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Abstract

Over the last decades, several powerful sound sythesis techniques have appeared
on the consumer market. This is due to both the increased computation power
of processors and the re-emergence of software-based synthesis. At the same
time, the need for simple user interfaces to control complex intrument models
has become apparent. In this thesis, the digital waveguide technique is used to
build models for wind and string instruments. These models allow the simple
use of natural haptic interfaces for the measurement of the input parameters,
without the need of complex parameter mapping.

This thesis consists of three parts. In the first part, a general introduction is
given on musical acoustics and the digital waveguide technique for the discrete-
time simulation of musical instruments. In the second part, the focus is on
different modeling techniques for wind instruments. Starting from an acous-
tic model, a new digital waveguide model class with formant filtering is con-
structed, and several multi-note structures are studied. An implementation
using the MPEG-4 SAOL is then discussed. The third part deals with the
string instruments. First, a single-string model and its associated parameter
estimation routines are described. A new theoretical framework for coupled
digital waveguide systems is designed and applied to the guitar. This results in
a fully coupled instrument model. Finally, a three-layer SAOL implementation
is presented, including a player model, a score interpreter, and a core signal
processing routine.
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Korte Inhoud

Tijdens de laatste decades zijn een aantal krachtige geluidssynthesetechnieken
op de consumentensmarkt verschenen. Dit is te danken aan enderzijds de sterk
toegenomen rekenkracht van processoren, en anderzijds aan de her-verschijning
van software-gebaseerde synthese. Over dezelfde periode is tevens de noodzaak
van een eenvoudige gebruiksinterface om een complex synthetisch instrument te
beturen duidelijk geworden. In deze thesis wordt de digitale golfgeleider tech-
niek gebruikt om modellen op te bouwen voor de blaas- en snaarinstrumenten.
Deze modellen laten toe om een natuurlijke haptische interface te gebruiken
voor de meting van de aansturingsparameters, zonder daarvoor een complexe
omrekening nodig te hebben.

Deze thesis bestaat uit drie delen. Het eerste deel omvat een inleiding tot de
muzikale akoestiek en de digitale golfgeleidermodellen gebruikt voor de discrete-
tijd simulaties van muziekinstrumenten. In het tweede deel ligt de aandacht op
de simulatie van de blaasinstrumenten. Vertrekkend van een volledig akoestisch
model wordt een nieuwe klasse digitaal golfgeleidermodellen met formant fil-
ter opgebouwd, en worden verschillende multinoot modellen bestudeerd. Een
implementatie van de modellen in de MPEG-SAOL taal wordt dan bespro-
ken. Het derde deel is gericht op de studie van de snaarinstrumenten. Eerst
worden een enkel-noot model en de bijhorende parameterschattingsroutines
beschreven, waarna een nieuw theoretisch raamwerk wordt afgeleid voor ge-
koppelde digitale golfgeleidermodellen. Dit leidt uiteindelijk tot een volledig
gekoppeld instrumentmodel. Ook dit model wordt gëımplementeerd, ditmaal
gebruik makend van een drielaags model dat bestaat uit het spelermodel, de
partituur-interpretatiemodule en het kern-signaalverwerkingsalgoritme.
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Glossary

Mathematical Notation

v vector v

v(z) vector v, function of the z–transform variable
M matrix M

M(z) matrix M, function of the z–transform variable
v, M frequency–domain equivalents of v and M

MT transpose of matrix M

M∗ complex conjugate of matrix M

MH = (M∗)T Hermitian transpose of matrix M

M−1 inverse of matrix M

M† pseudo–inverse of matrix M

detM determinant of matrix M

v(m) m–th element of vector v

[v(z)]m m–th element of vector function v(z)
M(m, n) element on the m–th row and n–th column of

matrix M

[M(z)]m,n element on the m–th row and n–th column of
matrix function M(z)

x ? y convolution of x[k] and y[k]
IN the set of natural numbers
IN0 = IN \{0} the set of natural numbers larger than 0
ZZ the set of integer numbers
ZZ0 = ZZ \{0} the set of integer numbers except 0
Q the set of rational numbers
IR the set of real numbers
IR0 = IR \{0} the set of real numbers except 0
IR+ the set of positive real numbers
C the set of complex numbers
<{x} real part of x ∈ C
={x} imaginary part of x ∈ C
x∗ complex conjugate of x
conj(·) complex conjugation

vii



viii Glossary

x̂ estimate of x
bxc largest integer smaller or equal to x ∈ IR
dxe smallest integer larger or equal to x ∈ IR
rnd(x) round x ∈ IR to the nearest integer
| · | absolute value
a ≈ b a is approximately equal to b

Fixed Symbols

c speed of sound
C cepstrum
cij coupling coefficients
clong longitudinal wave propagation speed
ctors torsional wave propagation speed
ctrans transversal wave propagation speed
Cp specific heat of air
ξ integer proportionality factor (cylinder, cone)
D fractional delay
δtherm thermal layer thickness
δvisc viscous layer thickness
E Young modulus
E spectral envelope
ek error sequence
η viscosity of air
f0 fundamental frequency
fs sampling frequency
G shear modulus
h(n) filter coefficients
H Hankel matrix
H filter transfer fucntion
I input
Ieq equivalent input
J Bessel function
k wave number
k spring constant
κ thermal conductivity
KT torsional stiffness factor
L length
Lf facing length of reed
Ls spatial sampling distance
m mass
M coupling matrix
µ damping
ω pulsation



ix

ωn resonant frequency (rad/s)
Ω continuous-time dynamical coupling matrix
p pressure function (time domain)
p+ right-traveling pressure function
p− left-traveling pressure function
p∆ pressure difference
poc oral cavity pressure
P pressure function (Laplace domain)
r radius, position along radial axis
R reflectance
ρ density
S Area
S spectrum
t time
T temperature
T transmittance
T0 string tension at rest
Ts sampling period
Tcone conical section transmission matrix
Tcyl cylindrical section transmission matrix
u volume flow
ur volume flow in reed channel
urd dynamic volume flow in reed channel
urs static volume flow in reed channel
vp wave velocity
x position along principal axis
y displacement
Y acoustic admittance
Z acoustic impedance
Zb bore acoustic impendance
Zin acoustic input impedance
ZL acoustic load impedance
Zr reed channel acoustic impendance

Acronyms and Abbreviations

A/D Analog–to–Digital converter
ASIC Application–Specific Integrated Circuit
cf. confer : compare with
CPU Central Processing Unit
D/A Digital–to–Analog converter
DFT Discrete Fourier Transform
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DSP Digital Signal Processor
EDR Energy Decay Relief
e.g. exempli gratia : for example
Eq. equation
FFT Fast Fourier Transform
FIR Finite Impulse Response filter
HSVD Hankel Singular Value Decomposition
IDFT Inverse Discrete Fourier Transform
i.e. id est : that is
IFFT Inverse Fast Fourier Transform
IIR Infinite Impulse Response filter
LMS Least Mean Squares
LS Least Squares
MFlops Millions of Floating Point Operations per Second
MIDI Musical Instrument Digital Interface
MIMO Multi–Input Multi–Output system
MPEG Motion Picture Experts Group
PC Personal Computer
SAOL Structured Audio Orchestra Language
SASL Structured Audio Score Language
sHSVD subband Hankel Singular Value Decomposition
SNR Signal–to–Noise Ratio
STFT Short-Time Fourier Transform
SVD Singular Value Decomposition
vs. versus
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Samenvatting

Geluidssynthese door

simulatie van fysische

modellen van

muziekinstrumenten

Hoofdstuk 1 : Inleiding

Geluidssynthese is historisch ontstaan met de wens om een willekeurig
geluid te genereren met behulp van wiskundige technieken. Tegenwoor-
dig wordt geluidssynthese alom gebruikt, wat wordt gestaafd door de
gezonde economische resultaten van de fabrikanten - bedenk dat in elke
PC een geluidskaart zit ! Geluidssynthese door simulatie van een fysisch
model van een muziekinstrument onderscheidt zich vooral door de na-
tuurlijkheid van de klank en de responsiviteit voor subtiele speelvariaties.

In 1948 werd in Parijs door Pierre Schaeffer de eerste elektronische
muziekstudio ingericht. Door de combinatie van platenspelers, tape-
recorders, en microfoons werd een nieuwe kunstvorm geschapen, de mu-
sique concrete. Dit betekende de start van de elektronische muziek. Dit
was een logisch gevolg van de onstopbare evolutie van muziekinstrumen-
ten, van mechanische instrumenten uit de Oudheid, over automatische
instrumenten tijdens de Industriële Revolutie, tot de elektronische in-
strumenten als de Theremin in het begin van de twintigste eeuw. In
1958 genereerde Max Matthews als eerste muziek door middel van een

xix
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computer.

Tijdens de halve eeuw durende ontwikkeling van de digitale geluidssyn-
these hebben de synthesetechnieken de bechikbare rekenkracht gevolgd.
In de beginjaren was enkel synthese door middel van de eenvoudigste
additieve synthese-algoritmes haalbaar. In diezelfde periode is ook de
scheiding ontstaan tussen geluidssynthese in reële tijd, gebruik makend
van specifieke apparatuur, en het gebruik van programmeertalen gericht
op geluidssynthese. Door de enorme toename in beschikbare rekenkracht
zijn deze twee wegen weer stilaan aan het convergeren.

Hoewel de studie van de werking van muziekinstrumenten al millenia
oud is, is geluidssynthese door simulatie van een fysisch model van
een muziekinstrument is een recente techniek. Deze synthesetechniek
tracht de klank van een echt instrument na te bootsen door de volle-
dige mechanisch-akoestische werking ervan te simuleren. Fysische mo-
dellering is de generische term voor een scala aan verschillende model-
leringstechnieken, die gaan van uiterst gedetailleerde eindige elementen
modellen, tot een ruwe benadering van de dominante trillingsmodi. De
fysische modellen die gehanteerd worden in dit proefschrift vinden hun
oorsprong in de algemene golfvergelijking die de voortplanting van tril-
lingen in het instrument beschrijft.

Geluidssynthese kent heel wat toepassingen. De meest voor de hand
liggende toepassing is het gebruik van geluidssynthese als elektronisch
of virtueel instrument. Dit laat toe een partituur al dan niet met tus-
senkomst van een menselijke speler hoorbaar te maken, met de keuze
uit een oneindig klankpallet. In sommige gevallen is het gebruik van
geluidssynthese de enige mogelijkheid: de partituur van een hedendaag-
se compositie kan te complex zijn om nog door een menselijke speler
gelezen te kunnen worden, de klankvereisten vallen buiten de menselijk
voorstellingsvermogen, of de uitvoeringssnelheid overstijgt de menselijke
mogelijkheden (transhumane compositie). Een tweede toepassingsgebied
is het gebruik van geluidssynthese voor parametrische geluidscompressie.
Door de klank die door een instrument geproduceerd wordt op symbo-
lische wijze te coderen, kan een extreem hoge compressiegraad gehaald
worden. Een natuurgetrouw fysisch model van het instrument in combi-
natie met een met expressieve meta-informatie uitgebreide partituur, is
een zeer compacte beschrijving. Om een voorbeeld te geven: de mono-
versie van ? CD track 30 vereist in ongecomprimeerde vorm 3100kB
aan gegevens, de MP3-gecodeerde versie vereist 560kB, en het MPEG-4
model dat een identiek geluid produceert is slechts 7kB groot, wat neer-
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komt op een compressieverhouding van 1:5.5 voor MP3 en maar liefst
1:437 voor het fysisch model.

In dit proefschrift wordt een integrale modelleringsmethode aangeboden,
van fysico-akoestische beschrijving tot implementatie, voor de blaasin-
strumenten en de snaarinstrumenten. De nadruk ligt niet op de akoes-
tische juistheid van de modellen, maar op hun praktische bruikbaarheid
en eenvoudige calibreerbaarheid. Dit laatste moet mogelijk zijn zonder
gespecialiseerde apparatuur.

Dit proefschrift bestaat uit drie delen. In het eerste deel worden de
algemene akoestische en wiskundige concepten uitgewerkt, nodig voor
de modellering van de blaas- en snaarinstrumenten. Het tweede deel
behandelt de blaasinstrumenten, met als typisch voorbeeld de moder-
ne klarinet, en in het derde deel worden modellen opgebouwd voor de
snaarinstrumenten, met de nadruk op de klassieke akoestische gitaar.
De belangrijkste bijdragen van dit proefschrift zijn terug te vinden in
het tweede en het derde deel.

Deel I : Algemene akoestiek

Het eerste deel vorm een algemene inleiding tot de problemen die behan-
deld worden in het proefschrift. In de eerste twee hoofdstukken wordt
een qualitatieve en muzikale beschrijving gegeven van de struktuur en
werking van enkele muziekinstrumenten. De daaropvolgende twee hoofd-
stukken behandelen de akoestische eigenschappen in continue tijd en
discrete tijd. De hier afgeleide eigenschappen dienen als basis voor de
hele verdere modellering.

Hoofdstuk 2 : Blaasinstrumenten

Hoofdstuk 2 is een algemene, qualitatieve inleiding tot de akoestiek van
blaasinstrumenten. Op enkele uitzonderingen na, hebben de blaasinstru-
menten een eeuwenlange ontwikkeling genoten. Ze zijn geëvolueerd tot
een relatief klein aantal moderne instrumenten, met uitgekiende mecha-
nische strukturen die stemming en speelbaarheid optimaliseren. Blaasin-
strumenten produceren een toon zolang de speler energie blijft toevoeren
aan het systeem. Deze oscillatie wordt meestal opgewekt in een luchtko-
lom, een resonante struktuur bestaande uit cylindrische en kegelvormige
secties. Het basisprincipe is hetzelfde als bij een elektronische oscillator:
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een signaal wordt gevoed aan een resonerende struktuur, en terugge-
koppeld naar een saturerende versterker. De blaasinstrumenten kunnen
opgedeeld worden volgens het type mechanische versterker. In het geval
van de klarinet en de saxofoon is dit een mondstuk met een enkel riet,
bij de hobo en de fagot, een dubbel riet, bij de koperblazers zijn het de
lippen van de speler, terwijl bij fluiten en sommige orgelpijpen een snelle
luchtstroom gericht op een scheidend oppervlak hiervoor dienst doet.

Het typevoorbeeld dat in dit proefschrift wordt gehanteerd, is de mo-
derne klarinet. Deze bestaat uit een cilindrische buis met eenvoudige
toongaten, een kleine klankbeker, en een mondstuk met enkel riet. De
saxofoon is een heel gelijkaardig instrument, maar gebruikt een kegel-
vormige buis als resonator. De klarinet, dwarsfluit, hobo en sopraan-
saxofoon verschillen vaak in slechts één enkel opzicht: ze hebben een
andere basisvorm als resonator (cilinder of kegel) of gebruiken een an-
der excitatiemechnanisme (enkel riet, dubbel riet, of luchtstroom). De
overeenkomst is zodanig dat een niet-getraind oor slechts moeilijk een
onderscheid kan horen tussen bijvoorbeeld een hobo en een sopraan-
saxofoon. De overeenkomst in fysische struktuur laat toe om de hele
familie van de blaasinstrumenten te modelleren met een beperkt aantal
elementaire modellen.

Hoofdstuk 3 : Snaarinstrumenten

In dit hoofdstuk worden de eigenschappen van de snaarinstrumenten in
het algemeen besproken. We vergelijken hierbij de struktuur en werking
van de akoestische en elektrische gitaren, de viool en de piano. Het
algemene principe waarop alle snaarinstrumenten steunen, is de akoes-
tische of elektrische versterking van de trilling van een snaar. De snaren
worden getokkeld (zoals bij de gitaar, de harp of het clavecimbel), aan-
geslagen (zoals bij de piano) of gestreken (vioolfamilie). De snaren zijn
opgehangen tussen twee punten, waarbij één punt niet als een volkomen
vaste ophanging beschouwd mag worden. Op dit punt is de snaar in
contact met een klankbord (rechtsreeks of via een kam), waarnaar een
deel van de trillingsenergie wordt overgedragen. Dit klankbord is een
deel van een akoestische versterker, die de mechanische trillingen omzet
in kleine luchtdrukverschillen, en tevens de uitstraling ervan bepaalt.
In het geval van een elektrische gitaar wordt de trilling van de snaar
op elektromagnetische wijze gemeten, waarna het signaal elektronisch
wordt versterkt en gevoed aan een luidspreker. Dit basismechanisme
komt bij alle snaarinstrumenten voor, wat toelaat om een gemeenschap-
pelijk model op te stellen dat mits kleine aanpassingen bruikbaar is voor
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alle snaarinstrumenten.

Het typevoorbeeld dat behandeld wordt is de klassieke gitaar. Dit in-
strument, een afstammeling van de zestiende-eeuwse spaanse vihuela,
kreeg in de negentiende eeuw zijn huidige vorm. De moderne gitaar
heeft zes nylon snaren die via een eenvoudige kam verbonden zijn met
het bovenblad van de klankkast. Het bovenblad is inwendig versterkt
door een symmetrisch of asymmetrisch patroon van houten ribben, die
een belangrijke invloed hebben op het uiteindelijke timbre van het in-
strument. De speler kan de lengte van de snaren bepalen door deze
tegen de toets te drukken. In tegenstelling tot bijvoorbeeld de viool,
heeft de gitaar metalen frets, wat het aantal verschillende snaarlengtes
beperkt. Zowat alle typische eigenschappen van de snaarinstrumenten,
zoals de aanwezigheid van twee polarizatierichtingen voor de trillingen,
en snaarkoppeling, komen bij de klassieke gitaar voor, met het voor-
deel dat de fysische omvang van het instrument beperkt is (laag aantal
snaren, eenvoudige kam etc.).

Hoofdstuk 4 : Akoestiek

Dit hoofdstuk geeft een inleiding tot de muzikale akoestiek. Vertrekkend
van de differentiaalvergelijkingen die de golfvoortplanting door lucht en
in snaren beschrijven in paragraaf 4.2, worden de algemene eigenschap-
pen van de elementaire bouwblokken van muziekinstrumenten afgeleid
in paragraaf 4.3. De combinatie van de verschilllende elementen tot
een akoestisch systeem wordt dan besproken in paragraaf 4.4.

Mechanische, akoestische, en elektrische trillingen zijn de geluidsbron-
nen bij de muziekinstrumenten. De menselijke perceptie van klank is een
gevolg van de versterking van inkomende luchtdrukverschillen door het
trommelvlies en het middenoor, en de omzetting ervan in zenuwpulsen
door de sensorcellen in de cochlea. De muzikale akoestiek is het onder-
deel uit de fysische akoestiek, dat tracht alle mechanismen die hoorbare
geluidsgolven produceren, te beschrijven. Dit omvat de generatie, pro-
pagatie, en interactie van geluidsgolven in verschillende media.

De basiswet van de muzikale akoestiek is de drie-dimensionale golfver-
gelijking (4.1). Het oplossen van deze vergelijking met de juiste rand-
voorwaardes laat toe om de akoestische eigenschappen te bepalen van
zowat alle elementen die gebruikt worden bij muziekinstrumenten. Zowel
de vlakke en sferische golven in lucht (paragraaf 4.2.1), als de trans-
versale, longitudinale en torsionele golven in snaren (paragraaf 4.2.2)
zijn oplossingen van deze vergelijking. Door het opleggen van randvoor-
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waarden zijn de eigenschappen van eenvoudige akoestische strukturen
te bepalen (paragraaf 4.3). Dit zijn in het bijzonder de cilindrische en
konische klankbuis voor de blaasinstrumenten, en de Helmholtz resona-
tor voor de snaarinstrumenten. De verschillende elementaire modellen
kunnen door middel van de in paragraaf 4.4 beschreven methodes,
gecombineerd tot volledige instrumenten.

Hoofdstuk 5 : Digitale golfgeleidermodellen

In dit hoofdstuk worden de theoretische akoestische eigenschappen uit
hoofdstuk 4 gediscretiseerd in ruimte en tijd. Dit leidt tot de digitale
golfgeleidermodellen, afgeleid in paragraaf 5.1. Digitale golfgelelei-
dermodellen zijn afgeleid uit de algemene oplossing van de golfverge-
lijkingen, voorgesteld door links- en rechtslopende golven, en vormen
uiterst efficiënte strukturen voor geluidssynthese in reële tijd. Een inte-
ressant aspect hierbij is dat een rechtstreekse omrekening van continue
tijd naar discrete tijd leidt tot vertragingslijnen die een niet-geheel aan-
tal elementen bevatten. Om dit te kunnen implementeren is een inter-
pollatiemethode noodzakelijk. Naast de ideal laagdoorlaat interpollatie,
het gebruik van een allpass filter, en de bepaling van de interpollerende
veelterm door Lagrange interpollatie, worden in paragraaf 5.1.3 ook
de kubische Hermite (Catmull-Rom) en B-spline interpollatie besproken.
Tabel 5.1 geeft een overzicht van welke methode het meest geschikt is
voor de simulatie van een bepaalde instrumentfamilie. In paragraaf 5.2

worden de discrete beschrijvingen van de akoestische elementen uitge-
werkt. In paragraaf 5.3 worden de methodes beschreven om de discrete
elementen samen te voegen tot complete discrete systemen.

Deel II : Blaasinstrumenten

In het tweede deel van het proefschrift worden de modellen voor de
blaasinstrumenten uitgewerkt. Eerst wordt een volledige akoestische
beschrijving bepaald, die dan wordt vereenvoudigd door gebruik te ma-
ken van het zg. formant filter. Zo worden sets van modellen bekomen
die aaneengebonden worden in de multinoot modellen.

Hoofdstuk 6 : Volledig akoestisch model

In hoofdstuk 6 bouwen we een volledig akoestisch model op voor een
enkel-riet blaasinstrument. Het instrument bestaat uit twee delen: een
lineaire resonator, en het niet-lineaire excitatiemechanisme. In para-
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graaf 6.1 wordt de resonator van de klarinet en de saxofoon bespro-
ken, met verwaarlozing van de toongaten. De resonator bestaat uit een
cilindrische of konische klankbuis, en een kleine klankbeker. Gebruik
makend van de discrete elementaire modellen uit hoofdstuk 5 is de vol-
ledige akoestische beschrijving eenvoudig te bepalen. In paragraaf 6.2

bespreken we de trilling van het riet. Hier komen twee aspecten sa-
men: enerzijds is er de beweging en vervorming van het riet door het
drukverschil tussen de mondholte van de speler en de luchtdruk aan de
binnenzijde van het mondstuk, en anderzijds is er de luchtstroom door
de rietopening.

De combinatie van het enkel-riet en het mondstuk gedraagt zich als een
drukgecontroleerde klep, die energie toelaat in het instrument om de
oscillatie aan de gang te houden. We bespreken verschillende modellen
voor de beweging van het riet. Het eenvoudigste model is lineair en
geheugenloos, waarbij de verplaatsing van het riet berekend kan worden
door middel van de wet van Hooke. Indien de massa van het riet in
rekening wordt gebracht, bekomen we een tweede-orde lineair systeem
beschreven door vergelijking (6.10). Hogere-orde modellen beschouwen
een riet als een dunne ingeklemde balk. De oplossingen van de differen-
tiaalvergelijkingen die dit systeem voorstellen zijn de trillingsmodi van
het riet. Het blijkt dat voor alle praktische doeleinden enkel de eerste en
eventueel de tweede trillingsmode belangrijk zijn, aangezien de hogere
modi buiten het bereik van het menselijk gehoor vallen. Als kantte-
kening willen we hierbij opmerken dat de vorm die het riet aanneemt
voor een gegeven drukverschil zeer goed overeenkomt met de (opgeme-
ten) vorm van een mondstuk, wat erop wijst dat mondstukken tot deze
theoretisch optimale vorm zijn geëvolueerd.

Hoofdstuk 7 : Formant gefilterd model

De modellen uit hoofdstuk 6 zijn opgebouwd vanuit akoestisch oogpunt,
gebruik makend van de fysische eigenschappen van de instrumenten. Dit
leidt tot kwalitatief hoogstaande modellen die het gedrag van een instru-
ment goed kunnen voorspellen, maar die ook moeilijk te calibreren zijn,
net door het hoge aantal parameters en de totale complexiteit van deze
modellen. In dit hoofdstuk wordt gezocht naar vereenvoudigde model-
len die toch een realistisch geluid produceren. Door twee verschillende
synthesetechnieken te combineren, bekomen we een nieuwe, efficiënte en
calibreerbare klasse van fysische modellen.

In paragraaf 7.2 beschrijven we een nieuwe combinatie van bron-filter
synthese en de digitale golfgeleidermodellen. Blaasinstrumenten hebben



xxvi Samenvatting

een harmonisch rijk spectrum, dat karakteristieke bulten of formanten
vertoont. Een formant is een bandgelimiteerde concentratie van ener-
gie in het spectrum van het signaal. De kern van de bijdrage van dit
proefschrift voor de synthese van de blaasinstrumenten ligt in de uitbui-
ting van deze eigenschap om een synthetisch digital golfgeleidermodel
van een instrument te laten klinken als een opname van het echte in-
strument. Aan de basis hiervan ligt de observatie dat de trillingsmodi
van een instrument bepaald worden door de lineair te modelleren re-
sonator. Het niet-lineaire excitatiemechanisme bepaalt welke modes in
welke mate geëxciteerd worden. Een fortissimo bespeeld instrument kan
dus beschouwd worden als een volledig geëxciteerd systeem. Een instru-
ment zachter bespelen betekent dus dat er minder energie naar bepaalde
trillingsmodes gaat. Het formant gefilterde golfgeleidermodel beschouwt
het model geëxciteerd met maximale ingangswaarden als een complexe
oscillator, en tracht de spectra van synthese en opname overeen te doen
komen dankzij een dynamisch equalizatiefilter. Het hele model is voor-
gesteld in figuur 7.8.

Het digitaal golfgeleidermodel met formant filter bestaat uit drie grote
delen: de lineaire resonator, het niet-lineaire excitatiemechanisme, en
het dynamische formant filter. Het lineaire deel van het model is een
voorstelling van de klankbuis, de toongaten, en de klankbeker van het
instrument. Aangezien dit model voor slechts een enkele noot geldig
is, kunnen alle filteroperaties samengevoegd worden in één reflectiefil-
ter. Het niet-lineaire excitatiemechanisme kan op verschillende manie-
ren gëımplementeerd worden: rechtstreeks als een niet-lineaire functie,
als een drukafhankelijke reflectiecoëfficiënt, of door de reflectie te be-
naderen met een polynomiale functie, of als een combinatie van deze
methodes. Het laatste onderdeel is het formant filter. Het formant filter
wordt bepaald door vergelijking (7.23) en wordt berekend op basis van
de spectrale enveloppes van simulatie en opname [74]. In paragraaf

7.2.3 worden verschillende beschrijvingen voor de spectrale enveloppe
onderzocht. De eenvoudigste beschrijving is een tweede-orde resonante
transfertfunctie [68]. Voor een zacht bespeeld instrument zit het grootste
deel van de energie in een smalle frequentieband rond de fundamente-
le frequentie van de gespeelde noot. Bij een luidere toon verschijnen
hogere harmonischen. De tweede-orde beschrijving verschaft veel qua-
litatieve informatie over het gedrag van het instrument, maar is niet
krachtig genoeg om het volledige timbre van het instrument te vatten.
Hogere-orde modellen kunnen bepaald worden door Lineair Predictie-
ve Codering (LPC), cepstrum-gebaseerde methodes, of Wiener filters te
gebruiken. Figuur 7.13 vat de hele procedure samen om een formant
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gefilterd digitaal golfgeleidermodel op te bouwen voor een willekeurig
blaasinstrument. Dat een natuurgetrouwe synthese mogelijk is, wordt
gestaafd door zowel de objectieve meting van de afwijking van de synthe-
tische toon ten opzichte van een opname, als de subjectieve beoordeling.
Op de CD die bij het proefschrift hoort, staan enkele geluidsfragmenten
die de hier besproken methodes demonstreren. Een volledige omschrij-
ving van de geluidsfragmenten is in Appendix A terug te vinden.

Hoofdstuk 8 : Multinoot modellen

In hoofdstuk 8 worden de eigenschappen en de verschillende implementa-
ties van toongaten besproken. De resonator van vele blaasinstrumenten
kan door de speler gewijzigd worden door het openen of sluiten van ope-
ningen of toongaten, of door het toevoegen van extra buislengte door het
indrukken van ventielen. Tijdens de overgang tussen de open en gesloten
toestand van een toongat, gaat het instrument door een reeks intermedi-
aire configuraties. Deze transiënten moeten toegevoegd worden aan de
formant gefilterde digitale golfgeleidermodellen om een volledig instru-
mentmodel te verkrijgen [67].

