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Voorwoord

Als je iets gevonden hebt wat wezenlijk is,

zal het je vragen om verder te zoeken.

Stef Bos

In het najaar van 2000 kreeg ik voor mijn 21ste verjaardag plotsklaps en ongevraagd

een vriend voor het leven cadeau, een levensgezel die mijn ogen opende en openhoudt,

die me soms verdrietig maakt, maar die me ook leert te relativeren en te genieten van

de kleine dingen, steeds weer, die me onbewust ook kansen, een levensdoel en een

dankbaar gevoel geeft. Diabetes is zijn naam. Daar stonden we dan, hand in hand, een

lach en een traan, de toekomst recht in de ogen kijkend...

En nu, wat jaren later, sta ik hier. Vol ongeloof knijp ik mezelf in de arm. Vol

dankbaarheid ook. Vooreerst zou ik mijn beide promotoren, Prof. Bart De Moor en

Prof. Greet Van den Berghe, van harte willen bedanken. Bart, toen we mekaar voor

de eerste keer zagen, vielen je ongelooflijk groot enthousiasme en je gedrevenheid

me meteen op. Vol vuur was je aan het vertellen over dat nieuwe project waarin

we een systeem gingen ontwikkelen om de bloedglucose bij patiënten op Intensieve

Geneeskunde automatisch te regelen. Ondanks het gegeven dat je me helemaal niet

kende, gaf je me meteen een warm vertrouwen. “The right man in the right place at

the right time”, zou je achteraf gezegd hebben. Ik ben je bijzonder dankbaar voor de

kans die je me gegeven hebt om onderzoek te doen in de SCD-onderzoeksgroep en om

me steeds te steunen, zeker ook wanneer ik weer eens op internationale missie wilde

vertrekken. “Je doctoraatsjaren, dat zijn de mooiste van je hele carrière,” zei je me toen

nog. Je zou wel eens gelijk kunnen hebben...

Wat is er stimulerender voor een jonge doctoraatsstudent dan intensief samen te

mogen werken met dé wereldautoriteit van je onderzoeksdomein?! Greet, ik ben

ongelooflijk trots dat ik al bijna vijf jaren deel uitmaak van jouw team. Ondanks

je overvolle agenda en je vele verantwoordelijkheden (het leiden van een afdeling

Intensieve Geneeskunde is veelal geen lachertje) maakte je toch de tijd om je scherpe

wetenschappelijke inzichten en je kritische analyses met me te delen en stond je
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open voor discussies over hoe we het gingen aanpakken. Maar bovenal bewonder

ik je enorme doorzettingsvermogen, geduld, gulheid en inspirerende woorden die me

telkens weer motiveerden om door te gaan.

Verder ben ik ook mijn voltallige jury veel dank verschuldigd. Vooreerst wil ik Prof.

Adhemar Bultheel bedanken voor het waarnemen van het voorzitterschap. Prof. Johan

Suykens wil ik bedanken voor het opvolgen van dit project gedurende al die jaren

en de feedback en tips die hij me keer op keer gaf. Ook wil ik de andere juryleden

dank betuigen voor hun waardevolle inbreng. Prof. Roger Bouillon wil ik bovendien

bedanken om mij in contact te brengen met mijn promotoren toen ik in mijn laatste

studentenjaar bij hem informeerde naar de mogelijkheden om mee in onderzoek rond

diabetes te stappen, Prof. Joos Vandewalle voor onze excellente samenwerking al die

jaren waarbij ik als assistent de oefeningen van zijn vak Systeemtheorie mocht doceren

en Prof. Marcus Schultz voor zijn constructieve en motiverende feedback die een

vruchtbare bodem vormt voor een intense samenwerking in de heel nabije toekomst.

Als geen ander besef ik dat dit doctoraatsonderzoek geen one-man-show is, wel

integendeel! Dit werk is de vrucht van een nauwe samenwerking tussen verscheidene

mensen, die elk met hun specifieke achtergrond een essentiële bijdrage hebben

geleverd. Het was voor mij een verrijkende uitdaging om die verschillende kennis-

disciplines te kneden tot één geheel: het glycemie-team. Ik wil jullie allen uit de grond

van mijn hart bedanken!

In de eerste plaats wil ik het Intensieve Geneeskunde - team van UZ Gasthuisberg

even in de bloemetjes zetten. Pieter, dank je voor je hulp bij het vergaren van de

patiëntendata en voor de ontelbare keren dat je me in geuren en kleuren de betekenis

verklaarde van al die medische gebruiken. Ook al de artsen, en in het bijzonder Geert,

Yves, Dirk, Filip, Björn en Lars, wil ik bedanken voor het mee helpen ontcijferen van

de doktersvoorschriften op de verpleegbladen, voor alle snelcursussen geneeskunde,

maar vooral ook voor de inspirerende discussies, die me gidsten in het bouwen van de

brug tussen de wereld van de clinicus en die van de ingenieur. De hulp van Frank,

onze SCD-arts-ingenieur, was dan ook zeker in de beginfase van het project, bijzonder

nuttig. Tot slot wil ik Lies, Ilse V., Ilse M., Sarah, de overige leden van het labo, het

verplegend (in het bijzonder de afdeling C) en administratief (Jenny, An en Myriam)

personeel bedanken voor de aangename sfeer en de vlotte samenwerking.

Een tweede subgroep van het glycemie-team bestaat uit de statistici. Jos en Kristiaan,

het was erg leerrijk om mee met jullie te wandelen op de statistiek-route, bezaaid

met assumpties, waarschijnlijkheden, bootstrappen en andere hindernissen. Jullie zijn

geweldige gidsen!

Een volgende subgroep wordt gevormd door de modellering-experts. Ivan, dank je om

me te introduceren in de wondere wereld van de modellen die jij als geen ander kent.

Many thanks go further to Marcelo who carefully and patiently guided me in the design

of our patient model in spite of the bunch of “NaNs” and “closed-loops” present in the

data. Marcelo, also thank you for your feedback on my thesis! I guess, now, it’s really

“beer o’clock”.
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De regeling-experts zijn een volgende groep van onmisbare pionnen in dit onderzoek.

Bert, jouw geniale ideeën hebben vaak het onderzoekspad verlicht zoals een bliksem

zoevend in de donkere nacht. Veel dank ook voor je feedback op de thesis. Ook

onze patent-meetings, samen met Ivo, tot soms in de late uurtjes en ondanks de soms

frustrerende reviews, verliepen steeds in een uitstekende sfeer. Niels, als geen ander

ben je als een frisse wind met veel nieuwe, heldere ideeën en zonder twijfel in dit

project gestapt en geef je me steeds weer de goesting om verder te zoeken. Veel

mercikes, samen gaan we ervoor!

Last but not least zijn er de computer-experts die het glycemie-team vervolledigen.

Edwin en Frizo, dank voor jullie inzet bij de ontwikkeling van onze GLYCENSIT-

website. Raf, wanneer mijn computer weer eens een eigen willetje had, of wanneer

mijn Engelse zinsconstructie even spaak liep, of wanneer ik gewoon weer eens iets

wilde vertellen, stond je steeds paraat. Dank je voor al je hulp allerhande.

Ik zou tot slot Bert nog even apart willen bedanken. Bert, duizendmaal dank om me al

die jaren onder je vleugels te nemen. Ik kon me geen betere mentor dromen. Steeds de

rust uitstralend (ondanks je eigen deadlines), steeds een klare kijk op de zaak, steeds

de vastberaden wil om door te gaan, zelden panikerend.

De uitmuntende sfeer op onze afdeling heeft er bovendien zeker voor gezorgd dat ik

niet één dag tegen mijn zin naar het werk ben gekomen. In de eerste plaats denk ik dan

ook aan de (ex-)bewoners van ons eilandje 2 (Raf, Niels, Bert P., Lieven, Nathalie,

Xander en Kevin), die als geen ander het ietwat serieuze onderzoekswerk konden

opvrolijken, wat dan ook vaak eindigde in een hilarische slappe-lachbui. Ook Erik

en Ilse zijn hier minstens even verantwoordelijk voor! Zelfs eilandje 1 (Steven V.V.,

Bert C., Frizo, Edwin), alom bekend om het uitlokken van memorabele gevechten

met eiland 2, hield onze geest steeds scherp. Verder denk ik natuurlijk aan Bart V.

(mercikes voor al je hulp bij de didactiek!), Steven G., Jeroen, Olivier, Wout, Marcelo,

Frank, Tim, Anneleen, Marco, Carlos, Samuel, Jos, Kristiaan, Peter, Thomas, Karen,

Mauricio, Toni, Fabian, Tillmann en alle andere SCD-collega’s (getuige daarvan zijn

de geweldige SCD-weekends ieder jaar weer!).

Ik wil zeker ook een pluim geven aan de administratieve / financiële / computer-

technische steunpilaren van SCD (Ida, Ilse, Veerle, Péla, Lut, Yulia, Edwin en Bart M.).

Verder waren ook de ontspannende ALMA-lunches steeds een rustpunt om naar uit te

kijken. Many thanks to you, “ALMA lovers”, and sorry for the endless time I spent

talking instead of eating...

Velen onder jullie zijn ondertussen echte vrienden geworden die een plaatsje in mijn

hart hebben veroverd. Alleen dat al maakte het gezwoeg en gezweet van de voorbije

jaren meer dan de moeite waard.

Ik vergeet ook zeker niet de vrienden uit Turnhout met wie ik een hele jeugd deel.

Bedankt, Jan & Rien, Koen & Wendy, Wim & Wendy, Wim & Hanne, Bert en

Yves voor jullie luisterend oor en bemoedigende woorden, de steun op die cruciale

momenten en natuurlijk ook de spaghetti’s vergezeld van liters rode wijn. Verder
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wil ik ook Luc, mijn trouwe zwempartner-buurman van in mijn jonge jeugdjaren,

bedanken voor zijn geloof, vertrouwen en wijze woorden (behalve dan die over ’s lands

voetbaltrots).

Een groot woord van dank gaat verder naar Christiane en André, mijn toekomstige

schoonmutsi en schoonputsi. Reeds meer dan vijf jaren ben ik als een zoon aan huis.

Jullie hartelijke belangstelling en warme zorg geven me een oprecht vertrouwen in de

toekomst. Van harte bedankt!

“Mama always said,

life is like a box of chocolates,

you never know what you’re gonna get.”

Forrest Gump

“...Maar wat er ook gebeurt, we blijven je altijd steunen!” Make en pake, hoe kan ik

jullie ooit bedanken voor al de liefde, de genegenheid, het vertrouwen en de kansen die

jullie mij steeds onvoorwaardelijk gegeven hebben? Niets was jullie te veel wanneer

het mij wel te veel werd, niets te laat wanneer het al laat was. Bedankt, lieve ouders,

voor alles. Samen hebben we al heel wat watertjes doorzwommen. Samen, in een (nog

steeds) warm en hecht nest, samen met een fantastisch broerrie en een geweldig zussie.

Bart en Hilde, hartelijk dank voor jullie oprechte bekommernissen en dat jullie er steeds

voor me zijn, al de volle 28 jaren. Evenzeer heb ik veel dank voor mijn schoonzusje,

Els, die steevast vol belangstelling (en met een beetje heimwee?) informeerde naar

“hoe het in Leuven ging” en mijn schoonbroertje, Mark, voor de babbelrijke autoritjes

Turnhout-Leuven wanneer de trein weer iets te vroeg vertrok op zondagavond. En dan

zijn er nog mijn nichtje en neefjes (Natalie, Jonatan, Alexander, Thomas en uiteraard

mijn petekindje Tibo) die, zonder het zelf te beseffen, met een zalige knuffel even al de

zorgen kunnen doen smelten als sneeuw voor de zon. Dank jullie, kids!

Liesje, hier staan we nu, hand in hand, mekaar recht in de ogen kijkend. Jouw

stralende glimlach, jouw dromende blik in de ogen, jouw betoverend enthousiasme,

jouw kleurrijke fantasie, jouw geduld om onze toekomst een beetje uit te stellen, jouw

tedere woordjes... het maakt me sprakeloos. Dank je, dank je, dank je!

...en weg zijn we...

Tom

Leuven

April 2008



Abstract

Critically ill patients, typically admitted to the Intensive Care Unit (ICU), show

hyperglycemia and insulin resistance associated with adverse outcomes. It has been

demonstrated that strict blood glucose control (between 80 and 110 mg/dl) results in

an important reduction in mortality and morbidity. Current therapy requires a manual

and rigorous administration of insulin and could, therefore, be replaced by a semi- or

fully-automatic blood glucose control system. The introduction of this system could

potentially lead to tighter glycemic control and to a decrease of hypoglycemic events

and workload of the medical staff.

Three objectives are set in this thesis. The first objective is the design of a procedure

to evaluate the reliability of glucose sensor devices (comprising both time-discrete

and near-continuous sensors) with regard to a gold standard blood glucose sensor.

The quality of blood glucose control depends on the reliability (accuracy) of the

measurements. Current methods to assess this reliability level may mislead evaluations

and/or lack statistical evidence, however. In this thesis, the GLYCENSIT procedure is

developed to assess the performance of a test sensor device with respect to a reference

sensor device. We present a method that can be tuned according to the clinician’s

preferences regarding significance level, tolerance level, and glycemic range cut-off

values. The potential of this new procedure is shown by analysing hypothetical and

real-life clinical (ICU) paired glucose data.

The second objective of this dissertation is the design of a procedure to appropriately

assess the adequacy of blood glucose control algorithms used in the ICU. Based

on clinical expert knowledge, the Glycemic Penalty Index (GPI) is introduced as a

measure for the overall glycemic control behaviour in ICU patients as current eval-

uation measures have important weaknesses that may mislead assessments. Further,

the importance of keeping the blood glucose sampling frequency and the duration of

algorithm application similar among different patient groups when comparing different

insulin titration algorithms, is presented.

The final objective of this thesis is the design of a predictive control system that

can potentially be used for (semi-)automatically normalizing the blood glucose in

the critically ill. This blood glucose control system comprises a patient model and

a controller. Both black-box and grey-box modelling approaches are introduced in this

thesis to accurately describe the glucoregulatory system of the critically ill. Only the
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grey-box modelling approach, expressed in the ICU - minimal model (ICU-MM) and

based on physical insight, is found to be valid for use in a clinical predictive control

system. Re-estimating the ICU-MM by following an adaptive modelling strategy,

allows to capture inter- and intra-patient variability and gives satisfactory forecasting

results. Finally, a Model based Predictive Controller that optimizes the insulin infusion

rate based on the ICU-MM, is designed. A simulation study shows that the results

of the developed control system are satisfactory both in terms of control behaviour

(reference tracking and the suppression of unknown disturbance factors) and clinical

acceptability.



Korte Inhoud

Kritiek zieke patiënten, typisch gelegen op een afdeling Intensieve Geneeskunde,

vertonen een verhoogde glucoseconcentratie in het bloed (hyperglycemie) en in-

sulineresistentie. De gunstige effecten (mortaliteits- en morbiditeitsreductie) van

een strikte regeling van de bloedglucose (tussen 80 en 110 mg/dl) werden reeds

aangetoond. De huidige behandeling bestaat zo uit een manuele en nauwgezette

toediening van insuline en zou bijgevolg kunnen vervangen worden door een half-

of volautomatisch bloedglucoseregelsysteem. Een dergelijk controlesysteem heeft

het potentieel om de bloedglucose nog strikter te regelen en de frequentie van

hypoglycemies (te laag glucosegehalte in het bloed) en de werkdruk van het medisch

team te verlagen.

In deze dissertatie worden drie objectieven naar voren geschoven. Het eerste

objectief is de ontwikkeling van een procedure die toelaat de betrouwbaarheid van

glucosesensoren te evalueren ten opzichte van een gouden standaard bloedglucosesen-

sor. De kwaliteit van de bloedglucoseregeling is immers nauw verbonden met de

betrouwbaarheid (nauwkeurigheid) van de glucosemetingen. In de beoordeling van

glucosesensoren kan men echter misleid worden door de huidige evaluatiemethoden

die bovendien regelmatig een gebrek vertonen aan voldoende statistisch bewijs. In

dit proefschrift wordt de GLYCENSIT-procedure ontworpen die de performantie van

een test-glucosesensor ten opzichte van een referentie-glucosesensor evalueert. De

ontwikkelde methode kan afgesteld worden volgens de voorkeur van de clinicus

betreffende significantie/tolerantie-niveau en de drempelwaarde voor hypo- en hyper-

glycemie. Het potentieel van deze nieuwe procedure is voorgesteld met behulp van

analyses van hypothetische en reële, klinische glycemie-datasets.

Het tweede objectief van deze dissertatie is het ontwerp van een procedure voor de

evaluatie van insulinetitratie-algoritmen (die gebruikt worden op afdelingen Intensieve

Geneeskunde om de bloedglucose te regelen). De Glycemische Kost Index (“Glycemic

Penalty Index”, GPI) wordt zo voorgesteld als maat om het totale glycemieregelgedrag

bij kritiek zieke patiënten samen te vatten in één getal. De evaluatiemethoden die

momenteel in gebruik zijn, vertonen immers zwakheden die kunnen leiden tot een

verkeerde beoordeling van het regelalgoritme. De glucosebemonsteringsfrequentie en

de tijdsduur dat het algoritme effectief wordt toegepast zijn bovendien twee parameters

die gelijkaardig moeten zijn onder patiëntengroepen opdat verschillende algoritmen

adequaat vergeleken kunnen worden.

vii
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Het derde objectief van dit proefschrift is het ontwerp van een voorspellend regelsys-

teem dat het potentieel heeft om (half-)automatisch de bloedglucose bij kritiek zieke

patiënten te normaliseren. Dit glucoseregelsysteem bestaat uit een patiëntmodel en
een regelaar. Zowel “black-box” - als “grey-box” - modelleringstechnieken worden

toegepast met het oog op het nauwkeurig beschrijven van het glucoseregulatorisch

systeem van kritiek zieke patiënten. Enkel de “grey-box” - modelleringsmethode, die

gefundeerd is op fysische inzichten en die zich uit in het ontworpen “Intensive Care

Unit” - Minimale Model (ICU-MM), wordt gevalideerd voor klinisch gebruik in een

voorspellend regelsysteem. Het frequent herschatten van het ICU-MM (door gebruik te

maken van een adaptieve modelleringsprocedure) laat toe om rekening te houden met

de variabiliteit binnen de patiënt en tussen patiënten onderling. Het verloop van het

glucosesignaal kan aldus voldoende nauwkeurig voorspeld worden met deze methode.

Ten slotte wordt een regelaar ontwikkeld op basis van Modelgebaseerde Predictieve

Controle (MPC) technieken zodat het toe te dienen insulinedebiet kan geoptimaliseerd

worden op basis van het ontworpen ICU-MM. Een simulatiestudie toont aan dat de

resultaten van de MPC voldoen aan de eisen inzake regelgedrag (het volgen van een

referentieglycemie en het onderdrukken van ongekende stoorfactoren) en klinische

realiseerbaarheid.



Notation

Variables used in the Intensive Care Unit - Minimal Model (ICU-MM)

G Glycemia or Blood Glucose (mg/dl) (1 mmol/l = 18 mg/dl )

FI Flow of Insulin (U/hr)

FG Flow of carbohydrate (Glucose) calories (kcal/hr)

FF Flow of Fat calories (kcal/hr)

T body Temperature (°C)

FC Flow of glucoCorticoids (mg/hr)

FA Flow of Adrenaline (γ)
FN Flow of Noradrenaline (γ)
FDob Flow of Dobutamine (γ)
FDop Flow of Dopamine (γ)
Fβ Flow of Beta blockers (mg/hr)

Acronyms

ADICOL ADvanced Insulin infusion using a COntrol Loop

AIDA Automated Insulin Dosage Advisor

ANOVA ANalysis Of VAriance

APACHE Acute Physiology and Chronic Health Evaluation

AR linear AutoRegressive model

ARX linear AutoRegressive model with eXogeneous inputs

AST Alternate Site Testing

BIT Back-In-Time

BMI Body Mass Index

D-MM (type I) Diabetes Minimal Model

DETM Diabetes Error Test Model

DIAS DIabetes Advisory System

EKF Extended Kalman Filter

FSIGTT Frequently Sampled Intravenous Glucose Tolerance Test

GLYCENSIT GLYCemia sENSor Tool or GLYCemia sENSe IT

GMS Glucose Monitoring Systems

GPI Glycemic Penalty Index

GRIP Glucose Regulation for Intensive care Patients

HGI HyperGlycemic Index

ix
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IBW Ideal Body Weight

ICU Intensive Care Unit

ICU-MM Intensive Care Unit Minimal Model

IQ InterQuartile

ISO International Organisation for Standardization

IVGTT IntraVenous Glucose Tolerance Test

MHE Moving Horizon Estimator

MM Minimal Model

MPC Model based Predictive Control

MPE Mean Percentage Error

MSE Mean Squared Error

MSnE Mean Squared normalized Error

NICE-SUGAR Normoglycemia in Intensive Care Evaluation and

Survival Using Glucose Algorithm Regulation

N-LS Non-Linear Least Squares

OGTT Oral Glucose Tolerance Test

OLS Ordinary Least Squares

PD Proportional / Differential

PDMS Patient Database Management System

PID Proportional / Integral / Differential

RMSnE Root Mean Squared normalized Error

SD Standard Deviation

sMSE standardized Mean Squared Error

SPRINT SPecialized Relative Insulin and Nutrition Tables

SQP Sequential Quadratic Programming

TGC Tight Glycemic Control

VISEP Volume substitution and Insulin therapy in Severe sEPsis

WLS Weighted Least Squares
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Regelen van glycemie bij kritiek

zieke patiënten: ontwerp van

evaluatieprocedures en een

regelsysteem

Hoofdstuk 1: Inleiding

Kritiek zieke patiënten, typisch gelegen op een afdeling Intensieve Geneeskunde,

vertonen een verhoogde glucoseconcentratie in het bloed (hyperglycemie) en in-

sulineresistentie. De gunstige effecten (mortaliteits- en morbiditeitsreductie) van

een strikte regeling van de bloedglucose (tussen 80 en 110 mg/dl) werden initieel

aangetoond in 2001 [216]. Zo daalde de mortaliteit van 8.0 tot 4.6% in een chirurgisch

zieke patiëntenpopulatie die intensief met insuline behandeld werd (als alternatief voor

de conventionele insulinetherapie waarbij de maximum toelaatbare bloedglucose gelijk

was aan 220 mg/dl). De toepassing van deze intensieve insulinetherapie bij medisch

zieke patiënten (die typisch lijden aan chronische ziekten) resulteerde eveneens in een

mortaliteitsdaling (van 52.5 tot 43.0%) voor patiënten die minstens drie dagen op de

afdeling Intensieve Geneeskunde verbleven [213].

Naast de significante daling van de mortaliteit en de morbiditeit heeft de intensieve

insulinetherapie ook een belangrijk financieel voordeel. Figuur 1.2, die gebaseerd

is op de resultaten gepubliceerd in [217], toont aan dat de kostendaling per patiënt

e 2638 bedraagt (terwijl de extra kost, voornamelijk te wijten aan het regelmatiger

bemonsteren van de glycemie en de toediening van meer insuline, per patiënt slechts

e 72 is).

xv
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Ondanks de gekende klinische en economische voordelen van de intensieve insu-

linetherapie, kunnen de volgende problemen en uitdagingen geformuleerd worden:

1. Een strikte regeling van de bloedglucose vereist het frequent bemonsteren van

de bloedglucose en het vervolgens adequaat aanpassen van het insulinedebiet op

basis van het geobserveerde glycemiesignaal en aanwezige stoorfactoren zoals

toegediende voeding en medicatie. Het gebruik van het huidige protocol [215],

dat geen eenvoudig ‘als-dan’ protocol is, vereist echter voldoende ervaring van

de verpleegkundige.

2. Omwille van de niet-triviale toepassing van het huidige protocol, is dewerkdruk

voor het verplegend personeel drastisch toegenomen.

3. Het waargenomen glucosesignaal hangt bovendien af van welke verpleegkundige

welke patiënt heeft behandeld (‘subjectieve’ glycemieregeling).

4. Een belangrijk nadeel van de intensieve insulinetherapie is de angst voor

hypoglycemie (te laag glucosegehalte in het bloed) omwille van het verlaagde

doel-bloedglucose-bereik (80-110 mg/dl).

5. Tot slot zou de glycemieregeling vlotter en veiliger kunnen gebeuren indien een

betrouwbare ‘continue’ glucosesensor beschikbaar zou zijn. Tot op heden echter

wordt de arteriële glucosewaarde bij kritiek zieke patiënten slechts elk uur tot

elke vier uren gemeten.

De huidige behandeling bestaat uit een manuele en nauwgezette toediening van

insuline en zou bijgevolg kunnen vervangen worden door een half- of volautomatisch

bloedglucoseregelsysteem. Een dergelijk regelsysteem heeft immers het potentieel

om de bloedglucose strikter te regelen en om de frequentie van hypoglycemies en de

werkdruk van het medisch team te verlagen. Bovendien kan een dergelijk automatisch

systeem leiden tot een ‘objectiever’ regelgedrag wat de drempel tot toepassing of

verbetering van de intensieve insulinetherapie in ziekenhuizen wereldwijd verder

kan verlagen. Een andere onderzoeksuitdaging situeert zich in het ontwerp van

evaluatieprocedures voor glucosesensoren enerzijds en glycemieregelalgoritmen an-

derzijds. Bij gebruik van de huidige methoden om een glucosesensor/regelalgoritme te

beoordelen, kan men immers misleid worden.

In deze dissertatie worden drie objectieven behandeld. Ten eerste wordt een

evaluatieprocedure voor glucosensoren ontwikkeld die tegemoet komt aan de zwakhe-

den van de huidige beoordelingstechnieken. Ten tweede wordt een evaluatieprocedure

voor regelalgoritmen die gebruikt worden om de bloedglucose bij kritiek zieke

patiënten te normaliseren, ontworpen. Ten derde wordt een predictief regelsysteem

ontwikkeld dat het potentieel heeft om de glycemie half- of volautomatisch te regelen

op Intensieve Geneeskunde - afdelingen. Figuur 0.1 vat de verschillende hoofdstukken

in dit proefschrift visueel samen.
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GLYCEMIE-REGELSYSTEEM

PATIENT-MODEL
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ACTUATOR
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Figure 0.1: Vereenvoudigde voorstelling van een halfautomatisch bloedglucoseregel-

systeem. Hoofdstuk 2 beschrijft de klinische achtergrond en de beschikbare Intensieve

Geneeskunde - datasets. Vervolgens worden de nieuwe evaluatieprocedures voor

glucosesensoren en regelalgoritmen beschreven in respectievelijk Hoofdstuk 3 en 4.

De volgende twee hoofdstukken behandelen de ontwikkeling van een zwarte-doos-

model (Hoofdstuk 5) en een grijze-doos-model (Hoofdstuk 6) die gebruikt worden

om het verloop van de glycemie te voorspellen. Tot slot wordt het ontwerp van een

modelgebaseerde predictieve regelaar voorgesteld in Hoofdstuk 7.
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I KLINISCHE ACHTERGROND

Hoofdstuk 2: Intensieve geneeskunde: patiënten en data

In het eerste deel van dit hoofdstuk wordt de klinische achtergrond van dit project

geschetst. Het glucoseregulatorisch systeem van een gezonde persoon, een patiënt

met (type I) diabetes en een kritiek zieke patiënt wordt eenvoudig voorgesteld in

respectievelijk figuur 2.3, figuur 2.4 en figuur 2.5. De verhoogde glucoseconcentratie

in het bloed (hyperglycemie) van kritieke zieke patiënten is voornamelijk te wijten

aan de verhoogde productie van stresshormonen. Deze hormonen gaan enerzijds

de activiteit van insuline tegenwerken en anderzijds de weerstand tegen insuline

(insulineresistentie) verhogen. De resulterende hyperglycemie zorgt verder voor een

acute toxiciteit in de cellen die glucose kunnen opnemen onafhankelijk van insuline.

Het is vermoedelijk die toxiciteit die bepalend is voor de mortaliteit en de morbiditeit

bij kritiek zieke patiënten. De normalisatie van de bloedglucose is dan ook een

belangrijk aspect bij de behandeling van patiënten die gelegen zijn op een afdeling

Intensieve Geneeskunde.

Het tweede deel van dit hoofdstuk beschrijft de data die beschikbaar gemaakt zijn in

het kader van deze dissertatie. In het begin van dit project waren geen dynamische

data (waarbij parameters bv. elk uur bemonsterd worden) beschikbaar in electronisch

formaat. Tot enkele maanden geleden werd immers gebruik gemaakt van papieren

verpleegbladen (zoals afgebeeld in figuur 2.6) waarop de klinische informatie van

elke patiënt op werd genoteerd. In eerste instantie was het dan ook van belang om

deze papieren data accuraat om te zetten naar een electronisch formaat. Op basis van

beschikbaarheid en klinisch oordeel werd dan ook een lijst van variabelen (waaronder

insuline, voedingscalorieën, medicatie, lichaamstemperatuur) opgesteld die mogelijk

de bloedglucose kunnen beı̈nvloeden.

Vier verschillende (electronische) datasets, met elk specifieke kenmerken, werden op

die manier geregistreerd:

1. Dataset 1: De eerste dataset bestaat uit 41 patiënten waarbij de (arteriële)

bloedglucose elke vier uren of frequenter (in geval van complicaties of in de

initiële fase) werd gemeten met de ABL700 Radiometer Medical glucosemeter

(Radiometer, Denemarken). Het doel-bloedglucose-bereik was 80-110 mg/dl

en de data van de volledige verblijfsduur werden geregistreerd. De geme-

ten glycemies werden vervolgens lineair geı̈nterpoleerd zodat één-uur-data

bekomen werden. Tabel 2.1 geeft een overzicht van de eigenschappen van deze

dataset.

2. Dataset 2: De tweede dataset bestaat uit 15 patiënten waarbij de (arteriële)

bloedglucose elk uur (gedurende de eerste 50 uren na opname) gemeten werd

met behulp van de ABL700 Radiometer Medical glucosemeter. Het doel-

bloedglucose-bereik was 80-110 mg/dl. Tabel 2.2 geeft een overzicht van de

kenmerken van deze dataset.
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3. Dataset 3: De derde dataset bestaat uit 37 patiënten. De (arteriële) glycemie

werd hier elk uur (gedurende de eerste 50 uren na opname) gemeten met drie ver-

schillende sensoren: de ABL700 Radiometer Medical glucosemeter, de Accu-

Chek Inform meter (Roche Diagnostics, Zwitserland) en de HemoCue B-glucose

meter (HemoCue, Engeland). In tegenstelling tot de andere datasets werden

hier enkel de glycemie-data geregistreerd (en dus niet de andere geselecteerde

variabelen). Tabel 2.3 geeft een overzicht van de eigenschappen van deze dataset.

4. Dataset 4: De vierde dataset bestaat uit 20 patiënten waarbij de (arteriële)

bloedglucose elk uur gemeten werd met de ABL700 Radiometer Medical glu-

cosemeter. Tevens werd gelijktijdig de subcutane glucoseconcentratie gemeten

met behulp van het GlucoDay meetsysteem (A. Menarini Diagnostics, Italië).

Elke drie minuten werd zo een glucosemeting geëxporteerd zodat voor deze

patiënten een benaderend continu glucosesignaal (dat gevalideerd werd met de

ABL700 Radiometer Medical één-uur-bloedglucosedata) beschikbaar was. De

kenmerken van deze dataset worden samengevat in tabel 2.4.

Vanuit ingenieurstechnisch oogpunt kunnen de volgende eigenschappen van de beschik-

bare datasets onderscheiden worden:

• De bemonsteringsfrequentie van variabelen (zoals de bloedglucose) is niet steeds
gelijk wat (lineaire) interpolatie noodzakelijk maakt.

• Stoorfactoren (zoals toegediende voeding en medicatie) kunnen simultaan ge-
wijzigd worden wat een eenduidige modellering kan bemoeilijken.

• Omwille van het arbeidsintensieve transformatieproces (waarbij de papieren data
omgezet werden naar electronische data), is slechts een beperkte hoeveelheid

data beschikbaar. De variabiliteit van het glucoseregelgedrag voor een patiënt

(in functie van de tijd) alsook tussen verschillende patiënten onderling is immers

groot.

• Een groot aantal factoren die het glucoseregelgedrag kunnen verstoren, kunnen
niet (rechtstreeks) gemeten worden (bv. insulineresistentie) of zijn niet gekend

(bv. mogelijke effect op de glycemie van het wassen van de patiënt).

• Aangezien de verpleegkundigen de bloedglucose van de patiënten zo strikt
mogelijk tussen 80 en 110 mg/dl trachten te regelen, kunnen we spreken van

gesloten-lus data. Deze eigenschap kan de relatie tussen de ingangen (bv.

voeding, medicatie) enerzijds en de uitgang (glycemie) anderzijds (gedeeltelijk)

verhullen wat het modelleringsproces van het intern glucoseregelgedrag kan

bemoeilijken.

• Tot slot moet opgemerkt worden dat een (onbeperkte) experimentele vrijheid
ontbreekt omwille van medische en ethische redenen.
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II BEOORDELINGSPROCEDURES

Hoofdstuk 3: Algemene beoordeling van glucosesen-

soren

Het regelmatig en accuraat meten van de glycemie is een belangrijke eigenschap

van intensieve insulinetherapie bij zowel diabetespatiënten als kritiek zieke patiënten.

Zowel bloedglucosemeters als glucosemeetsystemen worden hiervoor gebruikt. De

eerste categorie meet de glucosewaarde in arterieel, veneus of capillair bloed en

resulteert typisch in tijdsdiscrete metingen (bv. 6 tot 12 metingen per dag). De

tweede categorie daarentegen maakt een schatting van de glucosewaarde met behulp

van andere technieken zodat het meetinterval verkleind kan worden tot enkele minuten

of zelfs seconden. Dit type van glucosesensoren leidt dan ook tot een continu

glucoseprofiel.

De huidige methoden die gebruikt worden om een glucosesensor te evaluaren verto-

nen elk bepaalde zwakheden die reeds uitvoerig in de bestaande literatuur werden

beschreven. In dit hoofdstuk wordt dan ook een nieuwe methode ontwikkeld

(de GLYCENSIT-procedure) die tracht tegemoet te komen aan deze zwakheden.

Deze nieuwe methode rust op drie pijlers. Ten eerste dient elke glucosedataset

getransformeerd te worden naar een verzameling van gekoppelde metingen. Dit

betekent dat voor elke test-sensorwaarde ook een referentie-waarde gekend moet

zijn. Ten tweede wordt verondersteld dat opeenvolgende meetfouten statistisch

onafhankelijk zijn en dat ze elk een identieke distributie hebben. Ten derde is de

procedure voor een deel gefundeerd op een normalisatiefunctie (zie vergelijking 3.2).

Deze functie laat toe om de meetfouten te normaliseren op basis van het “International

Organisation for Standardization (ISO)” - criterium [75] zodat lage glucosewaarden

anders beoordeeld worden dan hoge glucosewaarden.

De ontworpen GLYCENSIT-methode bestaat uit drie complimentaire fasen:

1. Fase 1:

In deze fase wordt de persistentie van het meetgedrag in functie van het

glycemiegebied statistisch getest met behulp van de Kruskal-Wallis test [175].

Een persistente fout vergemakkelijkt immers de ingebruikname van een nieuwe

sensor door verpleegkundigen aangezien in dat geval eenvoudig kan rekening

gehouden worden met de (gekende) sensorfout.

2. Fase 2:

De tweede fase wordt gekenmerkt door het testen van de nauwkeurigheid van

de sensor t.o.v. het ISO-criterium. Er wordt statistisch aangetoond of een test-

glucosesensor voldoet aan bepaalde tolerantie-niveaus (bv. een tolerantie-niveau

van 4% duidt aan dat de test-glucosensor slechts 4 fouten tegen het ISO-criterium

op 100 metingen mag maken).
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3. Fase 3:

In de laatste fase worden tolerantie-intervallen berekend om de mogelijke

afwijkingen van de test-sensor voor nieuwe metingen in kaart te brengen.

De waarschijnlijkheid van deze tolerantie-intervallen (die afhankelijk is van

het significantieniveau, het aantal gekoppelde metingen en de grootte van de

tolerantie-intervallen) wordt tot slot berekend en confronteert de gebuiker met

de statistische betrouwbaarheid van de analyse van de specifieke dataset.

Het gebruik van de ontworpen GLYCENSIT-procedure wordt vervolgens aangetoond

met behulp van drie hypothetische en drie klinische datasets. In deze laatste

categorie wordt achtereenvolgens de betrouwbaarheid van de GlucoDay (A. Menarini

Diagnostics, Italië), de Accu-Chek Inform (Roche Diagnostics, Zwitserland) en de

HemoCue B-glucose (HemoCue, Engeland) test-sensoren geanalyseerd t.o.v. de

ABL700 Radiometer Medical glucose (Radiometer, Denemarken) referentie-sensor.

De bereikte analyses worden verder vergeleken met de resultaten die bekomen werden

met de huidige meest gekende evaluatietechnieken (Bland-Altman-analyse [3, 15]

en Fouten-Raster-Analyse (“Error Grid Analysis”) [44, 52, 54]). Bovendien kan

de GLYCENSIT-methode eenvoudig toegepast worden op de bijhorende website:

http://www.esat.kuleuven.be/GLYCENSIT.

Hoofdstuk 4: Algemene beoordeling van glycemie -

regelsystemen

De normalisatie van de bloedglucose d.m.v. toediening van insuline vormt een

standaard onderdeel in de huidige behandeling van kritiek zieke patiënten. Ver-

pleegkundigen passen dan ook op regelmatige tijdstippen de insulinedosis aan met

behulp van insulinetitratie-algoritmen. Nieuwe vormen van deze bloedglucoseregel-

algoritmen worden sedert enkele jaren ontwikkeld, maar vereisen een gepaste evaluatie

alvorens ze aanvaard kunnen worden voor algemeen klinisch gebruik. De huidige

beoordelingsmethoden bestaan hoofdzakelijk uit enkelvoudige metingen (bv. de

ochtendglycemie), gemiddelden (bv. de gemiddelde glycemie) en de HyperGlyce-

mische Index (HGI). Elk van deze categorieën vertoont echter zwakheden die er voor

kunnen zorgen dat men kan misleid worden bij de beoordeling van een regelalgoritme.

In dit hoofdstuk wordt de Glycemische Kost Index (“Glycemic Penalty Index”, GPI)

ontwikkeld die de zwakheden van de huidige gekende methoden tracht op te heffen.

De GPI is een instrument om een glucoseprofiel te beoordelen op basis van klinische

expertkennis uit de Intensieve Geneeskunde. Aan elke gemeten glucosewaarde wordt

een bepaalde kost toegekend en het gemiddelde van al deze kosten wordt vervolgens

uitgedrukt in de GPI (zie vergelijking 4.3) op een schaal van 0 tot 100. Idealiter

is de GPI gelijk aan 0 wat inhoudt dat al de gemeten glucosewaarden zich in het

80-110 mg/dl normoglycemisch meetbereik bevinden. In de klinische praktijk kunnen

echter onnauwkeurigheden inzake de sensor of de behandeling van het bloedstaal
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voorkomen zodat glucoseprofielen die een GPI hebben van 23 of minder toch als

klinisch aanvaardbaar kunnen worden beschouwd.

Verder wordt in dit hoofdstuk de performantie van de GPI vergeleken met die van

de huidige beoordelingsmethoden (de gemiddelde ochtendglycemie, de gemiddelde

glycemie en de HGI). Er wordt aangetoond dat men misleid kan worden bij de

beoordeling van een glucoseprofiel wanneer men enkel de huidige evaluatietechnieken

toepast (aanvaardbaar op basis van de huidige beoordelingsmethoden, maar klinisch

onaanvaardbaar volgens GPI). Evaluatieverschillen treden voornamelijk op bij de

vergelijking tussen de gemiddelde (ochtend)glycemie en de GPI en in mindere mate

bij de vergelijking tussen de HGI en de GPI.

Tot slot wordt in dit hoofdstuk onderzocht welke parameters een beoordeling van een

insulinetitratie-algoritme kunnen beı̈nvloeden. Zo wordt het effect van de tijdsduur

dat het algoritme wordt toegepast, de gemiddelde glucosebemonsteringsfrequentie, de

graad van ziekte en het type ziekte op de GPI bestudeerd. Enerzijds blijkt een hogere

gemiddelde glucosebemonsteringsfrequentie gerelateerd te kunnen worden aan lagere

GPI-waarden (strictere glycemiecontrole) indien de tijdsduur dat het algoritme wordt

toegepast kort en constant is (bv. eerste 48 uren na opname). Anderzijds zal de GPI ook

verlagen bij een toenemende tijdsduur dat het algoritme wordt toegepast. Immers, hoe

langer de patiënt verblijft op Intensieve Geneeskunde (en dus hoe langer het algoritme

wordt toegepast en hoe meer data beschouwd worden bij de bepaling van GPI), hoe

meer ook de chronische, eerder stabiele fase (die volgt na de initiële, instabiele fase) in

rekening wordt gebracht. In deze stabiele fase is de bloedglucose typisch gemakkelijker

te regelen binnen het 80-110 mg/dl normoglycemische bereik (resulterend in een lage

GPI) zodat de verpleegkundigen de glycemie minder frequent dienen te meten.
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III BLOEDGLUCOSEREGELSYSTEEM

Hoofdstuk 5: Zwarte-doos-modellering van glycemie

Een predictief regelsysteem dat gebruikt kan worden voor de normalisatie van de

glycemie op Intensieve Geneeskunde bestaat enerzijds uit een patiëntmodel dat het

glucoseregulatorisch systeem van een kritiek zieke patiënt mathematisch voorstelt en

anderzijds uit een regelaar die, gebruikmakend van het model, de meest optimale

insulinedosis bepaalt.

In dit hoofdstuk wordt een zwarte-doos (“black-box”) - model ontwikkeld om de

glycemie van kritiek zieke patiënten te voorspellen. Zwarte-doos-modellerings-

technieken maken gebruik van de beschikbare datasets om zowel de modelstructuur

te ontwikkelen alsook de modelparameters te schatten. Als vertrekbasis wordt

een lineair AutoRegressief model met eXterne ingangssignalen (ARX) genomen dat

wordt voorgesteld in vergelijking 5.1. Vervolgens wordt op basis van iteratieve

t-testen bepaald welke ingangsvariabelen (bv. insuline, glucosecalorieën, vetcalorieën,
medicatie, e.a.) een significante bijdrage leveren tot de voorspelling van de bloedglu-

cose waarna tevens de modelorde bepaald wordt. De uiteindelijke modelstructuur

wordt weergegeven in vergelijking 5.5.

Verder wordt in dit hoofdstuk een adaptieve modelleringsprocedure uitgewerkt. Voor

elke patiënt p worden de parameters van het bekomen model (vgl. 5.5) hier namelijk
op elke tijdstap t herschat op basis van twee datasets. De eerste dataset bestaat uit de
data van de patiënten die gebruikt worden om het initieel model te schatten. De tweede

dataset daarentegen bestaat uit de data van patient p tot tijdstip t − 1 die bovendien
nog versterkt worden met een geoptimaliseerde factor. Op die manier wordt elk model

aangepast aan de specifieke patiënt en het snel variërende interne dynamische gedrag

van de kritiek zieke patiënt in het bijzonder (bv. variërende insulinegevoeligheid).

De voorspelde glycemieprofielen zijn aanvaardbaar vanuit modeltechnisch standpunt.

Zoals verwacht verkleint de modelfout bij een predictiehorizon van een uur in

vergelijking met een simulatiehorizon van vier uren. Het adaptieve karakter van het

model resulteert verder in een hogere modelpredictieperformantie in vergelijking met

de performantie van het initiële model. Er dient echter een belangrijke bedenking

gemaakt te worden wanneer zwarte-doos-modelleringstechnieken gebruikt worden

voor regeldoeleinden in een klinische omgeving. De gesloten-lus eigenschap van

de beschikbare data leidt immers tot een onderschatting van het belang van de

modelcoëfficiënten van de ingangsvariabelen (waaronder insuline in het bijzonder).

Gebruik van het ontwikkelde zwarte-doos-model in een predictief regelsysteem kan

bijgevolg leiden tot toediening van te grote hoeveelheden insuline wat een potentieel

gevaar betekent voor de patiënt. Om die reden kunnen deze modellen niet gebruikt

worden voor regeldoeleinden in een klinische omgeving.
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Hoofdstuk 6: Grijze-doos-modellering van glycemie

In dit hoofdstuk wordt een grijze-doos (“grey-box”) - model ontwikkeld dat als doel

heeft het accuraat voorspellen van het glucosegedrag van kritiek zieke patiënten.

In tegenstelling tot zwarte-doos-modelleringstechnieken wordt, naast de beschikbare

data, ook gebruik gemaakt van klinische en fysische inzichten. In dit hoofdstuk

wordt dan ook het “Intensive Care Unit” - Minimale Model (ICU-MM) ontworpen.

Dit model wordt afgeleid van het befaamde Minimale Model dat door Bergman en

collega’s werd ontwikkeld in de beginjaren ’80 [14]. Het gecreëerde ICU-MM bestaat

uit vier differentiaalvergelijkingen die voorgesteld worden in vergelijkingsstelsel 6.3.

Het model omvat een endogene insulinesectie (eigen werking van de pancreas) en

een exogene insulinesectie (extern toegediende insuline). Het ICU-MM heeft verder

twee ingangsvariabelen (exogene insuline en toegediende glucosecalorieën) en zeven

patiëntspecifieke parameters die dus per patiënt dienen geschat te worden. De

modelstructuur wordt in een blokdiagram samengevat in figuur 6.4.

De modeldynamica van het ICU-MM komt kwalitatief en kwantitatief overeen met de

dynamica van het echte glucoseregulatorisch syteem zoals wordt aangetoond in een

simulatie met 19 (virtuele) kritiek zieke patiënten. Vervolgens wordt een adaptieve

modelleringsprocedure toegepast op deze patiëntengroep waarbij de eerste 24-uren

data na opname op Intensieve Geneeskunde gebruikt worden om een initieel model

te schatten. Dit model wordt dan gevalideerd met de tweede 24-uren data. In

dit validatieproces (waarbij het glucoseprofiel telkens een of vier uren verder wordt

voorspeld, afhankelijk van de simulatie) wordt in elke tijdstap het model ook herschat

op basis van recente data zodat veranderingen in het glucoseregulatorisch systeem (bv.

variërende insulinegevoeligheid) mee in rekening kunnen gebracht worden.

Het ICU-MM wordt idealiter elke tijdstap (bv. elk uur of elke vier uren) herschat op

basis van de data van de laatste vier à vijf uren. Verder wordt aangetoond dat het elk uur

updaten van het model resulteert in kleinere predictiefouten in vergelijking met updates

die slechts om de vier uren voorkomen. Algemeen kan echter geconcludeerd worden

dat de predictieperformantie van het ICU-MM aanvaardbaar is in beide gevallen

vanuit modeltechnisch en klinisch perspectief. Daarenboven wordt met behulp van

patientgevalsstudies aangetoond dat het ICU-MM het potentieel heeft om gebruikt te

worden in een predictief regelsysteem om de glycemie te regelen van kritiek zieke

patiënten.

Hoofdstuk 7: Regeling van glycemie

Dit hoofdstuk bestaat uit twee bijdragen. Ten eerste wordt een kritisch overzicht

gegeven van de algoritmen die de laatste jaren werden voorgesteld om de bloedglucose

bij kritiek zieke patiënten te regelen. Het insulinetitratieprotocol [215] dat gebruikt

werd bij het normalisatieproces in de twee befaamde Leuven-studies [213, 216]

bestaat uit een verzameling van richtlijnen die niet als absoluut mogen aanzien

worden. De vrije interpretatie van de verpleegkundigen is immers een essentieel



Nederlandse samenvatting xxv

onderdeel van dit protocol. In navolging van dit protocol werden basisprotocols

of nomogrammen ontwikkeld die de inbreng van de verpleegkundigen minder of

niet meer noodzakelijk maakten. Verder werden eveneens elementaire en meer

geavanceerde computerprotocols ontwikkeld.

Ondanks het aantonen van de gunstige effecten (mortaliteits- en morbiditeitsdaling)

bij een intensieve insulinetherapie op Intensieve Geneeskunde, is het opmerkelijk dat

veel van de voorgestelde protocols een doel-glycemie-bereik hebben dat significant

hoger ligt dan het 80-110 mg/dl normoglycemisch doelgebied beschreven in [213,216].

De angst voor hypoglycemie is de hoofdreden van het verhogen van deze doel-

bloedglucose. Verder moet opgemerkt worden dat het moeilijk is om de resulaten van

al de verschillende algoritmen te vergelijken daar de parameters die een beoordeling

van een algoritme kunnen beı̈nvloeden (gemiddelde glucosebemonsteringsfrequentie

en de tijdsduur dat het algoritme wordt toegepast, zie Hoofdstuk 4) niet gelijk

gehouden werden. Het is dan ook opvallend dat verscheidene studies toch een

vergelijking maken tussen de regelperformantie van een nieuw algoritme enerzijds en

het standaard Leuven-protocol anderzijds; temeer daar dit laatste uit slechts richtlijnen

bestaat. Verder wordt vastgesteld dat uitzonderlijk in sommige studies zowel insuline

als voedingscalorieën als ingangsvariabelen worden beschouwd (en dus niet zoals

gebruikelijk enkel insuline). Tot slot is het opmerkelijk dat capillaire glucosemetingen

uitgevoerd werden bij kritiek zieke patiënten in tal van studies. Het werd immers

reeds uitvoerig beschreven dat het bepalen van de glucoseconcentratie in capillair

bloed van kritiek zieke patiënten kan leiden tot onbetrouwbare glycemiemetingen

[28,51, 63, 71, 123].

De tweede bijdrage beschreven in dit hoofdstuk is het ontwerp van een Modelge-

baseerde Predictieve Controle (MPC) - regelaar. Een dergelijk type regelaar laat

toe om het optimale insulinedebiet te bepalen dat moet toegediend worden aan

de patiënt. In elke tijdstap wordt dan ook een optimalisatieprobleem opgelost

waarbij het glycemieverloop wordt gesimuleerd met behulp van het in Hoofdstuk 6

ontwikkelde ICU-MM. Twee simulatiestudies worden vervolgens beschreven. In een

eerste studie wordt de glycemie van 19 (virtuele) kritiek zieke patiënten geregeld

waarbij enkel het debiet van glucosecalorieën (dat werkelijk werd toegediend aan

de overeenstemmende echte 19 patiënten) als gekende stooringang fungeert. In

de simulatie wordt bovendien een meetfout toegevoegd aan het glycemiesignaal en

wordt een (voor de MPC ongekende) additieve medicatie-stoorfactor bijgebracht.

