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Abstract

This thesis explores the use of sequential data-assimilation techniques in space
weather forecast whose dynamics are described by magnetohydrodynamics -
−MHD− systems. We focus on the problem of finding estimators for large
scale systems with sparse measurement points. A broad review of different
Kalman filter formulations and algorithms ranging from the linear up to non-
linear ensemble-based Kalman filters is done. It turns out that the Kalman
filter cannot be directly applied to large scale systems; therefore, we explore
also suboptimal Kalman filter formulations. We introduce two new algorithms
for large scale linear systems, namely, the singular square root Kalman filter
(SSQRT-KF), and the spatially localized Kalman filter (SLKF). The first one
is a very efficient algorithm for systems where the process noise can be as-
sumed to be negligible. The second one addresses the problem of observability
when there are sparse observations in large scale systems. It turns out that
the best estimation you can have in large scale systems with a small number
of measurements, is a local estimation. Hence, we show that the SLKF is an
optimal solution for this case. Finally, we take as case study a 2D solar storm
coming towards the Earth’s magnetosphere. For this case study, we test and
compare the performance of ensemble-based Kalman filters. The results show
that sequential data-assimilation techniques are very promising in this field.

iii
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Chapter 1

General Introduction

1.1 Introduction and Motivation

The region between the Sun and the planets has been termed the interplane-
tary medium. Although once considered a perfect vacuum, this is actually a
turbulent region dominated by the solar wind, which flows at velocities of ap-
proximately 250-1000 km/s (about 9× 105 to 36× 105 km/h), Figure 1.1. One
of the events which provoke the solar wind is the coronal mass ejection (CME).
The CMEs are one of the most energetic and important solar phenomena.
These events propel magnetic clouds with a mass up to 1017g (g, gravitational
field strength [N/kg]) to speeds up to 2600 km/s into the heliosphere, influ-
encing near-Earth plasma conditions (space weather), causing fluctuations in
the terrestrial magnetic field and in the ionospheric density, and driving auro-
ras (magnetic solar storms). These storms can cause some dangerous effects
on Earth’s systems like: communication, early-warning, submarine detection,
electric power, satellites, pipelines, and many others. These dangerous effects
may also affect geologic explorations, climate, and even generate radiation haz-
ards to humans. Therefore, the subtleties of the interactions between Sun and
Earth, and between solar particles and delicate instruments, have become fac-
tors that affect our well being. Thus there will be continued and intensified
need for space environment services to address health, safety, and commercial
needs1.

1http://www.sec.noaa.gov/primer/primer.html

1



2 Chapter 1. General Introduction

Figure 1.1: The Sun’s powerful magnetic forces directly affect the Earth and
the rest of the solar system. Picture taken from http://clusterlaunch.esa.int.

The aim of this thesis is to introduce the topic of data assimilation in the area
of space weather forecast. Data assimilation is the technique whereby observa-
tional data are combined with outputs from a numerical model to produce an
optimal estimate of the evolving state of the system. Note that this definition
is similar to ‘state space observer‘ in the systems theory literature [38], Figure
1.2. Thus, by assimilating space environment data into first-principles based
global numerical models, we can improve our understanding of the physics of
the geospace environment and improve the forecasting of its behavior.

There exist mainly two approaches for data assimilation, the first one, varia-
tional techniques [75], that consist of minimizing a cost function at each sam-
pling time, quantifying the difference between model outputs and measure-
ments, and assuming the system and measurement uncertainties as determinis-
tic processes, equations (1.1). And the second one, sequential techniques that
are based on the Kalman filter [4], that consist of minimizing a cost function
recursively, quantifying the difference between the model outputs and measure-
ments, and assuming the system and measurement uncertainties as stochastic
processes, equations (1.2). Equations (1.1) and (1.2) are the state space rep-
resentation of a deterministic and stochastic discrete-time dynamical system,
respectively. Hence,
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Figure 1.2: Data Assimilation System Scheme. The observations of the real
system are assimilated into the numerical model to obtain a better estimation.

xk+1 = f(xk, pk) +B(uk, pk),

yk = C(xk, pk). (1.1)

xk+1 = f(xk) +B(uk) + wk,

yk = C(xk) + vk, (1.2)

where f represents the state equation vector function, C the output equation
vector function, and B the input equation vector function. On the other hand,
xk ∈ Rn is the state space vector, uk ∈ Rp the input vector to the system,
yk ∈ Rm the output vector of the system, p ∈ Re the uncertain parameters of
the system, wk ∈ Rl the stochastic system noise process, vk ∈ Rm the stochastic
measurement noise process, and k the time instant.

It turns out that variational data assimilation techniques are very expensive
computationally, because one has to solve an optimization problem each data
assimilation time step2 to find the best pk which minimizes the estimation
error, contrary to sequential techniques that solve the optimization problem

2A data assimilation time step is defined as the interval of time in which the observations
are taken and assimilated into the numerical model.
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recursively, assuming that the system and measurement noise processes are
known. Because of this, sequential data assimilation techniques using the
Kalman filter have gained a lot of popularity, and have been used success-
fully by meteorologists and oceanographers in the last decade (some references
[8, 14, 21, 28, 32, 34, 53, 58]).

Figure 1.3: Orbit of the SOHO satellite. Picture taken from http://soho.esa.int.

On the other hand, the space physics community has been slow in implement-
ing such techniques. In fact, it is difficult to find either references or literature
about it. In [74] we can find an application for global assimilation of ionospheric
measurements (GAIM), for instance. The reason is that the space systems are
much more complex, larger, and there is a shortage of measurements; for ex-
ample, the length scales of the Earth’s weather go up to 104 km (O(106−107)),
while in the space weather can go up to 107 km (∼ O(1012)). Moreover, there
exist a massive amount of information for terrestrial weather, while for space
weather exists only 5 satellites collecting information in the magnetosphere
and between the Sun and Earth, see Figures 1.3, 1.4. As a result, in the last
decades astrophysicists have been working to develop models and tools to un-
derstand better the space plasma dynamics [66, 43, 44]. However, there are
still many things to discover about these systems and not much information
available. This is why researchers in this area often use recorded data, which
have been taken from special events like big CMEs to tune their models and
improve the simulations [66]. Besides, as mentioned above, there are only five
satellites dedicated to study the space weather, namely, the SOHO3 mission,
that has located one satellite at the L1 orbit, which is a neutral gravity point
between Sun and Earth, see Figure 1.3, and the Cluster II4 mission, that has

3SOHO stands for Solar and Heliosphere Observatory. It has been designed to study the
internal structure of the Sun, its extensive outer atmosphere and the origin of the solar wind,
the stream of highly ionized gas that blows continuously outward through the Solar System.

4The Cluster II mission is an in-situ investigation of the Earth’s magnetosphere using four
identical spacecraft simultaneously, called: salsa, samba, tango, and rumba. It will permit
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located four satellites in the Earth’s magnetosphere, see Figure 1.4. However,
this situation is changing rapidly for the ionosphere, for instance, and it is ex-
pected that it will also start changing for the magnetosphere in some decades.
Therefore, it is time to start exploring data assimilation techniques for space
weather forecast.

Figure 1.4: White oval, orbit of the Cluster satellites. Picture taken from
http://clusterlaunch.esa.int.

One of the most common techniques used for space weather forecast nowadays,
is to run a model simulation where the approximated initial conditions are given
by observations taken by the satellite SOHO. It turns out that these predictions
are not reliable at all, as expected, because the information used to run the
model is very vague, and the models are not perfect. In other words, they make
predictions based on an open loop simulation, Figure 1.5, which is not the best
choice for this sort of problems. Hence, sequential data assimilation approaches
offer a more robust framework to compute predictions of a dynamical system,
when there exist uncertainties in the numerical model and observations. This is
because it corrects the behavior of the numerical model dynamics according to
current measurements of the real system. As a result, the predictions are made
based on a closed loop simulation where the feedback correction is given by an
optimal estimator −the Kalman filter in the linear case, Figure 1.2. We have

the accurate determination of three-dimensional and time-varying phenomena and will make
it possible to distinguish between spatial and temporal variations.
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to clarify at this point, that the motivation of this thesis is not to apply data
assimilation to forecast the real space weather, because it is still complicated,
due to computational constraints and a lack of measurement points, but to
explore and study the performance of these techniques in large scale space
plasma systems, whose dynamics can be described by magnetohydrodynamic
systems (MHD) [44], with sparse measurement points.

Initial conditions States

Estimated states

Real
System

Model

Simulation

Figure 1.5: Open loop prediction scheme. After setting the initial conditions,
the numerical model is run forward in time to obtain a prediction of the dy-
namics of the system.

The Kalman filter is certainly one of the greater discoveries in the history of
statistical estimation theory [45]. Its most immediate applications have been
for the control of complex dynamic systems such as continuous manufacturing
processes, aircraft, ships, or spacecraft. To control a dynamic system, you must
first know what it is doing. For these applications, it is not always possible or
desirable to measure every variable that you want to control, and the Kalman
filter provides a means for inferring the missing information from indirect (and
noisy) measurements. The Kalman filter is also used for predicting the likely
future courses of dynamic systems that people are not likely to control, such as
the flow of rivers during flood, the trajectories of celestial bodies, or the prices
of traded commodities.

The Kalman filter can be used basically either as estimator or predictor [4].
In sequential data assimilation the prediction is made by using a short-range
forecast strategy, which consist of estimating the initial conditions at time k,
when the observations are assimilated, and then, the prediction is done by
running a model simulation forward in time until new observations are taken.
see Figure 1.2. Hence, in sequential data assimilation the Kalman filter used
is the estimator, §2.3. The Kalman filter estimator is computed in two steps,
namely, the time update, and the measurement update, as depicted in Figure
1.6. There can be seen how the Kalman filter reduces recursively the error
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estimation at time k, based on measurements taken at the same time instant
k, and inputs and system noise at k − 1. For more details about the Kalman
filter estimator we refer to §2.3.

uk−1 yk

Time Update

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1 + wk−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1

Measurement Update

Kk = Pk|k−1C
T
k R̂

−1
k

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1)
Pk|k = (In −KkCk)Pk|k−1

x̂k|k

Figure 1.6: The Kalman filter seen as a feedback estimator. The Kalman filter
reduces recursively the error estimation at time k, based on measurements
taken at the same time instant k, and inputs and system noise at k−1. Details
about the equations can be found in §2.3.

Up to now, everything sounds good, but if we look at the Kalman filter equa-
tions, and we think about the size of the systems we are dealing with, around
107km∼ O(1012), we realize that it would be difficult to use this set of equa-
tions directly to our problem. Besides, the Kalman filter is optimal for linear
systems, and that is not the case of MHD systems. Therefore we have two big
issues to solve: first, how to apply Kalman filter to large scale systems, and
second, how we can use the Kalman filter for nonlinear systems. Hence, we
focus our research in these two directions; first, we make a review and inves-
tigate Kalman filter algorithms that can be used in large scale systems, and
second, we extend these results to the nonlinear case using ensemble-based
Kalman filters, which turn out to be very efficient and easy to implement, as
it has been shown in several publications in the weather forecast community
[8, 14, 21, 28, 32, 34, 53, 58].

Now, a more detailed description of the contents of the thesis is given in the
next section.
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1.2 Chapter by Chapter Description

Chapter 2 - Linear Discrete-Time Kalman Filtering

Chapter 2 is dedicated to introducing the reader to the Kalman filter and its
different numerical formulations and algorithms. We make a review and study
of some of the more relevant algorithms found in the literature, namely, the
classical Kalman filter (KF), the square root filter Kalman filter (SQRT-KF),
and the transform Kalman filter (TKF). Additionally, a comparison of the
numerical complexity of these algorithms in number of flops is done at the end
of the chapter.

Chapter 3 - Suboptimal Kalman Filters for Linear Large
Scale Systems

Although the Kalman filter has been shown to provide an optimal solution for
data assimilation in linear systems with a relatively small order, for very large
nonlinear systems it is not directly applicable, because of its computational
complexity and the size of the error covariance matrix that has to be stored.
Hence, this chapter presents an overview of different suboptimal linear Kalman
filter formulations that can handle large scale systems. On the one hand,
the reduced rank square root Kalman filter (RRSQRT-KF), and the ensemble
Kalman filter (EnKF) which are two well known suboptimal Kalman filters. On
the other hand, we propose two new algorithms, namely, the singular square
root Kalman filter SSQRT-KF that is developed to be used for systems with
negligible process noise, and the spatially localized Kalman filter (SLKF), which
is designed to be used when the measurements are sparse.

The RRSQRT-KF, the SSQRT-KF, and the KF are tested and compared in a
2D-plate heat transfer system, where the objective is to compare the perfor-
mance of the filters when the propagated error covariance matrix is approx-
imated according to the filter used. In addition, the problem of boundary
condition estimation is treated, and a solution is given by inverting the linear
dynamic system.

The SLKF is tested and compared to the KF in a mass-spring system, where
the objective is to study the performance of the filter for local estimation under
different error weight functions.

Finally, the numerical algorithms of the filters are shown in detail, and a com-
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parison of the numerical complexity is done.

Chapter 4 - Ensemble-Based Kalman Filter for Nonlinear
Large Scale Systems

In this chapter, firstly a nonlinear stochastic model description is defined for
environmental systems. Then an extension to the nonlinear case of the filters
proposed in Chapter 3 is done, namely, the extended Kalman filter (EKF), the
ensemble Kalman filter (EnKF), the square root ensemble filter (EnSRF), the
ensemble transform Kalman filter (ETKF), and the ensemble spatially localized
Kalman filter (EnSLKF). Finally, the discussion focuses on the advantages and
disadvantages of each filter including the complexity of the algorithms.

Chapter 5 - Space Weather Forecast Case Study

This chapter is dedicated to exploring the application of sequential data as-
similation techniques to space weather forecast. Notice that, in contrast to the
weather forecast data assimilation problem, the number of measurement points
is small compared to the order of the system. We start with a problem mo-
tivation, then a description of magnetohydrodynamics systems (MHD), which
are used to simulate the space plasma dynamics, is given. Finally we apply
the data assimilation techniques introduced in the previous chapters to MHD
systems.

Mainly, the discussion focuses on two cases, first the linear case which is im-
portant in the space community to study the behavior of the space plasma in
steady state, and second, the nonlinear case where the aim is to investigate
the performance of ensemble-based Kalman filters in MHD systems for space
weather prediction.

Hence, in the linear case a continuous-time 2D-linear model is obtained by
taking small perturbations around steady state conditions. Then, two spatial
discretization techniques are utilized in order to yield a state-space represen-
tation, namely, the Fourier collocation and the Chebyshev collocation method.
Consequently, an analysis of performance of the suboptimal linear KFs intro-
duced in Chapter 3 is carried out. For the nonlinear case a 2D-MHD system
emulating the magnetosphere around the Earth is simulated using a numerical
model written in Fortran (the VAC code [79]). Then, by means of a modular
scheme where Matlab and VAC are used as simulator and estimator, respec-
tively, we apply the ensemble-based filters introduced in chapter 4 to this sys-
tem. Finally, the discussion focuses on the comparison of performance of the
filters.
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Chapter 6 - Conclusions and Future Research

In this chapter the main contributions are enumerated and some research per-
spectives are explored.

Data Assimilation for MHD Systems Using Kalman Filtering

Chapter 1

Introduction
and

Motivation

Chapter 2

Kalman Filter - KF

Chapter 3

Suboptimal Linear KF

Chapter 4

Ensemble-Based KF

Chapter 5

MHD systems

Linear Nonlinear

Chapter 6

Conclusions

Figure 1.7: General Overview of the Thesis.
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1.3 Main Contributions

The main contributions of this research work are:

• In Chapters 2, 3, and 4 a survey of the Kalman filter algorithm formu-
lations is given, starting from the very basic linear implementations, and
ending with the state of the art in nonlinear Kalman filtering for large
scale systems.

• We introduce a new suboptimal linear Kalman filter algorithm −the sin-
gular square root Kalman filter (SSQRT-KF)− which has been designed
for large scale systems when the process noise can be assumed to be
negligible, §3.3.

• We introduce a new optimal linear Kalman filter algorithm −the spa-
tially localized Kalman filter (SLKF)− which has been designed to make
local estimations in large scale systems when the measurement points are
sparse, §3.4.

• We introduce a new suboptimal nonlinear ensemble Kalman filter −the
ensemble spatially localized Kalman filter (EnSLKF)− which has been
designed to make local estimations in nonlinear large scale systems when
the measurement points are sparse. §4.7

• In Chapter 5, we introduce the sequential data assimilation topic in space
weather forecast using ensemble-based Kalman filters.

• In §5.3.1, we develop a linear discrete-time state-space representation of
a 2D-MHD flow system.

• In §5.4.3, we present an implementation of a modular data-assimilation
system, integrated by a numerical MHD model; the VAC code, and the
ensemble-based Kalman filter algorithms; coded in Matlab.

1.4 Published Results

Barrero Mendoza O. and B. L. R. De Moor, Singular Square Root Filter
Algorithm (SSQR) for Large Scale Data Assimilation, Internal report TR 03-
161, Katholieke Universtiteit Leuven, ESAT/SISTA, October 20, 2003.
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Barrero Mendoza O., and B. L. R. De Moor,, A Singular Square Root Filter
Algorithm for Large Scale Data Assimilation, Proceedings of the 15th IASTED
International Conference in Modelling and Simulation, Marina del Rey, L.A.,
March 2004, pp. 418-422.

Barrero Mendoza O., B. L. R. De Moor, and P. Van Dooren, Kalman Filter
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The Kalman filter is an estimator for what is called the linear-quadratic Gaus-
sian estimation problem, which is the problem of estimating the instantaneous
stage of a linear dynamic system perturbed by a Gaussian random process -
−process noise, and using measurements linearly related to the state but cor-
rupted also by a Gaussian random process −measurement noise. The resulting
estimator is statistically optimal with respect to any quadratic function of esti-
mation error [45].

2.1 Introduction

This chapter is dedicated to introducing the reader to the Kalman filter and
its different numerical formulations and algorithms. We make a review and
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Figure 2.1: The Kalman filter.

study of some of the more relevant algorithms found in the literature, namely,
the classical Kalman filter (KF), the square root filter Kalman filter (SQRT-
KF), and the transform Kalman filter (TKF). Additionally, a comparison of
the numerical complexity of these algorithms in number of flops is done at the
end of the chapter.

2.2 The Kalman Filter

The Kalman filter is certainly one of the greater discoveries in the history of
statistical estimation theory [45]. Its most immediate applications have been
for the control of complex dynamic systems such as continuous manufacturing
processes, aircraft, ships, or spacecraft. To control a dynamic system, you must
first know what it is doing. For these applications, it is not always possible or
desirable to measure every variable that you want to control, and the Kalman
filter provides a means for inferring the missing information from indirect (and
noisy) measurements. The Kalman filter is also used for predicting the likely
future courses of dynamic systems that people are not likely to control, such as
the flow of rivers during flood, the trajectories of celestial bodies, or the prices of
traded commodities, Figure 2.1. In this thesis, we will focus on applications of
estimating the state space variables of systems arising from discretized partial
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differential equations, such as earth and space environmental systems.

It might seem strange that the term ‘filter‘ would apply to an estimator. More
commonly, a filter is a physical device for removing unwanted fractions of mix-
tures. Originally, a filter solved the problem of separating unwanted compo-
nents of gas-liquid-solid mixtures. In the era of crystal radios and vacuum
tubes, the term was applied to analog circuits that filter electronic signals.
These signals are mixtures of different frequency components, and these phys-
ical devices preferentially attenuate unwanted frequencies.

This concept was extended in the 1930s and 1940s to the separation of signals
from noise, both of which were characterized by their power spectral densities.
Kolmogorov and Wiener used this statistical characterization of their proba-
bility distributions in forming an optimal estimate of the signal, given the sum
of the signal and noise.

With Kalman filtering the term assumed a meaning that is well beyond the
original idea of separation of the components of a mixture. It has also come to
include the solution of an inversion problem, in which one knows how to repre-
sent the measurable variables as functions of the variables of principal interest.
In essence, it inverts this functional relationship and estimates the independent
variables as inverted functions of the dependent (measurable) variables. These
variables of interest are also allowed to be dynamic, with dynamics that are
only partially predictable.

Before making any mathematical derivation, it is important to clarify some
important definitions related to the Kalman filtering that people often confuse,
namely, filtering, prediction, and smoothing [4].

First, let us consider exactly what we mean by filtering. Suppose there is some
quantity (possibly a vector quantity) associated with the system operation
whose value we would like to know at each instant of time k. The quantity
in question is denoted by s(·). It may be that this quantity is not directly
measurable, or that it can only be measured with error. In any case, we shall
suppose that noisy measurements z(·) are available, with z(·) not equal to s(·).

The term filtering is used in two senses. First, it is used as a generic term:
filtering is the recovery from z(·) of s(·), or an approximation to s(·), or even
some information about s(·). In other words, noisy measurements of a sys-
tem are used to obtain information about some quantity that is essentially
internal to the system. Second, it is used to distinguish a certain kind of infor-
mation processing from two related kinds, smoothing and prediction. In this
sense, filtering means the recovery at time k of some information about s(k)
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using measurements up to time k. The important thing to note is the triple
occurrence of the time argument k. First, we are concerned with obtaining in-
formation about s(·) at time k, i.e., s(k). Second, the information is available
at time k, not at some later time, and third, measurements right up to, but
not after, time k are used.

Smoothing differs from filtering in that the information about s(k) need not
become available at time k, and measurements derived later than time k can be
used in obtaining information about s(k). This means there must be a delay in
producing the information about s(k), as compared with the filtering case, but
the penalty of having a delay can be weighed against the ability to use more
measurement data than in the filtering case in producing the information about
s(k). Not only does one use measurements up to time k, but one can also use
measurements after time k. For this reason, one should expect the smoothing
process to be more accurate in some sense than the filtering process.

Finally, prediction is the forecasting side of information processing. The aim is
to obtain at time k information about s(k + λ) for some λ > 0, i.e., to obtain
information about what s(·) will be like subsequent to the time at which the
information is produced. In obtaining the information, measurements up to
time k can be used.

Now, after this short explanation a numerical derivation of the Kalman filter
is given in the next section.

2.3 Numerical Formulation

A discretized linear time-dependent partial differential equation1 (PDE) can be
written as a state space representation of a linear time variant (LTV) stochastic
model as follows:

xk+1 = Akxk +Bkuk +Gkwk, (2.1)

yk = Cxk + vk. (2.2)

1A PDE is an equation involving functions and their partial derivatives. In general PDEs
are much more difficult to solve analytically than are ordinary differential equations. They
may sometimes be solved using a Bäcklund transformation, characteristics, Green’s function,
integral transform, Lax pair, separation of variables, or −when all else fails (which it fre-
quently does)− numerical methods such as finite differences. http://mathworld.wolfram.com.



2.3. Numerical Formulation 19

where Ak ∈ Rn×n, Bk ∈ Rn×p, Gk ∈ Rn×l and Ck ∈ Rm×n, with n the order
of the system, p the number of inputs, l the number of uncertain parameters,
and m the number of outputs. Additionally we have

E [wjw
T
k ]

△
= Qkδjk,

E [vjv
T
k ]

△
= Rkδjk,

E [vjw
T
k ]

△
= 0,

where E [·] denotes expectation, wk is a white Gaussian system noise process
with zero mean and covariance matrix Qk, and the white Gaussian measure-
ment noise process vk with zero mean and covariance matrix Rk. The process
noise is introduced to take into account model uncertainties that may arise
in a number of ways, for instance: unknown and unpredictable inputs except
for their statistical properties, unknown and/or unpredictable boundary con-
ditions, unknown or no modeled physics, computation errors caused by the
discretization of the model, etc., and the measurement noise to take into ac-
count the measurement uncertainties.

The problem of estimating the states of (2.1) from measurements of the output
(2.2) is discussed in this section. Different estimators can be derived depending
on the available measurements as it was explained in the introduction of this
chapter. Therefore, assuming that the data

Yk = {yi, ui|i ≤ k}

is known, then, by using Yk we want to estimate xk+λ. There are three distinct
cases:

1. Smoothing (λ < 0)

2. Estimation (λ = 0)

3. Prediction (λ > 0)

Figure 2.2 illustrates the different cases. In the next section the estimation
and prediction problem are discussed. The resulting dynamic system is called
a filter regardless of which of the problems is solved. We refer to [4] for the
proofs of the results given in this section.
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Figure 2.2: Smoothing, estimation, and prediction

Estimation Problem

An estimation of the signal xk is concerned with the estimation of xk+λ for
λ = 0 using the measurements yi for 0 ≤ i ≤ k. Consider the discrete-time
dynamical system described by (2.1) and (2.2). For this system, we take a state
estimator of the form

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1). (2.3)

where Kk ∈ R
n×m, with output

ŷk|k−1 = Ckx̂k|k−1.

In order to obtain recursively an optimal estimator Kk, the first step of the
procedure is to propagate ahead xk−1|k−1 via (2.1)

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1, (2.4)

this is called the time-update step, then, define the prior state estimation error
by

ek|k−1
△
= xk − x̂k|k−1, k > 0. (2.5)

Substituting (2.4) and (2.1) into (2.5) we obtain

ek|k−1 = Ak−1ek−1|k−1 +Gk−1wk−1.
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Now, define the prior error covariance matrix by

Pk|k−1
△
= E [ek|k−1e

T
k|k−1],

hence,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1. (2.6)

Next, define the state estimator error

ek|k
△
= xk − x̂k|k, (2.7)

then, substituting (2.3) into (2.7) we have

ek|k = (In −KkCk)ek|k−1 −Kkvk. (2.8)

Then, the Kalman gain Kk is obtained by minimizing the mean square error

Jk(Kk) = tr(Pk|k),

where the estimation error covariance matrix Pk|k ∈ Rn×n is defined by

Pk|k
△
= E [(ek|k − E [ek|k]])(ek|k − E [ek|k])T], (2.9)

so, replacing (2.7) into (2.9) yields

Pk|k = (In −KkCk)Pk|k−1(In −KkCk)T +KkR̂kK
T
k , (2.10)

where R̂k ∈ Rm×m is defined by

R̂k
△
= Rk + CkPk|k−1C

T
k . (2.11)

Therefore, by setting ∂Jk(Kk)/∂Kk = 0 the resulting Kalman gain is

Kk = Pk|k−1C
T
k R̂

−1
k . (2.12)

Next, substituting (2.12) into (2.10) the error covariance matrix update, or the
measurement update step, is given by

Pk|k = (In −KkCk)Pk|k−1. (2.13)
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Notice that if the system is linear time invariant (LTI), observable, controllable,
and k →∞, Pk+1|k converges to a steady-state positive semidefinite matrix Ps,
and Kk approaches the constant matrix Ls, given by

Ls = PsC
TR̂−1,

where Ps satisfies the discrete algebraic Riccati equation (DARE)

Ps = (In − LsC)(APsA
T +GQGT).

Algorithm 1 Kalman Filter Estimator

Given Rk, Qk, P0,

For k = 1, . . . ,

1. Update x̂k−1|k−1 to x̂k|k−1, and Pk−1|k−1 to Pk|k−1

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1.

2. Compute Kk

Kk = Pk|k−1C
T
k R̂

−1
k .

3. Update x̂k|k−1 to x̂k|k, and Pk|k−1 to Pk|k

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1),

Pk|k = (In −KkCk)Pk|k−1.

end

Prediction Problem

A prediction of the signal xk is concerned with the estimation of xk+λ for λ > 0
using the measurements yi for 0 ≤ i ≤ k. Although a one-step or multiple-step
prediction can be considered, here we analyze the one-step predictor.