In paragraaf 8.1.1 geven we de akoestische beschrijving van één toon-
gat en van een sequentie van toongaten. De akoestische modellen zijn
niet erg geschikt voor toepassingen in reële tijd, maar geven wel aanwij-
zingen over mogelijke benaderingen. Daarom werden zes verschillende
modellen opgesteld en vergeleken. Eerst wordt een benaderend akoes-
tisch model met een beperkt aantal toongaten opgebouwd dat dient als
referentie. Het wordt dan vereenvoudigd tot een model met slechts één
toongat, en verschillende seriële en parallelle combinaties worden afge-
leid. Figuren 8.5 en 8.6 tonen de verschillende modelstrukturen. De
twee modellen met de beste kwaliteit/complexiteitsverhouding zijn een
seriëel model met één toongat, en een parallel model met gemeenschap-
pelijke niet-lineairiteit. In paragraaf 8.2 worden deze vergeleken. Het
parallelle model kan verkregen worden uit het seriële model door lineaire
superpositie van trillingsmodes in de klankbuis te veronderstellen tijdens
de transiënt van de ene noot naar de andere. Er wordt aangetoond dat
mits een goede keuze van de modelparameters, een parallel model een
bijzonder goede benadering vorm voor een seriëel model, doch met een
significant gereduceerde rekencomplexiteit. ? CD Tracks 18-19 wer-
den berekend door middel van de hier beschreven modellen, en tonen
aan dat er zo goed als geen hoorbaar verschil is tussen een seriëel en een
parallel model.

Hoofdstuk 9 : Implementatie
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Het laatste hoofdstuk uit het tweede deel van het proefschrift behandelt
de implementatie van de formant gefilterde digitale golfgeleidermodellen.
Er werd geopteerd voor de MPEG-4 Structured Audio programmeertaal
om de fysische modellen te implementeren.

MPEG-4 is een initiatief van de MPEG standardisatiecommissie, en be-
oogt de effeciente codering van multimedia objecten. MPEG-4 Audio
is het onderdeel van de standaard dat is toegespitst op de codering van
spraak, transformatie-gecodeerd geluid, en geluidssynthese. Voor dit
laatste werd een specifieke programmeertaal beschreven die bestaat uit
een reeks primitieve signaalverwerkingsroutines en een syntax die toe-
laat om een virtueel orkest op te bouwen. De implementatie van de
formant gefilterde modellen is relatief eenvoudig indien rekening wordt
gehouden met de beperkingen van deze taal.

In dit hoofdstuk wordt ook de vergelijking gemaakt tussen de formant
gefilterde modellen en andere, bestaande modellen. Er wordt vergeleken
met een ander fysisch model, een spectraal model, wavetable synthese,
en twee abstracte wiskundige technieken.

Deel III : Snaarinstrumenten

Het derde deel van het proefschrift behandelt de snaarinstrumenten,
met als typevoorbeeld de akoestische gitaar. Na de beschrijving van
de trilling van een enkele snaar, bouwen we een algemeen model voor
meerdere gekoppelde snaren. Samen met de klankkastmodellen vormen
deze het uiteindelijke gitaarmodel. De implementatie vereist daarbij nog
een eenvoudig spelermodel.

Hoofdstuk 10 : Enkel-snaar modellen

Ondanks de schijnbaar eenvoudige struktuur van de akoestische gitaar,
vertoont dit instrument een redelijk complex gedrag. Om het gedrag
van het volledige instrument te modelleren is eerst een betere kennis
nodig van de eigenschappen van een hypothetische gitaar met slechts
één snaar. In hoofdstuk 10 worden algemene methodes afgeleid die als
basis dienen voor de beschrijving van de volledige instrumenten.

Paragraaf 10.1 beschrijft een eenvoudig gitaarmodel dat eenvoudig
verfijnd kan worden tot een volledig gitaarmodel. Het eenvoudige model
is gebaseerd op de mechanische werking van de gitaar en bestaat uit drie
grote delen: de snaarexcitatie (de invoer van de speler in het model), de



xxix

snaren zelf, en de klankkast. Paragraaf 10.2 behandelt de snaarexcita-
tie. Zowel de plaats als de aard van de tokkel hebben een grote invloed
op de klank die het model produceert. In paragraaf 10.3 worden de
enkel-snaar modellen uitgewerkt. De akoestische eigenschappen van een
ideal snaar werden reeds besproken in hoofdstuk 4. Voor de akoestische
gitaar zijn vooral de transversale golven van belang. Deze kunnen zich
in twee ruimtelijke dimensies (polarizaties) voortplanten: evenwijdig of
loodrecht op het bovenblad van de klankkast. Door de lichte anisotro-
pie van de ophanging verschillen de eigenschappen van de vertikale en
horizontale polarizatie. In een eerste faze wordt slechts één enkele po-
larizatie beschouwd. De evolutie van de transversale golven in tijd en
ruimte kan bepaald worden aan de hand van de algemene golfvergelij-
king, uitgebreid met hogere-orde termen om de invloed van de eindige
snaardikte en de stijfheid van de gebruikte materialen in rekening te
brengen. Dit leidt tot de klankverschillen tussen nylon, bronzen, en sta-
len snaren. De algemene oplossing van de uitgebreide golfvergelijking
kan gediscretiseerd worden, gebruik makend van digitale golfgeleiders.
Figuren 10.8 en 10.9 tonen twee digitale golgeleidermodellen voor een
snaar met één polarizatie, afhankelijk van de gekozen golfveranderlijke
(verplaatsinggolven of krachtgolven). Dit snaarmodel kan vereenvoudigd
worden door de twee vertragingslijnen samen te voegen tot een enkele
lijn. Verdere verfijning van dit lineaire model is mogelijk door verschil-
lende niet-lineaire effecten toe te voegen. Het belangrijkste effect is
de spannings-gemoduleerde golfvoortplantingssnelheid voor transversa-
le golven. Dit is een gevolg van de uitrekking van de snaar door het
tokkelen zelf, en leidt tot een lichte wijziging van de snaarspanning en
dus de golfvoortplantingssnelheid. Het is afhankelijk van het materiaal
waaruit de snaar bestaat, en is meer uitgesproken voor stalen snaren.
Een tweede effect is de beperkte bewegingsruimte van de snaren. Bij te
grote uitwijking slaan de snaren tegen de frets, wat tot gekletter leidt.
Het enkel-snaar, enkel-polarizatie model is de basis waarop alle verdere
modellen worden gebouwd.

In paragraaf 10.4 wordt de invloed van het bestaan van de twee polari-
zaties besproken. Hoewel de parameters voor de twee polarizatie slechts
weinig verschillen, is de invloed ervan duidelijk hoorbaar. De golven
die zich voortplanten in de twee polarizaties zien een licht verschillende
snaarlengte, wat leidt tot twee fundamentele frequentie met een paar
tiendes van een Hz verschil. Onafhankelijk van elkaar is dit onhoorbaar,
maar wanneer beide polarizaties tegelijk worden geëxciteerd, wat in de
praktijk altijd het geval is, wordt het frequentieverschil hoorbaar als zwe-
vingen. De afwezigheid van zwevingen in de enkel-polarizatie modellen
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geeft deze een onnatuurlijk karakter. De twee polarizaties kunnen als
onafhankelijke en licht verschillende snaren gemodelleerd worden.

Om een natuurgerouwe synthese te verkrijgen zijn betrouwbare schat-
tingen van de modelparameter nodig. Hiervoor worden in paragraaf

10.5 paramerestimatieroutines uitgewerkt [71]. De parameters kunnen
zowel in het tijdsdomain als in het frequentiedomein bepaald worden.
In het tijdsdomein verschaft de amplitude-enveloppe informatie over de
demping van het signaal. In het frequentiedomain kan een schatting
bekomen worden van de fundamentele frequentie en de maat van in-
harmoniciteit. De meest doeltreffende techniek die werd ontwikkeld is
subband-gebaseerd. Het signaal wordt eerst door middel van de Short
Time Fourier Transform naar het frequentiedomain getransformeerd.
Uit de berekende tijd-frequentieweergave kan een subband geselecteerd
worden, waaruit dan weer door toepassing van de Hankel singuliere waar-
den ontbinding een nauwkeurige en betrouwbare schatting van de fre-
quenties en demping van de twee polarizaties gevonden wordt. De pro-
cedure is terug te vinden in paragraaf 10.5.4. Simulatie van het model
waarvan de parameters bepaald werden met deze methodes, produceert
een heel natuurlijke klank.

Hoofdstuk 11 : Meerdere-snaar modellen

Eén belangrijk aspect dat de natuurlijkheid van de klank bepaalt, is het
meetrillen van de andere snaren als een snaar wordt aangeslagen. Dit
koppelingsfenomeen leidt tot zwevingen en gewijzigde dempingskarak-
teristieken. In dit proefschrift werd een algemeen theoretisch raamwerk
opgebouwd om verschillende digitale golfgeleidermodellen [73].

Paragraaf 11.1 behandelt de wiskundige achtergrond voor de beschrij-
ving van gekoppelde oscillatoren en gekoppelde digitale golfgeleidersys-
temen. Snaarkoppeling is een fysisch verschijnsel dat ontstaat wanneer
er een energie-overdracht mogelijk is tussen twee of meer verbonden sna-
ren. Indien die overdracht significant is, kunnen de twee snaren meer als
onafhankelijk beschouwd worden, maar moeten als één groot systeem
beschreven worden. Om dit fenomeen te begrijpen, is het handig om
de trilling van een snaar te ontbinden als een reeks oscillatoren van ver-
schillende frequentie, en de koppeling te bepalen tussen de oscillatoren.
In paragraaf 11.1.1 wordt dit wiskundig beschreven voor continue tijd.
Deze beschrijving laat toe om de trillingsmodi en dempingen te bereke-
nen, en om de stabiliteit van het globale systeem te beoordelen. Door
enkele transformaties toe te passen op de systeembeschrijving van de
digitale golfgeleidermodellen, vinden we een eenduidig verband tussen
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de systemen in discrete tijd en continue tijd.

Dankzij deze theoretische beschrijving kunnen nu in paragraaf 11.2

verschillende digitale golfgeleidermodellen met gekoppelde snaren geana-
lyseerd worden. Voor het triviale geval waarbij er geen snaarkoppeling
is, leidt dit tot dezelfde vaststellingen als vermeld in het vorige hoofd-
stuk. Interessant wordt het wanneer de twee polarizaties van dezelfde
snaar worden gekoppeld. Voor een gitaar met zes snaren, bekomen we
zes onafhankelijke systemen, elk bestaande uit twee gekoppelde snaar-
modellen. Van dit systeem kunnen de trillingsmodi berekend worden,
evenals de maximale waarde van de koppelingscoëfficiënten. Twee an-
dere in de literatuur verschenen modellen werden vergeleken: het kam-
gekoppeld model, waarbij de snaarkoppeling wordt bepaald door de ad-
mittantie van de kam, en een vereenvoudigd gekoppeld systeem. Beide
zijn slechts benaderingen van de werkelijke situatie. Akoestisch bekeken
valt een gitaar uiteen in zes zwak gedempte resonatoren (de snaren) en
één vrij sterk gedempte resonator (de klankkast), waarbij alle resona-
toren verbonden zijn via een eenvoudige kam. Het equivalent fysisch
model is voorgesteld in figuur 11.8. Dit model heeft als groot voordeel
dat de kam onafhankelijk van de klankkast gewijzigd kan worden, en
waarbij de koppelingsmatrix enkel de kam voorstelt. In het specifieke
geval van de akoestische gitaar heeft de kam een eenvoudige en vrij stijve
struktuur, waardoor de koppelingscoëfficiënten scalaire waarden worden.
Voor de akoestische gitaar bevat de koppelingsmatrix in principe 169
coëfficiënten, van elke polarizatie en de klankkast naar elke polarizatie.
Dit zijn heel wat parameters, wat de calibratie bemoeilijkt. Om het
aantal parameters te reduceren is een beter begrip nodig van de koppe-
lingsmechanismen tussen dezelfde polarizaties van de een andere snaren,
tussen de twee polarizaties van dezelfde snaar, tussen de ene polarizatie
van een snaar en de andere polarizatie van de andere snaren, en tussen
klankkast en snaren [69]. Hiervoor werd een eindige-elementen model
van de kam opgesteld, beschreven in paragraaf 11.3. Het blijkt dat er
een groot verschil is tussen de verschillende soorten koppeling, en dat
vele ervan zeer zwak zijn, wat toelaat om een heel aantal coefficienten te
verwaarlozen. Op basis van het eindige-elementen model werden heuris-
tische regels afgeleid die een geldige set koppelingscoefficienten oplevert
op basis van een beperkt aantal metingen.

Het resultaat van de verschillende stappen kan vergeleken worden op de
bijhorende audio-CD. ? CD Track 20 is de referentie-opname van een
Yamaha C70 klassieke gitaar. ? CD Tracks 21-24 zijn de verschil-
lende deelstappen: enkele-polarizatie, enkele-snaar, dubbele polarizatie,
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enkele snaar; meerdere snaren zonder klankkast; en meerdere snaren
met klankkast. ? CD Track 25 is dan de uiteindelijk beste benade-
ring, berekend na calibratie van het volledig gekoppeld model met de
heuristische regels.

Hoofdstuk 12 : Klankkastmodellen

De klankkast van de gitaar is een mechanische versterker, die ervoor
zorgt dat de trilling van de snaren wordt overgedragen naar de om-
ringende lucht. De klankkast moet ervoor zorgen dat er enerzijds nog
voldoende energie in de snaren blijft om een langdurige klank te be-
komen, en dat er anderzijds ook voldoende wordt uitgestraald om een
hoorbare toon te krijgen. De vorm en de gebruikte materialen hebben
een grote invloed op het timbre en het ruimtelijk uitstralingspatroon van
de klankkast. De klankkast van een akoestische gitaar is een complexe
struktuur, bestaande uit verschillen dunne, min of meer flexibele platen,
verstevigingsribben en diverse hout- en lijmverbindingen.

In paragraaf 12.1 bespreken we de akoestische eigenschappen van de
klankkast. De laagste trillingsmode van praktisch belang is de Helm-
holtz resonantiefrequentie van de ingesloten lucht. Hogere modi zijn
toe te schrijven aan het bovenblad, de koppeling tussen ingesloten lucht
en het bovenblad, en de trilling van de andere onderdelen. In eerste
benadering kan een klankkast als een lineair systeem beschouwd wor-
den. Paragraaf 12.2.1 behandelt verschillende lineaire modellen. De
eenvoudigste techniek maakt gebruik van een FIR filter, dat noodzake-
lijk duizenden taps groot is. Om de lengte van het filter te verkleinen,
kunnen de dominante trilligsmodes gemodelleerd worden met lage-orde
IIR filters, en de resterende modes door een korter FIR filter. Dit kan
doorgetrokken worden tot alle trillingsmodi door gescheiden tweede-orde
IIR filters worden voorgesteld. Deze kunnen parallel werken, of tot de
transversale Kautz-struktuur getransformeerd worden.

De klankkast van een gitaar is slechts lineair voor kleine uitwijkingen.
Voor grotere amplitudes kan er door de niet-ideale eigenschappen van de
gebruikte houtsoort en de struktuur van de verstevigingsribben, verza-
diging optreden van de klankkast als mechanische versterker. Dit effect
was kwalitatief reeds gekend bij de gitaarbouwers en bepaalt de hout-
keuze en de muziekstijl waarvoor een bepaalde gitaar geschikt is. We
poneren dat de Wiener-Hammerstein struktuur geschikt is om de klank-
kast te modelleren [76]. Het Wiener-Hammerstein model bestaat uit een
lineaire gedeelte dat de trillingsmodi van de klankkast omvat, en een sta-
tische niet-lineariteit die de saturatie van de bovenplaat voorstelt. De
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traditionele meetmethodes voor niet-lineaire systemen vereisen het aan-
leggen van specifieke signalen, wat moeilijk haalbaar is bij de meting
van een gitaar. Daarom werd een eenvoudige, benaderende methode
uitgewerkt waarbij een reeks impulsen van stijgende amplitude wordt
opgenomen.

Hoofdstuk 13 : Validatie

In dit hoofdstuk wordt de validatie van de besproken modelleringstech-
nieken en de experimentele bepaling van de modelparameters besproken.
Hiervoor werd een meetopstelling opgebouwd rond een Taylor 514CE
akoestische gitaar met bronzen snaren. Deze gitaar is uitgerust met een
piëzoëlektrische sensor onder de kam, en een elektret microfoon inge-
bouwd in de klankkast. Daarbij werd nog een zeskanaals magnetische
pickup met bijhorende versterker ontworpen om de trilling van de indi-
viduele snaren te kunnen registreren [72]. Deze meetopstelling liet toe
om de koppeling van een snaar naar een andere in detail te bestuderen.
Toepassing van de parameterestimatie algoritmes uit hoofdstuk 10 en
de heuristische regels afgeleid in hoofdstuk 11 zijn voldoende om een
realistisch model af te leiden.

Hoofdstuk 14 : Implementatie

In dit laatste hoofdstuk wordt de implementatie van het volledig ge-
koppeld gitaarmodel. De MPEG-4 SAOL implementatie bestaat uit
drie grote delen: een partituur-vertaler, die de inkomende MIDI no-
tatie vertaalt naar meer gedetailleerde SASL commando’s, de eindige-
toestandsmachine, die de SASL-commando’s omzet in reeksen fysische
parameters, en de signaalverwerkingsmodule, die zorgt voor de eigenlijke
simulatie [75].

Door de polyfone aard van de gitaar is er een vertaling nodig van parti-
tuur tot de fysische aansturingsparameters van het model. Eén van de
problemen die hierbij opgelost moeten worden, is de toekenning van een
noot aan een bepaalde snaar. Dit is een inherent niet-causaal probleem,
aangezien de snaarkeuze op een bepaald tijdstip invloed heeft op de mo-
gelijke noten die op een later tijdstip gespeeld kunnen worden. Het is dus
noodzakelijk om een eenvoudig spelermodel te gebruiken. Er zijn nog
heel wat andere parameters die semi-automatisch bepaald moeten wor-
den, zoals de aanslagplaats, het type tokkel, en de aanslagsnelheid. De
uiteindelijke implementatie is in staat om een partituur op een redelijk
natuurlijke wijze af te spelen. De mogelijkheden van deze implementatie
zijn te beluisteren op ? CD tracks 30 en 31. Het volledig gekoppeld
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gitaarmodel wordt dan vergeleken met vier andere fysische modellen,
een spectraal model, en wavetable synthese.

Hoofdstuk 15 : Besluit en suggesties voor verder onder-
zoek

Besluit

Dit proefschrift bestaat uit verschillende delen: Deel I handelt over
algemene akoestiek, Deel II over de blaasinstrumenten, en Deel III

over de snaarinstrumenten.

Deel I omvat een algemene bespreking van de blaasinstrumenten en
de snaarinstrumenten, een inleiding tot de muzikale akoestiek, en de
algemene uitwerking van de digitale golfgeleidermodellen.

We begonnen door een kwalitatief overzicht te geven van de blaasin-
strumenten in hoofdstuk 2. Twee enkel-riet instrumenten (de klarinet
en de saxofoon), een luchtstroom-aangedreven instrument (de moder-
ne dwarsfluit), en een lip-aangedreven instrument (de trompet) werden
besproken. Er werd besloten dat al deze instrumenten een zelfde ba-
sisstruktuur hebben, en met hetzelfde type model kunnen worden be-
schreven. Hoofdstuk 3 gaf een kwalitatief overzicht van de akoestische
eigenschappen van de snaarinstrumenten. We vergeleken drie verschil-
lende types instrumenten: de akoestische en elektrische gitaren, de vi-
oolfamilie, en de piano. Het blijkt dat de snaarinstrumenten slechts
verschillen in de wijze van snaarexcitatie. In hoofdstuk 4 brachten we
een overzicht van de muzikale akoestiek. Vertrekkend van de algemene
golfvergelijking, die de golfvoortplanting door lucht en snaren beschrijft,
werden de eigenschappen van de basisbouwblokken van de muziekinstru-
menten afgeleid. De verschillende elementen werden dan gecombineerd
tot akoestische systemen. In hoofdstuk 5 werden de akoestische ele-
menten gediscretiseerd, gebruik makend van de digitale golfgeleidertech-
niek. We bespraken het belang van fractionele vertraging, en toonden
aan dat Catmull-Rom en B-Spline interpollatie mogelijke alternatieven
zijn voor Lagrange interpollatie en allpass filtering. Deze hoofdstukken
vormen de basis waarop alle verdere modellen gebouwd werden.

In Deel II werden de eigenschappen van de blaasinstrumenten bestu-
deerd. Hiervoor werden specifieke modellen en parameterestimatietech-
nieken afgeleid.

In hoofdstuk 6 werd een volledig akoestisch model voor een enkel-
riet blaasinstrument opgebouwd, met verwaarlozing van de toongaten.
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De resonator van de klarinet en de saxofoon werd besproken, en er
werd dieper ingegaan op de eigenschappen van het excitatiemechanis-
me. De beweging van het riet werd beschreven door hogere-orde lineaire
en niet-lineaire vergelijkingen. De belangrijkste bijdrage voor de blaas-
instrumenten is vervat in hoofdstuk 7, waarin we een digitaal golf-
geleidermodel met formant filter opbouwen. Door de combinatie van
bron-gefilterde synthese en de traditionele digitale golfgeleider technie-
ken werd een model bekomen dat zowel performant als eenvoudig te
calibreren is. Het model bestaat uit een niet-lineair excitatiemechanis-
me, een lineaire resonator, en een dynamisch post-equalizatiefilter of
formant filter. Verscheidene filter-ontwerptechnieken werden dan verge-
leken. Door het toevoegen van toongatmodellen in hoofdstuk 8 werd
een volledig model voor de klarinet bekomen. In hoofdstuk 9 werd de
MPEG-4 SAOL implementatie van het model voorgesteld.

Deel III handelt over de snaarinstrumenten.

In hoofdstuk 10 werd een enkel-snaar model opgebouwd voor de akoes-
tische gitaar. De eigenschappen van ideale en reële snaren werden be-
sproken, met inbegrip van niet-lineaire effecten als de spanningsgemo-
duleerde propagatiesnelheid en de beperkte snaarbeweging. Met de
dubbele-polarizatie modellen werd rekening gehouden met de beweging
van de snaren in twee ruimtelijke dimensies. In dit hoofdstuk werden
ook de parameterestimatie methodes uitgewerkt in zowel het tijd- als het
frequentiedomein. Er werd aangetoond dat een subband-gebaseerd al-
goritme, de subband Hankel Singuliere Waarden Ontbinding, in staat is
om nauwkeurige schattingen te bepalen van de systeempolen. De enkel-
snaar modellen werden in hoofdstuk 11 uitgebreid tot gekoppelde-
snaar modellen. De ontwikkelde methodologie laat toe om alle digitale
golfgeleidermodellen voor snaarinstrumenten te vergelijken. Op basis
van de theoretische uitwerking en een eindige-elementen analyse werd
een nieuw gitaarmodel voorgesteld. Een belangrijk deel van dit model
zijn de lineaire en niet-lineaire modellen voor de klankkast die in hoofd-

stuk 12 behandelt werden. Voor de uiteindelijke implementatie werd
in hoofdstuk 14 een eenvoudig spelermodel uitgewerkt.

Suggesties voor verder onderzoek

In dit proefschrif ging het grootste deel van de aandacht naar de theore-
tische uitwerking van de modellen. Zowel model-gerelateerde problemen
als verschillende aspecten van de implementatie vereisen verder onder-
zoek.
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Bij de blaasinstrumenten zouden de verschillende strukturen voor het
formant filter vergeleken moeten worden vanuit het standpunt van de
implementatie. Aangezien dit dynamische filters zijn, moeten transiënte
verschijnselen geminimaliseerd worden. Dit vereist het nauwkeurig on-
derzoek van de filterstruktuur en de effecten van berekeningen met ein-
dige woordlengte. Het niet-lineaire excitatiemechanisme kan leiden tot
hoorbare aliasing indien de laagdoorlaatkarakteristiek van het reflectie-
filter een the hoge afbreekfrequentie heeft. Overbemonstering en steilere
filters kunnen dit probleem oplossen.

Bij de snaarinstrumenten ligt het grootste probleem in de bepaling van
de vinger-snaar interactie. Er bestaat zeert weinig literatuur over de fysi-
sche processen die plaatsvinden bij het tokkelen, en professionele spelers
kunnen geen verklaring geven voor de veranderingen in timbre na jaren
oefening. De gekoppelde-snaren modellen kunnen toegepast worden in
veel grotere systemen, zoals de harp of de piano. Het kan ook nuttig zijn
de digitale golfgeleidermodellen te koppelen aan twee-dimensionale di-
gitale golfgeleider-roosters. In het algemeen kunnen hoger-dimensionale
modellen bepaalde problemen effectiever oplossen.

De technieken die in dit proefschrift werden ontwikkeld, kunnen ook toe-
gepast worden om de kwaliteit van circulaire golfgeleiders en golfgeleider-
roosters te verbeteren, met als mogelijke toepassingen digitale reverbe-
ratie en virtuele akoestiek.



Chapter 1

Introduction

In the first section of this introductory chapter an economic and scientific mo-
tivation will be given for the modeling techniques that will be developed in this
thesis. In section 1.2, we review the history and taxonomy of computer music
and sound synthesis, and indicate the current trends and future possibilities.
The core of the thesis is based on the physical modeling sound synthesis tech-
niques developed in the last fifteen years, and is detailed in section 1.2.1. The
recent developments of this technique are closely linked to the increase of the
available computational power and the appearance of specific sound synthe-
sis programming languages, outlined in section 1.4. Finally, an outline of the
thesis and a highlight of the contributions is presented in section 1.5.

1.1 Problem statement

Sound synthesis historically started with the wish to generate any kind of sound
using mathematical techniques. As the research evolved, it became possible to
generate or transform any sound conceivable. Synthesis techniques are not only
used for live music performance, but are also massively used in the entertain-
ment industry, mostly in computer games, and for the design of sound effects
and music scores for television broadcasting or feature films. This is illustrated
by the healthy economic numbers presented by the industry. For instance, one
vendor of electronic musical instruments reported net sales of $2.15 billion,
and one major vendor of PC soundcards reported $500 million net sales, with
a total of 25 million soundcards installed, for the fiscal year 2001 [25], [56].

Is there a need for more synthesis techniques ? Yes, as the current techniques
are capable of the perfect reproduction of a sound, but not of the perfect gener-
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2 Introduction

ation of the sound such that the performer can consciously control some aspects
that go beyond mere manipulation. This is one of the reasons why although
there exist many different synthesis techniques, only a few are actually commer-
cially available on the consumer market. There is a progression toward more
interactive and model-based digital instruments. Due to its nature, model-
based synthesis gives the player more control over the physical variables that
influence the sound production, while non-model-based synthesis uses abstract
and meaningless parameters.

1.2 Computer music and sound synthesis

In 1948 Paris, history was made. Pierre Schaeffer, a French radio broadcaster,
working for the Radiodiffusion-Television Francaise (RTF), created the first
electronic music studio. With a multitude of microphones, phonographs, vari-
able speed tape recorders and sound effect records he created a new art form,
musique concrete, and with it a world of new music opened up - the world of
electronic music.

Electronic music can be divided into three categories: Musique concrete, Syn-
thesizer music, and Computer music. Musique concrete was the first type to be
created. It involves using the found sounds in nature, distorted in various ways,
to create music. Live, it becomes an exercise in mixing together unexpected
sounds into some sort of form while studio musique concrete uses complex
tape manipulations to create the effect. Synthesizer music is qualified by the
electronic generation of the sounds, and computer music adds compositional
aspects.