Een uitgebreide Kalman filter (“Extended Kalman Filter”, EKF) wordt hier dan ook

gebruikt om deze stoorfactoren te schatten. In een tweede studie worden vervolgens

de door de MPC voorgestelde insulinedebieten (zonder extra externe stoorfactoren)

kwalitatief vergeleken met de insulinehoeveelheden die in werkelijkheid door de

verpleegkundigen werden toegediend. Beide simulatiestudies tonen aan dat de

resultaten van de MPC voldoen aan de eisen inzake regelgedrag (het volgen van een

referentieglycemie en het onderdrukken van ongekende stoorfactoren) en klinische

realiseerbaarheid.
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Hoofdstuk 8: Besluiten en toekomstig onderzoek

In dit proefschrift worden drie objectieven behandeld:

1. een methode om glucosesensoren vanuit statistisch en klinisch perspectief te

beoordelen wordt ontworpen: de GLYCENSIT-procedure,

2. een methode om insulinetitratieprotocols (algoritmen) die gebruikt worden op

afdelingen Intensieve Geneeskunde om de bloedglucose te regelen, te beoordelen

wordt ontworpen: de GPI-methode,

3. een predictief regelsysteem dat het potentieel heeft om gebruikt te worden om

half- of volautomatisch de glycemie van kritiek zieke patiënten te normaliseren

wordt ontworpen: het ICU-MM dat dienst doet als patiëntmodel in combinatie

met eenMPC-regelaar.

Toekomstig onderzoek situeert zich in vijf verschillende domeinen:

1. Beoordeling van ‘continue’ glucosesensoren. De kwaliteitseisen voor een

individuele glucosemeting afkomstig van een ‘continue’ glucosesensor zijn lager

dan die van een individuele intermitterende glucosemeting. Een nieuwe versie

van de GLYCENSIT-methode kan ontwikkeld worden specifiek voor de validatie

van ‘continue’ glucosesensoren.

2. Relatie tussen GPI en klinisch effect. De relatie tussen een verlaagde GPI

en een verlaagde mortaliteit en morbiditeit is te verwachten vanuit klinisch

standpunt, maar dient nog aangetoond te worden.

3. Modellering van glycemie. Het ontwikkelde ICU-MM kan nog verder verfijnd

worden met behulp van experimentele data afkomstig van kritiek zieke konijnen.

Het algoritme dat gebruikt wordt om de modelcoëfficiënten aan te passen kan

verder geoptimaliseerd worden en de patiëntenclustering kan toegepast worden

zodat de initiële coëfficiënten van het model beter bij het dynamisch gedrag

van de patiënt aansluiten. Tot slot moet nagegaan worden of de ontwikkelde

modellen ook kunnen gebruikt worden om het glycemiepatroon van medisch

zieke patiënten (i.p.v. chirurgisch zieke patiënten) te voorspellen.

4. Regeling van glycemie. Toestanden en ongekende stoorfactoren kunnen mo-

gelijk efficiënter geschat worden met een toestandsschatter met schuivend

tijdsvenster (“Moving Horizon Estimator”) als vervanging voor een EKF. De

implementatie van de tolerantie-intervallen uit fase 3 van de GLYCENSIT-

procedure kan de performantie van het regelsysteem verder verhogen aangezien

dan kan rekening gehouden worden met mogelijke afwijkingen van de glu-

cosesensor. Daarenboven is een robuustheidsonderzoek van de regelaar vereist

alvorens het regelsysteem klinisch getest kan worden.

5. Klinische validatie van een glycemieregelsysteem. Bij de ingebruikname van

het regelsysteem in de klinische praktijk dienen een drietal fasen te worden
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doorlopen. Ten eerste wordt het regelsysteem getest op kritiek zieke konijnen.

Ten tweede wordt nagegaan hoe accuraat de adviserende functie van het half-

automatisch regelsysteem werkt bij een groep van kritiek zieke patiënten.

Ten derde wordt het volautomatisch systeem getest op een grote groep van

kritiek zieke patiënten. De beschikbaarheid van een betrouwbare ‘continue’

glucosesensor is zeker in deze laatste fase een vereiste.
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Chapter 1

Introduction

“The term ‘landmark study’ is given to Van den Berghe’s research [216]

because its results have influenced the treatment of hyperglycemia

within critical care”

– Burns & Grove, 2003 [30] –

In this chapter a general introduction on the intensive care unit setting

is given together with the clinical, economic, and social context. Next,

the problems that form the basis of this study and the corresponding

challenges are described leading to the objectives of this dissertation.

Finally, the contributions of this work are briefly discussed and a chapter-

by-chapter overview is given.

1.1 Motivation

Patients who are critically ill are typically admitted to an intensive care unit (ICU).

Without the appropriate treatment, either pharmacological or mechanical, these patients

die of their (critical) illness. An ICUward is known for the control and/or the temporary

replacement of one or more vital functions of patients. Different reasons for admission

to the ICU exist, all potentially life-threatening. This gives the ICU a central role in

a hospital. The critical illness of ICU patients necessitates a 24/7-care by experienced

medical staff (i.e., a nursing team, medical doctors, technicians, etc.). Bio-medically

engineered tools (e.g., artificial kidney, mechanical ventilation equipment, sensors,

etc.) are abundantly present in a daily-life ICU environment. Figure 1.1 shows a

critically ill patient and some equipment connected to the patient. The concentration

of glucose in the blood (‘blood glucose’ or ‘glycemia’) is one of the many crucial

parameters in the treatment of critically ill patients and is measured with a glucose

meter (resulting in time-discrete or intermittent measurements) or a glucose sensor

(resulting in near-continuous measurements). For the scope of this thesis, however, the

1
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term sensor is not limited to the strict definition of a ‘continuous’ glucose sensor in

this work but refers also to glucose meters. The work presented in this dissertation is

mainly focused on the glucose variable: glucose measurement, glycemia modelling,

and glycemia control.

Figure 1.1: Critically ill patients are typically admitted to the ICU. The use of medical

equipment and the presence of well-trained medical personnel are characteristic of

‘intensive’ care. This picture is taken from the University Hospital K.U.Leuven

(Belgium) with authorization.

In their article [191] entitled “Stress-induced insulin resistance: recent developments”,

published in Current Opinion in Clinical Nutrition and Metabolic Care (2007), the

authors indicate the dramatic changes in the treatment of critically ill patients: Until

5 years ago, when Van den Berghe and colleagues [216] published their large,

single-center randomized clinical trial of intensive insulin treatment in the surgical

intensive care unit, interest in stress-induced insulin resistance was limited and many

textbooks stated that hyperglycemia was a protective response to physiological stress.

The Belgian trial, however, convincingly showed that ‘diabetes of injury’ should be

treated aggressively, demonstrating markedly reduced morbidity and mortality in a

heterogeneous group of patients requiring mechanical ventilation after undergoing

cardiac and other major surgery. This trial inspired a renewed and widespread interest

in the risks associated with hyperglycemia in states of acute stress.
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Hyperglycemia (i.e., an increased blood glucose concentration) and insulin resistance

(i.e., the resistance of the tissues to insulin) are common in critically ill patients, even

those without diabetes mellitus [187, 241, 242]. The development of hyperglycemia

during critical illness has long been considered an adaptive and beneficial stress

response. Only when glycemia (or blood glucose) was greater than 220 mg/dl, insulin

was administered aiming at blood glucose values below this threshold [17]. It was

believed that moderate hyperglycemia in critically ill patients could be beneficial for

organs like the brain and blood cells. These organs largely rely on glucose for their

energy supply but do not require insulin for glucose uptake. An additional reason for

favoring moderate hyperglycemia was the fear of occasional hypoglycemia (i.e., a low

blood glucose concentration) that could result in brain injury [230].

During the years, however, hyperglycemia and insulin resistance were associated

with adverse outcomes in a variety of clinical settings [179, 206]. For example,

hyperglycemia predicted a higher risk after stroke and a poor functional recovery in

the patients who survived [32]. In patients with myocardial infarction and coronary

artery disease, hyperglycemia was associated with an increased risk of death [31].

The real breakthrough in improving intensive care was realized in 2001. A landmark

prospective, randomized, controlled study on 1548 patients admitted to the surgical1

ICU showed a spectacular reduction in mortality and morbidity in case of tight blood

glucose control with insulin [216]. The patients were randomly assigned to receive

either intensive insulin treatment or conventional insulin treatment. In the conventional

insulin therapy group a continuous insulin infusion was initiated only when glycemia

exceeded 215 mg/dl and then was titrated aiming at blood glucose values between 180

and 200 mg/dl. In the intensive insulin therapy group, however, a continuous insulin

infusion was initiated if the blood glucose exceeded 110 mg/dl and was titrated to

maintain glycemia between 80 and 110 mg/dl. The insulin dose was adjusted by the

clinical nursing staff of the ICU according to whole blood glucose values determined

at the bedside and following dosing guidelines which are described in [215]. The

mean ± standard deviation (SD) of blood glucose control in the conventional and the
intensive insulin group was 153 ± 33 mg/dl and 103 ± 19 mg/dl, respectively.

Tight glycemic control (TGC) with insulin resulted in a relative decrease by 43% of

intensive care mortality (from 8.0 to 4.6%). This reduction was even higher for patients

who required intensive care for more than 5 days: mortality was lowered from 20.2 to

10.6%. Besides saving lives, intensive insulin therapy also prevented several critical

illness-associated complications [212, 216]. The occurrence of acute renal failure,

critical illness polyneuropathy, transfusion requirements, sepsis2, and ventilator and

intensive care dependency were significantly reduced. Finally, it is important to note

that only 13% of the patient population considered in this study were patients with

diabetes indicating hyperglycemia appears in critically ill patients independent of the

history of diabetes.

1 An ICU division usually comprises a section for surgically ill patients (surgical ICU) and a section for

medically ill patients (medical ICU). This will be clarified in section 1.2.1.
2 Sepsis is a medical condition, characterized by a whole-body inflammatory state (caused by infection),

that frequently appears in patients admitted to the ICU.
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Since the previous study was focused on patients admitted to a surgical ICU, it

remained unclear whether intensive insulin therapy would also improve the prognosis

of patients in a medical ICU. Patients belonging to this last group are typically more

severely ill (compared to patients of the surgical ICU) and have a higher risk of death.

Another large (1200 patients), randomized , controlled study showed similar results

in a strictly medical ICU patient population [213]. TGC with insulin significantly

reduced in-hospital mortality from 52.5 to 43.0% for patients who stayed in the ICU

for three or more days. Analogously, morbidity was significantly reduced in the group

of patients receiving the intensive insulin therapy. This also led to more positive effects

such as reduction in newly acquired kidney injuries, earlier weaning from mechanical

ventilation, earlier discharge from the ICU and from the hospital, etc.

The clinical benefits of the intensive insulin therapy compared to the conventional

insulin therapy have been largely reproduced by other groups [72,84,120]. At present,

strict glycemic control is the advised standard of care for the critically ill as declared by

the Joint Commission on Accreditation of Healthcare Organization (www.jcaho.org),

the Institute for Healthcare Improvement (www.ihi.org), the Volunteer Hospital Orga-

nization (www.vha.com), the American Thoracic Society (www.thoracic.org), among

others [184]. Recently, a small, randomized, controlled trial has been published

showing no benefits of applying the intensive insulin therapy [26]. This study, however,

was statistically underpowered to evaluate the reproducibility of the Leuven findings.

1.2 Figures and Facts

1.2.1 ICU types

A general ICU division consists of two sections: the surgical and the medical ICU.

The surgical division particularly admits patients with severe cardiac surgery, but

also patients with complicated lung or esophageal thoracic surgery3 and/or respiratory

insufficiency, complicated abdominal surgery or peritonitis, complicated vascular

surgery, complicated non-cardiac surgery or severe burns, transplantation, neurologic

disease, cerebral trauma or complicated brain surgery, etc. Acute illness symptoms are

typical of the surgical ICU.

Patients admitted to the medical ICU are typically suffering from chronic diseases

already before their admission to the ICU. Due to additional physical stress symptoms

(e.g., inflammation) patients with a chronic disease (e.g., kidney failure, cancer,

diabetes) may need intensive care. The diagnostic categories of patients admitted to the

medical ICU can vary from respiratory to cardiovascular, neurologic, renal, metabolic,

gastrointestinal, liver, hematologic, oncologic and other sepsis.

The structure of an ICU division can be differently organized for each centre depending

on the level of the hospital (university/non-university), the continent (e.g., Europe

versus United States), etc. The data used for the purpose of this dissertation originate

from the surgical ICU division of the University Hospital (Gasthuisberg) K.U.Leuven.

3 Esophageal thoracic surgery indicates surgery near the gullet.
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1.2.2 Clinical context of the intensive insulin therapy

An important limitation of the intensive insulin therapy is the increased workload

of the medical staff. There are three different aspects that are responsible for this

labour increase. First of all, the blood sampling frequency has significantly increased

since the introduction of the intensive insulin therapy. Before 2001, arterial blood

samples were taken and analysed only four to six times a day to determine the glucose

concentration, pH, pO2, pCO2, concentrations of hemoglobin, HCO3, lactate, etc. With

the introduction of the intensive insulin therapy, blood is being sampled 8 to 10 times

a day. The additional blood samples, however, are only required for the measurement

of the blood glucose concentration.

Secondly, the insulin needs have drastically increased. During the conventional insulin

therapy only 5 patients (on average) out of 16 required insulin whereas this number has

increased to 14 with the intensified therapy. Besides the fact that more patients need

insulin, the amount of insulin that is administered to these patients has increased as well

since the target glycemic range is much lower now. Accordingly, nurses spend more

time in preparing and refilling the insulin infusion pumps than before. On average,

30 additional infusion sets per day are required (taking into account at least 3 minutes

preparation time per infusion set) for a 16 beds - division.

Thirdly, the medical staff needmore interpretation time now to determine the insulin

rate that should be delivered to the patient. Only titration ‘guidelines’ are available

giving the nurses interpretation freedom in order to define the appropriate insulin needs.

The Leuven guidelines are described in detail in Chapter 7 (see 7.3.1). Due to the

stricter target blood glucose range (and the corresponding danger for hypoglycemia),

the determination of the patient-specific insulin requirements is less straightforward

explaining why nurses need more time than before the introduction of the intensive

insulin therapy.

In the surgical ICU division of the University Hospital of Leuven, with a total of 56

beds, one nurse is taking care of two patients in general. The increased labour load

is an important limitation of the intensive insulin treatment. The introduction of a

(semi-)automatic blood glucose control system can potentially reduce the workload

without losing the benefit of TGC. Other limitations of the intensive insulin treatment

are described below (see 1.3).

1.2.3 Economic context of the intensive insulin therapy

Besides the reduction of mortality and morbidity, the use of the intensive insulin

therapy is also associated with substantial cost savings compared with the conventional

therapy. Hospital costs decrease because of reductions in ICU length of stay (i.e., the

number of days that a patient is admitted to the ICU) and several morbid events (e.g.,

renal failure, sepsis, blood transfusions, and mechanical ventilation dependency) [217].

The cost savings largely compensate for the small additional cost of administering

insulin and glucose monitoring.
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Figure 1.2: Per patient costs of health care resources in e. The computed costs and

ratios are based on the healthcare resource utilization analysis that was performed on

the surgical ICU study (2001) [217].

A healthcare resource utilization analysis [217] was performed based on the data

coming from the surgical ICU landmark study [216]. The excess cost of intensive

insulin therapy (mainly represented by insulin infusion costs and blood glucose

monitoring costs) was found to be e 72 per patient whereas the reduced patient costs

of healthcare resources was e 2638 per patient. Figure 1.2 gives an overview of the

patient costs of healthcare resources for the intensive and conventional insulin therapy.

These costs are split up in different subgroups: intensive care unit stay (i.e., costs

related to the number of days in the ICU), duration of mechanical ventilation, days

on hemodialysis/hemofiltration, duration of therapy with certain drugs (vasopressors,

inotropes, and antiobiotics), blood transfusions, insulin administration, and blood

glucose monitoring.

A similar study by Krinsley and Jones [121] confirmed the above mentioned analysis.

In a mixed medical-surgical ICU the reduction of costs was found to be 1580 US

dollars per patient, which is smaller than the aforementioned cost savings due to

the different type of patient group (patients from the medical ICU, who are typically

more severely ill compared with surgical ICU patients, are also included here) and the

slightly different approach to compute the costs. It is clear, however, that the intensive

insulin treatment significantly reduces costs with regard to the conventional insulin

treatment. Therefore, the introduction of this more intensified protocol in hospitals

world-wide may reduce costs besides the significant lowering of the mortality and

morbidity rate.
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1.2.4 Social context of the intensive insulin therapy

During the last decades, the following social phenomenon has appeared in particularly

Western countries. On the one hand, people are ageing but the prevalence of typical

‘Western diseases’ such as cancer, (type II) diabetes, heart diseases, etc. is increasing

as well (mainly due to the Western lifestyle). This increased need for health care

is associated with a spectacular growth of the health care costs. On the other hand,

the number of nurses falls short, which leads to high labour pressure for the existing

nursing staff. The introduction of the (manual) intensive insulin therapy in the ICU also

increased the workload of the medical staff as already mentioned above. Preservation

of the benefits of the intensive insulin therapy (reduction of mortality and morbidity)

while reducing the workload of the nursing teams can potentially lower the barrier of

implementing the TGC strategy in hospitals world-wide. Therefore, the introduction

of a (semi-)automatic system to normalize blood glucose (between 80-110 mg/dl)

can potentially fill this gap. In general, the application of engineering techniques in

biomedicine plays already a major role in hospitals nowadays and it is expected this

role will even increase in the near future. The design of a control system to normalize

the blood glucose in critically ill patients is a clear example of the symbiosis between

(biomedical) engineering and medicine.

1.3 Problems and Challenges

The introduction of the intensive insulin protocol saves lives and reduces morbidity

in critically ill patients who are admitted to the surgical and the medical ICU [213,

216]. Nevertheless, a survey study in England and the Netherlands revealed that only

approximately 25% of the ICU wards of the hospitals under study effectively set the

normoglycemic target range at 80-110 mg/dl [139,185]. Some aspects may hamper the

general application of TGC explaining why TGC is far from standard clinical practice

at present:

1. Normalization of glycemia requires a rigorous administration of insulin by

means of a very time demanding empirical protocol (which is a set of written

guidelines, see also Chapter 7, 7.3.1 [215]) in which expertise from nurses and

doctors is a crucial element: “TGC is something you do by heart, not from a

sheet of paper” as quoted by some nurses in [58]. The protocol requires blood

glucose levels to be measured every four hours (or more frequently, especially

in the initial phase or in case of complications). The flow of the continuous

insulin infusion is then adjusted based on this schedule which only comprises

recommendations giving the medical staff the ability to appropriately adapt the

proposed insulin rate depending on patient-specific features. Accordingly, this

empirical protocol is no simple ‘if-then’ protocol and requires lots of clinical

experience.
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2. Nurses get a certain degree of freedom how to control the blood glucose of the

critically ill patients. Since the determination of the most optimal insulin flow

is non-trivial, the workload of the medical staff increases when intensively

treating the patients with insulin. This fact is also described above (see 1.2.2).

3. Next, the rather ‘subjective’ nurse-driven approach of the insulin control may

lead to varying levels of TGC (depending on which nurse is treating which

patient). Interviews with nurses (working with the Leuven guidelines [215])

confirmed that no fixed control protocol exists in clinical practice. For example,

some nurses take into consideration medication disturbance factors whereas

other nurses do not. An ‘objective’ and approved computerized protocol (that

is independent of the experience/skills of the nurse) potentially facilitates the

introduction of the intensive insulin treatment word-wide.

4. Furthermore, the threat of administering too much insulin to the patient (leading

to hypoglycemia) is a barrier to intensive insulin therapy and may lead to

a rather ‘conservative’ (conventional) insulin treatment [144, 183, 211]. The

diagnosis of hypoglycemic events in the ICU is more complicated than with

patients with diabetes. First of all, sedation can mask (the specific hypoglycemic)

symptoms of neuroglycopenia4. Secondly, the counter-regulatory responses to

hypoglycemic events may be impaired in critically ill patients (see also Chapter

2, 2.1) [210].

5. Finally, these aspects support the need for frequent monitoring of glucose.

To safely target normoglycemia in ICU patients, intensivists and ICU nurses

anxiously await the availability of reliable near-continuous glucose sensors,

which are undoubtedly under development [38, 94, 99, 109, 162, 194, 209, 211].

As these sensor devices may export glucose values every second or every minute,

the fear of provoking hypoglycemic episodes due to delivering too much insulin

would significantly diminish. It must be stressed, however, that no generally

accepted procedure to assess the reliability of glucose sensors currently exists.

The general challenges that form the fundamentals of this thesis are twofold:

1. The first challenge considers the evaluation of the reliability of glucose sensors

on the one hand and the performance of glycemia control systems on the other

hand. It is a first challenge to set up a statistical and adequate assessment

procedure for both glucose sensor devices and insulin titration algorithms such

that these new assessment methods may be supplemental to or an alternative for

currently existing methods.

2. The second challenge focuses on the development of a (semi-)automatic

glycemia control system. At present, blood glucose is controlled by the nurses

who typically follow the guidelines of a predefined insulin protocol [215].

4 Neuroglycopenia is a term used to indicate the shortage of glucose in the neurons (cells).
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The introduction of a (semi-)automatic glycemia control system to the ICU

has the potential to (further) reduce mortality and morbidity. Particularly in

hospitals where currently no (manual) intensive insulin protocol is applied (due

to staff shortage), the design of a (semi-)automatic glycemia control system

can dramatically alter the treatment and outcomes of critically ill patients and

can even lower the health care costs (see 1.2.3). Another advantage of a

computerized control system is the more ‘objective’ control approach (compared

with the ‘subjective’ nurse-driven approach) possibly leading to even stricter

blood glucose control (as deviations from normoglycemia are still present with

the manual intensive insulin therapy). Accordingly, a computerized control

system can also reduce the incidence of hypoglycemia which can further

diminish the fear of applying TGC. Finally, the use of a (semi-)automatic control

system does not require any TGC experience of the nurses and, particularly when

reliable near-continuous glucose sensors are available, can reduce the labour load

of the medical staff.

1.4 Objectives

In this work three main objectives are set. First of all, an assessment procedure for

glucose sensor devices is developed. The quality of blood glucose control depends

on the reliability (accuracy) of the observations. Measurement errors, however,

may have a serious influence on the proposed insulin flow adaptations and can be

responsible for administering too low or too high insulin doses. For example, an

observed glucose measurement equal to 140 mg/dl, whereas the real blood glucose

value is only 100 mg/dl, may lead to an increase of the insulin rate (target glycemic

range is 80-110 mg/dl) and may further lead to hypoglycemia. In case the real blood

glucose would have been known (by using a gold standard glucose sensor device), the

insulin rate would not have been increased and hypoglycemic episodes could have been

prevented.

Although the glucose monitoring industry has exploded during the last decade, it is

surprising to note that no generally accepted validation procedure for glucose sensors

exist. The techniques that are currently used for evaluating the performance of glucose

sensors show statistical weaknesses or are difficult to interpret from a clinical point

of view. Companies or research groups use different methods nowadays for reporting

sensor accuracy such that a comparison between sensors becomes non-trivial. The

recent development of near-continuous glucose sensors, which export a glucose value

every second or minute, has the potential to significantly improve the TGC performance

in patients with diabetes and critically ill patients. Compared with discrete-time blood

glucose meters (that are used for measuring glycemia only every few hours), these

near-continuous sensor devices return a ‘near-continuous’ glucose signal giving the

opportunity to control glycemia more strictly within the normoglycemic target range.

The development of these near-continuous sensors has also recalled the need for the

design of a generally accepted tool for appropriately evaluating the performance of

glucose sensor devices.
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A second main objective is the development of an evaluation tool for insulin

titration algorithms that are used to normalize blood glucose in the ICU. Since

(semi-)automatic glycemia control systems can potentially advise or even replace the

nurse in determining the optimal insulin flow, these new algorithms must be appro-

priately evaluated and compared with the currently standard nurse-driven protocol

(guidelines) [215]. Therefore, the overall level of glycemic control must be adequately

determined when comparing different (computerized) insulin protocols/algorithms.

Classical assessment tools (e.g., computation of average blood glucose) and the

study design (e.g., the number of days that the patient is admitted to the ICU, the

type of patients, the average blood glucose sampling frequency, etc.) may mislead

assessments. Therefore, the second objective in this dissertation is the design of an

evaluation tool for insulin titration algorithms and the detection of parameters that can

influence an evaluation.

A last main objective in this work is the design of a (semi-)automatic control system

for normalizing blood glucose in ICU patients. The advantages of (semi-)automated

glycemia control have already been discussed above. The general concept of an ICU

(semi-)automated control system is summarized in Figure 1.3. Undiluted arterial blood

glucose is measured every four hours or more frequently in case of complications by

means of a discrete-time blood glucose sensor. The availability of a clinically reliable

sensor that exports a near-continuous glucose signal would allow us to deliver more

information as input to the control system, but we currently await these sensor devices.

Besides glycemia also other variables (also called disturbance factors) are observed as

inputs to the control system:

• static upon admission demographics, such as the medical history (e.g., history of
diabetes), the Body Mass Index (BMI)5, and the reason of admission to the ICU,

• dynamic input variables, such as the body temperature and the administered flow
of calories/drugs.

The glycemia control system itself comprises a (patient) model and a (predictive)

controller. The model is in fact a mathematical representation of the glucoregulatory

system of a critically ill patient. The use of a model allows to simulate and to predict

the blood glucose profile for the next hours. A typical time horizon in this setting is

four hours. The controller considers the model as the (virtual) patient and computes

the most optimal insulin flow that should be delivered to that (patient) model. In

this optimization process the controller takes into account the observed blood glucose

profile (i.e., the glycemia signal of the last hours), some important (known) dynamic

input variables (e.g., input flows present within the predefined time horizon), and the

constitution of the patient (e.g., static upon admission demographics, estimated model).

It is clear that the model has a central role in this control system. Therefore, the

accuracy level of the blood glucose predictions by using the estimated model directly

influences the performance of the controller and the full control system in general.

5 The Body Mass Index is the weight in kilograms divided by the square of the height in meters.
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GLYCEMIA CONTROL SYSTEM

PATIENT MODEL
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Figure 1.3: Presentation of the (semi-)automated control system. Undiluted

arterial blood glucose is measured every four hours or more frequently in case of

complications. Glycemia values and other (static and/or dynamic) input variables (i.e.,

the disturbance factors) are denoted as inputs to the control system. At each time

step (e.g., every hour), the latter determines the insulin rate that is required to achieve

normoglycemia. After confirmation by a nurse, this advised insulin flow is delivered to

the patient by means of a pump (actuator).

In a first implementation step, this control system only works semi-automatically. In

other words, each insulin flow adaptation that is proposed by the computerized control

system must be confirmed by a member of the medical staff (mostly a nurse). Only

after approval by the nurse, this insulin flow is delivered to the patient by means of

an actuator (i.e., the insulin pump). In the following implementation step, a fully-

automated control system is tested. In such a system confirmation by a clinical staff

member is not necessary any more. Validation of an automatic glycemia control system

clears the way for introducing the TGC principle for ICU patients in all hospitals world-

wide.
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1.5 Contributions of this work

1.5.1 General assessment of glucose sensors

The first contribution of this work is the development of a statistical assessment tool for

testing the significant difference of paired glucose measurements: the GLYCENSIT-

procedure. Here, blood glucose is concomitantly measured with a reference blood

glucose sensor and a test glucose sensor. It is our aim to evaluate the performance

of the test device based on the measurements that are obtained from the reference (or

‘gold standard’) sensor.

The developed GLYCENSIT-procedure comprises three phases:

1. Testing possible persistently deviating measurement behaviour as a function

of the glycemic range. Measurement behaviour that is persistent in the

full glycemic range indicates that the measurement error can be assumed to

be independent of the glycemic range: hypoglycemic, normoglycemic, or

hyperglycemic. Persistent measurement behaviour is preferable from a clinical

point of view in comparison with non-persistent behaviour as it allows the

interchange between sensors with only one conversion factor. Therefore, a test

sensor device with persistent measurement deviations can be implemented in

clinical practice more easily than a test sensor whose measurement behaviour is

strongly dependent on the glycemic range. The statistical test that is used in this

first phase evaluates the persistency of all observed measurement errors.

2. Testing the number of measurement errors with respect to a standard

criterion for binary assessment of glucose sensors. The statistical test used in

this phase states whether the measurement errors do not violate the International

Organisation for Standardization (ISO) - criterion too often [75]. This criterion

was developed in the past to assess the accuracy of blood glucose meters.

The tolerance level is the acceptable rate of errors against this criterion and is

determined by the user. In other words, the test in this second phase explores

whether the number of errors against the ISO-criterion is tolerable or not.

3. Computing the tolerance intervals that indicate possible test sensor devia-

tions for new observations. In the last phase of the GLYCENSIT-procedure

some tolerance intervals are calculated. These intervals inform the user about

future measurement errors. Instead of only retrospectively analyzing the data,

this phase informs the user about possible measurement errors corresponding

to new test sensor readings under the statistical (main) assumption that the new

data set is equally distributed as the past data used in the analysis. Based on

these intervals, the user gets an idea about how much the test sensor value can

deviate from the real blood glucose value that would have been obtained with

the reference device. It is the size of these intervals, together with the computed

probability that the reference value effectively lies in these intervals, that can

help the clinician in making an appropriate decision concerning the validity of

the (test) sensor device under study.
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The method can be tuned according to the clinician’s preferences regarding significance

level, tolerance level, and glycemic range cut-off values. The proposed GLYCENSIT-

procedure is also implemented as a web-based assessment tool, freely available at

http://www.esat.kuleuven.be/GLYCENSIT. The design of the GLYCENSIT-procedure

and its application to real-life ICU examples are described in Chapter 3.

Publications related to this topic: [225,232].

1.5.2 General assessment of glycemia control systems

The second main contribution that is presented in this dissertation is the new approach

for appropriately assessing the adequacy of insulin titration algorithms. This new

approach, the glycemic penalty index (GPI), can be used when comparing the overall

glycemic control behaviour in groups of ICU patients (e.g., the level of glucose

control, realized by a new computerized control system, in patient group 1 needs to

be compared with the level of glucose control, performed by nurses, in patient group 2).

The development of GPI is based on a penalty function, which is formulated from

clinical (ICU) expertise, that assigns a ‘penalty’ to each observed blood glucose value.

The magnitude of this penalty depends on the deviation of the measured blood glucose

value from the normoglycemic range (80-110 mg/dl). GPI can be computed for each

patient as the average of all these penalties. The designed formula returns a number

between 0 and 100 with an ‘ideal’ level of 0 (indicating that all measured blood glucose

values fall within the normoglycemic target range) and a ‘clinically acceptable’ level

of 23.

Two parameters are found to have a significant influence on GPI: the average

blood glucose sampling frequency and the duration of algorithm application. The

first parameter is the average number of blood glucose readings (per time unit)

that are available and used by the insulin titration algorithm under study. The

duration of effectively applying the blood glucose algorithm to the patient aiming at

normoglycemia is the second parameter. A high blood glucose sampling frequency and

a long algorithm application duration improve the level of TGC (expressed in a lower

GPI). Accordingly, these two parameters should be similar among patient groups when

assessing or comparing insulin titration algorithms. This new evaluation tool is further

described in Chapter 4.

Publications related to this topic: [218].

1.5.3 Design of a glycemia control system

The third contribution of this work is the design of a control system that can be used to

regulate the blood glucose in the critically ill. Both black-box and grey-box modelling

techniques are considered for the design of a model that can predict glycemia. The first

modelling type only starts from the observed data to generate a (black-box) structure
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for the model whereas the grey-box modelling type is founded on physiological

knowledge in the form of a knownmodel structure. Particularly the grey-box modelling

method can potentially be considered in a clinical real-life glycemia control system.

The grey-box modelling structure that is specifically developed to be used in a glycemia

control system in the ICU, is based on the known ‘minimal’ model structure developed

by Bergman and colleagues [14]. Therefore, this new model structure is labeled as

the ICU ‘minimal’ model (ICU-MM) and is presented in Chapter 6. The black-box

modelling strategy is studied in Chapter 5.

Publications related to this topic: [220–222,226,227].

The insulin resistance, which is a crucial factor in the glucoregulatory system of

critically ill patients, can vary as a function of time. When entering the ICU, patients

typically show a high insulin resistance (or a low sensitivity for insulin). Typically, this

resistance decreases as the patient recovers but can suddenly increase again depending

on some conditions (e.g., additional inflammation, administration of certain drugs,

etc.). For this reason, it is important that the initially estimated ICU-MM is frequently

re-estimated. In the ‘optimal’ re-estimation process the ICU-MM is re-estimated every

hour based on the data of the last five hours. Accordingly, changing glucose dynamics

of the patient can be incorporated into the glycemia control system by regularly

updating the model. The re-estimation strategy is described in detail in Chapter 6.

Publications related to this topic: [219,223].

Finally, a critical review of recently presented blood glucose control algorithms is given

and a Model based Predictive Controller (MPC) is developed. An important feature of

this last type of controller is the possibility to take into consideration future (known)

disturbance factors (e.g., nutritional load) when optimizing the insulin dosage profile.

Pure feedback controllers only consider the observed output (glycemia) values, and are

therefore less robust and less performant compared to predictive controllers. A first

MPC designed for glycemia control in the ICU and based on the developed ICU-MM

(Chapter 6) is presented in Chapter 7.

Publications related to this topic: [223,224].

1.5.4 Patent in process

In 2003 our research group applied for a patent to protect the intellectual property

of the concept of developing a control system to normalize glycemia in critically ill

patients in Europe and the United States. These patents (WO03/080157 for Europe

and US2005/0171503 for the United States), entitled Automatic infusion system based

on an adaptive patient model and written by G. Van Den Berghe, D. Berckmans,

J.-M. Aerts, B. De Moor, B. Pluymers, and F. De Smet, are currently still pending.

In this pending phase the European and American Examiner are reviewing the patent

with regard to novelty and originality.
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1.6 Chapter-by-chapter overview

This thesis is organized in three parts as shown in Figure 1.4. Part I is related to the

clinical setting of this work. A simplified concept of the glucoregulatory system and

the available data sets are presented. Part II focuses on the assessment procedures that

are developed to evaluate glucose sensor devices and blood glucose control systems (or

insulin titration algorithms). Finally, the modelling of the glucoregulatory system and

its corresponding control are discussed in Part III.

Here, a more detailed overview of all the chapters of this dissertation is described:

Chapter 2: Intensive Care: Patients and Data. This chapter concerns the general

clinical setting of this work. A comparison is made between the glucoregulatory

systems of healthy persons, patients with diabetes, and critically ill patients, which

were simplified for the purpose of this thesis. Next, the parameters that may have a

significant influence on the blood glucose are presented. Furthermore, the data sets

that are made available during this work are discussed. The features of each data set

are described and, finally, the data of some patients are shown.

Chapter 3: General Assessment of Glucose Sensors. This chapter starts with an

introduction to the different techniques used for glucose monitoring. Next, currently

existing techniques to assess glucose sensor devices are briefly described and the

new method for evaluating glucose sensor devices is extensively explained: the

GLYCENSIT-procedure. Next, three hypothetical (theoretical) examples and one

real-life clinical example demonstrate the use of the GLYCENSIT-analysis. Further,

two test blood glucose sensor devices are evaluated against a reference blood glucose

meter by means of the existing standard evaluation methods and the new GLYCENSIT-

procedure. Finally, the developed GLYCENSIT-website, where the user can upload

new sets of data, is briefly introduced.

Publications related to this chapter: [225,232].

Chapter 4: General Assessment of Glycemia Control Systems. In this chapter the

techniques that are used nowadays to assess insulin titration algorithms are discussed.

Next, the new method (GPI) for evaluating or comparing insulin titration algorithms

is introduced and compared with most known existing techniques. Further, the

influence of four selected parameters (the average blood glucose sampling frequency,

the duration of algorithm application, the severity of disease, and the type of illness) on

the performance of an insulin titration algorithm is determined by multiple regression

analysis.

Publications related to this chapter: [218].
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Chapter 1
Introduction

Chapter 2
Intensive Care: Patients and Data

Chapter 4
General Assessment of Control Systems

Chapter 8
Conclusions and Future Research

Chapter 3
General Assessment of Glucose Sensors

PART I   CLINICAL SETTING

PART II   ASSESSMENT PROCEDURES

Chapter 5
Black-Box Modelling of Glycemia

PART III   CONTROL SYSTEM

Chapter 6
Grey-Box Modelling of Glycemia

Chapter 7
Control of Glycemia

Figure 1.4: Thesis outline. Part I of this thesis introduces some medical background

that is relevant for this study and describes the data at hand. Part II presents the

assessment procedures that are developed to evaluate glucose sensor devices and blood

glucose control systems. Part III discusses the design of the models that describe the

glucoregulatory system of the critically ill and the developed controller.
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Chapter 5: Black-Box Modelling of Glycemia. A black-box modelling approach

for describing the blood glucose dynamics of critically ill patients is applied in this

chapter. Both an initial and an adaptive input-output model are designed and optimized.

The results are satisfactory both in terms of forecasting ability and in the clinical

interpretation of the estimated coefficients.

Publications related to this chapter: [220–222].

Chapter 6: Grey-Box Modelling of Glycemia. This chapter presents a grey-box

modelling approach to depict the dynamics of the blood glucose of the critically

ill. A model structure (ICU-MM), containing typical properties of the ICU, and an

adaptive modelling strategy with model re-estimations every hour or every four hours

are developed and optimized. The ‘optimal’ re-estimation strategy gives satisfactory

forecasting results explaining its potential use in a predictive control system for

critically ill patients admitted to the (surgical) ICU.

Publications related to this chapter: [219,223,226].

Chapter 7: Control of Glycemia. In this chapter a critical overview of the different

control strategies known in the area of diabetes and the ICU is given. Next, the

design of a controller, that determines the most optimal insulin dose to be delivered

to the specific patient aiming at normoglycemia and that takes into account future

known disturbance factors, is presented. This ‘predictive’ controller makes use of

the ICU-MM structure developed in Chapter 6. Finally, blood glucose simulations

obtained in a (virtual) ‘closed-loop’ system are evaluated with GPI (that is presented in

Chapter 4).

Publications related to this chapter: [223,224].

In Figure 1.5 a simplified concept of the (semi-)automated control system is presented.

The relation of the respective chapters of this dissertation with the glycemia control

system structure is also illustrated in this figure.
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CONTROLLER

ACTUATOR SENSOR

Known input variables

Ch. 2

Ch. 6

Ch. 5

Ch. 7

Ch. 4

Ch. 3

Figure 1.5: Simplified presentation of the (semi-)automated control system. Chapter 2

considers the clinical setting and the available ICU data sets. This is followed by

Chapters 3 and 4 in which a new assessment procedure for glucose sensors and

glycemia control systems, respectively, is presented. Next, a black-box and a grey-box

model for predicting the blood glucose profile are discussed in Chapters 5 and 6,

respectively. Finally, a first design of a predictive controller is presented in Chapter 7.



Part I

CLINICAL SETTING
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Chapter 2

Intensive Care: Patients and

Data

An introduction to the clinical setting on which this dissertation is founded

is given in this chapter. The simplified concept of the glucoregulatory

system of healthy persons, patients with diabetes, and critically ill patients

is discussed. Next, some parameters that have an important influence on

blood glucose are highlighted. Finally, the data that have been made

available as part of this work are extensively discussed and shown with

examples. In summary, this chapter focuses on the patient as is also

visualized in Figure 2.1.

2.1 Glucoregulatory system

The glucoregulatory system is the set of internal functions that regulate the glucose

concentration in the blood: glucose homeostasis. In this section both the (simplified)

glucoregulatory system of a healthy person and a patient with diabetes are presented.

2.1.1 Healthy person

One of the most complex behaviours in a human body is the endocrine (i.e., hormone-

producing) system and the blood glucose dynamics. Figure 2.2 gives a simplified

model of the glucoregulatory system of a healthy person. The endocrine cells of the

pancreas are grouped in the islets of Langerhans. The hormones that are produced in

these islets of Langerhans are secreted directly into the blood flow by different types

of cells. Most important cells are the beta cells and the alpha cells. The first type of

cells is mainly responsible for the production of insulin (which has a lowering effect on

glycemia). The second type of cells is particulary aimed to release glucagon (i.e., an

hormone that raises the blood glucose). The islets of Langerhans (further labeled as the

pancreas for reasons of simplicity), however, consist of an internal feedback system to

avoid that both insulin and glucagon hormones would be released simultaneously. The

21
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GLYCEMIA CONTROL SYSTEM

PATIENT MODEL

CONTROLLER

ACTUATOR SENSOR

Known input variables

Ch. 6

Ch. 5

Ch. 7

Ch. 4

Ch. 3
Ch. 2

Figure 2.1: Simplified presentation of the (semi-)automated control system. The

‘patient’ is the main focus of Chapter 2. The clinical setting and the available ICU

data sets are extensively discussed.

delivery of insulin activates the beta cells and inhibits the alpha cells. Analogously, the

release of glucagon activates the alpha cells.

The insulin hormone has a great diversity of functions. For the purpose of this thesis,

the working of insulin is oversimplified as only its function regarding circulating

glucose in blood is mentioned here. Insulin is released by the pancreas when blood

glucose levels are high. For example, these hyperglycemic events can appear after a

meal or after intake of some medication. The insulin release activates two main events.

First of all, the release of glucose in the liver (gluconeogenesis) is inhibited. The

suppression of the formation of additional glucose further leads to the conversion of

glucose to glycogen. Therefore, glycogen functions as storage for glucose, or in other

words, as energy store. The second main event that is advanced by releasing insulin is

the stimulated glucose uptake by tissue cells. All tissue cells (e.g., muscle) require

energy to function appropriately. This energy originates from the calories (glucose)

that are taken during every meal. However, without insulin these glucose molecules

are not able to enter the tissue cells. The function of insulin can be compared to a key

that can be used by the glucose molecules to open the gate of the tissue cells. The

availability of insulin (key) allows to open the gates such that the glucose molecules

can be taken up by the tissue cells leading to a decrease of the glucose concentration in
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Figure 2.2: Glucoregulatory system of a healthy person. Hyperglyemic events (light

gray) are responded by the pancreas by releasing insulin. This insulin stimulates the

glucose uptake from the blood to some tissue cells. Furthermore, insulin also activates

the formation of glycogen. Both events are responsible for glycemia normalization.

Alternatively, hypoglycemic events (dark grey) give a release of glucagon in the

pancreas. Glucagon further promotes the conversion of glycogen to glucose in the

liver again leading to normal blood glucose values. This figure is taken from [8] with

authorization of the author.

the blood (glycemia).

Alternatively, the blood glucose concentration can be too low (e.g., due to severe

exercise without sufficient energy supply, fasting, etc.) leading to hypoglycemia. Here,

the pancreas activates the release of the glucagon hormone. The function of this

hormone is the opposite to that of insulin. Indeed, glucagon causes the liver to convert

stored glycogen into glucose (‘hepatic glucose production’) and to release it into the

bloodstream. The energy store in the liver is depleted. Accordingly, blood glucose

levels can raise towards normoglycemia.

From the above it is clear that two manipulated inputs (insulin and glucagon) can be
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used to ‘control’ one output (blood glucose). The focus of glycemia control strategies,

however, has been on the action of insulin to reduce glycemia. This control aspect will

further be discussed in Chapter 7. Ultimately, it is important to note that blood glucose

is tightly regulated within the narrow range of 60 to 140 mg/dl in normal individuals.

Figure 2.3 summarizes the working of the glucoregulatory system (at cell level) in a

healthy person.

Figure 2.3: Simplified overview of the glucoregulatory system (at cell level) of a

healthy person. Food intake is transformed to glucose molecules in the digestive

system. Next, the available insulin (represented by keys) is used to open the gates

of the tissue cells. As the gates are opened, glucose is able to enter the cells where the

glucose is converted to energy. The blood glucose concentration remains ‘normal’.

2.1.2 Diabetes

According to the World Health Organisation, diabetes mellitus is “a metabolic disorder

of multiple aetiology characterized by chronic hyperglycemia with disturbances of

carbohydrate, fat, and protein metabolism resulting from defects in insulin secretion,

insulin action, or both. The effects of diabetes mellitus include long-term damage,

dysfunction, and failure of various organs” [155].

There are mainly two types of diabetes: type I and type II. Classic type I diabetes

is thought to result from an auto-immunologic destruction of the insulin-producing

beta cells [205]. Since the pancreas is no longer able to produce insulin (i.e., the

absence of endogenous insulin or the absolute insulin deficiency), these patients
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require insulin treatment (exogenous insulin). Type II diabetes, has a completely

different, multifactorial pathophysiology [205]. On the one hand, typical lifestyle

factors (obesity, dyslipidemia, hypertension, etc.) and, on the other hand, genetic

elements may both lead to cardiovascular diseases, glucose intolerance (i.e., a physical

state which is associated with early diabetic symptoms), and insulin resistance. Insulin

resistance, as already briefly elucidated above, is present when the biological effects

of insulin are less than expected for both glucose disposal in skeletal muscle and

suppression of endogenous glucose production in the liver (see also Figure 2.2) [60]. It

is the combination of insulin resistance and the insufficient insulin production (due

to ageing) that causes type II diabetes. In Figure 2.4 a simplified concept of the

glucoregulatory system (at cell level) of a patient with (type I) diabetes is summarized.

Figure 2.4: Simplified overview of the glucoregulatory system (at cell level) of an

untreated patient with (type I) diabetes. Food intake is again transformed to glucose in

the digestive system. Endogenous insulin (keys), however, is not available such that the

glucose molecules are not able to enter the cells (gates are closed). As too few energy

is available in the cells, fat is burnt. The resulted energy, however, has a lower quality

and the glucose molecules remain in the blood (no conversion to energy) leading to

‘hyperglycemia’.

It has been extensively discussed that sustained glycemia control in patients with

diabetes prevents the cellular damage that can be inflicted by the presence of

hyperglycemia [50]. Therefore, patients with type I diabetes are instructed how to

apply intensified insulin therapy (i.e., the administration of insulin) in an optimal
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manner. Type II diabetes can be treated by restricting the uptake of calories (diet),

favoring physical exercise (increasing the glucose uptake from the blood to the tissue

cells, see Figure 2.2), and/or administering oral hypoglycemic agents or even insulin.

Although most patients with diabetes realize strict glycemia control is important to

avoid long-term complications, the fear of evoking hypoglycemic episodes frequently

leads to less strict blood glucose control. However, the TGC-benefit clearly outweighs

the risk of hypoglycemia.

Until recently, type I diabetes was particularly associated with children and young

adolescents whereas type II diabetes was the diabetes type for elderly patients. The

last years, however, type II diabetes is being increasingly diagnosed in obese young

and adolescent people [189]. Especially the Western nations are confronted with this

new epidemic. The typical type I / type II ratio is approximately 10% / 90% of the

diagnosed diabetes population. In Belgium, approximately 5% of the full population

has a history of diabetes. The real number, however, is supposed to be twice as large

(10% of the Belgian population!), but half of them are not yet aware of the disease.

In the United States, the number of patients with diabetes keeps on increasing as well:

21 millions of people (7% of the overall population) are diagnosed with diabetes and

even 54 millions of people (18%) show symptoms of pre-diabetes.

2.2 Blood glucose control in intensive care

Blood glucose levels usually rise during critical illness as already mentioned above.

Again, we want to stress this glycemia increase is independent of any history of

diabetes. The critical illness disorders the glucose homeostasis of the majority of the

patients admitted to the ICU. This phenomenon has been labeled as stress diabetes

or diabetes of injury. Here, the reasons how diabetes of injury arises and how the

physiological regulation of blood glucose saves lives in the ICU are explained.

2.2.1 The origin of ‘diabetes of injury’

The complex mechanism that causes elevated blood glucose levels in critically ill

patients is not completely unraveled yet. It is known that any type of acute illness or

injury leads to a high (physical) stress level that is associated with the development of

insulin resistance, glucose intolerance, and hyperglycemia. Although blood glucose

levels are high and large amounts of (endogenous) insulin are released (in case of

non-diabetic critically ill patients), hepatic glucose production is up-regulated. This

production of additional glucose in the liver is caused by the elevated levels of several

hormones (e.g., cytokines, growth hormone, glucagons, cortisol) and catecholamines

[228]. Catecholamines are also released by the adrenal glands in situations of ‘stress’

such as psychological stress, low blood glucose levels, but also physical stress (e.g.,

acute injury). Finally, they are also often administered as vasoactive drugs in the

ICU [228]. All hormones mentioned above are labeled as counter-regulatory hormones

because they ‘counter’ the usual response to insulin and thereby increase blood glucose

[198].
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Secondly, these counter-regulatory hormones induce resistance to insulin further

leading to elevated blood glucose levels [198]. Consequently, more glucose becomes

available for insulin-independent tissues (e.g., brain and blood cells).

Another reason that favors increased glycemia levels is the lowered exercise-stimulated

glucose uptake in muscles obviously explained by the immobilization of the critically

ill patient [176].

Finally, glucose uptake in the heart, the skeletal muscles, and the adipose tissue is

also compromised due to impaired insulin-stimulated glucose uptake by the glucose

transporter 4 (GLUT-4) [186, 228, 230]. In general, glucose transporters are a family

of membrane proteins and play a specific role in the glucose metabolism depending

on the pattern of tissue expression, the substrate specificity, and the transport kinetics

[200].

Although the exact mechanism that is responsible for the elevation of the blood glucose

in critically ill patients may be much more complex, the four reasons mentioned

above give a good approximation. Figure 2.5 illustrates a simplified concept of

the glucoregulatory system (at cell level) of a critically ill patient. Further, the

resulting hyperglycemia provokes toxicity in those cells that can uptake glucose

independently of insulin. It is even shown that hyperglycemia is much more acutely

toxic in the critically ill than in healthy individuals [230]. Although the time frame

of hyperglycemic events in the ICU is much shorter than in patients with diabetes,

avoiding even a moderate degree of hyperglycemia leads to a significant reduction of

mortality and morbidity [213, 216]. Therefore, the normalization of blood glucose

forms an essential element in the daily treatment of critically ill patients and explains

the potential of introducing a semi- or fully-automatic blood glucose control system.

2.2.2 Physiological regulation of blood glucose

It is not the purpose of this dissertation to describe the biochemical mechanism of

intensive insulin therapy in detail. Furthermore, the exact mechanism by which insulin

therapy lowers glycemia in the critically ill is not completely understood. It is known

that the endothelium, which is located at the interface between the blood and the vessel

wall, is protected if normoglycemia is maintained with intensive insulin therapy during

critical illness. This protection of the endothelium (among other aspects which are

less relevant for this thesis) further contributes to the prevention of organ failure and

death [124,208].

Until recently, it remained unclear whether the beneficial effects of intensive insulin

therapy during critical illness were due to maintenance of normal blood glucose values

or rather to the effect of insulin itself [147] as it was known that insulin shows anti-

inflammatory, vasodilatory, and antiplatelet effects [4, 42, 153, 198].
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Figure 2.5: Simplified overview of the glucoregulatory system (at cell level) of an

untreated critically ill patient (without any history of diabetes). Glucose calories

are directly delivered to the patient. Due to particularly the acute illness and the

administration of medication the insulin resistance is high (presented by the narrow

gate opening). Therefore, the pancreas produces much more insulin (marked by the

keys) compared with the ‘healthy’ person. This amount of insulin, however, is still

insufficient leading to ‘hyperglycemia’.