For the system (2.1) and (2.2) consider the state estimator of the form

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk(yk − ŷk|k−1), (2.14)
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with output

ŷk|k−1 = Ckx̂k|k−1,

where Kk ∈ Rn×m is the Kalman gain and x̂k|k−1 is the estimate of xk based
on observations up to time k − 1. Defining the prediction error by

ek+1|k
△
= xk+1 − x̂k+1|k, (2.15)

then substituting (2.1) and (2.14) into (2.15) yields

ek+1|k = (Ak −KkCk)x̃k|k−1 −Kkvk +Gkwk, (2.16)

where the Kalman gain Kk minimizes the mean square error

Jk(Kk) = tr(Pk+1|k),

with the prediction error covariance matrix Pk+1|k ∈ Rn×n

Pk+1|k
△
= E [(ek+1|k − E [ek+1|k]])(ek+1|k − E [ek+1|k])T].

As a result, the Kalman gain can be obtained by

Kk = AkPk|k−1C
T
k R̂k

−1
, (2.17)

with the error covariance matrix update given by

Pk+1|k = (Ak −KkCk)Pk|k−1A
T
k +GkQkG

T
k , (2.18)

which is a discrete Riccati difference equation (DRDE). Similar to the estima-
tion case, when the system is observable, controllable, and k →∞, the steady
state solution for the Kalman filter is as follows,

Ks = APsC
T(R + CPsC

T)−1,

where Ps satisfies the discrete algebraic Riccati equation (DARE)

Ps = (A−KsC)PsA
T +GQGT.
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Algorithm 2 Kalman Filter Predictor

Given Rk, Qk, P0,

For k = 1, . . . ,

1. Compute Kk

Kk = AkPk|k−1C
T
k R̂k

−1
.

2. Update x̂k|k−1 to x̂k+1|k, and Pk|k−1 to Pk+1|k

Pk+1|k = (Ak −KkCk)Pk|k−1A
T
k +GkQkG

T
k ,

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk(yk − Ckx̂k|k−1).

end

In this thesis the smoothing case is not analyzed because despite being a more
accurate method than the previous ones, it is quite expensive to compute for
large scale systems. Anyhow, there exist many literature about it, some refer-
ences are [4, 45].

On the other hand and continuing with the analysis of the Kalman filter al-
gorithms, in the next section some results obtained by De Souza et al. [27]
and Gallivan et al. [39] are shown. These give us a deeper understanding
about the convergency and numerical issues involved in the Kalman filtering
computation.

Convergence of the Discrete Riccati Difference Equation −DRDE

To analyze the convergence of the DRDE (2.18) the underlying two-point
boundary value problem [3, 90] is used for the case when the system, the
process noise Qk, and the measurement noise Rk are time invariant, hence, we
drop the subscript k in this section. Taking G = In, it follows from lemma 1
in [39], that if R = RT > 0, (2.18) can be written as follows,

[

AT 0
−Q In

] [

In
Pk+1|k

]

=

[

In CTR−1C
0 A

] [

In
Pk|k−1

]

AFk
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where

AFk

△
= A− CTFk,

Fk
△
= R̂−1

k CPkA
T,

R̂k
△
= R+ CPkCT.

Hence, the solution of (2.18) converge according to a subspace iteration given
by

[

In
Pk+1|k

]

= M−1
1 M2

[

In
Pk|k−1

]

AFk
,

with

M1 =

[

AT 0
−Q In

]

, M2 =

[

In CTR−1C
0 A

]

,

and M1 invertible.

Therefore, the following theorem introduced in [27] gives the necessary and
sufficient conditions to obtain the unique stabilizing solution Ps.

Theorem 1 A stabilizing solution Ps of the DRDE exists and is unique if and
only if either of the following two conditions is satisfied.

Subject to either P0 > 0 or P0 ≥ Ps, then

1. (C,A) is detectable and (A,LQ) has no unobservable eigenvalue on the
unit circle

2. (C,A) is detectable and the pencil λM1−M2 has no generalized eigenvalue
on the unit circle.

with Q = LQL
T
Q.

For more details on DRDE convergence, we refer to [39, 27].
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2.4 Square Root Formulation

2.4.1 Introduction

[45]

The great success of the Kalman Filter was not without its problems, not the
least of which was marginal stability of the numerical solution of the associated
Riccati equation. In some applications, small roundoff errors tended to accu-
mulate and eventually degrade the performance of the filter. In the decades
immediately following the introduction of the Kalman filter, there appeared
several better numerical implementations of the original formulas. Many of
these were adaptations of methods previously derived for the least squares
problems.

The square-root methods make use of matrix decomposition methods. These
include the so-called QR decomposition of a matrix as the product of an or-
thogonal matrix Q and a triangular matrix R. The matrix R results from the
application of orthogonal transformations of the original matrix. These orthog-
onal transformations tend to be well conditioned numerically. The operation of
applying these transformations called the triangularization of the original ma-
trix, and triangularization methods derived by Givens [41], Householder [55],
and Gentleman [40] are used to make the Kalman filtering more robust against
roundoff errors.

It was discovered early on that forcing symmetry on the solution of the matrix
Riccati equation improved its apparent numerical stability - a phenomenon that
was later given a more theoretical basis by Verhaegen and Van Dooren [85]. It
was also found that the influence of roundoff errors could be ameliorated by
artificially increasing the covariance of process noise in the Riccati equation.
A symmetrized form of the discrete-time Riccati equation was developed by
Bucy and Joseph [20] an used by R.C.K. Lee at Honeywell in 1964. This struc-
tural reformulation of the Kalman filter equations improved robustness against
roundoff error in some applications, although later methods have performed
better on some problems [77].

The first of these was the square-root implementation by Potter and Stern [72],
first published in 1963 and successfully implemented for space navigation on
the Apollo manned lunar exploration program. Potter and Stern introduced
the idea of factoring the error covariance matrix Pk into Cholesky factors, in
the format

Pk = SkS
T
k ,
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and expressing the observational update equations in terms of the Cholesky
factor Sk, rather than Pk. The result was better numerical stability of the
filter implementation at the expense of added computational complexity. A
generalization of the Potter and Stern method to handle vector-valued mea-
surements was published by one of the authors [7] in 1968, but a more efficient
implementation −in terms of triangular Cholesky factor− was published by
Bennet in 1967 [15].

There was a rather rapid development of faster algorithmic methods for square-
root filtering in the 1970s, following the work at NASA/JPL (then called the
Jet Propulsion Laboratory, at the California Institute of Technology) in the late
1960s by Dyer and McReynolds [31] on temporal update methods for Cholesky
factors. Extensions of square-root covariance and information filters were in-
troduced in Kaminski’s 1971 thesis [64] at Stanford University. The first of the
triangular factoring algorithms for the observational update was due to Agee
and Turner [2], in a 1972 report of rather limited circulation. These algorithms
have roughly the same computational complexity as the conventional Kalman
Filter, but with better numerical stability. The fast-triangular algorithm of
Bierman in 1974 [18] and the associated temporal update method introduced
by Thornton [76]. The computational complexity of the square-root filter for
time-invariant systems was greatly simplified by Morf and Kailath [69] soon
after that. Specialized parallel processing architectures for fast solution of the
square-root filter equations were developed by Jover and Kailath [61] and oth-
ers over the next decade, and much simpler derivations of these and earlier
square-root implementations were discovered by Kailath [63].

Although there exist several square-root based methods to compute the Kalman
filter in the literature [4, 18, 62, 69, 81], in this chapter we will present, in our
opinion and having in mind the use of them in large scale linear/nonlinear
systems, some of the more representative , namely, the error covariance up-
date using simultaneous [69] and sequential [72] processing, and the transform
Kalman filter [19].

2.4.2 Error Covariance Update using Simultaneous Pro-

cessing

Let us start with the derivation of the algorithm for the prediction case and
later we extend these results directly to the estimation case (for more details
see [69]).

First of all, substitute (2.17) in (2.18) to yield the discrete Riccati difference
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equation (DRDE)

Pk+1|k = AkPk|k−1A
T
k −AkPk|k−1C

T
k R̂

−1
k CkPk|k−1A

T
k +GkQkG

T
k . (2.19)

Note that this equation is the Schur complement of Mk with respect to R̂k,
where Mk is positive semidefinite and it is defined as

Mk
△
=

[

R̂k CkPk|k−1A
T
k

AkPk|k−1C
T
k AkPk|k−1A

T
k +GkQkG

T
k

]

.

From this, one easily derives a factored form of the Kalman filter algorithm as
follows. It is assumed that the Cholesky factorizations of the positive semidef-
inite matrices Rk, Qk and Pk|k−1 are given by

Rk
△
= LRk

LT
Rk
, Qk

△
= LQk

LT
Qk
, Pk|k−1

△
= Sk|k−1S

T
k|k−1.

Next, Mk is easily factored in

Mk = GkGT
k

where

Gk
△
=

[

LRk
CkSk|k−1 0

0 AkSk|k−1 GkLQk

]

.

Now, from (2.19) notice that

Pk+1|k +AkPk|k−1C
T
k R̂

−1
k CkPk|k−1A

T
k = AkPk|k−1A

T
k +GkQkG

T
k ,

hence, Mk can be also written as

Mk =

[

R̂k CkPk|k−1A
T
k

AkPk|k−1C
T
k Pk+1|k +AkPk|k−1C

T
k R̂

−1
k CkPk|k−1A

T
k

]

,

which can be factored by inspection as

Mk = XkXT
k

with

Xk
△
=

[

Hk 0 0
Jk Sk+1|k 0

]

.
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Where Hk ∈ Rm×m satisfies

R̂k = HkH
T
k ,

and Sk+1|k ∈ Rn×n

Pk+1|k = Sk+1|kS
T
k+1|k,

then, Kk ∈ Rn×m is computed as

Kk = JkH
−1
k .

Then, it follows that as Gk and Xk are factors of Mk they must be related
by an orthogonal transformation Uk, i.e., UT

k Uk = I. Hence we can write the
following relation,

[

LRk
CkSk|k−1 0

0 AkSk|k−1 GkLQk

]

· Uk =

[

Hk 0 0
Jk Sk+1|k 0

]

. (2.20)

Therefore we can see that a technique for obtaining Xk is to apply any or-
thogonal transformation Uk such that we force a pattern of zeros as shown in
(2.20). One technique that can be used is the QR decomposition [42], so, by
computing an upper triangular QR decomposition of GT

k we have that

GT
k = UkXT

k

then,

GkUk = Xk.

As a result, we have got an approach to update recursively the Riccati difference
equation (2.19) assuring that Pk+1|k is always positive definite. The price that
has to be paid is the increase of complexity of the algorithm. The algorithm is
described in Algorithm 3.
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Algorithm 3 SQRT-KF Predictor using Simultaneous Processing

Given Sk, Rk, Qk,

for k = 1, . . . ,

1. Compute the Cholesky factorization of Rk, and Qk.

2. Compute an upper triangular decomposition as in (2.20) to obtain
Hk, Jk, and update Sk|k−1 to Sk+1|k. Hence,

[

LRk
CkSk|k−1 0

0 AkSk|k−1 GkLQk

]

· Uk =

[

Hk 0 0
Jk Sk+1|k 0

]

.

3. Compute the Kalman gain

Kk = JkH
−1
k .

4. Update x̂k|k−1 to x̂k+1|k

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk(yk − Ckx̂k|k−1).

end

These results can be easily extended to the estimation case. The main differ-
ence between the two algorithms, i.e, prediction and estimation, is that in the
estimation case we have to make a time update step before updating Pk|k−1,
therefore the square-root algorithm will be as follows. First the time update
step is given by

[

Ak−1Sk−1|k−1 Gk−1LQk−1

]

· Tk =
[

Sk/k−1 0
]

, (2.21)

with Tk an orthogonal transformation matrix as Uk in (2.20), then for the
measurement update we defined Mk from (2.13) by

Mk
△
=

[

R̂k CkPk|k−1

Pk|k−1C
T
k Pk|k−1

]

. (2.22)

Next, the square root factor of Mk is given by

Gk =

[

LRk
CkSk|k−1

0 Sk|k−1

]

, (2.23)
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then, it follows from the QR decomposition of GT
k that

[

LRk
CkSk|k−1

0 Sk|k−1

]

· Uk =

[

Hk 0
Jk Sk|k

]

. (2.24)

In order to reduce the complexity of the algorithm, one practical way to com-
pute Xk is as follows, first compute Uk and Hk from a QR decomposition of
the first row of Gk

[

LRk
CkSk|k−1

]T
= Uk ·

[

Hk 0
]T
, (2.25)

and then, compute Jk and Sk|k as

[

0 Sk|k−1

]

· Uk =
[

Jk Sk|k

]

. (2.26)

Another alternative is combining (2.21) and (2.24) into one step by substituting
(2.6) in Mk. As a result, the square root of Mk can be rewritten as

Gk =

[

LRk
CkAk−1Sk−1 CkGk−1LQk−1

0 Ak−1Sk−1 Gk−1LQk−1

]

,

note that the relative subscripts have changed to absolute subscripts because
there is just one update step. Hence, the error covariance update can be done
similarly to the original algorithm, so

[

LRk
CkAk−1Sk−1 CkGk−1LQk−1

0 Ak−1Sk−1 Gk−1LQk−1

]

· Uk =

[

Hk 0 0
Jk Sk|k 0

]

, (2.27)

where Kk ∈ Rn×m is computed as

Kk = JkH
−1
k ,

and Sk|k ∈ Rn×n satisfies

Pk|k = Sk|kS
T
k|k. (2.28)

Notice that (2.28) holds even if Pk+1|k is not full rank. We can see the algorithm
in Algorithm 4.
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Algorithm 4 SQRT-KF Estimator using Simultaneous Processing

Given Sk, Rk, Qk,

for k = 1, . . . ,

1. Compute the Cholesky factorization of Rk, and Qk.

2. Update x̂k−1|k−1 to x̂k|k−1 and Sk−1|k−1 to Sk|k−1 from a QR
decomposition as follows

[

Ak−1Sk−1|k−1 Gk−1LQk−1

]

· Tk =
[

Sk/k−1 0
]

,

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1.

3. Compute Uk and Hk from the QR decomposition of
[

LRk
CkSk|k−1

]T
as follows

[

LRk
CkSk|k−1

]T
= Uk ·

[

Hk 0
]T
.

4. Compute Jk and update Sk|k−1 to Sk|k using

[

0 Sk|k−1

]

· Uk =
[

Jk Sk|k

]

.

5. Compute Kk

Kk = JkH
−1
k .

6. Update x̂k|k−1 to x̂k|k

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1).

end

2.4.3 Error Covariance Update using Sequential Process-

ing

This method of propagating the error covariance matrix was proposed by Pot-
ter, [72, 4]. For the estimation case, in equations (2.6) and (2.12) we can
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substitute Pk|k−1 by its square root form defined as

Pk|k−1 = Sk|k−1S
T
k|k−1.

Hence (2.6) can be rewritten as

Pk|k = Sk|k−1S
T
k|k−1 − Sk|k−1S

T
k|k−1C

T
k R̂

−1
k CkSk|k−1S

T
k|k−1, (2.29)

and (2.12) as

Kk = Sk|k−1S
T
k|k−1C

T
k (CkSk|k−1S

T
k|k−1C

T
k +Rk)−1. (2.30)

Now assume that the observations have uncorrelated errors and are processed
one at a time. As a result, for the i-th measurement point we have that
Rk(i, i) = σ2

ik
, where σ2

ik
is the variance of the observation error; therefore,

R̂−1
k becomes the scalar αk defined as

αk
△
=

(

FT
k Fk + σ2

)−1
,

where Fk ∈ Rn×m is defined by

Fk
△
= ST

k|k−1C
T
k . (2.31)

Then, replace Fk in (2.29) and (2.30), so we obtain

Kk = αkSk|k−1Fk,

and,

Pk|k = Sk|k−1(In − αkFkFT
k )ST

k|k−1.

Now, let us introduce a matrix Dk ∈ Rn×n such that

DkDT
k = In − αFkFT

k , (2.32)

hence

Pk|k = Sk|k−1DkDT
k S

T
k|k−1.

To find Dk we introduce the scalar γk so that

(

In − αkFFT
)

=
(

In − γkFkFT
k

)(

In − γkFkFT
k

)T
. (2.33)



34 Chapter 2. Linear Discrete-Time Kalman Filtering

Solving (2.33) for γk yields

γk =
αk

1 +
√
αkσ2

.

Then, it follows that

Pk|k = Sk|kS
T
k|k

where Sk|k ∈ Rn×n is defined by

Sk|k
△
= Sk|k−1DK . (2.34)

If the measurements are correlated, i.e., Rk is not diagonal then these measure-
ments can be transformed. Let ỹk be defined by

ỹk
△
= R

−1/2
k yk,

where R
−1/2
k is the matrix inverse of the Cholesky factor of Rk. Then

ỹk = C̃kxk + ṽk,

with,

C̃k
△
= R

−1/2
k Ck,

ṽk
△
= R

−1/2
k vk.

These transformed measurements are equivalent to the original measurements,
but the covariance matrix of the errors of ṽk is the identity matrix.

Finally, the algorithm is given in Algorithm 5. It can be seen that the main
advantages of this algorithm is that in step 3 (measurement update), the matri-
ces related to the error covariance matrix update and the Kalman gain become
vectors when only one measurement is processed at a time, making the com-
putations more efficient.
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Algorithm 5 SQRT-KF Estimator using Sequential Processing

Given Sk, Rk, Qk,

For k = 1, . . . ,

1. Compute the Cholesky factorization of Rk, and Qk.

2. Update Sk−1|k−1 to Sk|k−1 and x̂k−1|k−1 to x̂k|k−1

[AkSk−1|k−1 GkLQk
]Uk = [Sk|k−1 0],

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1.

3. Update Sk|k−1 to Sk|k and x̂k|k−1 to x̂k|k using the sequential
processing

Sk|k(0)
= Sk|k−1,

x̂k|k(0)
= x̂k|k−1,

for i = 1 to m

Fk(i)
= ST

k|k(i−1)
CT

k(i,:)
,

αk(i)
= (FT

ki
Fk(i)

+Rk(i,i)
)−1,

Kk(i)
= αk(i)

Sk|k(i−1)
Fk(i)

,

x̂k|k(i)
= x̂k|k(i−1)

+Kk(i)
(yk(i)

− Ck(i,:)
x̂k|k(i−1)

),

βk(i)
=

1

1 +
√

αk(i)
Rk(i,i)

,

Sk|k(i)
= Sk|k(i−1)

− βk(i)
Kk(i)

FT
k(i)

,

end.

end.

2.4.4 Error Covariance Update using a Matrix Transfor-

mation

Another way of updating the error covariance matrix is described in ([19, 78])
the ensemble transform Kalman filter (ETKF). In this section we present its
linear formulation. This approach is based on the Potter algorithm §2.4.3 and
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the Sherman-Morrison-Woodbury identity [42].

Notice that (2.32) for a simultaneous processing is given by

DkDT
k = In −FkR̂

−1
k FT

k . (2.35)

where Dk ∈ Rn×n, Fk ∈ Rn×m is defined by (2.31), and R̂k ∈ Rm×m by (2.11).

Using the Sherman-Morrison-Woodbury identity (2.36) [42],

Sherman-Morrison-Woodbury Identity

(

A+ UV T
)−1

= A−1 −A−1U
(

In + V TA−1U
)−1

V TA−1, (2.36)

where A ∈ Rn×n, and U, V ∈ Rn×m.

we can rewrite (2.35) as follows

DkDT
k =

(

In + FkR
−1
k FT

k

)−1
(2.37)

with Rk ∈ Rm×m the measurement noise. Then, assuming Rk symmetric and
non-singular, it can be shown that the eigenvalue decomposition of (2.37) is
given by

(

In + FkR
−1
k FT

k

)−1
= Vk

(

Λ0k
+ In

)−1
V T

k ,

with Λ0k
∈ Rn×n is defined by

Λ0k

△
=

[

Λk 0
0 0n−m

]

,

where Vk ∈ Rn×m, and Λk ∈ Rm×m are the eigenvectors and eigenvalues of
FkR

−1
k FT

k . Hence,

Dk = Vk

(

Λ0k
+ In

)−1/2
.

As a result, the square root error covariance matrix update defined in (2.34) is
given by

Sk|k = Sk|k−1Vk

(

Λ0k
+ In

)−1/2
,
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and the Kalman gain by

Kk = Sk|k−1FkR̂
−1
k .

As a result, the algorithm is shown in Algorithm 6.

Algorithm 6 SQRT-TKF Estimator

Given Sk, Rk, Qk,

For k = 1, . . . ,

1. Update Sk−1|k−1 to Sk|k−1 and x̂k−1|k−1 to x̂k|k

[AkSk−1|k−1 GkLQk
]Uk = [Sk|k−1 0],

x̂k|k−1 = Ak−1x̂k−1|k−1 + Bk−1uk−1.

2. Compute

Fk = ST
k|k−1C

T
k .

3. Compute the Kalman gain

Kk = Sk|k−1FkR̂
−1
k .

4. Compute the eigenvalue decomposition of FkR
−1
k FT

k ,

FkR
−1
k FT

k = VkΛkV
T
k .

5. Update Sk|k−1 to Sk|k and x̂k|k−1 to x̂k|k

Sk|k = Sk|k−1Vk(Λ0k
+ In)−1/2,

x̂k|k = x̂k|k−1 +Kk(yk − Ckx̂k|k−1).

end.
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2.5 Computational Complexity of the Algorithm

To compare the algorithms we have computed the number of flops2, see Table
2.1. Furthermore, In Table 2.2 the order of computation for each algorithm
is shown. In Table 2.2 is observed that the order of computation for all the
methods is O(n3); however, the less expensive in number of flops is the SQRT-
KF with error covariance sequential update. Notice that these results were
obtained assuming a time invariant system, otherwise the full Kalman filter
would be the less expensive in number flops. This is due to the fact that in the
square-root approaches we have to add the Cholesky factorization costs of the
Qk, and Rk matrices each time step.

Full KF Estimator 6n3 + 2n2(3m+ 1) + 2n[2m(m + 1) + 2l2 + p+ 1]

Full KF Predictor 6n3 + 2n2[2m(m+ 1) + 2l2 + p]

SQRT-KF-Simul.Upd. 16/3n3 + 2n2(m+ l) + n(m2 + 10/3l2 + 1)

SQRT-KF-Seq. Upd. 10/3n3 + 2n2(m+ l + 7/2) + n(6m+ 10/3l2 + 2p+ 2)

SQRT-TKF 37/3n3 + n2(8m+ l + 1) + n(6m2 + 4m+ 2/3l2 + 2)

Table 2.1: Number of flops, where n is the order of the system, m the number
of observations, p the number of inputs, and l the order of the process-noise
covariance matrix Q.

Notice that when the number of measurement points m, or the order of the
process noise covariance matrix l, is equal to the order of the system n, the
order of computation for the full KF predictor is O(n4), while for the others
stays in O(n3), see Table 2.3. Now, in order to see more clear the dependence of
the complexity of the algorithms on n and m, which are the most representative
size dimensions, let us assume m = l = p, then

Full KF Estimator 6n3 + 2n2(3m+ 1) + 2n(4m2 + 3m+ 1)

Full KF Predictor 6n3 + 2n2m(4m+ 3)

SQRT-KF-Simul.Upd. 16/3n3 + 4n2m+ n(13/3m2 + 1)

SQRT-KF-Seq. Upd. 10/3n3 + 4n2(m+ 7/4) + n(10/3m2 + 8m+ 2)

SQRT-TKF 37/3n3 + n2(9m+ 1) + n(20/3m2 + 4m+ 2)

Table 2.2: Number of flops, where n is the order of the system, and m = l = p.

2a flop is defined as a floating point operation [42]
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Full KF Estimator O(n3)
Full KF Predictor O(n3)
SQRT-KF-Simul.Upd. O(n3)
SQRT-KF-Seq. Upd. O(n3)
SQRT-TKF O(n3)

Table 2.3: Order of Computation

2.6 Conclusions

Basically there exist three different Kalman filter formulations, namely: 1)
Predictor, 2) Estimator, and 3) Smoother. For each case there is a different
problem formulation, therefore we have to use the one that better fits our
problem. In fact, in most of the cases data assimilation systems use a short
range forecast; which consist of making an estimation of the current states of
the system, and then use a numerical model to predict the behavior of the
system until new observations are taken. Hence, in this thesis we will use the
estimator Kalman filter by default.

On the other hand, although the original formulation of the Kalman filter is
optimal, it presents some numerical problems in the implementation, and lack
of tractability when the dimensions of the system are large. In this chapter we
have done a review of different approaches to compute the Kalman filter based
on the square root formulation, first proposed by Potter [72]. The square root
formulation has shown to improve the numerical stability as well as diminish the
impact of roundoff errors. Having in mind the use of the Kalman filter further in
large scale linear/nonlinear systems, basically there exist three different square
root formulations, namely: 1) the error covariance update using simultaneous
processing, 2) the error covariance update using sequential processing, and 3)
the square root transform Kalman filter−SQRT-TKF, proposed by Bishop [19].
After calculating the number of flops needed for each algorithm, we conclude
that the most efficient between them is the SQRT-KF with error covariance
sequential update as can be seen in Table 2.1.
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3.1 Introduction

Although the Kalman filter has shown to provide an optimal solution for data
assimilation in linear systems with a relatively small order, for very large non-
linear systems it is not directly applicable, because of its computational com-
plexity and the size of the covariance matrix. As a result, approximations of the
Kalman filter equations are needed. We will refer to these approximations as
suboptimal KF. Most suboptimal KF are aimed at an approximation of either
the model dynamics or the error covariance matrix, due to the fact that the

41



42 Chapter 3. Suboptimal Kalman Filters for Linear Large Scale Systems

main part of the computations are used for them. The model is often simplified
by removing less important terms from the equations, or by introducing other
simplifying assumptions. The simplified model is then used for time propa-
gation of the error covariance and the full model for the time propagation of
the estimate. Some researchers [25], have proposed to approximate the state
transition matrix by one of lower rank. The partial singular value decomposi-
tion can be used in this case to reduce the computations. On the other hand,
various methods have been proposed for the approximation of the error covari-
ance matrix. Setting correlations for large distances to zero can be exploited to
speed up the algorithm considerably. However, due to the generally large con-
dition number of the error covariance matrix negative eigenvalues may appear.
A solution to this problem is to use a square root filter, as described in §2.4.
Often the error covariance matrix has only a few large eigenvalues, which can
be used for approximation. The resulting partial eigenvalue decomposition can
be used for fast propagation of the error covariance. Todling and Cohn used
this idea together with a Lanczos algorithm for the eigenvalue computations
to obtain an efficient and general algorithm, the Partial Eigen-decomposition
Kalman Filter or PEKF [25]. Another similar idea by Verlaan and Heemink is
to approximate the error covariance matrix by one of a lower rank, the Reduced
Rank Square Root algorithm or RRSQRT-KF [87]. The optimal choice for this
low rank approximation results in the use of the eigenvalues and eigenvectors
of the error covariance matrix.

This chapter presents an overview of different suboptimal linear Kalman filter
formulations for large scale systems. On the one hand, the reduced rank square
root Kalman filter (RRSQRT-KF), and the ensemble Kalman filter (EnKF),
which are two well known suboptimal Kalman filters, and on the other hand
we propose two new algorithms, namely, the singular square root Kalman filter
SSQRT-KF [11], which is developed to be used for systems with negligible
process noise, and the spatially localized Kalman filter [9], with its square root
formulation SQRT-SLKF, which is designed to be used when the measurements
are very sparse, so, a local estimation is the best solution we can have.

The RRSQRT-KF, the SSQRT-KF, and the KF are tested and compared in a
2D-plate heat transfer system, where the objective is to compare the perfor-
mance of the filters when the propagated error covariance matrix is approx-
imated according to the filter used. In addition, the problem of boundary
condition estimation is treated, and a solution is given by inverting the linear
dynamic system.

On the other hand, the SLKF is tested and compared to the KF in a mass-
spring system, where the objective is to study the performance of the filter for
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local estimation under different error weight functions.