Automatic generation of sound and music is centuries old: the first mechanical
instruments date back to the 2nd century BC, and mechanical, score playing
instruments were in use in the late 16th century. During the Industrial Rev-
olution, inventors and composers designed steam-powered and even electrical
instruments. The first device to actually synthesize sound was the Dynamo-
phone, also known as the Telharmonium. The instrument weighed over 200
tons and produced music by an alternating current running dynamos. The
first truly electronic synthesizer, the Autherophone, was built by the Russian
Lev Theremin, and is now known as the “Theremin”. The instrument uses 2
vacuum tube oscillators to produce beat notes. Musical sounds were created
by “heterodyning” from oscillators that varied pitch. A circuit was altered
by changing the distance between 2 elements. The instrument had a radio
antenna to control dynamics and a rod sticking out the side that controlled
pitch. The performer would move his/her hand along the rod to change pitch,
while simultaneously moving his/her other hand in proximity to the antenna.
Many composers used this instrument including Edgard Varese (1883-1965).
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In 1929, the Hammond organ was launched, and became a very successful elec-
tromechanical additive synthesizer. Many other instruments were designed,
and used by composers the likes of John Cage (1912-1992), Karlheinz Stock-
hausen (1928-) or Iannis Xenakis (1922-2002). Synthesizer music and later on,
computer music, closely followed the technological advances in electronics. In
1958, Max Matthews generated music by computers.

During the 50-year history of digital sound synthesis, the preferred synthesis
methods closely followed the available computing power [102]. In the early
days, only extremely simple additive synthesis was possible using a digital
computer. At this point, the sound synthesis community started using two
different approaches: the real-time, but simple, sound generation, and the non-
real-time, complex, and programmable approach using MUSIC-N languages.
Real-time synthesis was first dominated by abstract, mathematical synthesis
methods, like FM synthesis. By the end of the 1980s, wavetable synthesis
became more widespread and in the last decade of the 20th century, we saw
the emergence of more powerful synthesis methods like physical modeling and
virtual analog modeling. At this point, the hardware became fast enough to
run even very complex algorithms in real-time: the “software” synthesizer was
born.

1.2.1 Physical Modeling sound synthesis

Physical modeling sound synthesis is a class of synthesis techniques that uses
some form of simulation of the physical properties of an object (mainly mu-
sical instruments) to generate sound. Physical models go from the extremely
detailed finite element analysis to the rough approximations of the dominant
vibration modes of the instrument. It is a very interdisciplinary research field,
with links to physical acoustics, music, signal processing, system theory and
system identification. Figure 1.1 shows how the different aspects are repre-
sented in the different chapters of this work.

Several approaches to physical modeling sound synthesis exist. The acoustic
approach builds a model based on the physical properties of the different el-
ements of the musical instrument, resulting very complex models with good
predictive properties. Due to their high complexity, these models are less use-
able for real-time synthesis, and difficult to calibrate such that their output
match a recording. At the other end, black box models use parametric system
identification techniques to model te output of the instrument. This model
class requires specialized equipment for the model calibration, and might re-
sult in non-physical control parameters. The approach taken in this work is an
integral view, assuming that certain properties are common to all instruments
of the same family (wind instruments, string instruments), and adding param-
eters that enable model calibration with only a recording of notes played on
the instruments.
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Chapter 4

Chapter 5

Chapter 6 − 14

Chapter 2 & 3

MUSIC

MATHEMATICSACOUSTICS

Figure 1.1: Physical modeling sound synthesis is a very interdisciplinary re-
search field. This figure shows the interaction of the different disciplines in the
chapters of this thesis.

1.3 Sound synthesis applications

Sound synthesis is widely used in contemporary music, be it as a post-processing
step for conventionally generated sound, as an instrument as such, or as a tool
to extend the capabilities of a human player.

1.3.1 Score-based synthesis

A score is a symbolic representation of music, and thus a dynamically evolving
language. As can be seen on figure 1.2, modern compositions require more
complex notation techniques to convey the intentions of the composer. The
interpretation of such a score by the performing musicians is not trivial. Some
composition can only be played by machines, as their complexity surpasses
anything a human is able to absorb.

1.3.2 Transhuman performance

The trend of composers challenging performers seems a constant in musical
history [19]. The ever increasing demand in motor skill and concentration
will at some time be of reach of even the most trained performers. There are
two areas where transhuman performance is necessary: the maximum (micro)
repetition rate for a human player seems to be around 30 Hz, implying that all
compositions with faster notes are unplayable, and secondly, there is a limit on
the (macro) movement that can be made by the human body. For instance,
playing three D’s of the same pitch, on three different string of a classical guitar



1.3. Sound synthesis applications 5

(a)

(b)

Figure 1.2: Two examples of musical scores. (a) conventional musical writ-
ing, using bars, clefs, and notes. Excerpt from a composition by Franz Liszt
(1811-1888), (b) sketch of the sound contour of Bohor by Iannis Xenakis (1962).
Evolving composition techniques require an ever increasing set of complex sym-
bolic notation.

at the same time is physically impossible: the human hand cannot be stretched
to span 40 cm! In this area, sound synthesis offers unparalleled performance.
? Track 31 on the CD is an example where exactly this property is used in a
composition.

1.3.3 Parametric sound compression

Parametric sound compression is a fairly new field, that tries to compress sound
by very efficient coding of the sound. This coding can be done from the point of
view of the human perception (what do we hear ?) or the sound source (what
is emitting sound?). The most compact representation of a sound is a model of
the instrument and the score played on it. The problem of going from sound to
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source model is however as yet unsolved. In this work, we present calibration
and parameter estimation methods that allow the modeling of a restricted set
of instruments.

1.4 Sound synthesis languages

Several types of programming languages are available for the implementation
of the algorithms on general-purpose processors. During development, a high-
level language like Matlab, dedicated to digital signal processing is well-suited.
Final implementations are best programmed using either a generic program-
ming language or a structured audio language, specifically designed for sound
synthesis.

1.4.1 Development

The initial implementation was programmed in the Matlab environment. Mat-
lab uses a high-level interpreted script language, which allows the fast imple-
mentation of changes in the core algorithm, but runs quite slow. Both sample-
based processing and block-processing versions were written. A faster version,
with compiled core routines, is also created by first identifying the main syn-
thesis loop, eliminating or replacing slow functions using the Matlab profiler,
and finally translating to C and compiling the core functions.

1.4.2 Generic programming languages

The use of a generic programming language like C or C++ requires more effort
and is only justified when the algorithm development is frozen. None of the
generic languages understand the concept of time “out-of-the-box” as needed
for sound synthesis, and are thus better suited for offline rendering. Toolkits
and libraries exist that are dedicated to sound synthesis, and allow the use of
time. The STK toolkit [22], [24] is a set of C++ classes developed for musical
signal processing. The Synthesis ToolKit offers an array of unit generators for
filtering, input/output, etc. and uses Tcl/Tk for GUI interaction. The generic
programming languages are often used as an intermediate step when compiling
a structured audio language.

1.4.3 Structured Audio programming languages

Structured audio representations are semantic and symbolic descriptions that
are useful for ultralow-bitrate transmission, flexible synthesis, and perceptu-
ally based manipulation and retrieval of sound [112]. This concept has a much
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broader application than required for the pure implementation of the physical
models developed in this work. Many computer languages for specifying sound-
synthesis algorithms have been developed [34]. Some are text-based, like the
popular Csound [111] language, the LISP-based Common Lisp Music (CLM) or
the object-oriented SuperCollider [59]. Some use a graphical user interface, like
pd (Pure Data) [87], MAX/MSP [86] or jMAX [27]. Most of these languages are
based on unit generators, elementary functional blocks like oscillators, filters,
and envelopes that may be connected into networks to describe a signal flow
path. Most descend from the MUSIC IV and MUSIC V languages developed
in the 1960’s by Max Mathews [58], [91]. Recently, a structured audio lan-
guage was standardized as a part of the MPEG-4 ISO standard. We selected
this language for the core development, as its inclusion in a standard ensures
widespread implementation and use.

1.5 Outline of the thesis and contributions

In this section, an outline and an overview of the thesis can be found. The
main contributions are indicated, and the publications relating the different
subjects are referenced.

1.5.1 Objectives and contributions

In this thesis, we build an integral solution, from physics to implementation,
for the modeling of both wind and string instruments. The focus is not on the
physical accuracy, but on the practical usability and calibration properties of
the model. The calibration of the models should be possible without special-
ized equipment. This has required a survey of the literature and an evaluation
of existing models and calibration techniques. The existing modeling and pa-
rameter estimation techniques were found not to be satisfactory, as they either
require specialized equipment to measure the model parameters, do not allow
extensive control by the player, or produce inferior sound quality. New models
and techniques have been developed.

Quite an extensive body of literature exists on the subject of musical acoustics,
but the digital waveguide techniques do not enjoy this position. The basic
elements of digital waveguide modeling are delay lines, fractional delay filters
and reflection filters. The traditional fractional delay filters aere evaluated and
compared to two other interpolation algorithms.

The calibration of wind instruments models, with their inherent non-linear
behavior, has required the design of the formant filtered models with better
calibration properties. A more in-depth study has been performed on the
properties of the non-linear excitation mechanism. Note transients have been
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implemented using a parallel crossfading technique.

The string instruments present a large number of closely spaced system poles
due to their physical structure and string coupling mechanisms. First, a mathe-
matical technique for the identification of the system poles has been introduced,
and a framework for N coupled strings and N coupled digital waveguides has
been developed. Analytic and heuristic parameter estimation rules have been
derived, and experimentally validated.

Both the wind and string instrument models are finally implemented using the
MPEG-4 Structured Audio language.

1.5.2 Overview of the chapters

The thesis consists of three parts, each of them divided in several chapters.
Figure 1.3 shows the schematic overview of the different parts. Note that the
introductory chapter and the general conclusions are omitted in this picture.
The thesis is accompanied by a CD, containing sound examples. Every part
has the same basic structure, with chapters focused on the musico-acoustical
description of instruments, continuous time or discrete time modeling tech-
niques, and implementation issues. Figure 1.4 shows which chapters fall into
each category. The iconic representations will be used throughout this work to
indicate the focus of the chapter.

Part I: General Acoustic Theory

In the first part of the thesis, the basic building blocks for physical modeling
synthesis are provided. Both continuous time and discrete time models are
discussed for several musically relevant structures.

Chapter 2 provides an introduction to the structure and properties of the
clarinet, the saxophone, the modern flute, and the trumpet. It is concluded
that they all share the same basic structure, and that a general digital
waveguide model can be used to model all the instruments.

Chapter 3 gives an overview of the acoustic properties of string instru-
ments, in general. Three different types of string instruments are compared:
the acoustic and electric guitars, the violin family, and the piano.

Chapter 4 provides an introduction to linear musical acoustics. Starting
from the general equations describing sound propagation in air and strings,
the properties of common acoustic building blocks of musical instruments
are derived. The different elements are then combined into acoustic sys-
tems.
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Figure 1.3: Schematic overview of this thesis.
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for i=1:100
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Chapter 4
Chapter 5

Chapter 6
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Chapter 13
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Figure 1.4: This figure shows the classification of the chapters according to the
modeling level. From left to right, there is the qualitative musico-acoustical
description of instruments, modeling in continuous time, modeling in discrete
time, and the implementation issues.
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In chapter 5, the acoustic elements are discretized using the digital wave-
guide modeling technique. The importance of fractional delay is discussed,
and it is showed that Catmull-Rom and B-spline based interpolation are
possible alternatives to Lagrage interpolation and allpass filtering.

Part II: Wind Instruments

Part II is dedicated to the modeling of the wind instrument family. After an
overview of a few common wind instruments, source-filter synthesis and digital
waveguide modeling are combined into the formant filtered physical models.
The single-note models are linked using a parallel crossfading technique, and a
final SAOL implementation was made.

In chapter 6, a complete acoustic model is built for a single-reed instru-
ment, disregarding the influence of the toneholes. The resonator of a clar-
inet and a saxophone is discussed, and we elaborate more in detail on the
excitation mechanism. High-order linear and non-linear models are intro-
duced to describe the reed movement.

The core of Part II is contained in chapter 7, where a discrete time model
of a single-reed instrument is built. Source-filter synthesis is combined with
the traditional digital waveguide modeling technique and a new model class
is obtained that is both easy to calibrate and flexible from a performance
point of view.

The models are then expanded into multinote models in chapter 8. Several
structures are compared, and we propose a parallel crossfading method to
simulate the transition between notes.

Finally, chapter 9 discusses the actual implementation of the models in
Matlab, and using the MPEG-4 SAOL language, and provides a comparison
of our model with other synthesis techniques.

The publications relating to this part are [68], [67], [74].

Part III: String Instruments

In Part III, the modeling of the acoustic guitar is discussed. This instrument
was chosen because presents many interesting properties of a generic string
instrument, while having only a limited number of strings. First, a model and
its associated parameter estimation routines for a single string are built, later
expanded for multiple strings.
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In chapter 10, a single-string model for the acoustic guitar is presented.
These models are the basis for the more complex coupled string models. The
focus of this chapter is on the parameter estimation. Different methods
are compared, and it is shown that the subband Hankel Singular Value
Decomposition offers both high accuracy and automated estimation.

In chapter 11, a novel general framework that allows the performance com-
parison and design of coupled string structures, is proposed. The framework
indicates how to improve the parameter estimation for the structures and
how to verify the stability. The properties for N coupled strings and N
coupled digital waveguides are derived, and a comparison is made of five
coupled string structures. Finally, a fully coupled digital waveguide model
is proposed for the acoustic guitar.

The body of an acoustic guitar is the main factor determining the tim-
bre a the instrument. In chapter 12, we discuss several linear modeling
techniques, and propose a non-linear model for the guitar body.

Chapter 13 elaborates on the experimental measurement of the param-
eters for a simplified and a fully coupled digital waveguide guitar model.
We show that the fully coupled model procudes similar output with better
performance possibilities.

The implementation of the fully coupled model is described in chapter

14. We show that a player model is necessary, and present a “black box”
MIDI/SAOL implementation.

The publications relating to this part are [69], [71], [72], [73], [76], [75].

The main contributions of this thesis are on the subject of the wind instru-
ments, the combination of source-filter synthesis and physical modeling into
the formant filtered digital waveguide models, with the associated calibration
techniques; and on the subject of the string instruments, the elaboration of a
framework for coupled digital waveguides, with the associated parameter es-
timation methods, illustrated by the fully coupled guitar model. The models
proposed in this thesis offer the best currently available balance of model com-
plexity, sound quality, control, and calibration.
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Chapter 2

Wind Instruments

This chapter provides a short introduction to the acoustic structure of selected
wind instruments and gives a qualitative description of their principles of op-
eration.

Wind instruments produce a sustained oscillation as long as the player excites
it directly or indirectly (e.g. using an airbag in the case of bagpipes). The
oscillation is typically produced in an air column, within a resonating structure,
composed of cylindrical and conical sections. Different notes are obtained by
modifying the excitation or the resonator, or both. The wind instruments can
be classified by the excitation mechanism used: single reed (clarinet, saxophone,
etc.), double reed (oboe, bassoon, etc.), air jet (flutes, organ, etc.) or the
player’s lips (trumpet, trombone, etc.) [12]. The acoustical analysis of the bore
shape and the excitation mechanism provides enough information to build a
usable digital model.

Woodwinds have slowly evolved over the centuries, and the resulting peculiar
features give them their individuality and musicality. Two notable exceptions
(in the sence that they were designed) are the saxophone family (designed
by the Belgian Adolphe Sax) and the modern flute (designed by Theobald
Boehm), both developed at the middle of the nineteenth century. The brass
instruments followed a similar development. We selected the clarinet and sax-
ophone (single-reed woodwinds), the modern flute (air jet woodwind), and the
trumpet (lip-driven brass) to illustrate the differences and similarities between
the instrument families. Of these, only the clarinet and saxophone will actually
be modeled in later chapters, but the same basic principles can be applied to

15
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Figure 2.1: The structure of a Bb clarinet. Concert clarinets are traditionally
made of ebony and consist of five parts. The lower joint, the upper joint and
the barrel together form the resonator of the instrument. The bell acts as the
sound emitter, most importantly so for the low notes. The mouthpiece with
attached reed is the excitation mechanism. The Boehm Bb clarinet has 17
keys, 6 rings, and is approximately 635mm long. Other fingering systems and
tunings also in use.

the others as well.

2.1 The clarinet

The clarinet is essentially an instrument with a cylindrical bore and a sin-
gle reed. It can be traced back to the late seventeenth century, when it was
known as the chalumeau. Its relative simplicity makes it an ideal candidate for
acoustical study and digital modeling.

The clarinet’s resonances are primarily determined as those of a closed-open
cylinder, having odd harmonics1 in the lowest or chalumeau register. Such a
bore overblows in the twelfth2, and the instrument requires many toneholes to
be able to play a complete scale. Figure 2.1 shows the structure of a modern
Boehm B[-tuned clarinet. To access the higher or clarion register, register
holes were added to the design. The clarion register notes include even and
odd harmonics. Acoustically, the clarinet consists of three major parts: the
mouthpiece, the resonator (barrel, upper and lower joint), and the bell . The

1The peaks in the spectrum of the sound produced by an instrument are called partials

in the general case. Harmonics is used when the partials are an integer multiple of the

fundamental frequency. The terms “partial” and “harmonic” are often used interchangeably.
2Three times the fundamental frequency, spanning 19 semitones. Doubling the funda-

mental frequency yields the octave, or 12 semitones.
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Figure 2.2: The clarinet mouthpiece and reed assembly (side view and bottom
view). The reed opening is determined by the pressure difference inside and
outside the mouthpiece. The opening at rest and the facing length are chosen
by the player by moving the player’s lower lip. The reed width is fixed.

tonehole configuration

Poc

y0 NLF Linear part

Figure 2.3: The three main parameters controlled by the player during perfor-
mance are the oral cavity pressure Poc, the tip opening at rest (y0) and the
configuration of the toneholes (the fingering pattern).
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Figure 2.4: Comparison of three common woodwind instruments: the modern
flute, the clarinet and the oboe. The flute and the clarinet have a cylindri-
cal bore, while a conical bore is used for the oboe. Observe that the three
instruments have approximately the same length.

mouthpiece/reed assembly (figure 2.2) is the excitation mechanism. The cane
reed combined with the shape of the mouthpiece acts as a pressure-controlled
valve. The bore with the toneholes is a resonator. Depending on the configura-
tion of the instrument, certain wave propagation modes are allowed. The bell
is the impedance matching device between the surrounding air and the instru-
ment bore, and has a significant effect on the radiation of the lower partials,
particularly for low notes. For the higher notes, most radiation comes from the
toneholes.

The pressure difference between the oral cavity of the player (poc) and the pres-
sure inside the mouthpiece induces a movement of the reed. The air flow into
the mouthpiece is determined by this pressure difference and the tip opening
by aerodynamic laws. This injection creates a pressure wave that propagates
into the bore of the instrument. The bore acts as a filter on the traveling
wave. When the wave reaches the bell, part of its energy is radiated outwards
and part is reflected. The reflected wave travels back to the mouthpiece where
it interacts again with the reed. This procedure repeats itself and creates
a continuous pressure oscillation. The oscillation exhibits several interesting
properties, including period doubling and chaotic modes [93].

The player can select different reeds and mouthpieces with different properties.
During performance, the player controls the oral cavity pressure and the dis-
placement of the reed at rest (y0), as well as the configuration of the toneholes
(Figure 2.3). In a lesser extent, the player is able to modify the damping of
the reed movement. Figure 2.4 shows a comparison of the bores of a clarinet,
a modern flute and an oboe.
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Figure 2.5: A comparison of the complete saxophone family of instruments.
From left to right: Eb sopranino, Bb soprano, Eb alto, Bb tenor, Eb baritone,
Bb bass and the extremely rare Eb contrabass.

2.2 The saxophone

The family of the saxophones, developed by Adolphe Sax in the mid-nineteenth
century, have a wide conical bore, a single clarinet-like reed, and a unified
logical system of padded keys covering very large toneholes. The saxophone
was designed, and the family has sopranino, soprano, alto, tenor, baritone, bass
and contrabass members, shown in figure 2.5. The more exotic sopranino, bass,
and contrabass saxophones are rarely used. There exist a few instruments tuned
in another key (e.g. the C tenor saxophone). A saxophone has 18-21 toneholes
and a corresponding number of keys, actuated by the fingertips or the side
of the hands. It has an intricate mechanical construction, that automatically
opens or closes combinations of toneholes: the saxophone has more than 300
separate pieces! The saxophones, having a conical bore, overblow in the octave
and produce a harmonic-rich spectrum. The structure of an Eb alto saxophone
is shown in figure 2.6.

2.3 The modern flute

Instruments of the flute type are of extremely ancient origin, the oldest found
dating back to the early Neolithic (8000 BC-5000 BC) [121]. Their principal
modern descendants are the orchestral transverse flute and the flue organ pipe.
The recorder, panpipes and the shakuhachi are other examples. They all rely
on the effect of an air jet striking a hard edge for their acoustical excitation,
coupled to a resonating structure. The description of an air jet is non-trivial,
and not studied in this work [113], [114]. The essence of the interaction be-
tween an air jet and a resonator is shown in figure 2.7. The jet emerges as a
plane sheet from a slit or the player’s lips, crosses an opening in the resonator
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Figure 2.6: The structure of an alto saxophone. The saxophone has 18-21
toneholes, as many keys and has a conventional playing range of about 2 1/2
octaves

airflow

in

airflow

in

Figure 2.7: Typical air jet used with a recorder-type musical instrument
(top) Schlieren photograph of the airflow in a flue organ pipe [114] (bottom)
schematic view. The air jet has a laminar flow when entering the cavity. After
a short distance, the flow exhibits sinusoidal and later turbulent flow patterns.
The sinoidal flow at the sharp interface excites the resonator.
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Figure 2.8: The structure of a modern flute. The flute is a closed-open cylinder
of about 637mm length, with 18 open or closed keys.

and strikes a sharp edge on the far side. The distance crossed is such that for
a given volume flow, the jet is on the edge of becoming turbulent. Depending
on some jet parameters, a small disturbance can grow either sinuous or vari-
cose. The resonator of the flute favors one particular frequency of the sinuous
disturbances. Since the deflection of the jet is the acoustic driving mechanism
and since it is driven by the acoustic flow out of the mouth of the resonator,
the system will work best when its flow is maximum or in other words at an
impedance minimum. This is in contrast to the single-reed instruments, which
operate at the impedance maxima.

Figure 2.8 shows the structure of a modern transverse flute. It consists of a
cylindrical bore, stopped at one end, with a blowing hole close to the stopped
end and finger holes along its length.

2.4 The trumpet

The trumpet is an example of the lip-driven musical instruments. Historically,
these instruments have existed since the dawn of mankind. Early instruments
had a more-or-less conical shape (dictated by their origin as seashells or animal
horns) or a nearly cylindrical shape (as the Australian aboriginal didgeridoo).
In the medieval times, the small conical instruments were provided with side
holes, to allow production of notes in between the modes of the complete horn.
The other line increased the length of the instrument, and used narrower bores.
The length of the bore could be modified by a system of slides or pistons. The
modern trumpet is a result of this evolution. For several, mostly practical,
reasons, the instruments are built with a cylindrical bore, connected with a
more-or-less conical section of comparable length and terminated with a short
section of more rapid flare. The main parts of a modern trumpet can be found
on figure 2.9. A close approximation to the shape of a real brass instrument is
given by the Bessel horn. A main problem with brass bore shapes is that the
partials do not form a good harmonic series. Modifications to the bore shape
lead to a more-or-less harmonic series (0.7, 2, 3, . . .)f0. The fundamental mode
is very much out of alignment, produces a very weak sound, and is usually



22 Wind Instruments

Figure 2.9: The structure of a Bb trumpet.

not used in playing. Combined with the input impedance of the mouthpiece,
and the admittance of the player’s lips, one can calculate the resonances of the
instrument. The lips form, just as with the single-reed instruments, a pressure-
controlled valve, but with inverted characteristics: a higher pressure in the oral
cavity of the player leads to opening of the valve. The basic shape used in
digital waveguide modeling is the cylinder, with a reflection filter fitted such
that is closely matches the real modal series of the brass instrument. This is
combined with a modified reed model to form the complete trumpet model.

2.5 Conclusion

In this chapter, we have reviewed the operation principles and structure of a
few common wind instruments. We conclude from the qualitative descriptions
that they all share the same basic physical structure and acoustic properties,
and can thus be modeled using the same techniques.



Chapter 3

String Instruments

There is geometry in the ringing of strings. There is harmony in
the spacing of the spheres.

Pythagoras

This chapter gives an overview of the acoustic properties of string instruments,
and compares three different types of string instruments: the acoustic and
electric guitars, the violin family, and the piano.

3.1 Acoustic structure

All string instruments share the same basic structure: they all have one or
more strings which transfer their energy to a soundboard. The soundboard
is an integral part of a resonating cavity, or is placed inside one. The sole
exception is the electric guitar, where the acoustic resonator is replaced by an
electro-acoustical amplifier.

The behavior of waves in strings is discussed in section 4.2.2. Strings are
either plucked with the fingers (lute, guitar, harp), a plectrum (guitar), or jacks
(harpsichord); struck (clavichord, piano); or bowed (violin family). The strings
are too thin to efficiently radiate low frequency sound. The string vibration is
transferred via a structure commonly called a bridge to a soundboard with a

23
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Figure 3.1: Classical guitar shape. This shape has been practically unchanged
since its design by Antonio de Torres. The fingerboard usually has 18 frets,
with the 12th fret, corresponding to the octave, flush with the body. The
distance between two frets is determined such that the pitch difference equals
one semitone.

better impedance match with the surrounding air. The bridge input impedance
should be high enough such that the major part of the incoming waves are
reflected back to the string. This is necessary to obtain a long sustain time,
and is especially important for plucked string instruments. On the other hand,
enough energy has to be transferred to the soundboard to radiate a high sound
volume. This leads to the compromise that string instruments have either a
long sustain or a high sound volume. The bridge input impedance has a great
influence on the timbre of the instrument. On some instruments, all the strings
are attached to the same bridge. This leads to strong string coupling as all the
strings have a common movement at the bridge.

3.2 The acoustic guitar

The modern six-string guitar is a descendant of the sixteenth-century Spanish
vihuela. It was however not until the nineteenth century that the guitar was
established as a concert instrument. The shape of the classical guitar as we
know it today (see figure 3.1) was largely influenced by the Spanish luthier
Antonio de Torres (1817-1892).

The modern guitar has six strings and is about 65cm in length. Normally, the
string are tuned to E2, A2, D3, G3, B3 and E4 (f0 = 82, 110, 147, 196, 247,
330Hz), but alternate tunings are widely used. The top is usually cut from
spruce (Picea Sitchensis, Engelmannii, or Excelsa), cedar (Thuja Plicata), or
redwood (Sequoia Sempervirens), planed to about 2.5mm thickness. The back is
usually a hardwood (rosewood, maple, mahogany or the more exotic blackwood,
koa or walnut). Both top and back plates are braced, and the bracing of the



3.2. The acoustic guitar 25

Figure 3.2: Designs for bracing: (a) Torres traditional fan bracing, (b) Bouchet
bracing, (c) Ramirez asymmetric bracing, (d) crossed bracing. After [94].

top plate is an important design parameter. Several design for bracing can be
seen in figure 3.2.

Acoustic guitars fall in roughly four families of design: classical, flamenco, flat
top (folk) and arch top. Classical and flamenco guitar have nylon strings; the
flamenco guitar is somewhat thinner, has an extra protective plate on top, and
a different head and tuning machine. The flat top and arch top guitars have
steel strings. Flat top guitars exist in different sizes (shown in figure 3.3), and
are adapted for particular musical styles, and some have a cutaway to facilitate
access to the higher frets. Arch-top guitars are based on the design of violins,
having an arched top and back and the typical f-holes, and were pioneered by
Orville Gibson (1856-1918) (see figure 3.4).

The vibrations of the strings are transferred via the saddle and bridge to the
top plate of the guitar. The guitar body acts as an acoustic amplifier, as
the plates and air cavity of the body provide a better impedance match with
the surrounding air than do the strings. The coloration of the sound and the
directional pattern of the radiation are mainly determined by the shape and
construction of the body. The total string tension for (normal-tension strings)
is about 360 N for a classical guitar. Steel string guitars have a higher string
tension and require an additional steel bar in the neck for rigidity.

The lowest body resonance of the guitar is typically in the range from 90 to
100Hz (lower for Jumbo-sized flat-tops) and the second one is between 160
to 240 Hz. The lower resonance corresponds to the Helmholtz mode of the air
cavity, and the second resonance is the first vibrational mode of the soundboard.
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Figure 3.3: Typical shapes for steel string acoustic guitar. From left to right:
Taylor “Grand Concert” body with cutaway, “Grand Auditorium”, “Dread-
nought”, and “Jumbo” body shapes. A cutaway enables easier access to the
higher frets. The “Jumbo” guitar is characterized by a large and deep body,
resulting in a lower resonance frequency, thus enhancing the bass response.

