of chemical reactions - which manifests itself as
noise - has an impact on the performance of biological systems. The chem-
ical master equation describes the change of the probability distribution of
states and reaction numbers over time. Here we consider structure and nu-
merical solution of the chemical master equation. In particular we discuss
how tensor factorisation methods may be used to simplify and compute the
probability distribution in the case of biological signalling cascades.
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Multiphysics Applications – Just One Plus One?

Miriam Mehl
Mathematics / Computer Science, Technische Universität München, Germany

joint work with Bernhard Gatzhammer and Benjamin Uekermann

Going to multiphysics is one important way to improve existing models for
a broad variety of applications in engineering and science. We can only
give a few examples here: taking into account the flapping of wind turbine
blades instead of only modelling the airflow; adding the flow-induced noise
in a numerical virtual wind tunnel for newly developed aircrafts; enhancing
simulations of electromagnetic flields with additional simulation of the un-
derlying airflow, . . .. We could arbitrarily continue with this list. All these
applications pose similar challenges to numerical solvers. Although the
involved single-physics (fluid flow, structural mechanics, electromagnetic
fields, acoustics, . . .) are well-understood, combining them to a multiphysics
simulation environment is not trivial. In fact the ’plus’ in this one-plus-one
procedure is the main difficulty for the following reasons: Discretizing the
whole set of equations describing a multiphysics problem tends to lead to
ill-conditioned system matrices that are hard to solve with sufficient accu-
racy; implementing a new code for every possible (and required) combi-
nation of single-physics phenomena would be an immense effort; reusing
existing single-physics codes and just glueing them together requires a lot
of numerics such as data mapping between non-matching grids and numer-
ical iteration schemes to regain the solution of the fully coupled system and
technical solutions for code-to-code communication; the high accuracy of
multiphysics models can only be exploited with a very high resolution of the
underlying computational grids which makes the use of massively parallel
supercomputers mandatory.

We present methods for an efficient parallel simulation of an important class
of multiphysics simulations, fluid-structure interactions. This includes a
technical realization for the coupling of several single-physics codes, con-
servative and constistent data-mapping strategies, and numerical iteration
methods allowing for the parallel execution of the involved solvers. The
latter is different in todays standard approaches where mostly fluid and
structure are executed in an alternating way which leads to a poor scaling
behaviour on high performance computing architectures. All these methods
have been developed and tested for fluid-structure interactions but can be
extended to more general multiphysics applications in large parts.
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A Multilevel Algorithm for L1 Minimization with Ap-
plication to Sparse Representation of Signals

Irad Yavneh
Computer Science, Israel Institute of Technology, Haifa, Israel

joint work with Eran Treister

The area of sparse representation of signals is drawing tremendous attention
in recent years in diverse fields of science and engineering. The idea behind
the model is that a signal can be approximated as a linear combination of a
few ”atoms” from a pre-specified and over-complete ”dictionary” (typically
represented by columns from a matrix with more columns than rows). The
sparse representation of a signal is often achieved by minimizing an L1 pe-
nalized least squares functional. Various iterative-shrinkage algorithms have
recently been developed and are quite effective for handling these prob-
lems, often surpassing traditional optimization techniques. Here we suggest
a new iterative multilevel approach that reduces the computational cost of
existing solvers for these inverse problems. Our method takes advantage of
the typically sparse representation of the signal, and, at each iteration, it
adaptively creates and processes a hierarchy of lower-dimensional problems
employing well-known iterated shrinkage methods. Analytical observations
suggest, and numerical results confirm, that this new approach may signif-
icantly enhance the performance of existing iterative shrinkage algorithms
in cases where the dictionary is an explicit matrix.

References:

[1 ] Michael Elad, Sparse and Redundant Representations, From Theory to
Applications in Signal and Image Processing, Springer, 2010.

[2 ] Alfred M. Bruckstein, David L. Donoho, and Michael Elad, “From
Sparse Solutions of Systems of Equations to Sparse Modeling of Sig-
nals and Images”, SIAM Review, 51 (1), 34–81, 2009.

[3 ] Eran Treister and Irad Yavneh, “A multilevel iterated-shrinkage ap-
proach to L1 penalized least-squares minimization”, IEEE Trans. Sig.
Proc., 60 (12) , 6319–6329, 2012.



23

Reducing Communication in Parallel Algebraic Multi-
grid

Ulrike Meier Yang
Lawrence Livermore National Laboratory, USA

Algebraic multigrid (AMG) is a popular solver for large-scale scientific com-
puting and an essential component of many simulation codes. AMG has
shown to be extremely efficient on distributed memory architectures, par-
ticularly on BlueGene/P and BlueGene/Q. (On BlueGene/Q , it has proven
to scale to over a million cores using almost 4.5 million threads.)