Finally, the numerical algorithms of the filters are shown in detail, and a com-
parison of the numerical complexity is done.

3.2 Reduced Rank Square Root Kalman Filter

- RRSQRT-KF

The main goal of the RRSQRT-KF is to approximate the error covariance
matrix by a matrix with a smaller rank. Therefore, the square root factors
are based on an eigen-decomposition. Let Pk|k−1 = VkΛkV

T
k be the eigen-

decomposition of the error covariance matrix Pk|k−1, so that Sk|k−1 = VkΛ
1/2
k is

a square root factor of Pk|k−1. The error covariance matrix is now approximated
by using only q leading eigenvalues. With the ordering |λ1| ≥ . . . ≥ |λn| ≥ 0,
an approximation is obtained by truncating Sk|k−1 after the first q columns.

One way of computing the eigenvalue decomposition of Pk|k−1 efficiently is
given in the following Theorem.

Theorem 2 The eigenvalues different from zero and the corresponding eigen-
vectors, denoted as Vm, of the matrix O ∈ Rn×n with rank m, defined by

O △
= BBT,

where B ∈ Rn×m has rank m, and n > m, can be computed as

Vm = BMΛ−1/2
m ,

where M ∈ Rm×m and Λm are the right-eigenvectors and eigenvalues of BTB ∈
Rm×m respectively, assuming λ1 > λ2 > . . . > λm.

Proof: Given

BBT = V ΛnV
T

and,

BTB = MΛmM
T (3.1)

where Λm consists of the first m eigenvalues of BBT and assuming λ1 > λ2 >
. . . > λn. Then, pre and post-multiplying (3.1) by B and BT respectively, it can
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easily be shown that

VmΛ2
mVmT = BMΛ−1/2

m Λ2
mΛ−1/2

m MTBT.

As a result,

Vm = BMΛ−1/2
m .

The algorithm is as follows:

Algorithm 7 RRSQRT-KF Estimator

Given Rk, Qk, S0,

For k = 1, . . . ,

1. Update x̂k−1|k−1 to x̂k|k−1, and Sk−1|k−1 to Sk|k−1 as follows

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1,

Sk|k−1 =
[

Ak−1Sk−1|k−1 Gk−1LQk−1

]

.

2. Reduce the rank of Sk|k−1 using Theorem 2, so

S∗
k|k−1 =

[

Sk|k−1Vk

]

1:n,1:q
,

where

ST
k|k−1Sk|k−1 = VkΛkV

T
k .

3. Update x̂k|k−1 and Sk|k−1 to x̂k|k and Sk|k respectively, using the
sequential processing (see step 4 of the algorithm in §2.4.3).

end.

3.3 Singular Square Root Kalman Filter SSQRT-

KF

In the case of the state estimation for large scale systems, the computational
complexity in (2.21)-(2.22) is large. However, it is possible to explore the
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freedom of some parameters to derive low-rank algorithms. In this section we
describe an algorithm that we call the Singular Square Root Kalman Filter
(SSQRT-KF) [11, 13], which is able to compute a suboptimal Kalman filter
gain very efficiently, assuming the process noise covariance Qk−1 = 0. It is
inspired by a dual Linear Quadratic Regulator (LQR) algorithm described in
[39]. In short, while the SSQR algorithm for the LQR focuses on obtaining a
controller that just move the unstable eigenvalues of the system into the unit
circle, guaranteeing the stabilization of the closed loop system, the SSQRT-
KF focuses on obtaining an observer that guarantees the convergence of the
estimation by making that the most dominant eigenvalues of the estimation
error dynamics lie always into the unit circle, for details we refer to [13, 39].

Let us start with the time update step equation (2.10), assuming Qk−1 = 0,
hence (2.21) can be written as

Sk|k−1 = Ak−1Sk−1|k−1, (3.2)

where the Sk−1|k−1 ∈ Rn×q, with q chosen larger than the number of unstable
eigenvalues of Ak−1. Therefore, we can rewrite (2.27) as follows

[

LRk
CkSk|k−1

0 Sk|k−1

]

· Uk =

[

Hk 0
Jk Sk|k

]

.

Then, notice that the QR decomposition can be done as in (2.25) and (2.26);
therefore,

[

LRk
CkSk|k−1

]T
=

[

Hk 0
]

· UT
k , (3.3)

and then,
[

0 Sk|k−1

]

· Uk =
[

Jk Sk|k

]

,

where the left-hand side of (3.3) is m× (m+ q) making the QR decomposition
cheap to compute. Besides, if Ck is sparse, the construction of the left factor
in the left hand side of (2.22) is cheap as well.

Finally, a key characteristic of the SSQRT-KF algorithm is that the spectrum of

the state space observer dynamics matrix (In−Pk|k−1C
T
k R̂k

−1
Ck)Ak−1 of (2.8),

is constructed by reflecting the eigenvalues of Ak−1 with |λ| > 1 to their unit
circle mirror images 1/|λ|, and leaving the eigenvalues with |λ| < 1 unchanged.
This feature is exploited to speed up the computation of the linear Kalman
filter for large scale systems together with the covariance inflation factor, that
is introduced in the following section.
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3.3.1 SSQRT-KF with Covariance Inflation

The SSQRT-KF was designed initially to be applied in systems where the
process noise can be neglected, anyhow this filter can be used when process
noise is present in the system. In order to do this, a technique similar to the one
introduced by Anderson [6] to avoid filter divergence in the ensemble Kalman
filter, can be applied: the covariance inflation. The covariance inflation is a
heuristic approach used in the SSQRT-KF to compensate the lack of the process
noise term in (3.2), when the prior error covariance matrix is computed. It
consists of multiplying the error covariance matrix Pk|k−1 by a factor κ(κ > 1)
enlarging the prior distribution artificially. Therefore, the error covariance
update can be rewritten as

Pk|k−1 = Ãk−1Pk−1|k−1Ãk−1

where Ãk−1 is defined by

Ãk−1
△
=
√
κAk−1.

The choice of κ has to be done with care, because if κ is chosen too large it
results in a filter in which the observations are given too much weight.

Consequently, the most interesting property of the covariance inflation factor
in the case of SSQRT-KF is that when we deal with discretized PDE systems
(2.1), the matrix Ak is in most of the cases stable, i.e, |λ(Ak)| < 1. Therefore
we can choose κ such that the matrix Ãk−1 gets the most dominant eigenval-
ues outside the unit circle. Since it was already mentioned above, one of the
key characteristics of the SSQRT-KF is that the spectrum of the state space
observer dynamics matrix is constructed by reflecting the eigenvalues of Ak−1

with |λ| > 1 to their unit circle mirror images 1/|λ|, leaving the eigenvalues
with |λ| < 1 unchanged. As a result, the SSQRT-KF estimator will focus on
stabilizing the most dominant modes of the error dynamics matrix, obtaining
an efficient suboptimal Kalman filter.

Summarizing, the recursive SSQRT-KF algorithm will be as follows
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Algorithm 8 SSQRT-KF Estimator

Given κ, Rk, Qk, S0,

for k = 1, . . . ,

1. Update Sk−1|k−1 to Sk|k−1 and x̂k−1|k−1 to x̂k|k−1

Sk|k−1 =
√
κAk−1Sk−1|k−1,

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1.

2. Compute Hk and Uk from the QR decomposition of
[

LRk
CkSk|k−1

]T
as follows

[

LRk
CkSk|k−1

]T
=

[

Hk 0
]

· UT
k .

3. Compute Jk and Update Sk|k−1 to Sk|k

[

0 Sk|k−1

]

· Uk =
[

Jk Sk|k

]

.

4. Compute Kk

Kk = JkH
−1
k .

5. Update x̂k|k−1 to x̂k|k

x̂k|k = x̂k|k−1 +Kk

(

yk − Ckx̂k|k−1

)

.

end.

3.3.2 Heat Transfer System Example

As an example, a heat transfer system in a finite insulated plate will be taken.
The PDE that describes such a system [46] is given by

∂T (t, y, x)

∂t
= α

(

∂2T (t, y, x)

∂x2
+
∂2T (t, y, x)

∂y2

)

+ u(t, y, x),

where T (t, y, x), u(t, y, x), and α are the temperature distribution, the heat
input, and the heat transfer coefficient of the plate, respectively. In this exam-
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Figure 3.1: Heat transfer in a finite 2D-plate. At the left, the space discretiza-
tion of the plate is shown, where each xi point represents a state. At the right,
the source of heat is represented by a flame moving under the plate.

ple the PDE is discretized using finite differences, with the plate dimensions
Lx = Ly = 1m, α = 1× 10−5W/oCm2, with fixed boundary conditions, initial
conditions

T (0, y, x) = 0,

and the heat input

u(t, y, x) = 5× 10−5 ∆t

∆x
e

−(x−x0(t))2

2σx
+

−(y−y0(t))2

2σy ,

where x0(t) and y0(t) are values that change with time, and σx = σy = 1×10−2.
The system is discretized in 225 grid points equally spaced by ∆x = ∆y =
0.0625 m with 0 < x < 1 and 0 < y < 1, and a sampling time ∆t = 5.21
seconds, this in order to keep the discretized system stable. Figure 3.2 shows
the structure of the A matrix, this structure is very typical for discretized
PDE’s. We can observe that this matrix is very sparse a fact that can be used
to make the computations more efficient.

For simulation purposes the short range prediction scheme is used. This scheme
consists of estimating the states at time k, where the measurements yk are
available. Then, the prediction is done by projecting ahead the states using
the physical first principle based model (2.1) until new measurements are taken.
Three methods will be compared, namely, the Kalman filter, the RRSQRT-KF,
and the SSQRT-KF.

In a first simulation, 30 measurement points were taken randomly, and the
process noise was set to zero. Figure 3.3 shows a comparison of the root-mean
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Figure 3.2: Sparse structure of the A matrix. The black areas show the zero
values and the white ones the values bigger than zero.

square error (RMSE) between the three filters for this case. Although the three
algorithms converge to the same solution, RRSQRT-KF converges slower while
SSQRT-KF has a similar convergence behaviour to the classical KF.

In a second simulation, process noise was introduced by using just the inputs at
the same points where the outputs are measured, using the same 30 measure-
ment points of the previous simulation. The filters were computed assuming
no process noise. Figure 3.4 shows the results of the RMSE, as expected none
of the filters converge to zero.

The third simulation was done taking into account the process noise caused by
the unknown inputs. The performance of the classical KF and RRSQRT-KF
are much better now, while SSQRT-KF keeps the same performance of the
previous case due to the fact that it does not take into account the process
noise in its formulation, Figure 3.5 shows the results.

Figures 3.6, and 3.8 show a comparison of the RMSE, and the evolution of the
temperature estimation between the three filters when covariance inflation is
applied to them. Even though all the filters reduce the RMSE, SSQRT-KF
reduces it drastically compared to the others. the performance of the three
filters is similar,

Figure 3.7 depicts how the magnitude of the eigenvalues of the filter dynamics
are affected compared to the eigenvalues of the system dynamics. At the bottom
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Figure 3.3: The RMSE of x̂k|k for the KF, RRSQRT-KF, and SSQRT-KF.
The KF Solid line, the RRSQRT-KF dashed-dotted line, and the SSQRT-KF
dashed line. By assuming all the inputs known, the process noise is set to zero.
30 measurement points were taken randomly. As a result the estimation of the
filters converge close to the real value.

can be seen for the SSQRT-KF case how the magnitude of the eigenvalues of
Ãk−1, for which |λ(Ãk−1)| > 1 are moved into the unit circle leaving the rest
in their original locations.

Another important feature of the SSQRT-KF algorithm is its low computation
cost as can be seen in Table (3.2). There can be seen that for n ≫ m, l, q, p
RRSQRT-KF and SSQRT-KF are much cheaper to compute than Kalman
filter.
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Figure 3.4: The RMSE of x̂k|k for the KF , RRSQRT-KF, and SSQRT-KF.
The KF Solid line, the RRSQRT-KF dashed-dotted line, and the SSQRT-KF
dashed line. By taking only the inputs in the measurement points we generate
the process noise. However, in this experiment we assume that there is no
process noise for the filters. 30 measurement points were taken randomly. As
a result the estimation of the filters does not converge close to the real value.
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Figure 3.5: The RMSE of x̂k|k for the KF , RRSQRT-KF, and SSQRT-KF.
The KF Solid line, the RRSQRT-KF dashed-dotted line, and the SSQRT-KF
dashed line. By taking only the inputs in the measurement points we generate
the process noise. In this experiment the process noise is taking into account
for the filters. As a result the KF and the RRSQRT-KF converge close to the
real value, while SSQRT-KF does not converge as expected, because this filter
always assume Q = 0, so, it is no affected by the fact of the presence or absence
of the process noise.
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Figure 3.6: The RMSE of x̂k|k for the KF , RRSQRT-KF, and SSQRT-KF. The
KF Solid line, RRSQRT-KF dashed-dotted line, and SSQRT-KF dashed line.
By taking only the inputs in the measurement points we generate the process
noise. In this experiment the process noise is taking into account for the KF
and RRSQRT-KF filters, and using the covariance inflation factor κ = 1.3,
3.3.1. As a result the performance of the SSQRT-KF is much better than in
the previous case.
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Figure 3.7: At the top can be seen the eigenvalues of the (A−LkfC), dot-mark,

(A − LksC), circle-mark, (A − LkrC), x-mark, A, dotted line, and Ã, x-mark
line, where Lkf , Lks, and Lkr are the KF, SSQRT-KF, and RRSQRT-KF gains,
respectively. The plot at the bottom zooms into the plot at the top, and it
depicts how Lks relocates |λ(Ã)| > 1.
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Figure 3.8: Contour plots of the temperature estimation using the three filters
compared to the original one (simulated). Taking 30 measurement points (dots
in the fourth row), where the inputs and outputs are measured. Covariance
inflation is applied to SSQRT-KF, κ = 1.3. Random initial conditions and
zero fixed boundary conditions. It can be seen that the performance of the
SSQRT-KF with covariance localization is similar to the KF and RRSQRT-KF
filter.
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Boundary Conditions Estimation

Until now boundary conditions were assumed to be zero, but in real applications
we often find that this is not true. Therefore, in this section the boundary
conditions are added to the system described by (2.1) and (2.2). As a result,
a discretized PDE with boundary conditions can be set as a LTV stochastic
model state space representation as follows:

xk+1 = Akxk +Bkuk + Fkzk + wk (3.4)

yk = Ckxk + vk. (3.5)

where Ak ∈ Rn×n, Bk ∈ Rn×p, Ck ∈ Rm×n, and Fk ∈ Rn×b. With zk ∈ Rb a
vector of boundary conditions at time k. Now, let us define

E [wjw
T
k ]

△
= Qkδjk,

E [vjv
T
k ]

△
= Rkδjk,

E [vjw
T
k ]

△
= 0,

where wk is a white Gaussian system noise process with zero mean and co-
variance matrix Qk which is introduced to take into account the model un-
certainties, as well as the white Gaussian measurement noise process vk with
zero mean and covariance matrix Rk to take into account the measurements
uncertainties. The initial state x0 is assumed to be Gaussian with mean x̄0 and
covariance matrix P0.

In (3.4) is seen that the boundary condition vector zk can be taken as external
input to the system. Hence (3.4) and (3.5) can be rewritten as follows

xk+1 = Akxk + (Bk Fk)

(

uk

zk

)

+ wk

yk = Ckxk + vk.

Now, in order to estimate the boundary conditions vector, we are going to
invert the system using the Kalman filter such that the vector zk will become
part of the state space vector xk, as explained in the following section.

Inverting Linear Dynamical Systems [86]

As an application of the Kalman filter, in this section we present how Kalman
filtering can be used to invert a linear dynamical system. We start with a
rather crude problem formulation. Let the signal generating system be de-
scribed by the LTI formulation of the state space system (3.4), (3.5), and let
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a desired output sequence ydk be given for k = 1, 2, . . . , N . Then the problem
is to determine the input sequence zk for k = 1, . . . , N such that yk closely
approximates ydk.

A more precise problem formulation requires the definition of a model that
describes how the input zk is generated. For example, let us consider the
following model representation for the class of inputs

zk+1 = αzk + wzk. (3.6)

This is an autoregressive model of order one −AR(1), with wzk a white noise
sequence that is independent of wk and vk in (3.4) and (3.5), and covariance

E [wzjw
T
zk] = Qzδjk.

For the input within this class of signal generating systems the problem is to
determine the output covariance matrix Qz ∈ Rb×b and a realization of the
input sequence zk for k = 1, 2, . . . , N , such that the output yk is a minimum
variance approximation of ydk.

The combination of the time-invariant signal generating model and the model
representing the class of input signals (3.6) results in the augmented state space
model:

[

xk+1

zk+1

]

=

[

A F
0 αIb

] [

xk

zk

]

+

[

B
0

]

uk +

[

In 0
0 Ib

] [

wk

wzk

]

, (3.7)

yk = [C 0]

[

xk

zk

]

+ vk,

with the process and measurement noise having the following covariance matrix:

E





wk

wzk

vk





[

wT
k wT

zk vT
k

]

=





Q 0 0
0 Qz 0
0 0 R



 ·

This augmented state space model has no measurable boundary conditions se-
quence. A bounded solution of the state error covariance matrix of the Kalman
filter of the augmented state space model requires the pair

{

[

A F
0 αIb

]

,
[

C 0
]

}

, (3.8)
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to be observable. The conditions under which the observability of the original
pair (A,C) are preserved are given in the following lemma. Notice that here
we extend the results showed in [86] to the case of α 6= 1.

Lemma 3 [86] Let the pair (A,C) be observable and let for all ξ ∈ Rm :
C(A− αIn)−1Fξ = 0 if and only if ξ = 0, then the pair (3.8) is observable.

Proof: By the Popov-Belevitch-Hautus [38] test for checking observability, we
have to proof that for all eigenvectors of the system matrix

[

A F
0 αIb

]

,

denoted as
[

A F
0 αIb

] [

η
ξ

]

= λ

[

η
ξ

]

, (3.9)

the condition
[

C 0
]

[

η
ξ

]

= 0

only holds provided

[

η
ξ

]

≡ 0.

From the lower part of (3.9) it follows that: ξ = 0 for any λ and α, or λ = α
for any ξ. With ξ = 0 it follows from (3.9) that Aη = λη and therefore Cη can
only be zero provided that η is zero, since the pair (A,C) is observable. With
λ = α, the top row of (3.9) reads:

(A− αIn)η = −Fξ,
hence Cη = 0 implies

C(A − αIn)−1Fξ = 0,

but this can only hold provided that ξ ≡ 0.

The condition in Lemma 3 on ξ for single-input, single-output LTI systems is
equivalent with the fact that the system (A,F,C) does not have zeros in the
point z = α of the complex plane. For multivariable systems the condition
corresponds to the original system having no so-called transmission zeros in
the point z = α, see details in [38].

The case where the original system has one or more zeros at α or in a circle
of radius ε around z = α, requires special attention. Different solutions are
available to solve this problem. One approach is based on the factorization of
rational transfer functions given in [80].



3.3. Singular Square Root Kalman Filter SSQRT-KF 59

50 100 150 200 250 300

10
−1

10
0

Iterations

R
M

S
E

Figure 3.9: RMSE of x̂k|k for the KF, RRSQRT-KF, and SSQRT-KF. The KF
Solid line, RRSQRT-KF dashed-dotted line, and SSQRT-KF dashed line. The
boundary conditions are fixed to zero except the left one, where the disturbance
zk+1 = zk + wzk is injected. Randomly 30 measurement points were taken,
where the outputs are measured.

Numerical Results

In order to investigate how this technique works in a data assimilation problem,
the example of section §3.3.2 will be taken. The boundaries are fixed to zero
except for the left boundary where the disturbance input zk+1 = zk +wk with
α = 1 is injected. The new augmented system has 15 new unknown states,
corresponding to the boundary conditions of the left side.

Figure 3.9 shows the RMSE of the three filters when the disturbance input
zk+1 = zk + wzk is injected. In this simulation is assumed all the inputs are
known, and 30 output measurement points. Covariance inflation is used for
SSQRT-KF with κ = 1.05

Figure 3.10 shows the contour plot of the estimated temperature using the three
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Figure 3.10: Contour plots of the estimated temperature using the three filters
compared to the original one (simulated). Boundary conditions fixed to zero
except the left one, where the disturbance zk+1 = zk + wzk is injected. Ran-
domly 30 measurement points (dots in the fourth row) were taken, where the
outputs are measured. Covariance inflation is applied to SSQRT-KF, κ = 1.05.

filters. Even though the classical KF is the best, RRSQRT-KF and SSQRT-KF
do a good job in estimating the unknown input disturbances.
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3.4 Spatially Localized Kalman Filter - SLKF

In this section we introduce a new filter we called, the spatially localized
Kalman filter (SLKF). The classical Kalman filter provides optimal least-squares
estimates of all of the states of a linear time-varying system under process and
measurement noise. In many applications, however, optimal estimates are de-
sired for a specified subset of the system states, rather than all of the system
states. For example, for systems arising from discretized partial differential
equations, the chosen subset of states can represent the desire to estimate state
variables associated with a subregion of the spatial domain. However, it is well
known that the optimal state estimator for a subset of system states coincides
with the classical Kalman filter.

For applications involving high-order systems, it is often difficult to implement
the classical Kalman filter, and thus it is of interest to consider computationally
simpler filters that yield suboptimal estimates of a specified subset of states.
One approach to this problem is to consider reduced-order Kalman filters. Such
reduced-complexity observers provide estimates of the desired states that are
suboptimal relative to the classical Kalman filter [17, 47, 54, 48, 49, 59]. Alter-
native variants of the classical Kalman filter have been developed for computa-
tionally demanding data assimilation applications such as weather forecasting
[36, 53, 8, 37], where the classical Kalman filter gain and covariance are modi-
fied so as to reduce the computational requirements.

The present approach is motivated by computationally demanding applications
such as those discussed in [36, 53, 8, 37]. For such applications, a high-order
simulation model is assumed to be available, and the derivation of a reduced-
order filter in the sense of [17, 47, 54, 48, 49, 59] is not feasible due to the
lack of a tractable analytic model. Instead, we consider the use of a full-
order state estimator based directly on the simulation model. However, rather
than implementing the classical output injection Kalman filter, we derive a
suboptimal spatially localized Kalman filter [9, 10] in which the filter gain is
constrained a priori to reflect the desire to estimate a specified subset of states,
something similar to the covariance localization approach §4.4.2, but in an
optimal way.

The use of a spatially localized Kalman filter in place of the classical Kalman
filter is motivated by computational architecture constraints arising from a
multi-processor implementation of the Kalman filter [65] in which the Kalman
filter operations can be confined to the subset of processors associated with
the states whose estimates are desired. An additional motivation is the use
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of the extended Kalman filter for nonlinear systems. For systems with sparse
measurements, observability may not hold for the entire system. In this case,
the spatially localized Kalman filter can be used to obtain state estimates for
the observable portion of the system.

Despite the objective of estimating a subset of the system states, the technique
we develop in this section requires the propagation of a full-order covariance
matrix.

3.4.1 Numerical Formulation

We begin by considering the discrete-time dynamical system

xk = Ak−1xk−1 +Bk−1uk−1 +Gk−1wk−1, k ≥ 0, (3.10)

with output

yk = Ckxk + vk, (3.11)

where xk−1 ∈ Rn, uk−1 ∈ Rp, yk ∈ Rm, and Ak−1, Bk−1, Gk−1, Ck are known
real matrices of appropriate size. The input uk−1 and output yk are assumed
to be measured, and wk−1 ∈ Rl and vk ∈ Rm are zero-mean noise processes
with known variances and correlations given by Qk−1, Rk, and Fk, respectively.
We assume that Qk−1, Rk, and Sk are positive definite.

The problem of estimating a subset of states of (3.10) from measurements of
the output (3.11) is discussed in this section.

Estimation Problem

Consider the discrete-time dynamical system described by (3.10) and (3.11).
For this system, we take a state estimator of the form

x̂k|k = x̂k|k−1 + ΓkKk(yk − ŷk|k−1), k ≥ 0, (3.12)

with output

ŷk|k−1 = Ckx̂k|k−1.

where x̂k|k ∈ R
n is the estimation of xk using the measurements yi for 0 ≤ i ≤ k,

ŷk|k−1 ∈ Rm, Γk ∈ Rn×np , and Kk ∈ Rnp×m. The nontraditional feature of
(3.12) is the presence of the term Γk, which, in the classical case of output
injection, is the identity matrix. Here, Γk constrains the state estimator so
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that only states in the range of Γk are directly affected by the gain Kk. For
example, Γk can have the form

Γk =





0
Inp

0



 ,

where Inp
denotes the np × np identity matrix. We assume that Γk has full

column rank for all k ≥ 0.

In order to find the optimal gain Kk, the first step is to project xk−1|k−1 ahead
via (3.10) using

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1. (3.13)

Then, define the prior state estimation error by

ek|k−1
△
= xk − x̂k|k−1. (3.14)

Substituting (3.13) and (3.10) into (3.14) we obtain

ek|k−1 = Ak−1ek−1|k−1 +Gk−1wk−1.

Now, define the prior error covariance matrix by

Pk|k−1
△
= E [ek|k−1e

T
k|k−1],

where E denotes expected value. Hence,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1.

Next, define the state estimation error

ek|k
△
= xk − x̂k|k, (3.15)

and the weighted estimation error covariance matrix

Jk(Kk)
△
= E [(Lkek|k)T (Lkek|k)],

where Lk ∈ Rq×n determines the weighted error components. Then, the
weighted estimation error can be obtained as

Jk(Kk) = tr (Pk|kMk), (3.16)
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where the error covariance matrix Pk|k ∈ Rn×n is defined by

Pk|k
△
= E [ek|ke

T
k|k], (3.17)

and Mk ∈ Rn×n by

Mk
△
= LT

kLk.

Now, substituting (3.12) into (3.15) yields

ek|k = xk − x̂k|k−1 − ΓkKk(yk − Ckx̂k|k−1), (3.18)

and using (3.18) with (3.17) implies

Pk|k = ÂkPk|k−1Â
T
k + Q̂k, (3.19)

where

Pk|k−1
△
= E [ek|k−1e

T
k|k−1],

ek|k−1
△
= xk − x̂k|k−1,

Âk
△
= Ink

− ΓkKkCk,

Q̂k
△
= ΓkKkR̃kK

T
k Γ

T
k − FkK

T
k Γ

T
k − ΓkKkF

T
k ,

R̃k
△
= CkSk + ST

k C
T
k +Rk,

Fk
△
= E [wk−1v

T
k ].

Hence (3.16) becomes

Jk(Kk) = tr [(ÂkPk|k−1Â
T
k + Q̃k)Mk].

To obtain the optimal gain Kk we set ∂Jk(Kk)/∂Kk = 0, which gives

Kk = (ΓT
k MkΓk)−1ΓT

k MkF̂kR̂
−1
k ,

with

F̂k
△
= Fk + Pk|k−1C

T
k , ∈ R

n×m,

R̂k
△
= R̃k + CkPk|k−1C

T
k , ∈ R

m×m.

To update the error covariance matrix, we first note that

ΓkKk = πkF̂kR̂
−1
k , (3.20)
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where πk ∈ Rn×n is defined by

πk
△
= Γk(ΓT

k MkΓk)−1ΓT
k Mk.

Note that πk is an oblique projector, that is, π2
k = πk. Now using (3.20) with

(3.19) yields the error covariance matrix update equation

Pk|k = Pk|k−1 + πk⊥F̂kR̂
−1
k F̂T

k π
T
k⊥ − F̂kR̂

−1
k F̂T

k , (3.21)

where the complementary projector πk⊥ is defined by

πk⊥
△
= Ink

− πk.