Figure 3.4: Gibson archtop electroacoustic guitar. The arched top plate, with
the characteristic f-holes, was originally designed to achieve a louder sound,
before the introduction of electric guitar amplification. This is a typical blues
and jazz guitar.
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Figure 3.5: Typical solid-body electric guitar (Fender Stratocaster). The
Fender Stratocaster is a typical rock guitar.

3.3 The electric guitar

Electric guitars get their name from the method of sound transmission from the
strings to the surrounding air. Electric guitars are equipped with electromag-
netic, piezoelectric or, more recently, optical pickups to generate an electrical
analog signal that is fed to an amplification system.

Electric guitars may have either a solid wood body or a hollow body, but both
types emit very little sound and are characterized by a long sustain. The elec-
tromagnetic pickup consists of a coil and a permanent magnet (see figures 3.5
and 3.6). The string movement above the permanent magnet causes a flux fluc-
tuation through the coil, thus inducing an electrical signal. Typically, there is
one permanent magnet for each string, with the coil winding for the individual
coils connected in series. This single-coil setup is very sensitive to EMC noise,
and this lead to the development of “humbucking” pickups, using two coils with
inverted phase to achieve higher common mode rejection. Most electric guitars
have two or three set of pickups at various places along the strings. The pickups
essentially sample the movement of the string directly above it, so the front
pickup (nearest the fingerboard) provides the strongest fundamental, whereas
the rear pickup (near the bridge) is more sensitive to the higher harmonics. The
player can set several combinations of the pickups with a selector switch, and
is usually able to control the output volume and affect tone with a low-pass fil-
ter. Electromagnetic pickups are highly non-linear, and have the most impact
on the actual “clean” sound of the guitar. On the other hand, piezoelectric
pickups are based on ceramics or advanced polymers that generate a voltage
when pressure is applied to it. They are fitted between saddle and string, or
below the saddle, and generate a voltage more or less linearly dependent with
the movement of the string. Both electromagnetic and piezoelectric pickups
have a high output impedance and require high quality, low noise amplification.
Many amplifiers for electric guitars provide an overdriven stage, where the non-
linear saturation characteristic of the power amplifier (based on either tubes
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A

C

B

Figure 3.6: Detail view of the bridge, pickup and tone control of a solid-body
electric guitar. A. Humbucking pickup; B. Pickup selector switch; C. Bridge
with individually adjustable saddles and tremolo arm.

or solid-state electronics) is exploited to create musically interesting sounds.
There exist several hundred types of different effect boxes to further modify
the sound.

From a modeling standpoint, the electric guitar is somewhat easier to model
than the acoustic guitar, and only needs an additional pickup model.

3.4 The violin

The violin gradually evolved from the various bowed string instruments used
in Europe during the Middle Ages. The instruments of the violin family were
developed in Italy during the sixteenth and seventeenth centuries and reached
a peak in the eighteenth century in hands of masters such as Antonio Stradivari
(1644-1737). The violin is the soprano voice of the violin family, and the viola,
violoncello, and contrabass represent the alto, baritone and bass voices. These
are all distinctly different instruments. The bow was given its present form by
Francois Tourte (1747-1835). The violin has been the object of considerable
scientific study, but its acoustical behavior is just beginning to be understood.
The violin makers built experimental instruments and acquired a correct un-
derstanding of at least some parts of the instrument. Herman von Helmholtz
(1821-1894) contributed by his physical and psycho-acoustical experiments. He
identified several partials in the tone of violins by listening to resonant cavities
(now known as Helmholtz resonators) and the sawtooth waveform or Helmholtz
motion of the strings. The standard work on violin acoustics is the book by
Cremer [26]. The essential parts of the violin are shown in figures 3.7 and 3.8.
The four strings of steel, gut, or nylon (wound with either silver, aluminium, or
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Figure 3.7: Structure of a modern violin.

Figure 3.8: Exploded view of a violin, after [94]
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steel) are tuned to G3, D4, A4, and E5 and transfer their vibrational energy to
the top plate through the bridge. The shape of the bridge is a convenient and
effective way to alter the frequency response of the instrument. The top plate
is generally carved from Norway spruce (Picea Abies) or German spruce (Picea
Excelsis), and the back and the sides from curly maple (Acer Platanoides). The
fingerboard is made of ebony and the bow stick from pernambuco (Caesalpinia
Echinata) or composite materials. Running longitudinally under the top is the
bass bar, and a sound post is positioned near the treble foot of the bridge.

The total tension of the four strings of a violin is typically about 220 N, and
this results in a downward force on the bridge of about 90 N. The strings are
excited with a bow. This interaction could be seen as a continuous “stick and
slip” mechanism, and excites both the transversal and torsional modes of the
strings. When the frictional force on the bow-string interface is larger than the
elastic restoring force, the string “sticks” to the bow and induces movement. If
the frictional force is too small, the string slips back to its original position. The
actual interaction is more complicated and has been extensively studied [90],
[13], [26]. One particular effect that affects the members of the violin family
are the so-called “wolf tones”. These are tones that are particularly difficult
to sustain, and are caused by a too-low bridge impedance at that particular
frequency.

From the modeling standpoint, it is not difficult to transform our guitar model
presented in the next chapters into a violin model. The most difficult part is the
bow-string interaction which requires a supplementary non-linear function for
the string excitation. All other elements of a violin can be modeled in exactly
the same way as in the guitar case.

3.5 The piano

The modern piano is a direct descendant of the harpsichord, and uses hammers
instead of jack to excite the strings. Out of its 300-year history, two types of
musical instruments have evolved. One is the grand piano, which is built in
various sizes, from baby grand to concert grand (up to 3m in length, shown in
figure 3.9), and the other is the upright piano, which vertically oriented strings.
Most pianos have 88 keys, and concert grand pianos contain 243 strings. For
some notes, two or three strings are used in unison, leading to interesting
coupling effects. The strings transmit a part of their vibrational energy to the
soundboard, which is nearly always made of spruce. To obtain the desired
loudness, piano strings are held at a tension that may exceed 1000 N. In order
to withstand this total force of the strings and maintain stability of tuning,
pianos use a cast iron frame. The piano action is a complex system of levers,
dampers, and a hammer, and is designed to transmit the energy from the
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Figure 3.9: A concert grand piano (Bösendorfer model 290).

player’s fingers to the string. Piano string are damped when not activated
by a key, and when the sustain pedal is depressed. This restricts the number
of string models needed for the simulation. The hammer-string interaction
is quite complex, and depends on the impact speed, the shape, the material
properties of the hammer, and the state of the string when hit. The stiffness
of the strings also introduce a significant inharmonicity of the higher partials.

The piano could be seen as an extension of the guitar, with more strings and a
different excitation. String models and string coupling mechanisms developed
for the guitar should also be applicable to the piano.

3.6 Conclusion

In this chapter, a short overview of different types of string instruments was
given. All string instruments share a common structure, and differ mostly in
the way the strings are excited. The sound of a string instrument is produced
mostly using linear vibration modes, but some effects and excitations require a
non-linear interaction. String instruments also exhibit weak or strong coupling
between the strings through the common saddle, bridge, or soundboard.
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Chapter 4

Acoustics

Acoustics, then, or the science of sound, is a very considerable
branch of physics.

Sir J. Herschel.

This chapter provides an introduction to musical acoustics. Starting from the
general equations describing sound propagation in air and the vibration of
strings in section 4.2, we derive the properties of the common acoustical build-
ing blocks of musical instruments in section 4.3. We then discuss the com-
bination of the different acoustic elements into an acoustic system in section
4.4.

4.1 Sound perception

The human ear is an amazing organic mechanical amplifier. It has evolved
to amplify the small air pressure variations we call sound, over a frequency
range of 20Hz-20kHz, and over an amplitude range of 100dB. Before we can
appreciate sound, waves in the air reach the outer ear or auricle (pinna), which
contributes to the localization of the origin of the sound. The sound waves
then reach the tympanic membrane. The membrane vibrates and the vibra-
tion is transmitted to the inner ear by mean of the three small bones, malleus

33
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(hammer), incus (anvil) and stapes (stirrup), visible on figure 4.1. The vibra-
tion causes the stirrup to act as a piston that, by displacement of a small and
thin membrane on the oval window of the cochlea, displaces the endolymphatic
content of the cochlea duct. Displacement causes the portion of the membrane,
where hair cells rest, to undulate in conjunction with another membrane on top
of the hair cells, making the hair cells transduce the mechanical energy into
neural stimulation. From the hair cells of the inner ear, the neural stimulus is
transmitted by the afferent cochlear nerve fibers to the brain stem; and from
there to the various stations along the brain center up to the cortex where
speech and sound are finally decoded [49],[84].

4.1.1 Volume and pitch perception

The perceived volume is a logaritmic function of the amplitude of the sound. It
is frequency-dependent, and is subject to psychoacoustical masking phenomena.
A quadrupling in amplitude is perceived as a doubling in volume. As for the
frequency perception, between about 1,000 Hz and 8,000 Hz, we notice changes
between frequencies whose ratios are about 1.002 or 1.003, which is roughly 200
to 350 steps per octave, or something between 1/30 and 1/15 of a musical half
step. Outside of this range, discrimination is poorer, but for most of the range
of audible frequencies we notice changes in ratios smaller than 1.01, which gives
more than 60 steps per octave, or something smaller than 1/5 of a half step.
Discrimination of frequencies played in sequence is a bit less - typically about
90 steps per octave or about 1/8 of a half step.

Musicians interested in nonstandard pitches have usually used the cent, which
is 1/100 of a half step, or the savart, which is 1/25 of a half step. In complex
sounds, frequency distinctions may be important even though they are less
than those preceptible as changes in a simple helical signal. There is also a
unit, called the mel that is like a pitch measurement, but scaled to the people’s
judgments that certain pitches are “twice as high” as others in psychological
experiments.

Taking frequency resolution between 90 and 360 steps per octave, over a range
of 10 octaves, we get 900 to 3600 distinguishable frequencies. But, it seems
that we cannot exploit those as independent bits, and the practical information
capacity of a single sound is much less.

4.1.2 Music

Music is the art of arranging sounds in time so as to produce a continuous,
unified, and evocative composition, as through melody, harmony, rhythm, and
timbre. Most western music is based on a 12-tone system that is well suited
to form harmonically pleasing chords. Each note has a corresponding funda-
mental frequency. Tables 4.1 and 4.2 show two such systems. In this work, the
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Figure 4.1: The human ear. (1) Helix The in-curve rim of the external ear, (2)
Antihelix A landmark of the outer ear, (3) Lobule The very bottom part of
the outer ear, (4) Crest of Helix A landmark of the outer ear, (5) External

Auditory Meatus or External Auditory Canal The auditory canal is the
channel through which the sounds are led from the ear outside to the middle
ear, (6) Eardrum (tympanic membrane) A thin layer of skin at the end of
the external ear canal, (7) Auditory Ossicles The three small bones in the
middle ear, know as the malleus, incus and stapes which are connected to one
another. Together these ossicles are called the ossicular chain. Their purpose
is to lead the sound striking the eardrum further into the inner ear, (8) Oval

Window An opening in the bone between the air filled middle ear cavity and
the fluid filled inner ear, and is covered by a thin membrane, (9) Cochlea Part
of the inner ear that contains part of the hearing organs, (10) Semicircular

Canals Part of the organ of balance that is part of the inner ear, (11) Eighth

Nerve Nerve that transmits messages from the inner ear to the brain, and (12)
Eustachian Tube A tube connecting the middle ear cavity and the pharynx
(back of the throat). It can be opened by coughing or swallowing, though it is
normally closed. The occasional opening of the Eustachian tube is necessary
to equalize the are in the middle ear cavity [84].
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semitone octave

C# 34.6 69.2 138.5 277.1 554.3 1108.7 2217.4
D 36.7 73.4 146.8 293.6 587.3 1174.6 2349.3
D# 38.8 77.7 155.5 311.1 622.2 1244.5 2489.0
E 41.2 82.4 164.8 329.6 659.2 1318.5 2637.0
F 43.6 87.3 174.6 349.2 698.4 1396.9 2793.8
F# 46.2 92.4 184.9 369.9 739.9 1479.9 2959.9
G 48.9 97.9 195.9 391.9 783.9 1567.9 3135.9
G# 51.9 103.8 207.6 415.3 830.6 1661.2 3322.4
A 55.0 110.0 220.0 440.0 880.0 1760.0 3520.0
A# 58.2 116.5 233.0 466.1 932.3 1864.6 3729.3
B 61.7 123.4 246.9 493.8 987.7 1975.5 3951.0
C 65.4 130.8 261.6 523.2 1046.5 2093.0 4186.0

Table 4.1: “Equally tempered” scale. The different octaves, or doublings of
the fundamental frequency, are subdivided in twelve semitones. The frequency
ratio between two semitones is constant and equal to 12

√
2. The fundamental

frequency of the middle A is set to 440 Hz in contemporary music.

equally tempered tuning will be used. Note that a musical instrument is tuned
such that it approximates a system. For purely mechanical an constructional
reasons, there are very few instruments that can be tuned exactly. Notable
exceptions are the violin family, because here, the player is able to exactly
determine the fundamental frequency of the note to be played. This is also
the reason why there often exist different versions of the same instrument. For
instance, flutes exist in contemporary and baroque tuning.

4.2 Acoustic theory

Mechanical, acoustical, or electrical vibrations are the sources of sound in mu-
sical instruments. The sensation we call sound is produced primarily by vari-
ations in air pressure that are detected by the movement of our ear drums,
and the nerve impulses generated by the sensory hair cells inside the cochlea.
The field of musical acoustics describes all the mechanisms that result in au-
dible sound waves, including the generation, propagation, and interaction of
vibrations in any medium. The field of fundamental physical acoustics goes
back to the ancient Greeks, and was developed over the centuries by the likes
of Pythagoras (c. 550 BC), Aristotle (384-322 B.C.), the “father of acoustics”
Marin Mersenne (1588-1648), Isaac Newton (1642-1727), Euler (1707-1783),
Lagrange (1736-1813), and d’Alembert (1717-1783). Today, musical acoustics
is but a small part of the research in acoustics, and provides us with mathemat-
ical models for almost any type of instrument. For the purpose of this work,
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semitone octave

C# 34.3 68.7 137.3 274.7 549.4 1098.8 2197.6
D 36.5 73.3 146.7 293.4 586.8 1137.6 2275.2
D# 38.6 77.2 154.5 309.1 618.2 1236.4 2472.8
E 41.2 82.5 165.0 330.1 660.2 1320.4 2640.8
F 43.5 86.9 173.8 347.7 695.4 1390.8 2781.6
F# 45.7 91.5 183.1 366.3 732.6 1465.2 2930.4
G 48.6 97.2 195.5 391.1 782.2 1564.4 3128.8
G# 51.5 103.0 206.0 412.0 824.0 1648.0 3296.0
A 55.0 110.0 220.0 440.0 880.0 1760.0 3520.0
A# 57.9 115.8 231.7 463.5 927.0 1854.0 3708.0
B 61.8 123.7 247.5 495.0 990.0 1980.0 3960.0
C 65.1 130.3 260.7 521.5 1043.0 2086.0 4172.0

Table 4.2: “Just” scale. The frequencies of the different notes in this scale are
based on the logical integer ratios of the harmonic series. The ratios for the
seven notes are 1:1, 9:8, 5:4, 4:3, 3:2, 5:3, 15:8, and finally 2:1. Note that the
ratio of the frequencies of two semitones is not a constant.

we restrict the study of acoustics to sound propagation in air and strings.

4.2.1 Sound propagation in air

A sound wave is a pressure wave propagating in a medium, most commonly
air. For not-too-high pressure variations, air acts as a linear medium. The
properties of sound waves are derived by the analysis of an elementary cubic
section of air. The three-dimensional scalar wave equation is found to be:

∇2p =
1

c2

∂2p

∂t2
, (4.1)

where p denotes the pressure, and c the speed of sound. Assuming sinusoidal
wave components with time dependence ejωt, equation (4.1) reduces to the
scalar Helmholtz equation

∇2p + k2p = 0, (4.2)

where k = ω/c is the wavenumber, and the speed of sound is given by

c(T ) = 332(1 + 0.00166T )m/s, (4.3)

with T the air temperature in degrees Celsius, and at 50% humidity.

We consider two particular cases: plane waves and spherical waves. The true
plane wave is the result of the excitation of the air mass by an infinite plane,
while the spherical wave is the result of a point source. For real, free-standing
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sound sources, the far field is best described as a plane wave, while the spherical
description is better suited to the near field. In musical instruments, both types
are equally important.

For plane-wave propagation along the x-axis, equation (4.1) reduces to

∂2p

∂x2
=

1

c2

∂2p

∂t2
. (4.4)

Solutions of this equation describe one-dimensional plane waves. Assuming
sinusoidal time dependence, a general frequency-domain solution is

P (x, t) = [Ae−jkx + Bejkx]ejωt, (4.5)

where A and B are the complex amplitudes for wave components going in the
right and left directions. The associated air particle velocity is

V (x, t) =
1

ρc

(

Ae−jkx − Bejkx
)

ejωt. (4.6)

It is useful to describe the acoustic properties in a system theoretic context.
This allows the definition of the wave impedance or characteristic impedance
seen by a wave leaving the source (B = 0), at one particular frequency:

Z =
P (x, t)

V (x, t)
= ρc. (4.7)

For plane-wave propagation in air, the wave impedance is real and frequency-
independent.

For spherical waves, the Laplacian in equation (4.1) has to be written in spheri-
cal coordinates. Assuming one-dimensional propagation, the equation becomes

1

x2

∂

∂x

(

x2 ∂p

∂x

)

=
1

c2

∂2p

∂t2
, (4.8)

where x measures the radial distance from the point source. A general frequency-
domain solution to equation (4.8) which assumes sinusoidal time dependence
is given by

P (x, t) =

[

A

x
e−jkx +

B

x
ejkx

]

ejωt, (4.9)

and the particle velocity is

V (x, t) =
1

ρc

[

A

x

(

1 +
1

jkx

)

e−jkx − B

x

(

1 − 1

jkx

)

ejkx

]

ejωt. (4.10)

Again, we determine the impedance for outgoing waves (B = 0) as

Z(x) =
P (x, t)

V (x, t)
= ρc

(

jkx

1 + jkx

)

. (4.11)

We see that for the far field (kx � 1), the wave impedance for spherical waves
reduces to ρc, the wave impedance for plane waves.
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4.2.2 Vibrations in strings

Very similar to sound propagation in air, wave propagation in strings can be
described with a simple differential equation. The transversal motion of an
ideal string is described by

∂2y

∂t2
= c2 ∂2y

∂x2
, (4.12)

with c the transversal wave propagation speed:

ctrans =

√

T

ρ
, (4.13)

with T the string tension and ρ the linear density of the string material. For
a finite string, rigidly attached at both ends, one solves equation 4.12 with
boundary conditions y(0) = 0 and y(L) = 0 and initial conditions y(x) =
yinit(x) and ∂y(x)/∂t = vinit(x). The traveling wave components are inverted
during the reflection. One obtains a sum of normal modes

y =
∑

n

Cn sin(ωnt + φn) sin(knx). (4.14)

For a string of length L with fixed endpoints, the modal frequencies are

fn = n
ctrans

2L
, (4.15)

with n = 1, 2, . . . . In strings, longitudinal and torsional waves are also pos-
sible. Depending on the instrument, these propagation modes are more or
less important. For instance, torsional waves are very important in bowed
string instruments. Longitudinal waves in a string are much less common than
transversal waves. Unlike transversal waves, their velocity is independent of
string tension and given by

clong =

√

E

ρ
. (4.16)

Torsional waves are also non-dispersive and depend on the shear modulus G
of the material, and can be found as a special case of torsional waves in a rod,
given by

ctors =

√

GKT

ρI
, (4.17)

where KT is the torsional stiffness factor that relates a twist to the shearing
strain produced, and I the polar moment of inertia per unit length. For round
strings, KT

∼= I and the velocity is

ctors ≈
√

G

ρ
. (4.18)
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torsional

transversal

longitudinal

Figure 4.2: There are three distinct wave propagation modes in strings: the
horizontal and vertical transversal waves, the longitudinal waves, and the tor-
sional waves.

Unlike wave propagation in air, wave propagation in strings is subject to several
non-ideal effects at low amplitude and in the frequency range of interest. Non-
ideal string motion will be discussed in chapter 10.

4.3 Acoustic elements

Musical instruments consist of many elementary parts. In this section, we
analyze the cylindrical and conical bore, the non-flaring and flaring ends, and
the Helmholtz resonator. These structures constitute the base for the models
studied later in this work.

4.3.1 Bores

Bores are most commonly cylindrical or conical cavities, used as resonating
chambers for wind instruments. Infinite cylindrical pipes with rigid, perfectly
smooth, and thermally insulating walls, have no effect on the wave propagation.
Bores have finite dimensions and non-constant diameter, introducing internal
reflections at the boundaries and diameter changes. We discuss the properties
of cylindrical and conical bores, as a general bore can be approximated by a
succession of cylindrical and conical sections.

Cylindrical bore

We derive the properties of cylindrical bores by solving the Helmholtz equation
(4.2) in cylindrical coordinates (r, θ, x) with the appropriate boundary condi-
tions (refer to figure 4.3). The wave equation becomes
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r
x

Figure 4.3: The (r, θ, x) circular cylindrical coordinate system used for a cylin-
drical bore.

1

r

∂

∂r

(

r
∂p

∂r

)

+
1

r2

∂2p

∂θ2
+

∂2p

∂x2
=

1

c2

∂2p

∂t2
. (4.19)

It is separable in circular cylindrical coordinates, and yields

d2Θ

dθ2
+ m2Θ = 0, (4.20)

r
d

dr

(

r
dR

dr

)

+ (a2r2 − m2)R = 0, (4.21)

d2X

dx2
+ (k2 − a2) = 0, (4.22)

where a and m are the separation constants. Equation (4.22) describes the
motion alongst transverse concentric circles in the pipe, while equation (4.21)
describes transverse radial motion. These modes are not very important in this
study, as they are quite difficult to excite in conventional musical instruments.
The axial wave motion, as described by equation (4.22), is the main wave
propagation mechanism. The wave impedance for a cylindrical bore is

Z0(x) =
P (x)

U(x)
=

ρc

S
, (4.23)

where U(x) represents the volume flow and S the surface of the opening of the
bore.

This is the solution for an infinite cylinder. In finite cylinders, the waves will
be partly reflected due to the discontinuities at both ends. Thus, the sinusoidal
pressure in the pipe is given by

P (x, t) = (Ae−jkx + Bejkx)ejωt (4.24)

where A and B are complex amplitudes. The input impedance for a cylinder
terminated with a load impedance ZL can be calculated as

Zin = Z0
ZLcos(kL) + jZ0sin(kL)

Z0cos(kL) + jZLsin(kL)
(4.25)

Figure 4.4 shows the input impedance for two particular (ideal) cases: a rigidly
terminated cylinder (ZL = ∞) and an open cylinder (ZL = 0). The resonance
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Figure 4.4: This figure shows the acoustic input impedance for (top) a closed
cylinder with ZL = inf, and (bottom) an open cylinder with ZL = 0. The bore
has a length of 1m and normalized Z0

frequencies are

f =
(2n − 1)c

4L
(4.26)

for an open-closed bore, with length L and n = 1, 2, . . ., and

f =
nc

2L
(4.27)

for the open-open case.

Example 4.1 The fundamental frequency for a cylindrical bore of length 1m
can be found using equation (4.26) for the open-closed case. Filling in the
values yields as the fundamental 85.8 Hz. This corresponds to the first zero
in the impedance shown in figure 4.4 (top). The higher partials are 257.4 Hz,
429 Hz, . . . , or only odd multiples of the fundamental. The open-open cylinder
has a fundamental of 171.6 Hz and higher partials at 343.23 Hz, 514.845 Hz,
. . . . 4

Note that these resonance frequencies will occur depending of the excitation.
Single-reed instruments are excited at the impedance minima, while air jets
excite the bore at the impedance maxima.

Conical bore

Spherical waves of sound can theoretically propagate without reflection or loss
away from the apex along the principal axis of an infinite conical bore, assuming
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ideal conditions. The wave equation in spherical coordinates is quite complex,
but separable, and the resulting differential equations describe sinusoidal wave
motion along each of the spherical coordinate axes. The transverse and axial
modes are described with Legendre and Bessel functions, respectively. One-
dimensional spherical-wave propagation along the central axis has a general
solution of the form:

P (x) =
C

x
e−jkx. (4.28)

For a cone with finite length, we have

P (x, t) =

(

A

x
e−jkx +

B

x
ejkx

)

ejωt. (4.29)

The wave impedance for spherical waves traveling away from the apex is given
by

Z0(x) =
ρc

S(x)

(

jkx

1 + jkx

)

=
1

S(x)
ρc + S(x)

jωρx

. (4.30)

Note that this is equivalent to a cylindrical bore in parallel with a lumped iner-
tance of acoustic mass ρx/S(x). This property has been exploited to “convert”
a clarinet (with mostly cylindrical bore) into a sopranino saxophone (with a
conical bore), just by adding a stub to the body of the clarinet. The theoretical
input impedance seen from the open end, for a complete cone is

Zin =

(

S(L)

ρc

[

cot(kL) − 1

kL

])−1

. (4.31)

Figure 4.5 shows the theoretical input impedance and admittance for a com-
plete cone. The resonance frequencies for a complete cone occur where Zin = 0
or

f =
nc

2L
, (4.32)

the same as in the case of an open-open cylinder.

In reality, a complete cone is not very useful, and a truncated cone with length
L−L0 is used instead, where L is the length of the complete cone, and L0 the
length of the truncated part. The resonance frequencies for two open ends are
given by

f =
nc

2(L − L0)
. (4.33)

When the truncated end is closed, the resonance frequencies are found as the
solutions of

tan(k(L − L0)) = −kL0. (4.34)

Figure 4.7 shows the fundamental frequency for bores going from a complete
cone, over closed-open truncated cones, to the closed-open cylinder (figure 4.6).
The structure is morphed by varying the ratio of the tip radius versus the radius
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Figure 4.5: Theoretical input impedance Zin and admittance of a complete
cone, length 1m, at the open end.

of the frustrum opening. In the case ratio = 0, we have a complete cone, and
for ratio = 1, we have a cylinder. In the complete cone case, the frequencies
of the partials correspond to the zeros of the acoustic impedance shown in
figure 4.5, and morph to the impedance zeros of figure 4.4. Note that the
frequency ratios of the partials go from nf0 for the complete cone to (2n−1)f0

for the closed-open cylinder.

Example 4.2 The effect of the truncation of a cone is clearly visible in figure
4.7. For a complete cone with length of 1m, one finds a harmonic series given
by equation (4.33), with fundamental frequency of 171 Hz, and all the integer
multiples. The partials for a truncated cone do not form a harmonic series (e.g.
for a ratio of 0.6, the partials have frequencies of f0, 2.75f0, 4.35f0, 6f0, . . . ). 4

Losses and non-ideal behavior

Wave propagation in real bores is changed by the viscous drag (in region called
the viscous layer) and thermal conduction (within the thermal layer) along the
bore walls. These phenomena affect the wave propagation at close distance of
the walls. As a result, small bores will be affected more than bores with a large
opening.

The thickness of the viscous layer is given by [11]

δvisc =

√

η

ωρ
, (4.35)
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Figure 4.6: (a) Cylinder: length L0 = ∞, and ratio = 1, (b) truncated cone,
(c) complete cone: length L0 = 0 and ratio = 0.
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where η is the viscosity of air, and ρ the density. The thickness of the thermal
boundary layer is

δtherm =

√

κ

ωρCp
, (4.36)

with κ the thermal conductivity and Cp the specific heat of air. Friction along
the walls, due to the surface roughness of the wall material, is characterized by
a parameter rv, given as the ratio of the (local) bore radius Rb to the viscous
boundary layer thickness, or

rv =

√

ωρ

η
Rb, (4.37)

and similarly, the thermal effects are characterized by a parameter rt:

rt =

√

ωρCp

η
Rb. (4.38)

The effects of these losses are incorporated into the wave equation by rewriting
the wavenumber k as

k =
ω

vp
− jα, (4.39)

where vp is the wave velocity and α the attenuation factor. An expression for
vp and α can be found in (ref Keefe 1984). For the case of air, with rc > 2 and
at 300K, they are well approximated by

v−1
p =

1

c
(1 + 1.045r−1

v ), (4.40)

α =
ω

c
(1.045r−1

v + 1.08r−2
v + 0.75r−3

v ). (4.41)

The wave amplitude decays as e−αx for plane waves or e−αx/x for spherical
waves. Figure 4.8 shows the damping factor α for two common cylindrical
bore instruments: the clarinet (typical bore radius 7.3mm) and the modern
flute (typical bore radius 9.5mm). The clarinet’s higher harmonics will be
more heavily damped than their flute counterparts, resulting in a more mellow
sound.