However, with single-core speeds plateauing, future increases in comput-
ing performance have to rely on increased concurrency provided by the ar-
chitecture, leading to potentially billions of cores or threads. Applications
have to match this increased level of concurrency to exploit the performance
potential and hence face additional communication requirements. On the
counter side, future systems will be subject to strict power limitations for
overall system power and communication is known to be one of the most
significant contributors to power consumption. These two trends are turn-
ing data movements into one of the most severe bottlenecks for the next
generation of parallel systems and applications. To address this challenge
and to successfully exploit future architectures, it is important to target the
reduction of communication.

AMG obtains its optimal computation complexity by using smaller ”coarse
grid” problems to accelerate the solution of the original “fine grid” problem.
Since the number of nonzeros per row for the coarse grid operators grows,
communication complexity also increases significantly, leading to a large
number of messages. Contention at these levels can lead to a significant de-
crease in performance and scalability on architectures with slower networks
or possibly on future exascale machines. To counter the high communication
complexities at the coarse levels, new variants with reduced communication
complexity and improved communication-computation overlap are needed.

We will discuss two approaches that have shown to reduce communication.
The use of redundancy and/or agglomeration on the coarse levels has shown
to be effective to alleviate this communication complexity. We have devel-
oped a performance model that determines the optimal level at which to
employ this technique. The second approach is an additive AMG variant.
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While the classical additive approach increases parallelism and shows great
potential for reduced communication, it also leads to severely reduced con-
vergence. We investigate an additive variant, which shows convergence
behavior comparable to the multiplicative version.
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Differential geometry for rank-structured tensors from
a numerical linear algebra perspective

Bart Vandereycken, Mathematics, Princeton University, USA

Many rank-structured tensors were very recently shown to admit smooth
structures that turn them into differential manifolds, for example, tensor
train (TT) or matrix product states (MPS) in [1,2], and hierarchal Tucker
(HT) in [3]. In this talk, I will discuss why treating tensors as manifolds can
be useful from a numerical linear algebra perspective.

In particular, I will first explain how the dynamical low-rank algorithm [4]
can be used to approximate tensor differential equations in the HT or TT
format. In this approach, the time derivative of the tensor to be approxi-
mated is projected onto the time-dependent tangent space of the approxi-
mation manifold along the solution trajectory. Next, I will explain how the
framework of optimization on manifoldd [5] lends itself naturally for ap-
proximately solving high-dimensional tensor problems directly in the HT or
TT format. In this case, the approach is conceptually simple: constrain the
original problem to the manifold of fixed-rank HT/TT tensors and subse-
quently solve and analyze this problem using techniques from optimization
on manifolds.

[1 ] S. Holtz, T. Rohwedder, and R. Schneider. On Manifolds Of Tensors
Of Fixed TT-Rank. Num. Math., 2012.

[2 ] J. Haegeman, M. Marin, T. J. Osborne, and F. Verstraete. Geome-
try of Matrix Product States: metric, parallel transport and curvature.
http://arxiv.org/abs/1210.7710v2, 2012.

[3 ] A. Uschmajew and B. Vandereycken. The geometry of algorithms
using hierarchical tensors. Submitted, 2012.

[4 ] C. Lubich, T. Rohwedder, R. Schneider, B. Vandereycken, Dynami-
cal approximation of hierarchical Tucker and tensor-train tensors. To
appear in SIAM J. Matrix Anal. Appl., 2013.

[5 ] P.-A. Absil, R. Mahony, R. Sepulchre. Optimization Algorithms on
Matrix Manifolds. Princeton University Press, 2008.
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Infinite Matrices and Thoughts on Inverse Problems

Gilbert Strang
Mathematics, Massachusetts Institute of Technology, Boston, USA

This talk will describe two results on banded doubly infinite matrices. One
is their factorization into A = LPU (lower-permutation-upper). The second
concentrates on the permutation P, to find its ”main diagonal” This may not
be the zeroth diagonal (as for a shift)

Many applications lead to positive definite matrices of the form A’CA, where
the diagonal matrix C contains the physical constants. How well can those
be determined when A and A’CA are known ? This inverse problem is often
well-conditioned and we open a discussion....