If either Mk = In or Lk = ΓT
k , then πk is the orthogonal projector

πk = Γk(ΓT
k Γk)−1ΓT

k .

On the other hand, if p = q, so that Lk ∈ Rp×p, then, it can be shown that

πk = Γk(LkΓk)−1Lk.

Specializing to the case Fk = 0, Γk = In, and Lk = In, so that πk⊥ = 0, yields
the familiar Riccati update equation

Pk|k = Pk|k−1 − Pk|k−1C
T
k R̂

−1
k CkPk|k−1.

Hence the algorithm is as follows,
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Algorithm 9 SLKF Estimator

Given Rk, Qk, P0 6= 0, Lk, Γk, πk, and πk⊥.

For k = 1, . . .

1. Project ahead the error covariance matrix and the estimated
states:

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Gk−1Qk−1G

T
k−1,

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1.

2. Compute the SLFK gain

ΓkKk = πkF̂kR̂
−1
k

3. Update x̂k|k−1 to x̂k|k as follows

x̂k|k = x̂k|k−1 + ΓkKk(yk − Ckx̂k|k−1).

4. Update the error covariance matrix

Pk|k = Pk|k−1 + πk⊥F̂kR̂
−1
k F̂T

k π
T
k⊥ − F̂kR̂

−1
k F̂T

k .

end

3.4.2 Square Root Formulation of the SLKF

To avoid numerical problems when computing the SLKF, a square root formu-
lation, for the case Sk = 0 is presented is this section. We can rewrite (3.21)
as

Pk|k = P1k|k
+ P2k|k

, (3.22)

where P1k|k
and P2k|k

∈ Rn×n are defined by

P1k|k

△
= Pk|k−1 − F̂kR̂

−1
k F̂T

k ,

P2k|k

△
= πk⊥F̂kR̂

−1
k F̂T

k π
T
k⊥. (3.23)

Hence, the square root form of (3.22) can be written as

Pk|k = Sk|kS
T
k|k
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with Sk|k ∈ Rn×(n+m) defined as

Sk|k
△
=

[

S1k|k
S2k|k

]

,

where S1k|k
∈ Rn×n and S2k|k

∈ Rn×m satisfy

P1k|k
= S1k|k

ST
1k|k

,

P2k|k
= S2k|k

ST
2k|k

.

To compute S1k|k
, first notice that the Schur complement of R̂k in Mk is P1k|k

,

Mk =

[

R̂k F̂T
k

F̂k P1k|k−1

]

Now specializing to the case Sk = 0 we have

Mk =

[

Rk + CkPk|k−1C
T
k CkPk|k−1

Pk|k−1C
T
k Pk|k−1

]

. (3.24)

Hence, the square root form of (3.24) is defined by

Mk
△
= βkβ

T
k

with βk ∈ R
(m+n)×(m+Nq) given by

βk =

[

LRk
CkSk|k−1

0 Sk|k−1

]

(3.25)

with Nq the order of the rank approximation of Sk|k−1 defined below in (3.29),

where Rk
△
= LRk

LT
Rk

and Pk|k−1
△
= Sk|k−1S

T
k|k−1. Next, a lower triangular QR

decomposition of βT
k yields

[

LRk
CkSk|k−1

0 Sk|k−1

]

=

[

Hk 0
Jk S1k|k

]

· UT
k ,

where Uk ∈ R(m+Nq)×(m+Nq) is orthogonal. As a consequence, a square root
factorization of Mk is given by

Mk =

[

Hk 0
Jk S1k|k

] [

HT
k JT

k

0 ST
1k|k

]

,
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from which, assuming Hk is nonsingular, it follows that

Kk = πkJkH
−1
k ,

R̂k = HkH
T
k , (3.26)

Pk|k−1C
T
k = JkH

T
k . (3.27)

Then, to find S2k|k
we substitute (3.26) and (3.27) into (3.23)

P2k|k
= πk⊥JkH

T
k (HkH

T
k )−1HkJ

T
k π

T
k⊥

hence,

P2k|k
= πk⊥JkJ

T
k π

T
k⊥,

from where

S2k|k
= πk⊥Jk.

As a result, the recursive SLKF algorithm is shown in Algorithm 10.
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Algorithm 10 SQRT-SLKF Estimator

Given S0 6= 0, πk, Γk, LQk
, and LRk

,

for k = 1, . . . ,

1. Update x̂k−1|k−1 to x̂k|k−1, and Sk−1|k−1 to Sk|k−1

x̂k|k−1 = Ak−1x̂k−1|k−1 +Bk−1uk−1,

Sk|k−1 =
ˆ

Ak−1Sk−1|k−1 Gk−1LQk−1

˜

, (3.28)

where Qk−1
△
= LQk−1L

T
Qk−1

.

2. Compute a reduced rank approximation of Sk|k−1 applying Theorem 2
as follows. First, compute the eigenvalue decomposition of PT

k|k−1

ST
k|k−1Sk|k−1 = VkDkV

T
k ,

then, the reduced rank approximation of (3.28) can be yielded by

S∗
k|k−1 = Sk|k−1Vk(1:n,1:Nq)

, (3.29)

where Nq ≤ n is the order chosen to approximate (3.28), hence
S∗

k|k−1 ∈ R
n×Nq .

3. Compute Hk and Uk making a QR decomposition of
ˆ

LRk
CkSk|k−1

˜

as follows

ˆ

LRk
CkS

∗
k|k−1

˜

=
ˆ

Hk 0] · UT
k .

4. Compute Jk and S1k|k
as follows

ˆ

0 S∗
k|k−1

˜

· Uk =
ˆ

Jk S1k|k

˜

5. Compute the SLKF gain ΓkKk and S2k|k

ΓkKk = πkJkH
−1
k ,

S2k|k
= πk⊥Jk.

6. Update x̂k|k−1 to x̂k|k, and S∗
k|k−1 to Sk|k

x̂k|k = x̂k|k−1 + ΓkKk

`

yk − Ckx̂k|k−1

´

Sk|k =
ˆ

S1k|k
S2k|k

˜

end
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3.4.3 Mass-Spring System Example

To illustrate the performance of the SLKF a simple LTI mass-spring system is
used (see Figure 3.11).

m mm1 2
c cc

1 2

1 2

kk3k1 k2 k
xx x1 2

u uu N

N
N N+1

N

N

Figure 3.11: Mass-Spring system.

The state space representation in continuous time of this system is given by

[

ż
ẋ

]

=

[

Az Ax

IN 0N

] [

z
x

]

+

[

IN
0N

]

u,

with zi and xi the velocity and the position of the i-th mass, respectively,
and N the number of masses. In this example the nodes at the extremes are
assumed to be fixed, so, the number of analyzed nodes is equal to the number
of masses. Ax ∈ RN×N is a tridiagonal matrix defined by

Ax
△
=















−(k1 + k2)/m1 k2/m1 0 . . .

k2/m2 −(k2 + k3)/m2 k3/m2

...

0
. . .

. . .
. . .

... . . . kN/mN −(kN + kN+1)/mN















,

with ki and mi the spring constant and mass of the i-th node, respectively.
Az ∈ RN×N a diagonal matrix defined by

Az
△
=









−c1/m1 0 . . .

0
. . .

...
... . . . −cN/mN









,

where ci the friction coefficient of the i-th mass.



3.4. Spatially Localized Kalman Filter - SLKF 71

For simplicity of the analysis we take the parameters in each node to be equal to
the others; hence, mi = 1kg, ki = 5kg/s2, and ci = 5kg/s, with i = 1, . . . , N .
We selected N = 50, m = 1 i.e., one input applied in the node 25 and defined
by

u25(t) = 30 sin(t/2 + π/3).

Next, the system is discretized using the zero order hold method taking a
sampling time Ts = 0.1s. Now, the discrete system can be represented by

xk+1 = Adxk +Bduk + wk,

where Ad ∈ Rn×n, with n = 2N , Bd ∈ Rn, and wk ∈ Rn is the process noise
caused by the discretization. And the output by

yk = Cdxk + vk,

where vk ∈ R
l is the measurement noise. The process and measurement noise

are assumed to be uncorrelated white noises.

In order to apply the SLKF to this problem, first we define the region where we
want the state estimation to be focused on. Hence, we take the node 25, this
node is taken as the measurement point for the input as well as the outputs,
velocity and position. Therefore we specify Γk such that the SLKF concentrates
around this region. Assuming Mk = In, the weighting matrix Γk is constructed
such that the entries of each column are taken from a Gaussian function with
mean the position of the analyzed state. Note that for each analyzed state
one column is needed, this makes the state estimation around the region of
interest to be smooth, avoiding numerical problems in the model integration.
To show why we have chosen a smooth function like the Gaussian to build
up Γk, let us take two different Γk: one is chosen to be Gaussian as it was
already mentioned and another one with column entries set to be one around
the location of interest and zero otherwise. For this example pk = lk = 2, so
πk in the two cases looks as shown in Figures 3.12, and 3.13. Let us call them
πk1 and πk2 respectively.

Analysis of Results

First of all, one experiment was carried out to compare the performance of the
SLKF filter using πk1 and πk2 . In Figures 3.14 and 3.15 we observe that the
estimations in the positions 2, 10, and 25 are smooth in all the cases; however,
in the position 15 we see that the estimation of the SLKF using πk2 is very
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Figure 3.12: Orthogonal projector matrix πk1 , Gaussian function
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Figure 3.13: Orthogonal projector matrix πk2 , no Gaussian function
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noisy. As a matter of fact, we expected this result because of the function we
chose, i.e., the position 15 is exactly located where πk2 goes from 0.05 to 0, as
a result of this abrupt change in the weighting function πk the estimations of
the SLKF filter become noisy. This effect is more clear in the velocity than in
the position because there is a differentiation step involved in its calculation.
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Figure 3.14: Estimation of velocity with a SNR=6dB. Solid line, original state,
dotted line classical KF estimation, and dashed line SLKF estimation using πk1 ,
and dash-dotted line SLKF estimation using πk2 . At the node 15 is clearly seen
that the choice of a non-smooth weighting function may generate instabilities
in the numerical model.

Next, two experiments with different Signal-to-Noise ratio (SNR) were carried
out, the first one with 6dB and the second with 1dB.

Figures 3.16 and 3.19 show a comparison of the performance of the SLKF to
the classical KF at different locations, specifically, 2, 10, 15, and 25. Generally
speaking, it can be seen that under high SNR conditions SLKF performs similar
to KF for any node, whereas for low SNR conditions the performance of the
SLKF is worst in the nodes far from the measurement point and similar in the
nodes around it. This is due to the spatially localized strategy used in the
SLKF.

In more detail, Figures 3.16 and 3.17 compare the estimation of the velocity
and position of the SLKF to the classical KF for the case SNR=6dB. In both
figures it is clearly seen that the estimation of the SLKF and KF at the node
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Figure 3.15: Estimation of position with a SNR=6dB. Solid line, original state,
dotted line classical KF estimation, and dashed line SLKF estimation using
πk1 , and dash-dotted line SLKF estimation using πk2 .

25 and 15 is good as expected, because they are located inside or very close to
the region defined by πk. On the other hand, while we go far from this region,
at nodes 10 and 2, even though the estimation starts to be poor, it is still good.

Figures 3.18 and 3.19 compare the estimation of the velocity and position of the
SLKF to the classical KF for the case SNR=1dB. Again, both filters work well
at the node 25, but SLKF reduces its performance compared to the previous
case in the other places, while the KF keeps its performance. As a matter of
fact, the classical KF is expected to do better than SLKF in regions apart from
the measurement point because it is not restricted to a certain region, whereas
the SLKF satisfies the localization constraint.

Summarizing, we can say that the estimation of the SLKF and the classical
KF are the same under high SNR conditions for all the states, but under low
SNR conditions, the estimation of the SLKF is reliable just into the interested
region.
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Figure 3.16: Estimation of velocity with a SNR=6dB. Solid line original state,
dotted line the classical KF estimation, and dashed line the SLKF estimation.
As expected, the SLKF performs similar to the KF at the node where the
measurement point is located, and different at the other nodes.
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Figure 3.17: Estimation of position with a SNR=6dB. Solid line original state,
dotted line the classical KF estimation, and dashed line the SLKF estimation.
As expected, the SLKF performs similar to the KF at the node where the
measurement point is located, and different at the other nodes.
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Figure 3.18: Estimation of velocity with a SNR=1dB. Solid line, original state,
dotted line the classical KF estimation, and dashed line the SLKF estimation.
As expected, the SLKF performs similar to the KF at the node where the
measurement point is located, and different at the other nodes.
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Figure 3.19: Estimation of position with a SNR=1dB. Solid line, original state,
dotted line the classical KF estimation, and dashed line the SLKF estimation.
As expected, the SLKF performs similar to the KF at the node where the
measurement point is located, and different at the other nodes.
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3.5 The Ensemble Kalman Filter - EnKF

The EnKF was first introduced by Evensen in 1994 [33], however, a more
clear presentation and review can be found in [34]. Since then it has gained
popularity because of its simple conceptual formulation and relative ease of
implementation, e.g., in the nonlinear case it requires no derivation of a tangent
linear operator or adjoint equations and no integrations backward in time,
like in the extended Kalman filter §4.3. Further, computational requirements
are affordable and comparable with other popular sophisticated assimilation
methods as the one by Bennett, 1992 [14], and the 4DVAR method which has
been much studied in the meteorological community (see [75, 26]). In this
section we introduce the EnKF for the linear case and in the next chapter it
will be extended to the nonlinear case.

The ensemble Kalman filter is a sequential data assimilation method where
the error statistics are predicted by solving the Fokker-Planck equation (3.38),
which describes the time evolution of a probability density function of a model
state, using a Monte Carlo or ensemble integration. By integrating an ensemble
of model states forward in time it is possible to calculate statistical moments
like mean and error covariances whenever such information is required. Thus,
all the statistical information about the predicted model state that is required
at analysis times is contained in the ensemble.

The method is presented in three stages:

• Representation of error statistics

• Prediction of error statistics

• The estimation problem

3.5.1 Representation of Error Statistics

The error covariance matrices for the prior and the current estimate, Pk|k−1

and Pk|k, are defined in the Kalman filter in terms of the true state as

Pk|k−1 = E
[

(xk − x̂k|k−1)(xk − x̂k|k−1)
T
]

(3.30)

Pk|k = E
[

(xk − x̂k|k)(xk − x̂k|k)T
]

(3.31)

Now, for the EnKF assume that we have an ensemble of forecasted model states
that randomly sample the model errors at time k. Let us denote this ensemble
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as Xk|k−1 ∈ Rn×N . It is defined by

Xk|k−1
△
= (x̂1

k|k−1, . . . , x̂
N
k|k−1), (3.32)

where the superscript denotes the ensemble member, with N the number of
ensemble members. Then, the ensemble mean ¯̂xk|k−1 ∈ Rn is defined by

¯̂xk|k−1
△
=

1

N

N
∑

i=1

x̂j
k|k−1.

Since the true state xk is not known, and in order to write (3.30) and (3.31) in
terms of (3.32), we therefore define the ensemble covariance matrices around
the ensemble mean as follows; define the ensemble of prior estimation errors
Ek|k−1 ∈ Rn×N by

Ek|k−1
△
= (x̂1

k|k−1 − ¯̂xk|k−1, . . . , x̂
N
k|k−1 − ¯̂xk|k−1), (3.33)

and the ensemble of estimation errors Ek|k ∈ Rn×N by

Ek|k
△
= (x̂1

k|k − ¯̂xk|k, . . . , x̂
N
k|k − ¯̂xk|k). (3.34)

Hence,

Pk|k−1 ≈ P̂k|k−1
△
=

1

N − 1
Ek|k−1E

T
k|k−1, (3.35)

Pk|k ≈ P̂k|k
△
=

1

N − 1
Ek|kE

T
k|k, (3.36)

which are averages over the ensembles. Thus, we can use an interpretation
where the ensemble mean is the best estimate and the spreading of the en-
semble around the mean is a natural definition of the error in the ensemble
mean. Since the error covariances defined in (3.35) and (3.36) are defined as
ensemble averages, there will clearly exist infinitively many ensembles with an
error covariance equal to P̂k|k−1 and P̂k|k. Thus, instead of storing a full covari-
ance matrix, we can represent the same error statistics using an appropriate
ensemble of model states. Given an error covariance matrix, an ensemble of
finite size will always provide an approximation to the error covariance matrix.
However, when the size of the ensemble N increases the errors in the Monte
Carlo sampling will decrease proportional to 1/

√
N .

Suppose now that we have N model states in the ensemble, each of dimension
n. Each of these model states can be represented as a single point in an N -
dimensional state space. All the ensemble members together will constitute a
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cloud of points in the state space. Such a cloud of points in the state space can,
in the limit when N goes to infinity, be described using a probability density
function

p(x) =
dN

N
, (3.37)

where dN is the number of points in a small unit volume and N is the total
number of points. With knowledge about either p(x) or the ensemble repre-
senting p(x), we can calculate whichever statistical moments (such as mean,
covariances etc.) we want whenever they are needed.

The conclusion so far is that the information contained by a full probability
density function can be exactly represented by an infinite ensemble of model
states.

3.5.2 Prediction of Error Statistics

Conceptually, the evolution of (3.37) can be modelled with the Fokker-Planck
equation

∂p(x)

∂t
= −

∑

i

∂(Aip(x))

∂xi
+

1

2

∑

i,j

∂2
[

p(x)(GQGT)ij

]

∂xi∂xj
, (3.38)

where Ai is the component number i of the model operator A, and Q is the
covariance matrix for the model errors. This equation does not apply any
important approximations and can be considered as the fundamental equation
for the time evolution of error statistics. A detailed derivation is given in [60].
The equation describes the change of the probability density in a local volume
which is dependent on the divergence term describing a probability flux into
the local volume (impact of the dynamical equation) and the diffusion term
which tends to flatten the probability density due to the effect of stochastic
model errors. If (3.38) could be solved for the probability density function, it
would be possible to calculate statistical moments like the mean state and the
error covariance for the model forecast to be used in the analysis scheme. The
EnKF applies a so called Markov Chain Monte Carlo (MCMC) method to solve
(3.38). The probability density can be represented using a large ensemble of
model states. By integrating these model states forward in time according to
the model dynamics described by (2.1), this ensemble prediction is equivalent
to solving the Fokker-Planck equation using a MCMC method. This procedure
forms the backbone for the EnKF.
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3.5.3 The Estimation Problem

In the standard KF estimation problem the definition of Pk|k−1 and Pk|k are
used. We now give a derivation of the estimation problem for the EnKF using
(3.35) and (3.36).

For the estimated-error covariance update Pk|k, the EnKF performs an ensem-
ble of parallel data assimilation cycles, using (2.3) as follows,

for i = 1, . . . , N

x̂i
k|k = x̂i

k|k−1 +Kek

(

yi
k − Ckx̂

i
k|k−1

)

, (3.39)

where Ck is the observation operator, and the observations yi
k = yk + ǫi are

perturbed observations defined such that ǫi ∼ N (0, Rek
). In the limit of an

infinite ensemble the matrix Rek
will converge toward the prescribed error

covariance matrix Rk used in the standard KF. As a result

P̂k|k =
1

N − 1
Ek|kE

T
k|k.

Then it follows, similar to the standard KF (3.39), the ensemble Kalman gain
Kek
∈ Rn×m is computed as

Kek
= P̂k|k−1C

T
k R̃

−1
ek
, (3.40)

where R̃−1
ek
∈ Rm×m is defined by

R̃ek

△
= CkP̂k|k−1C

T
k +Rek

. (3.41)

After the estimation is done, a short-range forecast is computed by running
the physics first principle based model (2.1) until new measurements are taken,
then the data assimilation is repeated.

The Initial Ensemble [34]

The initial ensemble should ideally be chosen to properly represent the error
statistics of the initial guess for the model state. However, a modest mis-
specification of the initial ensemble normally does not influence the results
very much over time. The rule of thumb seems to be that one needs to create
an ensemble of model states by adding some kind of perturbations to a best-
guess estimate, and then integrate the ensemble over a time interval covering
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a few characteristic time scales of the dynamical system. This will ensure that
the system is in dynamical balance and that proper multivariate correlations
have developed.

The perturbations can be created in different ways. The simplest is to sample
random numbers (for a scalar model), random curves (for a 1-D model) or
random fields (for a model with 2 or higher dimensions, see appendix C), from
a specified distribution.

The algorithm will be as follows,

Algorithm 11 Linear EnKF Estimator

First, generate an initial ensemble Xk−1|k−1 which properly represent
the error statistics of the initial guess for the model state, see appendix
D for details.

for k = 1, . . . ,

1. Update the ensemble members of Xk−1|k−1 using (2.1) for i =
1, . . . , N according to

xi
k|k−1 = Akx

i
k−1|k−1 +Bk−1uk−1

2. Compute P̂k|k−1 using (3.35).

3. Compute the EnKF gain using (3.40)

4. Update the ensemble members using (3.39)

5. Compute the state estimation taking the mean of the updated en-
semble members

x̂k|k
△
=

1

N

N
∑

i=1

x̂i
k|k.
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3.6 Computational Complexity of the Algorithms

All the suboptimal Kalman filters presented in this chapter are O(n2) except
for the SLKF which is O(n3). In Table 3.2 we observe that the RRSQRT-
KF and the SSQRT-KF are the most efficient ones in terms of number of flops,
nevertheless the RRSQRT-KF does not have any restriction as the SSQRT-KF.
On the other hand, the SQRT-SLKF has the same computational complexity
as the RRSQRT-KF when m ≪ q, which is normally the case for which the
SLKF has been designed. This computational complexity can be reduced even
more if we exploit the fact that SLKF makes the error covariance matrix very
sparse.

RRSQRT-KF 2n2(q + 1) + 2n(q2 + 7/2q + l2 + 2m+ p/2 + 1/2)
SSQRT-KF 2n2(q + 3/2) + 2n(q2 + 2qm+m2 + 2m+ p/2 + 1/2)
SLKF 2n3 + 2n2(11m+ 3/2) + 4n(2m2 +m+ l2 + p/2 + 1/2)
SQRT-SLKF 2n2(3m+ q + 1) + 2n(2q2 +m2 + l2 + 5q + ql + p+ 1/2)
Linear EnKF 4n2(N +m+ 1/4) + 2n(Np+ 2Nm+ 5N/2 + 2m2 + 1/2)

Table 3.1: Number of flops

RRSQRT-KF O
(

n2q
)

SSQRT-KF O
(

n2q
)

SLKF O
(

n3
)

SQRT-SLKF O
(

n2(m+ q)
)

Linear EnKF O
(

n2(m+N)
)

Table 3.2: Order of computation

Where, n is the order of the system, m the number of observations, p the
number of inputs, l the order of the process-noise covariance matrix Q, q the
rank decomposition of Sk|k−1 for the RRSQRT-KF, and the number of columns
of Sk|k−1 for the SSQRT-KF, and N the number of ensemble members in the
EnKF. Notice that N is equivalent in computational cost to q. Furthermore,
the RRSQRT-KF is not sensible to the number of observations m as the other
filters whose computationally complexity can be raised to O(n3) if m = n. On
the other hand, the SSQRT-KF is not sensitive to the order of Q as the other
filters whose computationally complexity can be raised to O(n3) if l = n.
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3.7 Conclusions

Suboptimal Kalman filters have shown to be a useful tool for large scale data
assimilation, resulting in the flourish of several suboptimal linear and nonlinear
Kalman filter formulations like the extended Kalman filter [60, 4], the ensemble
Kalman filter [33, 34, 35, 82], the reduced rank square root Kalman filter [87,
53], the partial eigen-decomposition Kalman filter [25], etc. Hence, in this
chapter we have presented two of the most relevant suboptimal linear Kalman
filters we find in the literature, namely, the RRSQRT-KF, and the EnKF.
Also, we have proposed two new suboptimal Kalman filters for two different
scenarios: the first one was the SSQRT-KF that is suitable for the case when
the process noise can be assumed either to be zero or negligible. As a result, by
making this assumption we have shown that the complexity in the computation
of the Kalman filter can be reduced from O(n3) to O(n2). Even though the
SSQRT-KF was initially obtained for systems with negligible process noise, it
can be used to systems with process noise by applying the covariance inflation
approach described in §3.3.1 and [13, 6]. Though the results showed a good
performance compared to RRSQRT-KF and the full Kalman filter, we have
to stress that the solution obtained using the covariance inflation factor is not
optimal.

The second approach was the SLKF [9], which can be used when there are very
few observations compared to the order of the system, hence, just local estima-
tions can be made. Moreover, it is also required that this local estimations have
to be done using the full prior-error covariance matrix Pk|k−1. As a result, the
SLKF we introduced in this chapter is able to make local estimations using the
full Pk|k−1 without affecting numerically regions far apart from the observation
points. This could be done by choosing an appropriate local weighting matrix
Γk and error weighting matrix Lk. On the other hand, despite the fact that in
the SLKF the error-covariance matrices obtained are very sparse, its computa-
tion complexity might be of order O(n3) which could make it not attractive for
real applications; therefore, we presented the square root version of the SLKF
that we called the SQRT-SLKF, which can be computed with a complexity of
order O(n2), and still exploit the sparsity of the error-covariance matrices.
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4.1 Introduction

In the previous chapters we have expended some time introducing the Kalman
filter and some suboptimal formulations of it. This was motivated by the fact
that the Kalman filter is prohibitive expensive to use for estimation of large
scale systems which is the main subject in this thesis. Another important
issue in this thesis is that the systems we want to focus on are environmental;
therefore, we expect these systems to be nonlinear in most of the cases. Because
of this, in this chapter we investigate and extend the results of the previous
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chapters to their nonlinear formulations based on the ensemble Kalman filter.

4.2 Stochastic Model Description

Complex environmental processes can be simulated effectively by systems of
discretized partial differential equations describing the conservation laws. The
discretized system of equations provides a reasonably accurate forecast of the
future dynamical behaviour, provided that the initial state of the system and
the boundary conditions are known. However, for real applications the com-
plete information defining the state of the system at a specific time is rarely
available. Moreover, both the models and the measured data contain inac-
curacies and random noise. Hence, a nonlinear model with uncertainties can
written as a discrete-time stochastic differential equation as follows,

xk+1 = A(xk, k) +Gkηk (4.1)

where ηk ∈ Rl is a Gaussian system noise process, and Gk ∈ Rn×l. Hence, the
covariance matrix Qk ∈ Rn×n is defined as

Qk
△
= E [ηkη

T
k ].

Then it follows that the output can be defined as

yk = C(xk, k) + νk, (4.2)

where νk the Gaussian measurement noise process with zero mean and known
covariance matrix Rk. The process noise and the measurement noise are as-
sumed to be uncorrelated.

Equation (4.1) implies that even if the initial state is known precisely, future
model states cannot since unknown random model errors are continually added.

Based on this model description we introduce in the next sections some classical
nonlinear Kalman filtering approaches and the nonlinear extension of the ones
we introduced in Chapter 3.

4.3 The Extended Kalman Filter −EKF

The extended Kalman filter approach [60, 45] consist of applying the standard
Kalman filter (for linear systems) to nonlinear systems with additive white
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noise by continually updating a linearization around the previous state esti-
mate, starting with an initial guess. In other words, we only consider a linear
Taylor approximation of the system function at the previous state estimate and
that of the observation function at the corresponding predicted position. This
approach gives a simple and efficient algorithm to handle a nonlinear model.
However, convergence to a reasonable estimate may not be obtained if the ini-
tial guess is poor or if the disturbances are so large that the linearization is
inadequate to describe the system.

Here it is important to highlight that when we deal with large scale systems
the EKF becomes very complex to compute due to the linearization that has to
be done each time iteration. We use the EKF in this thesis just for comparison
purposes to ensemble-based Kalman filter approaches that we will discuss later
in this chapter.