4.3.2 Ends

The goal of a musical instrument is to emit sound. To achieve this, a part of
the energy stored in the resonating cavity has to be radiated outwards, while
still keeping enough energy inside to sustain the internal oscillation. Tuning
the proportion of reflected versus transmitted energy can be done by altering
the impedance mismatch at the end of the bore. Typically, some form of flaring
end is used.
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Figure 4.8: The attenuation coefficient α for two bore radii: 7.3mm (typical
clarinet) and 9.5mm (typical modern flute). The damping factor is higher in
the case of the clarinet, and the difference increases at higher frequencies. The
result is that the flute has a brighter timbre than the clarinet.

Non-flaring ends

Examples of modern instruments without flaring ends are the flutes and organ
pipes. For these cases, we have to determine the sound radiation at the end of
a cylindrical bore shown on figure 4.9. This is quite similar to e.g. the sound
radiation by loudspeaker cones, and has been extensively studied in the past.
A flanged end (basically a hole in an infinite wall) has a load impedance given
by

ZL = A + jB. (4.42)

with

A = Z0

∞
∑

n=1

(−1)n+1 (ka)2n

(n!)2(n + 1)
, (4.43)

B =
Z0

π(ka)2

∞
∑

n=1

(−1)n+1 (2ka)2n+1

(

(2n−1)!
2n−1(n−1)!

)2

(2n + 1)
, (4.44)

with a the mouth radius, and k = ω/c the wave number. The reflection is then
easily calculated with

R =
ZL − Z0

ZL + Z0
, (4.45)

and the transmission
T = 1 −R. (4.46)
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a
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(b)

Figure 4.9: Two types of ends. (a) Unflanged, non-flaring end, typically found
on flutes, organ pipes, etc. (b) Unflanged, flaring end

The radiation intensity at angle θ away from the axis of the mouth has the
form

2J1(ka sin θ)

ka sin θ
, (4.47)

with J1 the first-order Bessel function. At low frequencies, the distribution is
nearly independent of the angle θ, but as the frequency increases, the energy
is primarily concentrated into a primary lobe centered on the axis. The ends
of musical instruments are typically unflanged. An explicit calculation of the
sound radiation by unflanged, non-flaring ends [55] yields that the cylindrical
bore acts as if it is lengthened by a fraction of the radius. The radiated sound
wave is more directional at higher frequencies. There is no explicit expres-
sion for radiation from a conical end. One could obtain an approximation by
describing a conical end as a sequence of cylindrical sections.

Example 4.1 The radiation intensity is easily calculated with equation
(4.47). Figure 4.10 shows the calculated intensity for a cylindrical bore, with
a mouth radius of 2 cm, evaluated at 1 kHz, 5 kHz, and 10 kHz. The higher
directivity is obvious at the higher frequencies. 4

Flaring ends

The flaring end of a musical instrument constitutes a smooth impedance tran-
sition from the bore to the surrounding air. The size and shape of the horn
determine its characteristics. The properties of cylindrical-section can be de-
rived by solving the Helmholtz equation. Unfortunately, the Helmholtz equa-
tion is only separable in coordinates that are confocal quadratic surfaces or
their degenerate forms [66], and only a few of those are likely candidates for
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Figure 4.10: Radiation intensity for an unflanged, unflaring end, at three fre-
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horn shapes. An approximate solution, for infinite horns with general shape,
can be found by solving Webster’s equation [118]

1

S(x)

∂

∂x

(

S(x)
∂p

∂x

)

=
1

c2

∂2p

∂t2
, (4.48)

where S(x) is the geometrical cross-section. The most important effect of a bell
is a lowpass effect on the transmission of the incoming sound waves. The three
most widely studied horn shapes are the conical, the exponential and the Bessel
horn. Approximate analytical formulas can be derived that adequately describe
their properties. Bessel horns in particular, provide a good approximation to
horn shapes used in musical instruments [10],[8]. The geometrical cross-section
of a Bessel horn complies to

S = Bx−2ε, (4.49)

where x is the geometrical distance measured from a reference point x = 0. If
ε = 0, the horn is cylindrical, and for ε = −1, the horn is a cone. In the most
useful case, ε is positive, which yields a horn with a rapid flare at the origin.
Solving Webster’s equation results in an analytical solution for the pressure
standing wave p(x)

p(x) = Axε+1/2Jε+1/2(kx), (4.50)

where J is a Bessel function and k the wave number. Composite horns con-
sisting of Bessel, exponential, cylindrical, and conical sections can also be de-
scribed [88]. The propagation in a flaring horn is governed by the value of the
horn function F at the point concerned. The horn function in the plane-wave
approximation is

F =
1

a

d2a(x)

dx2
, (4.51)

with a(x) the local radius of the cross-section S(x) = πa(x)2. The wave in a
horn is propagating if

k2 =
(ω

c

)2

< F, (4.52)

or attenuated if k2 > F . Close to the open mouth, a more complex spherical
approximation is needed. The net effect is the existence of a cut-off frequency
above which the transmission is attenuated.

4.3.3 Helmholtz resonator

The Helmholtz resonator is a simple one-port structure, consisting of a rela-
tively short open tube, connected to a cavity, as shown in figure 4.11. The
acoustic impedance of the tube is given by

Ztube(s) =

(

ρL

S

)

s, (4.53)
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Figure 4.11: A Helmholtz resonator, with tube length L, cross section S, and
volume Q

where L denotes the length of the tube, and S the cross section. Similarly, the
acoustic impedance of the cavity is

Zcavity(s) =

(

ρc2

Q

)

1

s
, (4.54)

with Q the volume of the cavity. Combining these two in series gives the
impedance of the Helmholtz resonator:

ZHelmholtz(s) = Ztube(s) + Zcavity(s) =

(

ρL

S

)

s +

(

ρc2

Q

)

1

s
. (4.55)

The Helmholtz resonator is the acoustic equivalent of a mass-spring system.
This very simple structure is used as a resonator in many musical instruments.
Examples of its use include the ocarina (which is in essence a tunable Helmholtz
resonator), the resonator of a sitar, or the body of a guitar.

4.4 Acoustic systems

A real musical instrument is a combination of the acoustical elements discussed
in the previous sections. The instrument’s bore can be well approximated by
a sequence of cylindrical and conical sections. The input impedance of the
complete structure can be formulated in terms of transmission matrices, quite
similar to the methods used in RF waveguide systems. The input impedance
of the different sections can be found with the knowledge of the pressure P0(ω)
and the volume flow U0(ω). These are found as:

[

P0(ω)
U0(ω)

]

= T

[

PL

UL

]

, (4.56)
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where the transmission matrix T depends on the type of section considered.
For cylindrical sections, T is given by

Tcyl =

[

cos(kL) jZ0 sin(kL)
j

Z0
sin(kL) cos(kL)

]

, (4.57)

and for a diverging conical section

Tdcone =

[

a b
c d

]

, (4.58)

with

a =
RL0

RL

»

L0

L + L0

cos(kL) −
L0

k(L + L0)2
sin(kL)

–

, (4.59)

b =
L0

L + L0

jZ0 sin(kL), (4.60)

c =
j

RL

»„

L0

L + L0

+
1

k2(L + L0)2

«

sin(kL) −
L

k(L + L0)2
cos(kL)

–

,

(4.61)

d =
L0

L + L0

»

cos(kL) +
1

kL0

sin(kL)

–

, (4.62)

and for a converging conical section

Tccone =

[

d b
c a

]

. (4.63)

The transmission matrices can be cascaded to calculate the complete structure
of N sections:

[

P0

U0

]

=

[

α β
γ δ

]

= T1T2T 3 . . . TN

[

PL

UL

]

. (4.64)

The input impedance is then found as

ZIN =
β + αZL

δ + γZL
, (4.65)

with ZL the load impedance after the last section, illustrated in figure 4.12.
Using this method, we calculate the theoretical behavior of wind instruments
in chapter 6.

The concatenation of different acoustic elements is more important in the case
of wind instruments, as these are inherently built of different parts. For string
instruments, the acoustical systems mainly consist of a link between the vibrat-
ing string, and a resonating cavity. Here, it is important to keep the same wave
variables at the boundary of the different element. For instance, the displace-
ment waves on the string are transformed to a force on the bridge, resulting
in the bridge velocity and pressure waves in the air inside the body. There is
no specific difficulty if one sees the system as parallel and series connections of
impedances.
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T1 T2 T3 T4 T5
ZIN ZL

Figure 4.12: A acoustic system consists of several connected elements, each
represented by a transmission matrix.

4.5 Conclusion

In this chapter, the general theory of linear acoustics, as applicable to musical
instruments, has been reviewed. We have discussed wave propagation in air
and in strings, and the most relevant acoustic elements. The continuous-time
solutions of this chapter will be translated to discrete-time filter structures in
the next chapter.
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Chapter 5

Digital Waveguide Models

It’s quite ironic: We got rid of our analog equipment, replaced it
with digital, then spent the next couple of decades trying to get

the digital to sound like the analog we got rid of.

David Williams

In this chapter, we briefly discuss the basics of digital waveguide systems. Much
work has already been published on the subject of digital waveguides [97],[109].
We first introduce the concept of digital waveguides as a discrete traveling-wave
solution of the wave equation in section 5.1. We then convert the acoustic
elements discussed in section 4.3 to their discrete digital waveguide equivalents
in section 5.2 and build complete digital waveguide systems in section 5.3.

This chapter provides the discrete-time models of the structures described in
chapter 4. These models will be combined in later chapters into efficient models
for complete instruments. The discretization of time and space introduces
artefacts and inaccuracies that must be dealt with, and leaves us with a series
of design options.

5.1 Digital waveguides

Digital waveguide modeling is a simple and efficient way to simulate one-
dimensional wave propagation. The use of digital waveguides was first proposed

55
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Wavetable

Modifier

output signal

Figure 5.1: Karplus-Strong synthesis. A wavetable, filled with a random sig-
nal, is periodically read out and modified. This allows the synthesis of a time-
evolving sound, starting with a relatively short waveform. Typically, the mod-
ifier consists of a lowpass filter.

by Smith [100] for the simulation of reverberation. It is related to Karplus-
Strong synthesis, described in the next section, and enables the practical use of
physical modeling for sound synthesis. The basic elements of digital waveguide
models are non-integer length delay lines, linear filters, and nonlinear elements.
In this section, the focus is on the delay lines and the associated fractional delay
filters. After a general formulation of digital waveguides in section 5.1.2, sev-
eral different fractional delay strategies are compared in section 5.1.3. Finally,
we briefly discuss the filters inherently needed to model the wave propagation
losses and dispersion in section 5.1.4.

5.1.1 Karplus-Strong Synthesis

Karplus and Strong [44] developed a very simple method for the synthesis of
plucked string and drum sounds. It is an extension to the standard wavetable
synthesis where a sampled sound signal is periodically read from memory. In
the case of Karplus-Strong synthesis, the original wavetable is filled with ran-
dom values and the samples are modified after each readout, as shown in fig-
ure 5.1. Typically, some kind of low-pass filtering is used as the modifier, as
many musical instruments have an initial attack with significant high-frequency
content, but a steady-state output with lower or decaying high frequencies. In
essence, the Karplus-Strong method implements a comb filter, excited with a
white noise burst. Karplus-Strong synthesis is not much used in its original
formulation.

5.1.2 Digital waveguides for physical modeling

A physical modeling interpretation of Karplus-Strong synthesis was given by
Jaffe and Smith [41]. From their point of view, the algorithm consists of a
high-order digital filter, which represents the string, and a noise burst, which
represents the “pluck”. Smith later formally described the two-delay digital
waveguide as the implementation of the general solution of the one-dimensional
wave equation [100], [101], [104], [103]. Sound propagation in air was discussed
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in 4.2 and the scalar one-dimensional wave equation was:

∂2p

∂x2
=

1

c2

∂2p

∂t2
. (5.1)

A general solution of this equation is

p(x, t) = f(t − x/c) + g(t + x/c), (5.2)

with f(.) and g(.) continuous functions. This is the traveling-wave solution
to the one-dimensional wave equation. Digital waveguide modeling is nothing
more than a discretization of this general solution in time and space. The
time sampling interval T is T = 1/fs, with fs the sampling frequency, and the
spatial sampling X is equal to the distance traveled by a sound wave during this
time interval, or cT meters. With this particular choice, during each temporal
interval, the traveling wave components move one spatial interval. Equation
5.2 becomes

p(tn, xm) = f([n − m]T ) + g([n + m]T ). (5.3)

The notation can be simplified by defining

p+(n, m) = f([n − m]T ), (5.4)

p−(n, m) = g([n + m]T ), (5.5)

such that

p(tn, xm) = p+(n, m) + p−(n, m). (5.6)

Figure 5.2 shows a digital waveguide section that implements the traveling-
wave solution with two digital delay lines. The upper delay line simulates the
right-traveling wave, and the lower delay line the left-traveling wave. Direct
calculation is possible at each spatial sampling interval. In a real application,
it is not likely that the desired length is an integer multiple of cT , and an
interpolation scheme is required. If we are only interested in some values, and
not the complete solution, the different unit-delay elements can be lumped into
two long delay lines. Furthermore, as it is a linear system, all linear operations
can be commuted to the ends of the delay lines. This provides us with a very
efficient system.

5.1.3 Fractional Delay

The use of a fixed sampling frequency leads to an interesting problem. The
spatial sampling distance cT , at a sampling frequency of 44.1 kHz, is approxi-
mately 7.9mm. Any length different from an integer multiple of this distance
has to be derived be interpolation. Figure 5.3 shows such an non-integer-length
delay line. Several techniques were developed to achieve this [50], [109]. Linear
interpolation methods are widely used, and are approximations of the ideal
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Figure 5.2: Digital waveguide implementation of the traveling-wave solution,
using two delay lines. The upper delay line simulates the right-traveling wave,
and the bottom delay line, the left-traveling wave. The sum of the outputs of
every unit delay of the top and the bottom delay lines is a valid solution of the
wave equation.

last sample of delay line

desired output position

c.T

z
−1

z
−1

z
−1 Fractional delay filter

integer delay length

desired non−integer delay

Figure 5.3: Schematic representation of a delay line with non-integer length.
(top) The continuous-time, continuous-length tube is spatially discretized with
sampling length cTs (middle). As the length does not translate into an integer
number of samples, the discrete version is either too short or too long. Interpo-
lation is needed to simulate the desired output point. (bottom) The true delay
is split in a conventional integer-length delay line and a fractional delay filter.
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sync interpolator. The most widely used interpolation methods are either all-
pass filtering or Lagrange interpolation. We also investigated the use of the
cubic Hermite and B-spline interpolation methods.

Lagrange interpolation is polynomial interpolation, and yields an interpolating
FIR filter with coefficients given by

h(n) =

N
∏

k=0,k 6=n

D − k

n− k
, (5.7)

with n = 0, 1, 2, . . . , N , D the fractional delay, and N the order of the filter.
The fractional delay D is found as

D =
L

cTs
− b L

cTs
c. (5.8)

The coefficients found with this equation have to be normalized to preserve
unity gain at DC. The fractional delay and filter order should fall in the range
(N − 1)/2 ≤ D ≤ (N + 1)/2 for odd N and N/2 − 1 ≤ D ≤ N/2 + 1 for even
N [109]. The first-order Lagrange interpolator is simply linear interpolation
between two samples. Higher-order Lagrange interpolators implicitly use the
derivatives of the signal to achieve higher precision, but have the disadvantage
that the fractional delay D is larger than one (depending on the order), and
thus require the shortening of the “main” delay line. Figure 5.4 compares first-
and third-order Lagrange interpolation.

The second method is IIR allpass interpolation. The coefficients of an N -th
order allpass filter are given by

ak = (−1)k

(

N

k

) N
∏

n=0

D − N + n

D − N + k + n
(5.9)

where
(

N

k

)

=
N !

k!(N − k)!)
, (5.10)

The coefficient of a first-order allpass is thus

a = −D − 1

D + 1
. (5.11)

The filter is given by

Hallpass(z) =
a + z−1

1 + az−1
. (5.12)

Allpass interpolation presents no attenuation, but has a somewhat higher error
in its phase characteristic, and the time-domain behavior results in artefacts.
Figure 5.5 compares the delay of the first-order Lagrange interpolators and the
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Figure 5.4: Frequency response and delay in samples of (solid lines) a first order
Lagrange interpolator, for delay values D = 0, 0.1, 0.2, . . . , 1, and (dashed line)
a third order Lagrange interpolator for delay values D = 1, 1.1, 1.2, . . . , 2. Fs =
44.1kHz. To make the two responses comparable, the delay of the 3rd order
filter was decreased by one. The third order Lagrange filter has a significantly
lower damping, and a flatter delay up to 5 kHz.
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Figure 5.5: Comparison of the delay of (solid lines) first-order allpass filters,
and (dashed lines) first-order Lagrange interpolators, for D = 1, 1.1, 1.2, . . . , 2
and Fs = 44.1kHz. Both filters are quite equivalent up to 3 kHz. Allpass
interpolation degrades very fast after 5 kHz, making it unsuitable for higher
pitched notes.

first-order allpass filters. For frequencies lower than 2-3 kHz, both are equally
fit for use.

Cubic Hermite interpolation, and the specific form of the Catmull-Rom splines,
use the derivatives of the signal to determine a cubic spline that interpolates two
points. Hermite interpolation is piecewise polynomial interpolation. Each cubic
Hermite spline is a linear combination of four basis functions. The Hermite
basis functions are

f1 = 2D3 − 3D2 + 1, (5.13)

f2 = −2D3 + 3D2, (5.14)

f3 = D3 − 2D2 + D, (5.15)

f4 = D3 − D2. (5.16)

Hermite interpolation uses two control points (P1 and P2), and two tangents
(T1 and T2). In matrix form, we get the interpolated value y as a function of
the fractional delay D

y =
[

D3 D2 D 1
]









2 −2 1 0
−2 3 −2 −1

0 0 1 0
1 0 0 0

















P1

P2

T1

T2









. (5.17)
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Figure 5.6: Comparison of the magnitude and delay of (solid line) Catmull-
Rom cubic interpolation, and (dashed line) 3rd order Lagrange interpolation.
Catmull-Rom cubic interpolation exhibits larger dispersion than LI3, but with
lower damping.

If there is no extra tangent information, it should be derived from extra data
points. With the so-called cardinal splines, the tangent is calculated as

Ti = a(Pi+1 − Pi−1), (5.18)

where the factor a controls the “tightness” of the spline. Catmull-Rom splines
are a special case of cardinal splines, where

Ti =
Pi+1 − Pi−1

2
. (5.19)

In matrix form, the interpolated value is found as

y =
[

D3 D2 D 1
]









−0.5 1.5 −1.5 0.5
1 −2.5 2 −0.5

−0.5 0 0.5 0
0 1 0 0

















P0

P1

P2

P3









. (5.20)

This is again a FIR filter, for a fixed fractional delay D. Figure 5.6 compares
the magnitude and delay characteristics of Catmull-Rom interpolation (CRI)
and third order Lagrange interpolation (LI3). CRI has the same delay char-
acteristics as LI1, but significantly better magnitude characteristics than LI3.

The last method studied here are the B-splines. These are not true interpolat-
ing polynomials, but approximate the curves, and have better continuity than
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Figure 5.7: Comparison of the magnitude and delay of (solid line) B-Spline
approximation, and (dashed line) 3rd order Lagrange interpolation

Hermite polynomials. The B-Spline cubic approximator is defined by:

y =
[

D3 D2 D 1
] 1

6









−1 3 −3 1
3 −6 3 0

−3 0 3 0
1 4 1 0

















P0

P1

P2

P3









. (5.21)

Figure 5.7 compares the magnitude and delay characteristics of B-Splines and
LI3. B-Spline approximation has a severe low-pass effect, but a more linear
phase characteristic than LI3.

The different methods all represent compromises between delay accuracy, damp-
ing and filter order. In table 5.1, we compare the features of the techniques
and provide directions as to which method to use for a specific situation.

5.1.4 Losses

In section 4.3.1, we have provided an overview of the losses caused by thermal
conductivity and viscous drag. The easiest way to account for losses in the
digital waveguide implementation, is to lump all losses to the ends of the delay
lines. The filter that represents lossy wave propagation over the distance cT is

H(z) = e−αcT z−c/vp (5.22)

with α and vp as defined in section 4.3.1. For a total delay of m samples (bore
of length mcT ), we can represent the commuted losses, without the main delay
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Type Order Damping Range Situation Example

LI1 1st high 5 kHz medium-high damp. clarinet
Allpass 1st zero 3 kHz low damp., low freq. piano (low)
LI3 3rd medium 10 kHz medium damp. guitar
CR 3rd low 7 kHz high freq. piano (high)
B-Spline 3rd very high 12 kHz high damp., high freq. violin

Table 5.1: Comparison of the different methods: first order Lagrange (LI1),
3rd order lagrange (LI3), Allpass, Catmull-Rom (CR), and B-Spline interpola-
tion. The range value is the highest frequency with acceptable deviation of the
intended delay. Partials above this value experience a different delay, resulting
in dispersion. Low order filters are computionally cheaper, but have the lowest
useable frequency range. First order Lagrange interpolation can be used in sit-
uations with medium-high damping and frequencies up to 5 kHz - this covers
most wind instruments.

of z−m, as

H(z) = e−αmcT zm(1−c/vp). (5.23)

For the case of air and at 300K, this is well approximated by

H(z) = e−αmcT zm1.045/rv (5.24)

The loss filter can be commuted or combined with the fractional delay and
reflection filters.

5.2 Discrete Acoustic Elements

5.2.1 Cylindrical bores

In section 4.3.1, we discussed the wave propagation in cylindrical bores. A
cylindrical bore, terminated with a reflectance RL(z) can be modeled as shown
in figure 5.8. The length of the delay line depends on the sampling rate used.
The spatial sampling distance corresponds to the distance traveled by the sound
wave in air during one sampling interval, or

Ls =
c

Fs
(5.25)

where Fs is the sampling rate and c the speed of sound in air. The digital
waveguide equivalent length of a cylindrical bore with length ` is

L =
`

Ls
=

`c

Fs
. (5.26)
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p  (n)−

p  (n)+

R L

delay line

delay line

p(0,nT)

Figure 5.8: Two-delay-line digital waveguide implementation of ideal plane-
wave propagation in a cylindrical bore, with reflection filter RL. The right-
traveling wave is represented by the top delay line, consisting of a chain of unit
delays and a fractional delay filter. The signal is reflected back into the bottom
waveguide, depeding on the load impedance.

R L

p  (n)−

p  (n)+

p(0,nT)

double length delay line

Figure 5.9: Single-delay-line version of figure 5.8. The load impedance of figure
5.8 has been commuted with the bottom delay line. This results in one delay
line of double length. Note that only one fractional delay filter is needed in
this case.

The output of the right-traveling waveguide is filtered by the reflection filter
RL and reflected back into the left-traveling waveguide.

Example 5.1 The spatial sampling distance at 44.1 kHz can be found with
equation (5.25), and is 7.78 mm. A bore with a length of 50cm results in a
delay line of length 64.26 samples. This can be implemented as two delay lines
of 64 samples, and two additional fractional delay filters with D = 0.26. The
response of a cylindrical bore of length 25cm and 50cm can be found on ? CD

Tracks 1 and 2. 4

An even simpler model uses only one delay line (of double length), as shown in
figure 5.9.

5.2.2 Conical bores

The acoustic properties of the conical bore were discussed in section 4.3.1.
The cone is defined by the total cone length, the length of the truncated part,
and the ratio of the smallest and largest radii, consistent with the definitions
in section 4.3.1. The continuous-time traveling-wave solution for a truncated
cone, shown in figure 5.11, is given by

p(x, t) =
f(t − x/c)

x
+

g(t − x/c)

x
. (5.27)
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Figure 5.10: The magnitude of the spectrum of a two-delay-line digital wave-
guide, exited with white noise. The two delay lines are 150 samples long. The
reflection filter is a scalar, RL = 0.99, and the sampling frequency Fs=44.1 kHz.
This is a simulation of an open-open cylindrical bore, with fundamental fre-
quency of 73.5 Hz, and odd harmonics.

This expression is similar to that for plane waves with the exception that the
traveling-wave components are inversely proportional to their distance form
the cone apex. This solution can be discretized as [103]

p(tn, xm) =
f([n − m]T )

x
+

g([n + m]T )

x
. (5.28)

Assuming as a boundary condition that the pressure is equal to zeros at the
open end of the cone, we can construct the digital waveguide implementation
shown in figure 5.12. Aside from the 1/x0 scaling, the digital waveguide im-
plementations of the cylindrical and conical bore appear to be identical. The
difference occurs at discontinuities: waves traveling in a truncated cone expe-
rience a complex acoustic impedance, causing a phase difference between the
pressure and the volume flow. The pressure wave reflectance seen from the
entrance of a conical bore terminated with a load impedance ZL is given by

R(x) = e−2jkL ZLZ∗
0 (L) − Z0(0)Z∗

0 (L)

ZLZ0(L) + Z0(L)Z∗
0 (L)

, (5.29)

with k the wave numer, and with Z0(0) and Z0(L) the complex impedance of
the cone at its beginning or end, respectively, determined with equation (4.30).
Figure 5.12 corresponds to the case where ZL = 0. The boundary conditions
for a closed apex impose that the volume components reflect with an inversion,
and the pressure component reflects with a phase angle 2∠Z0(x). In the case
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Figure 5.11: Cross-section of a truncated cone. The cone has a total length of
L − L0 and is defined by the ratio of the radii at x0 and xL.
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1/x
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x=L

delay line

delay line

p(0,nT)
−1

x=L

Figure 5.12: Two-delay-line digital waveguide implementation of ideal spherical
wave propagation in a conical bore, assuming zero pressure at the conical end.

of a complete cone, this is a 180◦ phase shift, but for the truncated cone, the
situation is more complicated. The pressure reflectance at L0 is found to be

R0(s) =
p+

p−
=

L0s − c

L0s + c
. (5.30)

This expression can be discretized using the usual methods, and represents
an allpass structure. The filter is then incorporated into the model shown in
figure 5.13.

Example 5.2 The output of a complete cone, excited at the apex with white
noise, can be found on ? CD Track 3. Compare this track ti the output of the
cylindrical bore. 4

R
LR0

0x=L

delay line

delay line

x=L

Figure 5.13: Two-delay-line digital waveguide implementation of a truncated
conical bore with reflection R0 at the truncated start and RL at the open end.
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T  (z)L

  R  (z)
L

  R  (z)
L

Figure 5.14: Integration of ends into digital waveguide models: (top) com-
plementary transmittance filter, (bottom) residual sound output. The right-
traveling wave (in the top delay line) is reflected back according to the reflection
filter RL. The transmittance is either explicitely defined (top), or calculated
as the residual signal (bottom).

5.2.3 Ends

The acoustic properties of unflanged and flanged ends were discussed in sec-
tion 4.3.2. Flaring ends (exponential or Bessel horns) inherently require multi-
dimensional wave propagation, and are not efficiently modeled by digital wave-
guides. It is often enough to model the end as a flanged, non-flaring end,
represented by a load impedance ZL

ZL(ω) = A(ω) + jB(ω), (5.31)

with

A(ω) = Z0

∞
∑

n=1

(−1)n+1 (ka)2n

(n!)2(n + 1)
, (5.32)

B(ω) =
Z0

π(ka)2

∞
∑

n=1

(−1)n+1 (2ka)2n+1

(

(2n−1)!
2n−1(n−1)!

)2

(2n + 1)
, (5.33)

with a the mouth radius, and k = ω/c the wave number. The reflection is then
easily calculated with

RL =
ZL − Z0

ZL + Z0
, (5.34)

and the transmission
TL = 1 −R. (5.35)

These are quite cumbersome expressions, and the transmission is often ap-
proximated by a simple linear first order low-pass filter, with cut-off frequency
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corresponding to the wave propagation cut-off given by

ω3dB = min
x

c

√

1

a(x)

d2a(x)

dx2
, (5.36)

with a(x) the local radius of the cross-section of the end. The reflection and
transmission can be explicitely included as filters, or the transmittance can be
calculated as the residual of the reflection, as shown in 5.14.