Therefore, glycemia and plasma insulin levels were independently controlled in burn-

injured, fed rabbits to obtain four groups: normoglycemic animals with and without

hyperinsulinemia, and hyperglycemic animals with and without hyperinsulinemia [70].

Mortality was found to be significantly lower in the two normoglycemic groups. This

result was not affected by the insulin concentrations. Furthermore, normoglycemia

prevented organ (liver and kidney) failure and protected the endothelium. This study

confirmed that the normalization of blood glucose (and not the delivery of insulin)

is responsible for the observed mortality and morbidity reduction when applying

intensive insulin therapy to critically ill patients.

Since the publication of the first landmark study [216] intensivists and anesthesiologists

have been debating what the ideal blood glucose range should be for critically ill

patients taking into account hypoglycemic events that are associated with an intensive

insulin therapy [72, 143, 151]. First, do no harm is the basis of medical ethics [211].

The two Leuven trials [213, 216], the implementation study by Krinsley [119, 120],

and the recently published study by Reed et al. [172], however, clearly showed that
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many lives can be saved with TGC notwithstanding the higher number of hypoglycemic

events. Therefore, the target range for blood glucose is set at 80-110 mg/dl. Only for

patients with a history of diabetes no survival benefit was found when applying the

intensive insulin therapy (probably due to the adaptation to chronic hyperglycemia)

[214]. Some insulin titration protocols advise to treat this type of patients to glycemia

levels that are similar to the targets from before the admission to the ICU. A more

elaborated discussion concerning the target blood glucose range is given in Chapter 7

(see 7.3.5).

2.3 Data acquisition

This section focuses on the data that are considered in this work. The origin of the data

is described and the different features of the available data sets are discussed.

2.3.1 Sources of intensive care data

At the beginning of this study, the medical records of critically ill patients, who

were admitted to the ICU division of the University Hospital in Leuven, were only

available in paper format. Indeed, until recently the medical staff noted all information

concerning the patient and the specific conditions on large ‘nurse-papers’. Each nurse-

paper represented the information of one patient for one day. Static upon admission

demographics (like BMI, reason for intensive care, etc.) as well as dynamic parameters

(like blood glucose, flow of insulin, flow of calories, flow of medication, etc.) were

noted on these papers. An example of those typical ICU nurse-papers is given in

Figure 2.6. Only recently, at the end of the study for this thesis, the implementation

of a Patient Database Management System (PDMS) was introduced in our University

Hospital. This system allows to automatically record all types of medical information

per patient in electronic files.

In view of this work, however, it was necessary to ‘record’ the paper data as electronic

data. During this data gathering process it was not clear yet which variables would be

used in the design process of the semi-automatic glycemia control system. Therefore,

all variables that could influence glycemia were selected (see 2.3.2). Next, it is

important to indicate that recording the data in electronic files was not straightforward

as possible human errors on the paper data had to be carefully detected. As a

consequence, this process was labour-intensive and, therefore, restricted to four patient

groups. Below, an overview of the different electronic data sets that were made

available, is given (see 2.4).

2.3.2 Variables selected in the framework of this dissertation

A list of parameters was selected based on availability and clinical judgement [215,

238]. Below, a (restricted) inventory of the variables, recorded in the electronic data

sheets, is given.
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Figure 2.6: Example of a nurse-paper. Each paper comprises all medical information

(e.g., blood glucose values, insulin doses, flows of calories and medication, body

temperature, blood pressure, etc.) of a patient per day.

1. Blood glucose (glycemia): G (mg/dl)

This is the glucose concentration in the blood. Both terms ‘blood glucose’ and

‘glycemia’ are alternately used in this work.

2. Insulin: FI (U/hr)

The protein ‘insulin’ is a hormone that is released in the islets of Langerhans

(pancreas). Typically, the amount of insulin is expressed in units (U): one

milligram of insulin corresponds to 24 Units of insulin (or 1 U = 40 µg insulin).
Approximately 40 Units per day are released in a healthy person. The half-life1

of insulin for disappearing from the blood plasma is five to ten minutes. Insulin

is broken down particularly in the liver and the kidneys [146].

3. Calories:

The number of calories (food intake) and the proportion of carbohydrates,

proteins and fat represent an important disturbance factor. The daily interruption

of caloric intake is a typical feature of the ICU as the feeding lines need to be

flushed regularly. Recent developments in the ICU, however, attempt to avoid

this flushing process. It must be noted that the type of feeding process is mostly

switched from intravenous glucose infusion (at admission) to total parenteral

1 The half-life of a quantity is the time required for the quantity to decay to half of its initial value.
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feeding (particularly during the first days) and finally to enteral feeding (when

the patient has sufficiently recovered). Both parenteral and enteral feeding

comprise a mixture of carbohydrates, proteins and fat. Parenteral feeding is

given intravenously, whereas enteral feeding is administered through a gastric

tube. Calories are continuously infused except for some glucose shots (bolus)

that are delivered in case of severe hypoglycemic events. All different types of

feeding were transformed to two different flows of calories:

(a) Carbohydrate (glucose) calories: FG (kcal/hr)

(b) Fat calories: FF (kcal/hr).

4. Body temperature: T (°C).
An increased body temperature may be caused by additional inflammations and

can lead to extra stress. As we know from above, the presence of physical stress

can increase the insulin resistance and can lead to hyperglycemia, accordingly.

5. Medication:

A mixture of drugs is administered to critically ill patients. The effect of intake

of drugs on glycemia, however, typically depends on the type and the dose of

the medication. Possible interactions with other disturbance factors (e.g., other

medications) may hamper the modelling (see Chapters 5 and 6) of these effects.

Finally, it is important to indicate that these effects are patient-specific in terms

of inter- and intra-patient variability.

Here, the farmaca that potentially influence the blood glucose dynamics are

listed. They are administered to the patient as a bolus or by means of a

continuous infusion:

(a) Glucocorticoids: FC (mg/hr)

i. Methylprednisolone

ii. Prednisone / Prednisolone

iii. Dexamethasone

iv. Hydrocortisone

(b) Catecholamines

The unit γ is used in the ICU to symbolize the amount of the considered
catecholamine drug (µg) per kg body weight and per minute.

i. Adrenaline: FA (γ)

ii. Noradrenaline: FN (γ)

iii. Dobutamine: FDob (γ)

iv. Dopamine: FDop (γ)

(c) Beta-blockers: Fβ (mg/hr)
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6. Static upon admission demographics:

(a) Reason for intensive care

Eight reasons for admission to the ICU are considered for this work:

cardiac surgery (type 1), complicated non-cardiac surgery or severe burns

(type 2), neurologic disease, cerebral trauma or complicated brain surgery

(type 3), complicated lung or esophageal thoracic surgery, respiratory

insufficiency, or both (type 4), complicated abdominal surgery or peritonitis

(type 5), transplantation (type 6), complicated vascular surgery (type 7),

and others (type 8).

(b) History of diabetes

(c) BMI (kg/m2)

(d) Gender

(e) Age

(f) APACHE II score

The Acute Physiology and Chronic Health Evaluation (APACHE II) score

[110] is most known and used in the ICU to objectively score the severity

of illness. It is calculated (per day) using parameters of acute physiology

and chronic healthcare such as body temperature, arterial pH, breathing

frequency, etc.

2.4 Data sets

In this section each data set is individually presented and the specific patient features

are emphasized. All available data origin from patients who were admitted to the

surgical ICU-division of the University Hospital K.U.Leuven.

2.4.1 Data set 1

The first data set comprises 41 patients who were retrospectively selected from the data

originally described in [216]. They were chosen to cover variable demographics (see

Table 2.1) and durations of stay in the ICU. The goal was to retrieve a representative

sample for the larger patient group of [216] in terms of duration of intensive care and

proportion of diagnostic subgroups. All of them had a specific clinical history and

particular evolution during their stay in the ICU. Due to the different nature of the

patients, the duration of stay in the ICU varied explaining the generated time series of

different lengths in this data set. Nurses were instructed to maintain glycemia between

80-110 mg/dl (target range) using the hospital guidelines for TGC in the ICU [215].

Therefore, whole-blood glucose in undiluted arterial blood was measured every 4

hours or more frequently in the initial phase or in case of complications by means

of the ABL700 Radiometer Medical (Denmark) glucose analyser. These measured

glycemia values are linearly interpolated to obtain one-hour glycemia data to overcome

the feature that the sampling intervals are irregular.
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Table 2.1: Characteristics of Data set 1.

Variable Patient group 1

Number of patients - no 41

Male sex - no (%) 27 (65.8)

Age - yr (SD) 59.8 (17.6)

BMI - kg/m2 (SD) 27.0 (5.2)

Reason for intensive care - no (%)

Cardiac surgery - Type 1 11 (26.8)

Non-cardiac indication 30 (73.2)

Multiple trauma or severe burns - Type 2 7 (17.1)

Neurologic disease, cerebral trauma, or compli-

cated brain surgery - Type 3

4 (9.8)

Complicated lung or esophageal thoracic surgery,

respiratory insufficiency, or both - Type 4

7 (17.1)

Complicated abdominal surgery or peritonitis -

Type 5

5 (12.2)

Transplantation - Type 6 3 (7.3)

Complicated vascular surgery - Type 7 2 (4.9)

Other - Type 8 2 (4.9)

APACHE II score (first 24 hr) (SD) 11 (6)

History of diabetes - no (%) 7 (17.1)

Type I - diabetes 2 (4.9)

Type II - diabetes 5 (12.2)

Mean blood glucose - mg/dl (SD) 108 (37)

Minimal blood glucose - mg/dl 37

Maximal blood glucose - mg/dl 379

Mean duration of stay in ICU - hr (SD) 174 (154)

Min. duration of stay in ICU - hr 36

Max. duration of stay in ICU - hr 686

Figures 2.7, 2.8, 2.9, and 2.10 show examples of some patient data. Each top panel

illustrates the blood glucose signal. However, it is stressed that the stars show the

glycemia values that were effectively measured. Indeed, the linear interpolation of the

available glucose data may have provoked some inaccuracies but is necessary to impose

a (virtually) regular sampling frequency. Figure 2.7 visualizes the data of an ‘average’

patient (patient no. 10). Some medication flows (FC and FA) are constant indicating

that no glucocorticoids nor adrenaline were prescribed for this patient. As is shown in

Figure 2.8 some patients did not get any of the drugs that were selected for the scope

of this work. The data of this patient (patient no. 20) also show a strongly fluctuating

pattern for the administered calories and insulin. In spite of the varying disturbances,

the nurses adequately changed the insulin flow leading to a blood glucose signal that

falls within the normoglycemic target range (80-110 mg/dl) to a large extent.
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Figure 2.7: Data of patient no. 10 from the first patient group. The top (first) panel

shows the interpolated blood glucose signal. The stars denote the glycemia values

that were measured with the ABL700 Radiometer Medical device. The shaded area

represents the normoglycemic target range (80-110 mg/dl). In the following three

panels the flows of insulin, carbohydrate calories and fat calories are successively

illustrated. The body temperature dynamics are presented in the fifth panel. The

other panels successively show the delivered rate of glucocorticoids, adrenaline,

noradrenaline, dobutamine, dopamine, and beta-blockers.
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Figure 2.8: Data of patient no. 20 from the first patient group. The same notation

as presented in Figure 2.7 is used. None of the drugs that were selected for the

scope of this work, were effectively administered to this patient explaining the constant

medication flows. The administered flows of calories show a fluctuating pattern which

is followed by the insulin dosage profile leading to relatively stable blood glucose

dynamics (in the normoglycemic target range).
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Figure 2.9: Data of patient no. 25 from the first patient group. The same notation as

presented in Figure 2.7 is used. None of the drugs that were selected for the scope of

this work, were effectively administered to this patient and the flows of administered

calories were relatively constant. The blood glucose dynamics of this patient were very

stable and the nurse did not much adapt the insulin rate, accordingly.
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Figure 2.10: Data of patient no. 41 from the first patient group. The same

notation as presented in Figure 2.7 is used. Both the administered medication and

calories show a variable pattern explaining the active contribution of the nurse (who

appropriately adapted the insulin flow) leading to relatively stable blood glucose

dynamics (particularly shown in the second half of the data).
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An example of very stable blood glucose dynamics is shown in Figure 2.9. The insulin

and calories flow of this patient (patient no. 25) are also relatively constant and,

again, no selected medication was delivered to the patient. Fluctuating disturbance

factors are illustrated in Figure 2.10. It is important to note that many (input) flows

are simultaneously present. This is an additional complicating factor when modelling

(see Chapters 5 en 6) and controlling (see Chapter 7) blood glucose (output) dynamics.

Nevertheless, blood glucose is strictly controlled by the adequate nurse-driven changes

of the insulin rate.

This first data set will be used in Chapters 4 and 5.

2.4.2 Data set 2

The second data set that is made available for this work is analogous to data set 1. It

comprises the data of 15 patients who were treated with the intensive insulin therapy

(80-110 mg/dl as target blood glucose range). Here, whole-blood glucose in undiluted

arterial blood was measured every hour using the same glucose analyser (ABL700

Radiometer Medical, Denmark) as used for data set 1. Although the guidelines were

identical to the ones used for the first patient group, this study was more intensified

in terms of blood glucose sampling during the first two days after ICU admission.

After these two intensive sampling days, blood glucose was monitored with the same

frequency as in the first group but these additional data were not considered in this data

set, for the purpose of this study. Therefore, the length of the data set of each patient

was limited to the first 50 hours. Table 2.2 gives an overview of the study population

with some important clinical characteristics.

In Figure 2.11 the data of patient no. 11 are illustrated. As glycemia (top panel) is

measured every hour, the magnitude of the errors that may be obtained by interpolating

the data is restricted. This is again a typical example of strictly controlled glycemia

dynamics. The patient enters the ICU with an elevated blood glucose (on-admission

glycemia equals 139 mg/dl) and normoglycemia is reached after six hours. Glycemia is

kept within the target range during the remaining hours of the first day. Twenty-seven

hours after admission, however, the blood glucose signal was suddenly decreasing

which was adequately responded by the nurse by gradually decreasing the insulin rate.

After some hours a new insulin dose equilibrium was found and glycemia was kept in

the target range. It is clear that the higher blood glucose sampling frequency facilitates

the control of glycemia.

The second data set will be used in Chapters 4 and 5.
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Figure 2.11: Data of patient no. 11 from the second patient group. The blood glucose

was measured every hour during the initial two days after admission to the ICU. The top

(first) panel shows the interpolated blood glucose signal. The stars denote the glycemia

values that were measured with the ABL700 Radiometer Medical device. The shaded

area represents the normoglycemic target range (80-110 mg/dl). In the following three

panels the flows of insulin, carbohydrate calories and fat calories are successively

illustrated. The body temperature dynamics are presented in the fifth panel. The

other panels successively show the delivered rate of glucocorticoids, noradrenaline,

dobutamine, dopamine, and beta-blockers.
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Table 2.2: Characteristics of Data set 2.

Variable Patient group 2

Number of patients - no 15

Male sex - no (%) 9 (65.0)

Age - yr (SD) 70.0 (12.6)

BMI - kg/m2 (SD) 25.6 (5.8)

Reason for intensive care - no (%)

Cardiac surgery - Type 1 10 (66.7)

Non-cardiac indication 5 (33.3)

Multiple trauma or severe burns - Type 2 0 (0)

Neurologic disease, cerebral trauma, or compli-

cated brain surgery - Type 3

0 (0)

Complicated lung or esophageal thoracic surgery,

respiratory insufficiency, or both - Type 4

0 (0)

Complicated abdominal surgery or peritonitis -

Type 5

5 (33.3)

Transplantation - Type 6 0 (0)

Complicated vascular surgery - Type 7 0 (0)

Other - Type 8 0 (0)

APACHE II score (first 24 hr) (SD) 18 (4)

Mean blood glucose - mg/dl (SD) 101 (23)

Minimal blood glucose - mg/dl 37

Maximal blood glucose - mg/dl 214

Mean duration of stay in ICU - hr (SD) 47 (4)

Min. duration of stay in ICU - hr 36

Max. duration of stay in ICU - hr 50

2.4.3 Data set 3

The third data set is similar to the second data set. Thirty-seven adult patients

admitted to the ICU of the University Hospital were prospectively enrolled after

informed consent was obtained from the next of kin. Nurses followed the intensive

insulin therapy guidelines aiming at TGC. During the first 48 hours, an arterial blood

sample was withdrawn hourly via an indwelling arterial line and blood glucose was

determined on this sample using three different point-of-care sensor devices: the

ABL700 Radiometer Medical glucose analyser (Radiometer, Denmark), the Accu-

Chek Inform (Roche Diagnostics, Switzerland), and the HemoCue B-glucose analyser

(HemoCue, UK). Each sample was immediately analysed with the three different

methods. The study was approved by the Institutional Ethical Review Board.

TheABL 700 series blood gas analyser determines the glucose concentration in whole

blood using the glucose dehydrogenase method with a sensor based on amperometry.

The obtained result is further calibrated to a plasma glucose value. This point-of-care

blood gas analyser is used as reference method or gold standard for this study [51].
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Maintenance, calibration, and quality control are performed on a daily basis by the

central hospital laboratory. The Accu-Chek Inform measures blood glucose in whole

blood using the glucose dehydrogenase method with a sensor technology based on

amperometry. Finally, the HemoCue B-glucose analyser measures blood glucose in

whole blood after hemolysis of erythrocytes using a glucose dehydrogenase method

with a sensor technology based on spectrophotometry. The three devices use the

glucose dehydrogenase enzymatic chemical reaction, which prevents the dependency

on PaO2 and thus making it attractive in the ICU setting. To account for a possible

interference of pH, PaO2, or hematocrit each sample was immediately analysed with

the three methods and, therefore, we avoided that variations in these critical care

variables caused erroneous measurements [75]. Furthermore, as the same arterial

sample for the triple simultaneous analysis of blood glucose was used, well-known

discrepancies between arterial and capillary blood glucose values could have been

avoided [122].

In contrast to the second data set, the different input variables (e.g., insulin, calories,

drugs, etc.) were not recorded in the electronic data files. Indeed, only the three

different blood glucose signals were electronically stored for the purpose of this study.

Table 2.3 gives an overview of the study population with some important clinical

characteristics. The third data set will be used in Chapters 3 and 4.

2.4.4 Data set 4

The last data set that is made available for the purpose of this dissertation signifi-

cantly differs from the previous data in terms of glycemia sampling frequency and

measurement ‘compartment’2. Here, the GlucoDay system (A. Menarini Diagnostics,

Italy) is validated against the ABL700 Radiometer Medical (Denmark) glucose

analyser which functions as reference or gold standard sensor device. The GlucoDay

system is a portable instrument provided with a micro-pump and a biosensor coupled

to a microdialysis system and serves as test sensor device for this work. This

amperometric sensor consists of an enzymatic membrane with immobilized glucose

oxidase and a platinum electrode used to measure glucose in subcutaneous interstitial

fluid. As already described above, the ABL glucose analyser is an amperometric

sensor that measures glucose in whole blood using the glucose dehydrogenase method.

After informed consent from the next of kin, we implanted a microfibre in 20 ventilated

adult patients who were admitted to the ICU of the University Hospital (see Table 2.4).

After implantation of the fibre in the peri-umbilical subcutaneous tissue, we recorded

near-continuous subcutaneous glucose levels during the first 48 hours after admission

to the ICU. Every 3 minutes the mean value of the last 3 minutes was exported. During

the first 24 hours, arterial blood glucose was measured concomitantly every hour using

the ABL machine; during the next 24 hours, arterial blood glucose was measured every

2 A compartment is a quantity of material that behaves homogeneously meaning that all measures

performed on the compartment at a given time instant are equally representative. Here, a compartment

is associated with a physical space (e.g., subcutaneous tissue). Chapter 6 further introduces ‘compartmental’

models.
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Table 2.3: Characteristics of Data set 3.

Variable Patient group 3

Number of patients - no 37

Male sex - no (%) 20 (54.1)

Age - yr (SD) 63.3 (17.1)

BMI - kg/m2 (SD) 24.9 (4.3)

Reason for intensive care - no (%)

Cardiac surgery - Type 1 22 (59.5)

Non-cardiac indication 15 (40.5)

Multiple trauma or severe burns - Type 2 0 (0)

Neurologic disease, cerebral trauma, or compli-

cated brain surgery - Type 3

2 (5.4)

Complicated lung or esophageal thoracic surgery,

respiratory insufficiency, or both - Type 4

5 (13.5)

Complicated abdominal surgery or peritonitis -

Type 5

5 (13.5)

Transplantation - Type 6 2 (5.4)

Complicated vascular surgery - Type 7 0 (0)

Other - Type 8 1 (2.7)

APACHE II score (first 24 hr) (SD) 15 (4)

ABL700 Radiometer

Mean blood glucose (SD) - mg/dl 113 (35)

Minimal blood glucose - mg/dl 37

Maximal blood glucose - mg/dl 282

Accu-Chek Inform

Mean blood glucose (SD) - mg/dl 119 (43)

Minimal blood glucose - mg/dl 29

Maximal blood glucose - mg/dl 325

HemoCue B-glucose analyser

Mean blood glucose (SD) - mg/dl 124 (37)

Minimal blood glucose - mg/dl 37

Maximal blood glucose - mg/dl 325

4 hours. A 2-point (at 12 and 20 hours) retrospective calibration of the test sensor

was performed following the supplied software algorithm. Nurses were instructed to

maintain the blood glucose between 80-110 mg/dl using the measured glucose data

from the ABL glucose analyser in accordance with the TGC guidelines. The study

protocol was approved by the Institutional Ethical Review Board.

In Figure 2.12 the data of patient no. 20 are illustrated. The blood glucose dynamics

are presented in more detail here as the glycemia sampling interval was decreased to

3 minutes (for GlucoDay). The reference signal (ABL700 Radiometer) is depicted

by stars. The (near-continuous) test glucose data of this patient correspond to the

concomitantly measured reference signal after retrospectively calibrating the test data
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Table 2.4: Characteristics of Data set 4.

Variable Patient group 4

Number of patients - no 20

Male sex - no (%) 14 (70.0)

Age - yr (SD) 61.3 (13.5)

BMI - kg/m2 (SD) 27.4 (5.1)

Reason for intensive care - no (%)

Cardiac surgery - Type 1 10 (50.0)

Non-cardiac indication 10 (50.0)

Multiple trauma or severe burns - Type 2 1 (5.0)

Neurologic disease, cerebral trauma, or compli-

cated brain surgery - Type 3

2 (10.0)

Complicated lung or esophageal thoracic surgery,

respiratory insufficiency, or both - Type 4

3 (15.0)

Complicated abdominal surgery or peritonitis -

Type 5

2 (10.0)

Transplantation - Type 6 0 (0)

Complicated vascular surgery - Type 7 1 (5.0)

Other - Type 8 1 (5.0)

APACHE II score (first 24 hr) (SD) 17 (6)

APACHE II score (second 24 hr) (SD) 17 (6)

ABL700 Radiometer

Mean blood glucose (SD) - mg/dl 111 (23)

Minimal blood glucose - mg/dl 65

Maximal blood glucose - mg/dl 202

GlucoDay system

Mean glucose (SD) - mg/dl 112 (25)

Minimal glucose - mg/dl 56

Maximal glucose - mg/dl 249

as mentioned above. Some data originating from other patients, however, show some

discrepancies. A detailed analysis of the GlucoDay sensor will be performed in

Chapter 3.

Glycemia was strictly controlled in the patient shown in Figure 2.12. The disturbance

factors were relatively stable. The on-admission blood glucose value (121 mg/dl) was

slightly elevated, but after only one hour normoglycemia was reached by administering

insulin. The tendency towards hypoglycemia (at 7 hours after admission to the ICU)

necessitated the nurse to decrease the insulin flow (second panel) which, however,

led to a slight hyperglycemic episode. Accordingly, the nurses gradually increased

the insulin flow aiming at normoglycemia. It is clear that glycemia dynamics may

easily fluctuate. The availability of more glucose measurements facilitates the control

of glycemia. This last data set will be used in Chapters 3, 6, and 7.



44 Intensive Care: Patients and Data

60

80

100

120

140

G
 (

m
g
/d

l)

4

6

8
F

I (
U

/h
r)

36

38

40

F
G

 (
k
c
a
l/
h
r)

30

35

40

F
F
 (

k
c
a
l/
h
r)

37

37.5

38

T
 (

o
C

)

−1

0

1

F
C

 (
m

g
/h

r)

0

0.1

0.2

F
N

 (
γ)

−1

0

1

F
D

o
b
 (

γ)

−1

0

1

F
D

o
p
 (

γ)

5 10 15 20 25 30 35 40
−1

0

1

F
β
 (

m
g
/h

r)

t (hr)

Figure 2.12: Data of patient no. 20 from the fourth patient group. The top panel shows

the near-continuous glucose signal originating from the GlucoDay sensor device. The

stars denote the reference blood glucose values that were measured with the ABL700

Radiometer Medical device. The shaded area represents the normoglycemic target

range (80-110 mg/dl). In the following three panels the flows of insulin, carbohydrate

calories and fat calories are successively illustrated. The body temperature dynamics

are presented in the fifth panel. The other panels successively show the delivered rate

of glucocorticoids, noradrenaline, dobutamine, dopamine, and beta-blockers.



2.5 Characteristics of current ICU data 45

2.5 Characteristics of current ICU data

The different data sets have specific properties which may complicate the modelling of

the glucose dynamics of the critically ill (see also Chapters 5 and 6). Each of them is

briefly discussed in this section:

1. Irregular sampling frequency:

All available data origin from real-life ICU patients who were treated by nurses.

Due to the high workload and/or the protocols that are present in the ICU,

missing values appear in the data. These missing values were estimated or

(linearly) interpolated to enforce a regular sampling frequency. For modelling

issues this regular sampling frequency is preferred. Particularly the data that

come from the first patient group (see 2.4.1) may be influenced due to the

interpolation of the glucose signal. In the other data sets, glycemia is measured

more frequently (every hour, or even every three minutes for data set 4, see 2.4.4).

2. Simultaneous change of inputs:

As shown in the examples of the patient data, the flow of input variables (e.g.,

calories, insulin, medication) is adapted simultaneously on a regular basis. When

the dynamics of a system or a process (e.g., the glucoregulatory system) are to

be modelled, it is preferred that each input variable (or each known disturbance

factor) is varied independently. In other words, the influence of changing a

certain input variable on the output (i.e., blood glucose) is preferably defined

when other disturbance factors behave constantly. However, a nurse treating

a critically ill patient obviously does not take into account this modelling issue.

Therefore, disturbance factors typically coincide in the ICU. Additionally, delays

can further complicate the modelling of the dynamic process as the observed

output may be explained by a combination of current and previous disturbance

factors. Therefore, the effect of administering, for example, insulin should be

described in a dynamic model (and not a static model, see also Chapters 5 and 6).

3. Few data available:

Taking into consideration the high number of patient types and features, more

patient data could have been expected from a theoretical perspective. The

recording phase of the nurse-paper data in electronic data files, however, was

labour-intensive (see 2.3) explaining the limited availability of data. Further,

the most important variable for this work (glycemia) could only be regularly

measured. The imposed sampling interval for glucose in data sets 2 and 3

was decreased to one hour giving an approach towards a ‘continuous’ glucose

signal. Particularly data set 4 is potentially interesting as near-continuous

glucose signals were made available in a test phase. However, it is important to

notice that the number of patients in these data sets is limited knowing the ICU is

characterized by a large inter- and intra-patient variability. Ideally, accurate and

reliable near-continuous sensor devices should be used for measuring glycemia

in a high number of patients. However, these sensor devices are unfortunately

not yet (commercially) available but are undoubtedly under development [38,94,

99, 109, 114, 162,194,209,211].
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Disturbance factors (e.g., medication) are also strongly patient-specific (not

every patient receives the same type of medication nor the same dose). A

high variability exists among the disturbance factors for the available amount

of data, which may further complicate the modelling process as discussed in

Chapters 5 and 6.

4. Unmeasured and unknown disturbances:

It has been shown that blood glucose dynamics behave far from constant due

to inter- and intra-patient variability. Although a list has already been provided

with all known variables that can influence glycemia of critically ill patients (see

2.3.2), lots of other disturbances are not yet known or cannot be measured. The

first category consists of elements whose influence is not known. Let us take

a hypothetical example. Each day a patient is being washed by the nurses. It

may be possible that this washing process (e.g., a patient is being turned) may

influence the blood glucose.

The second category focuses on disturbances that cannot be directly measured.

The insulin resistance (see 2.1.2) is a typical example of this category. The

sensitivity of the tissues for insulin (i.e., the inverse of the insulin resistance)

typically increases as the patient recovers but can suddenly lower, as well, in

case of additional infections or complications. This insulin sensitivity/resistance

has a significant impact on the blood glucose profile. Another immeasurable

disturbance factor may be the specific treatment of the patient (e.g., the influence

of specific surgery, the connection to machines). The availability of accurate and

reliable near-continuous glucose sensor devices may clarify these effects in the

future.

5. Closed-loop data:

The data that were made available are closed-loop data meaning that the output

variable (i.e., blood glucose) is a controlled variable and that the next rate of the

control input variable (i.e., insulin) depends on the previous output signal. Blood

glucose is being controlled with insulin by the nurses and the determination of

the next insulin rate is largely dependent on the previously monitored glucose

signal (see the Leuven guidelines in Chapter 7).

In most identification issues, however, the system under study behaves as an

open-loop system: the input variables are modified (without considering the

previous output signal) and the result of these adaptations can be observed in the

output. A clear relation between input(s) and output may be found, accordingly.

In case of closed-loop data, this relation may be partly masked. The closed-loop

issue is discussed in more detail in Chapters 5 and 6.

6. No freedom on experiments:

The last (and probably most important) property of the data considered in this

work is the fact that there exists no freedom on (unconstrained) experiments due

to ethical and medical reasons. Only the medical staff (i.e., nurses and doctors)

decide which treatment (type of medication/calories, dose, etc.) is appropriate

for which patient.
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Some (constrained) clinical experiments (such as the comparison study of

glucose sensors in data set 3 or the validation study of a new glucose sensor

device in data set 4) on patients are only allowed after strict approval by the

Institutional Ethical Review Board and when informed consent from the next of

kin is obtained. It is obvious that doing any open-loop experiments (e.g., how

will the blood glucose profile evolve if the insulin dose is doubled, or if the

flow of calories is suddenly stopped, or if a bolus of dopamine is given, etc.) is

absolutely forbidden.

Depending on the scope of the respective chapter, only a selection of the available data

will be considered.

2.6 Conclusions

This section presented some medical background and the data used in this work. The

main contribution of this chapter was twofold. First of all, the clinical (simplified)

concept of the glucoregulatory system and the most important differences between the

glucoregulatory system of a healthy person, a patient with diabetes, and a critically

ill patient were introduced. Secondly, the characteristics of the data that were made

available for the purpose of this dissertation were described and illustrated with

examples. Attention was also given to some typical properties of the used data.

The four different data sets, described in this chapter, will be used extensively in the

following chapters.
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Chapter 3

General Assessment of Glucose

Sensors

Glucose sensors, representing both blood glucose meters and glucose

monitoring systems (GMS), are used to monitor the glucose profile. The

use of glucose sensors is standard practice to achieve TGC in critically

ill patients and in patients with diabetes. However, some of them

may lack reliability. In this chapter the development of a statistical

assessment tool that can be used for evaluating the performance of a test

sensor device with respect to a reference sensor device, the GLYCENSIT

procedure (Copyright © 2006), is described. The presented method can be

tuned according to the clinician’s preferences regarding significance level,

tolerance level, and glycemic range cut-off values. Three hypothetical

data sets and a real-life clinical (ICU) example are introduced to illustrate

the GLYCENSIT analysis. Moreover, two point-of-care sensor devices are

validated in a real-life ICU setting. Figure 3.1 further illustrates the focus

of this chapter.

3.1 Introduction

3.1.1 Glucose sensor devices: Past, present, and future

Frequent and accurate monitoring of glycemia is an important keystone for intensive

insulin therapy in critically ill patients and patients with diabetes. Both blood glucose

meters and glucose monitoring systems (GMS) are used to achieve this goal.

Blood glucose meters measure the glucose value in arterial, venous or capillary blood

samples by means of a specific enzymatic reaction:

β- D - glucose +H2O+ O2
GOx
−−→ gluconic acid+ H2O2

51
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Figure 3.1: Simplified presentation of the (semi-)automated control system. The

glucose sensor technology and its validation are the fundamentals of Chapter 3. A

new assessment tool is presented and applied to hypothetical and real-life ICU data

sets.

in which GOx represents the immobilized enzyme ‘glucose oxidase’. These enzymatic

sensors have been under development since the 1960s. The GOx-enzyme is responsible

for the specificity for glucose. This enzyme catalyzes the oxidation of glucose in the

presence of oxygen. The concentration of glucose can be determined by monitoring the

oxygen consumption (by means of a Clark-type sensor), the production of gluconic acid

(by using a pH-sensor), or the production of hydrogen peroxide (H2O2) (by measuring

the current). Typically, the last option is preferred. This amperometrical reaction can

be presented as follows:

H2O2 → 2e− + 2H+ + O2

where H2O2 is oxidised. Besides the ‘glucose oxidase’ technology described above,

blood glucose meters can also be based upon the ‘glucose dehydrogenase’ technology

which results in a similar accuracy.

The use of blood glucose meters returns discrete-time (meaning non-continuous)

glycemia measurements [90]. The measurement frequency typically varies from 2 to 6

times per day (in case of patients with diabetes, taking capillary blood samples at the

fingertip [50]) and from 6 to 12 times per day (for the intensive insulin treatment of
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critically ill patients, taking arterial blood samples [213,216]).

GMS typically estimate the glucose level in another compartment1 than blood (e.g.,

interstitial fluid present in subcutaneous tissue) by applying different technological

methodologies leading to a near-continuous glucose signal (after appropriately cali-

brating the system) [90]. It is important to note that the term ‘continuous’ (instead

of ‘near-continuous’) is sometimes used in the available literature. This, however,

may be misleading since measurement intervals always remain present although they

are small (typically varying from 3 minutes to even milliseconds depending on the

type of GMS). Of course, it is clear that the number of glucose observations is

drastically higher compared with the ‘blood glucose’ sensor devices of the first group

potentially facilitating TGC and avoiding (or at least reducing the number of) hypo-

and hyperglycemic events.

The quest for an accurate and reliable near-continuous glucose sensor started already

many years ago. In 1976, one of the first ‘continuous’ glucose sensors, as part

of a computerized Biostator Glucose Controlled Insulin Infusion System (GCIIS),

was presented at a conference in Freiburg (Germany) [46]. So far, however, no

commercially available near-continuous glucose sensor device is able to accurately and

reliably monitor the glucose signal of patients with diabetes nor critically ill patients.

During the last decade, many companies have invested substantially in the development

process of near-continuous glucose sensor devices, but currently existing devices do not

yet sufficiently meet the clinical requirements [38, 94, 114, 209].

In general, two different types of near-continuous glucose sensor devices are currently

under development as is reported by Koschinsky and Heinemann [114]:

1. Minimal-invasive glucose sensors:

This type of sensors is characterized by the measurement of glucose in the

interstitial fluid of the skin or in the subcutaneous tissue. As contact with blood

is avoided, the name ‘minimal-invasive’ is given. Most known minimal-invasive

techniques are:

(a) Transdermal approach: A device, attached to the skin, removes interstitial

intradermal fluid across the skin. The glucose concentration measured in

this fluid is related to the blood glucose.

(b) Glucose electrodes: Most of these electrodes immobilize the GOx enzyme

on the tip of a needle that is inserted in the skin. The same amperometrical

reaction as described above takes place.

(c) Microdialysis: Microdialysis is founded on the slow pumping of a solution

(i.e., the dialysate) through a probe that has a semi-permeable membrane.

The concentration of the glucose molecules that are transferred to the

dialysate is related to the blood glucose.

1 A compartment is a quantity of material that behaves homogeneously meaning that all measures

performed on the compartment at a given instant are equally representative. Here, a compartment is

associated with a physical space (e.g., subcutaneous tissue). The use of ‘compartmental’ models is

introduced in Chapter 6.
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(d) Open-flow microperfusion: This technique uses a double-lumen catheter

with microholes which is inserted in the subcutaneous tissue. A perfusion

fluid is pumped through the inner cannula, mixed with the interstitial fluid

at the end of the probe, and finally sucked back through the space between

the cannulas.

2. Non-invasive glucose sensors:

Most non-invasive glucose sensors rely on optical techniques:

(a) Spectroscopic approach: A light beam is directed through the skin and the

properties of the reflected light are related to the blood glucose.

(b) Scattering approach: The induced changes in the physical properties of the

skin correspond to the blood glucose level.

A detailed overview and discussion of the considered glucose sensor technologies

may be found in [101] and [114]. In [46] and [114] some general requirements for

an acceptable (near-continuous) glucose sensor device are described. They can be

summarized as follows:

• high specificity for glucose,

• fast response time,

• long-term and short-term stability,

• low drift,

• low noise,

• immediate availability of the measurement,

• high frequency of measurements (though measurement intervals of 5 minutes
seem to be sufficiently small),

• easy to operate,

• low cost.

3.1.2 Available tools to assess glucose sensors

Some blood glucose meters and GMS show insufficient reliability. Moreover, no

generally accepted procedure to test this reliability level exists [90, 137]. In the

available literature, analytical and clinical approaches have been described to evaluate

the quality of glucose measurements originating from a new sensor device.

The first approach measures the analytical accuracy by using classical statistical

techniques. Examples of this type are analyses based on regression (or correlation),
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mean absolute or relative difference, Bland-Altman2 [3, 15], and analysis of variance

(ANOVA) [175]. Although most of these techniques are frequently used for comparing

sensor readings with reference observations, they show some weaknesses that have

already been debated. Regression, for example, typically measures the strength of a

relation between two variables (i.e., any possible correlation that explains the data)

but not their numerical agreement (i.e., the bisector correlation) [15, 112]. Wide

measurement ranges also give large correlation coefficients in comparison with narrow

ranges such that artificial modifications can be easily realized [15]. Difference

measures are often skewed [111] such that their result can sometimes be misleading.

The method proposed by Bland and Altman, in its form that is mostly chosen by clinical

users, relies on equal severity of measurement errors for the entire blood glucose

range (e.g., 20 mg/dl measurement error in hypoglycemic range is as equally severe

as 20 mg/dl measurement error in hyperglycemic range) [53]. One also relies on the

assumption of a normal distribution of these errors. This assumption, not often fulfilled

in clinical practice, is also required when applying classical (parametric) ANOVA tests.

In general, it is hard to satisfy all imposed statistical conditions (present in these

techniques) and to translate statistical results to clinical use.

The second approach evaluates the measurements from a clinical point of view.

A general weakness, however, is its arbitrary strategy leading to lack of statistical

evidence. A typical example of this approach is the Error Grid Analysis (EGA)3 [44,52,

54] and the related Continuous Glucose - Error Grid Analysis [117]. Although the last

technique is especially developed for testing near-continuous sensors, both techniques

are based on a systematic and comprehensive graphical display assessment, which has

been debated before [83,111,237]. The use of specific regions in the grid pattern gives

the opportunity to get different results for only slightly different glucose observations

and explains one of the disadvantages of this technique. Parkes et al. developed

an alternative graphical analysis [164] that shows, however, similar drawbacks as

EGA. Recently, the Diabetes Error Test Model (DETM) has been developed [113].

In this novel concept the impact of different factors that may affect postprandial

glycemic excursions is simulated giving a clinical evaluation of ‘treatment’ errors

rather than ‘measurement’ errors. Though the DETM in its current form may be useful

in the evaluation of glucose sensors, its simulations are based on assumptions and

simplifications and the model is restricted to a specific group of patients with type I

diabetes.

2 Bland and Altman proposed a new method to measure the agreement between variables in 1986. This

alternative approach is based on graphical techniques and simple calculations, and can be designed depending

on the application. In case of evaluating glucose sensors, clinical users typically opt for plotting the difference

between the methods against their mean [15].
3 The EGA, developed by Clarke et al. in 1987 [44], is a clinically oriented non-parametric approach

to evaluate blood glucose data. This method is founded on a graphical display. The graph is divided into

five regions (zones A-B-C-D-E), each associated with a qualitatively different action. The A-zone values

are labeled as ‘clinically acceptable’. Values from the B-zone are not acceptable but do no put the patient at

immediate clinical risk as is the case with zones C-D-E. These last zones are unacceptable, accordingly. Cox

et al. recommended to label a glucose sensor as ‘acceptable’ if at least 95% of the observations fall into the

A-region and 0% fall in the C-D-E zones [54].
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Until now no consensus exists about the technique or combination of techniques that

should be applied when assessing glucose sensors since both analytical and clinical

approaches show some weaknesses. At present, one (or a selection) of the techniques

described above are applied for evaluating the sensor quality [29, 43, 44, 52, 104, 203,

231, 245]. In Kollman et al. [111] the use of bootstrap is suggested as safe alternative

for currently known assessment techniques.

In this chapter the development of the GLYCENSIT analysis (Glycemia Sensor Tool

or also Glycemia Sense It, Copyright © 2006) is presented. This tool offers a

statistically sound assessment procedure comprising three complementary phases.

The methodology is a first step towards a combined statistically based and clinically

supported assessment technique for both blood glucose meters and GMS.

3.2 Research design and Methods

In this section the GLYCENSIT procedure is described in detail and an introduction to

the real-life clinical ICU examples is given.

3.2.1 Pre-processing and Assumptions

The GLYCENSIT analysis statistically compares a set of paired glucose measurements

that are gathered form a reference sensor (the so-called gold standard sensor) and a

test sensor device. The use of a reference blood glucose meter (e.g., ABL glucose

analyser [216] or laboratory techniques) results in reliable, accurate and discrete-time

(i.e., non-continuous) measurements [38]. Typical sampling intervals for this type of

sensors (applied in the ICU) vary from one to four hours. Test blood glucose meters

and test GMS need to be adequately evaluated against a reference device. In this

analysis only concomitantly measured values are considered leading to the necessary

transformation of the data to sets of paired glucose measurements.

Although it is not the purpose of this study, the importance of appropriately setting up

a clinical study and data pre-processing must be stressed. First of all, a systematic

study approach to shift blood glucose over the whole clinically relevant range by

using glucose clamps4 [90] can solve the typical problem that few data of the hypo-

and hyperglycemic range are available [108]. However, the recommended use of

(temporary) glucose clamps is not suitable for specific patient groups (e.g., critically

ill patients) for ethical reasons [213, 216]. Secondly, the received data need to be

pre-processed in advance. In case of GMS, calibration is required to convert the

received (electric) signal into blood glucose readings (often performed by the supplied

software). Further pre-processing is necessary to remove consistent time shifts or

physiological lag times (e.g., time delay between measurements in venous blood and

4 The glucose clamp is a method to estimate the insulin sensitivity (see also Chapter 5, 5.2). A typical

example is the euglycemic clamp in which glycemia is kept constant by infusing glucose. Accordingly,

different glucose clamps with different blood glucose targets (also in the hypo- and hyperglycemic range)

allow to generate paired observations in the full glycemic range.
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interstitial glucose [22, 114, 115, 137], possible additional physiological delays caused

by the ‘alternate site testing’ phenomenon5 [115]) and systematic analytical error [194]

by appropriately re-shifting the data. Finally, noise can be reduced by introducing

filters [169]. However, manufacturers of GMS already frequently use these filters such

that this last pre-processing step may be unnecessary.

We assume that the measurement errors are sufficiently statistically independent

meaning that no correlation exists between successive errors (i.e., identically and

independently distributed errors). Therefore, we advise to concomitantly measure

glycemia with a minimum one-hour time interval, which is sufficiently large to meet

this assumption. Moreover, the same condition is imposed in other well-known

statistical assessment tools like Bland-Altman [15] or ANOVA [175]. However, it

must be stressed that the GLYCENSIT procedure described below can be adapted when

correlation between successive errors would be present. Still, we choose to adopt the

no-correlation assumption for clarity of this exposition. Therefore, the duration of the

reference sensor sampling intervals is assumed to be at least one hour.

The developed GLYCENSIT procedure comprises three complimentary phases:

1. Phase 1:

Testing possible persistent measurement behaviour as a function of the glycemic

range,

2. Phase 2:

Testing the number of measurement errors with respect to a standard criterion

for binary assessment of glycemia sensors,

3. Phase 3:

Computing the tolerance intervals that indicate possible test sensor deviations

for new observations.

The probability of the tolerance intervals directly reflects the number of samples that

are considered in the statistical analysis. Besides the statistically sound assessment

procedure, the computed probability level additionally improves on current assessment

techniques. The method can be tuned according to the clinician’s preferences regarding

significance level, tolerance level, and glycemic range cut-off values. The full

procedure does not directly answer the question whether a sensor is reliable or not

(because of the dependency on the clinicians’ preferences), but rather statistically

guides the clinician in assessing (new) test sensor devices.

5 The term ‘alternate site testing’ (AST) origins from the diabetes science. Blood glucose meters have

been developed for patients with diabetes allowing the measurement of glucose in capillary blood that is

collected at sites other than the fingertips [115]. It is known that capillary blood glucose values correspond

to systemic (i.e., arterial) glucose levels in these patients, particularly under steady-state conditions. In

critically ill patients, however, capillary blood glucose measurements are unsatisfactory since there is a

high degree of imprecision and a high percentage of discordance [71]. Some new sensor devices, mainly

developed for patients with diabetes, measure glucose levels at alternate sites (i.e., at a place other than the

fingertip) and/or in a compartment other than blood (e.g., interstitial fluid). During rapid changes in blood

glucose levels (e.g., after a meal, during exercise), the measurements with a ‘test’ sensor device may differ

considerably from ‘reference’ observations [115] leading to the so-called AST phenomenon.
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3.2.2 Normalization

Given a sample of n paired glucose sensor observations yref,t and Ytest,t (with
t = 1, . . . , n), where yref,t is the gold standard or reference sensor and Ytest,t is the
test sensor. We frame this problem in a statistical setting by considering the sensor

under study as a random variable. This can be formulated as follows:

Ytest,t = yref,t + et, (3.1)

where et denotes a stochastic error between test and reference value at time instant t.
In this step the errors of the set of paired glucose measurements are normalized with

regard to the International Organisation for Standardization (ISO) - criterion [75]. This

criterion can be summarized as follows:

• for reference values≤75 mg/dl the value resulting from the test sensor is required
to fall within ±15 mg/dl limits,

• for reference values >75 mg/dl the target variability is defined as ±20%.

The ISO-norm requires that at least 95% of the observations should meet this criterion.

Next, the errors are normalized to make the severity of error independent of the actual

blood glucose value. The normalization function is formulated as

ut = f(yref,t − Ytest,t) =
1

15
[yref,t − Ytest,t] if yref,t ≤ 75 mg/dl, (3.2a)

ut = f(yref,t − Ytest,t) = 5[
yref,t − Ytest,t

yref,t
] if yref,t > 75 mg/dl, (3.2b)

such that an error violating the ISO-criterion translates to an absolute normalized

error ≥ 1.
We proceed with normalized errors in phase 2 and 3 of the GLYCENSIT procedure. In

the figures, yref,t and Ytest,t are symbolized by GR and GT , respectively.

Figure 3.2 illustrates the use of the normalization function 3.2. Dependent on the value

of the gold standard sensor (GR) the evolution of the normalized error (u) as a function
of the absolute error (GR − GT ) is presented.

3.2.3 GLYCENSIT procedure phase 1: Persistent measurement

behaviour

Clinical practice requires a sensor that tends to agree (i.e., persistently deviating

measurement behaviour) in the full glycemic range as it allows the interchange between

sensors with only one conversion factor. In this first phase the performance of a sensor

is assessed by comparing the medians of the errors that belong to the hypo-, normo-,

and hyperglycemic range. Therefore, a hypo- and hyperglycemic cut-off-value are

chosen a priori and the full set of paired glucose measurements is divided accordingly

(with respect to the reference values).
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Figure 3.2: Illustration of the effect of the ISO normalization function for different

values of the gold standard or reference sensor (GR).

Next, the Kruskal-Wallis test [175] performs a non-parametric one-way ANOVA for

comparing the medians of two or more groups of data. Since glucose distributions are

often skewed, median rather than mean values are used [111]. This test is appropriate

when the normality assumption is not met. The null hypothesisH0 that the medians of

the errors per glycemic group are equal is tested resulting in a p-value [49]. If p ≥ α
(where α denotes the significance level), we cannot reject H0. If p < α, we can reject
H0 with a probability of at least 1 − α.

Furthermore, a box and whisker plot (i.e., a boxplot) of the measurement errors per

glycemic range is generated to give a first impression of interquartile (IQ) ranges,

presence of outliers, and symmetry or skewness of the distribution. Consequently,

possible overestimated and/or underestimated measurement behaviour can be easily

detected.

3.2.4 GLYCENSIT procedure phase 2: Number of measurement

errors

The statistical test used in this phase states whether normalized residual values do not

violate the ISO-criterion too often. This can be expressed in terms of the number of

times that the absolute value of the normalized difference does not exceed 1. The

acceptable rate of errors is defined as the tolerance level q (between 0 and 1). For
example, a tolerance level q = 0.04 indicates that the sensor is allowed to make at most
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4 inaccurate (based on the ISO-criterion) measurements out of 100. Mathematically,

this hypothesis testing can be represented in terms of a null hypothesis H0 and an

alternative hypothesisH1:

H0 :
1

n

n
∑

t=1

I(|ut| > 1) ≤ q versus H1 :
1

n

n
∑

t=1

I(|ut| > 1) > q, (3.3)

where I(|ut| > 1) = 1 if |ut| > 1 and 0 otherwise.

The estimated parameter is θ̂ = 1
n

∑n
t=1 I(|ut| > 1). The test statistic is a pivot [175]

and is defined as Tn = θ̂−q
σ̂θ

where θ̂ is an estimate of θ and σ̂θ is the standard error

of θ̂. The computation of the necessary sample quantities is based on the bootstrap
technique. This technique is a method for estimating the distribution of the test statistic

by resampling the data with replacement. An excellent introduction to the bootstrap

may be found in [66].

Based on the selected significance and tolerance level and the critical p-value resulting
from the above procedure, the test decides whether the sensor device under study

succeeds the second GLYCENSIT phase. If p ≥ α, we cannot reject H0. If p < α, we
can reject H0 with a probability of at least 1 − α. In the last case the test sensor does
not suit the stated requirements.

3.2.5 GLYCENSIT procedure phase 3: Tolerance intervals

In the last phase, the distribution-free tolerance intervals for reference glucose values

are computed considering the test measurements. The tolerance intervals indicate a

quantile range (with quantiles r and s) in which the value, that would have been
obtained with the reference device, lies with a certain probability when a new test

measurement is presented. Instead of other techniques that only retrospectively apply

to a hypothetical situation, this phase informs the user about possible measurement

errors corresponding to new test sensor readings under three statistical assumptions.

Firstly, the new data set is equally distributed as the given points (i.e., the data set in

the current study). Secondly, the normalized residuals have a similar distribution over

the three glycemic ranges. Thirdly, the new test sensor reading is obtained in similar

conditions as the current data set was obtained. This phase significantly increases the

actual clinical relevance as deviations can be ‘predicted’.