Numerical Formulation

Consider the nonlinear system described by (4.1) and (4.2). Accordingly to the
EKF, it is assumed that the mean state evolves according to

x̂k|k−1 = A(x̂k−1|k−1 , k − 1).

Next, if we assume the difference between x̂k|k−1 and xk small, then the evo-
lution of this difference should be approximately linear, so

A(x̂k−1|k−1)−A(xk−1) ≃ Ak−1(x̂k−1|k−1 − xk−1),

where Ak−1 ∈ Rn×n is the Jacobian matrix of A at time k − 1 defined by

Ak−1
△
=
∂A
∂x

∣

∣

∣

∣

x=x̂k−1|k−1

.

Furthermore, if we presume again the difference between x̂k|k−1 and xk small
enough then the innovation vector can be approximated as

yk − ŷk|k−1 = C(xk)− C(x̂k|k−1)− νk

≃ Ck(xk − x̂k|k−1)− νk, (4.3)

where Ck ∈ R
m×n is the Jacobian of C at time k defined by

Ck
△
=
∂C
∂x

∣

∣

∣

∣

x=x̂k|k−1

.
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In addition, note that the update equation is as follows

x̂k|k = x̂k|k−1 +Kk

(

yk − C(x̂k|k−1)
)

,

where

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)−1,

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1.

Given these assumptions, an alternate form of the Kalman filter can be derived
as shown on the next page.
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Algorithm 12 EKF Estimator

Given Rk, Qk, x̂0, and P0,

for k = 1, . . . ,

1. Update x̂k−1|k−1 to x̂k|k−1

x̂k|k−1 = A(x̂k|k−1 , k − 1)

2. Compute ŷk|k−1

ŷk|k−1 = C(x̂k|k−1, k − 1)

3. Compute the Jacobian matrices Ak−1 and Ck

Ak−1 =
∂A
∂x

∣

∣

∣

∣

x=x̂k−1|k−1

Ck =
∂C
∂x

∣

∣

∣

∣

x=x̂k|k−1

.

4. Update Pk−1|k−1 to Pk|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1.

5. Compute the extended Kalman gain

Kk = Pk|k−1C
T
k (CkPk|k−1C

T
k +Rk)−1

6. Update xk|k−1 to xk|k, and Pk|k−1 to Pk|k

x̂k|k = x̂k|k−1 +Kk

(

yk − C(x̂k|k−1)
)

Pk|k = (In −KkCk)Pk|k−1

end
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4.4 The Ensemble Kalman Filter −EnKF

In this section the EnKF introduced in §3.5 is extended to the nonlinear case.
The EnKF was designed to resolve two major problems related to the use of the
extended Kalman filter (EKF) with nonlinear dynamics in large state spaces.
The first problem relates to the use of an approximate closure scheme in the
EKF, and the other to the huge computational requirements associated with
the storage and forward integration of the error covariance matrix. The EKF
applies a closure scheme where third- and higher order moments in the error
covariance equation are discarded. This linearization has been shown to be
invalid in a number of applications. In fact, the equation is not longer the
fundamental equation for the error evolution when the dynamical model is
nonlinear.

Consider the nonlinear system described by (4.1) and (4.2), Similar to the
linear case the nonlinear EnKF performs an ensemble of parallel data assimi-
lation cycles using (2.3) to update the estimated-error covariance matrix P̂k|k

as follows,

for i = 1, . . . , N

x̂i
k|k = x̂i

k|k−1 +Kek

(

yi
k − C(x̂i

k|k−1)
)

, (4.4)

where C is the observation operator, which is permitted to be a nonlinear
operator, and the observations yi

k = yk + ǫi are perturbed observations defined
such that ǫi ∼ N (0, Re). In the limit of an infinite ensemble the matrix Re will
converge toward the prescribed error covariance matrix R used in the standard
KF. Moreover, Kek

∈ Rn×m is computed as in the classical Kalman filter as

Kek
= P̂k|k−1CTR̃−1

ek
, (4.5)

where R̃−1
ek
∈ R

m×m is defined by

R̃ek

△
= CP̂k|k−1CT +Rek

,

with the difference that C can be nonlinear which is a powerful advantage
compared to other non-linear KF that are based on linearized models like EKF.
Envision a situation where errors grow rapidly but saturate at low amplitude;
the linear assumption of error growth in the EKF will result in an overestimate
of the prior error variance, but the differences among ensemble members will
not grow without bound and thus should provide a more accurate model of the
actual prior error statistics.
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On the other hand, for a complex model with a high-dimensional state vector,
explicitly forming P̂k|k−1 as in (3.35) would be computationally prohibitive.
However, in the EnKF, Kek

can be formed without ever explicitly computing

the full P̂k|k−1. Instead, the components of P̂k|k−1CT and CP̂k|k−1CT of Kek

are computed separately as follows, define C
(

x̂k|k−1

)

∈ Rm×n by

C
(

x̂k|k−1

) △
=

1

N

N
∑

i=1

C(x̂i
k|k−1), (4.6)

which represents the mean of the estimate of the observations interpolated from
the background forecasts. Then P̂k|k−1CT ∈ Rn×m by

P̂k|k−1CT △
=

1

N − 1

N
∑

i=1

(

x̂i
k|k−1 − ¯̂xk|k−1

)(

C(x̂i
k|k−1)− C(x̂k|k−1)

)T
,

and CP̂k|k−1CT ∈ Rm×m by

CP̂k|k−1CT △
=

1

N − 1

N
∑

i=1

(

C(x̂i
k|k−1)− C(x̂k|k−1)

)(

C(x̂i
k|k−1)− C(x̂k|k−1)

)T
.

4.4.1 Error Covariance Propagation

Ensemble-based assimilation methods leverage a potential increase in accuracy
that may result from estimating covariances from an ensemble propagated with
the fully nonlinear forecast model. If forecast-error dynamics are in fact quite
nonlinear and saturate quickly, then the assumption of linearity in the Kalman
filter and extended Kalman filter was inappropriate, and some accuracy may be
gained relative to the Kalman filters by estimating covariances from a sample
of fully nonlinear model forecasts.

However, in real-world applications, prior-error covariances cannot simply be
estimated at the next assimilation cycle by conducting an ensemble of deter-
ministic forecasts forward from the current cycle’s estimations. Because of
model deficiencies, even if the true state of the system is perfectly known, the
resulting forecast will be imperfect, see equation (4.1). The assumption of no
bias is probably not justified, and if the bias can be determined, the forecasts
ought to be corrected for this bias [29], or even more, the forecast model ought
to be improved. In any case, consider the error covariance at the next assimila-
tion time. Assume again that prior error due to initial conditions uncertainty
and model error are uncorrelated

E
[(

A(xk−1)−A(¯̂xk−1|k−1)
)

ηT
k−1

]

= 0, (4.7)
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and assume linearity of the error growth

A(xk−1)−A(¯̂xk−1|k−1) ≃ Ak−1(xk−1 − ¯̂xk−1|k−1).

Then the true prior-error covariance at the next assimilation time is

Pk|k−1 = E
[

(¯̂xk|k−1 − xk)(¯̂xk|k−1 − xk)T
]

= E
[(

A(ˆ̄xk−1|k−1)−A(xk−1)− ηk−1

)(

A(ˆ̄xk−1|k−1)−A(xk−1)− ηk−1

)T]

≃ E
[

Ak−1(¯̂xk−1|k−1 − xk−1)(¯̂xk−1|k−1 − xk−1)
TAT

k−1

]

+ E
[

ηk−1η
T
k−1

]

= Ak−1Pk−1|k−1A
T
k−1 +Qk−1, (4.8)

where Ak−1 is the Jacobian of the nonlinear operator A at time k−1. Consider
what happens when the covariances are estimated directly from an ensemble
of forecasts propagated forward from an ensemble of i = 1, . . . , N estimations
using the fully nonlinear forecast model

x̂i
k|k−1 = A(x̂i

k−1|k−1). (4.9)

Calculating the expected covariance, we get

P̂k|k−1 = E
[(

x̂i
k|k−1 − ¯̂xk|k−1

)(

x̂i
k|k−1 − ¯̂xk|k−1

)T]

= E
[(

A(x̂i
k−1|k−1)−A(¯̂xk−1|k−1)

)(

A(x̂i
k−1|k−1)−A(¯̂xk−1|k−1)

)T]

≃ E
[

Ak−1(x̂
i
k−1|k−1 − ¯̂xk−1|k−1)(x̂

i
k−1|k−1 − ¯̂xk−1|k−1)

TAT
k−1

]

= Ak−1P̂k−1|k−1A
T
k−1. (4.10)

Comparing (4.8) and (4.10), it is apparent that an ensemble of estimations that
are simply propagated forward with the nonlinear forecast model will have too
small an expected amount of spread, missing the extra model-error covariance
Qk−1. Let us define some hypothetical set of prior forecasts at instant k − 1
that do have the correct covariance, i.e, define x̆i

k|k−1 such that

E
[

(x̆i
k|k−1 − ¯̆xk|k−1)(x̆

i
k|k−1 − ¯̆xk|k−1)

T
]

= Ak−1P̂k−1|k−1A
T
k−1 +Qk−1.

Such an ensemble is possible if we add noise to our existing ensemble as follows

x̆i
k|k−1

△
= x̂i

k|k−1 + εi,

where E [εiεiT] = Qk−1, E [εi] = 0 and E [x̂i
k−1|k−1ε

i] = 0.
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Several methods have been proposed for incorporating noise into the ensemble
of forecasts so that they account for model errors. First, the forecast model
could be stochastic-dynamic instead of deterministic, with terms to the prog-
nostic equations to represent interactions with unresolved scales and/or mis-
parameterized effects; in essence, A is changed so that the ensemble of forecasts
integrates random noise in addition to the deterministic forecast dynamics.
Over an assimilation cycle, this added to the ensemble as a result of integrat-
ing noise should be designed to increase the covariance by the missing Qk−1.
Another possibility is that one may choose to run a forecast model without in-
tegrating noise but to add noise to each member at the data assimilation time
so as to increase the ensemble variance appropriate to the missing Qk−1. Third,
it may be possible to use a multi-model ensemble to estimate covariances.

Little work has yet been done on the first of these three approaches. Buizza et
al. [21] demonstrated a simple technique for integrating noise to account for
deterministic sub-gridscale parameterizations. Under their methodology, the
parameterized terms in the prognostic equations were multiplied by a random
number. The method was quite heuristic but appears to have increased the
spread in the ensemble forecasts somewhat and increased their skill. Penland
[71] outlines a more general approach for integrating system noise in numerical
models. To date, however, a comprehensive noise integration scheme has not
yet been demonstrated in an operational large scale prediction model.

The second general approach is to augment the ensemble-estimated model of
covariances during the update step with noise representing the missing model
error covariances. In [67] such an approach is described.

The third approach, use of multiple forecast models for generating the ensemble
of background forecasts (e.g., [56, 52, 32, 91, 73, 58]), is appealing for its sim-
plicity. A wider range of forecasts is typically generated when different weather
forecast models are used to forecast the evolution of different ensemble mem-
bers. Unfortunately, initial experimentation has shown that the multi-model
ensembles tend to produce unrealistic estimates of error covariances. Fore-
cast errors ought to be mostly balanced, but when estimated from multi-model
ensembles, preliminary results suggest that the errors are excessively out of
balance, with detrimental effects on the subsequent assimilation. See also [51]
for a discussion of the use of multi-model ensembles in data assimilation in a
simple model.

A last approach, discussed in [6] and demonstrated in [89] and [88], is to enlarge
background error estimates by inflating forecast ensemble member’s deviation
about their mean by an amount κ (slightly greater than 1.0) before the first
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observation is assimilated

x̂i
k|k−1 ←− κ(x̂i

k|k−1 − ¯̂xk|k−1) + ¯̂xk|k−1

Here, the operation←− denotes a replacement of the previous value of x̂i
k|k−1.

This technique is called covariance inflation. Note that inflation effectively
increases the spread of the ensemble, but it does not change the subspace
spanned by the ensemble. Hence, if model error projects into a substantially
different subspace, this parametrization may not be effective.

In section §3.3 we have introduced a similar approach for the linear case, the
SSQRT-KF. There, it turned out that when applying the covariance inflation
factor, the filter guarantees the convergence of the estimation by focusing on
the most dominant modes of the error dynamics matrix.

4.4.2 Covariance Localization

In ensemble assimilation methods, the accuracy of error statistics is especially
important. Unlike 3D-Var 1, the effects of a mis-specification of error statistics
can affect the estimated error covariance, which is then propagated forward
in time. Hence, if the estimated errors are underestimated in one cycle, the
forecast errors may be underestimated in the following cycle, underweighting
the new observations. The process can feed back on itself, the ensemble as-
similation method progressively ignoring observational data more and more in
successive cycles, leading eventually to a useless ensemble. This is known as
filter divergence (e.g., [57, 82, 50]). For the ensemble-based methods, filter di-
vergence can be induced by many causes. One of the most crucial is to model
prior error covariance not realistically. As discussed in the previous section, an
adequate parameterization of model error is likely to be very important to avoid
divergence. However, filter divergence can occur even in simulations where the
forecast model is perfect, for prior-error covariances are typically estimated
imperfectly from small ensembles. While more ensemble members would be
desirable to reduce the sampling error in estimating prior-error covariances,
more members means more computational cost.

One common algorithmic modification to improve error covariance estimates
from ensembles is covariance localization. The covariance estimate from the
ensemble is multiplied point by point with a correlation function that is 1.0 at
the observation location and decreases monotonically with increasing distance.

13D-Var is a variational data assimilation technique that performs the estimation using
observations distributed in three dimensions without taking into account the time scale [70].
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Mathematically, the Kalman gain equation Kk = P̂k|k−1CR̃−1
ek

is replaced by a
modified gain

Kk = ρs o P̂k|k−1C
[

C(ρs o P̂k|k−1)CT +Rek

]−1
, (4.11)

where the operation ρs in (4.11) denotes a Schur product (an element-by-
element multiplication) of a correlation matrix Γ with the covariance model
generated by the ensemble. The Schur product of matrices A and B is a matrix
C of the same dimension, where Cij = AijBij . As discussed in [50], covariance
localization has the effect of making the prior-error covariance matrix higher
in rank. When directly estimated from an N -member ensemble, the rank of
P̂k|k−1 is N − 1. With covariance localization, it can be much higher. When
is used covariance localization with smaller ensembles, it can actually result in
more accurate estimates than would be obtained from larger ensembles without
localization (e.g., [58]). See [50] for more details on implementation of covari-
ance localization, and see [68] for a discussion of balance issues related to the
length scale of the covariance localization.

Even though this technique has shown to work quite well in systems with sparse
measurement locations, the computation of the matrix ρs is very heuristic, so,
we have to say that there is neither a proof of optimality nor any mathematical
development showing how to compute the optimal ρs. On the contrary, in this
thesis we have introduced a filter which is optimal in a quadratic sense and can
be used as estimator in systems with sparse measurements, namely, the SLKF
and EnSLKF, see sections §3.4 and §4.7 for details.

On the other hand, another drawback of the EnKF is that for a finite-sized
ensemble, there is a sampling error in the estimation of background-error co-
variances (see [89]). In other words, P∞ 6= PN , where PN is the error co-
variance matrix obtained from an N -member ensemble and P∞ is the exact
error covariance, defined to be that which would be obtained from an infinite
ensemble. When observations are perturbed in the EnKF, there is also sam-
pling error in the estimation of the measurement error covariance. In [89] is
shown that if the same gain and the same observations are used to update
each ensemble member in an ensemble data assimilation system, estimated er-
ror covariances will be systematically underestimated, and filter divergence
may occur. To overcome this, an ensemble of perturbed observations can
be assimilated, whose statistics reflect the known observation errors. In the
limit of infinite ensemble size, in a system where all sources of error (both
observation and model) are correctly sampled, this approach yields the cor-
rect estimated-error covariances. However, when ensemble sizes are finite, the
noise added to the observations produces spurious error covariances associ-
ated with sampling errors in the estimation of the measurement error covari-
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ances. Hence, in the next section the Ensemble Square Root Filter approach
(EnSRF) [89] is introduced. This filter does not require perturbing the ob-
servations, because the ensemble members are updated independently of the
ensemble mean using the equation of the estimated-error covariance update
of the square root Kalman filter. The algorithm is shown in Algorithm 13.
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Algorithm 13 EnKF Estimator

First, generate an initial ensemble Xk−1|k−1 which properly represent the
error statistics of the initial guess for the model state.

for k = 1, . . .

1. Update the ensemble Xk−1|k−1 to Xk|k−1 using (4.1) for i = 1, . . . , N
according to

xi
k|k−1 = A(xi

k−1|k−1, k − 1) + εi
k−1.

2. Compute C
`

x̂k|k−1

´

C
`

x̂k|k−1

´

=
1

N

N
X

i=1

C(x̂i
k|k−1, k − 1).

3. Compute the P̂k|k−1C
T

P̂k|k−1C
T =

1

N − 1

N
X

i=1

`

x̂i
k|k−1 − ¯̂xk|k−1

´`

C(x̂i
k|k−1) − C(x̂k|k−1)

´T
.

4. Compute CP̂k|k−1C
T

CP̂k|k−1C
T =

1

N − 1

N
X

i=1

`

C(x̂i
k|k−1) − C(x̂k|k−1)

´`

C(x̂i
k|k−1) − C(x̂k|k−1)

´T
.

5. Compute Kek

Kek
= P̂k|k−1C

T
`

CP̂k|k−1C
T +Rek

´

.

6. Update Xk|k−1 to Xk|k, for i = 1, . . . , N

xi
k|k = xi

k|k−1 +Kek

`

yi
k − C(xi

k|k−1)
´

.

7. Compute the state estimation taking the mean of the updated ensemble
members

x̂k|k =
1

N

N
X

i=1

x̂i
k|k.

end



98Chapter 4. Ensemble-Based Kalman Filter for Nonlinear Large Scale Systems

4.5 Square Root Ensemble Filter −EnSRF

Several authors have pointed out that the perturbation of measurements used in
the standard EnKF analysis equation, may be an additional source of sampling
errors that reduces the estimated error covariance accuracy and increases the
probability of underestimating the estimated error covariance [5, 89, 19, 78].
Hence, some methods based on the square root form of the Kalman filter for
computing the estimated states without introducing measurement noise have
recently been presented. In this section we will describe the EnSRF [89].

Let us start taking the prior and estimated error covariances Pk|k−1 and Pk|k

of a N -member ensemble given by (3.35) and (3.36) respectively. Therefore, a
matrix square-root S̃k|k−1 ∈ Rn×N of Pk|k−1 and S̃k|k ∈ Rn×N of Pk|k can be
defined by

S̃k|k−1
△
=

1

(N − 1)1/2
Ek|k−1, (4.12)

S̃k|k
△
=

1

(N − 1)1/2
Ek|k,

where Ek|k−1 and Ek|k are defined by (3.33) and (3.34).

Then, rewriting (2.13) we have

Pk|k ≃ P̂k|k = S̃k|kS̃
T
k|k

=
(

In − P̂k|k−1CTR̃−1
ek
C
)

P̂k|k−1

= S̃k|k−1

(

IN − ST
k|k−1CTR̃−1

ek
CS̃k|k−1

)

S̃T
k|k−1

= S̃k|k−1

(

IN − F̃kR̃
−1
ek
F̃T

k

)

S̃T
k|k−1,

where F̃k ∈ RN×m is defined as

F̃k
△
=

(

CS̃k|k−1

)T
, (4.13)

=
1

(N − 1)1/2

[

C(x̂1
k|k−1)− C(x̂k|k−1), . . . , C(x̂N

k|k−1)− C(x̂k|k−1)
]T
, (4.14)

with C(x̂k|k−1) defined by (4.6), and the innovation matrix R̃ek
as in (3.41).

Next, the estimated square root matrix S̃k|k is computed from

S̃k|k = S̃k|k−1D̃k (4.15)
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where D̃k ∈ RN×N satisfies

D̃kD̃T
k = (IN − F̃kR̃

−1
ek
F̃T

k ).

As formulated, the updated ensemble S̃k|k is a linear combination of the columns

of S̃k|k−1 and is obtained by inverting R̃ek
and computing a matrix square-root

D̃k of the N ×N matrix
(

IN − F̃kR̃
−1
ek
F̃T

k

)

.

In many typical Earth and Space Science data assimilation applications the
state space dimension n is large, while the number of observations m are large
for the Earth and small for the Space data assimilation case respectively. There-
fore, the method for computing the matrix square-root (IN−F̃kR̃

−1
ek
F̃T

k )1/2 and

the updated ensemble S̃k|k must be chosen accordingly.

A direct approach is to solve first the linear system

R̃ek
Yk = F̃T

k , (4.16)

where Yk ∈ Rm×N is defined by

Yk
△
= R̃−1

ek
F̃T

k ,

then it follows that

IN − F̃kR̃
−1
ek
F̃T

k = IN − F̃kYk,

from where the square-root matrix D̃k is computed. The solution of (4.16), even
when m is large, is practical when the prior error covariance has a low-rank
representation and the inverse of the measurement error covariance is available.

When observation errors are uncorrelated, observations can be assimilated one
at a time or serially ([72, 58, 19]). For a single observation, m = 1, F̃k is a
column vector, and the matrix R̃ek

becomes the scalar σ2
k, which is the variance

of the observation. In this case D̃k can be computed in closed form as shown
in §2.4.3, so

D̃k =
(

IN − γ̃kF̃kF̃T
k

)

, (4.17)

where γ̃k is a scalar defined by

γ̃k
△
=

α̃k

1 +
√

α̃kσ2
k

,
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with α̃k scalar defined by

α̃k
△
=

(

F̃TF̃ + σ2
k

)−1
.

Next, replacing (4.17) into (4.15) we have

S̃k|k = (IN − K̃kC)S̃k|k−1

= S̃k|k−1 − K̃F̃T
k ,

where K̃k ∈ Rn×m is defined by

K̃k
△
= γ̃kS̃k|k−1F̃k.

As a result, it is convenient for the EnSRF to update the equations for the
ensemble mean and the deviation of the i-th member from the mean separately,
hence

¯̂xk|k = ¯̂xk|k−1 +Kk

(

yk − C(¯̂xk|k−1)
)

, (4.18)

x̂i
k|k = x̂i

k|k−1 − K̃kC(x̂i
k|k−1), (4.19)

with Kk ∈ Rn×m the traditional Kalman filter gain defined as

Kk
△
= α̃kS̃k|k−1F̃k. (4.20)

Notice from (4.20) that

K̃k = βkKk,

with βk a scalar defined by

βk =
1

1 +
√

α̃kσ2
k

,

thus the quantity multiplying Kk is a scalar between 0 and 1. This means that,
in order to obtain the correct predicted error covariance with unperturbed ob-
servations, a modified Kalman gain which is reduced in magnitude relative to
the traditional Kalman gain is used to update deviations from the ensemble
mean. Consequently, deviations from the mean are reduced less in the analysis
using K̃k than they would be using Kk. In the EnKF, the excess variance re-
duction caused by usingKk to update deviations from the mean is compensated
for by the introduction of noise to the observations.
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In the EnSRF, the mean and departures from the mean are updated indepen-
dently according to (4.18) and (4.19). If observations are processed one at a
time, the EnSRF requires about the same computation as the standard EnKF
with perturbed observations, but for moderately sized ensembles and processes
that are generally linear and Gaussian, the EnSRF produces predictions with
significantly less error [89]. The algorithm is described in Algorithm 14.
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Algorithm 14 EnSRF Estimator

First, generate an initial ensemble Xk−1|k−1 which properly represent the
error statistics of the initial guess for the model state.

For k = 1, . . .

1. Update the ensemble members and the mean value of Xk−1|k−1 using
(4.1) for i = 1, . . . , N according to

x̂i
k|k−1 = A(x̂i

k−1|k−1) + εi
k−1,

¯̂xk|k−1 =
1

N

N
X

i=1

x̂i
k|k−1.

2. Compute S̃k|k−1 using (4.12)

3. Compute C
`

x̂k|k−1

´

using (4.6)

4. Update S̃k|k−1 to S̃k|k, and ¯̂xk|k−1 to ¯̂xk|k using sequential processing
as follows,

S̃k|k(0)
= S̃k|k−1

for j = 1 to m,

F̃k(j)
=

1

(N − 1)1/2

ˆ

C(j)(x̂
1
k|k−1) − C(j)(x̂k|k−1),

. . . , C(j)(x̂
N
k|k−1) − C(j)(x̂k|k−1)

˜T

α̃k(j)
=

`

F̃TF̃ + σ2
k

´−1

Kk(j)
= αk(j)

S̃k|k(j−1)
F̃k(j)

¯̂xk|k = ¯̂xk|k−1 +Kk(j)
(yk − Ck(j,:)

(¯̂xk|k−1))

βk(j)
=

1

1 +
q

α̃k(j)
Rk(j,j)

K̃k(j)
= βk(j)

Kk(j)

S̃k|k(j)
= S̃k|k(j−1)

− K̃k(j)
F̃

T
k(j)

end

5. Compute Xk|k = (N − 1)−1/2S̃k|k + ¯̂xk|k · 1N , where 1N ∈ R
1×N is a

vector whose elements are 1s.

end
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4.6 Ensemble Transform Kalman Filter −ETKF

The ETKF approach is based on the TKF in §2.4.4. This filter has been
introduced by Bishop [19]. It differs from other ensemble Kalman filters in
that it uses ensemble transformation and a normalization to rapidly obtain
the prediction error covariance matrix associated with a particular deployment
of observational resources. The basic idea behind the ETKF is to define a
transformation Dk so that the transformed S̃k|k−1 can describe the forecast

error covariance P̂k|k.

Numerical Formulation

Let us start with a general formulation. First observe that if a normalized
observation operator C̃k ∈ Rm×n is defined by

C̃ △
= L−1

Rk
C

where LRk
∈ Rm×m satisfies the Cholesky factorization of measurement error

covariance matrix Rk, so

Rk = LRk
LT

Rk
,

then P̂k|k can be factored as

P̂k|k = S̃k|k−1

[

IN − S̃T
k|k−1C̃T(C̃Sk|k−1S̃

T
k|k−1C̃T + Im)−1C̃S̃k|k−1

]

S̃T
k|k−1

(4.21)

P̂k|k = S̃k|k−1(IN − F̂T −1F̂T)S̃T
k|k−1,

where S̃k|k−1 is defined by (4.12), and F̂k ∈ RN×m and Tk ∈ Rm×m by

F̂k
△
=

(

C̃S̃k|k−1

)T
= F̃kL

−T
Rk
,

Tk
△
= F̂T

k F̂k + Im,

with F̃k defined by (4.13).

Next, using the identity (2.36) P̂k|k can be rewritten as

P̂k|k = S̃k|k−1

(

F̂kF̂T
k + IN

)−1
S̃T

k|k−1. (4.22)
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Then, it follows from (4.21) that the transformed Kalman gain K̂k ∈ Rn×m

can be obtained as

K̂k = S̃k|k−1F̂kT −1
k .

Notice that the standard Kalman filter gain Kk is related to K̂k by

Kk = K̂kL
−1
Rk
.

To obtain the square root representation of P̂k|k we can rewrite (4.22) as follows,

P̂k|k = S̃k|k−1DkDT
k S

T
k|k−1,

where Dk ∈ RN×N is the square root of (F̂kF̂T
k + IN )−1 and can be computed

as

Dk = Vk(Λk + IN )−1/2,

where Vk ∈ RN×N , and Λk ∈ RN×N are the left eigenvectors and eigenvalues of
(F̂kF̂T

k )−1, respectively. Thus, the update of the square root covariance matrix
can be yielded by

S̃k|k = S̃k|k−1Vk(Λk + IN )−1/2.

The algorithm is shown in Algorithm 15.
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Algorithm 15 ETKF Estimator

First, generate an initial ensemble Xk−1|k−1 which properly represent the
error statistics of the initial guess for the model state.