5.2.4 Strings

For transversal waves, strings are almost equivalent to cylindrical bores. The
equation governing the transversal wave was given in section 4.2.2. The length
of the delay line equivalent to a string with length ` is

L =
`Fs

ctrans
, (5.37)

with ctrans the propagation speed of transversal waves, or, when starting from
a desired fundamental frequency f0 and a string with fixed ends,

L =
Fs

2f0
. (5.38)

Strings also exhibit nonlinear effects due to their stiffness and length change
during motion. Digital waveguide systems for the simulation of non-ideal
strings are discussed in chapter 10.

5.3 Discrete acoustic systems

To model complete instruments, we need to concatenate a sequence of different
cylindrical and conical bores. At the boundary of two discontinuous sections,
there is a change in acoustic impedance, resulting in partial reflection and
transmission. The reflectance is calculated by

R =
Z2 − Z1

Z2 + Z1
. (5.39)

If we consider a sequence of two cylindrical sections, this can be simplified to

R =
S1 − S2

S1 + S2
, (5.40)

where S1,2 represents the cross-sectional area of the two cylinders. A possible
digital waveguide implementation of such a scattering junction is shown in fig-
ure 5.15. The junction is passive if −1 ≤ R ≤ 1. It is clear from equation (5.40)
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Figure 5.15: An implementation of a scattering junction at the boundary of
two cylindrical section with different radius. The reflection and transmission
are simple scalars.

that this is always the case. Conical bores yield slightly more complicated ex-
pressions, as the scattering coefficients become frequency-dependent. Filling
in the expressions for the input and output impedance of truncated cones in
equation (5.39) yields the reflection and transmission filters:

R− =
B − 1

B + 1
− 2Bγ

(B + 1)(jω + γ)
, (5.41)

R+ = −B − 1

B + 1
− 2γ

(B + 1)(jω + γ)
, (5.42)

T − = 1 + R+, (5.43)

T + = 1 + R−, (5.44)

where B is the ratio of the surface area of the two cones at the junction S1/S2

and γ is given by

γ = − c

S1 + S2

(

S1

x1
− S2

x2

)

. (5.45)

Note that in this formulation, the scattering junction filters are unstable for
negative γ. This makes a sequence of expanding and contracting conical sec-
tions especially difficult to describe - fortunately, this only occurs with very few
instruments (the English horn and oboe d’amore being notable exceptions).

It is in general better to calculate the total input impedance of the system, as
discussed in section 4.4, and to convert the continuous-time variables to the
digital waveguide variables. The conversion is given by:

[

P
U

]

=

[

P+ + P−

P+

Z0
− P−

Z∗

0

]

. (5.46)
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Figure 5.16: An implementation of a scattering junction at the boundary of
two conical sections with different radius. Contrary to the cylindrical case, we
now have non-scalar reflection and transmission filters.

Applying this to the two bores at the junction, the continuous-time transmis-
sion matrix of which is given by

[

P1

U1

]

=

[

A B
C D

] [

P2

U2

]

, (5.47)

where the transmission matrix [ A B
C D ] depends on the bore type (cfr. section

4.4), one obtains
[

P−
1

P+
2

]

=

[

R+ T −

T − R+

]

, (5.48)

for the waveguide system, where

R− =
Z∗

1

κ
(BZ∗

2 − DZ1Z
∗
2 + AZ2Z2 − CZ1Z2Z

∗
2 ), (5.49)

T − =
Z∗

1

κ
(AD − BC)(Z1Z2 + Z1Z

∗
2 ), (5.50)

R+ =
Z2

κ
(BZ1 + DZ1Z

∗
1 − AZ1Z

∗
2 − CZ1Z

∗
1Z∗

2 ), (5.51)

T + =
Z2

κ
(Z∗

1Z∗
2 + Z1Z

∗
2 ), (5.52)

with

κ = Z1Z2(B + Z∗
1 + AZ2 + CZ∗

1Z2). (5.53)

The resulting coefficients can then be approximated by simpler IIR filters. Sys-
tems containing strings are built by linking compatible wave variables, essen-
tially in the same way as for digital waveguide systems for wind instruments.
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5.4 Conclusion

In this chapter, we have introduced the digital waveguide modeling technique
used for the computationally efficient modeling of musical instruments in dis-
crete time. After the general description of the traveling-wave solution, we have
compared several fractional delay strategies. Besides the established techniques
of Lagrange and allpass interpolation, we also studied the cubic Hermite and
B-spline interpolation, and indicated in which situations a particular method
can be used. The acoustic elements of chapter 4 were converted to discrete
time models, and the method used to concatenate the elements into digital
waveguide system was explained.
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Wind Instruments
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Chapter 6

Complete Acoustic Model

The greater you understand the structure of something, the more
amazed you’ll be at the tiniest movement within it. In that sense

the possibilities are limitless.

Brian Eno

In this chapter, a complete acoustic model for a single-reed instrument is built.
The instrument consists of two parts: the resonator, needed to sustain and
acoustically amplify the partials of the sound, and the excitation mechanism.
In section 6.1, the resonator of the modern clarinet and the alto saxophone
is discussed, without the toneholes. The toneholes are the subject of chapter
8. In section 6.2, the movement of the reed is studied. We start by modeling
the reed as a memoryless spring system, and continue with second- and higher
order linear and nonlinear models. This is combined with the aerodynamical
equations for the airflow to obtain a single-reed model. Finally, the resonator
model is combined with the single-reed model to form a complete instrument.
This chapter provides a continuous-time, single-note reference model that will
be approximated in the next chapters.
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L

+

Figure 6.1: The simplest acoustic model of a clarinet consists of a long cylin-
drical bore and a conical bell.

6.1 The resonator

The simplest approximation of the clarinet body is a cylindrical tube combined
with a small conical flare, as shown in figure 6.1. This model ignores the effect
of the toneholes. The acoustic properties of a cylindrical bore were discussed
in section 4.3.1. When the reed channel is closed, we obtain a closed-open
cylinder, with resonant frequencies of

f =
(2n − 1)c

4L
. (6.1)

The bell adds dispersion at the higher frequencies. The input impedance of
the resonator can be calculated using the transmission matrices determined in
section 4.4. Figure 6.2 shows the input impedance of such a resonator, for
three different bells. At low frequencies, the bell has very little influence (cfr.
section 4.3.2). Adding the viscothermal losses described in sections 4.3.1 and
5.1.4 results in the damping of the high frequencies (cfr. equation (5.24)).

The resonator is then discretized using the digital waveguide methods described
in chapter 5. At the boundary between the cylindrical and conical parts of the
resonator, a scattering junction is needed as described in section 5.3. In this
particular case, there is no diameter discontinuity, and the scattering filters
reduce to simple lowpass and highpass filters. Filling in B = 1 in equations
(5.41) to (5.44) yields

R−(s) =
−γ

(s + γ)
, (6.2)

R+(s) =
−γ

(s + γ)
, (6.3)

T −(s) =
s

(s + γ)
, (6.4)

T +(s) =
s

(s + γ)
, (6.5)

with γ = c/(2x) (x is the length of the truncated part of the conical section).
After discretization of the filters, we obtain a structure shown in figure 6.3.
The addition of toneholes represents a significant increase in model complexity.
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Figure 6.2: A comparison of the input impedance of the simple resonator of
figure 6.1, with L = 0.5m, Lbell = 5cm, for three different cone opening angle
(solid line) 30◦, (dotted line) 45◦, (dashed line) 60◦, and ignoring losses. The
input impedances were determined using the methodology of section 4.4.

Several methods will be discussed in chapter 8. The resonator of a saxophone is
completely similar, except that one uses a conical section instead of a cylindrical
one.

6.2 The excitation mechanism

The single reed combined with the mouthpiece structure, shown on figure 6.4,
acts as a pressure-controlled valve, allowing energy into the instrument for the
initialization and maintenance of oscillations in the resonator [46],[97]. It can
be seen as a mechanical oscillator of the blown-shut type (see figure 6.5).
The operation of the single-reed excitation mechanism can be broken down
in two parts: the mechanical movement of the reed, and the aerodynamical
airflow through the tip opening. Of course, the two are interrelated, but a first
approximation can be obtained by describing both separately.

6.2.1 Reed movement

The reed is a sheet of cut cane, thin at the tip and gradually thicker towards the
heel. The reed movement is controlled by the pressure difference between the
player’s oral cavity and the pressure in the reed channel or inside the mouth-
piece. As a first approximation, the pressure in the oral cavity is considered
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Figure 6.4: Side view and bottom view of the reed-mouthpiece structure. We
define the rest opening y0, the reed facing length Lf and width w. The pressure
inside the mouthpiece, directly above the reed is pr, and the pressure in the
oral cavity of the player is poc.
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Figure 6.5: Schematic representation of (top) blown-shut (single-reed), and
(bottom) blown-open type mechanical oscillator
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constant and controlled by the player.

Simple model

A common simplification for woodwind instruments has been to neglect the
effect of the mass of the reed. This is equivalent to selecting a reed with
infinite resonance frequency. The force Fr on the reed is

Fr = wLfp∆ (6.6)

where w is the width of the reed, Lf the facing curve length, and p∆ the
pressure difference between the pressure in oral cavity of the player poc and
the pressure in the mouthpiece pr. The displacement of the reed from its rest
position y0, which is also the tip opening of the mouthpiece quoted by the
manufacturers, is simply determined by Hooke’s law

∆y =
Fr

k
, (6.7)

with k the spring constant of the reed. The actual tip opening is

y = y0 − ∆y. (6.8)

Example 6.1 For an alto saxophone mouthpiece and reed, a typical rest open-
ing is in the range of 0.5-1 mm, and values for k range from 1000-2000 N/m.
The reed width is w=16 mm. For a middle-of-the-road reed/mouthpiece com-
bination with Lf=10mm, y0=0.7 mm, k=1500 N/m, the force required to close
the reed opening is 1.05 N, or a pressure difference of p∆=6562 Pa. 4

Second order model

A more precise approach is to describe the reed as a complete damped mass-
spring system. The reed movement for a given applied force is described by
the differential equation

m
d2y

dt2
+ µ

dy

dt
+ ky = Fr(t). (6.9)

The transfer function is easily found to be

Hreed(s) =
1

ms2 + µs + k
=

1/m

s2 + 2ξωns + ω2
n

. (6.10)

This is implemented as an IIR filter. The parameters m, µ and k can be
measured by several methods.
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Reed k(Nm−1) µ(s−1)
Vandoren Classic 2 1020 150
Vandoren Classic 2 1

2 1170 220
Vandoren Classic 3 1660 280
Vandoren Classic 3 1

2 2150 380

Table 6.1: Measured parameters of several alto saxophone reeds, averaged over
several reeds of the same strength. For this particular manufacturer, half a
“strength” more means a reed with a 1.3 times larger spring constant and
damping. This is expected, as reeds of the same type (here “Classic”) differ
only in thickness.

Higher order model

A reed is in essence a thin bar (cantilever), clamped at one end, with a force
applied on its surface. The partial differential equation that describes this
situation is

EI
∂4y(x, t)

∂x4
= −wp∆(t) − ρ

∂2y(x, t)

∂t2
, (6.11)

with E Young’s modulus, and I the moment of inertia, or

ρ
∂2y(x, t)

∂t2
+ EI

∂4y(x, t)

∂x4
= −wp∆(t). (6.12)

We first consider the homogenous equation

ρ
∂2y(x, t)

∂t2
+ EI

∂4y(x, t)

∂x4
= 0. (6.13)

We write the reed displacement y(x, t) as

y(x, t) = X(x)T (t), (6.14)

such that equation 6.13 becomes

T (t)′′

T (t)
+

EI

ρ

X(x)′′′′

X(x)
= 0, (6.15)

or
T (t)′′

T (t)
= −EI

ρ

X(x)′′′′

X(x)
= −ω2. (6.16)

This separates in two equations

T (t)′′ + ω2T (t) = 0, (6.17)

X(x)′′′′ − ρ

EI
ω2X(x) = 0. (6.18)
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Figure 6.6: Graphical representation of the condition for the non-trivial solu-
tions. The crossings are the roots of the nonlinear equation.

The solutions for these equations are

T (t) = C1 sin(ωt) + C2 cos(ωt) (6.19)

X(x) = C3 sinh(λx) + C4 cosh(λx) + C5 sin(λx) + C6 cos(λx) (6.20)

where λ =
(

ω2ρ
EI

)1/4

. The boundary conditions for a cantilever of length L,

fixed at one end, translate to

y(0, t) = X(0) = 0, (6.21)

y′(0, t) = X ′(0) = 0, (6.22)

for the displacement and speed of the fixed end, and

y′′(L, t) = X ′′(L) = 0, (6.23)

y′′′(L, t) = X ′′′(L) = 0, (6.24)

for the free end. Applying these boundary conditions on equation (6.20), and
for the non-trivial solution (ω 6= 0), one gets the condition

cos(λL) cosh(λL) + 1 = 0. (6.25)

Figure 6.6 shows the graphical solution of this equation.

A good numerical approximation can be found for both small and large values
of λL. For small λL, we determine the Taylor expansion around λL = π/2 and
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λL (solved) λL (approx.) ω
1.875 1.862 1370 Hz
4.694 4.712 8568 Hz
7.859 7.853 24 kHz
10.996 10.996 47 kHz
14.137 14.137 77 kHz

Table 6.2: Roots of equation 6.25 with corresponding natural resonance fre-
quencies, calculated for a facing length of 8mm, reed width of 17mm and
thickness 0.4mm. The left column shows the result of the numerical solution,
the middle column the result obtained with the approximations.

get

−1/ cosh(λL) ≈ −sech(
π

2
) + sech(

π

2
) tanh(

π

2
)
(

λL − π

2

)

+ O
{

(λL − π

2
)3

}

,

(6.26)

cos(λL) ≈ −
(

λL − π

2

)

+ O
{

(λL − π

2
)3

}

. (6.27)

Solving equation with these approximations yields

λL =
−π − 2sech(π

2 ) − πsech(π
2 ) tanh(π

2 )

−2 − 2sech(π
2 ) tanh(π

2 )
= 1.862. (6.28)

For larger values of λL, −1/ cosh(λL) ≈ 0, and thus the solutions are

λL = π/2 + kπ, (6.29)

with k = 1, 2, . . . . The values for the numerical solution and approximations of
λL and resonance frequencies obtained are shown in table 6.2. Only the lower
two modes are important, as the higher modes fall outside the human hearing
range, which implies that it is possible to model the cantilever approximation
of the reed movement at the tip of the reed with two second-order models, with
resonances at the first two natural resonances of the cantilever.

We now examine the static solution of the differential equation. At the cut-off
pressure (static pressure at which the tip opening is closed), the reed should
lay smoothly on the mouthpiece face. If we consider that the pressure exerts a
constant force p∆w per surface area of the reed, the reed shape is

∆y(x) =
p∆wx2(6L2

f − 4Lfx + x2)

24D
, (6.30)

where x is the position along the reed, Lf is the facing length of the mouthpiece,
and D is the flexural rigidity of the reed given by

D =
Eh3

12(1 − ν2)
, (6.31)
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Figure 6.7: Reed displacement for different values of p∆ for a tip opening at rest
of 2.8mm and a facing length of 12mm. Note that the displacement near the
tip of the reed is lineary proportional to the pressure difference. This justifies
the use of the low-order models for the simulation of the airflow through the
tip opening.

with h the thickness, E the Young modulus, and ν the Poisson ratio (ratio of
transverse contraction strain to longitudinal extension strain in the direction
of stretching force) of the reed [51]. This shape ensures the smoothest possible
closing. The rigidity can be determined for a given cut-off pressure pco: the
maximum displacement

max(∆y) =
pcowL4

f

8D
(6.32)

is then equal to the tip rest opening y0, or

D =
pcowL4

f

8y0
. (6.33)

This rigidity value corresponds to the “ideal” reed for the given facing length
and tip opening. Harder or softer reeds assume a different shape. The shape of
the ideal reed for different values of p∆ is shown in figure 6.7. If the mouthpiece
does not follow this shape, the reed will touch it, limiting the movement of that
part of the reed. This changes the effective facing length, and thus the spring
constant and resonance frequency. The same holds if a softer or harder reed is
used. Figure 6.8 shows the measured shape of the curve of two alto saxophone
mouthpieces with different tip opening, and figure 6.9 compares the shape of the
ideal reed for a facing length of 22mm and a tip opening of 2.413mm, at cut-off
pressure, with the measured shape of a Berg Larsen 95/1 SMS stainless steel
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Figure 6.8: Measured shape of the curve of a (top) Berg Larsen 95/1 SMS, and
(bottom) Selmer D “Jazz” metal alto saxophone mouthpieces.
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Figure 6.9: Comparison of (solid line) the theoretical shape of the reed at
pco, and (dashed line) the measured shape of a Berg Larsen 95/1 SMS alto
saxophone mouthpiece. The shapes are the same to within the measurement
error, suggesting that manufacturers found this shape to be optimal.

alto saxophone mouthpiece. The shapes match up to the measurement error
on the shape of the mouthpiece. This suggests that mouthpiece manufacturers,
knowingly or not, determined that this theoretical shape is the optimal one for
a given tip opening and facing length. In a practical playing situation, the
musician will partly close the tip opening by pressing the reed with his/her
lips, such that only a part of the curve is actually used, as shown in figure 6.10.
This however strongly depends on the personal playing style of the musician.
For a given facing length and tip opening, it is now possible to calculate the
“strength” of the reed that will provide the player with the largest dynamic
range.

Non-linear model
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L2

L1

Figure 6.10: The player usually only uses a part of the facing length by pressing
closer to the mouthpiece at different places.

The previous systems assume that the properties of the reed stay constant over
the movement range of the reed. If the reed is completely linear, one expects
to measure an impulse spectrum comprised of damped sinusoids with constant
damping. It was experimentally determined that this is not the case, and that
the damping is amplitude-dependent [29]. At larger amplitudes, the damping
is significantly (a factor 2) larger than at small amplitudes. A good fit for the
observed data is of the form

µ(A) = (αA + β)µ0, (6.34)

where A denotes the amplitude, α and β are the parameters, and µ0 the low-
amplitude damping. Typical values for α = 1.25 and β = 0.75 were found
for reeds of different brands and hardness. Note that this is not an acousti-
cally correct description, but an engineering model that produces appropriate
output.

6.2.2 Airflow

The airflow over the reed into or out of the mouthpiece chamber is primarily
determined be the surface of the opening So and the pressure difference p∆.
The volume flow is determined from the Bernoulli equation and is described
by [6],[120]

ur = Sosgn (p∆)

√

2p∆

ρ
. (6.35)

A key assumption behind the derivation of this equation is that the air jet
separates from the wall at the end of the reed channel, forming a free jet into
the mouthpiece. As a result, the pressure in the reed channel pr is equal to the
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Figure 6.11: The different pressures (p) and volume flows (u) considered in
the airflow model. We differentiate between the oral cavity area (oc), the reed
channel (r), and mouthpiece (m).

pressure in the mouthpiece pm. This is justified by the large abrupt transition
in cross-sectional area from reed channel to mouthpiece.

The influence of blowing pressure on the playing frequency of the clarinet has
been systematically studied in [7]. Bak et al. observed an increase of frequency
with increasing blowing pressure. This is easily incorporated by slightly modi-
fying the rest opening for higher blowing pressures.

6.2.3 Single-reed models

We now have enough information to build an approximate model for the com-
plete single-reed structure. If we use the simple motion model, and combine
equations (6.7) and (6.35), we get that

ur = w(y0 −
wLfp∆

k
)sgn (p∆)

√

2p∆

ρ
, (6.36)

or with cut-off pressure pco = ky0

Sr
:

ur = wy0(1 − p∆

pco
)sgn (p∆)

√

2p∆

ρ
. (6.37)
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Figure 6.12: Normalized total volume flow through a single-reed structure, with
p∆ relative to the cut-off pressure pco. For p∆/pco < 0, the flow increases as
the pressure difference increases, as there is no limit to the displacement of the
reed. When p∆ = 0, there is no airflow at all. For 0 < p∆ < pco, the airflow first
increases due to the increase pressure difference, and then decreases because
the surface of the tip opening is decreasing. At p∆/pco = 1, the reed channel
is closed and no air can flow.

The total airflow through the reed channel is converted into a pressure by the
acoustic impedance of the bore

p = urZbore. (6.38)

Figure 6.12 shows the total flow. For the steady-state (DC) flow, the input
impedance of the bore can be considered zero, such that p∆ can approximated
by poc. The static flow is now given by

urs = wy0(1 − poc

pco
)

√

2poc

ρ
, (6.39)

and is shown in figure 6.13. The dynamic component is

urd =















urs

(

1 + pr

pco−poc

)
√

1 − pr

poc
if poc > pr > poc − pco

0 if pr ≤ poc − pco

−urs

(

1 + pr

pco−poc

)
√

pr

poc
− 1 if poc > pr > poc − pco

(6.40)

Several different implementations exist for single-reed models. These will be
discussed in section 7.2.2.
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Figure 6.13: Static volume flow. The total airflow through the bore of the
instrument consists of this static (DC) airflow (carrying no audio information),
and the dynamic flow given by equation (6.40). This figure essentially shows
the operating point chosen by the player for a particular oral cavity pressure.

6.3 The complete instrument

To obtain a complete acoustic model of the instrument, the excitation mecha-
nism has to be connected to the resonator. The input of the instrument model
are the oral cavity pressure poc and the reed opening at rest y0. These two
variables allow the calculation of the airflow through the reed channel. This
airflow is converted by the bore input impedance into a pressure. This pres-
sure determines the pressure difference between mouthpiece and oral cavity,
and propagates along the bore. This presents no particular difficulties if a
valid implementation of the airflow equations is chosen. The output of the
mouthpiece/reed model is connected to the inputs of the digital waveguide
model of the bore, and vice versa. This will be done in more detail in the next
chapter.

Example 6.2 ? CD Track 4 is the output of a complete instrument model of
the clarinet. It consists of the single-reed excitation mechanism coupled to a
cylindrical bore. ? CD Track 5 is generated with the same single-reed model,
but coupled to a conical bore, resulting in an approximation of a saxophone.

4
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6.4 Conclusion

In this chapter, a complete acoustic model for a single-reed instrument was
built. We first discussed a simple resonator model, composed of a cylindrical
bore and a conical bell. It was shown that the fundamental frequency is largely
unaffected by the presence of the bell. However, we notice a slight shift for the
higher partials, resulting in an inharmonic spectrum. We studied both low- and
high order linear and non-linear models for the reed movement. The higher-
order linear models showed that the movement of the tip under static pressure
is proportional to the applied pressure, and that only two vibration modes are
within audible range. This allows the use of one or two simple second-order
models to model the reed behavior. Finally, we described the airflow through
the reed tip opening. The airflow, and thus outgoing pressure, depends on the
pressure difference between the oral cavity of the player, and the pressure inside
the mouthpiece, and is strongly non-linear. In this chapter, the resonator and
excitation mechanism were discussed as essentially independent elements. In
the next chapter, a holistic solution will be investigated.



Chapter 7

Formant Filtered Model

Jazz is the only music in which the same note can be played night
after night but differently each time.

Ornette Coleman

In the previous chapter, complete acoustic models for the clarinet and the saxo-
phone were discussed. Here, we present practical implementations of simplified
models, and take a closer look at the calibration issues. We combine the tradi-
tional physical modeling view with source-filter synthesis by adding a dynamic
formant filter.

The models from the previous chapter were built from the acoustics perspective,
using the physical properties of the different elements of the instrument to
obtain a model. In this chapter, we approach the same problem from the
synthesis standpoint, and see how both approaches can be combined. For
synthesis, simplicity is the key. Unfortunately, the simplest models have a
very poor degree of realism, and thus more elements derived in the previous
chapter have to be introduced. By exploiting the formant-like spectrum of
wind instruments and the efficient digital waveguide synthesis, we obtain a new
model class that offers a high sound quality, while circumventing the problems
of a pure acoustic solution. This is achieved by adding a dynamic equalization
filter, or Formant filter, to a digital waveguide model.

From the synthesis standpoint, the simplest existing models for wind instru-
ment sound synthesis are the McIntyre-Schumacher-Woodhouse models.

91
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Figure 7.1: The McIntyre, Schumacher, and Woodhouse model simplifies the
full acoustic model by dividing the instrument in a linear and a non-linear part.

7.1 McIntyre-Schumacher-Woodhouse model

A simple and generic physical model has been studied by McIntyre, Schu-
macher, and Woodhouse (MSW) [60]. In MSW, tone production can be divided
into two main parts: a nonlinear excitation and a linear resonator (see figure
7.1). For a given instrument, MSW synthesis models the objects and actions
as a compact set of equations. The most complicated and instrument-specific
equations describe the excitation, while the linear resonator primarily consists
of a delay line and a linear filter. To obtain realistic results with this approach,
a different model is needed for each note. The effective bore length (and thus
the time delay) changes for different notes, as does the tonehole configuration
and thus the internal reflection function. Notes played in a different register by
using register holes or a different embouchure on the real instrument can also
be modeled with a different bore length.

The structure of these models is very much like the full acoustic model structure
derived in the previous chapter, but instead of having one model for all notes,
we have one model per note. In the next section, we determine the different
parts of this model, and see how the calibration of the non-linear excitation
can be simplified by the addition of a formant filter.

7.2 The Formant filtered model

By combining source-filter synthesis with waveguide synthesis, we obtain a
model that is both accurate and easy to calibrate.

In source-filter synthesis, or subtractive synthesis, the sound is obtained by
filtering an excitation signal with a time-varying filter. It was mostly used to
produce speech, but also has musical applications [63],[64],[91]. The classical
source-filter synthesis is depicted in figure 7.2. The idea is to have a broadband
or harmonically rich excitation signal which is filtered to obtain the desired
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Figure 7.2: Source-filter synthesis. A time-varying filter is excited with white
noise or an impulse train. The control parameters are the filter coefficients and
the pitch of the impulse train.
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Figure 7.3: The formant-like structure of the spectrum of a wind instrument
can be synthesized by filtering the pre-whitened output of a digital waveguide
model.

signal. Typically, a white noise or impulse train generator is used.

Wind instruments have a spectrum that is harmonically rich, and the spectral
envelope of the partials is very formant-like. A formant is a (band-limited)
concentration of energy in the spectrum of the signal. Formants are well-
known features in speech recognition and synthesis, and specific formant wave-
functions were developed for musical application, mostly for the synthesis of
singing voices [92].

By exploiting the formant-like spectrum of wind instruments and the efficient
digital waveguide synthesis, we obtain a model that has better calibration prop-
erties than plain digital waveguide models. We achieve this by introducing a
formant filter. This formant filter is a post-equalization filter that corrects the
amplitudes of the partials such that they match a recording. This is quite
similar to source-filter synthesis, but the excitation for the filter is a waveg-
uide model of a wind instrument. The principle is illustrated in figure 7.3 This
method has the advantage that the transients are mostly affected by the waveg-
uide model, and the spectral envelope of the steady-state sound is controlled
by the formant filter.

7.2.1 Linear part
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The linear part of the model represents the instrument bore, the toneholes, and
the bell. As we are only modeling one note, it is possible to lump all filtering
effects together in one filter, and all time-delay into one delay line.

The time delay originates mainly in the length of the bore. Its length can be
calculated with

L =
Fs

χf0
, (7.1)

where Fs the sampling frequency, χ the integer proportionality factor depending
on the bore type (conical or cylindrical) and f0 the fundamental frequency of
the note being modeled. It is clear that L seldomly has an integer value. The
different fractional delay implementation were explained in section 5.1.3. We
used a first order Lagrange (linear) interpolator because of its simplicity (refer
to table 5.1). The coefficients of the general Lagrange interpolator are given
by

h(n) =

N
∏

k=0,k 6=n

D − k

n− k
, (7.2)

where D is the fractional delay and N the order of the filter, n = 0, 1, . . .N .
The first order FIR filter (N = 1)is then calculated as

h(n) =
[

h(0) h(1)
]

=
[

−(D − 1) D
]

. (7.3)

Due to the physical structure of the bore, the toneholes, the bell, dispersion,
and losses, the frequencies of the partials might be inharmonic. A very similar
situation exists when modeling string instruments: the stiffness of the string
introduces inharmonic behavior for the partials. We can easily correct these
small frequency differences by using an allpass filter [41]. The allpass filter
introduces a frequency-dependent phase delay, leading to slightly different fre-
quencies for the higher partials. The bore length yielding an n-th partial of
frequency νr is

L = χn
c

νr
, (7.4)

where c is the speed of sound in air. The frequency dependent bore length
difference between the recording (with frequencies νr) and the synthetic sound
(νs) can now be calculated as

∆L = χn

(

c

νr
− c

νs

)

. (7.5)

The phase θ(ν) of the all-pass filter now becomes

θ(ν) = 2π
∆L

c
νs. (7.6)
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Several techniques exist for the design of all-pass filters [78]. In this model, we
used a simple first order all-pass filter of the form

Hap(z) =
a + z−1

1 + az−1
, (7.7)

where a is a real coefficient, fitted such that the phase of Hap(z) follows equation
(7.6). Note that this filter is not able to correct all the partials individually.
The slight inharmonicity of the partials is almost inaudible.