Statistically, the computed normalized residual values, which have a common cu-

mulative distribution function Fu, are sorted and the order statistics are denoted by

u(1) < . . . < u(n). Let the amount of probability mass in the interval Fu(s)
− Fu(r)

be denoted by Qrs with 1 ≤ r < s ≤ n, where r and s equal 0.0125n and

0.9875n, respectively, when an A = 97.5% tolerance interval is considered. For

a confidence coefficient γ = 1 − α with 0 ≤ α ≤ 1, the probability that more
than 100γ % of the probability mass is contained in the range is P (Qrs > γ) =
1 − βγ(s − r, n − s + r + 1), where βγ(a, b) is the incomplete beta-function [56].
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The computed tolerance interval can be re-transformed, by means of the inverse

normalization function, f−1(yref,t − Ytest,t), yielding tolerance intervals depending on
glycemia.

This result can be interpreted by considering the size of the intervals and its probability.

The first parameter denotes the clinical interpretability of the sensor under study. Large

tolerance intervals indicate that reference observations may significantly deviate from

test readings resulting in a clinically unacceptable test sensor performance. The second

parameter is the computed probability (P ) that reference measurements effectively
lie in the aforementioned tolerance interval. This probability reflects whether the

number of paired glucose measurements is sufficient for drawing statistically strong

conclusions. Although this parameter is important, it is not considered in any other

glucose sensor assessment technique.

3.2.6 Clinical trial procedure

The practical use of the presented procedure is demonstrated with three hypothetical

(theoretical) data sets and one real-life clinical example. In the latter the GlucoDay

system (A. Menarini Diagnostics test sensor, a portable instrument provided with a

micro-pump and a biosensor coupled to a microdialysis system) is validated against

the ABL700 Radiometer Medical glucose analyser (Radiometer, Denmark), which is

labeled as reference sensor [51], accordingly. The features of both sensor devices and

the corresponding data sets are extensively discussed in Chapter 2 (see data set 4 in

2.4.4).

Blood glucose could not be artificially shifted for ethical reasons. Indeed, the critically

ill condition that is specific of this type of patients does not give any freedom to

‘experiment’ [213, 216]. Due to the retrospective calibration, we restricted the pre-

processing phase to the transformation of the near-continuous test data and the discrete-

time reference data into sets of paired glucose measurements.

Both the hypothetical and GlucoDay data sets are only used to illustrate the GLYCEN-

SIT procedure. Moreover, a statistical comparison between two sets of glucose

measurements always depends on the predefined clinical design parameters (α, q,
and hypo- and hyperglycemic cut-off-value). In this work we cannot reject H0 when

p-values are larger than α = 0.05, q varies from 2% to 10%, and blood glucose

values below 80 mg/dl are called hypoglycemic, values above 110 mg/dl hyperglycemic

because of the ICU-origin of the data [213,216].

3.2.7 Clinical examples

Glucose determination in plasma in remote central laboratory facilities of the hospital,

often referred to as the gold standard, is impractical, inefficient and unsafe to

implement TGC. Therefore, the inevitable time delay between sampling and avail-

ability of the blood glucose result for the clinical staff necessitates the use of other

methods to determine the blood glucose level. Most ICUs typically rely on point-of-
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care testing for several laboratory values in the ICU to closely monitor their patients.

For example arterial blood gasses, hemoglobin, lactate, glucose and potassium are

frequently determined on locally available blood gas analysers and other point-of-care

devices. For the measuring of glycemia in our setting, this method has been validated

against the gold standard.

A prospective clinical trial in patients admitted to the ICU and in whom TGC

was applied, is performed to evaluate two commercially available glucose sensor

devices (the Accu-Chek Inform and the HemoCue B-glucose analyser). The ABL700

Radiometer Medical glucose analyser (Radiometer, Denmark) again serves as gold

standard glucose sensor [51]. The data that are considered in this analysis are described

in detail in Chapter 2 (see data set 3 in 2.4.3). Most popular standard evaluation

techniques (EGA and Bland-Altman) as well as the newly developed GLYCENSIT

procedure are used to assess the performance of these sensors devices. The same

clinical design parameters as defined in 3.2.6 are used.

3.3 Results

In this section the GLYCENSIT results of the three hypothetical data sets and the real-

life clinical example are firstly described. This analysis is then followed by a full

assessment of two point-of-care sensor devices in regard of EGA, Bland-Altman, and

GLYCENSIT.

3.3.1 Clinical trial procedure

Figures 3.3 to 3.8 show the results when three hypothetical data sets are submitted to the

GLYCENSIT, the Bland-Altman and the EGA analysis. The first (hypothetical) sen-

sor (Figure 3.3) shows persistently overestimated measurement behaviour (GR − GT

< 0 for most of the errors) compared to the reference signal (phase 1: p ≥ 0.05). In the
second phase the number of measurement errors, with regard to the ISO-criterion, is

evaluated as a function of the tolerance level. For all selected tolerance levels, the null

hypothesis (that the relative number of measurement errors is smaller than the tolerance

level) cannot be rejected (p ≥ 0.05). The overestimated measurement behaviour
returns in the last phase in which the computed tolerance intervals are illustrated. The

shaded area informs the user of possible measurement errors for new test values. It

contains 97.5% of the data (A = 97.5%) and, as expected from phase 2, does hardly
cross the ISO-limits. The computed probability (P ) that 95 new measurements out

of 100 (α = 0.05) lie in the A = 97.5% observed tolerance interval, however, is

only 43.2%. This low percentage indicates that too few paired glucose measurements

(n = 20) are uploaded. Figure 3.4 illustrates the Bland-Altman and EGA analysis for
this (hypothetical) sensor. The limits of agreement (i.e., mean error ±1.96 SD) are
-28.9 mg/dl and 11.3 mg/dl forGR −GT with an average bias (i.e., the mean glycemic

error) of -8.8 mg/dl. The EGA analysis results in 95.0% of the measurements in the

A-zone and 5.0% in the B-zone.
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Figure 3.3: GLYCENSIT analysis of the first (hypothetical) sensor. The top panel

(phase 1) indicates the persistently overestimated measurement behaviour (p ≥ 0.05):
all generated boxplots fall below the GR = GT dashed line. The middle panel

(phase 2) shows that few errors against the ISO-criterion are observed (p ≥ 0.05 for
all selected tolerance levels indicating the sensor is ‘accurate’). The significance level

(α = 0.05) is represented by the dashed line. The # symbol indicates the “frequency
of”. Finally, the bottom panel (phase 3) displays the observed 97.5%-tolerance

intervals (shaded area) meaning that 95 new measurements obtained from the test

sensor out of 100 (α = 0.05) lie in this area with a probability of 43.2%. The size
of these intervals determines possible future sensor deviations. Let us take an example

(illustrated with the arrows). When 170 mg/dl is measured with the test sensor (GT ),

the real (reference) glycemia value (GR) lies between 133 and 180 mg/dl in 95% of the

cases. However, the probability level that the reference observation effectively lies in

this area is only 43.2%. This low probability (due to the small number of data (n = 20)
that are uploaded in this example) indicates the infeasibility to draw any statistically

reliable conclusions. The solid and dashed line illustrate the ISO-criterion limits and

the GT = GR - axis, respectively. The dashed-dotted lines denote the minimum and

maximum deviation that are present in the data (given by points).
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Figure 3.4: Bland-Altman (top panel) and EGA (bottom panel) analysis of the

first (hypothetical) sensor. The mean difference (SD) between GR and GT equals

-8.8 mg/dl (10.3 mg/dl) and the relative number of points in the A-region and B-region

are 95.0% and 5.0%, respectively. Based on these techniques it can be concluded to

accept this (hypothetical) sensor. The number of available data, however, is too small

to draw any conclusion about the performance of this (hypothetical) sensor. This is

indicated by the computed probability level in phase 3 of the GLYCENSIT analysis

(see Figure 3.3).

The second (hypothetical) sensor (Figure 3.5) shows a persistent (relative) un-

derestimated measurement behaviour although this is not statistically proven when

considering the absolute errors (phase 1: p < 0.05). For all selected tolerance levels
in phase 2, the null hypothesis can be rejected (p < 0.05) with a probability of
at least 95% indicating that lots of measurement errors against the ISO-criterion are

present. These results are also visualized in the last phase that presents the computed

tolerance intervals. The number of available paired glucose data is sufficient to rely

on the obtained results: a probability level P = 98.1% is reached. In Figure 3.6

the Bland-Altman and EGA analysis are presented. The obtained limits of agreement

are -9.2 mg/dl and 41.6 mg/dl with 16.2 mg/dl as mean bias. The relative number of

points in the A-region is equal to 88.9% whereas the B-region considers 11.1% of the

available data.
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Figure 3.5: GLYCENSIT analysis of the second (hypothetical) sensor. The top panel

shows underestimated measurement behaviour (all generated boxplots lie above the

GR = GT dashed line). Since the absolute errors in the hyperglycemic range are

larger than in the normo- and hypoglycemic range, no statistical persistency could

be shown (p < 0.05), however. Although many errors against the ISO-criterion are
observed (middle panel, showing the sensor is ‘inaccurate’), the performance of this

sensor may be ‘reliable’ and tolerable (due to the relatively small size of the tolerance

intervals, bottom panel) when considering a conversion factor to compensate for the

underestimated measurement behaviour.
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Figure 3.6: Bland-Altman (top panel) and EGA (bottom panel) analysis of the second

(hypothetical) sensor. The mean difference (SD) between GR and GT is equal to

16.2 mg/dl (12.9 mg/dl) and the relative number of points in the A-region and B-region

are 88.9% and 11.1%, respectively. The obtained standard deviation and the number of

points in the B-region are too large to accept this (hypothetical) sensor. The application

of the GLYCENSIT procedure, however, uses a different approach to extract additional

information from the data, which may lead to acceptance of the sensor (see also

Figure 3.5).

The non-persistent deviations (p < 0.05) of the third (hypothetical) sensor (Figure

3.7) is observed in the first phase (underestimation in hypoglycemic and overestimation

in hyperglycemic range). Few errors against the ISO-criterion are obtained (phase 2:

p ≥ 0.05 for every q) leading to tolerance intervals that are fairly comparable with
the ISO-limits but that also show that both under- and overestimated behaviour can

be expected for new measurements with the test sensor device (phase 3). A high

probability level (P=97.5%) confirms the reliability of the obtained results. Figure
3.8 depicts the performed Bland-Altman and EGA analysis for this sensor. The limits

of agreement are -22.2 mg/dl and 16.6 mg/dl for GR − GT with an average bias of

-2.8 mg/dl. The EGA analysis results in 97.3% of the measurements in the A-zone and

only 2.7% in the B-zone.
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Figure 3.7: GLYCENSIT analysis of the third (hypothetical) sensor. The non-

persistent measurement behaviour is visualized in the top panel (underestimation in

the hypoglycemic range, overestimation in the hyperglycemic range). Consequently,

the use of a conversion factor is infeasible in clinical practice. The sensor performs

well with regard to the ISO-criterion (middle panel): very few errors are made against

this criterion (showing the ‘accuracy’ of the sensor). The implementation of the sensor

depends on the user’s clinical assessment of the size of the tolerance intervals (bottom

panel).
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Figure 3.8: Bland-Altman (top panel) and EGA (bottom panel) analysis of the third

(hypothetical) sensor. The mean difference (SD) between GR and GT is equal to

-2.8 mg/dl (9.9 mg/dl) and the relative number of points in the A-region and B-region

are 97.3% and 2.7%, respectively. The obtained standard deviation and the number of

points in the B-region are small enough to accept the (hypothetical) sensor.

Finally, the GLYCENSIT procedure is applied to the GlucoDay sensor data (Figure

3.9). The medians of the measurement errors are 0.74, 0.028, and -1.3 mg/dl for the

hypo-, normo-, and hyperglycemic range, respectively, leading to persistently deviating

measurement behaviour (phase 1: p ≥ 0.05). A tolerance level of at least 8% is

required for not rejecting the null hypothesis in phase 2 (p = 0.075 and p = 0.45 when
q = 0.08 and q = 0.10, respectively). When smaller tolerance levels are preferred,
the null hypothesis can be rejected (p < 0.05) with a probability of at least 95%
indicating that the test sensor does not suit the predefined performance requirements.

The tolerance intervals are much larger than the ISO-criterion and visualize the under-

as well as the overestimated measurements (phase 3): the shaded area is larger than the

ISO-limits in both directions. The number of available paired glucose data is sufficient

to rely on the obtained results: the computed probability level (P ) equals 98.6%. In
Figure 3.10 the Bland-Altman and EGA analysis are illustrated. The obtained limits

of agreement are -26.5 mg/dl and 24.5 mg/dl for GR − GT with -1.0 mg/dl as mean

bias. The relative number of points in the A-zone and B-zone equal 90.9% and 9.1%,

respectively.
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Figure 3.9: GLYCENSIT analysis of the GlucoDay sensor. The top panel shows the

persistent measurement behaviour as a function of blood glucose (median measurement

errors for the hypo-, normo-, and hyperglycemic range are 0.74, 0.028, and

-1.3 mg/dl, respectively) although both underestimated and overestimated observations

are abundantly present. When less than 8% errors against the ISO-criterion are

permitted, the sensor does not perform efficiently (middle panel). The bottom panel

illustrates the tolerance intervals that are much larger than the ISO-limits in both under-

and overestimation direction. Together with the large min-max deviations this may lead

to no acceptance of the sensor for use in the ICU.
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Figure 3.10: Bland-Altman (top panel) and EGA (bottom panel) analysis of the

GlucoDay sensor device. The mean difference (SD) between the ABL reference sensor

(GR) and the GlucoDay test sensor (GT ) equals -1.0 mg/dl (13.0 mg/dl) and the relative

number of points in the A-region and B-region are 90.9% and 9.1%, respectively. The

large limits of agreement and the high number of measurements in the B-zone may

lead to disapproval of the GlucoDay sensor for use in the ICU.

3.3.2 Clinical examples

The majority of the measurements of Accu-Chek with regard to ABL lie in zone A

(97.6%) when applying the EGA analysis. The other 2.4% of the measurements are

situated in zone B (see Figure 3.11, top panel). When comparing HemoCue with ABL,

86.9% of the measurements are located in zone A and 13.1% in zone B (see Figure

3.11, bottom panel).

The Bland-Altman analysis clearly illustrates the bias and the corresponding limits of

agreement. When comparing the measurements of ABL and Accu-Chek, the bias from

the Accu-Chek sensor equals -6.3 mg/dl and the limits of agreement are 14.0 mg/dl and

-26.5 mg/dl (see Figure 3.12, top panel). For the analysis of the HemoCue device, the

obtained mean glycemic error is -10.9 mg/dl and the computed limits of agreement are

7.6 mg/dl and -29.5 mg/dl (see Figure 3.12, bottom panel).
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In the first step of the GLYCENSIT analysis, the null hypothesis is tested by the

non-parametric one-way ANOVA test (Kruskal-Wallis). This turned 0 as p-value for
ABL versus Accu-Chek and 0.002 for ABL versus HemoCue. The null hypothesis

that the medians of the errors per glycemic group are equal, is rejected (p < 0.05)
with a probability of at least 95% in both cases. Indeed, no persistently deviating

measurement behaviour is obtained for the sensors under study. (Figures 3.13 and 3.14,

top panels). Particularly the use of the Accu-Chek sensor results in both under- and

overestimations of the reference blood glucose value. It must be noted that persistently

overestimated measurement behaviour is approached (but not statistically proven) for

the HemoCue sensor device.

The middle panels of Figures 3.13 and 3.14 illustrate the second phase of the

GLYCENSIT analysis. Here, the computed p-values as a function of the tolerance level
are depicted for both test sensors. In case of Accu-Chek the null-hypothesis, meaning

that the two signals are equal with respect to the ISO criterion, cannot be rejected for

the selected tolerance levels (for q = 2%, 4%, 6%, 8% or 10%: p ≥ 0.05, see Figure
3.13). The use of the HemoCue sensor, however, results in p-values < 0.05 for all
the selected tolerance levels (see Figure 3.14) indicating that the null-hypothesis is

rejected with a probability of at least 95%. The Accu-Chek sensor clearly outperforms

the HemoCue device in terms of ‘accuracy’ (phase 2).

Finally, in the third phase of the GLYCENSIT analysis some tolerance intervals that

indicate possible test sensor deviations for new observations are computed. Each

shaded area (Figures 3.13 and 3.14, bottom panels) contains 97.5% of the specific

data and gives information concerning measurement errors for new observations with

the respective test sensor device that is under study. The probability that 95 new

measurements out of 100 (α = 0.05) effectively lie in these shaded areas is 99.4%.
This probability is related to the number of measurements and is sufficiently high to

rely on the computed tolerance intervals.
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Figure 3.11: The EGA analysis for the measurements of the Accu-Chek test sensor

(GT ) as a function of the ABL reference sensor (GR) is presented in the top panel:

97.6% of the measurements lie in zone A whereas 2.4% lie in zone B. In the bottom

panel the observations of the HemoCue test sensor (GT ) as a function of the ABL

reference sensor (GR) are depicted: 86.9% lie in zone A and 13.1% in zone B.
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Figure 3.12: Bland-Altman analysis for the Accu-Chek (top panel) and the HemoCue

(bottom panel) test sensor. The bias (or mean difference) and the limits of agreement

are shown for both point-of-care devices in the entire range of measured glycemia.

The bias for the Accu-Chek is -6.3 mg/dl and the limits of agreement are 14.0 and

-26.5 mg/dl. The bias for the HemoCue is -10.9 mg/dl and the limits of agreement are

7.6 and -29.5 mg/dl. Again, the reference (ABL) and the test sensor devices (Accu-

Chek / HemoCue) are marked by GR and GT , respectively.
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Figure 3.13: GLYCENSIT analysis for the Accu-Chek sensor. The top panel (phase 1)

indicates the non-persistent measurement behaviour (p = 0 < 0.05) shown by the
presence of both overestimated and underestimated measurement deviations. The

median measurement errors for the hypo-, normo-, and hyperglycemic range are 1.5,

-2, and -9 mg/dl, respectively. The middle panel (phase 2) shows that few errors

against the ISO-criterion are observed (p ≥ 0.05 for all selected tolerance levels).
The significance level (α = 0.05) is represented by the dashed line. Finally, the
bottom panel (phase 3) displays the 97.5%-tolerance intervals (shaded area) meaning

that 95 new measurements obtained from the test sensor out of 100 (α = 0.05) lie in
this area with a probability of 99.4%. The size of these intervals determines possible

future sensor deviations. Let us take an example (illustrated with the arrows). When

180 mg/dl is measured with the test sensor (GT ) (i.e., a new observation), the real

(reference) glycemia value (GR) will lie between 145 and 202 mg/dl in 95% of the

cases. The probability level (P ) that the reference observation effectively lies in this
area is equal to 99.4%. The solid and dashed line illustrate the ISO-criterion limits and

the GT = GR - axis, respectively. The dashed-dotted lines denote the minimum and

maximum deviation that are present in the data (given by points).
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Figure 3.14: GLYCENSIT analysis for the HemoCue sensor. Although

the used Kruskal-Wallis test indicates non-persistent measurement behaviour

(p = 0.0021 < 0.05), the top panel (phase 1) shows that this sensor device approaches
a persistently deviating (overestimated) measurement behaviour. The median

measurement errors for the hypo-, normo-, and hyperglycemic range are -8, -12,

and -10 mg/dl, respectively. Many errors against the ISO-criterion are observed, as

presented in the middle panel (phase 2), since p < 0.05 for all selected tolerance
levels. The size of the 97.5%-tolerance intervals (P = 99.4%) is comparable to that
from the Accu-Chek-sensor (phase 3, bottom panel). When 180 mg/dl is measured

with the test sensor (GT ), the real (reference) glycemia value (GR) will lie between

132 and 193 mg/dl in 95% of the cases. The (persistently) overestimated measurement

behaviour is visualized as well. The use of a general conversion factor to approach

‘real’ blood glucose may be feasible such that expected measurement errors can be

taken into account in the TGC treatment.
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3.4 Discussion

The results that are obtained in the previous section are extensively discussed here for

both the clinical trial procedure (i.e., the three hypothetical data sets and the GlucoDay

observations) and the clinical examples (validation of the Accu-Chek and HemoCue

sensor device). Further, the interpretation of the statistical reliability is explained.

Finally, the presented GLYCENSIT procedure is also implemented as a web-based

assessment tool which is briefly introduced.

3.4.1 Clinical trial procedure

Existing methods used for the evaluation of (discrete-time) blood glucose meters and

(near-continuous) GMS are based on an analytical or a clinical approach, but often

show some weaknesses. Here, we present the GLYCENSIT procedure, which is a

new assessment tool for glucose sensors. The procedure consists of three analyses:

testing possible persistent measurement behaviour as a function of the glycemic range,

testing the number of measurement errors with respect to the ISO-criterion, and finally

computing the tolerance intervals for new test sensor values. The method can be tuned

according to the expert specifications regarding significance level, tolerance level, and

glycemic range cut-off values.

Although the first (hypothetical) sensor performs well with respect to the ISO-

criterion (high accuracy, see phase 2), persistently overestimated measurement be-

haviour (phase 1) may result in potentially dangerous false negatives (e.g., failure to

measure true hypoglycemic events) [196]. Additionally, few uploaded measurements

give a low reliability to the computed tolerance intervals (the probability level

that new measurements effectively lie in these tolerance intervals is only 43.2%,

phase 3) and indicate the necessity for large data sets (ideally spread over the whole

clinically relevant range) to draw statistically reliable conclusions. Therefore, no hard

conclusions can be made for this first (hypothetical) sensor device. Ignoring this low

probability level may lead to acceptance of the sensor which is also suggested by the

Bland-Altman and the EGA analysis.

The number of errors against the ISO-criterion is high (inaccurate sensor, phase 2) for

the second (hypothetical) sensor but this does not necessarily lead to sensor rejection.

Indeed, blood glucose is underestimated over the whole range (phase 1, phase 3), which

may result in false positives. This can be compensated (using a conversion factor)

more safely than overestimated behaviour and may lead to acceptation of the sensor

device under study (since the tolerance interval area may be clinically tolerable). This

example, apart from its statistical framework, shows the merit of the GLYCENSIT

procedure in comparison with previously described techniques among Bland-Altman

and EGA (see Figure 3.6). The obtained range between the limits of agreement (in

the Bland-Altman analysis) is too large to be clinically acceptable (assuming normally

distributed errors). Based on the EGA-analysis, the sensor is rejected, too, since the

relative number of errors in the B-region is more than 5% [54]. Known (but already

debated) techniques may give a restricted view on the results whereas the GLYCENSIT
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procedure presents additional information that may lead to different conclusions.

Although only few errors against the ISO-criterion are observed (phase 2), which leads

to computed tolerance intervals (phase 3) that are comparable to the ISO-limits, the

implementation of the third (hypothetical) sensor in clinical practice may be difficult.

Indeed, the performance of this (hypothetical) sensor is strongly dependent on the

glycemic range (phase 1) and can only be accepted when the computed tolerance

intervals (phase 3) are found to be sufficiently small for the user. The current device

perfectly meets the ‘accuracy’ standards (i.e., few errors against the ISO-criterion)

but may not be ‘reliable’ due to the non-persistent measurement behaviour. Since

the distance between the limits of agreements is restricted and the mean bias is

negligible, this sensor may be accepted when only applying the Bland-Altman analysis.

Analogously, since the majority of the points lie in the A-region of the error grid (only

2.7% of the observations is situated in the B-zone) this sensor would also be accepted

according to EGA.

The GlucoDay data analysis demonstrates the (relative) high number of errors against

the ISO-criterion (phase 2). This explains the magnitude of the (reliable, P = 98.6%)
tolerance intervals, which are much wider than the ISO-limits for the full glycemic

range (phase 3). Although the general measurement deviations are persistent (phase 1),

some measurement errors are unacceptably large (phase 1) leading to broad minimum

and maximum deviations (phase 3). In view of the preferred design parameters (see

above) the GlucoDay sensor may not be efficient for blood glucose control in the

ICU. A similar conclusion can be made when considering the Bland-Altman and

EGA analysis. The first approach reveals a too large distance between the limits of

agreement in spite of the negligible average bias. The second approach illustrates

that 9.1% (> 5%) of the measurements fall in the B-zone which is too much to be
clinically acceptable [54]. It must be stressed that these results are only related to

the performance of the GlucoDay sensor applied to critically ill patients (as possibly

different results can be obtained when testing the sensor in patients with diabetes).

From the reasoning above it is clear that all GLYCENSIT phases must be considered

next to each other to correctly interpret the results. The GLYCENSIT procedure is

a guideline for the user who can tune the analysis (depending on the application and

type of patients) according to the preferred design parameters (i.e., significance level,

tolerance level, and glycemic range cut-off values). The procedure generates a broader

view on the data (compared to existing methods) as it approaches the data from three

different perspectives. Moreover, the analysis is founded on (non-parametric) statistical

techniques that allow the user to draw statistically reliable conclusions. Accordingly,

the GLYCENSIT procedure may be an alternative for or a supplemental tool to existing

evaluation techniques to assess the performance of glucose sensors.
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3.4.2 Clinical examples

The Accu-Chek sensor device can be labeled as ‘clinically acceptable’ according to

the EGA guidelines as more than 95% of the observations fall in the A-region and no

measurements are observed in zone C, D, and E. Since the relative number of errors in

the B-region is more than 5% for the HemoCue sensor, this sensor device could not be

approved when following the EGA guidelines (Figure 3.11).

The computed bias and limits of agreement as determined in the Bland-Altman analysis

for both sensors under study are fairly wide and therefore questionable for safe clinical

use in the ICU. Let us take an example. A blood glucose level of 80 mg/dl obtained

by either of these point-of-care methods could in reality be a hypoglycemic event (e.g.,

55 mg/dl, see Figure 3.12). Three remarks must be stressed here:

• Firstly, the Bland-Altman analysis is characterized by plotting the difference
against the mean of the two measurements. It would be expected to plot the

difference against the reference value. However, doing so may cause a statistical

artefact [15, 79]. In the example mentioned above this 80 mg/dl value is the

average of the reference and test sensor. Thus, the computed limits of agreement

(i.e., mean error ± 1.96 SD) are related to the average of the measurements and
not to either value separately.

• Secondly, the evaluation of a Bland-Altman analysis particularly relies on the
size of the limits of agreement in combination with the mean error (bias). The

interchange between sensors with only one conversion factor is possible when

the limits of agreement are sufficiently narrow. Here, the limits of agreement are

found to be too wide to be clinically acceptable for both the Accu-Chek and the

HemoCue device.

• Thirdly, the Bland-Altman and EGA analysis only retrospectively evaluate the
observed data just like all other standard assessment tools do. The newly

proposed GLYCENSIT procedure, however, computes tolerance intervals that

indicate the range in which the reference value would lie when a new test

measurement is presented (see 3.2.5).

The overall HemoCue performance is poor (bias = -10.9 mg/dl) and shows a trend to

systematically overestimate the blood glucose. Although the bias with Accu-Chek is

slightly lower, the limits of agreement are wider (than for HemoCue) with deviations

that are glycemia dependent: underestimations appear in the hypoglycemic range,

whereas overestimations are observed in the hyperglycemic range (Figure 3.12).

A more detailed and statistically sound evaluation of the two sensor devices under

study is found using the GLYCENSIT analysis. Both sensors show non-persistent

measurement behaviour as presented in the first phase (Figures 3.13 and 3.14, top

panel). These non-persistent deviations are more pronounced with the Accu-Chek

sensor: the hyperglycemic range is typically characterized by overestimation behaviour

whereas the hypoglycemic range is rather typified by underestimation behaviour.
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Although no statistically persistent deviations were found for the HemoCue sensor

(p < 0.05), it is illustrated in the top panel of Figure 3.14 that persistent overestimation
is approached. Persistent measurement behaviour is preferred above non-persistent

deviations since it allows the interchange between sensors with only one conversion

factor. However, it must be noticed that persistent underestimation is more safe

than persistent overestimation as the latter could lead to potentially dangerous false

negatives (e.g., failure to measure true hypoglycemic events) [196].

The second phase of the GLYCENSIT procedure reveals an acceptable performance

of the Accu-Chek sensor with respect to the number of measurement errors for the

selected tolerance levels (p ≥ 0.05 for each tolerance level, middle panel of Figure
3.13). This is in contrast with the HemoCue sensor, which failed at all tested tolerance

levels (p < 0.05 for each tolerance level, middle panel of Figure 3.14). The relative
number of errors made against the ISO-criterion for this last sensor type is larger than

the predefined tolerance levels. In other words, the measurement behaviour of the

Hemocue device is more persistent (typically an overestimation of the reference sensor)

compared with Accu-Chek, but many errors against the ISO-criterion are observed.

The measurement behaviour of the Accu-Chek sensor is much more dependent on the

glycemic range, but only few errors against the ISO-criterion are made.

Finally, the last phase of the GLYCENSIT analysis informs the clinician about ‘future’

measurement deviations. The tolerance intervals for the Accu-Chek and the HemoCue

sensor are comparable in terms of size. An important difference, however, is their

relation to the ISO-limits as could be expected from the second phase. On the one

hand, the Accu-Chek tolerance intervals largely lie within the ISO-limits. The range

in which the value, that would have been obtained with the reference device, lies when

a new test measurement is presented, is illustrated both under and above the dashed

line (that represents the GT = GR - axis) in the bottom panel (Figure 3.13). This

indicates that both under- and overestimations can be expected. On the other hand,

the HemoCue tolerance intervals mainly cross the upper ISO-limits (with only a slight

deviation from the dashed line in the other direction). In other words, the observations

of the HemoCue device are more persistently deviating as also shown in the first phase

and are predominantly overestimations with regard to the reference sensor whereas the

deviations of Accu-Chek are substantially more non-persistent being both over- and

underestimations depending on the glycemic range.

Based on these results, none of the tested point-of-care sensors showed good reliability.

At first sight, the Accu-Chek sensor seems more accurate but is unpredictable regarding

the direction of the measurement error. The HemoCue sensor is somewhat less

accurate but the measurement error is more persistent, in particular overestimating

the gold standard blood glucose values. While awaiting more reliable point-of-

care devices, clinicians should decide what is preferable when choosing such a

device: a less accurate sensor but with a more predictable and persistently deviating

measurement behaviour or a more accurate sensor with an unpredictable and non-

persistent measurement behaviour.
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The tolerance intervals that are presented in the bottom panels of Figures 3.13 and 3.14

may further facilitate the interpretation of the GLYCENSIT analysis for the clinician.

The arrows illustrate a clinical example: if 180 mg/dl would be measured with the

Accu-Chek sensor (i.e., a new observation), the real (reference) blood glucose would

lie between 145 and 202 mg/dl (which expresses the A = 97.5% tolerance interval)

in 95% of the cases. Alternatively, the same observed value with the HemoCue device

would result in a real (reference) glycemia value between 132 and 193 mg/dl in 95%

of the cases. This exercise can be performed for any possible new measurement.

Furthermore, it is important to note that the computed probability level (P = 99.4%)
is sufficiently high for relying on these tolerance intervals. This means that the number

of paired glucose observations was adequate (with regard to the selected significance

level α = 0.05) to draw statistically strong conclusions. Although this probability level
is only related to the reliability of the tolerance intervals (phase 3 of the GLYCENSIT

analysis), it is reasonable to suggest that this probability level is also a good approach

for describing the statistical reliability of the first and second phase of the GLYCENSIT

analysis. Moreover, the currently standard evaluation tools (e.g., EGA, Bland-Altman,

etc.) do not compute any probability level concerning the reliability of the performed

test.

3.4.3 Statistical reliability

It is clear that the user should have a clear idea about the number of samples that

is required for reliably performing any statistical test. Alternatively, the statistical

relevance of the performed test is made clear when comparing the number of available

data with the number of measurements that would have been necessary for drawing

statistically strong conclusions. In case of parametric tests (that are only valid

for a standard family of distributions), the power of the statistical test can be

computed. This power is the probability of rejecting the null hypothesis H0 when

the alternative hypothesisH1 is true and depends on the significance level, the number

of observations, and the ‘effect size’6 [92,134]. The calculation of the power for robust

statistics or non-standard non-parametric statistics (which are the fundamentals of the

GLYCENSIT procedure) are not addressed at a practical level. The probability level,

that is computed in the last phase of the GLYCENSIT analysis and that also depends

on the significance level and the number of uploaded observations, however, behaves

as an alternative for power calculations. Accordingly, the number of samples that is

required for drawing statistically strong conclusions can be determined based on the

desired probability level and the selected significance degree.

Figures 3.15 and 3.16 illustrate the probability level as a function of the selected

significance level and the number of uploaded paired glucose measurements. It

is shown that the probability level increases as the number of paired observations

increases and as the significance level increases. However, it is obvious that a large

6 The effect size is a parameter that reflects the extent to which the null hypothesisH0 is false [92].
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significance level (e.g., α = 0.1) also corresponds to a weaker ‘statistical level’ (i.e.,
more easy to get) explaining the higher probability levels that are obtained in that case.

For this reason a significance level α = 0.05 is mostly preferred in statistical tests. It
is recommended that the probability level is at least 90% (or preferably higher).

The number of uploaded paired glucose observations that is required for adequately

performing the GLYCENSIT procedure can be easily determined with Figure 3.16.

When a significance level, α = 0.05, is selected and a probability level P = 95%
is wished, at least 225 paired observations should be submitted to the GLYCENSIT

analysis for drawing statistically reliable conclusions. This number varies as a function

of α and P and is only related to phase 3 of the analysis. An important feature is that

this computation is independent of the data set under study giving the possibility to

compute this required number of samples in advance.
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Figure 3.15: Visualization of the computed probability levels as a function of the

significance level α for a few selected numbers of paired observations n.

The higher the number of measurements within a set of paired glucose values, the more

powerful the assessment tool will be. It must be noticed that a GLYCENSIT analysis

always depends on the design parameters that are defined by the (clinical) user or that

are specific of the application (e.g., patients with diabetes, critically ill patients). As

for any statistical test, we advise to consider as many paired glucose measurements per
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Figure 3.16: Visualization of the computed probability levels as a function of the

number of paired observations n for a few selected significance levels α.

patient as possible (to cover the intra-patient variability), ideally spread over the full

glycemic range, and as many patients as possible (to cover the inter-patient variability)

although we acknowledge that clinical and financial restrictions are frequently present

in a clinical environment.

3.4.4 GLYCENSIT website

The proposed GLYCENSIT procedure is implemented as a web-based assessment tool,

which is available at http://www.esat.kuleuven.be/GLYCENSIT (free of charge).

Users can upload sets of paired glucose values and define the preferred significance

level and the hypoglycemic, normoglycemic, and hyperglycemic range. Different

tolerance levels (varying from 2% to 10%) are automatically selected in phase 2 to

give a broad overview of the sensor performance in terms of accuracy. Finally, users

are notified by e-mail when the analysis, running on the host server, has finished. The

analysis results page (that is only accessible for the specific user) gives an overview of

the full GLYCENSIT analysis. It guides the clinician for making an appropriate and

precise evaluation of the glucose sensor under study.
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3.5 Conclusions

A statistical assessment tool for evaluating the reliability of blood glucose meters

and GMS was developed: the GLYCENSIT procedure. This procedure aimed to

statistically guide the clinician in appropriately evaluating glucose sensors. The

GLYCENSIT analysis comprised three phases in which the persistency of the measure-

ment behaviour, the number of measurement errors (sensor accuracy), and the

magnitude of newmeasurement errors (tolerance intervals) were successively analysed.

Additionally, the procedure provided a probability measure for the tolerance intervals

based on the number of available samples and the selected significance level. This

probability level was indicative of the statistical evidence for the data under study. It

was indicated how the method could be tuned according to the expert specifications

regarding significance level, tolerance level, and glycemic range cut-off values. The

chapter was concluded with a full evaluation analysis of two point-of-care sensor

devices and a presentation of the GLYCENSIT website. The GLYCENSIT procedure

may be an alternative or supplemental tool to existing evaluation techniques to assess

the performance of glucose sensors. The results obtained in this chapter are further

described in [225,232].



84 General Assessment of Glucose Sensors



Chapter 4

General Assessment of

Glycemia Control Systems

As the normalization of blood glucose is becoming standard practice

for critically ill patients, new (semi-automated) ‘blood glucose control’

algorithms (or ‘insulin titration’ algorithms) are under development but

these algorithms require a stringent validation before they can replace

the currently used protocols. In this chapter a new approach, labeled

as the ‘Glycemic Penalty Index’ (GPI), for appropriately assessing the

adequacy of different control algorithms is proposed. The performance

of this new evaluation tool is compared with the currently standard

assessment methods, on an individual as well as a population basis.

The impact of four selected parameters (the average blood glucose

sampling frequency, the duration of algorithm application, the severity

of disease, and the type of illness) on the performance of an insulin

titration algorithm is further determined by multiple regression analysis.

The GPI is an alternative method for evaluating the performance of blood

glucose control algorithms. The blood glucose sampling frequency and

the duration of algorithm application should be similar when comparing

algorithms. In Figure 4.1 the focus of this chapter is illustrated.

4.1 Introduction

Blood glucose control, aiming at normoglycemia, is now attempted in ICUs worldwide.

This is usually performed by nurses or physicians who are guided by ‘manual’

guidelines or algorithms [25, 81, 120, 197, 215]. These algorithms are developed with

the purpose of determining the insulin dose that is required to obtain normoglycemia

based on intermittent blood glucose readings. Computer-based protocols (as presented

in [35,38,40,41,89,94,97,138,148,166,224,234,243]) have the potential to facilitate

and improve glycemic control and to reduce the workload of the medical staff.

85
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Figure 4.1: Simplified presentation of the (semi-)automated control system. This

chapter discusses an alternative method (GPI) for evaluating the performance of blood

glucose control algorithms and the weight of four selected parameters on GPI.

However, these ‘new’ protocols require a stringent validation before they can replace

the currently existing ‘nurse-driven’ insulin protocols.

Three types of methods exist for evaluating the adequacy of insulin titration algorithms

or glycemia control systems. All of them, however, show weaknesses that may

lead to erroneous conclusions. The first method simply computes the average of all

glycemia readings. In spite of its popularity, it must be stressed that normoglycemia

can be falsely assumed even in the presence of severely abnormal blood glucose

values. Indeed, hypoglycemic and hyperglycemic events can artificially lower or

raise, respectively, the calculated average and can even balance each other, leading

to an apparently ‘normal’ average blood glucose. Consider a theoretical example of a

blood glucose profile that follows a sinusoid curve around the target line of 95 mg/dl.

Independent of the magnitude of the hypoglycemic and the hyperglycemic events,

the average blood glucose equals 95 mg/dl. Although this computed average would

suggest a well controlled blood glucose profile, it is clear that the presence of severe

hypoglycemic and hyperglycemic episodes indicate that blood glucose was poorly

controlled in reality.
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A second method comprises single measurements; for example the blood glucose

reading at a fixed time of day, the minimum/maximum blood glucose values, and the

time needed to reach the target blood glucose. Alternative single measurements count

the number of hypoglycemic or hyperglycemic events. Although such measurements

are useful, they do not capture the blood glucose dynamics.

Recently, the HyperGlycemic Index (HGI) was presented as a third (more advanced)

tool to assess glucose control (in the ICU) with respect to the hyperglycemic events

[233]. The HGI is defined as the area under the glucose curve above 6.0 mmol/l

(108 mg/dl) divided by the length of ICU stay. Two conditions to be satisfied

before applying the HGI were proposed [209]. Firstly, the number of blood glucose

measurements should be sufficiently high, ideally a near-continuous glucose read-out.

Secondly, the considered sampling frequency should be comparable in both patient

groups when comparing the adequacy of two insulin titration algorithms. Particularly

the first condition is extremely important as the area under the glucose curve is

calculated in this method. It is important to note that area-under-the-curve methods

(like HGI) currently rely on the assumed (linear) relation between intermittent blood

glucose readings since no reliable and accurate near-continuous glucose sensor is

presently available [38, 94, 99]. Another critical point of this technique is that outliers

can potentially warp the obtained results due to the possible presence of extreme

(hyperglycemic) observations that may have an impact on the computed area-under-

the-curve. This is an important feature when realizing that sensor accuracy (and

reliability) typically decrease as the blood glucose level increases [44, 52, 75]. It is

clear that the presence of outliers also affects the computed average blood glucose

values (see first method). Finally, HGI only transforms the hyperglycemic (and not the

hypoglycemic) glucose dynamics into a number. Of course, the design of an alternative

hypoglycemic index (as already suggested in [140]) would overcome this last aspect.

The aim of the study presented in this chapter is to design a tool for adequately

comparing blood glucose control algorithms. In the first part of the study, a grading

system that scores normal, hypoglycemic, and hyperglycemic readings is developed:

the Glycemic Penalty Index (GPI). In the second part of the study, the performance

of GPI is compared (on an individual as well as a population basis) with the current

standard evaluation methods (average morning blood glucose, mean of all blood

glucose readings, and HGI), using data from a selected set of patients. In the third part

of the study, the importance or theweight of four clinically selected parameters (blood

glucose sampling frequency, duration of algorithm application, severity of disease, and

type of illness) on GPI is investigated.

4.2 Research design and Methods

4.2.1 Mathematical computation of Glycemic Penalty Index (GPI)

The GPI is defined as a tool that scores blood glucose readings in order to evaluate

the overall blood glucose dynamics obtained in the considered patient by applying a
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specific ICU insulin titration algorithm. The computation of the GPI uses a penalty

strategy that is based on clinical ‘expert’ knowledge. The glycemic target range in the

ICU is defined as 80-110 mg/dl [213, 216] (with a penalty value for all blood glucose

values lying in this range, therefore set at 0). Hyperglycemic and hypoglycemic events

are amplified (in terms of the assigned penalties) in relation to the magnitude of their

deviation from the target range. Table 4.1 gives an overview of the glycemic threshold

values that are generally accepted for use in the ICU. Each glycemic range is associated

with a penalty ρ leading to a staircase ‘expert’ penalty function when considering the
full glycemic range (see also Figure 4.2, dashed line).

Table 4.1: Threshold values and penalty values for the evaluation of glycemia control

in the ICU. The blood glucose value that is measured at time t is represented by Gt.

Range

No

Glycemic range

(mg/dl)

Clinical description Penalty

(ρ)
Reference

(1) Gt < 40 Hypoglycemic alarm 3 [210]

(2) 40 ≤ Gt < 60 Hypoglycemia 2 [210]

(3) 60 ≤ Gt < 80 Slight hypoglycemia 1 [210]

(4) 80 ≤ Gt ≤ 110 Normoglycemia 0 [213,216]

(5) 110 < Gt ≤ 150 Slight hyperglycemia 1 [214]

(6) 150 < Gt ≤ 200 Hyperglycemia 2 [214]

(7) 200 < Gt Hyperglycemic alarm 3 [216]

The staircase function is then smoothed in order to avoid abrupt changes in the

penalty function. However, the clinically accepted normoglycemic target range, the

hypoglycemic alarm level (i.e., blood glucose values below 40 mg/dl [210]), and the

hyperglycemic alarm level (i.e., blood glucose values above 200 mg/dl [216]) are

respected in the design of the more smoothed function. This gives the advantage

that penalties are gradually increasing as a function of the increasing deviation from

the target range. Accordingly, blood glucose measurement errors caused by sensor

inaccuracies and methodology inaccuracies due to sampling handling only have a

limited impact on the overall assessment of a blood glucose algorithm.

The smooth penalty function is subsequently optimized by designing a polynomial

function in the blood glucose ranges 20-79 mg/dl and 111-250 mg/dl. The squared

differences between the staircase and the more smoothed function are minimized by

applying Ordinary Least Squares (OLS) [141]. Given a sample of NTotal glycemia

observationsG = (G1, . . . , GNTotal
) and a corresponding set ofNTotal assigned penalties

ρ = (ρ1, . . . , ρNTotal
). The symbol that represents the number of blood glucose

measurements in the full glycemic range (that are available for the considered patient)

is NTotal. Next, each penalty can be explained as follows:

ρt = f(Gt) + et, (4.1)

with t = 1, . . . , NTotal and where et denotes a stochastic error between the ‘expert’

penalty ρt and the smoothed penalty f(Gt) at time instant t. The function f can be
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Figure 4.2: Each blood glucose observation Gt (measured at time t) corresponds to
a penalty. The dashed line represents the staircase penalty index function (here, the

penalty is denoted as ρ). For reasons explained in the text, this staircase function is
transformed into a more smoothed penalty index function, which is illustrated with

the solid line. The penalties are symbolized by β, γ, and δ for the low, normal,
and high blood glucose measurements, respectively. The ‘clinically acceptable’ cut-

off GPI equals 23 and corresponds to a ‘clinically acceptable’ blood glucose range of

74-120 mg/dl. The target normoglycemic range, however, remains 80-110 mg/dl with

a corresponding penalty value equal to 0.

presented as follows:

f = a(80 − G)b for the blood glucose range 20-79 mg/dl,

f = a(G − 110)b for the blood glucose range 111-250 mg/dl.

The following optimization problem gives the estimated coefficients â and b̂:

(â b̂)T = min
a,b∈R

NTotal
∑

t=1

(ρt − f(a, b, Gt))
2. (4.2)

The penalty index corresponding to the normoglycemic range (80-110 mg/dl) is set at

0. Blood glucose values lower than 20 mg/dl and higher than 250 mg/dl are assigned

a maximum value to avoid that outliers would distort the obtained GPI (as can be the

case with currently used evaluation methods, see above).
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4.2.2 Comparison of GPI with currently used evaluation methods

The average morning blood glucose, the average blood glucose (i.e., the mean of all

blood glucose readings), the HGI, and the GPI are computed for each patient in the

study set. Though the glycemic target range is 80-110 mg/dl, we define 120 mg/dl as

‘clinically acceptable’ upper limit taking into account possible sensor inaccuracies and

methodology inaccuracies due to sampling handling [84,119,178,228,230]. Therefore,

the cut-off values for evaluating the performance of the blood glucose algorithm are

arbitrarily set as follows. Average morning blood glucose readings below 120 mg/dl,

average blood glucose values below 120 mg/dl, and HGIs below 12 mg/dl (i.e., an

average hyperglycemic value below 108+12 = 120 mg/dl) are labeled as ‘clinically

acceptable’. The cut-off GPI that explains whether the insulin titration algorithm is

acceptable or not is determined by entering 120 mg/dl, as cut-off blood glucose, to the

developed smooth penalty function. Next, the performance of the existing standard

evaluation methods and the GPI are compared both on individual and population base.

4.2.3 Study procedure and Patient population

Two different data sets, obtained from patients who had been admitted to the surgical

ICU-division of the University Hospital K.U.Leuven and who had been treated by the

same nursing team but for whom a different blood glucose sampling frequency was

used, were assembled. Whole-blood glucose in undiluted arterial blood was measured

by means of the same glucose analyser (ABL700 Radiometer Medical, Copenhagen) in

both patient groups. The first group of patients comprised 41 patients (patient group 1)

and is further described in detail in Chapter 2 (see data set 1 in 2.4.1). The blood

glucose sampling frequency and insulin titration guidelines (as described in [215]) were

identical for all patients. The second group of patients comprised 52 patients (patient

group 2) with variable demographics and duration of stay in the ICU, of whom only

the first two days were considered, during which the sampling frequency was set at

once every hour. The patients of group 2 originate from data sets 2 and 3 that are also

depicted in Chapter 2 (see data set 2 in 2.4.2 and data set 3 in 2.4.3). The titration

was done by the same nursing staff who followed the same guidelines as used for

patient group 1. Except for the different blood glucose sampling frequency and the

duration of algorithm application, both patient groups varied for type of illness and

the APACHE II score. The average (± SD) APACHE II score was higher in group 2

(11 ± 6 for group 1 versus 16 ± 4 for group 2). The differences between the patient
groups allowed to analyse the influence (weight) of the four selected clinically relevant

parameters (see 4.2.4) on GPI in an appropriate way.

4.2.4 Definition of parameters

Four different parameters are selected based on their clinically expected influence on

GPI. The first parameter is the average blood glucose sampling frequency (f ) which
is the average number of blood glucose readings (per time unit) that were available and

used by the insulin titration algorithm. The conversion to time dimension is realized by

taking the inverse of the frequency (e.g., f = 0.5 hr−1 corresponds to a time interval
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of 2 hours). The second parameter is the duration of algorithm application (D)
which is the time period that the control algorithm was effectively used for a given

patient. The next parameter is the severity of disease (A) scored by the APACHE II
score, still the most reported and used in the ICU and, therefore, selected for this study

although more recent scoring systems may perform better at grading severity of illness.

The APACHE II score of the first 24 hours after admission to the ICU was calculated

for each patient using parameters of acute physiology and chronic healthcare. The

final parameter under study is the type of illness. As an example, eight reasons for

admission to the ICU are considered in this analysis: cardiac surgery (type 1), multiple

trauma or severe burns (type 2), neurologic disease, cerebral trauma or complicated

brain surgery (type 3), complicated lung or esophageal thoracic surgery, respiratory

insufficiency, or both (type 4), complicated abdominal surgery or peritonitis (type 5),

transplantation (type 6), complicated vascular surgery (type 7), and others (type 8).

4.2.5 Statistics

The Kruskal-Wallis test is used for comparing the medians of two or more groups of

data. Depending on the distribution of the residuals, general and generalized linear

models are built. In the general linear model, the Shapiro-Wilk test is applied for

testing the normality of the residuals. The determination of the significance (weight)

of the specific parameter on GPI (i.e., ‘input selection’ for the model) is based on

F -tests for the general linear model and the likelihood ratio Chi-Square statistics
for the generalized linear model. For the last type of model, Wald statistics are

used. Pearson’s correlation coefficients (R) are calculated for quantifying the relation
between continuous variables. In all applied tests, p values < 0.05 are considered to
be significant.

4.3 Results

4.3.1 Mathematical computation of GPI

The clinically defined staircase penalty function is transformed to a more smoothed

penalty function. The obtained function is mathematically formulated as follows:

For time step t = 1 to NTotal,

Gt < 20 mg/dl : βi = 100,

20 mg/dl ≤ Gt < 80 mg/dl : βi = 7.4680(80 − Gt)
0.6337,

80 mg/dl ≤ Gt ≤ 110 mg/dl : γj = 0,

110 mg/dl < Gt ≤ 250 mg/dl : δk = 6.1767(Gt − 110)0.5635,

250 mg/dl < Gt : δk = 100,

where βi is the penalty index for a glucose reading Gt of the hypoglycemic range (i.e.,

Gt < 80 mg/dl), γj for the normoglycemic range (i.e., 80 mg/dl ≤ Gt ≤ 110 mg/dl),
and δk for the hyperglycemic range (i.e., Gt > 110 mg/dl). The indices i, j, and k
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are used to count the number of hypoglycemic, normoglycemic, and hyperglycemic

events, respectively. This more smoothed function is illustrated in Figure 4.2 (solid

line).