For k = 1, . . . ,

1. Update the ensemble members and the mean value of Xk−1|k−1 using
(2.1) for i = 1, . . . , q according to

x̂i
k|k−1 = A(x̂i

k−1|k−1, k − 1) + εi
k−1,

¯̂xk|k−1 =
1

N

N
X

i=1

x̂i
k|k−1.

2. Compute S̃k|k−1 from (4.12)

3. Compute F̂k and Tk

F̂k =
1

(N − 1)1/2

ˆ

C(x̂1
k|k−1) − C(x̂k|k−1), . . . , C(x̂N

k|k−1) − C(x̂k|k−1)
˜T
L−T

Rk
,

Tk
△
= F̂

T
k F̂k + Im.

4. Compute the ETKF gain and update ¯̂xk|k−1 to ¯̂xk|k

K̂k = S̃k|k−1F̂kT
−1

k ,

¯̂xk|k = ¯̂xk|k−1 + K̂k

ˆ

L−1
Rk
yk − C̃(¯̂xk|k−1)

˜

.

5. Compute the eigenvalue decomposition of F̂kF̂
T
k

F̂kF̂
T
k = VkΛkV

T
k ,

6. Compute S̃k|k

S̃k|k = S̃k|k−1Vk(Λk + IN)−1/2

7. Compute Xk|k

Xk|k = (N − 1)1/2S̃k|k + ¯̂xk|k · 1N ,

where 1N ∈ R
1×N is a vector whose elements are 1s.

end
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4.7 The Ensemble Spatially Localized Kalman

Filter −EnSLKF

Comparing the algorithms of the SLKF §3.4 to the EnKF §4.4, we observe that
the error covariance update from Pk|k−1 to Pk|k in the EnKF is simply done by
updating each ensemble member using (4.4) instead of using (2.13). Therefore,
by combining the SLKF and the EnKF we can easily obtain a nonlinear version
of the SLKF.

The main difference between the two algorithms is the computation of the filter
gain, while for the EnKF it is given by (4.5) for the SLKF by (3.20). Hence,
the EnSLKF gain can be defined as

ΓkK̃k
△
= πkP̂k|k−1CT

k R̂
−1
ek
. (4.23)

Then it follows that the error covariance update, equation (3.21), is done by
updating each ensemble member as follows

xi
k|k = xi

k|k−1 + ΓkK̃k

(

yk − C(xk|k−1)
)

.

Apart from these changes, notice that the rest of the algorithm for the EnSLKF
stays equal to the EnKF.

On the other hand, observe in (4.23) that when n is large, πk becomes too
big to store, so, if we can assume Γk and Mk to be time invariant, then ΓkKk

can be written such that the computation of the EnSLKF gain is done more
efficiently. Hence, let us define

ΓkK̃k
△
= ΥΦk,

where Υ ∈ Rn×np is defined by

Υ
△
= Γ (ΓTMΓ )−1,

and Φk ∈ Rnp×m is defined by

Φk
△
= ΓTP̂k|k−1CT

k R̂
−1
ek
.

Consequently, the term Υ becomes constant, therefore it can be computed off-
line and stored, while Φk is computed once each iteration. The algorithm is
described in Algorithm 16.
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Algorithm 16 EnSLKF Estimator

First, generate an initial ensemble Xk−1|k−1 which properly represent the er-
ror statistics of the initial guess for the model state. Then define the weighting
matrix Γk and compute Υ = Γ (ΓTMΓ )−1. Then,

for k = 1, . . . ,

1. Update the ensemble members of Xk−1|k−1 using (4.1) for i = 1, . . . , N
according to

xi
k|k−1 = A(xi

k−1|k−1, k − 1) + εi
k−1

2. Compute C
`

x̂k|k−1

´

C
`

x̂k|k−1

´

=
1

N

N
X

i=1

C(x̂i
k|k−1),

3. Compute the P̂k|k−1C
T

P̂k|k−1C
T =

1

N − 1

N
X

i=1

`

x̂i
k|k−1 − ¯̂xk|k−1

´`

C(x̂i
k|k−1) − C(x̂k|k−1)

´T
,

4. Compute CP̂k|k−1C
T

CP̂k|k−1C
T =

1

N − 1

N
X

i=1

`

C(x̂i
k|k−1) − C(x̂k|k−1)

´`

C(x̂i
k|k−1) − C(x̂k|k−1)

´T
.

5. Compute Φk and Kek

Φk = ΓTP̂k|k−1C
TR̂−1

ek
,

ΓkK̃k = ΥΦk.

6. Update Xk|k−1 to Xk|k, for i = 1, . . . , N

xi
k|k = xi

k|k−1 + ΓkK̃k

`

yi
k − C(xi

k|k−1)
´

7. Compute the state estimation taking the mean of the updated ensemble
members

x̂k|k =
1

N

N
X

i=1

x̂i
k|k.

end
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4.8 Computational Complexity of the Algorithms

In Table 4.2 we observe that the computational complexity of the EKF is higher
than the other filters, i.e., while the EKF is O

(

n3
)

+ 1(ME), the others are

∽ O
(

n
)

+ N(ME), where ME is a model evaluation. Even tough the EKF
filter has 1 model evaluations compare to N of the EnKF-like filters, this is
still more demanding and the implementation more complex than the others
4.3.

EKF 6n3 + 3n2(2m+ 1) + n(4m2 + 3m+ 1) + 1(ME)

EnKF n[3N +m(2m+ 7) + 2] +Nm(2m + 1) +m(m2/3 + 2m+ 1) +N(ME)

EnSRF n[8N +m(5N + 8) + 1] +Nm(m+ 2) + 4m+N(ME)

ETKF n[N(N +m+ 1) +m(m+ 1)] +Nm(m+ 1) +N3 +m2(m+ 1) +N(ME)

EnSLKF n[3N +m(6m+ 7) + 2] +Nm(2m + 1) +m(m2/3 + 2m+ 1) +N(ME)

Table 4.1: Number of flops. ME=Model Evaluations.

EKF O
(

n3
)

+ 1(ME)

EnKF O
(

n(N +m2 +m)
)

+N(ME)
EnSRF O

(

n(N +Nm+m)
)

+N(ME)

ETKF O
(

n(N2 +m2 +Nm+N +m)
)

+N(ME)

EnSLKF O
(

n(N +m2 +m)
)

+N(ME)

Table 4.2: Order of computation. ME=Model Evaluations.

Where, n is the order of the system, m the number of observations, p the
number of inputs, l the order of the process-noise covariance matrix Q, and N
the number of ensemble members in the EnKF.

All the ensemble-based Kalman filter algorithms are very sensitive to the num-
ber of ensemble members N , and the observations m. Additionally, it can be
clearly seen in Table 4.2 that the ETKF is the most expensive algorithm to
compute.

4.9 Conclusions

In this chapter we have made a short review about the most representative
nonlinear Kalman filter approaches, namely, the extended Kalman filter, and
the ensemble Kalman filter. Despite being a well known nonlinear Kalman
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filter, the EKF is restricted to systems of small order with weak nonlinearities,
consequently it can hardly be applied to complex environmental systems, where
it one often encounters complex large scale systems with strong nonlinearities.
Nevertheless, this is a good point of reference when we need to assess other
nonlinear Kalman filter algorithms.

On the other hand, though there is still a lot of research to be done about it,
the EnKF has shown to be a powerful algorithm for estimation in large scale
and complex nonlinear systems, as reported by several authors on different
applications (see [6, 12, 9, 32, 34, 35, 36, 51, 53, 57, 58, 67, 68, 71, 73, 78, 89,
88, 91]). Moreover, the EnKF is very attractive due to the fact that it is easy
to deploy, that is, you do not need to compute any linearized model of your
system, and it can be used directly with any nonlinear system simulator code.
As a result, the EnKF offers an excellent framework to make data assimilation
by combining a reliable nonlinear model with an optimal observer.

Apart from this, we have extended the results of the previous chapter to their
nonlinear cases, namely, the EnKF, the EnSRF, the ETKF, and the EnSLKF.
The EnSLKF is the nonlinear version of the SLKF based on the EnKF formu-
lation. This filter has been designed to be used in large scale systems when
the number of observations is small, hence, the aim of this filter is to make
local estimations around the measurement points, without disturbing the nu-
merical stability of the system. These local estimations create sparsity in the
error covariance matrix which can be exploited to speed up the computation
of the filter. On the other hand, the formulation of the EnSLKF is an optimal
alternative to the heuristic covariance localization approach, widely used in the
Earth weather forecast community.

Finally, the correct definition of the process noise covariance matrix Q is one
of the most difficult tasks in order to obtain a good Kalman filter estimator.
Additionally, in large scale systems the storage of the error covariance matrix
P , and the process noise covariance matrix Q is another issue of a lot of concern
when we want to apply the Kalman filters-like approach to real environmental
systems, like oceanic or atmospheric. Hence, we described two different meth-
ods to cope with this problem, namely, the covariance localization to deal with
the size of P , and the covariance inflation to avoid filter divergence caused by
a mis-specification of Q.
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5.1 Introduction

This chapter is dedicated to exploring the application of sequential data as-
similation techniques to space weather forecast. Notice that, contrary to the
weather forecast data assimilation problem, the number of measurement points
is small compared to the order of the system. We start with a problem mo-
tivation, then a description of magnetohydrodynamics (MHD) systems, which
are used to simulate the space plasma dynamics, is done. Finally we apply
the data assimilation techniques introduced in the previous chapters to MHD
systems.

Mainly, the discussion focuses on two cases. First the linear case which is
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important in the space community to study the behavior of the space plasma
in steady state, and second, the nonlinear case where the aim is to investigate
the performance of ensemble-based Kalman filters in MHD systems for space
weather prediction.

First, in the linear case a continuous-time 2D-linear model is obtained by tak-
ing small perturbations around steady state conditions. Then, two spatial
discretization techniques are utilized in order to yield a state-space represen-
tation, namely, the Fourier collocation and the Chebyshev collocation method.
Consequently, an analysis of the performance of the suboptimal linear KFs
introduced in Chapter 3 is carried out.

Secondly, for the nonlinear case a 2D-MHD system emulating the magneto-
sphere around the Earth is simulated using a numerical model written in For-
tran (the VAC code [79]). Then, by means of a modular scheme where Mat-
lab and VAC are used as estimator and simulator, respectively, we apply the
ensemble-based filters introduced in Chapter 4 to this system. Finally, the
discussion focuses on the comparison of performance of the filters.

5.2 Problem Motivation

The Sun is an average star, similar to millions of others in the Universe. It is
a prodigious energy machine, manufacturing about 3.8 × 1023 kW (or kJ/s).
In other words, if the total output of the Sun was gathered for one second
it would provide the U.S. with enough energy, at its current usage rate, for
the next 9 millions of years. The basic energy source for the Sun is nuclear
fusion, which uses the high temperatures and densities within the core to fuse
hydrogen, producing energy and creating helium as a byproduct. The core is so
dense and the size of the Sun so great that energy released at the center of the
Sun takes about 50 millions of years to make its way to the surface, undergoing
countless absorptions and re-emissions in the process. If the Sun were to stop
producing energy today, it would take 50 million of years for significant effects
to be felt at Earth.

The region between the Sun and the planets has been termed the interplan-
etary medium. Although once considered a perfect vacuum, this is actually
a turbulent region dominated by the solar wind, which flows at velocities of
approximately 250-1000 km/s (about 9× 105 to 36× 105 km/h). Other char-
acteristics of the solar wind (density, composition, and magnetic field strength,
among others) vary with changing conditions on the Sun. The effect of the
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solar wind can be seen in the tails of comets which always point away from
the Sun. One of the events which provoke the solar wind is the coronal mass
ejection (CME). The CMEs are one of the most energetic and important solar
phenomena. These events propel magnetic clouds with a mass up to 1017 g
to speeds up to 2600 km/s into the heliosphere, influencing near-Earth plasma
conditions (space weather), causing fluctuations in the terrestrial magnetic field
and in the ionospheric density, and driving auroras.

The solar wind flows around obstacles such as planets, but those planets with
their own magnetic fields respond in specific ways. Earth’s magnetic field is
very similar to the pattern formed when iron filings align around a bar magnet.
Under the influence of the solar wind, these magnetic field lines are compressed
in the Sunward direction and stretched out in the downwind direction forming
the magnetosheath (see Figure 5.1). Then close to Earth it creates the mag-
netosphere, a complex, teardrop-shaped cavity around Earth. The Van Allen
radiation belts are within this cavity, as is the ionosphere, a layer of Earth’s
upper atmosphere where photo ionization by solar x-rays and extreme ultravi-
olet rays creates free electrons. Earth’s magnetic field senses the solar wind’s
speed, density, and magnetic field. Because the solar wind varies over time
scales as short as seconds, the interface that separates interplanetary space
from the magnetosphere is very dynamic. Normally this interface called the
magnetopause lies at a distance equivalent to about 10 Earth radii in the di-
rection of the Sun. However, during episodes of elevated solar wind density or
velocity, the magnetopause can be pushed inward to within 6.6 Earth radii (the
altitude of geosynchronous satellites). As the magnetosphere extracts energy
from the solar wind, internal processes produce geomagnetic storms. These
storms cause some dangerous effects on Earth, let us mention some of the most
affected areas:

• Communications

Many communication systems utilize the ionosphere to reflect radio sig-
nals over long distances. Ionospheric storms can affect radio communica-
tion at all latitudes. Some radio frequencies are absorbed and others are
reflected, leading to rapidly fluctuating signals and unexpected propaga-
tion paths. TV and commercial radio stations are little affected by solar
activity, but ground-to-air, ship-to-shore, Voice of America, Radio Free
Europe, and amateur radio are frequently disrupted. Radio operators us-
ing high frequencies rely upon solar and geomagnetic alerts to keep their
communication circuits up and running.

Some military detection or early-warning systems are also affected by
solar activity. The Over-the-Horizon Radar bounces signals off the iono-



114 Chapter 5. Space Weather Forecast Case Study

Figure 5.1: The shocked solar wind forms the magnetosheath, taken from
http://sci.esa.int.

sphere in order to monitor the launch of aircraft and missiles from long
distances. During geomagnetic storms, this system can be severely ham-
pered by radio clutter. Some submarine detection systems use the mag-
netic signatures of submarines as one input to their locating schemes.
Geomagnetic storms can mask and distort these signals.

The Federal Aviation Administration of U.S.A. routinely receives alerts of
solar radio bursts so that they can recognize communication problems and
forego unnecessary maintenance. When an aircraft and a ground station
are aligned with the Sun, jamming of air-control radio frequencies can
occur. This can also happen when an Earth station, a satellite, and the
Sun are in alignment.

Systems such as LORAN and OMEGA are adversely affected when solar
activity disrupts their signal propagation. The OMEGA system consists
of eight transmitters located throughout the world. Airplanes and ships
use the very low frequency signals from these transmitters to determine
their positions. During solar events and geomagnetic storms, the system
can give navigators information that is inaccurate by as much as several
miles. If navigators are alerted that a proton event or geomagnetic storm
is in progress, they can switch to a backup system. GPS signals are
affected when solar activity causes sudden variations in the density of
the ionosphere.
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• Satellites

Geomagnetic storms and increased solar ultraviolet emission heat Earth’s
upper atmosphere, causing it to expand. The heated air rises, and the
density at the orbit of satellites up to about 1000 km increases signifi-
cantly. This results in increased drag on satellites in space, causing them
to slow and change orbit slightly. Unless low-Earth-orbit satellites are
routinely boosted to higher orbits, they slowly fall, and eventually burn
up in Earth’s atmosphere.

Skylab is an example of a spacecraft re-entering Earth’s atmosphere pre-
maturely as a result of higher-than-expected solar activity. During the
great geomagnetic storm of March 1989, four of the Navy’s navigational
satellites had to be taken out of service for up to a week.

As technology has allowed spacecraft components to become smaller,
their miniaturized systems have become increasingly vulnerable to the
more energetic solar particles. These particles can cause physical dam-
age to microchips and can change software commands in satellite-borne
computers.

Another problem for satellite operators is differential charging. During
geomagnetic storms, the number and energy of electrons and ions in-
crease. When a satellite travels through this energized environment, the
charged particles striking the spacecraft cause different portions of the
spacecraft to be differentially charged. Eventually, electrical discharges
can arc across spacecraft components, harming and possibly disabling
them. Bulk charging (also called deep charging) occurs when energetic
particles, primarily electrons, penetrate the outer covering of a satellite
and deposit their charge in its internal parts. If sufficient charge accumu-
lates in any one component, it may attempt to neutralize by discharging
to other components. This discharge is potentially hazardous to the satel-
lite’s electronic systems.

• Radiation Hazards to Humans

Intense solar flares release very-high-energy particles that can be as inju-
rious to humans as the low-energy radiation from nuclear blasts. Earth’s
atmosphere and magnetosphere allow adequate protection for us on the
ground, but astronauts in space are subject to potentially lethal dosages
of radiation. The penetration of high-energy particles into living cells,
measured as radiation dose, leads to chromosome damage and, poten-
tially, cancer. Large doses can be fatal immediately. Solar protons with
energies greater than 30 MeV are particularly hazardous. In October
1989, the Sun produced enough energetic particles that an astronaut on
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the Moon, wearing only a space suit and caught out in the brunt of the
storm, would probably have died. (Astronauts who had time to gain
safety in a shelter beneath moon soil would have absorbed only slight
amounts of radiation.)

Solar proton events can also produce elevated radiation aboard aircraft
flying at high altitudes. Although these risks are small, monitoring of
solar proton events by satellite instrumentation allows the occasional ex-
posure to be monitored and evaluated.

• Geologic Exploration

Earth’s magnetic field is used by geologists to determine subterranean
rock structures. For the most part, these geodetic surveyors are search-
ing for oil, gas, or mineral deposits. They can accomplish this only when
Earth’s field is quiet, so that true magnetic signatures can be detected.
Other surveyors prefer to work during geomagnetic storms, when the
variations to Earth’s normal subsurface electric currents help them to
see subsurface oil or mineral structures. For these reasons, many sur-
veyors use geomagnetic alerts and predictions to schedule their mapping
activities.

• Electric Power

When magnetic fields move about in the vicinity of a conductor such as
a wire, an electric current is induced into the conductor. This happens
on a grand scale during geomagnetic storms. Power companies transmit
alternating current to their customers via long transmission lines. The
nearly direct currents induced in these lines from geomagnetic storms
are harmful to electrical transmission equipment. On March 13, 1989,
in Montreal, Quebec, 6 million people were without commercial electric
power for 9 hours as a result of a huge geomagnetic storm. Some areas
in the northeastern U.S. and in Sweden also lost power. By receiving
geomagnetic storm alerts and warnings, power companies can minimize
damage and power outages.

• Pipelines

Rapidly fluctuating geomagnetic fields can induce currents into pipelines.
During these times, several problems can arise for pipeline engineers.
Flow meters in the pipeline can transmit erroneous flow information, and
the corrosion rate of the pipeline is dramatically increased. If engineers
unwittingly attempt to balance the current during a geomagnetic storm,
corrosion rates may increase even more. Pipeline managers routinely
receive alerts and warnings to help them provide an efficient and long-
lived system.
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• Climate

The Sun is the heat engine that drives the circulation of our atmosphere.
Although it has long been assumed to be a constant source of energy,
recent measurements of this solar constant have shown that the base
output of the Sun can vary by up to two tenths of a percent over the 11-
year solar cycle. Temporary decreases of up to one-half percent have been
observed. Atmospheric scientists say that this variation is significant and
that it can modify climate over time. Plant growth has been shown to
vary over the 11-year sunspot and 22-year magnetic cycles of the Sun, as
evidenced in tree-ring records.

While the solar cycle has been nearly regular during the last 300 years,
there was a period of 70 years during the 17th and 18th centuries when
very few sunspots were seen (even though telescopes were widely used).
This drop in sunspot number coincided with the timing of the little ice age
in Europe, implying a Sun-to-climate connection. Recently, a more direct
link between climate and solar variability has been speculated. Strato-
spheric winds near the equator blow in different directions, depending on
the time in the solar cycle. Studies are under way to determine how this
wind reversal affects global circulation patterns and weather.

During proton events, many more energetic particles reach Earth’s middle
atmosphere. There they cause molecular ionization, creating chemicals
that destroy atmospheric ozone and allow increased amounts of harmful
solar ultraviolet radiation to reach Earth’s surface. A solar proton event
in 1982 resulted in a temporary 70 % decrease in ozone densities.

• Biology

There is a growing body of evidence that changes in the geomagnetic field
affect biological systems. Studies indicate that physically stressed human
biological systems may respond to fluctuations in the geomagnetic field.
Interest and concern in this subject have led the Union of Radio Science
International to create a new commission entitled Electromagnetics in
Biology and Medicine.

Possibly the most closely studied of the variable Sun’s biological effects
has been the degradation of homing pigeons’ navigational abilities dur-
ing geomagnetic storms. Pigeons and other migratory animals, such as
dolphins and whales, have internal biological compasses composed of the
mineral magnetite wrapped in bundles of nerve cells. While this probably
is not their primarily method of navigation, there have been many pigeon
race smashes, a term used when only a small percentage of birds return
home from a release site. Because these losses have occurred during ge-
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omagnetic storms, pigeon handlers have learned to ask for geomagnetic
alerts and warnings as an aid to scheduling races.

As a conclusion, it has been realized and appreciated only in the last few
decades that solar flares, CMEs, and magnetic storms affect people and their
activities. The list of consequences grows in proportion to our dependence
on technological systems. The subtleties of the interactions between Sun and
Earth, and between solar particles and delicate instruments, have become fac-
tors that affect our well being. Thus there will be continued and intensified
need for space environment services to address health, safety, and commercial
needs1.

5.3 Magnetohydrodynamics Model Description

The topic of MHD is ubiquitous in plasma physics. Examples where the theory
has been used with success range from explaining the dynamo generation and
subsequent evolution of magnetic fields within stellar and planetary interiors,
to accounting for the gross stability of magnetically confined thermonuclear
plasmas. It transpires that MHD is capable of providing a good description
of such large scale disturbances, indicating that the MHD account of plasma
behavior is necessarily a macroscopic one. In essence, MHD is a macroscopic,
non-relativistic theory that is concerned with global phenomena in magnetic
plasmas. It gives an accurate description of many of the complicated interac-
tions of magnetic fields with the plasmas of the sun and stars. The theory is a
marriage between fluid mechanics and electromagnetism. Despite its apparent
simplicity, MHD describes a remarkably rich and varied mix of phenomena and
the subject is one whose development continues to flourish [30, 44, 22].

The basic equations of MHD systems can be summarized as follows:

• Mass continuity: it expresses the fact that the rate of change of mass
inside a finite volume equals the mass flow through the boundaries.

∂ρ

∂t
+∇ · (ρv) = 0. (5.1)

1This problem motivation has been taken from http://www.sec.noaa.gov/primer/primer.html
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• Adiabatic equation of state: it states that for any element of fluid the
term p/ργ , is constant, where γ is the ratio of specific heats.

d

dt

(

p

ργ

)

= 0. (5.2)

• Momentum equation: the left-hand side of (5.3) is the rate of change of
momentum of a fluid element, while the right-hand side is the sum of the
forces due to the fluid pressure p and the magnetic field.

ρ
∂v

∂t
= J ×B −∇p, (5.3)

• Ampère’s law: in magnetohydrodynamics one generally deals with low
frequencies effects in which the displacement current is negligible, hence,
the Ampère’s law can be written as (5.4). Therefore, equation (5.4)
means that a point in an electromagnetic field, the curl of the magnetic
field intensity B is equal to the current density J due to flow of charges.

∇×B = µ0J. (5.4)

• Faraday’s law: the Faraday’s law relates the electric and magnetic fields
in a conducting fluid.

∇× E = −∂B
∂t
. (5.5)

• Gauss’ law: it tell us that the divergence of the magnetic flux density at
a point is equal to zero.

∇ · B = 0, (5.6)

• Resistive Ohm’s law: the current is determined by Ohm’s law, which,
since the electric field in a frame of reference moving with the fluid is
E + v ×B, takes the form of (5.7) with η the resistivity of the plasma.

E + v ×B = ηJ, (5.7)

where each of the symbols has its customary meaning (see the list of symbols
in Appendix B), with the convective derivative

d

dt

△
=

∂

∂t
+ v · ∇.

On the other hand, the right-hand side of (5.7) may be neglected to yield the
ideal Ohm’s law:

E + v ×B = 0. (5.8)
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This states that there is no electric field in the rest frame of the fluid. Equations
(5.1)-(5.6) with (5.8) constitute the ideal MHD equations, which is usually
contracted to MHD. The inclusion of (5.7) is described as resistive MHD.

It can be seen that the equations are essentially an amalgam of fluids mechanics
and ’pre-Maxwell’ electromagnetism. The fluid inertia is affected by forces due
to the fluid pressure gradients and to the J × B term, which is the Lorentz
force in continuum form. It will be noted however that the Ohm’s law couples
the fluid to the fields. If the magnetic flux is conserved, then this equation
provides constraints on the allowable class of fluid displacements described by
the theory, and this in turn has implications for the topology of the magnetic
fields.

MHD possesses those conservation properties enjoyed by fluid mechanics and
electromagnetism, namely:

• conservation of mass,

• conservation of momentum,

• conservation of energy (both mechanical and electromagnetic),

• conservation of magnetic flux.

5.3.1 Linear 2D-MHD Flow System

If you take a look at the set of the MHD equations you come to realize that we
are dealing with a complicated set of non-linear partial differential equations
(PDE). This set of PDEs have to be supplemented with boundary conditions if
the plasma that we are looking at occupies a finite volume, which is in reality
always the case. Therefore, there is no doubt that the set of MHD PDEs is very
complicated from a mathematical and computational point of view because it
contains a lot of physics.

Fortunately, often the amplitudes of the wave variables are small compared to
their equilibrium values. This fortunate situation enables us to linearize the
set of original non-linear MHD equations. The linearized versions of the MHD
equations are much more tractable to mathematical analysis and numerical
simulations. Linear differential equations are well documented in mathemat-
ics. Linear theory of MHD waves is a valid approximation of reality if the
plasma configuration under study occurs in a steady dynamical time scale of
the system, which is the Alfvén transit time. In the solar atmosphere there are
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structures that exist during days, weeks and months. So, nature provides an
occasion where it is obvious interest to know about equilibrium states.

MHD stability and MHD waves are two complementary facets of the dynamics
of a plasma. MHD stability is concerned with the unstable motions of the
plasma that terminate the equilibrium while MHD waves are the stable motions
that can persist in the plasma equilibrium for long time spans until they are
damped by dissipation. It is no surprise that they both can be studied with
linear ideal MHD. But it is good to be aware of the limitations of linear ideal
MHD. Because it is linear, linear ideal MHD cannot give any information on
the non-linear evolution of a linearly unstable perturbation, the stability with
respect to large amplitude motions, dissipative instabilities, etc., and the use is
restricted to small amplitude MHD waves. Nevertheless the linear ideal MHD
can give us a lot of information on the dynamics of magnetic plasmas [44].

Hence, in this section we derive a linear state space representation of an ideal
2D MHD flow system. This model will be used in Section 5.4.2 to study
the performance of linear sequential data assimilation techniques, namely the
Kalman filter, the SSQRT-KF, the RRSQRT-KF, and the linear EnKF, in
MHD systems [24].

Model Linearization

Let us start determining steady-state flow and magnetic field configurations
that are consistent with the ideal MHD equations. The domain in this case is
the box Ω = {(x, y) ∈ [Lx1 , Lx2] × [0,M ]}. Consider a cold plasma (a plasma
is cold when the pressure term is negligible in the momentum equation (5.3)),
that is, p ≡ 0 in (5.3). Furthermore, we assume that the plasma flowing through
a 2D channel as shown in Figure 5.2, is incompressible, which implies that the
density is constant, temporally and spatially, that is, ρ = ρ0 and hence the
adiabatic equation of state (5.2) can be ignored.