7.2.2 Non-linear part

Several non-linear models for the single-reed mechanism were discussed in sec-
tion 6.2. Here, we choose one specific implementation for the excitation mech-
anism. A good choice is the second order reed motion model with constant
parameters. There are several possible implementations:

• direct implementation of the non-linear function;

• using a pressure-dependent reflection coefficient;

• using a reed-reflection polynomial.

Non-linear function

The linear and non-linear models discussed in section 6.2 can be directly im-
plemented. It is however not trivial to obtain a good implementation. All the
models are based on the pressure difference p∆ = poc − pr. The pressure in the
mouthpiece is determined by the incoming volume flow ur,

ur = wy · sgn (p∆)

√

2|p∆|
ρ

, (7.8)

the displacement flow urs caused by the reed motion,

urs = Sr
dy

dt
, (7.9)

and the incoming pressure from the bore. Combining these gives the outgoing
pressure wave

p+(t) = Z0b (ur(t) − urs(t)) + p−(t) (7.10)

Solving this equation to p+ yields several solutions (depending on the sign of
p∆)

p+ =
wyZ0b

(

wyZ0b ±
√

(wyZ0b)2 − 4ρp− − 2ρpoc + 2ρZ0burs

)

ρ
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Figure 7.4: The reed/mouthpiece structure as a black box. The output of the
reed/mouthpiece structure can be analytically determined, or approximated by
a reflection function.

−Z0burs + p−, (7.11)

p+ =
wyZ0b

(

−wyZ0b ±
√

(wyZ0b)2 − 4ρp− + 2ρpoc + 2ρZ0burs

)

ρ

−Z0burs + p−. (7.12)

If we disregard the displacement flow, which is two orders of magnitude smaller
than the incoming volume flow, this simplifies to

p+ =
wyZ0b

(

wyZ0b ±
√

(wyZ0b)2 − 4ρp− − 2ρpoc

)

ρ
+ p−,

(7.13)

p+ =
wyZ0b

(

−wyZ0b ±
√

(wyZ0b)2 − 4ρp− + 2ρpoc

)

ρ
+ p−.

(7.14)

The analytical calculation of the reflection coefficient R(p∆) of figure 7.4 is
non-trivial when using the complete non-linear function.

Pressure-dependent reflection coefficient

An efficient alternative was proposed in [101], where the reed/bore junction
is modeled with a memory-less reflection coefficient that varies in response to
the pressure changes. The reed system is represented by a lumped acoustic
impedance. Assuming continuity of the volume flow, it is easy to see that

p+ =
poc

2
+ R(p∆)

(

p− − poc

2

)

, (7.15)

where the pressure-dependent reflection coefficient is calculated as

R(p∆) =
Zr(p∆) − Z0b

Zr(p∆) + Z0b
, (7.16)

with Zr the acoustic impedance of the reed channel and Z0b the characteristic
impedance of the bore.
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Figure 7.5: The scattering junction used to determine the reed-reflection poly-
nomial model. The pressure difference p̃∆ is assumed to be independent of the
outgoing pressure p+.

Reed-reflection polynomial

Another technique approximates the excitation mechanism by a polynomial
[20],[21]. The reflection and transmission properties of the junction are assumed
to depend on p̃∆ = p+

oc/2 − p−. Figure 7.5 shows the reed-bore junction used
considered to determine this model. When the reed channel is, perfect non-
inverting reflection occur at the junction. The reflection is approximated by a
polynomial such that

p+ = p+
oc −

(

c1p̃∆ + c2p̃
2
∆ + c3p̃

3
∆

)

. (7.17)

Combination

The Pressure-Dependent Reflection Coefficient method in combination with a
damped mass-spring system (see figure 7.6) allows the use of natural param-
eters (reed stiffness, resonant frequency, reed tip/mouthpiece distance) and is
inherently passive, thus improving the numerical stability. The reflection coef-
ficient is calculated as

R =
Zr − Zb

Zr + Zb
, (7.18)

where Zr is the acoustic impedance of the reed/mouthpiece structure and Zb

represents the acoustic impedance of the instrument bore. Zr is determined by

Zr =
p∆

ur
, (7.19)

where the pressure difference p∆ = pin − p− between the oral cavity and the
tone chamber results from the feedback and input. The model is free of de-
layless loops as there is no implicit feedback with this definition of p∆, so no
special mathematical problems occur [14]. Note that in reality, the pressure
difference is given by p∆ = pin − (p+ + p−). Implementing this requires either
the introduction of a delay, the analytical solution given by equations 7.13 and
7.14, or an iterative numerical solution. Both choices for p∆ generate quite
similar outputs.
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Figure 7.6: The non-linear excitation mechanism. The input and reflected wave
determine the pressure difference p∆ which drives a second-order damped mass-
spring system, yielding the new reed opening y. With this opening, the volume
flow ur is calculated. The acoustic impedance of the reed/mouthpiece Zr can
now be calculated with ur and p∆. Knowledge of Zr leads to the reflection
coefficient R.

The volume flow ur or the airflow through the tip opening is calculated as

ur = w(y0 − y)

√

2p∆

ρ
, (7.20)

(w is the width of the reed, y the tip opening, y0 the tip opening at rest and ρ
the density of air). Further refinements of this formula were proposed in [6] and
were discussed in section 6.2. The tip opening was found as the displacement
of the reed modeled as a damped mass-spring system with transfer function

H =
A

s2 + 2ζωns + ω2
n

, (7.21)

in which ζ is the damping coefficient and ωn the natural resonance frequency
of the reed. The factor A is chosen such that the displacement y is equal to the
rest opening y0 when the DC input pressure equals the cut-off pressure. The
displacement is then

y(s) = HFr(s), (7.22)

where Fr = Srp∆ represents the force on the reed with surface Sr. The actual
implementation uses a discretization H(z) obtained by applying the backward
Euler transform on (7.21). Figure 7.6 represents the complete non-linear part.
The more accurate model described in section 6.2, including displacement-
dependent damping as a parameter has also been implemented [29]. Other
models can be found in [48], [14].

In the MSW model, we can interpret the linear part as the part that deter-
mines the allowed frequencies, and the non-linear part as the distributor of the
incoming and reflected energy at these frequencies. Of course, there is some
interaction between the two parts through the feedback (see figure 7.1). In the
normal playing range of the instrument, the reed behavior can be approximated
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by a memoryless function [6],[77],[60]. By doing this, the whole non-linearity
becomes memoryless and will not introduce any phase change in the loop. As
the frequencies of the partials are defined by the total time delay of the loop
(true delay and phase changes), they are independent of the non-linearity itself.
In this light, a fortissimo-played (but not overblown) instrument can be seen
as a fully excited system, in which the amplitude of every allowed frequency
has reached its maximum. It also means that when played on a softer level the
amplitudes of some of the allowed frequencies will be lower, but the frequencies
themselves do not change. Figure 7.7 shows the spectra of a clarinet at three
playing levels. We see that for low-amplitude input, only the fundamental fre-
quency and the first harmonic are present. Louder playing levels introduce
more harmonics. Physically, this is caused by the non-linearity of the reed at
higher displacements. For (theoretical) amplitudes larger than the opening at
rest of the reed, hard clipping (beating) occurs.
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Figure 7.7: The measured amplitude spectrum of a clarinet played at three
input levels (pianissimo, mezzoforte, and fortissimo). We see that for low-
amplitude input, only the fundamental frequency and the first harmonic are
present. Louder playing levels introduce more harmonics. Physically, this is
caused by the non-linearity of the reed at higher displacements. For (theo-
retical) amplitudes larger than the opening at rest of the reed, hard clipping
(beating) occurs.

7.2.3 Formant Filter

The idea is now to split the non-linearity into two parts: a non-linear function,
with maximum poc input (but still a variable y0) and a linear filter, dependent
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Figure 7.8: The MSW model has been combined with a formant filter. The
physical model now acts as an oscillator with maximum input. The linear part
has been split in a delay line and a filter part including a fractional delay filter
and the allpass filter. The output goes through the input-dependent formant
Filter.

on poc. The linear filter will adjust the amplitudes of the partials for all possible
input levels. By doing this, the player loses direct control over the blowing
pressure in the reed model (the player now controls the filter) but still controls
the reed opening.

To achieve this division, a formant filter will be used. The first step in the
formant filter design is to determine the spectral envelopes of the maximum-
input model (Hmaximum-input envelope) and of a recording (Hdesired envelope). The
formant filter is given by:

Hfilter =
Hdesired envelope

Hmaximum-input envelope
, (7.23)

Note that the poles of this filter might introduce unacceptable gains, so some
precautions might be necessary: adding a high-pass filter to decrease the DC
gain, adding a lowpass filter to decrease the high-frequency gain, and damping
the resonant peaks. The order of this filter and the methodology used to
calculate the envelopes will determine the final precision of the filter. Ideally,
this filter should be determined at all possible inputs. In practice, the filter
will only be determined for a few input pressures. By using interpolation, one
is able to calculate intermediate approximations.

Second order filters

The second-order spectral envelope can be described by

Henv =
Aenvω

2
env

s2 + 2ξenvωenvs + ω2
env

, (7.24)

in which Aenv denotes the amplitude, ξenv the damping coefficient (0 < ξenv ≤
1) and ωenv the resonant frequency in the absence of damping [68]. The lower
limit for the parameter ξenv (ξenv > 0) ensures that a stable filter is obtained.
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Figure 7.9: The second-order envelope spectrum of equation (7.24) (dashed
line) fitted to the spectrum of a softly and loudly played clarinet (full line).

Without the upper limit ξenv ≤ 1, the poles of system would split to two
different, real poles. The coefficients of this filter can be found by minimizing
the weighted least squares problem (WLS) with cost function

F =
∑

W |S|(|S| − |Henv|)2. (7.25)

Here, S is the spectrum of the signal as determined by the Short-Time Fourier
Transform. W is a scaling factor, chosen large when |S| > |Henv| and small
otherwise. The goal of this cost function is to minimize (|S| − |Henv|)2, but
weighted such that the dominant spectral peaks are accurately followed. This is
done by an extra multiplication with |S|: strong peaks have more impact that
small peaks or the noise floor. The extra weighting with W is needed to ensure
that the spectral envelope is “dressed” on top of those peaks. Standard LS fits
the envelope through the peaks in the spectrum: giving more weight to the
spectrum above the fitted envelope pulls the fit upwards. The WLS problem
is solved with a Gauss-Newton algorithm. Figure 7.9 shows two such spectral
envelopes. Plotting the extracted coefficients (see figure 7.10) as a function
of time for a soft-to-loud sequence reveals that the spectral envelopes go from
highly-resonant (with resonance peak around the fundamental frequency), to
fully damped (with -3dB frequency around three times the fundamental fre-
quency). The resulting formant filter according to eq. (7.23) is

Hfilter =
Arω

2
r

Asω2
s

s2 + 2ξsωss + ω2
s

s2 + 2ξrωrs + ω2
r

, (7.26)
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Figure 7.10: Evolution of the envelope parameters for a pp to ff to pp recording.
Shown are the extracted amplitude (Aenv), resonant frequency (ωn,env) and
damping coefficient (ξenv). Note that ξenv clips to its maximal value (1) for
the highest amplitudes. The frames are 1024 samples or 23.2 ms long (44.1kHz
sampling rate), the complete signal has 17.4 s duration.
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in which the subscripts r and s denote the parameters estimated from respec-
tively the recording and the synthetic output.

Linear Predictive Coding

Extension to N -th order is possible using a technique like Linear Predictive
Coding. LPC fits an allpole model with transfer function

Hlpc(z) =
G

1 +
p
∑

k=1

akz−k

, (7.27)

where G is a gain factor. LPC does not exactly yield the spectral envelope,
but a best fit according to some cost function. The standard LP method uses
least squares as the error measure. Linear prediction has two important spec-
tral matching properties [57]: globally, the matching process should perform
uniformly over the whole frequency range, irrespective of the general shaping
of the spectrum and locally, the minimization of the error measure results in
a model spectrum Ŝ that is a good estimate of the spectral envelope of the
signal spectrum S. Using the standard LP error measure has the disadvantage
of the cancellation of errors: the contributions to the error when S > Ŝ cancel
those when S < Ŝ. The cost function (7.25) solves this, but has to be min-
imized using a non-linear optimization routine. When allowing enough poles,
the resulting filter Hlpc still follows the envelope closely when using standard
LPC. Note that if too many poles are selected, the result will be the spectrum
itself and not the envelope. If the LP order is kept far below the number of
partials, this is not an issue. We choose to use this filter as the description
of the envelope (Elpc). An example of an envelope determined with the LPC
method can be seen in figure 7.11.

In the low-order case, it is fairly easy to parameterize the filter for the complete
input range. For the Nth order LPC case, the spectrum envelope was extracted
for only three playing levels (Epp, Emf , Eff) and for the model output (Esynth).
The formant filter frequency response (Hff,mf,pp) was then calculated as

Hff,mf,pp(z) =
Eff,mf,pp(z)

Esynth(z)
. (7.28)

These can be found in figure 7.12. The filters representing all other levels were
obtained by interpolating between these three levels depending on the input
level. This has been validated by comparing the interpolated filters with the
filters extracted of a soft-to-loud sequence. Only a slight difference could be
heard when the mf point was well chosen. The formant filters are thus

H = a1Hpp + a2Hmf + a3Hff , (7.29)
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Figure 7.11: The spectrum envelope (dashed line) as determined with the LPC
method for a pp played clarinet (full line). The sampling frequency is 44.1 kHz.

where a1, a2 and a3 determine the interpolation point. The interpolation pa-
rameters are simply determined by the local amplitude Asignal and the ampli-
tude of the pp, mf and ff signals (App,Amf ,Aff ) as

a1 = 1 − q a2 = q a3 = 0, (7.30)

where q = (Asignal − App)/(Amf − App) in the case Asignal ≤ Amf , and

a1 = 0 a2 = 1 − q a3 = q, (7.31)

where q = (Asignal − Amf )/(Aff − Amf ) when Asignal > Amf . Note that the
formant filters obtained by LPC are IIR type filters.

Cepstral techniques

When using a formant filter, the output of the model can be seen as

y(t) = w(t) ∗ h(t), (7.32)

with w(t) the output of an oscillator and h(t) an amplitude envelope. This is
equivalent to

Y (ω) = W (ω)H(ω), (7.33)

in the frequency domain. The output of the digital waveguide model has a har-
monic spectrum, with lots of sharp partials. This is a high-frequency envelope.
We are mainly interested in the low-frequency envelope. The power cepstrum
of a signal is defined as

C = F−1 {log(|F{y(t)}|)} . (7.34)
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Figure 7.12: Three extracted Formant Filters for three amplitudes determined
with the LPC method.

It is clear that by calculating the cepstrum of the global model output, we get
the sum of the cepstra of the formant filter and the digital waveguide output,
or

C = F−1 {log(|W (ω)|)} + F−1 {log(|H(ω)|)} . (7.35)

The low-quefrency1 cepstral coefficients correspond to the envelope, while the
output of the digital waveguide mostly contributes to the high-quefrency co-
efficients. By keeping only p low-quefrency bins, and applying the inverse
tranformation, we find the magnitude of the envelope.

An improvement on this technique is the discrete cepstrum spectral envelope,
developed in [33]. This method does not consider the complete spectrum, but
uses only the peaks of the partials. The spectrum can be described as

Y =
N

∑

k=1

akδ(ωk). (7.36)

We consider this as the convolution of the waveguide output and the envelope.
The waveguide output is

W =

N
∑

k=1

wkδ(ωk). (7.37)

The description of the envelope is chosen such that the cepstral coeffients be-

1Cepstral equivalent of the frequency in the spectral domain.
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come easy to calculate:

H =

p
∏

k=0

exp(hkcos(kω)). (7.38)

The envelope coefficients can be found by finding the minimum of a cost func-
tion defined by

E =

N
∑

k=1

(log (wkH(ωk)) − log(ak))2. (7.39)

The minimum is found by setting the gradient to zero and using expres-
sion (7.38) to get a linear matrix equation

Ah = b, (7.40)

where A has order p + 1 with elements given by

aij =
N

∑

k=1

cos(ωki) cos(ωkj), (7.41)

h is the vector of filter parameters hk and b is a column vector given by

bi =

N
∑

k=1

cos(ωki) log(
ak

wk
). (7.42)

It is now quite easy to construct a linear phase FIR filter with the magni-
tude spectrum of the formant filter, calculated with the low-frequency cepstral
coefficients.

Wiener filter

It is also possible to directly calculate a FIR implementation of the formant
filter, by calculating the Wiener filter that transforms the synthetic output to
the desired, recorded output.

7.2.4 Calibration procedure

The calibration of the physical model is quite important, as inappropriate pa-
rameters might make the model totally unplayable. Following the design flow
of figure 7.13, we will calibrate the formant filtered model. The first part of
the calibration process is the estimation of the parameters of the reed model.
It is known that the clarinet, like most single-reed instruments, operates in
the stiffness-dominated region of the mass-spring system. Normal playing fre-
quencies for a clarinet are under 1kHz so we expect the resonant frequency
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Figure 7.13: The design flow for calibrating the formant filtered physical mod-
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characteristic. The procedure then designs the linear part such that the simu-
lation matches the recording.
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to be in the range 2-3kHz. The damping coefficient ranges from 0.05 to 0.35
with little effect on the frequency domain behavior. With a lower damping
coefficient for the reed, the model tends to “lock in” and oscillate at the reed’s
resonant frequency. Detailed measurements of different reeds have confirmed
these parameter ranges [29]. These parameters do influence the time-domain
(transient) response but have little effect on the steady-state tone. In the nor-
mal playing range, they affect the amplitude of the higher harmonics. The main
contribution of these parameters is in the player interaction: they determine
the oral cavity pressure and rest opening needed to generate a tone of a certain
amplitude. This effect is captured in the parameterization of the formant filter.

Example 7.1 ? CD Tracks 6-17 are examples of the use of an LPC-dermined
formant filtered clarinet model. We have a sequence of a low note, at low
amplitude and high amplitudes, and a high note, again at low and high ampli-
tudes. The first track of each series is the reference note as recorded. We then
compare a second-order filter with a twentieth-order filter. For the high notes,
with widely spaced partials, the twentieth-order filter yields a realistic sound.
For the low note, a higher order is needed. 4

7.2.5 Performance

To determine the relative performance of the different techniques, the models
were first implemented using MatLab. The calibration data are 16-bit 44.1kHz
recordings of a clarinet, made in a dry recording room, using an AKG C4000B
microphone. The musician played several chromatic scales with different loud-
ness, as well as soft-to-loud sequences. These recordings were segmented per
note by hand-selecting fragments with steady loudness. The segments were
used by the calibration algorithm.

The derived models have a very good spectral match with the recordings. In-
formal listening tests indicated that it is difficult to discern real and synthetic
sound for steady state tones. Dynamic changes also sound natural if the input
is derived from real data. Listen to ? CD Tracks 3-18 for different examples
of low and high notes played and simulated, with various formant filters types
(refer to Appendix A for the details).

As an objective test, we calculated the weighted relative power spectral error
(RPSE) defined as

RPSE =

∑

bins W |S2
reference − S2

synthetic|
∑

bins S2
reference

, (7.43)

in which S is the amplitude of the spectrum and W a weighting factor. The
weighting factor W was chosen flat up to 8kHz and declining for higher fre-
quencies. One could use a perceptual auditory model for a more accurate
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Figure 7.14: This figure shows the Relative Power Spectral Error for the for-
mant filtered model. The formant filters are IIR filters calculated using LPC.
The three calibration points are indicated. Higher order models have a signifi-
cantly lower overall error.

representation of the subjective sound quality [81]. Figures 7.14 and 7.15 show
the RPSE for increasing filter order, using the LPC-derived IIR formant filters
and the Wiener FIR filters. As can be seen on the figures, it is clear that
higher-order filters provide a lower RPSE. The amplitudes at which Hpp, Hmp

and Hff were determined are indicated.

The transient behavior at onset of a note mostly depends on the chosen non-
linear excitation mechanism. Small adjustments of the parameters of the non-
linear part can alter the attack time and overblowing sensitivity. Figure 7.16
shows the spectrogram of a tone going from pp to ff.

7.3 Conclusion

In this chapter, we have looked at the practical implementation of a single-reed
digital waveguide model. Several implementation techniques for the non-linear
excitation mechanism were compared. By combining source-filter synthesis and
the digital waveguide modeling techniques, we obtain a formant filtered model
that is both accurate and easier to calibrate. We discussed several methods
to determine the formant filters, and compared the performance of LPC-based
formant filters and high-order Wiener filters. The per-note formant filtered
models proposed in this chapter will be combined into multi-note models.
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Figure 7.15: This figure shows the Relative Power Spectral Error for the for-
mant filtered model. The formant filters are FIR Wiener filters with order taps.
Note that the scale of the Y axis differs from the scale of figure 7.14.

Figure 7.16: Spectrogram of the formant filtered physical model of a clarinet,
from pp to ff. A simple second order filter was used. At low playing amplitude,
only the first three partials have significant amplitude, while at high playing
amplitude, six partials are important.



Chapter 8

Multinote models

In this chapter, the single-note digital waveguide models are expanded to
multinote models. Section 8.1 discusses different tonehole models and the pos-
sible digital waveguide implementations. Two specific digital waveguide models
are then compared in section 8.2.

8.1 Multinote models

When playing several notes in a sequence on a real wind instrument, one ef-
fectively changes the acoustic configuration of the instrument. The start and
the end note can be modeled by separate systems. During the transition of one
note to another, the real instrument goes through a whole range of intermedi-
ate states. The output of the physical model of the instrument should match
the output of the real instrument during these states as closely as possible.
Changing the configuration of the toneholes results in a change in the digital
waveguide resonator. The next sections describe several solutions to the note
transition problems when using waveguide models.

8.1.1 Tonehole model

The most complete solution is to make a full acoustic model of the instrument
including all toneholes and to model the effect of opening and closing a tonehole
(see figure 8.5,(a)) [97]. This requires an accurate tonehole model and specific

111
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Figure 8.1: Representation of a cylindrical bore with one tonehole. The bore
length is L is extended to L̃ to account for the radiation impedance.

control information when simulating the model (like the intermediate key or
finger position above the tonehole) [96]. The resulting model is quite complex
and difficult to calibrate but yields the best result. This model is used as the
ultimate benchmark for the other solutions.

First, we look at the influence of one tonehole in a cylindrical bore, show in
figure 8.1. When the hole is closed, the input impedance at the mouthpiece is
approximated by

Z = jZ0 tan kL̃, (8.1)

with L̃ = L + ∆ the length of the bore including the length correction for
radiation, and Z0 = ρc/S the characteristic impedance of the bore. The hole
has a cross section S1 and acoustic length l. At the position of hole, the
admittance presented towards the mouthpiece is

Y = Yhole + Yrest of bore,

= −j S1

ρc cotkl − j cotk(D + ∆),
(8.2)

and if both D and l are small compared to the wavelength,

Y ≈ − j

ρω

(

S1

l
+

S

D + ∆

)

. (8.3)

This impedance approximately corresponds to a reduction of the length of the
original tube such that

D̃ = D − S1(D + ∆)2

S1(D + ∆) + Sl
. (8.4)

From these results, it can be concluded that a cylindrical bore with an open
tonehole is not equivalent to a cylindrical bore truncated at the tonehole.

Benade presented an approximation to a bore with toneholes by assuming that
the tonehole lattice of a woodwind instrument consists of a sequence of equidis-
tant, equal-size holes as shown in figure 8.2 [9]. For the infinite case, the acous-
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Figure 8.2: The tonehole lattice. There is an infinite sequence of identical
toneholes, at regular intervals.

tic impedance is given by

Zc = Z0

√

1 + j(Z0/2Zb) tan ks

1 − j(Z0/2Zb) cot(ks)
, (8.5)

where Zb is the input impedance of the branches, and Z0 the wave impedance
of the main air column. These equations are derived by assuming continuity
of volume flow and conservation of mass at the junctions of the main bore
and branches. The branch impedances are approximated by the impedances of
open-open or open-closed cylindrical sections. For a lattice of closed toneholes,
it was shown that in the low-frequency limit, the impedance reduces to

Zclosed
c = Z0

√

1 + Qclosed, (8.6)

Zopen
c = jZokd

√

1 + Qopen

Qopen
, (8.7)

where 2d is the spacing between the branches, and

Qclosed =
1

2

S1

S

l

d
, (8.8)

Qopen =
1

2

S1

S

d

l
. (8.9)

The phase velocity for closed toneholes is

vclosed
p =

c
√

1 + Qclosed
. (8.10)

The wavenumber for a lattice with open toneholes

2Γd = 2

√

Qopen

(

1 − S

S1
2k2dl(1 +

2

3
Qopen)

)

. (8.11)

It follows from this equation that there is no wave-like propagation in the open-
hole section of the bore, but an exponentially damped pressure variation. This
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Figure 8.3: Symmetric transmission line scattering junction representing one
tonehole.

basically means that only the first few open toneholes are important, allowing
us to discard further toneholes.

A far more accurate representation is found if all the toneholes are modeled sep-
arately. Keefe [47] made a detailed acoustical analysis of a single tonehole. He
obtained the symmetric scattering junction representation shown in figure 8.3.

The transmission matrix of the tonehole is determined by

[

P0

U0

]

=

[

1 + Za

2Zs
Za

(

1 + Za

4Zs

)

Z−1
s 1 + Za

2Zs

]

[

P1

U1

]

, (8.12)

where

Z(open)
s = Za(a/b)2(jkte + ξe), (8.13)

Z(closed)
s = −jZ0(a/b)2 cot(kt), (8.14)

Z(open)
a = −jZ0(a/b)2ktopen

a , (8.15)

Z(closed)
a = −jZ0(a/b)2ktclosed

a . (8.16)

The height t of the tonehole is not the physical height, but is chosen such that
the cylinder with the cross-sectional area of the tonehole encloses the same
geometrical volume as the tonehole. For a typical tonehole structure shown in
figure 8.4, this (closed tonehole) height is approximated by

t = tw +
1

8
b(b/a)[1 + 0.172(b/a)2], (8.17)

where a is the radius of the main bore, b the radius of the tonehole, and tw
the shortest distance from the top of the tonehole to the main bore. The open-
tonehole effective length depends on the presence of a pad above it. If no pad
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tw

a
b

Figure 8.4: The structure of a tonehole. A tonehole is a small cylindrical section
through the wall of the bore.

is present, te is given by

te1 =
k−1 tan(kt) + b[1.40 − 0.58(b/a)2]

1 − 0.61kb tan(kt)
, (8.18)

and if a pad of diameter 2R is placed on an average height of h above the
tonehole, then

te2 =
k−1 tan(kt) + b

{

0.61(R/b)0.18(b/h)0.39 + (π/4)[1 − 0.74(b/a)2]
}

1 − 0.61(R/b)0.18(b/h)0.39kb tan(kt)
.