References for the first topics include recent papers by Patrick Dewilde and
by Marko Lindner/GS in Linear Algebra and Its Applications – we also men-
tion Three Steps on an Open Road (GS).
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Sequentially Semi-Separable Matrices (and Cousins)
in Distributed Systems

Justin Rice
Biomedical Engineering, City College of New York, USA

Distributed dynamical systems are all around us, from the flocks of birds
in the sky and schools of fish in the sea to the traffic jams at rush hour to
even the fluid dynamics of the air we breath and the synchronization of the
cells in our hearts. The enormous dimension of such interconnected sys-
tems can lead to surprising and fascinating behavior, but also makes system
identification, analysis, and controller synthesis prohibitively expensive.

In this presentation I’ll provide an overview and explanation of how we can
use the structure of such systems to drastically reduce the computationally
complexity of these problems. The basic idea is to exploit the special ma-
trix structure in such systems in iterative techniques for solving the relevant
equations (Riccati and Lyapunov-type). Different system interconnection
structures induce different matrix structures, but the common factor here is
that they are all related to the ”Matrices of Low Hankel Rank” AKA ”Qua-
siseparable matrices”, AKA ”Sequentially Semi-Separable Matrices.” We will
discuss these interconnections and matrix structures, and showcase some
new matrix structures that have been derived from this work, pointing to-
wards future research and more general interconnections.
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LU factorization via QR like for matrices in quasisepa-
rable form

Yuli Eidelmann
School of Mathematical Sciences, Tel Aviv University, Israel

joint work with Patrick Dewilde

We develop a new algorithm for matrices with quasiseparable representa-
tions. This algorithm is based on using of unitary transformations and does
not contain the recursive iversion of matrices as in previous works by other
authors. This fact allows to expect better numerical behaviour of our algo-
rithm.
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State Reconstruction and Robust Control for Large Scale
Systems

Michel Verhaegen
Delft Center for Systems and Control, TU Delft, Netherlands

We will consider the class of discretizated PDE’s or network connected sys-
tems that through (spatial) lifting give rise to large scale ODE’s. In this
lecture three matrix structures are considered that enable to solve filter-
ing and control problems with complexity linear in the order of the ODE
or better. The first class threated e.g. in [1] considers heterogenous PDE’s
in 1 spatial dimension where the system properties can change along the
spatial dimension. The Sequential Semi-Separable (SSS) structure of the
system matrices of the lifted state space model is exploited in the solution
of Riccati equations for H2 and H∞ control problems. The second class of
systems characterize a connection of identical subsystems in a given net-
work topology with fixed interaction between the networks when their is
a connection between subsystems. For this special network topology O(1)
computational solutions to Robust control problems will be presented [2].
Finally the class of ODE’s with sparse system matrices is considered. For this
class approximate distributed solution are derived to the moving horizon
state reconstruction problem [3]. A trade-off analysis will be presented to
trade the distributed nature of the solution w.r.t. the accuracy of the state
reconstruction.

References:

[1 ] Justin K. Rice and Michel Verhaegen. Distributed Control: A Sequen-
tially Semi-Separable Approach for Spatially Heterogeneous Linear
Systems. IEEE-AC 54(6):1270-1283, 2009.

[2 ] Paolo Massioni and Michel Verhaegen. Distributed Control for Identical
Dyna- mically Coupled Systems: A Decomposition Approach. IEEE-
AC, 54(1):124-135, 2009.

[3 ] Aleksander Haber and Michel Verhaegen. Moving horizon estimation
for large-scale interconnected systems. To appear in IEEE-AC, 2013.
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Inner-Outer Factorization for Matrices

Patrick Dewilde
Institute for Advanced Study, Technische Universität München, Germany

Inner-outer factorization, originally covered by the Beurling invariant sub-
space theorem in Hardy space theory, has developed over the years as maybe
the most central method in dynamical system theory, the key to solve esti-
mation and control problems in an elegant way. It generalizes even further
to matrix theory, leading to unexpected results, in particular a numerically
stable method to compute the LU-factorization of a large class of doubly
infinite (block) matrices (the class contains finite matrices). I will give a
survey of the method, show how it solves LU-factorization, discuss potential
(tensor) extensions and give some pertinent examples.



31

PhD Forum



32

Anisotropic Mesh Adaptation for the Minimization of the Ambrosio-
Tortorelli Functional with Application to Quasi-static Brittle Frac-
ture Propagation