All blood glucose values from a patient correspond to specific penalty values as directly

follows from the smoothed function. Next, the GPI is calculated for each patient:

GPI =

∑NHypo

i=1 βi +
∑NHyper

k=1 δk

NTotal

, (4.3)

where NHypo is the symbol for the number of blood glucose measurements in the

hypoglycemic range, andNHyper for the hyperglycemic range. The relative contribution

of the hypoglycemic values to GPI (denoted as CHypo) is determined as follows:

CHypo =

∑NHypo

i=1 βi
∑NHypo

i=1 βi +
∑NHyper

k=1 δk

100%. (4.4)

Analogously, the relative contribution of the hyperglycemic values to GPI (denoted as

CHyper) is computed as follows:

CHyper =

∑NHyper

k=1 δk
∑NHypo

i=1 βi +
∑NHyper

k=1 δk

100%. (4.5)

4.3.2 Comparison of GPI with currently used methods

The ‘clinically acceptable’ upper limit blood glucose (120 mg/dl) is entered in the

above developed smoothed penalty function giving 23 as ‘clinically acceptable’ cut-off

GPI. Next, the inverse smoothed penalty function is used to compute the lower limit

blood glucose that corresponds to GPI = 23 (see also Figure 4.2). The ‘clinically

acceptable’ blood glucose range is found to be 74-120 mg/dl but the glycemic target

range remains 80-110 mg/dl. In other words, a computed GPI below 23 allows to

conclude that the insulin titration algorithmwas able to control blood glucose according

to the clinical requirements. Ideally, however, all blood glucose readings should fall

within the 80-110 mg/dl zone leading to a GPI equal to 0.

Table 4.2 gives a detailed overview of the results of the evaluation methods (average

morning blood glucose, average blood glucose, HGI, GPI, and the relative contribution

of the low (CHypo) and high (CHyper) blood glucose observations to the computed
GPI) that are applied to patient group 1. Figures 4.3 and 4.4 further summarize the

performance differences between the evaluation methods applied to the individual

patients. The correlation coefficients for the already existing measures with respect

to GPI are depicted in each respective panel. Finally, Figure 4.5 illustrates the blood

glucose profile of patient no. 19 (top panel, no misleading effect of standard assessment

methods), whose blood glucose was tightly controlled, and patient no. 23 (bottom

panel, assessment misled by average (morning) blood glucose) with poor blood glucose

control (see also Table 4.2 for exactly computed measures).
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Figure 4.3: Standard evaluation techniques versus GPI for patient group 2 and 1 (but

considering only the data of the first 48 hours in the latter. The results of the standard

evaluation methods are plotted against the results of the new proposed assessment tool

(GPI). The top panel shows the average morning blood glucose readings as a function

of GPI. The middle panel represents the average blood glucose values versus the GPI

values. Finally, the bottom panel illustrates the computed HGI values as a function of

GPI. The shaded area contains those patients whose blood glucose profile is evaluated

differently: ‘clinically acceptable’ for the standard measures, ‘clinically unacceptable’

for GPI. The stars denote the patients from group 1 whereas the diamonds represent the

patients from group 2. The correlation coefficients (R) for the existing measures with
respect to GPI are depicted in the respective panels.

In most studies, however, the blood glucose control algorithm is evaluated using the

patient population rather than on individual patients [97, 148, 166, 213, 216]. The

population results for patient group 1 are also mentioned in Table 4.2. The most

appropriate way to present the population HGI and GPI values is the calculation of

the median and 25-75% IQ range as these data are not normally distributed.



94 General Assessment of Glycemia Control Systems

Table 4.2: Evaluation of blood glucose control by computing the average morning

blood glucose, the average blood glucose, the HGI, and the GPI for patient group 1.

Patient No. Average morn-

ing blood glu-

cose (mg/dl)

Average blood

glucose (mg/dl)

HGI

(mg/dl)

GPI
(CHypo (%)-CHyper (%))

1 161 143 39 49 (16.2 - 83.8)

2 129 123 17 27 (4.0 - 96.0)

3 124 141 28 42 (9.6 - 90.4)

4 165 131 41 45 (23.0 - 77.0)

5 97 101 6 20 (34.7 - 65.3)

6 77 105 9 22 (36.6 - 63.4)

7 104 115 9 18 (4.2 - 95.8)

8 129 127 27 35 (18.4 - 81.6)

9 93 132 26 37 (29.5 - 70.5)

10 109 106 8 16 (23.5 - 76.5)

11 103 100 4 27 (49.8 - 50.2)

12 97 117 15 29 (21.4 - 78.6)

13 100 101 4 10 (31.2 - 68.8)

14 103 113 9 18 (11.5 - 88.5)

15 98 98 4 13 (47.5 - 52.5)

16 111 114 18 28 (27.5 - 72.5)

17 101 101 6 15 (40.0 - 60.0)

18 104 105 4 7 (1.7 - 98.3)

19 97 99 1 5 (39.0 - 61.0)

20 102 99 3 9 (25.7 - 74.3)

21 102 107 4 12 (16.2 - 83.8)

22 126 115 10 17 (11.9 - 88.1)

23 60 101 21 56 (59.7 - 40.3)

24 102 135 19 23 (0 - 100)

25 101 107 7 9 (10.3 - 89.7)

26 100 106 8 19 (29.7 - 70.3)

27 112 107 6 14 (27.8 - 72.2)

28 104 111 10 15 (1.3 - 98.7)

29 105 110 7 10 (0 - 100)

30 120 177 62 61 (5.2 - 94.8)

31 110 96 6 23 (57.1 - 42.9)

32 99 102 5 11 (18.3 - 81.7)

33 120 119 14 21 (12.1 - 87.9)

34 96 96 2 9 (51.2 - 48.8)

35 94 97 3 12 (48.0 - 52.0)

36 157 194 74 55 (19.5 - 80.5)

37 94 97 4 13 (49.1 - 50.9)

38 106 102 2 4 (10.6 - 89.4)

39 104 104 7 13 (24.2 - 75.8)

40 112 115 8 15 (6.9 - 93.1)

41 119 109 9 18 (18.0 - 82.0)

mean (SD) 108 (20) 114 (21) 14 (16) 22 (14)

median 104 [98 - 112] 107 [101 - 116] 8 [4 - 17] 18 [12 - 27]

[25-75% IQ range] CHypo : 21.4 [10.3-34.7]
CHyper : 78.6 [63.4-89.4]
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Figure 4.4: Standard evaluation techniques versus GPI for patient group 1 (considering

the full dataset). The blood glucose profiles of the patients of group 1 are evaluated

by applying the same standard techniques as mentioned in Figure 4.3 and are again

presented as a function of GPI. The patients that belong to the shaded area got a

different algorithm evaluation dependent on the method that was used (respective

‘standard’ method versus GPI). The shaded area contains those patients whose

blood glucose profile is evaluated differently: ‘clinically acceptable’ for the standard

measures, ‘clinically unacceptable’ for GPI.
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Figure 4.5: The measured blood glucose readings (ABL700 Radiometer Medical) of

patient no. 19 (top panel) and 23 (bottom panel) from group 1 are represented by stars.

These blood glucose profile examples denote TGC for patient no. 19 but rather poor

glycemic control for patient no. 23. It is important to note that different time scales

are used as patient no. 23 stayed in the ICU for only a short time period. Further,

the obtained blood glucose measurements are linearly interpolated. The normal blood

glucose range (target range) is indicated by the shaded area (80-110 mg/dl). The HGI

is the area under the glucose curve above 6 mmol/l (108 mg/dl, as illustrated with

the dashed line [233]). The morning blood glucose values are indicated by the dotted

arrows. Table 4.2 shows all computed measures in detail. Only the advanced methods

(HGI and GPI) indicate the poorly controlled blood glucose profile for patient no. 23).

4.3.3 Weight determination for the selected parameters

The impact of the variables under study on GPI for the patients belonging to patient

group 2 and 1 (but considering only the data of the first 48 hours in the latter) is

illustrated in Figure 4.6. As the duration of algorithm application was set at 48 hours,

this variable is not included in this analysis. The p-values of the null hypothesis that the
GPI medians per group are equal are noted in each respective panel (only significant

inequality for the average blood glucose sampling frequency is observed). Multiple

regression analysis on these data reveals that the average sampling frequency is the only

parameter that significantly (p = 0.0051) impacts the assessment of insulin titration
algorithms: an inversely proportional effect is observed.
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Figure 4.7 illustrates the independent impact of all four variables under study on GPI

for patient group 1 (considering all the available data of this group). The obtained

p-values of the null hypothesis that the GPI medians per group are equal are again
noted in the respective panels (significant inequality for the average blood glucose

sampling frequency and duration of algorithm application). Multiple regression

analysis returns that both duration of algorithm application (p = 0.032) and the
product of duration of algorithm application and average blood glucose sampling

frequency (p = 0.025) significantly influence GPI. The first parameter is directly
proportional to GPI whereas the product is inversely proportional to GPI. Moreover, a

negative correlation (R = −0.42, p = 0.0069 for the ‘no-correlation’ null hypothesis)
between the variables duration of algorithm application and average blood glucose

sampling frequency is found.

The impact of the duration of algorithm application on GPI is further clarified in Figure

4.8 for the patients (from group 1) who stayed for at least 100 hours in the ICU.

Every 24 hours, the GPI is computed based on all previous blood glucose observations

of each particular patient. Each line of Figure 4.8 represents the GPI evolution of

this specific patient as a function of the number of data (i.e., the time spent in the

ICU) that are considered in the calculation process of GPI. For the majority of the

patients, a decreasing GPI trend is observed as more data (longer duration of the applied

algorithm) are taken into consideration.

4.4 Discussion

In this study the GPI is developed as tool to assess the dynamics of glycemic control

in ICU patients. The designed formula returns a number between 0 and 100 with

an ‘ideal’ level of 0 (indicating that all measured blood glucose values fall within the

normoglycemic target range) and a ‘clinically acceptable’ level of 23. Next, it is shown

that GPI summarized the monitored glucose profile into one number more precisely

than the traditional evaluation tools based on currently available clinical expertise.

Finally, the average blood glucose sampling frequency and the duration of algorithm

application are found to be parameters that should be similar for patient groups when

comparing the performance of insulin titration algorithms.
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Figure 4.6: Univariate relation (expressed in boxplots) between average blood glucose

sampling frequency (f ) and GPI (top panel), APACHE II score (A) and GPI (middle
panel), and type of illness and GPI (bottom panel) for patient group 2 and 1 (but

considering only the data of the first 48 hours in the latter). The p-values of the null
hypothesis that the GPI medians per group are equal are mentioned in each panel. A

significant difference is found for the average blood glucose sampling frequency: the

blood glucose profiles with f ≥ 0.5 hr−1 (i.e., time intervals less than 2 hours) are

related to stricter glycemic control (lower GPI).
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Figure 4.7: Univariate relation (expressed in boxplots) between average blood glucose

sampling frequency (f ) and GPI (top panel), duration of algorithm application (D)
and GPI (second panel), APACHE II score (A) and GPI (third panel), and type of
illness and GPI (bottom panel) based on patient group 1. The p-values of the null
hypothesis that the GPI medians per group are equal are mentioned in each panel.

A significant difference is found for the average blood glucose sampling frequency

and the duration of algorithm application. The longer the algorithm is applied to

the patient and the longer the time intervals between successive measurements, the

tighter the glycemic control (lower GPI). The apparently contradictory impact of the

blood glucose sampling frequency on GPI (compared to top panel of Figure 4.6) can

be explained by the negative correlation between the variables duration of algorithm

application and average blood glucose sampling frequency (see also text).
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Figure 4.8: The evolution of the GPI values as a function of duration of algorithm

application (D) for the patients of group 1 who stayed for at least 100 hours in the ICU.
Each line represents a patient. Let us take the example of a patient that is illustrated

with stars. The first star represents the GPI value that is calculated based on the blood

glucose observations of the first 24 hours of that specific patient. The second star gives

the GPI value based on the measured blood glucose signal of the first 48 hours; the third

GPI value is computed based on the data of the first 72 hours; etc. For the majority of

the patients, a decreasing GPI trend is observed.

4.4.1 Mathematical computation of GPI

The developed GPI tool summarizes the level of TGC into a single number based

on a grading system that scores low and high blood glucose readings depending on

their deviation from the target range. There are many advantages of GPI over the

currently standard methods. Firstly, since both low and high blood glucose readings

are taken into account, GPI measures the overall blood glucose dynamics. Since the

assigned penalties are always absolute (positive), it is not possible that hypoglycemic

and hyperglycemic penalties balance each other as can be the case when computing the

average (morning) blood glucose.
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Secondly, only the blood glucose readings that were effectively monitored are used

in the GPI evaluation tool. Accordingly, unlike for area-under-the-curve methods, the

GPI does not rely on any assumed (linear) relation between measurements. While

awaiting the creation of reliable near-continuous sensor devices for blood glucose

monitoring in an ICU setting, this is an important aspect as these assumed (linear)

relations between observations do not necessarily approach the real (non-linear) blood

glucose dynamics.

Thirdly, a smooth penalty function (see Figure 4.2) forms the basis of GPI leading

to a gradual increase of the assigned penalties as the deviations from normoglycemia

are enlarging. Measurement errors caused by sensor inaccuracies and methodology

inaccuracies due to sampling handling have only a small level of influence on the

assignment of the penalty, accordingly.

A fourth important feature of GPI is the independency of outlier measurements.

Due to the imposed limits in the penalty function (if G < 20 mg/dl or G > 250 mg/dl,
then β = δ = 100), extreme blood glucose measurements (that may be related to
sensor/methodology inaccuracies) cannot mislead the general algorithm assessment.

Moreover, blood glucose values lower or higher than these imposed limits would not

lead to a clinically different treatment. This concept formed the basis of the specific

region strategy in the EGA analysis (see Chapter 3, 3.1.2) for the evaluation of glucose

sensors, as reported previously [44, 52, 53].

Finally, the computation of the relative contribution of the hypo- and hyperglycemic

events to GPI allows us to further interpret the obtained GPI value. Consider the

blood glucose profile of patient no. 1 (from patient group 1) as an example (see

Table 4.2). Based on the high GPI that is obtained (GPI = 49 > 23), it could
be concluded that blood glucose was poorly controlled in this patient. The relative

contributions (expressed in terms of percentage) of the hypo- and hyperglycemic events

(CHypo and CHyper, respectively) to GPI inform the clinician whether this non-optimal
control behaviour was caused by particularly low glucose events (if CHypo > 75%),
high glucose events (if CHyper > 75%), or both (if CHypo ≈ CHyper). The non-
optimal performance of the algorithm for this patient example is mainly caused by

the hyperglycemic events due to the large value for CHyper (see Table 4.2).

4.4.2 Comparison of GPI with currently used methods

The computed GPI can be used to appropriately evaluate the level of TGC in

a single patient based on clinical expertise. Existing methods may mislead an

assessment as is shown for patient no. 23 in Figure 4.5 (bottom panel). The

average morning blood glucose (60 mg/dl ≤ 120 mg/dl) and the average blood

glucose (101 mg/dl ≤ 120 mg/dl) both suggest strict glycemic control whereas only
HGI (21 mg/dl > 12 mg/dl) and GPI (56 > 23) denote the poorly controlled blood

glucose signal. Both hypoglycemic and hyperglycemic events can be observed in the

blood glucose profile which is further confirmed by the similarity between CHypo and
CHyper for this patient.
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Figures 4.3 and 4.4 summarize the assessment of the individual blood glucose profiles

by applying the existing methods and GPI. The shaded area is defined by the

GPI ‘clinical unacceptability’ cut-off (GPI > 23) and the ‘clinical acceptability’
limits of the known techniques (average (morning) blood glucose ≤ 120 mg/dl,

HGI ≤ 12 mg/dl). In other words, the evaluation of the blood glucose profiles of the
patients belonging to this area may be misled by the existing methods (particularly the

averagemorning blood glucose and the average blood glucose, due to their high number

of patients in the shaded areas and, to a lesser degree, the HGI). In fact, only few blood

glucose profiles are evaluated differently with HGI indicating that this method most

approaches the clinical ‘expert’ GPI function. This also occurs in the high correlation

coefficients for HGI and GPI.

The assessment of the performance of the blood glucose algorithm on a population

base also depends on the selected technique. The average morning blood glucose

(108 ± 20 mg/dl) and the average blood glucose (114± 21 mg/dl) are below 120 mg/dl
suggesting that the algorithm under study is adequate. The computed IQ ranges for the

average (morning) blood glucose, both below 120 mg/dl, confirm this hypothesis. The

computed IQ ranges of HGI and GPI, however, indicate that the applied algorithm does

not result in clinically acceptable blood glucose control for at least 25% of the patients.

Indeed, a quarter of the HGI values are above 17 mg/dl (> 12 mg/dl) and a quarter of

the GPI values are above 27 (> 23).

This study shows that the two most traditional measures (average morning blood

glucose and average blood glucose) used for summarizing the overall glycemic control

behaviour, can mislead assessments of blood glucose algorithms. This confirms

the results described in [67]. Techniques that take into account the duration of

hyperglycemia/hypoglycemia, like HGI or the recently proposed ‘notional duration

of hyperglycemia/hypoglycemia’ (i.e., the time since the observation of an abnormal

blood glucose till it returns to the accepted range [67]) may better indicate TGC.

The GPI technique proposed in this manuscript, however, is explicitly founded on

ICU expertise and may therefore be an alternative (or at least a supplemental) tool

for adequately evaluating insulin titration algorithms in the ICU. The blood glucose

profiles of most individual patients were equally assessed using GPI and HGI, except

for some patients as was illustrated in Figures 4.3 and 4.4 (shaded areas of the bottom

panels).

A first weakness of GPI is the non-consideration of the duration of hypoglycemic and

hyperglycemic episodes since no (linear) relation between discrete-time blood glucose

observations is assumed. Accordingly, the algorithm assessment may be misled as

the number of intermittent blood glucose measurements (and the number of assigned

penalties) can typically be higher with unstable blood glucose behavior (i.e., blood

glucose observations outside the normoglycemic target range). Only area-under-the-

curve measures (like HGI) can potentially take into consideration the duration of these

glycemic deviations under the assumption that the imposed (linear) relation between

the measurements approaches the real blood glucose dynamics. Moreover, the duration
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of deviating episodes can only be precisely taken into account with a reliable and

accurate near-continuous glucose sensor. The use of such a device for the evaluation of

a blood glucose algorithm even allows to label the GPI measure as area-under-the-curve

method (that incorporates the duration of glycemic deviations) since then a penalty is

‘continuously’ assigned to each blood glucose (measured at each time instant, e.g.,

every minute) and since hypoglycemic and hyperglycemic deviations cannot balance

each other. While awaiting these reliable near-continuous glucose sensors [38, 94, 99],

it is advised to sample blood glucose at fixed time intervals (e.g., every hour or every

two hours for the duration of the study) to minimize the effect of the current weakness.

A second weakness of GPI is the ignorance of the severity of extreme (but exceptional)

blood glucose measurements due to hypo- and hyperglycemic cut-off values (e.g.,

δ300 mg/dl = δ450 mg/dl = 100). Though the reasons for using these cut-off values are well

founded (see above), we advise counting the number of alarm glycemia observations

(i.e., G < 40 mg/dl [210] and G > 200 mg/dl [216]) to better interpret the obtained
GPI.

Previous studies have already indicated the relation between improved clinical outcome

on the one hand and reduced average morning blood glucose [213, 216] and reduced

HGI [233] on the other hand. It is important to note that the relation between GPI

and clinical outcome has not been shown yet. The design of GPI is purely founded

on currently available clinical expertise. Future studies are necessary to verify whether

low GPIs effectively correspond to reduced mortality and morbidity, which is however

expected from a clinical ‘expert’ point of view and from the high correlation between

GPI and HGI.

4.4.3 Weight determination for the selected parameters

The blood glucose sampling frequency in the insulin titration guidelines used in patient

group 1, varied as a function of the level of glycemic control. When the blood glucose

was more difficult to control (unstable glucose dynamics), more frequent sampling

occurred. The full patient data of group 1 comprised the initial (unstable) and more

chronic (stable) phase of each patient’s stay in the ICU. An increasing duration of

algorithm application (which implicitly indicates a longer stay in the ICU, typically

associated with more stable glucose dynamics) artificially improved the average overall

blood glucose control behavior leading to lower GPIs (see second panel of Figure 4.7).

Figure 4.8 additionally clarifies the relation between GPI and duration of algorithm

application. The GPI decreases when more data (i.e., longer time/duration in the ICU)

are considered in its computation process.

Further, this increasing duration of algorithm application lowered the average blood

glucose sampling frequency (expressed in the negative correlation between duration

of algorithm application and average blood glucose sampling frequency) since less

glycemia observations were required in the chronic ‘stable’ period (due to the nature

of the used protocol). Therefore, the first panel of Figure 4.7 that illustrates the

relation between TGC (low GPI) and a low average blood glucose sampling frequency
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is explained by the long time that the algorithm was applied to the patients of group 1.

In case the duration of algorithm application was kept constant and limited (only the

first 48 hours after admission), an increase of the glycemia sampling frequency resulted

in more strict blood glucose control (lower GPI) as depicted in the top panel of Figure

4.6. It can be concluded that both duration of algorithm application and average blood

glucose sampling frequency are two important parameters that should be taken into

consideration when assessing or comparing different blood glucose control algorithms.

4.4.4 Practical use

For the design of future studies that compare the performance of different insulin

titration algorithms applied to critically ill patients, it is encouraged to rely on the

‘similarity’ condition: the duration of algorithm application and the blood glucose

sampling frequency should be similar in patient groups. It is further encouraged to

consider GPI as supplemental tool to other advanced measures (e.g., HGI, ‘notional

duration of hyperglycemia/hypoglycemia’) besides more traditional measures (e.g.,

average morning blood glucose, average blood glucose) for adequately assessing the

overall level of blood glucose control.

4.5 Conclusions

The use of nurse-driven blood glucose control algorithms is becoming standard practice

in ICUs. New (semi-automated) insulin titration algorithms are currently under

development but require an appropriate evaluation before accepting them as state-of-

the-art. In this chapter, the computation of the GPI as a tool to compare different blood

glucose control algorithms was presented. This index encompassed the overall blood

glucose dynamic behavior per patient in a single number based on clinical expertise.

The method was affected by the blood glucose sampling frequency and the duration

of algorithm application which should be similar for adequately comparing insulin

titration algorithms. The results obtained in this chapter are further described in [218].
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Chapter 5

Black-Box Modelling of

Glycemia

This chapter focuses on the design of a ‘black-box’ model (i.e., a data-

driven approach for model selection and estimation) to describe the blood

glucose dynamics of critically ill patients (see Figure 5.1). The objective

is to determine whether the data contain enough information to build a

model for simulation and control purposes. An initial input-output model

is firstly estimated after which an adaptive modelling strategy, in which

the model is re-estimated every hour, is presented. The optimized adaptive

modelling technique outperforms the general initial model. The results

are satisfactory both in terms of forecasting ability and in the clinical

interpretation of the estimated coefficients.

5.1 Introduction

Identification methods are applied for the purpose of designing a model that can be used

to predict the (dynamic) behaviour of a system. They can be classified as follows [190]:

• White-box models: These models are perfectly known as they are entirely

constructed from prior knowledge and physical insight.

• Grey-box models: Physical insight is available and used to develop these

models, but some parameters still need to be determined from the observed data.

• Black-box models: No physical insight is used in the design process of these

models. Based on ‘input-output’ data a linear or a non-linear model structure is

constructed and the model parameters are estimated.

In this chapter the black-box modelling approach is considered for the development

of a linear black-box model that describes the glucoregulatory system of critically

ill patients. The known input data (e.g., administration rate of insulin, calories,

107
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Figure 5.1: Simplified presentation of the (semi-)automated control system. In this

chapter the results that are obtained when applying the black-box modelling approach

are described.

medication) and the observed output signal (glycemia) are used to develop a model

structure. Next, the model is estimated or, in other words, fitted (expressed in the model

coefficients) within this given structure. In general, the design of a model structure (i.e.,

selection of the relevant variables in the model, the interactions between them, and the

dynamic effect) is the key problem when identifying a system or a process [190].

Most black-box modelling techniques assume that the inputs of the system under

study are independent of the past outputs, or in other words, that the system can be

labeled as ‘open-loop’. In case of ‘closed-loop’ systems this assumption is not valid

any more due to the relation between the previous output signal with the future input

signal. This relation is typically expressed in a controller that regulates the output by

adapting the control input variable. This closed-loop aspect prevents a clear distinction

between cause and effect and explains that the standard algorithms used in black-

box modelling techniques can generate false results. Figure 5.2 further clarifies the

differences between open-loop and closed-loop systems.

Due to the fact that the nurses determined the required insulin dose (i.e., the control

input variable) partly based on the patient’s blood glucose level (i.e., the output signal),
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Figure 5.2: Schematic depiction of an open-loop (a) and closed-loop (b) dynamic

system.

they are performing as the equivalent of a controller that introduces the notion of

feedback in the data explaining the closed-loop feature in the data at hand (see Chapter

2, 2.5).

In the available literature, some (black-box) identification methods to cope with closed-

loop data are distinguished. Most important techniques are the Direct Approach, the

Indirect Approach, and the Joint Input-Output Approach [82, 136]. The first approach

considers the output and the inputs of the glucoregulatory process in the same way

as for open-loop operation, ignoring any possible feedback or closed-loop feature. In

the Indirect Approach, the relationship between the output and the reference signal

is modelled by making use of the known regulator or controller. The third approach

considers the output and the inputs of the system when this system is driven by the

reference signal and noise. Some general features, advantages, and disadvantages of

closed-loop identification techniques are further described by Ljung, Goodwin et al.,

among others [82, 136].

Particularly the Indirect and the Joint Input-Output approach assume perfect knowledge

of the controller, or constant (i.e., fidelity of the controller), or even linear control

behaviour. The nurses controlled the blood glucose of the patients, based on

‘experience’, by using a set of guidelines, as presented in Van den Berghe et al.

[215]. Accordingly, the controller (i.e., the control behaviour of the nurses) applied

to the patients was not identical in time (i.e., different nurses successively treated a

patient) and could not be exactly defined. Therefore, the Indirect and the Joint Input-

Output approach could not be used for the scope of this work. In this chapter, the

Direct Identification approach is used as this technique forms a natural approach to

closed-loop data: the complexity of the regulator does not influence the modelling

performance and knowledge about the controller is not required [136].

In the following chapter (Chapter 6), the grey-box modelling approach is applied. In

this approach, the model structure is founded on physical knowledge. The data are

only used for estimation purposes. Accordingly, the closed-loop issue that is typical

of the data at hand influences the modelling of the glucoregulatory system to a lesser
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degree. As perfect knowledge of the physiology of the glucoregulatory system of the

critically ill is not available (see Chapter 2, 2.2.1), the white-box modelling approach

is not considered in this thesis.

5.2 Design of the model structure

5.2.1 Introduction

The major processes controlled by insulin in a healthy person are the stimulation of

glucose uptake (mainly by muscles and adipose tissue) and the inhibition of the hepatic

glucose production as addressed above (see Chapter 2, 2.1). The glucose utilizing

tissues offer resistance to insulin, however, which results in an increase of the blood

glucose level [187,241,242]. Therefore, this insulin resistance (which is the inverse of

the insulin sensitivity) is an important aspect that should be incorporated in the model.

The insulin sensitivity is typically estimated as it cannot be directly measured. Its

determination can be defined as the assignment of a value to the change of glucose

disappearance from blood (following a glucose load) for a unit change of insulin. Most

common methods to estimate the insulin sensitivity can be summarized as follows [12,

157]:

• Glucose clamp: The glucose clamp has evolved in two classical paradigms:

the euglycemic (i.e., normoglycemic) hyperinsulinemic and the hyperglycemic

clamp. In the first clamp test, glycemia is kept constant by infusing glucose

under an increased insulin concentration condition. The second clamp test is

characterized by a glucose bolus at the start of the test aiming at hyperglycemia

which stimulates insulin secretion in the pancreas. This hyperglycemic target

value is maintained by infusing additional glucose. In both clamp tests glycemia

is frequently monitored. The infused glucose and insulin flows and the monitored

glycemia signal are used to assign a value to the insulin sensitivity.

• Intravenous glucose tolerance test (IVGTT): During the first minute of this

test, a bolus injection of glucose is intravenously delivered to the subject. Next,

blood glucose, insulin concentrations, and possibly C-peptide1 concentrations

after the glucose bolus injection are frequently monitored for the coming three

to four hours. The observed data can be analysed with the ‘minimal model’

[14], which is extensively discussed in Chapter 6 (see 6.2.2). When glycemia is

sampled with a high sampling frequency, this test is also called the ‘frequently

sampled intravenous glucose tolerance test’ (FSIGTT).

• Oral glucose tolerance test (OGTT): This test is similar to IVGTT except for

the method of delivering the glucose bolus. Here, the subject ingests 75 g glucose

and glycemia, insulin, and C-peptide concentrations are measured for the next

three hours.

1 A C-peptide is a peptide (i.e., a short polymer) which is made when proinsulin (i.e., the prohormone

precursor to insulin made in the beta cell of the islets of Langerhans) is split into insulin and C-peptide. Since

one C-peptide corresponds to one insulin molecule (‘equimolarity’), the monitoring of C-peptide allows to

measure the insulin production capacity of the pancreas [156].
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Many people who suffer from increased insulin resistance, produce large amounts of

insulin to maintain normoglycemia. The tests described above make it possible to

quantify the extent of insulin resistance and, accordingly, the risk to develop diabetes.

There are two main reasons why it is advised that these tests should not be used to

determine the insulin resistance in the critically ill:

• First of all, it would be unethical to perform such tests in critically ill patients.
Since patient conditions in the ICU are typically life-threatening, additional

disturbance factors (i.e., additional ‘tests’ that are not necessary for the treatment

of the patient) should be avoided. Furthermore, these tests necessitate the

monitoring of glycemia, insulin, and C-peptide concentrations on a very regular

base (e.g., every 5 minutes) during three to four hours. The workload of the

medical staff is already very high, which explains that it would be difficult

to implement this frequent monitoring process in clinical practice as no near-

continuous glucose monitoring device is yet available.

• Secondly, the estimation of the insulin sensitivity based on the tests described
above would only result in a value that is valid at that particular moment in

time. As already discussed above, the insulin sensitivity in critically ill patients

is characterized by a high inter- and intra-patient variability. The recovery

process of the patient is usually related to an increase of the insulin sensitivity

but additional inflammations, administration of drugs (e.g., glucocorticoids), etc.

may be responsible for sudden decreases of the insulin sensitivity. Accordingly,

it would be necessary to frequently re-estimate the insulin sensitivity (e.g., every

5 hours) which would be unreasonable from a clinical point of view. It is also

not possible to take all the parameters that may influence the insulin resistance,

into account individually as the size and the accuracy of the data set at hand is

insufficient for doing this.

In this chapter, it is assumed that the insulin resistance is directly related to internal

body temperature. It can be expected that body temperatures surpassing 37.5°C

(which indicate early fever conditions) are related to an increase of the critical illness

(e.g., additional inflammations) and an increase of the insulin resistance. This study

considers data set 1, which is depicted in Chapter 2 (see 2.4.1), to design a ‘black-box’

model structure. The used sampling interval equals one hour after linear interpolation.

An alternative method to estimate time-varying insulin sensitivity in the critically ill is

recently reported by Hann et al. [87].

5.2.2 Modelling methodology

The overall modelling methodology is presented in this section. Firstly, a specific

model structure is selected after which a modelling method that is independent of the

particular set of patients used for estimating or testing, is described.

5.2.2.1 Model structure

A linear ARX (AutoRegressive model with eXogenous input variables) model structure

is postulated because of the small available data sample size. In this way the complexity
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of the model can be restricted [136, 190]. The aim is to predict the blood glucose

behaviour from a set of clinical inputs, using a model of the following form:

Gt+1 =

na
∑

i=1

aiGt−i+1 + b1FI,t + b2FI,tDFever,t + b3FG,t + b4FF,t + b5Tt + b6FC,t

+ b7FA,t + b8FN,t + b9FDob,t + b10FDop,t + b11Fβ,t + b12 + et, (5.1)

where ai ∈ R, bj ∈ R, i = 1, . . . , na, j = 1, . . . , 12 are the model coefficients

to be estimated; Gt is the glycemia level at time t; FI,t is the insulin flow at t;
DFever,t is a dummy variable that takes 1 if the body temperature at time t is above

37.5°C and zero otherwise; FG,t the flow of carbohydrate calories; FF,t the flow of fat

calories; Tt the body temperature; FC,t the glucocorticoids level; FA,t the adrenaline

level; FN,t the noradrenaline level; FDob,t the dobutamine level; FDop,t the dopamine

level; and Fβ,t the level of beta-blockers. Table 5.1 gives an overview of the input

variables and their units. The residuals et are assumed to have zero mean and constant

(and finite) standard deviation.

Table 5.1: Overview of the input variables that were used in the modelling process.

Variables Symbol Units

Insulin FI,t U/hr

Insulin*Dummy fever FI,tDFever,t U/hr

Total carbohydrate calories FG,t kcal/hr

Total fat calories FF,t kcal/hr

Body temperature Tt °C

Glucocorticoids FC,t mg/hr

Adrenaline FA,t γ (1)

Noradrenaline FN,t γ (1)

Dobutamine FDob,t γ (1)

Dopamine FDop,t γ (1)

Beta-blockers Fβ,t mg/hr
(1) The unit γ is used in a medical environment to symbolize the amount of the considered

catecholamine drug (µgr) per kg body weight and per minute.

Since insulin resistance significantly influences the effect of insulin on glycemia, we

parameterize the insulin effect as a combination of a base effect and as a possible

additional effect due to fever in the model described above. This is further explained

in Table 5.2. When the body temperature of the patient is below or equal to 37.5°C

(no fever, DFever,t = 0) the effect of insulin is captured by b1, which is expected

to be negative since insulin is a protein that decreases the blood glucose. In case

of fever (DFever,t = 1) the insulin activity is captured by the total contribution of

(b1 + b2), which is assumed to be negative as well. However, the (positive) coefficient

b2 is expected to cause a reduction of the insulin activity. Similarly, the model

coefficient values for administered calories are expected to be positive. Although

the glycemia reactions on administered drugs are patient specific, a positive value

for catecholamines, beta-blockers, and glucocorticoids can also be expected (see

Chapter 2).
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Table 5.2: Effect of insulin (to predict blood glucose at t+1) in case of fever or no

fever.
Effect of insulin Clinical expectation

No fever b1 b1 < 0
Tt ≤ 37.5°C

DFever,t = 0
Fever b1 + b2 b2 > 0

Tt > 37.5°C (b1 + b2) < 0
DFever,t = 1

5.2.2.2 Order selection

The data set under study (data set 1, see Chapter 2, 2.4.1) comprises 41 patients.

In order to select the model order na in equation (5.1), we look at the prediction

performance of a model evaluated on data that have not been used for model estimation.

Thus, we define an estimation (SE) and a test (ST ) set. By selecting different partitions

between estimation and test sets, we look for the order that maximizes the average

performance over different random data partitions. In this way, and for a given order

na, we define a set of 30 patients for model estimation and a remaining set of 11

patients for testing. The model performance is measured on the test set for a particular

data partition by computing the standardized mean squared error (sMSE), given by

sMSE =

N
∑

t∈ST

(Gs
t − Ĝs

t )
2

N
, (5.2)

where Gs
t is the actual and Ĝs

t the predicted standardized glycemia value, computed by

Gs
t =

Gt − G

SD(G)
, (5.3a)

Ĝs
t =

Ĝt − G

SD(G)
, (5.3b)

with Gt the actual and Ĝt the predicted glycemia value at time instant t, G the obtained

average of the observed glycemia signal G. Finally, N represents the number of

evaluation points. Each time, the estimation/test partitions are randomized 500 times to

avoid data selection bias. Figure 5.3 gives an overview of this randomization process.

The value of 500 was taken as a sample large enough such that the performance

assessment based on the average sMSE over the different test sets is representative

of an asymptotic behaviour. Finally, we select the order na ∈ [1, 10] which gives the

lowest sMSE averaged over these 500 random partitions.

5.2.2.3 Model estimation and input selection

Each model is estimated in the following way. Given the order na and the estimation

data, a first model Mall(na) of the form of equation 5.1 is estimated by applying
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Figure 5.3: The patients of the first data set (see Chapter 2, 2.4.1) are considered for

the design of the model structure. Different sets of patients were used for estimating

and testing the developed models. This randomized process is repeated 500 times to

avoid data selection bias.

OLS [141] using all regressors such that the squared error (i.e., the squared difference

between the predicted and the observed glycemia value) is minimized. This can be

presented by

min
β,e

eT e, s.t. Y = Xβ + e, (5.4)

where the n × 1-vector Y denotes the output variable (blood glucose), the n × m-
matrix X the m input variables, and the n × 1-vector e the error. The model

coefficients to be estimated are represented by the m × 1-vector β. This set of model
coefficients is estimated for each permutation. Based on the t-statistics [175] of the
estimated coefficients fromMall(na), we select only those inputs which are statistically
significantly different from zero. This is an iterative process, where one variable is

removed at a time, and the model is re-estimated until all variables are found to be

statistically significant (at a 95% level). This final model is denoted as Msel(na). The
model Msel(na) is the one used for evaluation with the test set when selecting the
order na. Once the optimal order n∗

a is selected, a new model Mall(n
∗
a) with optimal

order n∗
a is estimated using all data from all patients, and its reduced modelMsel(n

∗
a) is

the final model to be considered. The outline of the modelling procedure is presented

in Figure 5.4. The overall methodology can be summarized as follows:

1. For order na = 1 to 10,

(a) Repeat k = 1 to 500,

i. Define a set of 30 patients for estimating (Sk
E) and 11 for testing (S

k
T )

on each repetition k,

ii. Estimate modelMall(na) with Sk
E ,
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iii. Based on iterative t-tests of significance at 95% level, find model

Msel(na) in which all variables are significant,

iv. EvaluateMsel(na) on the test data Sk
T to predict glycemia ĜSk

T
,

v. Compute the standardized mean squared error sMSEk(na) between
Ĝs

Sk
T

and Gs
Sk

T

(which represent the standardized predicted and actual

glycemia, respectively),

(b) Compute the average standardized mean squared error

sMSE(na) = 1
500

∑500
k=1 sMSEk(na),

2. Find optimal n∗
a that minimizes the average sMSE(na),

3. Estimate a modelMall(n
∗
a)with optimal order n∗

a using all data from all patients,

4. Use the iterative t-tests until the final modelMsel(n
∗
a) is obtained.

5.2.3 Modelling results and clinical assessment

After applying the modelling strategy described above the results are shown in this

part. Furthermore the final model is clinically assessed.

5.2.3.1 Modelling results

Figure 5.5 presents the average sMSE as a function of the model order. The optimal

model order is n∗
a = 2. The average sMSE (over 500 randomizations) is 0.0557.

Having selected n∗
a = 2, now we estimate a unique modelMall(n

∗
a) using all data from

all patients, the results of which are shown on Table 5.3. The corresponding final model

Msel(n
∗
a), for which all variables are statistically significant, is reported on Table 5.4.

The predictor of the glycemia value Ĝt+1 can now be written as

Ĝt+1 = â1Gt + â2Gt−1 + b̂1FI,t + b̂2FI,tDFever,t + b̂3FG,t + b̂10FDop,t, (5.5)

which results in a sMSE of 0.0514 computed in-sample2 for the modelMsel(n
∗
a). This

is not very different from the average sMSE (0.0557) that was obtained for the same

order using 500 random test partitions, which indicates that the methodology based

on input selection using t-tests is able to produce a model which does not overfit (or
overtrain) the in-sample data.

2 The data used for parameter estimation are commonly known as in-sample data in statistical literature.
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Figure 5.4: Outline of the procedure to determine the model structure. The

estimation/test partitions are randomized 500 times to avoid data selection bias. Based

on iterative t-tests, the data of the estimation set are used to determine the variables
that are statistically significant leading to Msel(na) for each permutation and for the

(varying) model order na. Next, the foundMsel(na) is evaluated on the test set of each

permutation aiming to find the optimal model order n∗
a. The final model Msel(n

∗
a),

using all data from all patients, is presented in equation 5.5.
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Figure 5.5: The average sMSE as a function of the model order. The use of model

order 2 resulted in the smallest average sMSE (0.0557).

Table 5.3: Results for ModelMall(n
∗
a) with n∗

a = 2 after first iteration.

Variables Estimation SD t-stat
Output variables

Glycemia at t 1.4959 0.0094 159.2171

Glycemia at t-1 -0.5692 0.0094 -60.7940

Input variables at t
Insulin -0.2145 0.0276 -7.7782

Insulin*Dummy fever 0.0783 0.0347 2.2541

Total carbohydrate calories 0.0257 0.0072 3.5634

Total fat calories -0.0070 0.0057 -1.2248

Body temperature 0.1971 0.0881 2.2365

Glucocorticoids -0.0019 0.0037 -0.5043

Adrenaline -1.3072 1.3534 -0.9659

Noradrenaline 0.8073 0.9440 0.8551

Dobutamine 0.0153 0.0421 0.3627

Dopamine 0.1754 0.0745 2.3545

Beta-blockers -0.0051 0.0149 -0.3418

Constant -6.8497 3.2746 -2.0917
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Table 5.4: Final ModelMsel(n
∗
a) containing only statistically significant variables.

Variables Estimation SD t-stat
Glycemia at t 1.4960 0.0094 159.5903

Glycemia at t-1 -0.5690 0.0093 -60.9982

Insulin -0.2131 0.0267 -7.9857

Insulin*Dummy fever 0.1044 0.0308 3.3859

Total carbohydrate calories 0.0336 0.0030 11.1282

Dopamine 0.2362 0.0697 3.3907

The Durbin-Watson (dw) statistic is a test statistic used to detect the presence of autocorrelation

in the residuals from a regression analysis. A value of 2 indicates that no correlation is found

[64, 65]. Here, dw = 1.9775. The parameter R2 evaluates the regression: R2
= 0.9486, which

is close to 1 indicating a good performance. Finally, the in-sample sMSE = 0.0514.

5.2.3.2 Clinical assessment

In this part the model coefficients are clinically interpreted and the clinical features

are considered with respect to the generated model errors. First of all, b̂1 < 0
and (b̂1 + b̂2) < 0 (with b̂1 = −0.2131 and b̂2 = 0.1044, see Table 5.4) as was
clinically expected. The increasing insulin resistance in case of fever is captured

by b̂2 > 0. The latter causes a smaller reduction of blood glucose when insulin is
administered to a patient with fever than without fever. The positive value of b̂3 (with

b̂3 = 0.0336) indicates the glycemia raising effect with the intake of carbohydrate
calories. Moreover, the positive value of b̂10 (with b̂10 = 0.2362) was also clinically
expected, due to the features of the catecholamine type of drugs.

Secondly, in order to relate the model errors with the clinical features of each patient

individually, the standardized mean squared error per patient p (sMSEp) is calculated

in-sample as follows:

sMSEp =

Np
∑

t=1

(Gs
t,p − Ĝs

t,p)
2

Np
, (5.6)

where Np equals the number of observations per patient p used in the estimation, and

Gs
t,p and Ĝs

t,p are the standardized actual and predicted glycemia, respectively, at time

instant t. The different nature of patients influences the duration of stay in the ICU.
Therefore, the sMSEp-values versus the duration of stay are plotted for all patients in

Figure 5.6. It is striking that four of the six patients whose sMSEp is above 0.1 belong

to the cardiac surgery group. Patients from this group are typically characterized by

shorter time periods in the ICU than patient groups with other pathologies.

In general, it is easily seen that the model performs better for patients whose length

of stay is more than five days (smaller sMSEp values). This can be explained as

follows. Firstly, the data set sizes of short-staying patients are smaller than the other

data sets giving a smaller contribution to the estimation process of the in-sample model

Msel(n
∗
a). Indeed, the model is particularly estimated with the data of long-staying
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patients. Secondly, the first days after admission to the ICU are characterized by

rather unstable blood glucose dynamics as explained above. This means that accurately

predicting glycemia is more difficult in the first ‘acute’ days compared with the rather

‘chronic’ phase. For patients who stay for a long time in the ICU, the model prediction

performance is averaged and possible less accurate glycemia predictions, typical of the

first days after admission, are masked.
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Figure 5.6: The sMSEp as a function of the individual length of stay in the ICU.

Cardiac patients (marked by circles) typically stay for a shorter time period in the ICU

than the other patients (marked by stars) which results in larger sMSEps than the other

patient groups.

5.3 Initial and adaptive input-output modelling approach

In this section an initial and adaptive modelling strategy that are based on the

previously developed model (equation 5.5), are presented. In the first strategy, a

model is estimated using data of a set of patients and validated with other patients.

In the second strategy, this initially estimated model is adapted with the data of

each individual validation patient. Both initial and adaptive modelling techniques are

evaluated by applying a one-hour-ahead prediction and a four-hours-ahead simulation

process. Again, the models are estimated using different randomizations of the

available data to avoid data selection bias.
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5.3.1 Modelling strategy

We apply an initial and an adaptive modelling strategy on a new surgical ICU data set in

which a glycemia sampling interval of 1 hour was imposed for this purpose: data set 2

(see Chapter 2, 2.4.2). The main advantage of this data set (compared with data set 1)

is the higher glycemia sampling frequency potentially leading to a better identification

of the system under consideration. The other features of the data set have already been

described in Chapter 2.

5.3.1.1 Patient selection procedure

In order to enforce independence of the patient selection, the available data set (15

patients) is divided into an estimation, a test, and a validation set in a random way

during 500 successive times leading to 500 randomized estimation-test-validation

partitions or permutations. Each permutation consists of an estimation set (8 patients),

a test set (another 4 patients), and a validation set (the remaining 3 patients):

• For all permutations, the estimation set is used to estimate the initial model
giving 500 initial model coefficients (see 5.3.1.2),

• Next, the optimal weighting factor is detected by applying the adaptive modelling
strategy on the selected test sets for different weighting factors (see 5.3.1.3),

• Finally, the implementation of the found optimal weighting factor in the adaptive
modelling strategy is validated on the remaining validation set for each particular

data partition and compared with the model performance (by computing the

MSE) when no adaptive modelling strategy is applied (see 5.3.1.3).

In Figure 5.7 the followed patient selection procedure is visualized.

5.3.1.2 Initial model

For each permutation an initial model is estimated based on the data of the patients

in the estimation set by applying OLS such that the squared error (i.e., the squared

difference between the predicted and the observed value) is minimized (see equation

5.4). The model coefficients to be estimated are represented by the m × 1-vector β,
as β =

(

a1 a2 b1 b2 b3 b10

)

from equation 5.5. This set of (initial) model

coefficients is estimated for each permutation. In the validation process this estimated

set has two different functions. In case the adaptive modelling methodology (see

5.3.1.3) is applied, this set will only be equal to the initial set of coefficients. At each

time step the model coefficients will be adapted based on the recent data originating

from the specific validation patient. In case there is no adaptive modelling strategy to

be applied, this initial set will be kept constant during the full validation process.

5.3.1.3 Adaptive model

Due to the large inter- and intra-patient variability that exists in the ICU (e.g., patient

specific initial and dynamic known input variables, reaction on medical treatment,
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Figure 5.7: The patients of the second data set (see Chapter 2, 2.4.2) are considered

for the evaluation of the initial and adaptive input-output model. Different sets of

patients were used for estimating, testing, and validating the developed models. This

randomized process is repeated 500 times to avoid data selection bias.

insulin resistance, etc.), the use of the initial model (i.e., a model valid for all patients)

for accurately predicting glycemia may be insufficient. Therefore, the implementation

of an adaptive modelling technique is proposed. In the presented procedure the model

coefficients belonging to each test and each validation patient (both are called the

considered patient) are re-estimated at each time step t by combining two different
data files:

• The first data file is fixed and comprises the data from the estimation set (i.e.,

the data used to define the initial model),

• The second part denotes the data from the considered patient up to time t-1 and
grows as a function of time, consequently.

Weighted Least Squares (WLS, [141]) is applied in the estimation process. In this

implementation the weighting factor is used to increase the influence of the squared

errors of the second data set such that the model is more influenced by the data of

the new patient. Accordingly, some time varying factors that may cause changes in

the glucoregulatory behaviour (e.g., insulin sensitivity) are preferably included in the

model. The minimization process can be summarized as follows,

min
β,e

eT Φe, s.t. Y = Xβ + e, (5.7)

where the diagonal n × n-matrix Φ consists of elements equal to 1 (in case of errors
related to the estimation set of patients) and equal to the hyperparameter φ (in case of
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errors related to the data from the considered patient).

The hyperparameter φ is varied from 1 to 30 for optimization purposes. The total

MSE is calculated considering all 500 permutations per weighting factor. The applied

methodology to optimize φ is summarized as follows:

1. For weighting factor φ = 1 to 30,

(a) Repeat k = 1 to 500,

i. Define a set of 8 patients (called Sk
E) for estimating the initial model,

ii. Define a set of 4 patients (called Sk
T ) for testing the adaptive model,

iii. For test patients p = 1 to 4,

A. Estimate a new model Mt (of which the structure is defined in

equation 5.5) at each time step t by using WLS based on the fixed
estimation set Sk

E and on the data of the test patient p (who is part
of Sk

T ) up to time t-1. The squared errors related to the second
data file, are amplified by φ,

B. Predict glycemia ĜSk
T,t+1

with the designed modelMt,

C. Compute the error at t + 1 (i.e., the difference between the
predicted (ĜSk

T,t+1
) and the observed (GSk

T,t+1
) glycemia value

at time step t + 1),

iv. Store all errors that are generated for Sk
T ,

(b) Compute the total MSE of all stored errors corresponding to the respective

φ,

2. The weighting factor that is used to generate the smallest total MSE is the optimal

weighting factor, φopt, that will be used in the adaptive model simulations for
each validation set Sk

V (see 5.3.2).

5.3.2 Validation strategy

After selecting φopt, the initial and the adaptive modelling algorithms are used for every
randomly selected validation set (3 patients per permutation). The MSE is computed

for every permutation. To compare the MSE-sets from the initial and the adaptive

model, the Wilcoxon signed rank test is used. Figure 5.8 summarizes the adaptive

modelling procedure. The overall methodology is further explained below:

1. Repeat k = 1 to 500,

(a) Define a set of 8 patients (called Sk
E) for estimating the initial model,

(b) Define a set of 4 patients (called Sk
T ) for testing the adaptive model in order

to optimize φ (full procedure described in section 5.3.1.3),

(c) Define a set of the remaining 3 patients (called Sk
V ) for validating the initial

and the adaptive model,
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(d) For validation patients p = 1 to 3,

i. Predict the blood glucose signal during the considered time horizon

(which is one hour (section 5.3.2.1) or four hours (section 5.3.2.2))

by implementing the initial and the adaptive model (using φopt) at
every time step. The input variables are assumed to be known in the

considered time horizon,

ii. Compute the difference between the predicted and the observed

glycemia value (i.e., the error),

(e) Compute the MSE belonging to Sk
V ,

2. Compare the 500 MSEs from the initial model with those from the adaptive

model.

5.3.2.1 One-hour-ahead predictions

To validate the developed initial and adaptive models a one-hour-ahead prediction is

performed using the data of each validation set. Equation 5.5 is applied in every time

step with the estimated coefficients obtained from algorithm 5.4 and 5.7. The model

performance is measured by computing the MSE, given by
∑ (Ĝt+1−Gt+1)

2

N , where

Gt is the actual and Ĝt the predicted glycemia value, and N the number of evaluation

points in Sk
V .