Let ~v0 and ~B0 be the steady state solution of the MHD equations (5.1)-(5.6),
that is,

∂~v0
∂t

= 0,
∂ ~B0

∂t
= 0, (5.9)

Hence, it follows from (5.9) and (5.1)-(5.6) that ~v0 and ~B0 satisfy

∇ · ~v0 = 0, (5.10)

ρ0

(

~v0 · ∇
)

~v0 =
1

µ0
(∇× ~B0)× ~B0, (5.11)
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Figure 5.2: The plasma is assumed to flow along the êx direction only. The
magnetic field is along êy and is constant. The magnetic field exerts no pres-
sure on the flow when the velocity of the plasma is parallel to the magnetic
field. The pressure exerted by the magnetic field on the plasma when it flows
perpendicular to the field depends on the gradient of the magnetic field, which
is zero by assumption.

∇×
(

~v0 × ~B0

)

= 0, (5.12)

∇ · ~B0 = 0. (5.13)

Next, assume that the plasma flows along the êx direction with a constant
velocity so that

~v0 = v0x
êx

and let the constant magnetic field be prescribed by

~B0 = B0y
êy.

Note that the prescribed velocity and magnetic field satisfy (5.10) and (5.13),

respectively, and hence ~v0 = v0x
êx and ~B0 = B0y

êy are steady-state solutions
of the ideal MHD equations.

Next, define the perturbation variables ~vδ and ~Bδ by

~vδ
△
= ~v − ~v0, ~Bδ

△
= ~B − ~B0. (5.14)

Substituting ρ = ρ0 and (5.14) into (5.1) yields

∂ρ0

∂t
+ ρ0∇ · ~v0 + ρ0∇ · ~vδ = 0. (5.15)

Since the density is constant, substituting (5.10) into (5.15) yields

∇ · ~vδ = 0. (5.16)
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Then substituting (5.9) and (5.11) into the resulting equation, and ignoring
second and higher order perturbation terms yields

ρ0
∂~vδ

∂t
+ ρ0(~v0 · ∇)~vδ + ρ0(~vδ · ∇)~v0 =

1

µ0

[(

∇× ~B0

)

×Bδ +
(

∇× ~Bδ

)

×B0

]

.

(5.17)

Substituting (5.14) into (5.5) yields

∇×
[(

~v0 + ~vδ

)

×
(

~B0 + ~Bδ

)]

=
∂

∂t

(

~B0 + ~Bδ

)

. (5.18)

Substituting (5.9) and (5.12) into (5.18) and ignoring second order perturbation
terms yields

∇×
(

~v0 × ~Bδ

)

+∇×
(

~vδ × ~B0

)

=
∂ ~Bδ

∂t
. (5.19)

Substituting (5.14) and (5.13) into (5.6) yields

∇ · ~Bδ = 0. (5.20)

Hence, (5.17) yields

∂~vδ

∂t
+ c1

∂~vδ

∂x
= c2

∂ ~Bδ

∂y
(5.21)

and it follows from (5.19) that

∂ ~Bδ

∂t
+ c1

∂ ~Bδ

∂x
= c3

∂~vδ

∂y
, (5.22)

where c1
△
= v0x

, c2
△
= B0y

/(ρ0µ0), and c3
△
= B0y

. Therefore, (5.16), (5.20),
(5.21), and (5.22) are the linearized equations that govern the dynamics of the

perturbation variables ~vδ and ~Bδ.

Note that (5.21) and (5.22) resemble a two dimensional wave equation. Let,

~vδ and ~Bδ have components ~vδ =
[

vδx
vδy

]T
and ~Bδ =

[

Bδx
Bδy

]T
,

respectively.

Taking the partial derivative of (5.21) with respect to t and x yields,

∂tt~vδ + c1∂tx~vδ = c2∂ty
~Bδ (5.23)
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and

∂xt~vδ + c1∂xx~vδ = c2∂xy
~Bδ, (5.24)

respectively.

Taking the partial derivative of (5.22) with respect to y yields

∂yt
~Bδ + c1∂yx

~Bδ = c3∂yy~vδ. (5.25)

Dividing (5.23) by c2, and multiplying (5.24) by c1

c2
, and adding the resulting

equation with (5.25) yields

∂tt~vδ = −2c1∂tx~vδ − c21∂xx~vδ + c2c3∂yy~vδ. (5.26)

Note the symmetry in (5.21) and (5.22) with respect to ~vδ and ~Bδ. Hence,
using a similar procedure, it can be shown that

∂tt
~Bδ = −2c1∂tx

~Bδ − c21∂xx
~Bδ + c2c3∂yy

~Bδ. (5.27)

Now, the equations governing the perturbations in the velocity field ~vδ, and
the magnetic field ~Bδ, have been decoupled.

State-Space Modeling using Spatial Discretization Methods

The partial differentiation equation (5.26) involves the ∂tx operator and hence
a separation of variable technique cannot be used to obtain an equivalent ordi-
nary differential equation representation. Hence, we use spatial discretization
methods to obtain an ODE model of the linearized perturbation dynamics. Let
~vδ = vδx

êx + vδx
êy. It follows from (5.16) that there exists a scalar potential

function ψ(x, y, t) such that

vδx
=
∂ψ

∂y
(x, y, t), vδy

= −∂ψ
∂x

(x, y, t). (5.28)

Hence, it follows from (5.26) that

∂ttyψ + 2c1∂txyψ + c21∂xxyψ = c2c3∂yyyψ. (5.29)

Assume (5.29) has a solution ψ(x, y, t) of the form

ψ(x, y, t) = Um(x, t)Wm(y), (5.30)
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where for all m = 0, 1, . . ., Um : R × R → R and Wm : R → R. Substituting
(5.30) into (5.29) and dividing the resulting equation by vδx

= Um(x, t)W ′
m(y)

yields

∂ttUm(x, t)

Um(x, t)
+ 2c1

∂txUm(x, t)

Um(x, t)
+ c21

∂xxUm(x, t)

Um(x, t)
= c2c3

W ′′
m(y)

Wm(y)
, (5.31)

which implies that

W ′′
m(y)

Wm(y)
= km, (5.32)

where km ∈ R is a constant determined by the boundary conditions. We assume
that the boundary conditions along êy are fixed and given by

vδx
(x, 0, t) = 0, vδx

(x,M, t) = 0. (5.33)

Note that (5.33) is a simplifying assumption and is not equivalent to the no-slip
boundary conditions because viscosity has not been included in the ideal MHD
equations. It follows from (5.28) that a solution to (5.32) that satisfies (5.33)
is

Wm(y) = w0,m sin
(mπy

M

)

where w0,m is determined by the initial condition, and can be assumed to be
equal to one without any loss of generality, and

km = −ω2
n,m = −

(mπ

M

)2
. (5.34)

Hence, it follows from (5.31) that

∂ttUm(x, t) + 2c1∂txUm(x, t) + c21∂xxUm(x, t) + k0,mUm(x, t) = 0, (5.35)

where k0,m ∈ R is defined by

k0,m
△
= c2c3ω

2
n,m > 0.

Fourier Collocation Method

In this section, we assume that the boundary conditions are fixed along the êx

direction, and hence, express Um(x, t) as a Fourier series in x with time-varying
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coefficients. Let Lx1 = 0 and Lx2 = 2π, and for i = 1, . . . , n, let xfi
△
= 2π(i−1)

n ,
be the n collocation points along the êx direction. Define qxfi

m by

qxfi
m , Um(xfi, t). (5.36)

Next, for all k = −n
2 , . . . ,

n
2 − 1, define the discrete Fourier coefficients q̃mk

by

q̃mk
, 1

n

∑n
i=1 q

xfi
m e−(kxfi) so that Um(x, t) can be expressed by the discrete

Fourier series

Um(x, t) =

n
2 −1
∑

k=− n
2

q̃mk
e(kx).

Next, define Qm ∈ Rn by

Qm ,
[

qxf1
m · · · qxfn

m

]T
. (5.37)

Using the Fourier collocation differentiation matrix [23] in (5.34) yields

Q̈m + 2c1DFnQ̇m + c21D2
FnQm + k0,mQm = 0, (5.38)

where DFn ∈ Rn×n and the (i, j)th element of DFn is given by

DFn(i,j) =

{

1
2 (−1)i+j cot[ (i−j)π

n ], i 6= j.

0, i = j.
(5.39)

A state-space representation of (5.38) is

[

Q̇m

Q̈m

]

= Am

[

Qm

Q̇m

]

, (5.40)

where Am ∈ R2n×2n is defined by

Am
△
=

[

0n In
−(c21D2

Fn + k0,mIn) −2c1DFn

]

. (5.41)

Note that Am can be factored as

Am = P

[

−c1DFn + k
1/2
0,mIn 0

S −c1DFn − k1/2
0,mIn

]

P−1,
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where S ∈ Rn×n is defined by

S
△
= −

(

c21D2
Fn + k0,mIn

)

.

T ∈ Cn×n is defined by

T
△
=

(

c1DFn − k1/2
0,mIn

)

S−1,

and P ∈ R
2n×2n is defined by

P
△
=

[

In T
0n In

]

,

which implies that

spec(Am) = spec
(

− c1DFn+k
1/2
0,mIn

)

∪ spec
(

− c1DFn−k1/2
0,mIn

)

. (5.42)

It follows from (5.39) that DFn is skew symmetric and hence all its eigenvalues
lie on the imaginary axis. Hence, (5.42) implies that the eigenvalues of Am are
also confined to the imaginary axis, that is, for all λ ∈ spec(Am), Re(λ) = 0.

Note that (5.38) is a second order system and can be expressed as

MQ̈m +GQ̇m +KQm = 0,

where M = In, G = 2c1DFn, and K = c21D2
Fn + k0In. Since GK = KG and

K + 1
4GG

T is positive definite, it follows from Proposition 3 of [16] that (5.38)
is Lyapunov stable.

Note that (5.38) represents the dynamics of the mth mode and it follows from
the principle of superposition that the solution to (5.29) is given by ψ(x, y, t) =
P∞

m=1 Um(x, t)Wm(y).

Retaining r modes and defining the modal state vector Q̃ ∈ R2nr by

Q̃
△
=

[

QT
1 Q̇T

1 · · ·QT
r Q̇T

r

]T
,

it follows from (5.40) and (5.41) that

˙̃Q = AQ̃, (5.43)

where A ∈ R2nr×2nr is the block-diagonal matrix

A
△
=









A1 0 · · ·
0

. . . 0
... 0 Ar









.
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Hence, spec(A) = spec(A1)∪· · ·∪spec(Ar) and, for all λ ∈ spec(A), Re(λ) = 0.
Where spec(·) denotes the eigenvalues of the matrix (·).

Let yxout,i,j

△
= vδx

(xfi , yj , t) be the measured perturbation in the flow velocity
ux from u0x

at (xfi, yj), where xfi is one of the grid points. It follows from
(5.28), (5.30), and (5.36) that

yxout,i,j
= ∂yψ(x, y, t)

∣

∣

∣

(x=xfi
,y=yj)

= Cxi,j
Q̃, (5.44)

where Cxi,j
∈ R

1×2nr has entries Cxi,j
=

[

C1
xi,j

· · · Cm
xi,j

]

, and, for all

m = 1, . . . , r, Cm
xi,j
∈ R2n is defined by

Cm
xi,j

△
=

[

0i−1 W ′
m(yj) 02n−i

]

.

Next, we consider the case when the measurement ỹyout,i,j

△
= vδy

(xfi, yj , t) is
the perturbation in the flow velocity uy from u0y

at (xfi , yj). It follows from
(5.28) that

ỹyout,i,j
= −∂xψ(x, y, t)

∣

∣

∣

(x=xfi
,y=yj)

. (5.45)

Using (5.30), (5.36), and the Fourier collocation differentiation matrix DFn
in

(5.45) yields

ỹyout,i,j
= −Cyi,j

DFn
Q̃, (5.46)

where Cyi,j
∈ R

1×2nr has entries Cyi,j
=

[

C1
yi,j

· · · Cm
yi,j

]

, and, for all

m = 1, . . . , r, Cm
yi,j
∈ R2n is defined by

Cm
yi,j

△
=

[

0i−1 Wm(yj) 02n−i

]

. (5.47)

Note that (5.26) and (5.27) are similar and hence the solution to ~Bδ is similar
to that of ~vδ, and the constants are determined by the initial and boundary
values of the magnetic field instead of the velocity field.

Chebyshev Collocation Method

Next, we express Um(x, t) as a Chebyshev series in x with time varying coeffi-
cients. Let L1 = −1 and L2 = 1, and, for all i = 1, . . . , n, let

xci = − cos
[ (i− 1)π

n− 1

]
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be the n Gauss-Lobatto grid points in the interval [−1, 1] (see [23, 1]). Consider

a solution of the form (5.30) and define qxci
m

△
= Um(xci, t). The truncated

Chebyshev series expansion for the solution Um(x, t) is (see [1])

Um(x, t) =

n−1
∑

k=0

q̃mk
φk(x),

where φk(x)
△
= cos(k cos−1(x)), and, for all k = 0, . . . , n− 1, q̃mk

is defined by

q̃mk

△
=

1

γk

n
∑

i=1

qxci

m φk(xi)wi,

where

γk =

{

π, k = 0 or k = n− 1,
π
2 , 0 < k < n− 1,

wi =

{

π
2(n−1) , i = 1 or i = n,

π
n−1 , 1 < i < n.

Next, defining Qm ∈ Rn by (5.37) with qxfi
m replaced by qxci

m and using the
Chebyshev collocation differentiation matrix (see [23]) in (5.34) yields (5.38)
with DFn replaced by DCn, where the (i, j)th entry of DCn is defined by

DCn(i,j)
=























ci

cj

(−1)i+j

(xci−xci)
, i 6= j,

−xci

2(1−x2
ci

)
, 1 < i = j ≤ n,

2(n−1)2+1
6 , i = j = 1,

− 2(n−1)2+1
6 , i = j = n,

and ci is defined by

ci =

{

2, i = 1 or i = n,

1, 1 < i < n.

The state-space model is then given by (5.43), where Am is defined by (5.41)

with DFn replaced by DCn. The outputs yxout,i,j

△
= vδx

(xci, yj, t) and yyout,i,j

△
=

vδy
(xci, yj, t) are given by (5.44), (5.45).

As a result, in both cases, namely, the Fourier collocation and mapped Cheby-
shev collocation, all the eigenvalues of A are confined to the imaginary axis.
Due to the roundoff errors in the mapped Chebyshev collocation method, the
absolute value of the eigenvalues is very large, which implies that the dynamics
as given in (5.43) is oscillatory with very high frequency. Hence, the Fourier
collocation method will be used later for simulating the MHD flow.
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5.3.2 Description of the Nonlinear MHD Model Simula-

tor

In this thesis the software package VAC (Versatile Advection Code) [79] is
used to simulate the nonlinear space plasma dynamics. The VAC is a general
purpose hydrodynamic and magnetohydrodynamic software package. It uses
modern shock capturing schemes with explicit or implicit time stepping on one,
two, or three dimensional finite volume grids. Initial and boundary conditions
and different source terms can be defined by parameters and/or user written
subroutines. The VAC can be compiled with a Fortran 77, Fortran 90, or High
Performance Fortran compiler and it runs efficiently on platforms ranging from
personal computers and work stations to vector and parallel supercomputers.

Equations

Though the physical assumptions vary a lot among the applications, in most
cases a conservative system of hyperbolic partial differential equations with
additional non-hyperbolic source terms

∂tU +
∑

i

∂iFi(U) = S(U, ∂iU, ∂i∂jU,x, t)

has to be solved, where U, Fi, and S are the conservative variables, the fluxes
and the source terms, respectively, and i represents the 1, 2, or 3 components of
the spatial coordinate x. In hydrodynamics, for example, U consists of mass,
momentum and total energy densities, in MHD the magnetic field components
are the additional variables. The source terms may be functions of U, x, and
time t, e.g. for external gravitational forces, radiative cooling or heating terms
etc. In case of viscosity, magnetic resistivity, thermal conduction, etc., S may
also depend on the spatial derivatives of U.

Using the conservative form of the equations for numerical discretization has
two major advantages. First, the global conservation of mass, momentum, en-
ergy and magnetic induction is ensured, second, appropriate numerical schemes
can find weak solutions with discontinuities. In astrophysical problems the
flows are often supersonic or super Alfvénic, thus the proper representation of
shock waves and other discontinuities is necessary. At the moment five modules
are implemented, these are independent of each other, but the equations they
describe can be regarded as special cases of the resistive MHD equations

∂ρv

∂t
+∇ · (vρ) = Sρ
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∂ρv

∂t
+∇ · (vρv −BB) +∇ptot = Sρv

∂e

∂t
+∇ · (ve+ vptot −BB · v) = ∇ · (B× ηJ) + Se

∂B

∂t
+∇ · (vB = Bv) = −∇× (ηJ) + SB, (5.48)

where the total pressure, thermal pressure, and current density are

ptot = p+ B2/2

p = (γ − 1)(e− ρv2/2−B2/2)

J = ∇×B, (5.49)

for an ideal gas with adiabatic index γ. Hence, the state space variables are:

• Density, ρ

• Momentum density in x- and y-direction, mx, my

• Energy density, e

• Magnetic field in x- and y-direction Bx, By

and the outputs:

• Plasma velocity in x- and y-directions, vx = mx/ρ and vy = my/ρ

• Pressure, ptot

• Magnetic field in x- and y-direction, Bx, By

5.4 Data Assimilation for Space Weather Fore-

cast

5.4.1 Introduction

Although data assimilation techniques using Kalman filter have been used suc-
cessfully for meteorologists and oceanographers in the last decade (some ref-
erences [8, 14, 21, 28, 32, 34, 53, 58]), the space physics community has been
slow in implementing such techniques. This is due to the fact that the space
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systems are much more complex, larger, and there is a lack of measurements.
In the last decades, astrophysicists have done a lot of research in developing
models and tools to understand better the space plasma dynamics [66, 43, 44].
Anyhow, there are still many things to discover about this kind of systems and
not much information is available. This is why researchers in this area often use
truth recorded data, which have been taken from special events like big CMEs,
to tune their models and improve the simulations. The problem arises when
we want to use these models for real time predictions. There the conditions of
the model simulation have to be updated on-line, and this is only possible by
assimilating recent measurements into the model.

Even though there already exist good models that can describe the space
plasma dynamics, applying data assimilation techniques to this system in real
life is still complicated. Mainly, because there are still big computational con-
straints and a shortage of measurements. However, this situation is changing
rapidly for the Ionosphere, for instance, and it is expected that it will also start
changing for the magnetosphere in some decades. Therefore, one of the main
goals of this thesis, is to make a first study of the performance of large scale
sequential data assimilation techniques applied to space plasma, described by
MHD systems.

5.4.2 Data Assimilation in a Linear 2D-MHD Flow Sys-

tem

The model we use in this section is taken from §5.3.1 using the Fourier colloca-
tion spatial discretization method. We consider a 20×20 grid with equidistant
points (the grid points along the êx direction are the Fourier collocation points),
where 0 < x < 2π, 0 < y < 1, and sample time Ts = 10−3 seconds. The number
of modes retained is m = 5 and hence, Ad ∈ R200×200, and Cd ∈ R400×200.

Although the system may be fully observable with just one measurement out-
put, the discrete-time linearized system turns out to be marginally observable,
because all the poles are clustered on the unit circle, which entails numerical
round-off errors, see Figure 5.3. Figure 5.4 shows that at least 10 output mea-
surements are needed to guarantee the full observability of the system. Hence,
we use 50 measurements to ensure that the system is observable.

Figure 5.5 shows the eigenvalue positions of the error dynamic matrix for the
classical KF, SSQRT-KF, RRSQRT-KF, and EnKF using 50 measurement
points. There, we can compare the steady state performance of the subop-
timal filter with the classical KF. As can be seen in Figure 5.5 the suboptimal
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Figure 5.3: Eigenvalues of the A matrix. All the eigenvalues are located on the
unit circle.

Kalman filter estimators are marginally stable, this is caused by the fact that
eigenvalues of the pencil λM1−M2, withM1 andM2 defined in §2.3, are located
very close to the unit circle, see Figure 5.6. Consequently, the performance of
the suboptimal KF shows an oscillatory behavior as can be seen in Figures 5.7
and 5.8, and the convergence of the RMSE is bounded to a value bigger than
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Figure 5.4: Logarithm of the singular values of the observability matrix for
different number of measurements. We observe that the condition number of
the observability matrix is high for a small number of measurements and the
condition number is small when the number of measurements is larger than ∼
10.
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zero, even for the classical KF.
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Figure 5.5: In the top-left eigenvalues of the discrete model, top-right, bottom-
left, bottom-right, are the eigenvalues of matrix dynamics of the error for the
classical KF, SSQRT-KF, and RRSQRT-KF, respectively. For the three meth-
ods we have chosen 50 output measurements. For RRSQRT-KF q = 50, and
for SSQRT-KF l = 50.
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Figure 5.7: RMSE of the estimated states taking 50 measurements. Solid line
KF, dash-dotted line SSQRT-KF, dotted line RRSQRT-KF, and dashed line
EnKF. The SNR = −3dB for the measurement noise. It can be seen that
even though the filters do not diverge, their estimations show an oscillatory
behaviour.
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Figure 5.8: RMSE of the estimated outputs taking 50 measurements. Solid
line KF, dash-dotted line SSQRT-KF, dotted line RRSQRT-KF, and dashed
line EnKF. The SNR = −3dB for the measurement noise. It can be seen that
even though the filters do not diverge, their estimations show an oscillatory
behaviour.
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5.4.3 Data Assimilation in a Non-Linear 2D-MHD Flow

System

In order to investigate how sequential data assimilation techniques could oper-
ate in space weather forecast, we simulate a 2D-MHD system which emulates
the Earth’s magnetosphere. Hence, we took an ideal MHD system, equations
(5.1)-(5.6), and (5.8), setting the boundary conditions like in Table 5.1, so that
it simulates a bow shock around the Earth (see Figures 5.1, 5.9). This system
was simulated using the VAC code [79].

Setting the VAC code

In order to simulate the bow shock in an ideal MHD system, we set the following
parameters in the VAC code:

• Grid size: 34 x-direction × 54 y-direction

• Initial conditions of the state space variables:

– Mass density, ρ = 1.0 Kg/m3

– Momentum density in x- and y-directions, mx = 20, my = 0 kg/m2s

– Energy density, e = 115.0 kg/ms2

– Magnetic field in x- and y-directions, Bx = 0 mT, By = 1.0 mT

• ratio of specific heats, γ = 5/3

• Simulation sampling time, Ts = 1× 10−4 seconds

• Data assimilation sampling time, 10Ts seconds

• Spatial discretization method: Total Variation Diminishing Lax-Friedrich
- TVDLF, using the Powell’s scheme to keep ∇ ·B = 0.

Consequently, the order of the system is n = 11016, 6 state space variables
and 34× 54 grid-points. To excite the system, a square sinusoidal wave for By

varying from 1 to 1.5 mT , and mx from 20 to 30 kg/m2s, were generated at the
left-hand boundary, simulating a magnetic storm. The profile of the magnetic
field and momentum density excitations are shown in Figure 5.10. Note that
the in first 50 iterations the amplitude of the perturbations is zero, this in order
to let develop the multivariate correlations of the estimated error covariance
matrix.



5.4. Data Assimilation for Space Weather Forecast 137

y

x

1
1

1
1

1

1

1

1.5

1.5

2

2

2.5

2.5

3

3

3.5

3.5

4

4

4.55

0.05 0.1 0.15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.5

2

2.5

3

3.5

4

4.5

Figure 5.9: Initial conditions of the magnetic field magnitude [mT].
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Figure 5.10: Profile of the magnetic field By and momentum density mx per-
turbations at the left-hand boundary. 1 iteration = 1 Ts.
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Left-hand Right-hand Right-hand Top Bottom
Out bow shock Inside bow shock

ρ fixed open symmetric open open
vx fixed open asymmetric open open
vy fixed open symmetric open open
p fixed open symmetric open open
Bx fixed open asymmetric open open
By fixed open symmetric open open

Table 5.1: Settings of the boundary conditions used in the VAC code to simulate
a bow shock.

Data Assimilation System Implementation

Figure 5.11 depicts a general scheme of an ensemble filter implementation by
running Matlab and the VAC code simultaneously. As we can see in the scheme,
we did not need any extra code for the numerical model, however, we had to
write the algorithms for each of the ensemble filters in Matlab, and the interface
to read and write data between Matlab and the VAC code which is written in
Fortran. As a result, we have got a modular data assimilation system where
the nonlinear model integration module is executed by the VAC code, while
the data assimilation module by Matlab. This is another motivation for using
this sort of filters, because it is quite straightforward to deploy, and the results
are reliable.

Another important problem is the localization of the measurement points. As it
is known from system theory, the observability of a distributed system depends
among other issues on the location of these points. The study of the dependence
of the observability on the location of the measurement points for distributed
MHD systems goes farther off the goals of this thesis, therefore, we do not go
deeper in this topic, and we rely in very practical assumptions. In this example
we have chosen the place for most of the these points in areas where most of
the dynamics effects happen, that is, around the Earth, right-hand side, and
the rest radially distributed taking the Earth’s position as the reference point.

For the computations a Fedora Core 3 Linux machine was used with the fol-
lowing features:

• Model name: Pentium 4 (dual).

• CPU: 2.80 GHz.

• RAM: 1 GB.
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Matlab VAC

Initialization Layer

Initial Ensemble
Generator

Data Assimilation Layer

Ensemble Filter
Gain Computation

Assimilation of
Data

Updated Ensemble

Updated Ensemble
Estimation

Mean

One Sampling
Time Integration

Simulated Data
Previously Computed

with VAC

Figure 5.11: Data assimilation implementation scheme. At the left the modules
computed with Matlab, and at the right, the ones computed with the VAC code.
From top to bottom, first the initialization layer, where the initial ensemble is
generated in Matlab. Then, in the data assimilation layer, the initial ensemble
is integrated using the VAC code. This updated ensemble is send to Matlab,
where it is used to computed the ensemble Kalman gain. Afterwards, the
observations, previously computed with VAC code and stored as a data Matlab
file, are assimilated using the ensemble Kalman filter gain. As a result, the
estimated state vector is computed by taking the mean value of the updated
ensemble. Finally, the updated ensemble is integrated with the VAC code and
the procedure is repeated again.

The compilation of the VAC code was done using the GNU compiler g77, and
the Matlab used was the version 7.0 for Linux.
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N m = 6 m = 22
EKF - 8× 1012 flops+1ME 8× 1012 flops+1ME
EnKF 50 2.9× 106 flops+50ME 1.4× 107 flops+50ME

200 7.9× 106 flops+200ME 1.9× 107 flops+200ME
500 1.8× 107 flops+500ME 2.9× 107 flops+500ME

EnSRF 50 2.1× 107 flops+50ME 6.7× 107 flops+50ME
200 8.4× 107 flops+200ME 2.6× 108 flops+200ME
500 2.1× 108 flops+500ME 6.5× 108 flops+500ME

ETKF 50 3.1× 107 flops+50ME 4.5× 107 flops+50ME
200 4.6× 108 flops+200ME 5× 108 flops+200ME
500 2.9× 109 flops+500ME 3× 109 flops+500ME

EnSLKF 50 4.5× 106 flops+50ME 3.5× 107 flops+50ME
200 9.5× 106 flops+200ME 4× 107 flops+200ME
500 1.9× 107 flops+500ME 5× 107 flops+500ME

Table 5.2: Comparison of the number of flops between the EKF, EnKF, EnSRF,
ETKF, EnSLKF for the nonlinear 2D-MHD flow system example, with N the
number of ensemble members, m the number of measurement points, and ME
the number of model evaluations.