Marco Artina
Mathematics, Technische Universität München, Germany

Francfort and Marigo presented in 1998 a model for quasi-static brittle frac-
ture which requires the minimization of the Mumford-Shah functional, rep-
resenting the energy of the system. The minimization of this functional
represents a very challenging issue since it is non-smooth and non-convex.
The numerical approximation of this problem can be issued via a Gamma-
approximation on the energy functional proposed by Ambrosio and Tor-
torelli where a smooth indicator function identies the fracture. Then, we
resort to an adaptive nite element approach based on piecewise linear ele-
ments. Nevertheless, similarly to early work by Chambolle et al. but dier-
ently from recent approaches by Sli et al. where isotropic meshes are used,
in this work we investigate how anisotropic meshes can lead to signi cant
improvements in terms of the balance between accuracy and complexity. In
fact, the employment of these grids allows us to shortly follow the propa-
gation of the fracture by rening it only in a very thin neighborhood of the
crack. Moreover, the main gain achievable is a relevant reduction of the
number of element needed to obtain with good condence the expected be-
havior of the crack with respect to the techniques used in other works. In
this talk, we first present the derivation of a novel anisotropic a posteri-
ori error estimator driving the mesh adaptation for the approximation of
the Ambrosio-Tortorelli model. Then, we provide several numerical results
which corroborate the accuracy as well as the computational saving led by
an anisotropic mesh adaptation procedure.



33

Damping Noise-Folding and Enhanced Support Recovery in Com-
pressed Sensing

Steffen Peter
Mathematics, Technische Universität München, Germany

The practice of compressive sensing suffers very importantly in terms of
the efficiency/accuracy trade-off when acquiring noisy signals prior to mea-
surement. It is rather common to find results treating the noise affecting
the measurements, avoiding in this way to face the so-called noise-folding
phenomenon, related to the noise in the signal, eventually amplified by the
measurement procedure. After a short introduction into the field of com-
pressive sensing, in this talk, we present a new decoding procedure, com-
bining `1-minimization followed by a selective least p-powers, which not
only is able to reduce this component of the original noise, but also has
enhanced properties in terms of support identification with respect to the
sole `1-minimization. We prove such features, providing relatively simple
and precise theoretical guarantees. We additionally confirm and support
the theoretical estimates by extensive numerical simulations, which give a
statistics of the robustness of the new decoding procedure with respect to
more classical `1-minimization.
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Computing Semiclassical Quantum Dynamics with the Herman-
Kluk Propagator

David Sattlegger
Mathematics, Technische Universität München, Germany

The evolution of quantum systems such as the dynamics of molecules is gov-
erned by the time dependent Schrödinger equation. Finding solutions to it
poses a variety of numerical challenges. Even for small molecules the phys-
ical system has numerous degrees of freedom, e.g. 75 for carbon dioxide.
The resulting high dimensional partial differential equations is practically
impossible to solve by common approximation schemes. What is more, we
have multiple scales in our system, since the mass of an electron is very
small compared to the mass of a proton. In addition, the resulting solutions
are highly oscillatory and there are geometric structures such as symplectic-
ity that one would like to preserve in numerical schemes.

To nevertheless obtain satisfactory results, one relies on a combination of
model reduction and numerical techniques in a physical framework some-
where between quantum and classical molecular dynamics. A majority of
computations in molecular dynamics rely on the Born-Oppenheimer approx-
imation. It describes the motion of the nuclei driven by the potential en-
ergy surfaces that are created by the electrons, thus separating the different
scales and reducing the dimensionality of the system.

In this talk we shall consider the the Herman-Kluk propagator which is an
asymptotic solution to the resulting semi-classical Schrödinger equation and
proved to be a successful method in chemical physics. It is a Fourier integral
operator that relies on the computation of classical trajectories in order to
approximate - in an asymptotic sense - the time propagation operator of the
Schrödinger equation. We will discuss its approximation properties, develop
a numerical method for actual computations, and prove its stability. The
results will be illustrated by numerical experiments.
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How to Steer High-Dimensional Cucker-Smale Systems to Con-
sensus Using Low-Dimensional Information Only

Benjamin Scharf
Mathematics, Technische Universität München, Germany

Dynamical systems of Cucker-Smale type can be used to describe the con-
sensus formation of interacting agents. There are two situations: If the
difference between the velocities of the agents is not two large in compar-
ison to the distances of the agents, the system tends to consensus. Oth-
erwise, when there is no self-organization, it was shown recently that one
can steer the system to consensus using a sparse control acting only on the
agent farthest away from the mean velocity. However, in real-life complex
situations the dimension of the agents might be very large (thousands and
more) and numerical simulations might be extremely expensive. In this talk
we will present an idea to use Johnson-Lindenstrauss embeddings to reduce
the system to a low-dimensional Cucker-Smale system. The main question
is: Can we choose the agent on which we want to infer control only us-
ing the information from the low-dimensional system and thereby steer the
high-dimensional system to consensus?
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Quasi-linear Compressed Sensing and Algorithmic Strategies