5.3.2.2 Four-hours-ahead simulations

Since a model operating in a real-life ICU should also be able to predict glycemia for a

longer time horizon and since the current manual control strategy imposes a glycemia

sample period of four hours [215], the developed models are also validated with a

four-hours time horizon. In the simulation process the input variables are assumed to

be known during this time horizon which is a clinically reasonable assumption. The

simulation process can be presented as follows:

Ĝt+1 = â1Gt + â2Gt−1 + b̂1FI,t + b̂2FI,tDFever,t + b̂3FG,t + b̂10FDop,t,

Ĝt+2 = â1Ĝt+1 + â2Gt + b̂1FI,t+1 + b̂2FI,t+1DFever,t+1 + b̂3FG,t+1 + b̂10FDop,t+1,

Ĝt+3 = â1Ĝt+2+â2Ĝt+1+ b̂1FI,t+2+ b̂2FI,t+2DFever,t+2+ b̂3FG,t+2+ b̂10FDop,t+2,

Ĝt+4 = â1Ĝt+3+â2Ĝt+2+b̂1FI,t+3+b̂2FI,t+3DFever,t+3+b̂3FG,t+3+b̂10FDop,t+3,
(5.8)

where Gt and Ĝt denote the observed and predicted glycemia value. The model

performance (measured by MSE) is now computed as
∑ (Ĝt+4−Gt+4)

2

N .
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Figure 5.8: Outline of the adaptive black-box modelling approach. The estimation/test

partitions are randomized 500 times to avoid data selection bias. An initial model is

estimated for each permutation using the data of the estimation data and the found

model structure 5.5 (see also Figure 5.4). Next, the adaptive modelling approach, using

the data of the respective estimation set and a growing part of the data of each test

patient (that is made more important by means of the (varying) weighting factor φ),
is evaluated on each specific test patient for each permutation. The most optimal

weighting factor φopt is used in the final validation of the adaptive black-box modelling

approach for each individual patient and for each permutation. Comparisons between

one-hour-ahead predictions and four-hours-ahead simulations are made for both the

initial and the adaptive modelling strategy.
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5.3.3 Results

In this section the results of the initial model are presented, followed by the considera-

tion of the optimal weighting factor used in the adaptive modelling procedure. Finally,

the results of the comparison study of the initial and the adaptive modelling strategy in

a one-hour-ahead prediction scenario and a four-hours-ahead simulation scenario are

also shown.

5.3.3.1 Initial model

Since 500 different permutations to randomize the selected estimation, test, and

validation set of patients were considered, also 500 initial models were developed.

Table 5.5 shows the mean of the estimated coefficient values and the corresponding

standard deviations. The clinically expected signs of the estimated model coefficients

are obtained again, similar to the developed model based on data set 1 (see 5.2.3.2).

Table 5.5: Results for the initial model considering all 500 permutations for data set 2

(see Chapter 2, 2.4.2).

Variables Corresponding

model coefficient

Estimation SD

Output variables

Glycemia at t â1 0.9648 0.1043

Glycemia at t-1 â2 -0.0278 0.1085

Input variables at t

Insulin b̂1 -2.1375 0.5517

Insulin*Dummy fever b̂2 0.1472 0.5172

Total carbohydrate calories b̂3 0.3193 0.1353

Dopamine b̂10 6.6625 2.9161

5.3.3.2 Optimal adaptive model

The process to optimize the weighting factor φ is applied to all test sets as explained in
Section 5.3.1.3. In Figure 5.9 the MSEs as a function of φ are shown. The weighting
factor that generates the smallest MSE over all permutations, φopt, is 5. Consequently,
this value is introduced in the adaptive modelling process used for the validation sets

(see 5.3.2).

5.3.3.3 Validation simulations

The validation of the developed model is performed with the data of the validation

set during every permutation. A one-hour-ahead prediction scenario and a four-hours-

ahead simulation scenario are both considered.

First of all, the models are validated by using a time horizon of one hour: the patient’s

glycemic value at time step t is predicted by means of the last two blood glucose values
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Figure 5.9: The MSE from the errors obtained for all permutations and for all test

patients is computed as a function of the weighting factor φ. The optimal weighting
factor (φopt) is found to be 5.

(at t-1 and t-2) and the considered input variables at t-1. The MSE of every validation
set is computed as a function of the model type (initial or adaptive) and the permutation.

The spread of theMSEs is visualized by means of a box and whisker plot in Figure 5.10.

There is a significant difference (p < 0.001) between the MSEs belonging to the initial
model and those belonging to the adaptive model. The average ± SD of the MSE for
the initial model is 188 ± 84 (mg/dl)2 and 171 ± 90 (mg/dl)2 for the proposed adaptive
modelling technique (with φopt).

The use of a four-hours time horizon results in a larger difference in performance

between the initial and the adaptive modelling strategy. The use of the former strategy

results in 761 ± 400 (mg/dl)2 as average ± SD of theMSE and 582 ± 224 (mg/dl)2 for
the (optimal) adaptive modelling strategy. Again, a significant difference (p < 0.001)
exists between those two groups. The spread of the MSEs is visualized by means of a

box and whisker plot in Figure 5.11.
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Figure 5.10: Boxplot of the MSEs obtained for all validation sets in a one-hour-

ahead prediction scenario and after 500 permutations. The optimal weighting factor

(φopt = 5) is used in the adaptive modelling strategy.
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Figure 5.11: Boxplot of the MSEs obtained for all validation sets in a four-hours-

ahead simulation scenario and after 500 permutations. The optimal weighting factor

(φopt = 5) is used in the adaptive modelling strategy.
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5.4 Discussion

The signs of the estimated initial model coefficients (Table 5.5) correspond to their

clinical expectations. This result is important since this initial set of coefficients may

serve as initial guess in the adaptive modelling procedure applied to new ICU patients.

In case of a one-hour time horizon, a root average MSE of 13.7 mg/dl for the initial and

13.1 mg/dl for the adaptive modelling strategy are obtained. The difference between

the initial and adaptive modelling methodology becomes more clear by considering the

four-hours time horizon: 27.6 mg/dl as root average MSE for the initial and 24.1 mg/dl

for the adaptive model.

As is shown in Figures 5.10 and 5.11 the proposed adaptive modelling strategy results

in significantly smaller MSEs than the initial model methodology for 500 particular

definitions of the validation data. This is an important result since it proves the

usefulness of considering individual patient features in the modelling process. The

initial model is too ‘general’ to cover the glucose - insulin dynamics of each patient

admitted to the ICU. In the proposed adaptive modelling procedure, a new model is

estimated at each sample instant t (i.e., every hour) based on both the fixed estimation
data and the data from the specific validation patient up to time t-1, giving more
importance to the latter.

The adaptive modelling strategy has the advantage that it can follow closely the

evolution of the patient. This effect might be more visible if data with a larger time

span would be available (the current time span of the data at hand only corresponds to

the first 48 hours after admission to the ICU; see features of the data set in Chapter 2,

2.4.2). The longer the time span, the more patient-specific data are considered in the

re-estimation process and the better the evolving dynamics are captured in the model.

Although the estimated coefficients of the models show clinical relevance for the

behaviour of glycemia with regard to insulin, insulin resistance, intake of carbohydrate

calories, etc. and although the obtained MSEs are relatively small, some reservations

must be made when using this black-box modelling approach for control purposes

in clinical real-life. Consider the following illustrative example. We assume no

carbohydrate calories nor dopamine drugs are administered to the patient whose body

temperature is below 37.5°C, giving

Ĝt+1 = 0.9648Gt − 0.0278Gt−1 − 2.1375FI,t,

to predict the glycemia value of the next hour (see Table 5.5). We further assume that

Gt and Gt−1 equal 150 mg/dl and 180 mg/dl, respectively. A simple controller would

be able to compute the insulin flow that would be required to reach normoglycemia

within one hour (Gt+1 = 95 mg/dl): FI,t = 21 U/hr. However, the administration of

this amount of insulin in clinical real-life conditions is rather exceptional (though not

infeasible). The average ± SD insulin flow (of the available data, see Chapter 2) is

only 3.7 ± 3.5 U/hr. The following artificial example for the model,

Ĝt+1 = 1.5Gt − 0.5Gt−1 − 10FI,t,
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would return more realistic insulin flows. Under the assumption that Gt and Gt−1

equal 150 mg/dl and 180 mg/dl, a simple controller would advise now to infuse 4 U/hr

which is a similar flow as observed in the data at hand. In other words, the quantitative

analysis of the coefficients presented in Table 5.5 returns that the estimated models

may not be efficient (due to underestimation of the importance of the input variables)

for use in a predictive control system as too high insulin dosages would be determined

by the controller.

It is important to note that the black-box modelling procedure is purely data-driven.

The performed t-tests indicate the importance of the selected input variables (based

on the data at hand) leading to the generated model structure depicted in equation 5.5.

Irrelevant input variables are not selected in this model. Further, the coefficients are

estimated with these observed data. There are two reasons why the importance of the

model coefficients of the input variables is underestimated. First of all, the model

is based on an AutoRegressive (AR) structure meaning that some of the explanatory

power is given to past values of the output (glycemia). In other words, particularly

the past values of glycemia can explain the future glucose profile. Secondly, the data

is generated under closed-loop conditions, because the patients were always under the

supervision of the nurses and the medical staff, who act as a ‘controller’ (see also

Chapter 2, 2.5). Despite the intention of the nurses to regulate the blood glucose very

strictly (between 80-110 mg/dl), deviations from normoglycemia are observed due to

remaining partly uncompensated disturbances. The resulting varying (non-constant)

glucose profile allows to find non-zero model coefficients (for the input variables) in

the estimation process.

The following thought experiment may further clarify this closed-loop aspect. Let us

suppose the existence of an absolutely perfect control system, which is able to ‘control’

the blood glucose towards a target blood glucose range of 80-110 mg/dl. This (virtual)

control system is perfect such that it manages to supply the right insulin dose (quantity,

frequency, etc.) leading to blood glucose signals that are almost constant around

95 mg/dl (although the patient is critically ill). In other words, the insulin infusion

sequence, which is determined by the control system, has a fluctuating pattern (input

of the system) whereas glycemia is almost constant (output of the system). If black-

box system identification techniques would be applied to these observed data, trying

to develop a model explaining the constant signal (glycemia) based on the fluctuating

input series (insulin), the model coefficient for insulin would be 0 as glycemia seems

not to react to any change of insulin. This example tries to illustrate the effect of the

closed-loop nature of the data on input-output modelling techniques.

A final remark concerning the followed black-box modelling method is that the

approach of relating the insulin resistance to the body temperature may not always

be correct. In this chapter, we parameterized the insulin resistance by approaching the

insulin effect as a combination of a base effect and as a possible additional effect in case

of body temperatures surpassing 37.5°C as mentioned above. However, this approach

may not be ideal since high body temperatures may be masked in some patients by

the administration of certain drugs. Although the insulin resistance might have raised
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(due to for example additional inflammations and possibly leading to hyperglycemic

episodes), the body temperature remains ‘normal’ (due to the administration of the

appropriate medication) giving misleading information to the model.

In summary, the developed input-output models show an acceptable model prediction

performance. Particularly, the adaptive modelling technique is promising in terms

of considering patient-specific parameters. The qualitative analysis indicates that the

signs of the estimated model coefficients behave as expected. However, because these

are closed-loop data, the estimated models cannot be used on a clinical controller for

the purpose of normalizing blood glucose in the critically ill.

5.5 Conclusions

In this chapter an initial input-output model to predict glycemia of critically ill patients

was presented. Different dynamic input variables and a combined approach to the

insulin resistance (by considering the body temperature) were implemented, in order

to give the model a clinical interpretation. Secondly, an adaptive modelling strategy

that was based on giving more importance to the individual patient data by applying

WLS, was further described. By using a methodology based on random partitions of

the data between estimation, test, and validation sets, the independence of the selected

data could be enforced.

The estimated coefficients of the initial model showed clinical relevance with respect

to the behaviour of blood glucose in relation to insulin, insulin resistance, intake of

carbohydrate calories, etc. The application of an adaptive modelling strategy on the

data of the validation sets of patients resulted in a significantly better performance

(measured by computing the MSE) than that of the initial model. A one-hour-ahead

prediction scenario and a four-hours-ahead simulation scenario were both considered.

The performance difference between the initial and the adaptive model was found to

be larger when a four-hours time horizon was introduced. However, because these are

closed-loop data, the estimated models cannot be used on a clinical controller for the

purpose of normalizing blood glucose in the critically ill. The results discussed in this

chapter are further depicted in [220–222].



Chapter 6

Grey-Box Modelling of

Glycemia

This chapter presents a grey-box modelling approach to depict the dynamics

of the blood glucose of the critically ill (see Figure 6.1). A new model

structure, founded on physiological knowledge, is developed containing

typical features of the ICU. To incorporate the time-varying behaviour

of the glucoregulatory system, the model is estimated every hour or

every four hours. This adaptive modelling approach is further optimized.

The ‘optimal’ re-estimation strategy gives satisfactory forecasting results

explaining its potential use in a predictive control system for critically ill

patients admitted to the (surgical) ICU.

6.1 Introduction

In system identification literature, a ‘grey-box’ model is typically founded on physical

insight and contains some parameters that are fitted to observed data [190]. In the

context of glycemia modelling, this type of physical or physiological models mostly

comprises different compartments that are connected leading to the more popular term

compartmental models. Each compartment is a quantity of material that behaves

homogeneously meaning that all measures performed on the compartment at a given

instant are equally representative. The interconnections express the fluxes of material

between the different compartments. Compartmental models can be used for modelling

complex systems that can be approximated by a number of subsystems that interact by

exchanging these materials [5, 23].

In some cases the compartments can be associated with a physical space (e.g., blood).

Then, the variable (or the material) could be really measured in this physical space. In

other cases, however, there is no such precise correspondence. Compartmental models

have become very popular in biomedicine, particulary in the fields of pharmacokinetics,

metabolism, and endocrinology as will become clear in this chapter.

131
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Figure 6.1: Simplified presentation of the (semi-)automated control system. In

this chapter a grey-box modelling approach (i.e., the design of a physical model) is

considered for predicting glycemia in critically ill patients.

Although physical insight forms the basis of the design of physiological models,

parameters still need to be estimated from the observed data. The closed-loop feature

of the data at hand has already been discussed in Chapters 2 and 5. Since the model

structure (i.e., selection of the relevant variables in the model, the interactions between

them, and the dynamic effect) is known in advance thanks to the physical insight of

the system under study, the data at hand (and the closed-loop issue in particular) only

affect the model in the determination process of the model coefficients. Accordingly,

the impact of the closed-loop feature of the data on the model is limited compared to

that of the black-box modelling approach.

Missing data form the major problem in identifying the glucoregulatory system of

healthy persons, patients with diabetes, and critically ill patients since the blood

glucose concentration (which behaves as the most important variable in this system)

is measured only a few times per day (see Chapter 2, 2.4) [23]. Patients and clinicians

anxiously await the commercial availability of accurate and reliable near-continuous

glucose sensors. Our research group had the opportunity to test a recently developed

glucose sensor (the GlucoDay system from A. Menarini Diagnostics, Italy) for use

in a real-life ICU setting. We used this near-continuous sensor device to monitor
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the subcutaneous glucose concentration in 20 patients during the first 48 hours after

admission to the ICU. The considered data set is described in detail in Chapter 2 (data

set 4, see 2.4.4). One patient of this patient group was allowed to leave the ICU already

after 24 hours. Therefore, only 19 patients were considered in the study presented in

this chapter. The glycemia sampling interval was 3 minutes but these glucose data were

linearly interpolated to obtain one-minute glucose sampling intervals.

The performance of the near-continuous sensor device used in this study has already

been discussed in Chapter 3 (see 3.4.1). There, it was found that the GlucoDay

sensor device may not be efficient for blood glucose control in the ICU regarding

the selected values for significance level, tolerance level, and glycemic range cut-off

values. Although the monitored GlucoDay signal may not exactly represent the real

(‘reference’) blood glucose signal, it can be used for data modelling purposes. The

abundant presence of glucose observations allows to model the glucoregulatory system

more precisely than with discrete-time glycemia data. Glucose dynamics (presented by

the near-continuous signal), rather than the exact (discrete-time) blood glucose values,

are more relevant for designing a dynamic model.

6.2 Physiological modelling of the glucoregulatory

system

This section presents a general overview of the physical models that have been

developed for describing the glucoregulatory system of healthy persons. This is

followed by an introduction to the ‘minimal model’ which forms the base of the model

that is generated for use in the ICU.

6.2.1 General overview

Most mathematical models that describe the glucoregulatory system originate from an

IVGTT, FSIGTT, or OGTT (see Chapter 5, 5.2). Although Bolie was probably one of

the pioneers in estimating the glucose disappearance and the insulin-glucose dynamics

in general [16], the first breakthrough was realized by Bergman and his colleagues. In

the early eighties, this team developed the famous ‘minimal model’ [14] which will

be discussed below (see 6.2.2). Surprisingly, this study was virtually uncited for the

first five years after publication. Since then, approximately 50 major studies that are

founded on this model have been published every year [11]. To indicate the importance

of the minimal model and his research related to diabetes, Bergman received the

Banting medal for Scientific Achievement which is awarded by the American Diabetes

Association. The work that is presented in this chapter is mainly based on this model

structure as will become clear in the next section (see 6.3).

Instead of choosing for a rather simple model structure, Guyton et al. developed a

more complex, comprehensive model [85] that approached the glucoregulatory system

from an organ-by-organ perspective but which was not suitable for parameterization

in individual subjects [158]. Further, Sorensen et al. [192] extended Guyton’s model
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and Lehmann and Deutsch [130] combined Guyton’s model with the pharmacokinetic

model for insulin action that was designed by Berger and Rodbard [9]. The model

of Lehmann and Deutsch [130] aimed to serve as an educational tool about type I

diabetes for both patients and health-care providers: the AIDA (Automated Insulin

Dosage Advisor) tool [126–129, 131]. Although AIDA was not suited for therapeutic

use, this computer simulation tool helps the user to understand the glucoregulatory

system in patients with type I diabetes and the decision making concept concerning

insulin dosages that these patients are confronted with.

Another popular model was designed by Parker et al. [159–161, 163]. He extended

Sorensen’s model by implementing the carbohydrate meal dynamics that were pre-

sented in the AIDA model. Moreover, Cobelli et al. developed an alternative

comprehensive model that comprised glucose, insulin, and glucagon dynamics [48]. A

last important model for describing the glucoregulatory system of patients with type I

diabetes was developed by Hovorka et al. [95,98]. This model represented the relation

between subcutaneous insulin infusion and the blood glucose signal and comprised a

glucose subsystem, an insulin subsystem, and an insulin action subsystem. It must be

noted that also other models have been developed during the last years (e.g., the model

defined by Hipszer et al. [93], Derouich and Boutayeb [59], among others) but these

models have not yet the impact of previously mentioned models. Although more recent

models are not included, a more detailed overview of the history of glucoregulatory

models is given by Parker [160] and Palerm [158].

In general, simple models have the advantage of using only a small number of

parameters but can be inadequate in terms of prediction accuracy if they are ‘too’

simple. Comprehensive models typically try to represent the full (biological/clinical)

system by taking into account all interactions which makes them complex using a

large number of parameters. The description of the overall performance, after putting

together the individual compartmental descriptions, may be weak due to the merging

of the confidence intervals [132]. While observing this trade-off, four criteria should

be met for designing a physiological model [20]:

1. the model should be physiologically based,

2. the estimation of the model parameters should be sufficiently precise,

3. the values of parameters should be physiologically interpreted,

4. the system dynamics should be reliably simulated with the smallest number

of identifiable parameters.

In spite of the large variety of models to describe the glucoregulatory system in healthy

persons, none of them has been implemented in an artificial pancreas for use by

patients with diabetes so far [132,193]. Parameter estimates are associated with a high

level of uncertainty that mainly arises from the large number of (un)known and/or

(im)measurable factors (e.g., exercise, stress, glucose counter-regulatory effect1, etc.)

that may affect blood glucose, and the missing data issue (i.e., glycemia is measured

1 The glucose counter-regulatory effect is caused by the counter-regulatory hormones that ‘counter’ the

usual response to insulin and thereby increase the blood glucose; see Chapter 2, 2.2.1.
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only a few times a day). Furthermore, it is known that the glucoregulatory behaviour

is not consistent or regular as a function of time, even though external conditions

seem to be equal (e.g., fixed meal times, standard meals, similar activities, etc.) [133].

Finally, it is important to note that the endocrine processes of a healthy person are not

yet fully understood; let alone the endocrine behaviour of a patient who is critically

ill. Accordingly, currently existing models are interesting simulation tools but have not

yet been applied in routine clinical practice for the treatment of patients with diabetes

due to the low reliability of the glycemia predictions. Moreover, it is surprising to see

that comparisons of monitored versus predicted blood glucose signals are only rarely

demonstrated in modelling studies [132].

Strict blood glucose control in the ICU has only become popular since the publication

of the two landmark studies of Van den Berghe et al. in 2001 [216] and 2006 [213]. So

far, no model that is able to accurately describe the glucose dynamics of the critically

ill has been validated for use in a predictive control system (see Chapter 7, 7.4.1). It

must also be noticed that the modelling conditions in the ICU significantly differ from

the conditions present when modelling the glucose dynamics of patients with diabetes:

• On the one hand, the ICU is a strictly controlled environment: the amount/type
of calories, insulin, and drugs that are delivered to the patient are carefully

recorded, many system variables are frequently monitored (e.g., glycemia, body

temperature), etc. In case of modelling the ‘healthy’ glucoregulatory system,

the test conditions imposed on patients with diabetes or healthy volunteers

are typically less controlled explaining the inaccuracy of the obtained models.

Therefore, artificial conditions (e.g., fixed meal contents, limited exercise) are

sometimes introduced in order to create a set of controlled conditions, but this

has the disadvantage that the obtained models lie far away from reality.

• On the other hand, a high number of different (unknown) disturbance factors
causes a high variability of glucose dynamics of critically ill patients (compared

to patients with diabetes) which complicates the modelling process. As an

example, the list of medications that directly or indirectly (via the influence on

the insulin resistance) may affect the blood glucose is long (see for example

the list in Chapter 2, 2.3.2). Moreover, the insulin resistance itself typically

decreases when the patient recovers, but can increase again within a short time

period in case of acute illness or stress.

6.2.2 Minimal Model (MM)

While developing their model, Bergman and his colleagues imposed two objectives.

Firstly, the model had to be complex enough to account for the dynamics of glucose

and insulin in the plasma. Secondly, the model had to be simple enough to estimate the

parameters from a simple clinical test.

The original MM [14] comprises two sections: one for the glucose dynamics and

one for the insulin dynamics. The glucose dynamics [13] are described by two

compartments. The first compartment depicts glucose in the tissues (represented by



136 Grey-Box Modelling of Glycemia

equation 6.1a) whereas the second compartment denotes the effect of insulin in these

tissues (represented by equation 6.1b). The second section [202] presents the dynamics

of insulin in the plasma which are summarized in a mono-compartmental structure

(represented by equation 6.1c).

Plasma insulin is assumed to act through a so-called remote compartment to influence

net glucose uptake [74]. The MM reliably describes the plasma glucose disappearance

and the insulin kinetics during an IVGTT in a healthy person. In this test 300 mg

glucose per kg bodyweight is intravenously administered to a person after which the

plasma glucose and insulin concentration are measured with a high sampling frequency.

The MM is described by

dG(t)

dt
= (P1 − X(t))G(t) − P1Gb, (6.1a)

dX(t)

dt
= P2X(t) + P3(I(t) − Ib), (6.1b)

dI(t)

dt
= max(0, γ(G(t) − h)t) − n(I(t) − Ib), (6.1c)

where G(t) and I(t) are the glucose and the insulin concentration in the blood
plasma, respectively. The variable X(t) describes the effect of insulin on net glucose
disappearance and is proportional to insulin in the remote compartment. In other

words, the variable X(t) represents the substantial delay between the appearance
of insulin in the plasma and the expression of the effect of insulin to promote the

disappearance of glucose [10]. This is a clear example of a ‘virtual’ compartment

meaning there is no precise correspondence between the compartment and a physical

space (see 6.1). In fact, this delay can be physiologically explained by the transport

of insulin across the capillary endothelium from plasma to the interstitial space, the

binding to and the activation of the insulin receptor, the translocation and activation

of glucose transporters to the plasma membrane, and the transport and intracellular

phosphorylation of glucose as described by Bergman et al. [10].

Gb and Ib are the basal value
2 of plasma glucose and plasma insulin, respectively. The

parameterP1 represents the glucose effectiveness
3 or the fractional clearance of glucose

when insulin remains at the basal level; P2 and P3 are the fractional rates of net remote

insulin disappearance and insulin dependent increase, respectively. The ratio P3/P2

is referred to as the insulin sensitivity4 index. The MM is a very popular technique to

assess the insulin sensitivity in vivo. Accordingly, the use of this model prevents the

performance of glucose clamps.

2 The basal value corresponds to the value just before the administration of the glucose load during an

IVGTT.
3 Definition of glucose effectiveness by Bergman et al. [10,13]: This is “the efficiency by which glucose

can restore its own concentration independent of any dynamic insulin response”.
4 Definition of insulin sensitivity by Bergman et al. [10, 12, 13]: This is “the augmentation by insulin of

the ability of glucose to normalize its own plasma concentration”.
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The endogenous insulin release during an IVGTT is composed of two different phases.

First-phase insulin release is represented as a bolus of insulin (proportional to the

glycemia rise) that enters the plasma compartment when glucose is injected. The

first-phase insulin concentration in the plasma is symbolized by I0. This insulin

concentration cannot be estimated directly. Second-phase insulin release (which is

modelled in equation (6.1c)), however, is represented as the insulin flow that is released

in proportion (by γ) to the degree by which glycemia exceeds a glucose threshold level
h. The time constant for insulin disappearance is denoted as n. In case glycemia
does not surpass the glucose threshold level h, the first part of this equation (that
represents the endogenous insulin production) equals 0. The time that has passed since

the administered glucose shot is denoted as t.

In this model six parameters need to be estimated based on the input-output data during

an IVGTT: P1, P2, P3, γ, h, and n. The glucose threshold (h) turned out to be the basal
blood glucose for the majority of the cases [156]. In [14], the above model was applied

to a group of 18 human subjects who were classified in four groups (I: lean with good

glucose tolerance5, II: lean with poor glucose tolerance, III: obese with good glucose

tolerance, and IV: obese with poor glucose tolerance).

In order to describe the glucose dynamics and the insulin kinetics of a patient with

type I diabetes, the original MM has been extended to a type I diabetes minimal model

(D-MM) in [74, 78]. Type I diabetes is characterized by insulin deficiency caused by

an auto-immune destruction of the β-cells of the pancreas as is described in detail
in Chapter 2 (see 2.1.2). Consequently, the endogenous insulin section (represented

in equation (6.1c)) is replaced by an exogenous insulin flow (symbolized by FI in

equation (6.2c)) and the basal insulin flow (Ib) is set at 0. In addition, a meal glucose

disturbance variable FG is added to denote the flow of glucose calories that enters the

glucose compartment. The full D-MM is described by

dG(t)

dt
= (P1 − X(t))G(t) − P1Gb +

FG

VG
, (6.2a)

dX(t)

dt
= P2X(t) + P3I(t), (6.2b)

dI(t)

dt
=

FI

VI
− nI(t), (6.2c)

where VG and VI are the glucose distribution space and the insulin distribution volume,

respectively.

5 The glucose tolerance is the tolerance to oral or injected glucose. In other words, this tolerance level

determines how much the blood glucose level has increased since a certain glucose load was administered

to the subject. The glucose tolerance depends on both the insulin sensitivity and the glucose effectiveness.

It is determined by factors like the insulin secretion capacity, the insulin clearance, the counter-regulatory

hormones, etc.
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6.3 Intensive Care Unit - Minimal Model (ICU-MM)

In this section an extended minimal model for use in an ICU setting is presented.

Next, the features of this new model structure are studied and an adaptive estimation

procedure is proposed.

6.3.1 Model structure

The physiological model used in this study is founded on the original (simple) MM

(see 6.2.2) aiming to restrict the number of parameters to be estimated. There are two

main reasons why an extension of previously presented models (MM and D-MM) may

be necessary. First of all, the ICU-MM contains an endogenous and an exogenous

insulin section, whereas the exogenous part is not included in the original Bergman

model. Because the majority of critically ill patients are non-diabetic, the endogenous

insulin section is still active. Due to the increased insulin resistance and the insufficient

activity of the pancreas, some exogenously administered insulin flow is required for

most of the patients (see Chapter 2, 2.2.1). Therefore, both the endogenous and the

exogenous insulin sections that are represented in 6.1c and 6.2c, respectively, are

included in the ICU-MM.

Secondly, the endogenous insulin section in the original Bergman model is transformed

mathematically into a set of two equations with the goal of the model to not be an

explicit function of time. The original MM is considered to describe the glucose

and insulin dynamics only during a single IVGTT which has a typical duration of

approximately three hours (taken into account the time t related to the start of the
glucose shot). In the MM, the endogenous insulin equation 6.1c is a direct function

of time. The ICU-MM, however, is developed for use in a predictive control system

(see Chapter 7) with a continuous flow (i.e., a series of single shots) of delivered

carbohydrates (and other input variables). Considering the possible use of the original

MM in a predictive control system, even a one-minute reset approach (in which t is
reset at 0 at each administered glucose shot in order to approximate the continuous

flow) would significantly increase the complexity level. Therefore, we transformed the

plasma insulin equation (i.e., equation (6.1c) for MM and equation (6.2c) for D-MM)

into a set of two equations which are not explicit functions of time, but still lead to

similar glycemia responses to an IVGTT.

The ICU-MM is presented as

dG(t)

dt
= (P1 − X(t))G(t) − P1Gb +

FG

VG
, (6.3a)

dX(t)

dt
= P2X(t) + P3(I1(t) − Ib), (6.3b)

dI1(t)

dt
= α max(0, I2) − n(I1(t) − Ib) +

FI

VI
, (6.3c)

dI2(t)

dt
= β γ (G(t) − h) − nI2(t), (6.3d)
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where G and I1 are the glucose and the insulin concentrations in the blood plasma.

The variable X describes the effect of insulin on net glucose disappearance and is

proportional to insulin in the remote compartment. The variable I2 is introduced in

order to describe the endogenous insulin section without any time-dependence while

maintaining the second order behaviour of I1 after glucose administration. It is a

purely mathematical manipulation such that I2 does not have a strictly defined clinical

interpretation. However, this mathematical variable can be approached by the fraction

of insulin concentration derived from the endogenous insulin secretion. It should

be remarked that the ICU-MM structure also incorporates the closed-loop feature as

the blood glucose (G) is directly influenced by the effect of insulin (X) which is
determined by I2 via I1. The variable I2, however, is also affected by G (expressed

in the endogenous insulin secretion part in equation 6.3d) illustrating that the loop is

closed. This feature is important when realizing the data at hand are labeled as closed-

loop data as discussed in Chapters 2 and 5.

The parameters Gb and Ib in the ICU-MM denote the basal value of plasma glucose

and plasma insulin, respectively. It is, however, not possible to determine the plasma

glucose/insulin values before the administration of the bolus glucose load (like for an

IVGTT) as patients are entering the ICU when the acute stress level (corresponding to

a virtual continuous glucose load) is already present. Therefore, these basal values are

determined based on the patient-specific body weight (body mass) with regard to the

patient’s ideal body weight (IBW). Linear models are estimated with the patient data

that are described in [14] using OLS:

Gb = 83 + 0.12 IBWR, (6.4a)

Ib = −13 + 0.22 IBWR, (6.4b)

where IBWR denotes the body weight relative to IBW (expressed in %). The IBW

values can be found in the Metropolitan Life Insurance tables [100]. The top panel

of Figure 6.2 illustrates the relation between Gb and IBWR whereas the bottom panel

depicts the relation between Ib and IBWR.

The developed ICU-MM has two input variables: the exogenous insulin flow (FI ) and

the carbohydrate (glucose) calories flow (FG), both administered intravenously. The

glucose distribution space and the insulin distribution volume are denoted as VG and

VI , respectively. The parameters P1, P2, P3, γ, h, and n have equal meanings as
presented with the MM (see 6.2.2). Two extra parameters (α and β), both without any
physiological significance, are included in the ICU-MM in order to keep the correct

units. The coefficient β equals 1 min. The coefficient α is optimized (by applying
OLS) for the set of patients whose data are described in [14] such that every single

IVGTT simulation, for insulin kinetics, should give a similar representation as that of

the MM.

In [14], four different ‘healthy’ patient groups were described segregated on the bases

of body weight and glucose tolerance. Considering the high insulin resistance that is

present in most of critically ill patients, ICU glucose and insulin dynamics are mostly
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Figure 6.2: The top panel illustrates the basal glycemia (Gb) as a function of IBWR.

The bottom panel depicts the relation between the basal insulin concentration (Ib) and

IBWR based on the patient data described in [14].

comparable to those patients who are classified into the obese and low glucose tolerance

patient group [14]. The importance of avoiding the explicit time-dependence is further

clarified in Figure 6.3 in which several successive IVGTTs are introduced to patient 16

who belongs to this obese - low glucose tolerance patient group [14]. The successive

IVGTTs are meant to approach the continuous delivery of glucose (carbohydrate) loads

that is typical of the ICU. Glucose dynamics and insulin kinetics are simulated by using

both the MM and the ICU-MM. The sequence of IVGTTs is illustrated in the second

panel of Figure 6.3. If the general condition of the patient does not change during this

sequence, it is intuitive to expect a similar glycemia (top panel) and insulin (panel 3, 4,

and 5) pattern for each new IVGTT.

The original model (MM), however, does not show similar behaviour. The plasma

insulin concentration (I1) and the effect of insulin on net glucose disappearance

(X) that are described by the MM, increase with every IVGTT due to the explicit
dependence on time in equation (6.1c). Time t cannot be reset at 0 with every new
IVGTT as this example approaches the ICU setting (in which the resetting is infeasible

due to the continuous calories flow). The new model structure (ICU-MM), however,

generates an insulin trajectory that follows the expected behaviour. Table 6.1 gives

an overview of the variables, patient features, and coefficients used in the ICU-MM.

Figure 6.4 illustrates the ICU-MM structure.
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Figure 6.3: Presentation of the glucose and insulin dynamics during several successive

IVGTTs (FG, shown in the second panel) for patient 16 (whose data are described

in [14]). The solid and dotted line represent the simulated trajectories by using the

ICU-MM and the MM, respectively. Although the glycemia (G) behaviour shows a
similar progress after every IVGTT (top panel), the insulin variables (both X and I1)

show exploded trajectories (see the third and fourth panel) after simulating with MM.

This phenomenon is clinically infeasible. In contrast, the use of the ICU-MM (which

has an additional insulin variable I2) results in an identical behaviour for insulin and

glycemia after every IVGTT.

Figure 6.4: Representation of the ICU-MM. The state variables of the model (G,
X , I1, and I2) and the body segments (liver and periphery) are denoted as squares

and ellipses, respectively. The exogenous input variables (FI and FG, administered

intravenously to the patient) are illustrated as diamonds. The model parameters are

related to the respective state variables: a direct physical relation is represented by a

solid arrow, whereas a rather mathematical relationship is denoted as a dashed arrow.
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Table 6.1: Variables, patient features, and coefficient values applicable in the ICU-

MM.
Variable Unit Variable Unit

G mg/dl I2 µU/ml
X 1/min FI µU/min
I1 µU/ml FG mg/min

Patient feature Unit Value

BM kg Body mass (Body weight)

VG dl 1.6 BM [95]

VI ml 120 BM [95]

Gb mg/dl Basal glycemia

Ib µU/ml Basal insulin

Coefficient Unit Value (1)

P1 1/min -1.31 10−2 (1)

P2 1/min -1.35 10−2 (1)

P3 ml/(min2µU) 2.90 10−6 (1)

h mg/dl 136 (1)

n 1/min 0.13 (1)

α 1/min 3.11

β min 1

γ
µU
ml

dl
mg

min2
5.36 10−3 (1)

(1) As initial value for the model estimation process (see 6.3.3), mean model coefficient values

for the obese - low glucose tolerance patient group, described in Bergman et al. [14] are used.

6.3.2 Analysis of the ICU-MM

The ICU-MM is used as a general template, which is estimated for each individual

patient such that the model parameters P1, P2, P3, h, n, α, and γ are patient-specific.
This is done by minimizing the (squared) errors between the simulated and observed

blood glucose trajectories, by using non-linear least squares (N-LS) in Matlabr. The

simulated glucose signal is obtained directly from the integration of the ICU-MM over

the corresponding time span. In this way, an optimization problem is formulated in

such a way that the optimal model parameters are found to be those that give the best

possible simulation for the patient. For this optimization process, the starting values for

the parameters within the optimization are taken from the obese - low glucose tolerance

patient group coming from [14] (see Table 6.1).
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Nineteen patients (data set 4, see section 2.4.4) are involved in the clinical analysis of

the ICU-MM. Each set of the in-sample estimated coefficients is used in a simulation

where successively a 3.6 U insulin bolus (at t = 500 min) and a 10 g glucose calories
bolus (at t = 1000 min) are administered. These amounts are typical ‘real-life’ doses
except that in the ICU these doses are continuously delivered during an hour. Figure

6.5 shows the effect of the two boluses on the model dynamics for the 19 patients.

The glucose load (at t = 1000 min) results in an increase of the blood glucose (G)
which activates the endogenous insulin production (I2) leading to a gradual increase

of the plasma insulin concentration (I1) aiming at normalizing blood glucose. When

administering exogenous insulin (at t = 500 min), a direct increase of the plasma
insulin concentration (I1) is observed.
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Figure 6.5: Simulation of the model dynamics when a glucose and insulin bolus are

administered to 19 (virtual) critically ill patients. At t = 500 min an insulin shot (FI )

of 3.6 U is delivered which is followed by a glucose calories shot (FG) of 10 g at

t = 1000 min.

Figure 6.6 depicts the effect of the administered bolus of insulin and glucose calories

in more detail. Although the estimated set of model parameters is patient-specific, it is

observed that the half-life, defined by t1/2, for insulin in the blood plasma is on average

8 minutes. This obtained half-life is comparable to the clinically expected half-life

(see Chapter 2, 2.3.2). Recall that the effect of insulin on net glucose disappearance

(marked by X) has a certain delay. This is clearly illustrated in the second panel of
Figure 6.5. Alternatively, the half-life for intravenously delivered glucose calories is

approximately 20 minutes which is clinically reasonable, as well. It can be concluded

that the estimated ICU-MM shows clinically realistic dynamics.
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Figure 6.6: Detail of Figure 6.5. The top panel illustrates the simulation of the plasma

insulin (I1) dynamics after an insulin bolus at t = 500 min. The obtained half-life
(t1/2) for plasma insulin is approximately 8 minutes. The bottom panel shows the

glycemia (G) dynamics after a glucose calories bolus at t = 1000 min. The obtained
half-life (t1/2) for glucose calories is approximately 20 minutes.

Finally, it must be stressed that the discrete-time version of the ICU-MM is considered

in this work instead of the continuous model. Integration of the continuous model

returns exactly simulated trajectories but with a corresponding higher computation

time. The discretisation of the ICU-MM (using the forward Euler method) significantly

reduces the computation time and still results in relatively exact simulations if the

sampling time Ts is sufficiently small. In this work the sampling time is set at 1 minute.

Figure 6.7 illustrates the model dynamics of patient 1 of the data at hand. It is observed

that only a slight difference between the simulated trajectories exists explaining the use

of the discrete-time ICU-MM for the further course of this work.

In [55], the stability and the sensitivity of the ICU-MM were preliminary analysed

giving promising results. These model properties will, however, be explicitly and more

elaborately studied in future research.

6.3.3 Adaptive modelling approach: Study design

In this study the model structure described earlier (ICU-MM) is estimated and validated

using the same data (19 critically ill patients, see data set 4 in section 2.4.4). Because of

the large inter- and intra-patient variability that exists in the ICU (e.g., patient-specific
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Figure 6.7: Detail of simulations with the continuous ICU-MM (by integrating the

model, solid line) and the discrete-time ICU-MM (with forward Euler, Ts = 1 min,
dotted line) for patient 1. Due to the slight difference between the simulated

trajectories, the discrete-time version is further used to restrict computation efforts in

simulations.

initial and dynamic known input variables, reaction on medical treatment, time-varying

insulin resistance), it is required to re-estimate the ICU-MM at frequent time intervals

to capture dynamic features as much as possible [220]. Here, a re-estimation strategy

is presented. The adaptive modelling approach can be described as follows.

First of all, the ICU-MM, with model parameters P1, P2, P3, h, n, α, and γ is used
as a general template, which is estimated for each individual patient based on data

belonging to the first 24 hours of each patient’s data set. This first estimation leads

to the ‘initial’ model for that patient. The parameter estimation is again solved as a

N-LS program in Matlabr (see also 6.3.2). The least-squares objective function arrives

from penalizing deviations between simulated and observed glycemia trajectories using

the non-linear ICU-MM. Two different penalizing strategies or cost functions are

considered:

1. Minimize MSE: The squared difference between the predicted and the observed

glycemia trajectories is minimized. Although this method is mostly known in

the field of system identification, the severity of error is dependent on glycemia.

Indeed, prediction errors in the hyperglycemic range have a larger contribution

to the minimization issue than errors in the hypoglycemic range. Accordingly,

the minimization of the absolute errors potentially leads to an underestimation

of hypoglycemic errors.
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2. Minimize mean squared normalized error (MSnE): The difference between

the predicted and the observed glycemia value is firstly normalized by using the

normalization function that was developed in Chapter 3 (equation 3.2) in order

to make the severity of error independent of the glycemic level. Secondly, the

squared normalized errors are minimized.

For the reason of (future) on-line use in a control scheme the N-LS program is solved

by means of local optimization. In particular, Nelder-Mead’s method is used [152].

The initial state variables are chosen as follows: Ĝ(0) = G(0), X̂(0) = 0, Î1(0) = 0,
and Î2(0) = 0. The optimal model parameters are found to be those that give the
best possible representation for true patient behaviour during the first 24 hours (i.e.,

1440 minutes) given glycemia measurements, input observations (i.e., the insulin rate

FI and the flow of carbohydrate calories FG), and the ICU-MM structure. To solve

this problem, the starting parameters are taken from the obese - low glucose tolerance

patient group coming from Bergman and co-workers [14] (see Table 6.1) whose patient

characteristics are most comparable to ICU patients.

Secondly, the model is re-estimated at certain time periods P for the rest of each

patient’s data set, which is denoted as SV . Two different settings are proposed: re-

estimations every hour and every four hours. The number of recent data considered in

each re-estimation process is called the back-in-time (BIT) number and may influence

the performance of the model. Therefore, BIT is varied in each setting. In the re-

estimation procedure the same non-linear estimation technique as described earlier is

applied. The starting parameters in each optimization process are the end values of

the previous period P . The model performance for each patient p is measured by
computing the MSE, the mean percentage error (MPE), and the MSnE as follows:

MSEp =
N

∑

t∈SV

(Gt,p − Ĝt,p)
2

N
, (6.5a)

MPEp =
N

∑

t∈SV

|Gt,p−Ĝt,p|
Gt,p

N
100%, (6.5b)

MSnEp =
N

∑

t∈SV

(ut,p)
2

N
, (6.5c)

where Gt,p is the actual and Ĝt,p the predicted glycemia value of patient p at time t.
Further,N represents the number of evaluation points and ut,p refers to the normalized

glycemia error (see Chapter 3, 3.2.2) of patient p at time t. The overall methodology
for optimizing the re-estimation process is explained next:
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1. Estimate the ‘initial’ model (ICU-MM) based on the first data set (first 24 hours,

see earlier discussion),

2. For a re-estimation period P = 1 hour and P = 4 hours,

(a) For BIT = 20-18-16-14-12-10-8-6-5-4-3-2-1-0.5 hours,

i. Re-estimate the ICU-MM based on every last section (i.e., BIT) of

the (moving) data set, with the starting set of coefficients the values

corresponding to the last period P (or the set of coefficients from the

‘initial’ model for the first re-estimation),

ii. Predict the glycemic course for the next period P (which is the

validation set of the re-estimated model in this case),

iii. Compute the MSE, MPE, and MSnE for all validation sets per patient,

(b) Compare the MSEs / MPEs / MSnEs that are generated for the different

BITs. The BIT that belongs to the smallest (average) MSEs / MPEs /

MSnEs is called ‘optimal’ and is ideally used in the re-estimation process,

3. Compare the optimal BIT and the computed MSEs, MPEs, and MSnEs for the

P = 1 hour and P = 4 hours setting.

The Wilcoxon signed rank test is used to test significant differences (significance level

5%). An overview of this adaptive modelling approach is illustrated in Figure 6.8.

6.4 Results

Table 6.2 gives an overview of the BIT values that generated the smallest prediction

errors for the 19 patients as a function of the time period P , the penalizing strategy
(i.e., the cost function: MSE or MSnE), and the evaluation method (MSE, MPE, or

MSnE). The data that correspond to the last four (BIT = 4) or five (BIT = 5) hours
need to be considered in each re-estimation process in order to minimize the prediction

error. Figure 6.9 illustrates the distributions of the MSnEs for the validation parts of all

19 patients as a function of BIT for an estimation procedure based on the minimization

of MSnE. In case of re-estimations that take place every four hours, the optimal BIT

is found to be four hours. When the model is re-estimated every hour, BIT equals five

hours. Significant differences (p < 0.05) with regard to other selected BITs are marked
with asterisks. The other figures presenting the prediction performance distributions as

a function of BIT, the time period, and the penalizing strategy are given in Appendix A.

In general, it is observed that the prediction performance of the model is higher

(i.e., smaller MSEs / MPEs / MSnEs) when the model is re-estimated every hour

(P = 1 hour) in comparison with model re-estimations every 4 hours (p < 0.001). The
use of MSnE as cost function is preferred from a clinical perspective since the severity

of error is made independent of glycemia and hypoglycemic and hyperglycemic

deviations are equally penalized then. The average ± SD of the MSE, average ± SD
of the MPE, and average ± SD of the MSnE obtained when applying an optimal
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Figure 6.8: Outline of the adaptive grey-box modelling approach. The data

corresponding to the first 24 hours after admission to the ICU are used to estimate

the initial model for each individual patient. The second 24 hours are considered as

validation data for the adaptive modelling approach. Based on the most recent data

(represented by the (varying) BIT) and the previously estimated model coefficients (or

the initial model for the first re-estimation) that serve as starting set of coefficients, the

model is updated to incorporate the changing glucose dynamics of the patient. Then,

each re-estimated model is evaluated on the next 1-hour or 4-hours data after which the

BIT block is moved ahead (with one or four hour(s)) and the full procedure is repeated.
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Table 6.2: Overview of the ‘optimal’ BIT values (expressed in number of hours)

depending on time period, the penalizing strategy (cost function), and the evaluation

method. The graphs that further illustrate these prediction performances are depicted

in Appendix A.

Time period

P = 4 hours P = 1 hour
Cost function Cost function

Evaluation MSE MSnE MSE MSnE

MSE 5 4 5 5

MPE 5 4 5 4

MSnE 5 4 5 5
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Figure 6.9: Distribution of the MSnEs (that are computed to evaluate the model

prediction performance for each patient) as a function of BIT with re-estimations every

4 hours (top) or every hour (bottom). The followed penalizing strategy is founded

on the minimization of MSnE. The line connects the averages of the MSnEs. Re-

estimations based on the last 4-hours data set (for P = 4 hours) or the last 5-hours data
set (for P = 1 hour) result in the smallest prediction errors. Significant differences
with respect to this ‘optimal’ BIT setting are marked by asterisks.
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one-hour re-estimation strategy (P = 1 hour, BIT = 5 hours) to present data are
122 ± 85 (mg/dl)2, 7.3 ± 2.6 %, and 0.27 ± 0.22, respectively. When model re-

estimations every 4 hours are preferred (P = 4 hours, BIT = 4 hours), the

average ± SD of the MSE, average ± SD of the MPE, and average ± SD of the MSnE
are equal to 407 ± 566 (mg/dl)2, 12.5 ± 4.0 %, and 0.71 ± 0.45, respectively.

Figures 6.10 and 6.11 illustrate the performance of the ICU-MM for predicting

glycemia of patients 3 and 10, respectively. The glycemic evolution is shown in the

top panels (P = 4 hours: BIT = 4 hours; P = 1 hour: BIT = 5 hours). The dotted

line represents glycemia measured by the GlucoDay system. Data of the first 24 hours

are used to estimate the initial model. Glycemia predictions using this initial model

on the first part of the data set (in-sample data) is indicated by the dashed line. The

re-estimation strategy is applied on the second 24 hours and the resulting simulated

glycemia signal is depicted by the solid line. The vertical lines in these figures indicate

the time-instants when the model is re-estimated by considering data of the previous

four hours when P = 4 hours (top panel), and data of the previous five hours when
P = 1 hour (second panel). Finally, the input variables included in the ICU-MM
are shown in the third (administered insulin) and the last (administered carbohydrate

calories) panels in Figures 6.10 and 6.11. Figures 6.12 and 6.13 present the model

dynamics for patients 3 and 10, respectively, when the ICU-MM is re-estimated every

hour by means of the data corresponding to the last five hours.

6.5 Discussion

This chapter presents a new model structure (ICU-MM) and an optimized adaptive

‘minimal’ modelling approach that can potentially be used in the design of a predictive

control system to normalize glycemia in the critically ill. The methodology proposed

here is based on the near-continuous monitoring of glucose which will be a standard

technique in the near future [38,99,209]. In that scenario, the data of the first 24 hours

after admission to the ICU will be used to estimate the initial patient-specific ICU-MM.

During this first period, the blood glucose will be controlled by medical staff using

a (manual) standard nurse-driven protocol [215]. From the second day onward, the

predictive control system (see Chapter 7) will (semi-)automatically regulate glycemia.

The frequent re-estimation of the ICU-MMwill be able to incorporate dynamic changes

within the critically ill patient (e.g., varying insulin resistance). The feasibility of the

re-estimation modelling approach is shown in this study.
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Figure 6.10: Example of the re-estimation strategy (with the use of MSnE as cost

function) applied to the ICU-MM. The evolution of glycemia of patient no. 3, measured

with the GlucoDay system, is presented in the first and second panel (dotted line). Data

of the first 24 hours are used to estimate the initial ICU-MM. The in-sample prediction

is represented by the dashed line. Glycemia simulations present in the second 24 hours

of the data (i.e., the validation part) are illustrated with the solid line for both the

4-hours (top panel) and the 1-hour (second panel) re-estimation process. Re-estimation

time instants are illustrated with vertical lines. The flows of insulin and carbohydrate

calories are shown in the third and fourth panel, respectively.
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Figure 6.11: Another example of the re-estimation strategy applied to the ICU-MM

on patient no. 10. The different line types in this figure have similar meanings as in

Figure 6.10.
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Figure 6.12: Illustration of the ICU-MM dynamics when applying the ‘optimal’

P = 1 hour re-estimation strategy to patient no. 3. The top panel presents the glycemia
signal measured by the GlucoDay sensor device (dotted line). The in-sample prediction

during the first 24 hours is illustrated with the dashed line; the glycemia simulations

(during the rest of the data set or the validation part) are represented by the solid line.