Analysis of Results

To investigate the performance of the ensemble-based filters, namely, the EnKF,
the EnSRF, the EnSLKF, and the ETKF, in MHD systems a magnetic storm
coming towards the Earth was simulated by setting the boundary conditions
as described in Table 5.1. We studied three cases: 6, 13, and 22 measurement
points, where we assumed that all the output variables, namely, velocity, pres-
sure, and magnetic field (see §5.3.2) were available, and for each case we used
50, 200, and 500 ensemble members, respectively. The initial ensemble was
generated as indicated in Appendix D, taking as first guess the same initial
conditions of the simulated system for all the state variables.

Table 5.2 shows a comparison of the number of flops needed for the filters
studied. There can be seen that the EnSRF and ETKF are the most sensitive
to the number of ensemble members. On the other hand, even though the
number of flops of the EKF O(1012) is higher than any of the ensemble based
filters ∼ O(108), the ensemble based filters need more model evaluations, con-
sequently, the computational complexity between the two techniques is very
similar. Finally, the influence of m in the number of flops is not observed in
this example, because m does not change very much. As a result, the num-
ber of ensemble members N is the critical parameter for the computational



5.4. Data Assimilation for Space Weather Forecast 141

complexity of the filters in this example.

Figures 5.12-5.14, and 5.15-5.20 show a comparison of the global performance
of the filters for the magnetic field magnitude, velocity magnitude, and pres-
sure (see appendix E for more details). In general, it can be seen that the
best global performance of the filters is obtained when the number of ensem-
ble members as well as the number of measurement points are increased, as
expected. It is also clearly seen that 50 ensemble members are not enough to
describe the error covariance matrix, because the performance of the filters is
very poor. On the other hand, in spite of having some small differences in the
global RMSE, we can say that the EnKF, the EnSRF, and the ETKF behave
very similarly. In contrast, at first sight the EnSLKF seems to have a poor per-
formance; however, when we look at the results in detail, Figures 5.12-5.14, we
find some interesting features: first of all, notice that it is very stable, it never
makes crash the numerical model as happens with the EnSRF and the ETKF
when there are a small number of ensemble members and measurement points.
Another interesting characteristic, is that it needs less ensemble members than
the other filters to represent the error covariance matrix. This is because the
filter carries out a local optimization around the measurement points, so, the
error covariance matrix is constrained to these regions. And finally, by choos-
ing an smooth function for the weighting matrices Γk and Mk, as explained in
§3.4, we avoid numerical instabilities in the model simulator. We have to stress
that by choosing smooth functions around the measurement points to build up
the matrices Γk and Mk, what we are basically doing is applying covariance
localization §4.4.2 in an optimal way.

As a result, under circumstances where the number of measurement locations
is small compared to the size of the system, the EnSLKF is very robust numer-
ically, and the computational cost is less than the cost of classical ensemble-
based Kalman filters. This is more clearly seen when we compare the perfor-
mance of the filter for the cases of 200 and 500 ensemble members in the mag-
netic field magnitude, Figure 5.12. Also in Figures 5.15, 5.18 can be seen how
the EnSLKF focuses the estimation close to the measurement points without
generating any instabilities in locations far away. On the contrary, the other
filters try to make estimations in the whole grid, with the consequence that
in places distant to the measurement points the estimated values yielded are
physically wrong, this is called filter divergence. Hence, the numerical model
becomes unstable and it may crash.

As it was mentioned in §4.4.2 one way to avoid the filter divergence is to
use the covariance localization approach, often cited in the weather forecast
community [50]. Therefore, the following case we are going to study focuses
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on the comparison of performance between the ensemble-based Kalman filters
using the same covariance localization matrix and the EnSLKF. Figures 5.21-
5.14 show a comparison of the global RMSE for all the filters. As we observe,
the covariance localization has to be chosen with care otherwise it can cause
filter divergence or degrade drastically the performance of the estimation, as we
can see in the EnKF and EnSRF cases, respectively. The ETKF shows a much
better performance similar to the EnSLKF. This might happen because this
filter propagates the error covariance matrix using an eigenvalue decomposition
of a matrix that contains the prior error covariance matrix, so it becomes
robust against instabilities that can be generated for the covariance localization
step. The point we have to stress here, is that in spite of the covariance
localization being a logical approach to deal with sparse measurements in large
scale systems, the solution as proposed by [50] is not the best one, and it is
very heuristic; therefore the results are not reliable at all. In contrast, we have
shown that the EnSLKF gives the optimal solution in the quadratic sense, and
the results are very reliable, as depicted in the analyses.
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Figure 5.12: RMSE comparison of the magnetic field magnitude. Solid line the
EnKF, dashed line the EnSRF, dash-dotted line the EnSLKF, and dotted line ETKF.
In general, it can be seen that the best global performance of the filters is obtained
when the number of ensemble members as well as the number of measurement points
are increased. Also, observe that 50 ensemble members are not enough to describe
the error covariance matrix. Furthermore, it is important to highlight the good per-
formance of the EnSLKF compared to the other filters with six measurement points.
Finally, note that the EnSRF for the case of 6 measurement points make crash the
simulator, this is also observed with the ETKF for 50 ensemble members with 6 and
13 measurement points. This shows how relevant turns out to be the local estimation
when we have sparse measurement points. Otherwise, the estimator introduces in-
stabilities to the numerical model degrading its performance, and increasing the risk
of aborting the simulation, something no desirable in a data assimilation system. 1
iteration = 1 Ts.
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Figure 5.13: RMSE comparison of the velocity magnitude. Solid line the EnKF,
dashed line the EnSRF, dash-dotted line the EnSLKF, and dotted line ETKF. In
general, it can be seen that the best global performance of the filters is obtained
when the number of ensemble members as well as the number of measurement points
are increased. Also, observe that 50 ensemble members are not enough to describe
the error covariance matrix. In this case, the performance of the EnSLKF is very
similar to the other filters. The big peak show at 300 iterations for 6 and 13 mea-
surement points is caused by the fact that the perturbation has not arrived to the
measurement points yet. Finally, note that the EnSRF for the case of 6 measurement
points make crash the simulator, this is also observed with the ETKF for 50 ensemble
members with 6 and 13 measurement points. This shows how relevant turns out to
be the local estimation when we have sparse measurement points. Otherwise, the
estimator introduces instabilities to the numerical model degrading its performance,
and increasing the risk of aborting the simulation, something no desirable in a data
assimilation system. 1 iteration = 1 Ts.



5.4. Data Assimilation for Space Weather Forecast 145

05010
0

50
 m

em
be

rs

p−6 measur.

05010
0

20
0 

m
em

be
rs

05010
0

50
0 

m
em

be
rs

05010
0

p−13 measur.

05010
0

05010
0

0
20

0
40

0
60

0
80

0
0204060

p−22 measur.

ite
ra

tio
ns

0
20

0
40

0
60

0
80

0
0204060

ite
ra

tio
ns

0
20

0
40

0
60

0
80

0
0204060

ite
ra

tio
ns

Figure 5.14: RMSE comparison of the pressure. Solid line the EnKF, dashed
line the EnSRF, dash-dotted line the EnSLKF, and dotted line ETKF. In
general, it can be seen that the best global performance of the filters is obtained
when the number of ensemble members as well as the number of measurement
points are increased. Also, observe that 50 ensemble members are not enough
to describe the error covariance matrix. In this case, the performance of the
EnSLKF is very similar to the other filters. The big peak show at 300 iterations
for 6 and 13 measurement points is caused by the fact that the perturbation has
not arrived to the measurement points yet. Finally, note that the EnSRF for
the case of 6 measurement points make crash the simulator, this is also observed
with the ETKF for 50 ensemble members with 6 and 13 measurement points.
This shows how relevant turns out to be the local estimation when we have
sparse measurement points. Otherwise, the estimator introduces instabilities
to the numerical model degrading its performance, and increasing the risk of
aborting the simulation, something no desirable in a data assimilation system.
1 iteration = 1 Ts.
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Figure 5.15: Magnetic field magnitude residuals [mT] with 6 measurements
points and 200 ensemble members. From top to bottom, the ETKF, the En-
SLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1× 10−4s.
Data assimilation sampling time k = 4Ts. Black triangles indicate the measure-
ment points. The empty figure space means that the algorithm has crashed,
something that is no desirable in a data assimilation system, as explained in
the analysis of the results.
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Figure 5.16: Velocity magnitude residuals [m/s] with 6 measurements points
and 200 ensemble members. From top to bottom, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points. The empty figure space means that the algorithm has crashed, some-
thing that is no desirable in a data assimilation system, as explained in the
analysis of the results.
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Figure 5.17: Pressure residuals [kg/ms2] with 6 measurements points and 200
ensemble members. From top to bottom, the ETKF, the EnSLKF, the EnSRF,
and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data assimilation
sampling time k = 4Ts. Black triangles indicate the measurement points. The
empty figure space means that the algorithm has crashed, something that is
no desirable in a data assimilation system, as explained in the analysis of the
results.
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Figure 5.18: Magnetic field magnitude [mT] with 6 measurements points and
200 ensemble members. From top to bottom, the simulate data, the ETKF,
the EnSLKF, the EnSRF, and the EnKF. Simulation sampling time Ts =
1 × 10−4s. Data assimilation sampling time k = 4Ts. Black triangles indicate
the measurement points. The empty figure space means that the algorithm
has crashed. something that is no desirable in a data assimilation system, as
explained in the analysis of the results.
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Figure 5.19: Velocity magnitude [m/s] with 6 measurements points and 200
ensemble members. From top to bottom, the simulate data, the ETKF, the
EnSLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1 ×
10−4s. Data assimilation sampling time k = 4Ts. Black triangles indicate
the measurement points. The empty figure space means that the algorithm
has crashed. something that is no desirable in a data assimilation system, as
explained in the analysis of the results.
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Figure 5.20: Pressure [kg/ms2] with 6 measurements points and 200 ensemble
members. From top to bottom, the simulate data, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points. The empty figure space means that the algorithm has crashed. some-
thing that is no desirable in a data assimilation system, as explained in the
analysis of the results.
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Figure 5.21: RMSE comparison of the magnetic field magnitude. Solid line the
EnKF, dashed line the EnKF with covariance localization, dotted line the En-
SRF with covariance localization, and dash-dotted line the EnSLKF. Note how
the covariance localization approach can cause filter divergence and degrades
the performance of a filter if it is not well defined, see the EnKF, something
that may be difficult to achieve in a heuristic method. On the other hand,
the performance of the EnSLKF is similar to the other filters with covariance
localization; therefore, we can say that the EnSLKF is an optimal method to
do covariance localization. 1 iteration = 1 Ts.
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Figure 5.22: RMSE comparison of the velocity magnitude. Solid line the EnKF,
dashed line the EnKF with covariance localization, dotted line the EnSRF with
covariance localization, and dash-dotted line the EnSLKF. Note how the co-
variance localization approach can cause filter divergence and degrades the
performance of a filter if it is not well defined, see the EnKF, something that
may be difficult to achieve in a heuristic method. On the other hand, the
performance of the EnSLKF is similar to the other filters with covariance lo-
calization; therefore, we can say that the EnSLKF is an optimal method to do
covariance localization. 1 iteration = 1 Ts.
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Figure 5.23: RMSE comparison of the pressure. Solid line the EnKF, dashed
line the EnKF with covariance localization, dash-dotted line the EnSRF with
covariance localization, and dash-dotted line the EnSLKF. Note how the co-
variance localization approach can cause filter divergence and degrades the
performance of a filter if it is not well defined, see the EnKF, something that
may be difficult to achieve in a heuristic method. On the other hand, the
performance of the EnSLKF is similar to the other filters with covariance lo-
calization; therefore, we can say that the EnSLKF is an optimal method to do
covariance localization. 1 iteration = 1 Ts.
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5.5 Conclusions

In this chapter we have studied the performance of data-assimilation techniques
in MHD systems.

In the first part, a discrete-time linearized model for a flow of plasma in a
two-dimensional channel, without taking into account any dissipation, was ob-
tained. Hence, this model was marginally stable, with all the poles clustered
on the unit circle. This entailed numerical round-off errors making the system
difficult to observe.

Four different state space observers were studied, namely, the Kalman filter,
the RRSQRT-KF filter, the SSQRT-KF, and the EnKF filter. Although the
Kalman filter performed better than the suboptimal Kalman filters, as ex-
pected, it converged very slowly. This is caused by the fact that the eigenvalues
of the pencil λM1 −M2 are located very close to the unit circle. This fact also
had a big impact on the performance of the suboptimal KF studied in this
section, so that the filters became marginally stable, and the estimation error
was bounded. Hence, the estimation error showed an oscillatory behavior.

As a result, we could not exploit the advantages of the proposed suboptimal
Kalman filters for the linearized MHD system. Since the numerical round-
off error problem is mainly related to the spatial discretization techniques,
another alternatives have to be investigated in order to avoid the numerical
and observability problems. This issue is beyond the scope of this thesis, so,
we leave it open for future research.

In the second part, a modular data-assimilation scheme was presented. Using
this scheme we investigated the performance of ensemble-based Kalman filters
in MHD systems, taking as case study the space weather forecast. Three well
known approaches, namely, the EnKF, the EnSRF, and the ETKF, were com-
pared to the one we proposed, the EnSLKF. In general, the results showed
that when there is not a lack of measurements, and we take enough ensem-
ble members, in this case study 200 was enough, the filters converged. But
this performance degrades drastically when we reduced the number of mea-
surement points, 6 out of 1836 in the example. Under these circumstances,
which are very realistic, we found that the EnSLKF performed more robust
numerically, because it just optimizes the estimation around the measurement
points, contrary to the other filters which try to reduce the error in the whole
grid, generating instabilities to the numerical model. Additionally, it needs less
ensemble members to describe the error covariance matrix. This is because it
constraints this matrix to regions close to the measurement points. Hence, the
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computational cost can be reduced dramatically; first, by using a reduced num-
ber of ensemble members, and second, by making use of the sparsity generated
by the local optimization.

Finally, the EnSLKF was compared with the covariance localization approach
proposed by [50] to deal with sparse measurements in large scale system, and
we found that the EnSLKF performs much better and reliable than covariance
localization. This conclusion is supported by the results obtained in the case
study, and also by the fact that the EnSLKF has been obtained from an opti-
mization problem, contrary to the covariance localization approach which is a
heuristic method.
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6.1 Conclusions

This thesis describes the application of data-assimilation techniques to large
scale environmental systems described by PDEs (partial differential equations),
where the ultimate goal is to introduce these techniques in the field of space
weather forecast. It turns out that space plasma system dynamics, used for
space weather forecast, can be described by magnetohydrodynamic (MHD)
systems. Additionally, they are very large scale, and suffer of the lack of mea-
surements. The research focused on two directions; first, to investigate the
performance of sequential data-assimilation techniques to estimate the dynam-
ics of the space plasma in steady state, which can be done using a linearized
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MHD system. And second, the most important, to investigate the performance
of sequential data-assimilation techniques for space weather forecast, which can
be carried out using a nonlinear MHD system.

For the first case, in Chapters 2 and 3, we made a review of optimal and sub-
optimal linear Kalman filter formulations and algorithms that could be applied
to this case. There, we proposed a new algorithm, the singular square root
algorithm (SSQRT-KF), which originally was designed for estimation in sys-
tems where the process noise is negligible, but we extended it to other cases by
applying a heuristic technique called covariance inflation. This algorithm was
compared to other suboptimal Kalman filters for state and boundary conditions
estimation in a 2D heat transfer system with good results. Then in Chapter
5, a linearized 2D-MHD flow system in state space was yielded by using two
spatial discretization techniques, specifically, the Chebyshev and Fourier Col-
location. This linearized MHD system resulted to be marginally observable,
causing the suboptimal Kalman filters to be marginally stable. As a result,
we observe a low rate of convergence, and in most of the cases an oscillatory
behavior. Therefore due to these numerical issues, we found that data assimi-
lation is hard to apply. Nevertheless, this problem could be solved by exploring
other discretization techniques to avoid the observability problems.

For the second case, we focused on three aspects: 1) numerical efficiency and
stability, 2) sparsity of the measurements, and 3) facility and reliability in the
deployment of the data assimilation system. Taking into account these three
issues, we found out that ensemble-based data assimilation techniques are the
best option. This is supported by the fact that they have been shown to work
quite well in weather forecast systems, which has some similarities to space
weather systems. Moreover, they are easy to implement and robust because
they can be treated as modular systems, where each module is specialized in
its task, it means, the system integration is done by a nonlinear numerical
model, and you do not have to care about any modeling or linearization, and
the filtering can be coded apart for the user. Then, the modules are run in
parallel to assimilate the data.

Therefore, taking this as a basis, and having in mind that the best estimation
we can get in a large scale system with sparse measurements is a local estima-
tion, we focused on developing a filter that could handle this problem. Hence,
in Chapter 3, we introduced a new optimal Kalman filter, the spatially localized
Kalman filter (SLKF) which can deal with this problem without generating in-
stabilities to the numerical model, in other words, it avoids filter divergence.
We tested it in a 1D mass-spring system, the dynamical structure of which is
similar to the one we get from a discretized environmental system. Chapters
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3 and 4 are also devoted to introducing and studying some of the more rele-
vant ensemble-based data assimilation techniques and algorithms, namely, the
EnKF, the EnSRF, and the ETKF. Also in Chapter 4, we extended the SLKF
to the nonlinear case based on the EnKF, which we called the EnSLKF.

Then in Chapter 5, we investigated and compared the performance of the
ensemble-based Kalman filters. For this study we used the VAC code as numer-
ical model, where we emulate a solar storm coming towards the Earth. We set
a very simple and small 2D-MHD flow system with 34× 54 = 1836 grid points,
and six state space variables, so that the order is equal to 11016. Generally
speaking, it has been shown that when the ensemble-based filters have got a
lot of information from the real system (measurements), and a large ensemble
is taken, the estimation error converges to zero in the ideal case. However, in
conditions of a reduced number of measurements or ensemble members, the fil-
ters may diverge or have a poor performance. In contrast, the EnSLKF showed
to be more robust than the global filters in this situation, because it optimizes
the estimation around the measurement points. This has some advantages.
First, the number of ensemble members needed to represent the error covari-
ance matrix is smaller because it constraints this matrix to the regions close to
the measurement points. And second, the fact that the error covariance matrix
is constrained to certain regions, generates sparsity in the matrix. Hence, this
sparsity can be utilized to reduce the computational load of the filter.

On the other hand, the EnSLKF was compared with the covariance localization
approach proposed by [50] to deal with sparse measurements in large scale sys-
tems, and we found that the EnSLKF performs much better and reliably than
covariance localization. This conclusion is supported by the results obtained in
the case study, and also by the fact that the EnSLKF has been obtained from an
optimization problem, contrary to the covariance localization approach, which
is a heuristic method.

Finally, we have introduced and tested the sequential data-assimilation topic
in the area of space weather forecast with very promising results. However,
there is still a long way to go before deploying the first real data-assimilation
system in this field.

6.2 Future Research

As I mentioned in the conclusions, there are a lot problems and open issues that
have to be solved before a data-assimilation system for space weather forecast
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becomes functional.

One of the open issues in the Kalman filter is how to define the process noise
matrix of a system. One possible solution could be using subspace identifica-
tion, where the idea is to compute a model where the outputs can be defined
as the error between the numerical model and real measurements. Then, the
measurement noise matrix obtained by the identification will give us a good
hint of the process noise of the system.

Another important aspect of the Kalman filter, is that we always assume that
the forecast variables are Gaussian, although it is known that the variance is
no longer optimal in the non-Gaussian case. Therefore, the use of alternative
Monte Carlo methods for the update step can be investigated. For instance,
importance sampling could be used to sample from the posterior distribution
given by Bayes’ formula. The algorithm could be made sequential and an
additional resampling step added to prevent algorithm degeneracy. These Se-
quential Importance Resampling (SIR) methods are more general than Kalman
filtering since they do not need to assume Gaussianity [83].

In the implementation of a data-assimilation system, we have to take into
account that the size of the real system is really large, hence, we have to
investigate how to parallelize the computation of the ensemble-based Kalman
filters together with the numerical models in order to speed up the efficiency
of the system.

Furthermore, as one of the major problems in applying data assimilation to
space weather forecast is the shortage of measurements, it would be also in-
teresting to investigate how to take direct and indirect measurements of the
space plasma. Although this issue is changing in the Ionosphere, when we go
to higher layers this becomes very difficult and expensive.

Finally, In the space plasma modeling, we can explore the use of data-assimilation
techniques off-line for parameter estimation in order to improve the tuning of
the existing model. One possibility would be the ensemble smoother Kalman
filter.

On the other hand, the ensemble-based Kalman filter theory developed in the
weather forecast community in the last decade, could be used in systems and
control community to solve nonlinear control and observer problems. To men-
tion some examples where this theory could be applied, we can think about
biochemical, petrochemical, and aerospace systems.
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Appendix

A List of Abbreviations

AR − Autoregressive.
ARE − Algebraic Riccati equation.
DARE − Discrete algebraic Riccati equation.
DRDE − Discrete Riccati difference equation.
CME − Corona mass ejection.
EKF − Extended Kalman filter.
EnKF − Ensemble Kalman filter.
EnSLKF − Ensemble spatially localized Kalman filter.
EnSRF − Ensemble square root Kalman filter.
ETKF − Ensemble transform Kalman filter.
KF − Kalman filter.
LTI − Linear time invariant.
LTV − Linear time variant.
MCMC − Monte Carlo Markov chain.
MHD − Magnetohydrodynamics system.
PEKF − Partial eigen-decomposition Kalman filter.
PDE − Partial differential equation.
RMSE − Root mean square error.
RRSQRT-KF − Reduced rank square root Kalman filter.
SLKF − Spatially localized Kalman filter.
SNR − Signal to noise ratio.
SQRT-KF − Square root Kalman filter.
SQRT-SLKF − Square root spatially localized Kalman filter.
SQRT-TKF − Square root transform Kalman filter.
SSQRT-KF − Singular square root Kalman filter.
TKF − Transform Kalman filter.
VAC − Versatile Advection Code.
2D-MHD − Two dimensional magnetohydrodynamic systems.

B List of Symbols MHD System

• µ0 - permeability of free space [N A2]

• η - resistivity of plasma [Ω]
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• ρ - average mass density of plasma [kg/m3]

• p - pressure [kg/ms2]

• e - energy density [kg/ms2]

• γ - ratio of specific heats

• v - velocity of the fluid element [m/s]

• m - momentum density [kg/m2s]

• J - current density [A/m2]

• E - electric field [volt/m]

• B - magnetic field [Tesla]

C Random Fields

The general representation of an event that is space dependent as a random
field [84] is:

w(r̂) = w̄(r̂) + f(r̂) (C.1)

where,

w(r̂) is the realization or sample of the field at r̂,

r̂ = (x(t), y(t), z(t)) is the spatial location, with t the time,

w̄ is the trend component of the field (commonly referred to as the mean
value) at r̂,

f(r̂) is zero trend fluctuating component of field at r̂.
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A Homogeneous Random Field

A random field is said to be homogeneous when the statistical values of the
point properties are constant and the statistical values of the cross-point prop-
erties depend only on the distance or separation between points. Specifically,
the statistical values of a homogeneous field are given by

E [w(r̂)] = E [w̄(r̂)] = µ (C.2)

E [w(r̂)− w̄(r̂)][w(r̂)− w̄(r̂)]T = E [f(r̂)]2 = σ2 (C.3)

E [w(r̂0)− w̄(r̂0)][w(r̂1)− w̄(r̂1)]
T = E [f(r̂0)f(r̂1)] = σ2ρ(r̂0 − r̂1) (C.4)

where µ is the mean value, σ2 is the variance, ρ(·) is the correlation function.
When the cross point properties are function of absolute distances between
points, the field is said to be isotropic. That is

E [w(r̂0)− w̄(r̂0)][w(r̂1)− w̄(r̂1)]
T = E [f(r̂0)f(r̂1)] = σ2ρ(|r̂0 − r̂1|). (C.5)

A Non-Homogeneous Random Field

A random field is said to be non-homogeneous when any of the statistical values
of the point or cross point properties is dependent on the location. Specifically,
the statistical values of point and cross point properties are given by

E [w(r̂)] = E [w̄(r̂)] = µ(r̂), (C.6)

E [w(r̂)− w̄(r̂)][w(r̂)− w̄(r̂)]T = E [f(r̂)]2 = σ2(r̂), (C.7)

E [w(r̂0)− w̄(r̂0)][w(r̂1)− w̄(r̂1)]
T = E [f(r̂0)f(r̂1)] = σ2ρ(r̂0, r̂1). (C.8)

D Generation of Random Fields for Ensemble-

Based Filters

In this section we describe a simple way to generate homogeneous random fields
in cases where an eigenvalue decomposition of the initial error covariance matrix
P can be computed. First, generate a desired covariance matrix P ∈ Rn×n,
then compute its eigenvalue decomposition, hence

P = JDJT. (D.1)



172 Appendices

Now, define a matrix T ∈ Rn×n so that

T = JD1/2 (D.2)

Afterwards, we compute a vector mk using a Gaussian random generator with
zero mean, and variance one. Then, the random field perturbations f(r̂)k can
be computed as

f(r̂)k = Tmk. (D.3)

Finally, the random field perturbations are added to the random field mean
(initial state space guess plus white noise ǫk) to obtain the random fields. As
a result

w(r̂)k = w̄(r̂) + Tmk + ǫk (D.4)
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Figure E.3: Magnetic field magnitude residuals [mT] with 13 measurements
points and 200 ensemble members. From top to bottom, the ETKF, the En-
SLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1× 10−4s.
Data assimilation sampling time k = 4Ts. Black triangles indicate the mea-
surement points.
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Figure E.4: Magnetic field magnitude residuals [mT] with 22 measurements
points and 200 ensemble members. From top to bottom, the ETKF, the En-
SLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1× 10−4s.
Data assimilation sampling time k = 4Ts. Black triangles indicate the mea-
surement points.
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Figure E.5: Velocity magnitude residuals [m/s] with 13 measurements points
and 200 ensemble members. From top to bottom, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points.
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Figure E.6: Velocity magnitude residuals [m/s] with 22 measurements points
and 200 ensemble members. From top to bottom, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points.
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Figure E.7: Velocity magnitude residuals [kg/ms2] with 13 measurements
points and 200 ensemble members. From top to bottom, the ETKF, the En-
SLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1× 10−4s.
Data assimilation sampling time k = 4Ts. Black triangles indicate the mea-
surement points.
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Figure E.8: Velocity magnitude residuals [kg/ms2] with 22 measurements
points and 200 ensemble members. From top to bottom, the ETKF, the En-
SLKF, the EnSRF, and the EnKF. Simulation sampling time Ts = 1× 10−4s.
Data assimilation sampling time k = 4Ts. Black triangles indicate the mea-
surement points.
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Figure E.9: Magnetic field magnitude [mT] with 13 measurements points and
200 ensemble members. From top to bottom, the ETKF, the EnSLKF, the
EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points.
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Figure E.10: Magnetic field magnitude [mT] with 22 measurements points
and 200 ensemble members. From top to bottom, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points.
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Figure E.11: Velocity magnitude [m/s] with 13 measurements points and 200
ensemble members. From top to bottom, the ETKF, the EnSLKF, the EnSRF,
and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data assimilation
sampling time k = 4Ts. Black triangles indicate the measurement points. The
empty figure space means that the algorithm has crashed, something that is
no desirable in a data assimilation system, as explained in the analysis of the
results.
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Figure E.12: Velocity magnitude residuals [m/s] with 22 measurements points
and 200 ensemble members. From top to bottom, the ETKF, the EnSLKF,
the EnSRF, and the EnKF. Simulation sampling time Ts = 1 × 10−4s. Data
assimilation sampling time k = 4Ts. Black triangles indicate the measurement
points.
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