Juliane Sigl
Mathematics, Technische Universität München, Germany

We consider quasi-linear compressed sensing and reconstruct rapidly de-
caying signals through greedy strategies. The findings are applied to an-
alyze simulated asteroseismic and phase retrieval problems, but may also
have wider applications. For sparse signals that do not necessarily satisfy
rapid decay assumptions, but can be well approximated by sparse vectors,
we discuss iterative hard-thresholding and also develop an iterative soft-
thresholding algorithm.
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Algorithms for Finite Projected Entangled Pair States

Michael Lubasch, Juan Ignacio Cirac, and Mari-Carmen Bañuls
Max-Planck Institut für Quantenoptik, Garching, Germany

Projected Entangled Pair States (PEPS) represent a variational ansatz for the
wave function of a quantum many-body system, that naturally generalizes
Matrix Product States (MPS), also known as Tensor Trains (TT), to arbi-
trary lattice dimensions and geometries. While MPS have proven extremely
successful in the numerical simulation of 1-dimensional physical systems,
their application to higher dimensional problems requires exponentially in-
creasing resources. This could be understood lately from results emerging
at the interface between quantum information and condensed matter the-
ory. These results also motivated the construction of PEPS as the correct
and promising generalization of MPS. However, the computational cost of
the originally proposed PEPS algorithm is significantly higher than that of
its MPS counterpart.

In recent years, several methods have been proposed for PEPS with the goal
of improving the original algorithm. We analyze and compare the most
promising of them within the context of finite PEPS. In conclusion, we in-
troduce a new scheme that naturally interpolates between the cheapest and
most imprecise and the most costly and most precise algorithms.
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State of the Art of the Sparse Grid Combination Technique

Matthias Wong
Mathematics, Australien National University, Canberra, Australia

Consider an infinite dimensional vector space V with subspaces Vi,j having
dimension 2i+j . We seek to approximate some u ∈ V using ui,j ∈ Vi,j ,
especially in the case when i = j = n for some large values of n.

It is known that the linear combination

ucn,n =
∑

i+j=n+1

ui,j −
∑

i+j=n

ui,j

is a good approximation to un,n under the so-called error splitting assump-
tion. This special linear combination is the sparse grid combination tech-
nique introduced in Griebel et al (1992).

In this talk, we discuss the most up-to-date research concerning the combi-
nation technique. This includes theoretical results and practical variations
including dimensional adaptivity and the Opticom method of Hegland et al
(2006).
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The Sparse Grid Combination Technique in Linear Gyrokinetics

Christoph Kowitz
Computer Science, Technische Universität München, Garching, Germany

The coming large fusion experiment ITER will heavily benefit from numer-
ical simulations. One model for simulating the hot plasmas occurring in
such a device are the gyrokinetic equations, which can resolve the micro-
turbulence in the plasma. Due to their moderately high dimensionality they
could profit from using sparse grids. Since the highly efficient and paral-
lelized simulation code GENE is already at hand, the sparse grid combi-
nation technique can be used to create sparse grid solutions. In this way,
the full parallelism of GENE can be used and on top of it, another layer of
parallelism is introduced. This approach can on the one hand be one step
toward exascale computations, since it the parallelism acts on top of the
current application. On the other hand it can also be used to reduce the
effect of hardware faults, which will probably occur more often on exascale
architectures. We will present some results of the combination technique
for the special case of linear computations in GENE. For that the optimized
combination technique is used, which allows to adapt the coefficients for
combination to the underlying problem, which is in our case an eigenvalue
problem. It computes its combination coefficients out of an optimization
problem, which is also including the search for single eigenvalues of the
system. In the end, the method will have retrieved an approximation of
the eigenvalue and a representation of the eigenvector in the basis of the
partial solutions used for combination. This method can also be general-
ized to other basis functions than the partial solutions and might thus be
also employed for more general problems than the gyrokinetic eigenvalue
problem.
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Unsolved Problems
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At the end of the workshop and just before the conference dinner, we pro-
pose to have a group discussion on ”Outstanding Problems” to which we
would like all our participants to participate with short (we think of around
5 mins) presentations of so far unsolved (and important) problems in the
areas of the workshop. Each presentation would be followed by a short dis-
cussion on ideas where a solution might be found or how to deal with the
proposed problem. To prepare for the session, we would like to know if you
are willing to participate with one (or more?) such presentation. Although
we want to be adaptive, and use the session also as a conclusion of the
workshop, it would be nice if you could already indicate if you feel like giv-
ing such a presentation, maybe even with a title. We will adaptively (even
during the workshop) collect the proposals and put them on our webpage.
As you know, there have been some famous ”collections of new problems”
in the past (one in the book of Wohlers, and MTNS did the exercise once),
it is a good thing to continue the effort that may inspire future generations.