The second panel depicts the effect of insulin on net glucose disappearance, the third

panel the insulin concentration in the blood plasma, and finally the bottom panel the

evolution of the mathematical insulin variable.
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Figure 6.13: Illustration of the ICU-MM dynamics when applying the ‘optimal’ P = 1
hour re-estimation strategy to patient no. 10. The different line types in this figure have

similar meanings as in Figure 6.12.
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6.5.1 Choice of cost function

Two penalizing functions are used in the estimation process of the ICU-MM: the

minimization of MSE and the minimization of MSnE. Although the use of the

minimization of MSE as cost function is mostly known in system identification theory,

we here prefer to focus on the minimization of MSnE as cost function. As already

described earlier, it is important that prediction errors are penalized independent of the

glycemic range (i.e., hypoglycemic, normoglycemic, or hyperglycemic range) that they

belong to. When using the MSE cost function, particularly the (squared) hyperglycemic

errors are penalized as the (squared) hypoglycemic errors are much smaller. In case of

minimizing the squared normalized errors (with MSnE) the model prediction errors are

equally penalized with regard to the clinically defined ISO-criterion which is a standard

norm for the binary assessment of the accuracy of glucose sensors (see Chapter 3,

3.2.2) [75]. The accuracy requirements of a test sensor device, which is assessed by

considering its signal toward the concomitantly measured reference (or gold standard)

values, are in fact comparable to the prediction performance requirements of a model.

Both sensor and model are crucial elements in (future) predictive control systems in

terms of determining the optimal insulin flow to be administered to the patient. Though

the selection of the cost function does not much influence the determination of the

‘optimal’ BIT number (as is depicted in Table 6.2), it is recommended to consider the

MSnE as penalizing function in the estimation process of the ICU-MM because of its

clinical interpretability.

6.5.2 Choice of evaluation measure

The use of the MSnE to evaluate the prediction performance of the model is preferred

above theMSE for the same reasons as described in the previous section. An alternative

technique to assess the performance of a model is the computation of the MPE. On

the one hand, the MPE has the advantage that the model prediction performance

can be easily clinically interpreted as an error in terms of percentage whereas the

MSnE returns a squared normalized value which is typically less easy to interpret.

Extracting the root of the MSnE (leading to the Root Mean Squared normalized Error

or RMSnE) clarifies the clinical interpretation, however. When the obtained RMSnE is

higher than 1, the ISO-criterion is violated meaning that the ‘average’ model prediction

capacity is inaccurate (see Chapter 3, 3.2.2). On the other hand, the MSnE has the

advantage that the model is evaluated based on a clinically well-defined criterion [75]

whereas the MPE may be too simple as assessment tool.

6.5.3 Choice of re-estimation time period

Re-estimating the model every hour results in smaller prediction errors than re-

estimations that take place every four hours. This result is expected, as frequent

updates of the model lead to smaller prediction horizons and, as a usual result, smaller

(absolute and relative) prediction errors. As described previously, it is our aim to

implement the developed ICU-MM in a (semi-)automatic predictive control system.

The controller (see Chapter 7) is assumed to optimize the insulin dose that should be
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delivered to the patient by simulating glycemia trajectories with the model (e.g., the

ICU-MM). In a first phase, this predictive control system will only act as an advisory

system (semi-automatic). This means that confirmation (by a nurse) of the insulin rate

adaptations will be mandatory before administering the insulin flow (that is proposed

by the controller) to the patient. Consequently, the workload of the medical staff is

expected to increase significantly. For this reason the insulin adaptation frequency

will be limited to once per hour. This immediately explains why updating the model

more frequently than once per hour would be futile. Hence, P was only set at 1 and

4 hour(s) in this study. Of course, after a thorough clinical validation of this semi-

automatic system, the insulin adaptation frequency may be increased further (e.g.,

P = 15 min) for use in a fully-automatic control system (i.e., confirmation by a

nurse is not required any more), which may lead to even smaller prediction errors than

obtained when P = 1 hour.

6.5.4 Choice of BIT

The ‘optimal’ size of the data set to be considered in each re-estimation process of the

ICU-MM is found to be 4 hours when P = 4 hours, and 5 hours when P = 1 hour
(although no statistically significant difference exists between the ‘optimal’ BIT data

set size and its neighbouring data set sizes). This means that only relatively recent data

need to be taken into account in each re-estimation process for accurately predicting

the glycemia signal (or at least the glycemia trends). Figure 6.9 clearly illustrates

the trade-off between model overfitting, when BIT is small, on the one hand and the

restricted modelling capacity of fast-changing dynamics, when BIT is large, on the

other hand (see also the figures in Appendix A). Re-estimations based on large amounts

of previous data (e.g., BIT = 18 hours) do not efficiently capture the varying patient
dynamics typical of critically ill patients and lead to large prediction errors. However,

only considering the most recent data of the specific patient (e.g., BIT = 1 hour)
leads to model overfitting and, similar to large BITs, explains the poor prediction

performance in that case.

6.5.5 Evaluation of the ‘optimal’ re-estimation strategy

Figure 6.14 illustrates the distribution of the 19 computed RMSnEs for the ‘optimal’

re-estimation strategy. In case model re-estimations every hour (P = 1 hour) are
allowed, all RMSnEs are found to be smaller than 1. This result indicates the clinical

feasibility of this ‘optimal’ re-estimation strategy as the ISO-criterion is not violated

on average (i.e., computing the average model prediction performance per patient).

When model re-estimations only every four hours are permitted, it is clear that the

model prediction performance decreases (larger RMSnEs) though the majority of the

calculated RMSnEs remains below 1.

Furthermore, the number of normalized errors that are larger than 1 can be determined

for all observations (i.e., packing all individual simulated glycemia data of all 19

patients). Then, this relative number of normalized errors can be related to the

tolerance levels that were introduced in Chapter 3 (see 3.2.4) such that the overall
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Figure 6.14: Distribution of RMSnE for P = 4 hours (left) and P = 1 hour (right)
when the ‘optimal’ re-estimation strategy is applied to the data (cost function = MSnE;

P = 4 hours: BIT = 4 hours, P = 1 hour: BIT = 5 hours).

model prediction performance is expressed instead of the average model prediction

performance that is obtained by computing the RMSnE per patient. The relative

number of errors that do not violate the ISO-criterion is 93.0% when P equals 1 hour,

and 90.3% when P is equal to 4 hours. In other words, the one-hour re-estimation

strategy of the ICU-MM satisfies (‘clinically acceptable’) the ISO-criterion on a 7%

tolerance level. The four-hours re-estimation strategy only satisfies the ISO-criterion

on a 10% tolerance level. Although this last simulation horizon is four times longer

compared with the one-hour re-estimation strategy, the model performance is still

tolerable.

The obtained average MPE values (7.3% and 12.5% for the optimal one-hour and four-

hours re-estimation strategy, respectively) further confirm these results. The relative

prediction errors obtained when re-estimating the ICU-MM every hour and every four

hours are smaller than the 20% target variability that is allowed in the ISO-criterion

for reference (sensor) values > 75 mg/dl (see Chapter 3, 3.2.2 [75]. This confirms the
clinical acceptance for both adaptive modelling approaches (assuming the availability

of an accurate and reliable near-continuous glucose sensor device).
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6.5.6 Patient case studies

Figures 6.10 and 6.11 show the predicted glycemia signal of patients 3 and 10. The

individual MPEs and RMSnEs for these ‘average’ patients are equal to 5.6% and

0.37, respectively, for patient 3, and 6.4% and 0.45 for patient 10, respectively, when

P = 1 hour. Analogously, the individual MPEs and RMSnEs when P = 4 hours
are found to be 8.5% and 0.56, respectively, for patient 3, and 12.1% and 0.78 for

patient 10. The ICU-MM approaches the real glucose dynamics of critically ill patients.

Although only two input variables (i.e., the flow of carbohydrate calories and insulin)

are effectively taken into consideration, the ICU-MM generally succeeds in predicting

glycemia trends for both P = 1 hour and P = 4 hours. The rather flat predicted
glycemia (output) dynamics that appear in some segments in Figures 6.10 and 6.11 are

caused directly by the corresponding flat input behaviour (e.g., Figure 6.10 top panel;

starting at t = 2120 min the fluctuating glycemia signal is not predicted accurately
by the ICU-MM, as its input variables, which play a significant role in predicting

the glycemia behaviour, have a constant flow). Observed glycemia fluctuations, that

are not predicted by the ICU-MM, hence result from unmodelled disturbance factors.

Updating the model on a regular base (every hour) is advised to compensate for these

unavoidable missing glycemia dynamics.

The model dynamics of patients 3 and 10 are further illustrated in Figures 6.12 and

6.13 for the one-hour re-estimation scenario. The second panel (X) depicts the typical
delay effect of the administered insulin flow on the glycemia signal. The flows of the

insulin variables (I1 and I2) show some abrupt changes caused by adaptations of the

input rates (FG and FI ) and the one-hour model re-estimations. The variableX , which
is the only state variable that directly influences the blood glucose (see equation 6.3a),

tempers this sometimes abruptly changing insulin pattern leading to realistic glycemia

evolutions. Moreover, Figures 6.12 and 6.13 illustrate the advantage of estimating the

initial ICU-MM based on the data of the first 24 hours. TheX , I1, and I2 state variables

are initially set at 0 as these states are not (cannot6 be) measured in the patient. The

in-sample estimation of the initial ICU-MM allows to make a reliable guess of the X ,
I1, and I2 state variables at t = 1441 min. Accordingly, glycemia can be predicted
more accurately starting from the second day onward.

A final feature of the proposed model re-estimation strategy is the limited computation

time. The current study was (off-line) implemented in Matlabr on a standard

computer (Intel Pentium-M, 1400-MHz processor). The N-LS program required

only approximately 1 minute to be solved (discrete-time model using Forward Euler,

Ts = 1 min). Accordingly, the on-line application of this technique is no issue in terms
of computation time.

6 It would be clinically feasible to measure the insulin concentration in the plasma (I1) regularly although

this would additionally increase the workload of the nursing team. In that case both G and I1 would be

known which would improve model prediction accuracy. However, only the state variable G was measured

in the data at hand. Finally, the state variables X and I2 do not correspond to a physical compartment and

cannot be ‘measured’.
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6.6 Conclusions

In this chapter a brief overview of existing physiological models that describe the

glucoregulatory system of healthy subjects or patients with diabetes was given. A

new model structure (ICU-MM) was developed for potential use in a predictive control

system to normalize the blood glucose of critically ill patients. Typical features of the

ICUwere therefore included in this ICU-MM. Since the model structure was developed

based on physiological insight, the closed-loop data were only used for parameter

estimation. Two different penalizing functions and three different model evaluation

tools were discussed. It was found that the MSnE was ideally used as cost function and

evaluation tool due to its clinically interpretable fundamentals.

Next, an adaptive modelling strategy that takes into account the time-varying character

of the glucose behaviour of the critically ill was proposed. The implementation of

the ICU-MM that was re-estimated every four hours or (preferably) every hour gave

promising results in terms of prediction performance. As expected, the prediction

performance of the model with re-estimations every hour was higher than with re-

estimations only every four hours. The first scenario satisfied the ISO-criterion on a 7%

tolerance level and the second strategy on a 10% tolerance level. Finally, its potential

use in a predictive control system for critically ill patients admitted to the (surgical)

ICU was illustrated with patient case studies. The results presented in this chapter are

further discussed in [219,223,226].
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Chapter 7

Control of Glycemia

The contribution of this chapter, which is focused on the control aspect as

illustrated in Figure 7.1, is twofold. First of all, an overview of already

presented control algorithms in the area of diabetes and the ICU to be

used for normalizing blood glucose is given and critically discussed. The

second contribution of this chapter is the development of a predictive

controller to be applied for normalizing glycemia in critically ill patients.

States and unknown disturbance factors are estimated with an Extended

Kalman Filter in a simulation study. The results of the developed control

system are satisfactory both in terms of control behaviour (reference

tracking and the suppression of unknown disturbance factors) and clinical

acceptability.

7.1 Introduction

A (predictive) control system typically comprises a predictive patient model and an

optimizing controller. The design of the patient model was described in Chapters 5

and 6. In this chapter an overview of the different control strategies that have already

been applied in the development of an ‘artificial pancreas’ is presented. Moreover, a

predictive controller for use in the ICU has been designed.

Before elucidating the features of glycemia controllers, it is important to indicate what

is not meant with the term ‘artificial pancreas’ in the context of this dissertation.

Already in 1968, the use of microencapsulated islets as artificial beta cells was

presented [33]. With the introduction of a semipermeable membrane on the top of

the microcapsules, a system could be developed to protect the transplanted islets

against rejection from the immune system [170]. Accordingly, the requirement of

immunosuppressive drugs could be eliminated further lowering the step towards a

‘bio-artificial pancreas’. Moreover, the use of animal islets or insulin-producing cells

engineered from stem cells can potentially compensate for the shortage of donors

[107]. Though the recent developments in stem cell research are hopeful for the future

161
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Figure 7.1: Simplified presentation of the (semi-)automated control system. This

chapter (Chapter 7) discusses the different control strategies already described in

diabetes and ICU literature. Next, the design of a predictive controller for use in an

ICU setting is shown and applied in a simulation study. The developed control system

can potentially be used to normalize blood glucose in the critically ill.

treatment of diabetes as well as other diseases (e.g., cancer, Parkinson’s disease, etc.),

it is not further studied in this work.

For the scope of this dissertation the term ‘artificial pancreas’ indicates a computerized

system that determines the insulin needs aiming at normoglycemia. In the ideal

scenario the artificial pancreas should operate in a fully-closed-loop setting meaning

that the input of the nurse (or the patient with diabetes) in computing the required

insulin dosage is reduced to a minimum. Further, this ‘ideal’ control system should

achieve perfectly normal blood glucose levels [99]. This ideal world differs from reality

for both patients with diabetes and critically ill patients as is explained in this chapter.

In general, a fully functional and ‘ideal’ artificial pancreas comprises a reliable near-

continuous glucose sensor, the control computer (i.e., the control system), and an

insulin pump (actuator). This is further illustrated in Figure 7.1. It has already

been extensively described before that a reliable near-continuous glucose sensor is the

major missing element of these three components [38, 94, 99, 101, 109, 162, 194, 209].
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However, it must be pointed out that the design of a ‘computerized’ controller (or the

control system, in general) to be used in patients with diabetes or in patients admitted

to the ICU to normalize glycemia is not yet a solved research issue. This chapter firstly

gives an overview of the control developments in the diabetes area. Next, an overview

of currently existing controllers developed for use in the ICU is presented. Finally, the

design of a first predictive controller based on the developed ICU-MM (see Chapter 6,

6.3) is explained and the results of this simulation study are discussed.

7.2 Blood glucose control in patients with diabetes

Patients with diabetes are instructed how to apply intensified insulin therapy in an

optimal manner. In 1993, the known Diabetes Control and Complications Trial study

demonstrated that intensive insulin treatment in patients with diabetes significantly

reduced the risk of diabetes complications [50]. This study confirmed the interest

in developing an artificial pancreas. The artificial pancreas is aimed to replace the

malfunctioning beta cells with the goal of achieving normoglycemia.

Therefore, understanding how these beta cells ‘control’ the blood glucose in healthy

persons is a first step in the design of an artificial pancreas. In Chapter 6 the typical

biphasic insulin response to a glucose load has already been described [14,69,106,194].

The first phase typically comprises an early peak plasma insulin concentration in

order to avoid a hyperglycemic ‘peak event’. This insulin rise can be directly

related to the glycemia rise (typically observed after administering a load of glucose

calories). The first phase is immediately followed by the second phase in which the

plasma insulin concentration behaviour follows the pattern described by the MM (see

Chapter 6, 6.2.2). The rate of rise of second-phase insulin concentration is found to be

proportional to the blood glucose.

Besides the typical biphasic insulin pattern, it is known that the beta cells also adjust

the insulin secretion based on antecedent hyperglycemic events and the current plasma

insulin concentration. Further, the insulin release is dependent on the amount of free-

fatty-acids and it can be stimulated by neural signals and gut hormones. Finally, a

tendency towards oscillating behaviour or the release by means of discrete pulses can

both be observed. These beta cell features, summarized in [194], illustrate that the

replacement of the ‘active’ pancreas by an artificial device may not be straightforward.

It is important to note that all existing prototypes of an artificial pancreas to be

used in patients with diabetes only work by lowering glycemia [99]. Only the

action of the insulin hormone is incorporated in current control strategies. In other

words, ‘hyperglycemic’ episodes can be compensated by increasing the insulin rate

whereas ‘hypoglycemic’ episodes can only be treated by diminishing the insulin flow

(eventually till 0 U/hr). Since the insulin action is not instantaneously faded away when

reducing the insulin rate till 0 U/hr (see the insulin dynamics described in Chapter 6,

6.3.2), however, it is clear glycemia will be elevated only after a (serious) time delay.

Obviously, this rather conservative control strategy has some limitations. When too
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much insulin is delivered to a patient (e.g., when the expected glycemia increase after a

meal was overestimated), the resulting hypoglycemic drip (that appears when the meal

is consumed) cannot be adequately treated. From a (theoretical) control perspective, at

least twomanipulation variables1 would be expected. The first manipulation variable

would be the insulin hormone (to lower blood glucose) and the second manipulation

variable would be glucose calories or the glucagon hormone which both have a

glycemia raising effect [8, 99].

Though some studies show the interest of controlling blood glucose in critically ill

patients using both insulin and glucose calories [38, 243, 244] and in diabetic swines

using both insulin and glucagon [68], clinical experts are not yet convinced of this

counteracting approach because of two reasons. First of all, at present only very few

is known about the features and the dynamics of the glucagon hormone (in contrast

to the insulin hormone). Secondly, it is questioned whether such an additional device

(that delivers glucose or glucagon) and the related increased complexity is justified as

it will be used only a few (but critical) times of severe hypoglycemia [99]. A trade-

off arises between the glycemia normalization performance on the one hand and the

social/ethical issue for the patient with diabetes (who has to carry the apparatus) on the

other hand.

An overview, presenting most important trends in the development of an artificial

pancreas for patients with diabetes, is given below. Elementary and rather advanced

control strategies can be distinguished. Finally, some prototypes that most approach

clinical reality are briefly discussed.

7.2.1 Elementary control strategies

The very first approach to closed-loop glycemia control was realized by Kadish in 1964

[102]. Glycemia was ‘continuously’ monitored and both insulin and glucose/glucagon

were intravenously delivered to a patient with diabetes. The controller was a relatively

simple on/off system. Insulin was infused if glycemia was above 150 mg/dl and

glucose/glucagon was administered if blood glucose was below 50 mg/dl.

In 1974, an artificial pancreas based on a first controller algorithm was independently

set up by Albisser et al. [1, 2] and Pfeiffer et al. [165] eventually leading to the design

of a commercial device: the Biostator [45–47]. This device comprised a dual infusion

system: insulin and glucose. The proportional-derivative (PD)2 structure of the applied

(feedback) control algorithm was based on a five-point moving average of the glucose

measurements [162]. Accordingly, glucose noise effects could be minimized. The

1 A manipulated variable (e.g., insulin) is the variable that is used to regulate the controlled variable

(e.g., blood glucose).
2A proportional-integrative-derivative (PID) controller is a typical example of a pure feedback controller.

The insulin infusion rate is adjusted based on the deviation from the target blood glucose (proportional

component), the area-under-the-curve between ambient and target glycemia (integral component) and the

change in ambient glycemia (derivative component) [94]. Here, only a subset of these three components is

consisered: PD.
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size of the device, however, was too bulky (due to the dual-reservoir system) to use

the system in real-life situations. Moreover, venous blood had to be ‘continuously’

withdrawn for glycemia monitoring and constant supervision was suggested.

Further, Botz [19], Marliss et al. [142], and Kreagen et al. [118] modified the control

algorithm. A similar glucose control algorithm was finally developed by Fischer et

al. [73]. Excellent review papers concerning these rather elementary control strategies

may be found in [8, 24, 94, 162]. It was concluded that none of these first glycemia

controllers were adequate to normalize blood glucose in patients with diabetes.

7.2.2 Advanced control strategies

Since the nineties, more advanced control strategies have been considered in the design

of an artificial pancreas for patients with diabetes. Most important studies are the

neural network controller developed by Trajanoski and Wach [204], the H-infinity

controller by Kienitz and Yoneyama [105], by Parker et al. [163] and by Ruiz-Velzquez

et al. [180] and the model based predictive controller (MPC) concept by Parker et

al. [159–162] and by Hovorka et al. [95, 181].

Particularly the use of MPC has found increasing interest to be applied to an artificial

pancreas [7, 8, 162]. The estimation of the future glycemia behaviour in response to

insulin and food inputs is a key benefit compared with classical pure feedback control

algorithms. The use of MPC enables the artificial pancreas to pro-actively (i.e., before

a known event actually occurs) adapt the insulin infusion rate whereas pure feedback

controllers change the insulin flow only after the effect of the (known) disturbance.

Accordingly, predicted hypo- or hyperglycemic events can be avoided with an MPC.

An essential feature of an MPC, however, is the required availability of a model

that accurately describes the patient dynamics. The possibility to update the model

parameters in order to increase the patient-specificity and the possibility to impose

some constraints on the inputs are further advantages of MPC. The characteristics of

MPC are further discussed in detail below (see 7.4.1).

7.2.3 Prototype systems

In this section a summary of the most known prototypes of the artificial pancreas for

patients with diabetes is given. A more detailed review of these prototypes may be

found in [7, 94].

7.2.3.1 Diabetes Advisory System (DIAS)

DIAS aimed to propose the optimal insulin rate based on the previous blood glucose

measurements, a quantification of the meal intakes (in terms of carbohydrates), and the

past insulin injections [91]. The used model had two unknown parameters (the insulin

sensitivity and the peak time of the specific insulin type) which were estimated based

on a Bayesian approach [7]. A double-blind study in a limited number of patients

showed a more strict glycemic control in the patient group who was daily advised by

DIAS [91].
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7.2.3.2 Automated Insulin Dosage Advisor (AIDA)

This computer simulation tool assessed the insulin scheme of a patient with diabetes

(number of insulin injections, type of insulin, insulin rates) [126–129, 131]. The

assessment was based on the ‘average’ day of the patient and solutions were suggested,

accordingly (e.g., regular hypoglycemic events at lunch time could be avoided by

reducing the morning insulin dosage, changing the type of insulin, etc.) [7]. Though

glycemia predictions were rather inaccurate, this simulation tool found its merit in

helping to understand the glucoregulatory system of patients with type I diabetes and

the corresponding treatment.

7.2.3.3 Advanced Insulin infusion using a Control Loop (ADICOL) project

The ADICOL project was a European project, initiated in 2000, with academic, clinical

as well as industrial partners. The aim was to design an artificial pancreas that would

near-continuously monitor and control the glucose concentration in patients with type I

diabetes [96]. Loss of sensitivity of the developed subcutaneous (near-continuous)

glucose sensor explained why eventually (delayed) intravenous (discrete-time) glucose

measurements were used in the clinical evaluation of the controller [94, 182]. The

major contributions of the ADICOL project were the simulation and initial clinical

closed-loop studies using the intravenous sensor with a 15 min sampling time and

subcutaneous delivery of insulin. The selected MPC strategy [95] was based on a

compartmental model developed by Hovorka et al. [98]. In order to individualize this

glucoregulatory model and to overcome the inter- and intrapatient variability, Bayesian

parameter estimation techniques were used. Although the ADICOL project showed

the potential and feasibility of using MPC in a closed-loop setting, it must be pointed

out that the clinical studies were performed only on a limited number of patients and

the test conditions were far from ‘real-life’ (e.g., fasting conditions, fixed meal times,

standard meals, etc.). Moreover, the proposed strategy was founded on the reliable

near-continuous monitoring of the glucose concentration since the high intravenous

sampling frequency (as imposed in the study) would not be feasible in long-term

clinical practice. However, such reliable near-continuous sensor device is currently

not available as already mentioned above. Still, this approach can be considered as

the first and, to the best of the author’s knowledge, most close to reality closed-loop

artificial pancreas prototype.

7.2.3.4 Others

Other closed-loop projects were executed by, among others, the company Medtronic

Minimed (that used an individualized PID controller) [195], the company Roche

Diagnostics (that converted an empirical algorithm into an MPC approach) [201],

Renard et al. (who followed a PD controller approach) [173, 174], and the group

of Freckmann (showing an MPC approach) [77]. Currently existing prototypes have

similar drawbacks as discussed for the ADICOL project.
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7.3 Blood glucose control in critically ill patients

The landmark study of Van den Berghe et al. [216] demonstrated the numerous

advantages of TGC in the (surgical) ICU. Normalization of blood glucose between 80

and 110 mg/dl was achieved by following a list of guidelines. Since then, different

alternative algorithms and control systems have been proposed. In this section an

overview of most known protocols and algorithms is given. It must be stressed,

however, that a detailed qualitative comparison of these protocols is not straightforward

as not all algorithms were described in detail. Moreover, as already discussed in

Chapter 4, a quantitative comparison (in terms of the obtained results) between

algorithms is rather difficult since an assessment depends on the selected measure (e.g.,

average blood glucose) and the design of the study (e.g., duration of stay in the ICU

and blood glucose sampling frequency). Therefore, the results that are obtained with

these protocols are not the main focus of this overview.

7.3.1 Leuven guidelines

The two TGC landmark studies [213,216], performed in the Leuven University hospital

were based on a set of guidelines used by the nursing teams. These guidelines,

however, do not behave as a simple ‘if-then’ protocol. Further, it is important to

note that insulin requirements have a wide inter and intra patient variability. The

need for insulin depends on insulin production reserves, insulin sensitivity before and

during critical illness, caloric intake, and the severity and nature of the underlying

disease [205]. Finally, the presence of (additional) infections and the administration of

medications (e.g., glucocorticoids) may severely affect the insulin resistance and the

need for exogenous insulin, consequently.

In [215] the insulin requirements of the patients from the 2001 study were studied.

Only 36% of the variance of the insulin requirements could be explained by some

patient- and disease-related factors (BMI, history of diabetes, reason for ICU admis-

sion, at-admission hyperglycemia), the mean daily amount of calories per kilogram of

body weight, the time in the ICU, and medication (e.g., glucocorticoids). Accordingly,

64% of the variation of the insulin doses were not predictable by the variables

mentioned above, but were based on the frequent monitoring of glycemia (i.e., every

four hours or more frequently in the initial phase or in case of complications), the time

course of the previous changes in blood glucose, an eventual rise in body temperature,

and the presence of additional infections. Moreover, these last variables are considered

in a set of guidelines, as already mentioned above, which can be summarized as

follows [207,215]:

INITIATION OF INSULIN INFUSION

• If blood glucose level exceeds 110 mg/dl then start insulin at 2 U/hr,

• If blood glucose level exceeds 220 mg/dl then start insulin at 4 U/hr.
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INITIAL STABILIZATION OF BLOOD GLUCOSE LEVEL

During first 12-24 hours after admission, until targeted level is reached, mea-

surement of blood glucose is advised every 1-2 hours:

• If blood glucose is > 140 mg/dl, then increase insulin dose by 2 U/hr,

• If blood glucose is between 110-140 mg/dl, then increase insulin dose by
1 U/hr,

• If blood glucose approaches target range of 80-110 mg/dl, then increase
insulin dose by 0.1-0.5 U/hr,

• If blood glucose lies within target range of 80-110 mg/dl, then maintain
insulin dose.

DOSE ADJUSTMENT AFTER INITIAL STABILIZATION

Check blood glucose at least every 4 hours. More frequent blood glucose

measurements are appropriate in case of steep changes of hypoglycemic events.

Dose adjustments should be proportionate to the observed change in blood

glucose:

• If blood glucose decreased by 50%, then reduce dose by half and check
blood glucose again in 1 hour,

• If blood glucose is between 60-80 mg/dl, then reduce insulin depending on
previous measurement and check again within 1 hour,

• If blood glucose is between 40-60 mg/dl, then stop insulin infusion and
ensure adequate baseline glucose intake; check blood glucose within

1 hour,

• If blood glucose< 40mg/dl, then stop insulin infusion and ensure adequate
baseline glucose intake. Administer glucose via 10 g intravenous boluses

and check blood glucose within 1 hour,

• If blood glucose starts to decrease within normal range, assume recovery
of insulin sensitivity and reduce insulin infusion by 20%.

Additional blood glucose controls are advised when body temperature is increas-

ing (typically associated with infection).

INSULIN ADMINISTRATION AND OTHER GUIDELINES

• Administer insulin by continuous intravenous infusion through a central
venous catheter. Use a standard concentration of 50 U of Actrapid HM in

50 ml of 0.9% NaCl,

• Intravenous glucose-containing solutions should always be administered by
an infusion pump,

• At times of planned interruptions of feeding, adjust insulin dose propor-
tionately (mostly 0 U/hr, or 0.5 U/hr in case of patients with a history of

diabetes),
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• When high doses of glucocorticoids are given (> 90mg/day hydrocortisone
or its equivalent), increase insulin dose to overcome associated insulin

resistance. Total daily dose of glucocorticoids is administered as a

continuous infusion to avoid fluctuating insulin requirements,

• When substitution (glucose) liquids need to be administered to overcome
possible renal insufficiency, neutralize the (glucose) liquids by adding

insulin: 16 U/liter for glucose 5% liquid, 12 U/liter for glucose 3.3% liquid,

or 10 U/liter for glucose 2.5% liquid.

It is obvious this set of guidelines is not a strict protocol. Lots of nursing-experience

is necessary for adequately controlling blood glucose in this type of patients. For this

reason alternative protocols and algorithms that aim to reduce the workload of the

nurses have been proposed.

7.3.2 Basic protocols or nomograms

The first type of alternative insulin protocols is the ‘basic’ protocol or the nomogram.

This is a detailed plan providing the nurse specific instructions concerning the treatment

of patients. Nomograms have the advantage that implementation in the currently

existing treatment therapy is rather simple and does hardly need any training of the

personnel. The efficiency of these basic protocols, however, may be insufficient for

two reasons. First of all, the protocol is aimed to be used for a large group of

patients leading to a rather general protocol without any patient-specific influence on

the treatment. Secondly, the nurses follow the respective protocol avoiding any active

contribution (i.e., deviation from the protocol).

This group of protocols can be further subdivided in ‘sliding scale protocols’ and

‘dynamic scale protocols’ [145, 240]. The first subgroup is characterized by the

delivery of a predetermined insulin flow defined by the glycemic range in which the

actual blood glucose lies. Let us give an example. When the patient’s blood glucose is

between 110 mg/dl and 140 mg/dl, 1 U/hr of insulin is administered; when the blood

glucose is between 141 mg/dl and 170 mg/dl, 2 U/hr of insulin are delivered; etc. The

second subgroup comprises basic protocols that are founded on a dynamic scale. In

that case, the next insulin rate is determined based on the previous insulin flow and the

actual blood glucose. Even glycemia trend information can be incorporated here. For

example, if the patient’s glycemia is between 110 mg/dl and 140 mg/dl, the previous

insulin rate is increased by 1 U/hr.

Some known basic protocols are listed below:

7.3.2.1 Balkin et al. [6]

In this work the authors presented different tables for determining the amount of

insulin. Depending on the previous insulin flow and the current and previous blood

glucose the amount by which the insulin flow was changed could be easily found. This

protocol was a typical example of the dynamic scale category and could be labeled
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as a pure ‘feedback’ protocol as no future disturbances were taken into account. The

default glycemia sampling interval was two hours and the goal glycemic range was

100-120 mg/dl although the protocol was only commenced at glycemia levels above

150 mg/dl. In total, the protocol was applied to 188 patients (with a minimum duration

of protocol application of 12 hours) divided over three different hospitals. The best

obtained average blood glucose was 134 ± 44 mg/dl.

7.3.2.2 Chee et al. [39, 40]

A closed-loop system, based on a sliding scale algorithm, was tested on five critically

ill patients. The insulin dose was computed using a formula that consisted of three

parameters: the basic dose (the basic sliding scale), the offset (that was related to

the glycemia trend), and a shutting-off parameter for insulin in case of hypoglycemic

events. The target glycemic range was 108-180 mg/dl, which was significantly higher

than that of the Leuven guidelines (80-110 mg/dl), and the insulin infusion rate was

adjusted every hour. The computed mean blood glucose for these 5 patients (trial during

24 hours) was 189 ± 43 mg/dl.

7.3.2.3 Taylor et al. [197]

Two nurse-driven insulin infusion protocols were compared with a conservative

physician-initiated protocol (i.e., no target blood glucose). The nurse-driven protocols

were similar to each other but differed in thresholds for initiating and discontinuing

insulin. The target glycemic range was 120-150 mg/dl for the first protocol and

80-110 mg/dl for the second. There were 71 patients who received a physician-

initiated insulin infusion, 95 patients who were involved in the study for the first nurse-

driven protocol, and 119 patients for the second nurse-driven protocol, respectively.

Further, this dynamic scale protocol was only based on the actual blood glucose and

the glycemia trend. The glycemia sampling interval varied from one to four hours

depending on the glycemic stability. The average blood glucose in the group with the

second nurse-driven protocol (132 mg/dl) was lower than that of the group with the first

nurse-driven protocol (163 mg/dl) and that of the group with the physician-initiated

protocol (190 mg/dl). One of the drawbacks of this protocol, as already mentioned by

the authors, was the high complexity level (33 potential interventions) explaining why

the protocol may not have been strictly followed by the nurses.

7.3.2.4 Goldberg et al. [80, 81]

The protocol defined in this study was another typical dynamic scale protocol that

determined the next insulin rate based on the actual and previous (trend information)

blood glucose and the previous insulin flow. The glycemia sampling period was set at

1 hour and the target blood glucose range was 100-139 mg/dl. The protocol was applied

to 52 medical ICU patients and 118 cardiothoracic ICU patients. The first patient

group obtained a mean blood glucose of 125 ± 12 mg/dl for patients with a history of
diabetes and 121± 18 mg/dl for patients without any history of diabetes. The duration
of protocol application was variable (D ≥ 72 hours in 48% of the cases). Mean blood
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glucose levels for the second group were 122±17mg/dl and 119 ± 14 mg/dl depending
on the hospital.

7.3.2.5 Chant et al. [34]

The dynamic scale nomogram presented in this work was founded on the actual

blood glucose value, the glycemia trend, and the previous insulin flow. The target

blood glucose range equalled 90-144 mg/dl and the glycemia sampling interval mostly

varied from 1 to 2 hours. The protocol was applied to 44 patients (admitted to a

medical/surgical ICU) resulting in an average morning blood glucose of 128±32mg/dl.
These results were compared to the glycemic behaviour of 42 patients receiving a non-

standardized insulin sliding scale (i.e., patient-specific alterations by the medical staff

were permitted). In this last group an average morning blood glucose of 176±50mg/dl
was obtained.

7.3.2.6 Kanji et al. [103]

Similar to the previous protocols, the next insulin rate was determined based on the

actual and previous blood glucose and the previous insulin dosage. The sampling

interval of this dynamic scale protocol varied from 30 minutes to 2 hours. The target

blood glucose range was the same as used in the landmark studies: 80-110 mg/dl. The

protocol was applied to 50 critically ill patients admitted to a mixed medical/surgical

ICU. The results were compared to another patient group (50 patients) receiving

a conservative physician-initiated treatment. Target glycemia was achieved more

rapidly and fewer patients experienced severe hypoglycemia when using the proposed

protocol. Nearly half of the glucose measurements (47%) fell in the target blood

glucose range supporting the concept of standardizing intensive insulin therapy.

7.3.2.7 Lonergan et al. [35, 138]

The Specialized Relative Insulin and Nutrition Tables (SPRINT) approach was an

alternative dynamic scale protocol aiming to provide an easy-to-use ‘paper’ protocol

(compared with the computerized protocols, see below). The SPRINT protocol

comprised an insulin and a feed wheel. This protocol was progressive due to the

presence of two manipulated variables: both the insulin input as well as the nutritional

input could be modulated. Accordingly, the actual and the previous glycemia value, the

previous insulin dosage, and the previous nutrition feed rate were used to determine the

insulin and nutrition intervention for the next interval. The patient’s age, body frame

size, and gender could further influence the nutrition manipulation variable. The target

glucose range was 72-110 mg/dl and glycemia was measured every 1-2 hours. The

SPRINT protocol was applied to 11 critically ill patients (with a varying duration of

algorithm application) resulting in an average blood glucose of 104 ± 16 mg/dl with
64% of the measurements in the target glucose range.
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7.3.3 Elementary computerized protocols

This category mainly consists of standard insulin infusion protocols that are comput-

erized aiming to facilitate glycemia control in the ICU. Ideally, these protocols are

integrated in a computerized decision support program. The obtained results seriously

differ depending on the considered protocol and may not give a clear view on the

general effect of computerizing protocols [188]. Important computerized but rather

elementary protocols are presented in the following overview:

7.3.3.1 Rood et al. [177]

In this study a blood glucose regulation guideline was implemented in paper and

computerized form. The actual and previous blood glucose combined with the previous

insulin infusion rate determined the next insulin flow. The recommended time interval

between two glycemia measurements could range from 15 minutes to 3 hours and the

target glycemia range was set at 72-126 mg/dl. The computer protocol was tested on

66 patients and compared to the paper protocol that was applied to 54 patients. The

duration of algorithm application did not remain constant. The time that was spent

in the target range was 54% for the computerized and 53% for the paper protocol

explaining that this difference was too small to be clinically significant (due to the

crossover effect when randomizing the patients). Compared to the results obtained

with the paper protocol before (44% in target range) and after (42% in target range)

this test phase, a clinically relevant improvement was found showing that integrated

computerized guidelines are useful.

7.3.3.2 Davidson et al. [57]

The ‘Glucommander’ algorithm that was presented in this study was founded on the

formula FI = (G − 60)m, where m symbolized a variable multiplier with starting

value usually set at 0.01 or 0.02. Depending on the glycemia trend and the actual

glycemia value, this multiplier was adapted leading to alteration of the insulin flow.

The suggested time interval for the next sampling varied from 20 to 120 minutes with a

target blood glucose range of 100-140 mg/dl. Data (> 120000 glucose measurements),
not limited to critically ill patients (most of the patients were admitted to general

medical and surgical wards with a variable duration of algorithm application), were

analysed giving mean glucose levels < 150 mg/dl achieved in 3 hours. The authors
claimed the proposed algorithm could be used in all units of any hospital, would be

easy to use by nurses (no responsibility for determining the required insulin doses),

and could lead to a lower prevalence of hypoglycemia (compared with the Leuven

protocol). A derivative of this algorithm, with a target blood glucose range lowered to

80-110 mg/dl, was recently proposed by Boord et al. [18]. The computer-based insulin

protocol outperformed the manual nurse-driven protocol in terms of time spent in the

target range.
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7.3.3.3 Thomas et al. [199]

An electronic insulin dose calculator was developed based on the Leuven protocol but

with a higher glycemic target range: 97-128 mg/dl. The suggested insulin rate was

determined based on the actual and previous glucose measurement and the previous

insulin dose. The time interval between glucose measurements varied from 30 minutes

to 4 hours. The study population comprised 288 patients (before introduction of

protocol), 502 patients (after its introduction), and 101 patients (after introducing a

modified protocol) and led to a decrease of the mean blood glucose (131 ± 32 mg/dl
vs. 119 ± 29 mg/dl vs. 112 ± 23 mg/dl, respectively). The duration of algorithm

application was not kept constant. The mortality rate remained constant during the

study in spite of the tighter glycemic control (possibly due to the higher target blood

glucose compared to the Leuven trials) but the study was also not designed for showing

potential survival improvements with TGC.

7.3.3.4 Meynaar et al. [148]

The computerized protocol presented in this study was based on a set of ‘if-then’ rules

that considered the actual and previous blood glucose, the previous insulin flow and

the amount of feeding (either ≤ 25 ml/hr or > 25 ml/hr) as inputs to the system. The
target blood glucose range was 81-135 mg/dl and mean blood glucose decreased from

166 mg/dl (without protocol) to 138 mg/dl (with protocol, 179 patients and with a

variable duration of algorithm application). The time to the next glucose measurement

could vary from 30 minutes to 4 hours.

7.3.3.5 Shulman et al. [188]

An insulin protocol was implemented into a bedside clinical information system aiming

at blood glucose levels between 80-110 mg/dl. A relative adaptation of the insulin flow

was suggested based on the actual and the previous measured glucose. Blood glucose

was sampled every 15 minutes, every one or two hours or even every 4 hours depending

on the observed glucose profile. The protocol was applied to 50 critically ill patients

(with a variable duration of algorithm application) leading to a median 23% of the time

spent in the target range (nearly half of the time the measured glycemia values fell in

the range 111-144 mg/dl). The rather low percentage in the target range explained why

the authors concluded that the used protocol (independent of the paper or computerized

format) was not efficient for TGC.

7.3.3.6 Vogelzang et al. [234]

This work presented a computer program, GRIP (Glucose Regulation for Intensive care

Patients), that recommended insulin infusion adaptations mainly based on the mean

insulin flow over the last 4 hours, the deviation from the actual blood glucose to the

target glycemia (that was set at 117 mg/dl), the glycemia trend over the last 4 hours, and

changes in the administration of enteral or intravenous glucose calories. The advised

sampling interval could vary from 30 minutes to 12 hours. The GRIP system was

tested on 179 patients (with a variable duration of algorithm application and a median
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4.9 glucose measurements per day). The target blood glucose range (72-135 mg/dl)

was achieved for 78% of the time favoring the use of computer-driven protocols over

nurse-driven protocols.

7.3.4 Advanced computerized protocols

The most promising category of protocols is founded on more advanced engineered

‘controllers’. Here, both pure feedback as well as predictive control systems are

presented. This last type of control system has the feature that future known

disturbance factors can be taken into account in the determination of the most optimal

insulin infusion dose. The following list of advanced computerized protocols gives an

overview:

7.3.4.1 Doran et al. [61]

A two-compartmental glucose system model was used in combination with a heavy

derivative PD controller to determine the intravenous insulin flow. The derivative gains

of this pure feedback controller were higher than the proportional gains as it was the

aim to control the shape of the blood glucose profile rather than its magnitude. Glucose

was sampled every 15 minutes in 4 proof-of-concept clinical trials. The first day of

each trial started by giving the patient a 75 g OGTT glucose dose. The data of this first

day were used to estimate the 4 parameters of the two-compartmental glucose system

model such that the fundamental (glucose) dynamics could be approximated by the

model output. The second day, every 15 minutes a new insulin rate was computed

by the PD controller and delivered to the patient. The second-day control in these

4 patients showed the potential of automated insulin administration. However, this

control approach relied on an OGTT test during the first day leading to poor blood

glucose control in this period. Due to the critical illness of this type of patients,

this strategy may not be ethically approved for standard clinical use. Moreover, this

approach also relied on a high glycemia sampling frequency which will only be feasible

in real-life ICU if reliable near-continuous glucose sensor devices are available.

7.3.4.2 Chase et al. [36, 37, 86, 243, 244]

A control algorithm modulating intravenous insulin infusion and bolus with an enteral

feed rate was developed in this work. Therefore, a two-compartmental model was used

to determine nutritional flow variations. Further, the insulin sensitivity was initially

estimated with the glucose data of the first hour (sampling interval equalled 15 minutes)

and adapted as a function of previously computed insulin sensitivities. The target blood

glucose range was 72-108 mg/dl though the target glycemia reduction in the control

algorithm was set at only 10-15% per hour in case of blood glucose values larger than

the target range. Every hour, the insulin bolus size, insulin infusion rate and nutritional

feed could be iteratively determined based on the estimated insulin sensitivity, the used

model, and the glucose values (sampled every 30 minutes) with the aim to achieve

the target glycemia at the end of the next hour. The system was applied to 8 proof-

of-concept clinical trials of whom the duration of algorithm application was 10 hours
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for seven patients and 24 hours for one patient showing acceptable stepwise glycemia

reduction.

7.3.4.3 Hovorka et al. [97, 166]

These studies presented the clinical feasibility of using a predictive control system

(expressed in a MPC format, see 7.4.1), instead of previously described rather classical

pure feedback control approaches, for normalizing blood glucose in the critically ill.

A MPC control strategy is explicitly founded on a model that describes the dynamic

glucoregulatory system of a patient. Here, the model was based on former studies in

patients with type I diabetes [95, 96]. Incoming glucose measurements were used to

update the model parameters. The blood glucose profile, the previous insulin flow,

and the carbohydrate calories determined the next insulin infusion dosage. The target

blood glucose range was set at 80-110 mg/dl and the sampling frequency was variable

(depending on the estimated prediction accuracy). It must be stressed that the initial

study [166] considered a one hour glycemia sampling interval, which was found to be

too short for use in clinical practice [135,167]. The updated MPC version was applied

to 30 critically ill patients and compared to a standard glucose management algorithm

(also 30 patients). The duration of algorithm application was set at 24 hours and the

average sampling interval was 1.5 ± 0.3 hours (compared to 2.1 ± 0.2 hours for the
standard protocol). The obtained average blood glucose values were 112±20mg/dl for
the MPC approach and 130±20mg/dl for the standard approach. The percentage of the
measurements in the target range was found to be 60% for the MPC approach and 27%

for the standard approach. Though the comparisons between the two approaches may

be partly falsified (due to the different average blood glucose sampling frequencies in

both groups), this study clearly shows the potential of using MPC to normalize blood

glucose in critically ill patients.

7.3.4.4 Van Herpe et al. [224]

This work introduced the design of another MPC approach that, however, incorporated

the developed ICU-MM (presented in Chapter 6, 6.3) as model, which was especially

designed for describing the glucoregulatory system of critically ill patients. This

predictive controller was tested in simulation with the first 48 hours-after-admission

data of 19 critically ill patients. The ICU-MM was initially estimated with the

near-continuously monitored data of the first 24 hours and the glucose profiles were

simulated (using the insulin flows determined by the MPC) for the next 24 hours and

compared with the real data of the second 24 hours. Accordingly, the duration of

algorithm application was set at 24 hours. The controller was able to adapt the insulin

infusion rate every hour or every four hours based on the measured glucose signal, the

recent insulin dosage profile, and the (future) flow of carbohydrate calories. A detailed

analysis of this study is presented below (see 7.4.2).
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7.3.5 Discussion

The previous overview presents the evolution of the Leuven TGC guidelines to some

basic insulin infusion protocols to elementary computerized protocols and to more

sophisticated blood glucose controllers. Particularly the use of the last group of

controllers can potentially lead to fully-automated glycemia control reducing the

workload of the nursing team. A few remarks should be stressed, however.

First of all, it is surprising to see that the blood glucose target values were raised

in many of the studies presented above although the two landmark Leuven studies

[213, 216] clearly showed a significant reduction of mortality and morbidity in case of

TGC between the narrow limits 80-110 mg/dl. The most important reason for this

is the fear of hypoglycemia when the lower glycemia threshold is set too low. In

general, hypoglycemia is defined as blood glucose values lower than 50 mg/dl with

neuroglycopenic symptoms or blood glucose values lower than 40 mg/dl in the absence

of these symptoms [211]. Infusing insulin (aiming at normoglycemia) bears the

risk of inducing life-threatening hypoglycemic events, particularly in sedated patients

[97, 211] and explains why this strict target range was elevated in many protocols:

hypoglycemia is often considered more dangerous than hyperglycemia.

Though the incidence of hypoglycemia was comparable to the Leuven landmark studies

(11%), two trials were prematurely stopped due to the apparently unacceptable high

number of hypoglycemic events. The German VISEP (Volume Substitution and Insulin

Therapy in Severe Sepsis) trial [26, 27], which was stopped after the inclusion of

488 patients, reported 12% for incidence of hypoglycemia in the intensive treatment

group without any significant reduction of mortality. The European GLUCONTROL

study [168], that was stopped after the inclusion of 1109 patients, notified 10% as

relative number of patients who have experienced at least one hypoglycemic episode.

The median blood glucose was found to be 118 mg/dl (IQ range: 109 - 131 mg/dl).

It is obvious that the applied insulin infusion protocol in these two studies was not

adequate to achieve TGC as patients were exposed to increased hypoglycemic risks

(incidence of hypoglycemia was comparable to the intensive insulin patient group

of the Leuven trials) without bringing the benefit of TGC (reaching normoglycemia

leading to a reduction of mortality and morbidity).

Nevertheless, some authors advise to set higher blood glucose targets (e.g., target

glycemia < 140-150 mg/dl in [168] to avoid these apparently hypoglycemic risks.

However, as often unstressed in articles, the Leuven landmark studies compared the

intensive insulin treatment (aiming at blood glucose levels between 80-110 mg/dl)

with the conventional treatment (administration of insulin only if the blood glucose

level exceeded 215 mg/dl and then maintenance of glucose at a level between

180-200 mg/dl). In the conventional treatment, however, blood glucose was not

forced to lie in this 180-200 mg/dl target range [213, 216]. In other words, when

glycemia was below 180 mg/dl the insulin flow was not adapted aiming at blood

glucose values between 180-200 mg/dl. Accordingly, the obtained average morning

blood glucose of the conventional patient group in the first landmark study [216] was
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153 ± 33 mg/dl. Surprisingly, this average is similar to the recommended target blood
glucose mentioned in some studies described above. The landmark studies clearly

showed the relation between mortality/morbidity reduction and TGC (80-110 mg/dl)

suggesting the conventional treatment may be harmful to the patients. The studies

from above, however, illustrate that some newly proposed insulin titration algorithms

still use ‘more conventional’ target blood glucose ranges which are not related to the

mortality/morbidity reduction.

Application of the intensive insulin therapy in the critically ill is expected to reduce

absolute mortality by 3 to 4% and even to 8% when the therapy is continued for at least

three days [213,216,229]. Confirmation of this 3 to 4% absolute mortality reduction in

similar studies would require a sample size of at least 5000 to 6000 patients [229]. The

Australian NICE-SUGAR (Normoglycemia in Intensive Care Evaluation and Survival

Using Glucose Algorithm Regulation) multicenter trial [154], which is currently still

ongoing, may have sufficient statistical power to confirm the mortality reduction when

applying TGC in a mixed medical/surgical patient population.

While awaiting the results of the NICE-SUGAR study it is recommended to consider

80-110 mg/dl as target blood glucose range in the critically ill as many studies

have already shown that many lives were saved with the intensive insulin therapy

[120, 172, 213, 216]. Indeed, hyperglycemia is more deleterious than hypoglycemia

in this type of patients. Moreover, incidental, brief episodes of hypoglycemia

may not cause serious harm when appropriately and rapidly treated [140, 185,

236] confirming the recommended compromise between perceived safety concerns

(avoiding hypoglycemia) and published evidence (avoiding hyperglycemia). Finally,

it is important to stress that no association between hypoglycemia and early or late

mortality was found in a recent study [236].

Secondly, it is hard to compare the results of different studies due to the non-

uniform evaluation strategy and the different study design. In most studies a new

(computerized) insulin infusion algorithm is compared to a more conservative (nurse-

driven) protocol. However, the selected measure (e.g., mean morning blood glucose,

mean blood glucose, time spent in target range, HGI, number of hypoglycemic events,

etc.) or the combination of measures differ over the mentioned studies. Moreover,

definitions of the target glycemic range, hypoglycemia, and others are dependent on

the study. The use of GPI, as presented in Chapter 4 (see 4.3.1), can potentially lead

to a uniform evaluation strategy in future studies. Next, the study design can falsify

the obtained results as has also been addressed in Chapter 4 (see 4.3.3). At least the

variables duration of algorithm application and blood glucose sampling frequency can

mislead evaluations when they are not similar among patient groups. Accordingly,

performance comparisons of algorithms published in different studies (e.g., computer

protocol 1 presented in study 1 versus computer protocol 2 presented in study 2) or even

within a study (e.g., computer protocol versus nurse-driven protocol) can be falsified.
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Thirdly, it is remarkable that some studies tend to compare the results obtained with

a newly proposed algorithm to the results of the Leuven landmark studies without

taking into account the influence of external factors. For example, the reduction of the

number of hypoglycemic events or the improvement of the level of TGC (compared

with the Leuven trials) are often mentioned without considering the increase of the

blood glucose sampling frequency, the shorter duration of algorithm application, the

different type of patients, etc. (see for example [38, 57, 166]). Furthermore, it is

important to note that the Leuven nursing team only applied some titration guidelines

instead of a real protocol. However, in simulation studies these Leuven guidelines are

typically transformed to an ‘if-then’ protocol, which is obviously not identical to the

real set of guidelines (that allow interpretation by the nurses) generating misleading

conclusions (see for example [35]).

Next, most of the present insulin infusion algorithms have only one manipulation

variable (i.e., insulin). Few exceptions are the studies described by Chase and co-

workers [35, 138, 243, 244] in which both insulin and the nutritional calories are

determined by the control algorithm. From a control perspective, the incorporation

of this additional manipulation variable may give more freedom to the algorithm to

improve the performance of the control system. However, wide-spread use of a system

with two manipulation variables does not seem to be accepted yet for clinical standard

practice as the rate of nutritional calories is typically based on a set of measured patient-

specific parameters and is certainly not only dependent on the blood glucose profile.

Moreover, it was shown that intensive insulin treatment works irrespective of the load

of parenteral glucose calories [214] explaining there is no urgent need to have the flow

of nutritional calories determined by the control algorithm. An alternative approach

to potentially increase the performance of a control system could be the inclusion of a

glucose/glucagon manipulation variable that is only aimed to pick up rapidly measured

hypoglycemic episodes. Accordingly, the fear of hypoglycemia due to the intensive

treatment with insulin could diminish. Nonetheless, it is likely that this extra feature

may only be incorporated in the first commercial (fully-)automated blood glucose

control systems when reliable near-continuous glucose sensor devices are available.

Finally, it is remarkable that some studies presented in the list above were based on

capillary glucose measurements (i.e., the ‘fingerstick’ which is typically used for

glucose monitoring by patients with diabetes) [6, 34, 57, 103, 138, 148, 178, 197, 243,

244]. Capillary samples should be avoided to be used with ICU patients as they can

lead to unreliable glucose measurements as previously shown [28,51,63,71,123]. Only

arterial and venous blood samples should be used to determine the blood glucose in the

critically ill.

In conclusion, the interest to design a computerized algorithm (control system) for

semi- or fully-automated blood glucose control in the ICU is increasing [235]. During

the last years different control strategies were presented generating promising results.

Though the usability of a fully-closed-loop system may depend on the availability of

a reliable near-continuous sensor device, it is expected that semi-closed-loop systems

(that require confirmation of the proposed insulin dosage by the nurse) may be soon
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commercially available on the condition that the blood glucose sampling frequency

could be lowered (aiming at sampling intervals between 1 and 4 hours). Further,

different control systems should be appropriately validated by taking into account the

similarity conditions (with regard to, at least, the blood glucose sampling frequency

and the duration of algorithm application) and the efficiency of the measure (e.g.,

HGI, GPI) as already mentioned in Chapter 4. Finally, it is important to note that

the introduction of (advanced) computerized algorithms can potentially further reduce

mortality and morbidity. None of the studies mentioned above, however, have sufficient

statistical power to show this feature as the number of patients enrolled in these studies

was too limited.

7.4 Design of a Model based Predictive Controller

In this section the features of MPC are explained and the advantages of this control

strategy over rather classical pure feedback control approaches are discussed. Next,

the design of a first predictive controller based on the earlier developed ICU-MM is

presented and the results of this simulation study are discussed.

7.4.1 Features of MPC

As it is generally understood in the field, MPC is a control paradigm that, based on

a dynamic model of the system to be controlled, solves a mathematical optimization

problem in order to find the optimal sequence of input signals within a finite future time

window of length N after which only the first input signal is applied to the system. At

the next sampling time, the procedure is repeated based on new measurements of the

state of the system. This process goes on indefinitely [116,150].

In summary, it can be stated that any MPC control system should be constituted of at

least the following elements:

• a dynamic mathematical model describing the system to be controlled,

• explicit on-line mathematical optimization,

• the notion of a finite future time horizon of length N within which an optimal

input sequence is computed by aforementioned optimization problem.

Other important explicit features of any MPC are:

• the possibility to impose constraints in the optimization problem (e.g., no

negative insulin flow, maximum insulin rate),

• the possible use of an adaptive model to capture varying dynamics of the patient
(e.g., changing insulin resistance),

• the tracking of a reference trajectory in a fully-closed-loop.
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The application of the MPC in this setting is as follows: the system to be controlled is

the patient (or more precisely: the glucoregulatory dynamics of the critically ill patient)

and the input signal is the insulin dosage profile. The control paradigm is based on

the dynamic model of the patient (system), and solves a mathematical optimization

problem in order to find the optimal sequence of the insulin dosage profile (input

signal). Typically, for patients in intensive care units, after a time period of about four

hours (corresponding to the finite future time window of lengthN ) only the first insulin
dosage (input signal) is applied to the patient (system). At the next sampling time, the

procedure is repeated based on new blood glucose measurements (i.e., information on

the state of the system). The MPC optimization process is repeated at each time instant

by moving the time-window for which the optimal insulin dosage is computed. This

principle is depicted in Figure 7.2.

u(k)

k Timek+N

Optimization window at time  
Optimization window at time  

k
k+1

FuturePast

Figure 7.2: MPC optimization process at arbitrary time instant k. In this setting u(k)
represents the insulin flow at time instant k. The future time window N is set at 4

hours. This time horizon is typical of blood glucose control in the ICU (see also

Chapters 5 and 6). The MPC optimization process is repeated at each time instant

k by moving the horizon leading to ‘receding horizon control’. At every time instant
k an optimal control problem of length N is solved after which only the first insulin

dosage is delivered to the patient.

MPC is a practical method for the real-time application of optimal control theory that

introduces the notion of feedback by using incoming measurements, while avoiding the

need for excessive storage space for storing off-line computed optimal input signals.

The use of MPC in this particular field is distinguishing from other control strategies

by its flexibility with regards to adaptive models. Since an optimization problem is

imposed at each time instant, the adaptations made to the dynamic mathematical model

(model updates), as discussed in Chapter 6, can be easily implemented and directly

influence the control behaviour. Moreover, classical algorithms only use feedback

control to maintain normoglycemia meaning that they respond to monitored hypo- or

hyperglycemic episodes. Predictive control algorithms, however, take into account

future known disturbances aiming to prevent deviations from normoglycemia. The use

of dynamic models further allows to achieve the target effect (e.g., normoglycemia)

in a shorter time compared with control strategies that are based on a static model or
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no model at all. This shorter settling time is of the utmost importance when treating

critically ill patients.

7.4.2 Simulation study

Consider the following future semi- or fully-closed-loop automated blood glucose

control approach. When a new patient enters the ICU, the dynamic model that is

used in that predictive control system is an initial model based on the patient profile

(determined by BMI, history of diabetes, etc.) and some on-admission parameters

(e.g., reason for ICU admission, blood glucose on admission, etc.). Distinct classes,

each associated with their own parameter settings for the initial model, are classified

in advance. The closed-loop measurements are used to adapt these initial model

parameters such that it more closely approximates the real dynamic behaviour of the

considered patient. As the patients, admitted to the ICU, are characterized by highly

varying patient dynamics (e.g., the insulin resistance is related to the severity of illness

of the patient, which evolves as a function of time), the use of an adaptive model

strategy is necessary to capture these inter- and intra-patient variability. This adaptive

modelling strategy was discussed in Chapter 6. In this section the design of a MPC

using an Extended Kalman Filter (EKF) is presented and its potential is demonstrated

with simulations.

7.4.2.1 Mathematical formulation of a MPC with EKF for use in the ICU

The use of MPC to normalize glycemia in the ICU gives the advantage to consider the

effect of current and future control moves (i.e., the insulin rates) on the future outputs

(i.e, glycemia). It consists of solving a fixed-size optimal control problem at each time

instant after which only the first control move (i.e., the insulin rate for the next time

instant) of the optimal input sequence is applied to the system (i.e., the patient). In this

setting, only the flow of delivered carbohydrate calories FG is a known disturbance

input variable of the system. We assume this rate is known for the particular prediction

horizon (N = 4 hours), which is a clinically feasible condition. As a result, this
knowledge can be incorporated into the optimization problem leading to pro-active

behaviour.

The MPC methodology explicitly takes imposed constraints into account, which

classical control algorithms [21, 62, 76] typically cannot. For medical reasons the

maximum insulin infusion rate (i.e., the control input) is set at 50 U/hr. In addition,

the administered insulin flow is obviously constrained to be positive. The cost function

that needs to be minimized in each optimization problem is described as follows:

min
x,u

Jk(x,u) =

N
∑

i=1

(xk+i − xrefk+i)
T Q(xk+i − xrefk+i) +

N−1
∑

i=0

uT
k+iRuk+i, (7.1)

where x and u denote vector sequences containing all states respectively inputs within

the horizon. Every state vector xk represents the four states of the ICU-MM (as

presented in Chapter 6, 6.3): G, X , I1, and I2 at time k of which G is the controlled
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variable. The input vector uk represents the manipulated variable FI at time k. The
design parameters of the MPC are the weighting matrices Q and R (of which the ratio
Q/R was found to be 107 based on the available patient data), and the prediction

horizon N . The cost function comprises a trade-off between inputs and deviations
from the desired glycemia level (reference trajectory = 95 mg/dl). The discrete-time

model used in the MPC is obtained implicitly via integration of its continuous time

counterpart over piecewise constant inputs with a sampling time of Ts = 1 min. For
reasons of computational complexity time steps of 10 minutes are considered in the

optimization problem. The integrating method is a standard Matlabr ODE (Ordinary

Differential Equation) solver.

Numerically the optimization problem is solved in an SQP (Sequential Quadratic

Program) fashion by means of local linearizations of the ICU-MM [149]. The gradients

and the Hessians are computed by applying the forward Euler discretisation method.

However, in the simulations the non-linear format of the ICU-MM is used. The initial

value for insulin in each optimization problem is defined as the rate that is administered

at the last time instant before the new optimization. A safety procedure is introduced

to restrict hypoglycemic episodes by halving this initial value if a threshold glycemia

value of 85 mg/dl is reached.

7.4.2.2 Assessment method

The considered first 48 hours-after-admission data set, of which one patient was

allowed to leave the ICU already after 24 hours, is described in detail in Chapter 2,

2.4.4. Therefore, the data of 19 patients are used in the simulation study that is

presented here. The monitored glucose signals (sampling interval 3 minutes) are

linearly interpolated to one-minute glucose sampling data. The ICU-MM is initially

estimated with the near-continuously monitored data of the first 24 hours (following

the procedures explained in Chapter 6) and the glucose profiles are simulated (using

the insulin flows determined by the MPC) for the next 24 hours. The assessment of the

developed control system consists of a quantitative and a qualitative analysis:

1. Assessment 1: Quantitative analysis

In this part the performance of the MPC is evaluated by computing the GPI (see

Chapter 4, 4.3.1) for each patient in two sets of simulations. In each set of

simulations the prediction horizon is equal to 4 hours whereas the insulin flow

adaptation frequency depends on the considered set of simulations.

• The first set of simulations is characterized by an adaptation frequency

of once per hour. This is further called the ‘one-hour-period’ simulations

meaning that the most optimal insulin dosage profile for the next 4 hours

(i.e., the prediction horizon) is determined every hour, but that only the first

insulin rate (that corresponds to the flow of the next hour) is effectively

imposed to the ICU-MM. A new optimization problem is defined at the

next time instant (i.e., one hour later) leading to an updated insulin infusion

scheme for the following 4 hours. Again, only the first insulin flow is

delivered to the ICU-MM.
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• In the second set of simulations the insulin infusion rate can only be

adapted every 4 hours leading to solving the optimization problem only

every 4 hours. This set of simulations is further defined as the ‘four-

hours-period’ simulations. The ICU-MM used in the simulations, however,

remains to be updated every hour to incorporate the changing physical

conditions of the patient.

The patient specific series of model coefficients (with BIT = 5 hours for
the one-hour-period simulations and BIT = 4 hours for the four-hours-period
simulations) that were gathered in the estimation process (see also Chapter 6,

6.4) are considered in the simulations. The MPC simulations start after the first

24 hours (which were used to estimate the initial set of coefficients) and continue

until the end of each patient’s data set (with a maximum simulation run of 24

hours). Some additional and non-modelled disturbance factors are added in this

set of simulations in order to test the robustness of the developed MPC:

• Measurement error: The in-vitro error, for glucose sampling, varies

around 4% depending on the measurement device [171]. However, this

percentage is lifted to 15% (gaussian noise) as a worst-case scenario for

the in-vivo measurement error [239].

• Medication: The administration of medication FM (e.g., glucocorticoids)

can disturb blood glucose levels. Although this disturbance factor is

not included in the ICU-MM (see model 6.3 in Chapter 6), it is also

introduced as an additional disturbance factor (unknown to the MPC) in

the simulations. After a first simulation period of 6 hours, a (fictitious)

continuous drug flow (leading to a glycemia increase of 2 mg/dl/min) is

administered to the patient for 5 hours, followed by a continuous drug flow

(that results in a blood glucose increase of 1 mg/dl/min) for another 5 hours.

MPC is a practical method for the real-time application of optimal control theory

that introduces the notion of feedback by using incoming measurements (i.e.,

the simulated glucose signal in which 15% gaussian noise is added). In the

MPC framework it is assumed that full state information is available. In our

case only noisy measurements of glycemia are available and states need to

be estimated. A non-linear state estimator - in casu an EKF - is employed

for this purpose [125, 162]. The tuning of the state estimator is based on the

auto-covariance of the additive measurement noise. As discussed, to make the

case more realistic an unknown input disturbance d̂k is added to the ICU-MM.

This disturbance could represent plant-model mismatch or could originate from

administered medication or other unknown/unmeasurable disturbance factors.

To account for these disturbances the EKF equations are augmented. In the

MPC it is assumed that the currently estimated disturbances are constant over

the future window: d̂k+i = d̂k, i = 0 . . . N − 1. This approach proved to be
effective for dealing with slowly varying input disturbances as encountered in

this application.
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2. Assessment 2: Qualitative analysis

In the second assessment the performance of the MPC is compared with the

performance of the nursing team assuming the ICU-MM (that is estimated for

each patient individually and re-estimated every hour to capture the patient’s

changing conditions) completely represents the particular patient (i.e., without

any to the model unknown disturbance factors).

Since we do not know the exact blood glucose profile if a certain insulin infusion

rate, other than the rate determined by the nurse, would have been administered

to the patient, this analysis is purely qualitative. The near-continuous glucose

values, that were measured by the GlucoDay system (see Chapter 2, 2.4.4),

are submitted to the MPC and the optimization problem is defined every hour

by using the one-hour model re-estimation sets (with BIT = 5 hours). The
adaptation frequency of the insulin rate is set at once per hour and the prediction

horizon equals 4 hours. The flow of carbohydrate calories that was effectively

administered to the patient serves as (known) disturbance input variable of the

system.

7.4.2.3 Results and Discussion

In this section the performance of the MPC is firstly discussed for both the ‘one-hour-

period’ and the ‘four-hours-period’ simulations. In the next phase the performance of

the MPC is qualitatively compared with the control behaviour of the nursing team.

1. Assessment 1: Quantitative analysis

Table 7.1 presents the results of the simulation study, expressed in GPI, for the

one-hour-period and four-hours-period simulations. The relative contributions

of the hypo- and hyperglycemic values to GPI (symbolized by CHypo and CHyper,
respectively) are also depicted. The median and 25-75% IQ range are found

to be lower than the ‘clinically acceptable’ cut-off GPI = 23 (as discussed
in Chapter 4) for both approaches. This indicates that blood glucose is tightly

controlled in these simulations in spite of the inclusion of a large (medication)

disturbance factor (that is unknown to the MPC) and a high measurement error

(15%). Moreover, Table 7.2 shows the relative times spent in each glycemic

range when considering all simulated glucose data (all patients). It can be

observed that the relative time spent in the normoglycemic range is almost 60%

in spite of the imposed disturbance factors and the short simulation period (in

the initial phase after admission to the ICU, that is typically related to unstable

glucose behaviour as presented in the re-estimated models), which was restricted

to 24 hours due to the nature of the available data set. Further, the relative number

of severe hypo- and hyperglycemic episodes is also negligible (see ranges 1

and 7 of Table 7.2). It can be concluded that the developed MPC strategy,

independent of the one-hour-period or the four-hours-period approach, allows

to tightly control glycemia in this simulation study with 19 (virtual) critically ill

patients.
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Table 7.1: GPI-evaluation of the simulation study

Median 25% - 75% IQ range

One-hour-period GPI 9 6 - 15

CHypo 35.6% 8.3% - 41.5%

CHyper 64.4% 54.5% - 89.4%

Four-hours-period GPI 12 8 - 15

CHypo 46.7% 17.0% - 67.1%

CHyper 53.3% 31.2% - 82.1%

However, it is clear that an insulin flow adaptation frequency of once per hour

generates better results than the scenario in which the controller is allowed to

alter the insulin rate only every 4 hours. Indeed, the obtained GPI values are

lower for the one-hour-period simulations than the computed GPI values for the

four-hours-period simulations (see Table 7.1). This result could be expected

since the first approach allows to update the model (used in the MPC) more

frequently than the second (leading to a more adequate representation of the

real patient behaviour) and further allows to appropriately adapt the insulin

infusion dosage more frequently (leading to a better prevention of or response

to deviations from normoglycemia). An even larger difference between both

cases can be expected when applying more high-frequent disturbances. Further,

the contribution of the hypoglycemic events (that are the main reason why

clinicians may be afraid of applying TGC) to the computed GPI is lowered for

the one-hour-period simulations compared with that of the four-hours-simulation

(from 46.7% to 35.6% for the median values). In other words, the (simulated)

blood glucose profile is stricter controlled (lower GPI than in the four-hours-

period simulations) and, in addition to this better control, the contribution

of the hypoglycemic deviations to this (lowered) GPI is also lowered. This

means that fewer deviations from normoglycemia are observed in the one-hour-

period simulations and that the majority of the remaining deviations originate

from hyperglycemic episodes (which appear to be more acceptable than severe

hypoglycemic events for most clinicians).

It must be remarked, however, that the relative time spent in the hyperglycemic

range is slightly more in the one-hour-period approach. This may be explained

by the introduced safety procedure to prevent hypoglycemic episodes, which

is more frequently activated in case of the one-hour-period simulations. This

safety procedure halves the initial value for insulin in the optimization problem

if a threshold glycemia value of 85 mg/dl is reached. Accordingly, a decrease

of the insulin flow is proposed by the MPC which may lead to more (slight)

hyperglycemic episodes (if the decrease of the insulin flow appears to be too

much). Thus, the computed GPI values are lower for the one-hour-period

simulations indicating that the level of overall glycemic control is tighter than for

the four-hours-period simulations based on current clinical ‘expert’ knowledge.

This lower GPI value can be explained by the lower number of hypoglycemic
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Table 7.2: Relative time spent per glycemic range for the ‘one-hour-period’ and the

‘four-hours-period’ simulations when all patients are considered.

Range

No

Clinical description Glycemic range

(mg/dl)

One-hour-

period (%)

Four-hours-

period (%)

(1) Hypoglycemic alarm G < 40 0.1 0.2

(2) Hypoglycemia 40 ≤ G < 60 0.7 2.2

(3) Slight hypoglycemia 60 ≤ G < 80 9.7 15.9

(4) Normoglycemia 80 ≤ G ≤ 110 58.6 55.8

(5) Slight hyperglycemia 110 < G ≤ 150 26.6 23.2

(6) Hyperglycemia 150 < G ≤ 200 4.2 2.6

(7) Hyperglycemic alarm 200 < G 0.1 0.1

events and the higher number of normoglycemic events (see Table 7.2). The

(slightly) higher number of hyperglycemic episodes (i.e., more time is spent

in the hyperglycemic range for the one-hour-period approach) does not have

sufficient weight to increase GPI suggesting that these events are particularly

slightly hyperglycemic.

Figure 7.3 illustrates the simulated glucose profile of patient no. 11 (as example)

that is generated with the one-hour-period and four-hours-period simulations

and the delivered known and unknown input flows. The individually computed

measures for this patient are 4 for GPI, 35.6% for CHypo, and 64.4% for CHyper
in case of one-hour-period simulations and 14 for GPI, 68.8% for CHypo, and
31.2% for CHyper in case of four-hours-period simulations. Although the MPC is
able to suppress the unknown medication disturbance factor in both approaches,

the insulin flow is increased faster (at t = 420 min) when a once-per-hour
insulin adaptation frequency is applied so that glycemia relatively fast re-enters

the normoglycemic range in spite of the existing unknown disturbance factor.

This proof of robustness is an important feature of the controller for possible use

in a real-life ICU setting. It indicates its skill to take into consideration unknown

disturbance factors that are abundantly present in the ICU by exploiting the EKF.

Due to the ability to frequently adapt the insulin infusion rate with the one-

hour-period MPC, blood glucose profiles that are evolving to hypoglycemia can

be prevented. This is visualized in Figure 7.3 when the unknown medication

disturbance factor is halved (at t = 660 min) and dropped (at t = 960 min).
The simulated blood glucose - in case of an adaptation frequency of once per

hour - stays only for a limited amount of time in the slight hypoglycemic range.

The observed (simulated) glycemia values, the future known disturbance factor

(i.e., the administered carbohydrate calories) and the use of the EKF (to estimate

unknown disturbances) provide the appropriate information to the MPC for

optimizing the insulin infusion sequence.
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Figure 7.3: The evolution of the simulated blood glucose G (top panel) for the one-

hour-period (solid line) and the four-hours-period (dotted line) simulations of patient

no. 11. The flow of the carbohydrate calories FG (second panel) is the disturbance

factor that is known to the MPC whereas the insulin rate FI (third panel) is the insulin

sequence that is proposed by the one-hour-period MPC (solid line) and the four-hours-

period MPC (dotted line). A fictitious medication disturbance factor FM (that is

unknown to the MPC) is visualized in the bottom panel.

It is important to note that the (to the MPC unknown) disturbance factor is

introduced at t = 360 min whereas the one-hour-period MPC and the four-
hours-period MPC are only able to change the insulin rate after observing the

disturbed glucose signal (i.e., at t = 420 min and t = 480 min, respectively).
If, however, the unknown disturbance factor would have been introduced earlier

(e.g., t = 240 min), then the one-hour-period MPC would have changed the
insulin flow again one hour later (t = 300 min), but the four-hour-period MPC
would still have to keep the current insulin flow constant till t = 480 min since
the insulin flow adaptation frequency is limited to once per four hours. This

indicates that the controller performance difference between the one- and four-

hours-period MPC would further increase. In general, we can conclude that

the performance of a controller will increase if the insulin infusion adaptation

frequency is higher. Possible disturbed glucose profiles can be captured more

quickly so that, by properly modifying the insulin infusion rate, the reference

glycemia value can still be tracked.
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2. Assessment 2: Qualitative analysis

Figure 7.4 represents the real-life glucose signal, measured with the GlucoDay

system (A. Menarini Diagnostics), of patient no. 4. These real glucose values are

delivered to the MPC in order to introduce the notion of feedback. However, we

want to stress the infeasibility to compare quantitatively the insulin infusion rates

proposed by the MPCwith the flows that were delivered to the patient in real-life.

The evolution of the real blood glucose when an insulin rate (determined by the

MPC) other than the nurse-driven insulin flow would have been administrated,

cannot be known. Therefore, this second set of simulations is restricted to a

qualitative analysis. It must also be noted that the nurses made use of the

blood glucose values that were measured with the ABLmachine (for determining

the insulin flows) and not the GlucoDay system since retrospective calibrations

of the near-continuous GlucoDay glucose data with the ABL machine were

necessary (see also Chapter 2, 2.4.4).
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Figure 7.4: The evolution of the real glycemia G (top panel), measured with the

GlucoDay system (A. Menarini Diagnostics), of patient no. 4 after administration of

carbohydrate calories FG (middle panel) and insulin FI (bottom panel, solid line). The

insulin infusion flow that is proposed by the MPC is presented in the bottom panel

(dashed line) and can be qualitatively explained (see text).

During the first three hours, the MPC proposes to infuse a larger insulin rate

than was administered in real-life. This increasing rate can be explained by

the slight hyperglycemic episode (top panel) and the fact that this insulin rise

seems to be not sufficient to evolve glycemia to the reference signal (95 mg/dl).

It can, however, be assumed that glycemia would have been evolved to the
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reference signal if the initial higher insulin flow would have been delivered to

the patient instead of the nurse-driven insulin flow. The decrease in administered

carbohydrate calories at time t = 240min is known by the MPC in advance such
that the proposed insulin flow is pro-actively decreased at that time instant. In

reality, however, the nurse did not take into account this decreased calories flow.

Because of the slight hyperglycemic event in the initial phase and the decreased

nutritional rate (while maintaining a constant insulin flow) glycemia evolved to

the normoglycemic range. At time t = 480 min the nurse increased the insulin
flow leading to a slight hypoglycemic event two hours later. Since the cut-off

glycemia value (85 mg/dl) is reached, the initial insulin value is halved (in the

MPC optimization problem) leading to a significant reduction of the proposed

insulin flow that can be observed at time t = 540min. Next, the nurse decreased
the insulin rate (at time t = 720 min) leading to increased glycemia values. It is
clearly illustrated that the MPC proposes to gradually increase the insulin flow

in response to this glucose raising effect. The fluctuating blood glucose profile

visualized in the last phase and the designed safety procedure are responsible for

the fluctuating insulin infusion sequence that corresponds to these last hours.
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Figure 7.5: The evolution of the real glycemia G (top panel), measured with the

GlucoDay system (A. Menarini Diagnostics), of patient no. 12 after administration

of carbohydrate calories FG (middle panel) and insulin FI (bottom panel, solid line).

The insulin infusion flow that is proposed by the MPC is presented in the bottom panel

(dashed line) and can be qualitatively explained (see text).

Another patient example is illustrated in Figure 7.5 that represents the real-

life glucose course of patient no. 12, measured with the GlucoDay system.
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During the first three hours the MPC proposes to infuse a larger insulin rate

than was administered in real-life. This proposed flow could have led to

normoglycemia instead of the hyperglycemic episode that was obtained after

administering the (lower) nurse-driven insulin infusion rate. At time t = 240
min the flow of carbohydrate calories is decreased to 0 mg/min for 2 hours

(because of medical reasons). Since this input is known to theMPC, the proposed

insulin infusion is significantly decreased as well. The safety procedure that is

introduced to restrict hypoglycemic events is clearly shown in the next phase.

Each time that the smoothed glycemia signal reaches the threshold glycemia

value (85 mg/dl), the initial value in the optimization process is halved (e.g., at

time t = 480, 600, and 780 min). Since the real glucose signal evolves to the
hyperglycemic range in the time period that follows, the insulin rate is again

increased each time. At time t = 900 and 960 min the insulin flow is decreased
again which can be explained by the active safety procedure (threshold level)

and by the compensation for the known decrease of the flow of administered

carbohydrate calories.

7.5 Conclusions

The first main part of this chapter presented a critical overview of the different

control strategies known in the area of diabetes ranging from elementary to more

advanced control approaches. The Leuven guidelines are generally accepted as ‘gold

standard’ algorithm for blood glucose control in the ICU but require interpretation

of the nurse. Therefore, novel algorithms have been presented in the available

literature for automating this insulin infusion process. These algorithms range from

basic protocols (or nomograms), elementary computerized protocols to rather more

advanced computerized protocols and were briefly presented and discussed in this

chapter. Particularly the advanced computerized algorithms can potentially automate

the normalization of blood glucose in the critically ill (with reduced input of the nursing

team) though the availability of a reliable near-continuous glucose sensor device seems

to be an essential element.

The second main part of this chapter introduced the design of a MPC to be used for

controlling blood glucose in critically ill patients based on the earlier developed ICU-

MM. Simulated glycemia and insulin profiles were quantitatively and qualitatively

analysed. The robustness of the MPC approach was shown by estimating states

and unknown disturbance factors with an EKF. In general, the MPC performance

increased if the insulin infusion rate could be adapted by the control system every

hour instead of every four hours. From a qualitative point of view, the developed MPC

proposed clinically feasible insulin infusion sequences. When comparing the MPC

insulin schemes to the nurse-driven insulin rates that were effectively administered

to the patient, some hyperglycemic and hypoglycemic episodes (that were present in

the current nurse-driven data sets) might have been avoided. These results are further

described in [223,224].



Chapter 8

Conclusions and Future

Research

8.1 Conclusions

Critically ill patients show hyperglycemia and insulin resistance associated with

adverse outcomes. It has been shown that strict blood glucose control (between 80 and

110 mg/dl) results in an important reduction of mortality and morbidity. Preservation of

these benefits demonstrated with the manual intensive insulin therapy while reducing

the prevalence of hypoglycemia and the workload of the nursing teams can lower the

barrier of implementing this TGC strategy in hospitals world-wide. The introduction

of a blood glucose control system that semi- or fully-automatically determines and

administers the optimal insulin dose to the patient can potentially fill this gap. Further,

automated blood glucose control can potentially reduce the patient costs of healthcare

resources and the mortality/morbidity rate in ICUs that currently apply the manual

intensive insulin therapy.

In this thesis, three different objectives are set:

1. the design of an assessment procedure for glucose sensor devices,

2. the design of an evaluation tool for blood glucose control algorithms used

in the ICU,

3. the design of a (semi-)automatic control system for normalizing the blood

glucose in the critically ill.

Each of these objectives are successively discussed with respect to the achieved results

in this final chapter.
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Conclusions for Objective 1

Chapter 3 of this thesis addresses the problem of evaluating the performance of blood

glucose meters and GMS. Existing methods, that approach the data with analytical

techniques on the one hand or with clinical techniques on the other hand, show

some important weaknesses. The developed GLYCENSIT procedure, founded on

statistical analytical tools which are clinically interpretable, comprises three phases.

The persistency of the measurement behaviour as a function of the glycemic range

is tested in the first phase. Persistent measurement behaviour allows the interchange

between sensors with only one conversion factor which makes it easy to replace a

gold standard sensor by a new (cheaper, more user-friendly) sensor device in clinical

practice. The second phase tests the number of measurement errors with respect to

the ISO-criterion. Based on the preferred tolerance level, the sensor device is found

to be accurate or not. In the third phase, the tolerance intervals (that indicate possible

measurement deviations for new observations) are computed. These intervals (whose

probability level is also calculated) allow to clinically interpret future (predicted)

deviations (e.g., are these possible measurement errors acceptable or not).

The GLYCENSIT procedure is a statistical guideline for the clinician rather than an

overly simple ‘yes/no’-analysis. The advantages of the presented procedure can be

summarized as follows:

• the procedure is founded on sound statistical theorems such that conclusions
(written in clinical reports) may be statistically more reliable,

• a broader view on the data at hand may be obtained due to an analysis from three
different perspectives (three phases),

• possible measurement deviations for new observations with the sensor device
under study are illustrated in the third phase (under the statistical assumptions

described in Chapter 3, 3.2.5), indicating this approach is an alternative to the

retrospective analyses present in existing methods,

• the probability level that is computed in the third phase confronts the user with
the number of uploaded paired measurements: a low number of available data

corresponds to a low probability of the computed tolerance intervals, but is also

an indication that no statistically reliable conclusions can be formulated with the

data set at hand,

• the user can express the procedure depending on the application (e.g., what are
the features of the target patient group) and the clinical requirements/preferences

in terms of the design parameters (i.e., significance level, tolerance level, and

hypo- and hyperglycemic cut-off values),

• the proposed GLYCENSIT procedure is implemented as a web-based assessment
tool, which is available at http://www.esat.kuleuven.be/GLYCENSIT.

The current version of the GLYCENSIT analysis is based on the assumption that

measurement errors are sufficiently statistically independent meaning that no corre-

lation exists between successive errors. When ‘test’ and ‘reference’ sensor values are



8.1 Conclusions 193

concomitantly measured with a minimum one-hour time interval, this assumption can

be met. In case of near-continuous ‘test’ sensors, the temporal dynamics inherent to a

frequently sampled time series are not considered in the analysis as no gold standard

trend information is available at present [38, 94, 99, 109, 162, 194, 209, 211]. Three

hypothetical data sets and a real-life clinical (ICU) example are introduced to illustrate

the GLYCENSIT analysis. Furthermore, two point-of-care sensor devices are validated

in a real-life ICU setting by using the EGA, the Bland-Altman, and the GLYCENSIT

approach. The GLYCENSIT procedure is proposed to be an alternative for or a

supplemental tool to existing evaluation techniques.

Conclusions for Objective 2

Chapter 4 of this thesis addresses the problem of measuring the overall glycemic

control behaviour. The GPI as a tool to compare different blood glucose control

algorithms is presented. This proposed measure is the average of the penalties that

are assigned to all monitored glucose values. The method is founded on a staircase

penalty function showing the ‘expert’ clinical (ICU) knowledge. The designed formula

returns a number between 0 and 100 with an ‘ideal’ level of 0 (indicating that all

measured blood glucose values fall within the normoglycemic target range) and a

‘clinically acceptable’ cut-off level of 23. The advantages of the proposed method

can be summarized as follows:

• the GPI expresses the overall blood glucose dynamics in an absolute (positive)
value such that hypoglycemic and hyperglycemic episodes cannot balance each

other,

• only the glucose readings that were effectively monitored are used in the GPI
evaluation tool (no assumed, e.g., linear, relation between measurements),

• measurement errors caused by sensor inaccuracies and methodology inaccuracies
due to sampling handling have only little influence on GPI as the ‘expert’

function is smoothed and a maximum penalty value is assigned to outlier

measurements,

• the relative contributions of the hypo- and hyperglycemic events to GPI clarify
whether particularly low blood glucose episodes, high blood glucose episodes,

or both are responsible for the obtained GPI.

Assessments of blood glucose profiles using GPI, founded on clinical expertise, can

be different from traditional evaluation methods like the average morning blood

glucose and the average blood glucose. The use of (accurate and reliable) near-

continuous glucose sensors allows to take into account the duration of hyperglycemic

and hypoglycemic episodes in the computation of GPI (since a penalty is assigned to

each monitored glucose value). Thus, the performance of GPI will further improve

when these devices are made available. Finally, the average blood glucose sampling

frequency and the duration of algorithm application are parameters that should be

similar among patient groups when comparing the performance of different insulin

titration algorithms. The GPI is proposed to be a supplemental tool to other advanced
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measures (like HGI) besides more traditional measures (like the averagemorning blood

glucose and the average blood glucose) for adequately assessing the overall level of

blood glucose control.

Conclusions for Objective 3

The design of a glycemia control system is addressed in Chapters 5-7. Firstly, a black-

box modelling approach, that relates the varying insulin resistance to the measured

body temperature, is applied in Chapter 5. The forecasting ability of the optimized

adaptive modelling method allows to accurately predict the blood glucose profile from

one to four hours ahead. It is recommended to frequently (every hour) re-estimate

the model using the data of the patient under treatment (leading to a patient-specific

adaptive model) instead of only estimating an initial model based on a previously

recorded data set (originating from other patients). Although the forecasting ability

of this modelling approach is satisfactory, some important reservations need to be

made concerning the validity of the modelling approach for use in a predictive control

system in clinical real-life. The closed-loop feature of the data at hand has an impact

on both the design of the model structure and the estimation of the parameters leading

to underestimation of the importance of the input (insulin) variable. Eventual use of

the considered black-box modelling approach in a clinical real-life predictive control

system would lead to the administration of clinically unrealistically high insulin flows

and should be avoided, accordingly.

Since the black-box modelling approach is found not to be appropriate for use in

a predictive control system, the glucoregulatory system of critically ill patients is

further described by following the grey-box modelling approach (Chapter 6). This

modelling concept has the advantage that the developed model structure (the ICU-MM)

is founded on physical insight of the system under study, which explains why the

closed-loop feature of the data only has impact on the parameter estimation. The

ICU-MM is estimated using the data of the first day (after admission to the ICU) of

the patient under treatment and its clinical interpretability is shown. Next, an adaptive

modelling procedure (with re-estimations every four hours or preferably every hour

using the data corresponding to the last five hours, BIT = 5 hours, of each specific
patient) is presented to incorporate inter- and intra-patient variability. This procedure

gives satisfactory forecasting results and indicates the potential use of the presented

model structure in a (semi-)automatic control system to normalize blood glucose in the

(surgical) ICU.

Chapter 7 of this thesis addresses the design of an MPC controller based on the

earlier developed ICU-MM. A simulation study shows the robustness of the MPC

by estimating states and unknown disturbance factors with an EKF. The ability to

frequently (every four hours or preferably every hour) adapt the insulin rate allows to

strictly (GPI was lower than the ‘clinically acceptable’ cut-off GPI of 23) regulate blood

glucose towards the normoglycemic target range (80-110 mg/dl) in spite of the presence

of disturbance factors (measurement errors and administration of medication) which

are unknown to the MPC. Further, a qualitative analysis of the insulin infusion rates



8.2 Future research 195

(proposed by the MPC) that correspond to the observed glucose profiles (controlled by

the nurses) illustrate that some hyperglycemic and hypoglycemic episodes might have

been avoided.

8.2 Future research

The commercial availability of accurate and reliable near-continuous glucose sensor

devices can dramatically change the treatment of patients with diabetes and critically

ill patients in the (near) future. These devices may behave as the key for fully-

automated blood glucose control, more than the control systems themselves. Further,

the implementation of a PDMS system in an ICU-setting (as was recently introduced

in the University Hospital K.U.Leuven) allows to automatically record all types of

medical information per patient in electronic files. Accordingly, a mass of dynamic

data of the critically ill can be made available creating opportunities for analyses.

Several potentially interesting future research topics can be identified in five different

areas. Each of them are briefly discussed.

Assessment of near-continuous glucose sensors

Accurate and reliable near-continuous glucose sensor devices are currently not avail-

able, but are undoubtedly under development [38, 94, 99, 109, 162, 194, 209, 211]. The

presented GLYCENSIT analysis (Chapter 3) is developed to assess the reliability of

both ‘discrete-time’ and ‘near-continuous’ glucose sensor devices with regard to a gold

standard blood glucose sensor. It must be pointed out that trend information, which

is available in near-continuous glucose signals, is not used in the current assessment

procedure since the data are transformed to sets of paired glucose measurements.

The quality requirements for the individual measurement value obtained with a near-

continuous glucose sensor, however, probably can be lower than that for a discrete

glucose meter. Unfortunately, gold standard trend information is currently missing.

Therefore, it is more suitable to consider only the paired glucose measurements in the

current version of the GLYCENSIT procedure (even in case of near-continuous test

devices), assuming that the pre-processing phase (see Chapter 3, 3.2.1) is properly

performed, instead of using trend information that is generated from the (possibly

unreliable) test sensor device itself. While awaiting the availability of accurate and

reliable near-continuous reference glucose sensors, future research can already be

focused on the implementation of the temporal dynamics (which are inherent to a

frequently sampled time series) in a new version of the GLYCENSIT procedure.

Relation between GPI and clinical outcome

Although the design of GPI is founded on currently available clinical expertise, the

relation between GPI and clinical outcome has not been shown yet. At present,

particularly the relation between improved clinical outcome on the one hand and

reduced average morning blood glucose [213,216] and reduced HGI [233] on the other
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hand have been depicted. From a clinical ‘expert’ point of view and from the found

high correlation between GPI and HGI (see Chapter 4, 4.4.2), it is expected that low

GPIs can be related to reduced mortality and morbidity as well, but future studies are

necessary to verify this. The (future) availability of a mass of dynamic glucose data

allows to find associations between GPI and clinical outcome with sufficient statistical

evidence.

Modelling of glycemia

Thirdly, more efficient models that describe the glucoregulatory system of critically ill

patients can be developed. Four topics can be investigated here:

• The dynamic behaviour of the blood glucose can be recorded more accurately

by using (future) reliable near-continuous glucose sensors. These sensor devices

can even be implanted in burn-injured, fed rabbits for the purpose of performing

open-loop tests. Accordingly, the effect of administered calories, medication,

and other disturbance factors on the glucose profile can be better defined and

possible time delays can be detected. This information can be considered as prior

knowledge when extrapolating this ‘critically-ill-rabbits-information’ to models

describing the glucose dynamics of critically ill ‘patients’ possibly leading to

inclusion of additional disturbance factors (e.g., medication) in the ICU-MM.

• The use of accurate and reliable near-continuous glucose signals further allows
to develop an improved algorithm for updating (adapting) the model coefficients

or a selection of these coefficients. Statistical tests (e.g., t-tests) can be used to
guarantee an improvement of the prediction performance of the model compared

to the previous model.

• Next, the introduction of the PDMS system allows to classify the patients

in distinct ‘clusters’ or ‘classes’ depending on the patient profile (which can

comprise one or more of the following static upon admission demographics:

BMI, prior history of diabetes, reason for ICU admission, etc.) and some

on-admission dynamic parameters (like on-admission glycemia, on-admission

caloric intake, on-admission concomitant medication, on-admission APACHE II

score, etc.). Then, each cluster can be associated with its own parameter settings

for the initial model such that a new patient entering the ICU can be classified

in one of the clusters. Accordingly, the glycemia control system can be able to

normalize the blood glucose (based on the selected initial model) immediately

after admission (and not after 24 hours as presented in this dissertation) and this

initial model can be updated using the incoming closed-loop measurements.

• Finally, the forecasting ability of the presented models in this work is only shown
with the data of surgical ICU patients. It is required to investigate whether the

same (adaptive) modelling approach is sufficiently efficient for predicting the

blood glucose profile of medical ICU patients.
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Control of glycemia

A fourth research area can be found in improving the design of the proposed MPC:

• The controller (MPC) described in this dissertation makes use of an EKF to
estimate states and unknown disturbance factors. The use of aMoving Horizon

Estimator (MHE), however, allows to estimate states and parameters using a

moving and fixed-size window of data. When a new measurement becomes

available, the oldest measurement is discarded and the new measurement is

added. The philosophy is to penalize deviations between measurement data

and predicted outputs. Two important characteristics distinguish MHE from

other estimation strategies, such as the EKF. First of all, prior information in the

form of constraints on the states, disturbances and parameters can be included.

Secondly, since MHE is optimization based it is able to handle explicitly non-

linear system dynamics through the use of approximative non-linear optimization

algorithms. In [88], it was shown that MHE possesses superior estimation

properties compared to the EKF. The potential of the MHE approach in this ICU

application has recently been presented in [89].

• Recognition of glucose sensor failings can further improve the performance of

the glycemia controller. Therefore, the introduction of the tolerance intervals

(that indicate possible measurement deviations for new observations with a

sensor device), presented in phase 3 of the GLYCENSIT analysis (see Chapter 3,

3.2.5), can be used to establish more adequate insulin infusion dosages.

• In view of a future clinical validation phase, it is recommended to investigate
the robustness of the developed control system. A trade-off between model

prediction performance on the one hand and model complexity on the other hand

should always be considered. The controller can be tested in simulations where

the MPC uses the ICU-MM for predicting the glucose profile and where the real

patient behaviour is represented by a more complex ‘critically ill patient model’

(e.g., the model used in the MPC strategy presented in [97]). Unfortunately, to

the best of the author’s knowledge, no ‘critically ill patient models’, other than

the ICU-MM, that can be used in a predictive control setting have been described

in the available literature so far.

Clinical validation of a glycemia control system

A last research area is the clinical validation of the developed control system. This

validation issue can comprise three phases:

• In a first phase, the semi- or fully-closed-loop control system can be tested on
a group of critically ill rabbits. The MPC approach used in this phase should

consider an appropriate ‘critically ill rabbit model’. Therefore, the ICU-MM

could be adapted based on the open-loop measurements that are described above.

• The second phase is necessary to test a semi-closed-loop control system on

a group of critically ill patients. Here, the computerized control system only
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gives advice concerning the insulin infusion rate that should be administered to

the patient. Only after confirmation by the nurse (as a safety procedure), the

proposed insulin dose should be delivered to the patient.

• In a last phase, the fully-closed-loop control system should be tested on a larger

critically ill patient group. The availability of an accurate and reliable sensor to

near-continuously measure the glucose profile is a prerequisite for performing

these tests, however. Clinical validation of such a fully-closed-loop glycemia

control system, in combination with a reliable near-continuous glucose sensor,

may open the door for the commercial exploitation of this medical device.
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Appendix A

Overview of the prediction

performance of the ICU-MM

A.1 Introduction

This appendix summarizes the main results of the re-estimation process of the ICU-

MM that is applied to 19 patients admitted to the surgical ICU (see data set described

in Chapter 2, 2.4.4). Re-estimations take place every four hours (P = 4 hours) or every
hour (P = 1 hour). The number of recent data considered in each re-estimation process
(BIT) is varied from 0.5 hours to 20 hours. Next, two different penalizing strategies are

used in the cost function: the minimization of MSE and the minimization of MSnE.

Finally, the prediction performance of the modelling strategy under study is evaluated

by computing the MSE, the MPE, and the MSnE. The full study approach is described

in detail in Chapter 6 (see 6.3.3).

A.2 Evaluation by MSE

In this section the results that are obtained with the MSE as evaluation method are

presented. When the minimization of MSE is used as cost function, the smallest

distribution of MSEs is obtained when the re-estimations are based on the last five

hours (BIT = 5 hours), independent of the re-estimation frequency (P = 4 hours
or P = 1 hour). Significant differences (Wilcoxon signed rank test, p < 0.05) with
regard to other selected BITs are marked with asterisks in Figure A.1. When MSnE

is considered in the cost function, the ‘optimal’ BIT is found to be four hours (for

P = 4 hours) and five hours (for P = 1 hour) as illustrated in Figure A.2.

A.3 Evaluation by MPE

This section presents the results when the model performance is evaluated by

computing the MPE. The most optimal distribution of the MPEs is again obtained
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with re-estimations based on the last 5-hours data set (BIT = 5 hours), independent of
the re-estimation frequency, for MSE as cost function. In case of selecting MSnE to

be minimized in the cost function, the re-estimations are preferably based on the data

that correspond to the last four hours (BIT = 4 hours, independent of the re-estimation
frequency). The distributions of the MPEs are illustrated in Figure A.3 for the first cost

function and in Figure A.4 for the latter.

A.4 Evaluation by MSnE

The use of MSnE as evaluation tool has the advantage that model prediction errors

are made independent of glycemia. Accordingly, hypoglycemic, normoglycemic, and

hyperglycemic deviations are equally penalized with regard to the clinically defined

ISO-criterion [75]. The smallest MSnEs (for the minimization of MSE in the cost

function) are obtained when the re-estimations are based on the data that correspond

to the last five hours (BIT = 5 hours, independent of the re-estimation frequency)
(see Figure A.5). Alternatively, when the MSnE is minimized in the cost function,

the ‘optimal’ BIT is found to be four hours (for P = 4 hours) or five hours
(for P = 1 hour) (see Figure A.6).

A.5 Conclusion

Table 6.2 (see Chapter 6) presented a summary of the ‘optimal’ BIT values depending

on the re-estimation frequency, the penalizing strategy, and the evaluation method

based on the figures illustrated above. In general, the model prediction performance

was satisfactory if the data that corresponded to the last four to five hours were taken

into account in each re-estimation process. It was clinically reasonable to associate this

time period with the time span in which glucose dynamics vary (e.g., due to changing

insulin resistance). As the use of the MSnE was based on clinical expertise (i.e., the

ISO-criterion [75]), it was preferred to consider the minimization of MSnE in the cost

function of the estimation processes. For the same reason it was recommended to use

MSnE as evaluation tool although the use of MPE was advantageous in terms of simply

interpreting the results. This is further described in detail in Chapter 6.
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Figure A.1: Distribution of the MSEs (generated for each patient) as a function of BIT

with re-estimations every 4 hours (top) or every hour (bottom). The minimization of

MSE is the selected penalizing strategy. The line connects the averages of the MSEs.

Re-estimations based on the last 5-hours data set (BIT = 5 hours) result in the smallest
prediction errors. Significant differences (p < 0.05) with respect to the ‘optimal’ (here:
BIT = 5 hours) setting are marked by asterisks.
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Figure A.2: Distribution of the MSEs as a function of BIT with re-estimations every

4 hours (top) or every hour (bottom). The minimization of MSnE is the selected

penalizing strategy. The line connects the averages of the MSEs. Re-estimations

based on the last 4-hours data set (for P = 4 hours) or the last 5-hours data set (for
P = 1 hour) result in the smallest prediction errors. Significant differences (p < 0.05)
with respect to the ‘optimal’ BIT setting are marked by asterisks.
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Figure A.3: Distribution of the MPEs as a function of BIT with re-estimations every 4

hours (top) or every hour (bottom). The minimization of MSE is the selected penalizing

strategy. The line connects the averages of the MPEs. Re-estimations based on the last

5-hours data set (BIT = 5 hours) result in the smallest prediction errors. Significant
differences (p < 0.05) with respect to the BIT = 5 hours setting are marked by
asterisks.
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Figure A.4: Distribution of the MPEs as a function of BIT with re-estimations every

4 hours (top) or every hour (bottom). The minimization of MSnE is the selected

penalizing strategy. The line connects the averages of the MPEs. Re-estimations based

on the last 4-hours data set (BIT = 4 hours) result in the smallest prediction errors.
Significant differences (p < 0.05) with respect to the BIT = 4 hours setting are marked
by asterisks.
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Figure A.5: Distribution of the MSnEs as a function of BIT with re-estimations every 4

hours (top) or every hour (bottom). The minimization of MSE is the selected penalizing

strategy. The line connects the averages of the MSnEs. Re-estimations based on the last

5-hours data set (BIT = 5 hours) result in the smallest prediction errors. Significant
differences (p < 0.05) with respect to the BIT = 5 hours setting are marked by
asterisks.
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Figure A.6: Distribution of the MSnEs as a function of BIT with re-estimations every

4 hours (top) or every hour (bottom). The minimization of MSnE is the selected

penalizing strategy. The line connects the averages of the MSnEs. Re-estimations

based on the last 4-hours data set (for P = 4 hours) or the last 5-hours data set (for
P = 1 hour) result in the smallest prediction errors. Significant differences (p < 0.05)
with respect to the ‘optimal’ BIT setting are marked by asterisks.
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