(8.19)
The specific resistance of an open tonehole is given by

ξe = 0.25 · (kb)2 + αt + 0.25 · kδv ln(2b/re), (8.20)

where re is the effective radius of curvature of the external end of the tonehole
wall, δv =

√

2η/(ρω) is the viscous boundary layer thickness and α the atten-
uation coefficient (see 4.3.1). The open and closed tonehole series equivalent
lengths are

topen
a =

0.47b(b/a)4

tanh(1.84t/b) + 0.62(b/a)2 + 0.64(b/a)
, (8.21)

tclosed
a =

0.47b(b/a)4

coth(1.84t/b) + 0.62(b/a)2 + 0.64(b/a)
. (8.22)

To use the full acoustic description of the tonehole in a digital waveguide sys-
tem, the transmission matrix has to be transformed to the digital waveguide
variables to obtain a two-port scattering junction with

[

P−
1

P+
2

]

=
1

ZaZs + 2Z0Zs + Z2
0

[

ZaZs − Z2
0 2Z0(Zs − Za)

2Z0Zs ZaZs − Z2
0

]

[

P+
1 P−

2

]

. (8.23)



116 Multinote Models

NL

L1

NL

NL

(a)

(b)

L1 L2 L3 L4

L2+L3+L4

L1  ->  L1+L2+L3+L4

(c)

Figure 8.5: (a) The tonehole model. The different resonators (lengths L1 to
L4) are linked through tonehole scattering junctions (gray boxes). (b) Serial
crossfading: the two resonators are linked through a simple scattering junction.
(c) Model morphing: the model parameters gradually change. (NL=non-linear
function)
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8.1.2 Serial Crossfading

A simpler solution is obtained by approximating the full acoustic model with
a one-tonehole model (figure 8.5,(b)), effectively ”plugging in”a tonehole when
needed. Further, we could model the tonehole itself as a two-port, with simple
scalars as reflection and transmission coefficients. This technique keeps a large
part of the quality of the full acoustic model, while being a lot simpler. Ideally,
the two first open toneholes should be modeled.

8.1.3 Model morphing

The previous system can be approximated once more by gradually changing or
morphing the model for the first note to that of the second note (figure 8.5,(c))
during a note transition [50]. When using a waveguide model, this means a
gradual change of the length of the delay line and changes of most or all of the
filter coefficients. This, however, can introduce audible artifacts. This solution
is useable for small changes in delay length and filters but becomes increasingly
difficult and less natural-sounding for larger changes.

8.1.4 Model switching

At the other end of the spectrum, one could simply use a note-specific model
and switch to another model when needed (figure 8.6,(a)). The outputs of the
two separate models existing during the note transition can be crossfaded to
obtain a legato effect. This very simple solution needs careful tuning of the
mixing function used to avoid an audible “gap” between the two notes. It is
very easy to implement.

8.1.5 Linked Model Switching

Instead of using two completely separate models, one could use two models
with the output of the first model coupled to the input of the second model
and vice versa. During the transition, both models are linked. This creates
more intermediate states and makes a smoother sound. As can be seen on
figure 8.6(b), the resulting system is still quite complex and requires two non-
linear functions.

8.1.6 Joined Parallel Crossfading

A further possibility is by using two separate models for the resonator part
and only one for the non-linear function (figure 8.6,(c)). It is a quite simple
solution that gives output similar to the serial crossfading solution, while being
a lot easier to implement. This solution is related to the banded waveguide
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Figure 8.6: (a) Model switching, (b) Linked model switching and (c) Parallel
crossfading. (NL=non-linear function, R=resonator)
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Figure 8.7: Explosion of one serial crossfading model into two. Exploiting the
linearity of the global model, the scattering junction can be used to separate
the top system. The top and bottom systems have identical input impedances.

models [23], without bandpass filtering. Before and after the transition, we
have a one-note model while during the transition, we need an extra resonator.
This model could be seen as a simplification of the equivalent systems shown
in figure 8.7

8.2 Model comparison

The models are now compared for two possible applications: as true acoustic
soundhole models, and in the context of formant filtered models.

8.2.1 Acoustic models

The models were detailed for the case with only one soundhole. As a real
instrument has multiple soundholes, it is necessary to include all the soundholes
to capture the instrument’s properties. The obvious candidates are the full
tonehole model, and the serial and parallel crossfading methods. We start
by comparing the one-tonehole cases, and provide a qualitative comparison of
multiple-tonehole models.

Figure 8.8 shows a general comparison of the models in terms of acoustic cor-
rectness and serial or parallel linking of the resonators. What we are looking
for is a model that is fairly simple to implement and that is capable of a real-
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Figure 8.8: Comparison of the different methods in terms of the acoustic cor-
rectness and the type of resonators used. Parallel resonators are easier to
implement.

istic note transition. Of the models presented in section 8.1, the serial and the
parallel crossfading methods have similar complexity. To determine which one
of these two is best regarding computational cost vs. performance, we need an
objective comparison.

For a start, assume that we want to play two notes sequentially, and the first
note has a higher pitch than the second one. This leads to a waveguide structure
with the first note necessitating a delay length L1 and the second note a delay
length L1 + L2. The two models can be found in figure 8.9. We choose the
output of the non-linear function (X1) as the output of the system. The
resonator part of the models can be seen as a black box with transfer function
M , connected to the non-linear function.

As a first test, we calculate M for the two cases. The input of the black box
is X1ser, par, the output is Y 1ser, par. If the transfer function is similar in the
two cases, this test gives a strong indication that the output of the two cases
will also be similar. The transfer function is determined by

Mser, par =
Y 1ser, par

X1ser,par
. (8.24)

For the serial case, we find the following input-output relation:

Y 1ser =

[

a11H2
1 +

a12a21H2
1H2

2R

1 − a22RH2
2

]

X1ser, (8.25)



8.2. Model comparison 121

G2

G2

G1

G1

S1

S2

NL

b2

b1

Y1

X1

NL a11

a12

a21

H2

H2
R

H1

H1X1

Y1
a22

Serial crossfading

Parallel crossfading

Figure 8.9: The two compared techniques. (top) serial crossfading and (bot-
tom) parallel crossfading. H1, H2, G1 and G2 are the transfer functions of
single delay lines with fractional delay, dispersion damping filters. R, S1 and
S2 are reflection functions.

and for the parallel case:

Y 1par =
[

b1S1G2
1 + b2S2G2

2

]

EX1par. (8.26)

Note that the denominator of equation 8.25 only has influence during the tran-
sition if we assume that a closed tonehole effectively ”disappears”from the
system. As detailed in the analysis of the true acoustic models in section 8.1.1,
this is not exactly the case, but the approximation is satisfactory. To make
the two cases comparable, we now determine the values for the parameters b,
S and G of equation 8.25 such that Mpar matches Mser. This translates to:

• the two systems must have the same output for the steady state case

• the outputs should be as close as possible during the note transition.

Steady state behavior

When the model is in steady state, we can make a few assumptions about
the parameters for both sequentially played notes. During the first note, we
assume that the system behaves as if the part of the instrument behind the
open tonehole is not there (full reflection at the junction). During the second
note, it is as if there is no tonehole at all (full transmission at the junction).
Compared to the full acoustic model, this is a quite rough approximation of
reality. We can now translate these conditions to the two cases. For the serial
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case these assumptions become (cfr. figure 8.9, top):

Open

{

a11 = −1,

a12 = a21 = 0,
(8.27)

Closed

{

a11 = a22 = 0,

a12 = a21 = 1,
(8.28)

while for the parallel case (figure 8.9,bottom):

Open

{

b1 = 1,

b2 = 0,
(8.29)

Closed

{

b1 = 0,

b2 = 1.
(8.30)

This yields the following relations between the two models:

S1 = a11, (8.31)

S2 = R, (8.32)

G1 = H1, (8.33)

G2
2 = H2

1H2
2. (8.34)

Transition behavior

Using these relations in equations 8.25 and 8.26 yields as a possible solution:

b1 = a11, (8.35)

b2 =
a12a21

1 − a22RH2
2

. (8.36)

We now approximate this by putting the denominator equal to 1. This cor-
responds to removing the resonance in the second part of the bore (behind
the tonehole). This will have a minor effect as the resonance is damped. The
parameter b2 now becomes frequency-independent:

b2 = a12a21. (8.37)

The spectrogram of the time domain simulation for three multinote models are
shown in figure 8.10.

Example 8.1 ? CD Track 18-19 are examples of serial and parallel crossfad-
ing. There is very little audible difference between the two methods.
4



8.2. Model comparison 123

F
re

qu
en

cy

Model switching

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

F
re

qu
en

cy

Serial crossfading

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Time

F
re

qu
en

cy

Parallel crossfading

0 500 1000 1500 2000 2500 3000 3500
0

0.2

0.4

0.6

0.8

1

Figure 8.10: This figure shows the transition between two notes, for three
different multinote models. The tonehole is closed at time=2100. (top) Model
switching, (middle) Serial crossfading, (bottom) Parallel crossfading. Both
serial and parallel crossfading show the characteristic drop in amplitude during
the transition.
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8.2.2 Formant filtered models

In the context of formant filtered models, we have a calibrated model for each
note. Every single-note model implicitely incorporates the effects of the tone-
hole configuration for that particular note. This means that the only thing
we actually have to model is the transition, or the opening and closing of one
tonehole. In this case, the previous one-tonehole analysis is perfectly adequate.

Again, this is not as accurate as the full acoustic model, but we have to take
into consideration that during normal playing the transition time between two
notes is rather short, making it difficult for us to actually hear the difference.
We conclude from this theoretical analysis that serial and parallel crossfading
produce very similar output. Simulation of the two cases confirms this analysis.
Subjectively, there is very little audible difference between the two crossfading
methods.

From the implementation standpoint, the parallel crossfading technique is the
superior choice. A drawback of the serial crossfading method is that one must
be able to ”tap”into the delay line or to attach a new delay line when needed.
This is not the case with parallel crossfading. Another factor common to all
scattering junction-based methods is that potentially unnecessary calculations
are done in the part of the model behind the tonehole. With the parallel
crossfading method, after the transition is complete, the unused resonator can
be cleared and replaced as needed, making it more flexible. One has to choose
between one large model running all the time or two smaller models existing
in parallel during the transition.

8.3 Conclusion

In this chapter, the acoustic properties of a tonehole and a tonehole lattice
were discussed. Six possible digital waveguide implementations of toneholes
were qualitatively compared, and a more detailed comparison of the serial and
parallel crossfading techniques was given.



Chapter 9

Implementation

for i=1:100

...
{

}

In this chapter, we discuss the actual implementation of the physical models
using the MPEG-4 Structured Audio Language. First, we provide an overview
of the properties of MPEG-4 and the Structured Audio Orchestra Language
in section 9.1. In section 9.2, we discuss the implementation of the different
elements of digital waveguide models and the issues specific to the wind in-
struments. Finally, in section 9.4, this implementation is compared to other
synthesis techniques.

9.1 MPEG-4

MPEG-4 is an initiative of the MPEG standardization committee, and is a
standard for the coding of multimedia objects. MPEG-4 Audio, the part of
MPEG-4 dedicated to audio objects, integrates the worlds of speech, high qual-
ity audio coding, sound synthesis and natural audio representation. The sound
synthesis part is comprised of tools for the realization of symbolically defined
music and speech [39].

Synthetic audio is described by first defining a set of “instrument” modules
that can create and process audio signals under the control of a script or
score file. An instrument is a small network of signal processing primitives
that can emulate the effects of a natural acoustic instruments. MPEG-4 does
not standardize a particular set of synthesis methods, but a method for de-
scribing synthesis methods, although a more careful reading of the MPEG-4

125
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standard shows that MPEG-4 Structured Audio (MPEG-4 SA) is best suited
for wavetable synthesis [40].

9.1.1 Major elements of MPEG-4 SA

MPEG-4 Structured Audio is comprised of several parts:

Structured Audio Orchestra Language SAOL is a digital signal
processing language which allows for the description of arbitrary
synthesis and control algorithms as part of the content bitstream.

Structured Audio Score Language SASL is a simple score and control
language which is used to describe the manner in which
sound-generation algorithms described in SAOL are used to produce
sound.

Structured Audio Sample Bank Format The format used for the
transmission of banks of audio samples to be used in wavetable synthesis
and the description of simple processing algorithms to use with them.

Scheduler A supervisory run-time element of the Structured Audio decoding
process . It maps structural sound control, specified in SASL or MIDI,
to real-time events dispatched using the normative sound-generation
algorithms.

MIDI reference The MIDI standard for communication between digital
musical instruments [4]. Although more restricted, MIDI can be used as
an alternative to SASL.

For the practical implementation of the models presented in the previous chap-
ters, only SAOL, SASL and MIDI are used directly. The scheduler in inherently
used during synthesis, but as it is integrated into the compiler/renderer, it is
not controllable by the sound designer.

9.1.2 SAOL

SAOL is a declarative unit-generator-based structured audio language. SAOL
was designed to be highly readable, modular, expressive and functional. It
allows the declaration of instruments as a set of digital signal processing al-
gorithms that produce sound, and an orchestra as a set of instruments. One
significant feature of SAOL is the distinction between sample-rate and control-
rate variables. Sample-rate variables are variables updated every sampling
period (typically at 44.1kHz), while control-rate variables are only updated at
the usually much slower control rate (typically 100Hz). This allows some sort of
block processing, although SAOL is designed as a sample-processing language
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for the sample-rate variables. Unfortunately, no rate-free variables exist, which
makes it quite hard to implement new non-core opcodes for complex signal
processing tasks. SAOL is also heavily dependent on stored-function tables or
wavetables [98]. This allows the efficient processing of periodic signals but is
fairly useless in the case of physical modeling synthesis.

SAOL allows the user to define new opcodes. Using the same core function-
ality as instruments, user-defined opcodes perform a certain calculation and
then return their results. This way, one could build a library of special opcodes
that can easily be re-used in several instruments. SAOL also uses bus-routing
to connect the output of one or more instruments to other instruments or ef-
fects, but the busses are only defined for sample-rate dataflows. The routing
of control-rate data has to be done through global variables, which was a re-
striction encountered during the implementation of the physical models.

9.1.3 SASL and MIDI

SAOL instruments may be controlled using either the MPEG-4 SA specific
Structured Audio Score Language SASL or by using the MIDI standard. For
the cases where MIDI is used, a set of standard names allows the programmer
access to the standard MIDI control, pitch-bend, and aftertouch. Channels and
preset mappings are also supported.

9.1.4 MPEG-4 Software

At the time of writing, only a restricted set of software solutions exist for the
compilation of MPEG-4 Structured Audio.

saolc A reference implementation of the Structured Audio decoder and
renderer was added to the ISO standard. saolc is a SAOL-to-C
translator. The resulting C program can be compiled and run to
generate audio.

sfront sfront is an efficient SAOL-to-C compiler [53]. We used several
versions of sfront for the final SAOL implementation.

We are however confident that more solutions will become available as the
acceptance of MPEG-4 as a multimedia encoding standard increases.

Both MPEG-4 solutions translate the native SAOL code to intermediate C,
that must be compiled. Saolc writes a direct translation of the SAOL code,
but unfortunately does not support all the possibilities of the SAOL language.
After compilation, the performance is mediocre at best. sfront applies some
optimizations to the code, but as it does not apply any advanced code trans-
formations, the end result is a very long C program with a somewhat better
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performance after compilation. It seems that applying some higher-level code
transformations might result in much higher performance after compilation.
This has however not been studied in this work.

9.2 Digital waveguide elements

The three major elements of the digital waveguide system are the delay lines,
the linear filters, and the non-linear functions. In the case of a wind instru-
ment, we have one large delay line, one non-linear function for the excitation
mechanism, a small reflection filter, and a more complex, high-order formant
filter.

9.2.1 Delay lines

There are two possible implementations for the delay lines used in the digital
waveguide models. The first one is to use a FIFO buffer, with all elements
moved one space every sample period. The second possibility is to use moving
pointers in a circular buffer. The FIFO implementation is well-suited for spe-
cific hardware solutions that include a hardware FIFO, but require too many
memory operations in all practical other cases. The moving pointers present a
very efficient solution and are the choice for this implentation.

9.2.2 Filters

Implementations of filters require the solution of several issues. The two major
types of filters, IIR and FIR, have specific problems. The SAOL language has
two opcodes specific for the calculation of FIR and IIR filters. However, one is
still free to define his own filter opcode, but this results in extremely inefficient
code, as the user opcode runs within the limitations of the SAOL language,
while the predefined opcodes can be hardware-optimized.

Time domain calculation

Both FIR and IIR filters can be calculated in the time domain. FIR filters
are based on time-domain convolution and are inherently slow (O{N2}). Some
DSPs however have an instruction set specifically adapted for this type of
calculation (MAC instruction, hardware modulo-addressing, parallel data and
coefficient memory access). Even then, it remains a fact that filters of length
1024 and more cannot be calculated in real-time. FIR filters present no special
numerical problems. IIR filters are best calculated in the time domain, as they
have low order and include feedback loop. IIR filters are sensitive to numerical
problems resulting from the fixed-point calculation, the finite precision, and
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the particular filter structure and coefficient encoding method used. Potential
problems are unstable filters and limit cycles.

Frequency domain calculation

The effect of a linear filter can also be calculated in the frequency domain by
using block-processing. This is an inherently fast method, but introduces a
calculation delay equal to the block size. Several fast-convolution algorithms
exist, and are perfectly suited for non-real-time calculations, or when a short
delay is not an issue.

9.2.3 Non-linear functions

The implementation of the non-linear function depends on the complexity of
the function and the available time for the calculation. The highest precision is
achieved when the function is calculated explicitely. This requires multiple mul-
tiplications, divisions and the evaluation of a square root. Local linearizations
are possible, but introduce an overhead as the algorithm first has to decide in
which region the approximation is valid. The use of a look-up table is a third
possibility, but as the non-linear functions for the single-reed excitation mech-
anism depends on two variables, this requires a lot of memory and relatively
unstructured memory access. For this implementation, we prefer the direct
calculation of the non-linear function. Care must be taken to use the complete
solution of the equations, as hidden loops and thus an unstable model might
occur otherwise.

9.3 Clarinet model implementation

Single-note clarinet models are quite straightforward to implement. Multinote
models require the addition of a virtual instrument layer when MIDI input is
used, as the MPEG-4 interpretation of MIDI results in a new, independent in-
stance of the instrument, thus forbidding any interaction between the previous
note played and the next note. The use of MIDI also restricts the user to fixed
and hard-coded key opening and closing times, as no suitable controller exists
in the MIDI protocol to transfer this data. The use of pure SASL with a dedi-
cated controller for each key is a better choice. A very simple control parameter
translation layer is needed to transform the encoded breath sensor and pitch
bend data to the right model parameters (pox and initial reed displacement)
and formant filters.
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Description

Formant [74] Physical model
Formant filtered
Joint parallel crossfading

PhyMo [97] Physical model
Full acoustic model

Add [64] Spectral model
Per note

Sampling Processed recording
Per note

Shaping [3] Abstract algorithm
Per note, per amplitude

FM [17] Abstract algorithm
Per note, per amplitude

Table 9.1: Description of the different techniques available for the synthesis of
wind instrument tones.

9.4 Comparison with other synthesis techniques

In this section, the properties of the formant filtered physical models are com-
pared to other currently existing synthesis techniques.

There exist many different sound synthesis techniques, and quite a few can be
used for the synthesis of wind instruments. We selected the most successful
and widespread types, and compare them to the formant filtered model. It is
a qualitative comparison that looks at different aspects of the synthesis tech-
niques. We compare the formant filtered model (Formant) with the full acoustic
model developed in [97] (PhyMo), additive synthesis (Add), wavetable synthesis
(Sampling), waveshaping (Shaping), and FM synthesis (FM). Table 9.1 sum-
marizes the different techniques.

The most advanced model is the PhyMo technique, a full acoustic digital waveg-
uide model with multiple toneholes. It is the most accurate acoustic model.
The calibration of the model requires the careful measurement of the physical
dimensions of all the different parts of instrument, and some assumptions on
the parameters of the non-linear excitation mechanism. There is no complete
calibration solution, except for extremely simple instruments, and the calibra-
tion requires specialized equipment. Using acoustic reflectometry, one is able
to determine the internal shape and reflection characteristics of the real in-
strument. The large number of parameters makes the model calibration quite
hard. Using the model requires complex controllers, as all the physical control
variables need to be measured. The (un-calibrated) sound quality is very high,
as is the model’s response. Compared to Formant, the model has better pre-
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dictive properties. As the basic properties of both PhyMo and Formant is the
same, both techniques are very close in sound quality and control when used
without calibration. The Formant model is a paramtrization of the physical
model that has better calibration properties and a lower computational load.

All other techniques are fundamentally different, as they are based on the per-
ception of the sound. The Add model tries to reconstruct the spectrum of the
sound by adding the outputs of multiple oscillators [64]. This is a very powerful
technique that can only be used after calibration. It very easily calibrated, by
analyzing the frequency, amplitude, and time-frequency envelope of all the par-
tials of the signal. Automated tools exist for the calibration and design of the
additive model. The main drawback is that this techniques requires calibration,
as is cannot deduct properties of other notes without meta-information about
the sound production. For steady-state tones, the sound quality is equal or
better than either Formant or PhyMo. Transients are very difficult to achieve,
and control is restricted to previously analyzed ranges.

Wavetable synthesis, or sampling, is extremely simple. In its early implementa-
tions, tape recorders were used to record a sound and play it back at a different
pitch. By looping a part of the recording, a longer tone can be obtained. Pitch
shifting is achieved by changing the sample playback speed, by resampling the
signal, or interpolated table reads. Sampling is not very well-suited for wind
instrument tones. The best quality is achieved when every note is recorded at
different amplitudes. The player has very little direct control over the timbre,
and note transients are not modeled at all. Compared to Formant, wavetable
synthesis requires much more storage space, offers little player control, and an
in general inferior sound quality.

Waveshaping, also called, non-linear distortion, is a simple synthesis technique
that uses a non-linear mapping from input to output [3]. Typically, a memory-
less function is used. The choice of the non-linear function has a large impact
on the calibration properties. When using sum of Chebychev polynomials, the
amplitude of the different harmonics can be tuned by changing the gain of
the corresponding polynomial. Waveshaping presents the disadvantage that
noisy signals cannot be generated. By combining Chebychev-based waveshap-
ing and a noise source, we built a fairly convincing model for the clarinet. The
steady-state performance is very good, however, no transients can be generated.
Accounting for inharmonic partials is more complex, and care must be taken
not to introduce significant amounts of aliasing. Compared to Formant, this
technique is cheap, easy to calibrate, but only usable for the notes and ampli-
tudes it was calibrated for. It is possible use formant filters with a waveshaper
calibrated for full excitation as the source. This yields a model that has about
the same computational load as Formant, but with less control properties and
no transients.

FM synthesis uses the modulation of the frequency of an oscillator by another
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oscillator. In its simplest form, the spectrum of the sound generated is a sum of
Bessel functions. Certain combinations of parameters produce formant-shaped
spectra, resembling to output of wind instruments. The calibration of FM syn-
thesis is not easy, but can be achieved by using general non-linear optimization
techniques with a perceptual/spectral cost function [38]. In general, the sound
quality is poor, but the computational load is very low.

9.5 Conclusion

The implementation of the wind instrument models present no important prob-
lems if care is taken for the choice of the filter structures, and if the non-linear
function is programmed without hidden loops. The MIDI input data only needs
a simple translation to the internal model parameters, as the sensor measure-
ment of a typical wind controller have a good match with the required control
parameters for the model. Compared to other synthesis techniques, the formant
filtered physical models have better calibration properties and player control
for a given sound quality level.
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Chapter 10

Single-String Models

I learned a long time ago that one note can go a long way if it’s
the right one, and it will probably whip the guy with twenty notes.

Les Paul

In this chapter, a single-string model for the acoustic guitar is presented. The
methods and properties are completely general and can easily be applied to
other string instruments with minor modifications. This single-string model
will be extended to a fully coupled, multiple-string model in the next chapter.

In section 10.1 we start by building a simple acoustic model for the acoustic
guitar, and discuss the excitation of the strings in section 10.2. A simple
single-polarization single-string model is then described in section 10.3 and
dual-polarization models in section 10.4. Finally, section 10.5 deals with several
parameter estimation algorithms.

10.1 Simple guitar models

In section 3.2, we described the structure and the acoustic operation of the
acoustic guitar. A basic structure reflecting the acoustic operation of the guitar
is shown in figure 10.2. This structure can be refined to include string coupling,
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� �� � � �� � Force on bridge

Force on top plate

Resonating cavity

String

Initial displacement 
velocity

Figure 10.1: The working principle of an acoustic guitar. The player gives an
initial displacement and velociy to the string. The string vibrates, and a part
of the energy is transferred to the other strings and the top plate. The top
plate is a part of the guitar body (the resonating cavity).

string

string

string

string

string

string

guitar bodyplayer

Figure 10.2: The basic system-level structure of a guitar model.
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but it is adequate as a starting point. The player defines the initial excitation
of the strings. The excitation consists of the initial displacement and velocity,
and includes a plucking position. It is then fed to the string models. The string
models are the core of the guitar model, as they define the vibration frequencies
and the damping over time. The string vibration is observed at the bridge and
used as the input of a guitar body model. The player also controls the string
length, damping, and, to a lesser extent, the string tension.

10.1.1 Excitation

The excitation of the strings is the single most important parameter determin-
ing the tone of a given guitar. It takes a human player years of practice to
achieve a consistent high-quality tone. In the case of the acoustic guitar, the
strings are plucked with the finger, or using a sharp, rigid or flexible device (a
plectrum, thumbpick, or fingerpick). In section 10.2, the different excitation
functions will be discussed.

10.1.2 Strings

Wave propagation in the strings is possible in several spatial directions. The
most important modes for the guitar are the transversal waves, parallel and per-
pendicular to the soundboard. The longitudinal modes become important when
modeling the piano, and the torsional modes are imperative for a high-quality
violin model. The simplest string models only describe the string movement in
one dimension (section 10.3). By combining several single-polarization models,
one obtains a complete string model (section 10.4). Finally, several complete
string models can be combined using a bridge model to accurately model string
coupling (chapter 11).

10.1.3 Body

The body of the guitar acts as an acoustic amplifier, coupling the vibrational
modes of the string to sound waves in air. The body is in essence a Helmholtz
resonator, with added top and back plate vibrations. The lowest resonance
mode is the Helmholtz resonance, whose frequency is determined by the cavity
volume and the area of the soundhole. The higher modes are determined by
the principal modes of the top and back plate, and the higher air cavity modes,
resembling the standing waves in a rectangular box. The lower vibrational
modes of the top and back plates resemble those of the rectangular plate. The
guitar body models are the subject of chapter 12.
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(b)(a)

Figure 10.3: Initial string displacement for (a) the tirando stroke, and (b) the
apoyando stroke

10.2 Excitation

In the classical and flamenco style of playing, two main types of plucking are
commonly used. The strokers are the apoyando and tirando. In the apoyando
or rest stroke, the plucked string is pulled down towards the soundboard, where
it slips over the fingernail. The finger now rests on the adjacent string. This
stroke is mostly used to emphasize the main melody. With tirando or free
stroke, the string is first pulled away parallel to the soundboard and released
slightly upwards. The end result is in essence the same string motion as with
the apoyando stroke, but with a somewhat better control of the amount of
vertical and horizontal movement. These plucking methods are widely used to
accentuate certain notes of the musical phrase, or to achieve a different timbre.
Figure 10.3 shows the difference between the strokes.

When the player plucks a string that is already vibrating, the finger-string in-
teractions first dampens all or part of the motion of the string. The apoyando
stroke results in the damping of the adjacent string. A more strumming exci-
tation is also widely used in flamenco and contemporary guitar playing. The
rasgueado stroke consists of the rapid up- or downstroke of one or more right-
hand fingers. Several studies have been published on string-finger interaction
[82], [31].

The main difference between plectrum and finger plucks is the width of the
interaction region. A finite-width pluck will excite all harmonics, irrespective
of the plucking position. This is shown in figure 10.4. The pluck position
determines which harmonics will be excited. Integer ratios of the string length
lead to the absence of the harmonics corresponding to the ratio, e.g. plucking
at 1/8 of the string length will not excite the 8th, 16th, 24th, etc. harmonics.
Figure 10.5 shows the harmonics excited by plucking at the three tradional
positions: on the fingerboard (sul tasto), the normal position, and near the
bridge (sul ponticello). Note that playing closer to the bridge generates more
higher harmonics.
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Figure 10.4: This figure illustrates the difference between (a) a zero-width
pluck, and (b) a finite-width pluck. The string is plucked at 1/8 of the string
length, causing the absence of the 8th, 16th, etc. harmonic.
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Figure 10.5: The figure shows the spectrum of the pluck at three different
plucking positions: (a) sul tasto (near the fingerboard, ratio β = 0.46), (b)
normal pluck point (ratio β = 0.28), and (c) sul ponticello (near the bridge,
ratio β = 0.15). Plucking near the bridge excited more high vibration modes,
resulting in a bright and somewhat harsh tone.
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Figure 10.6: Three plucks with different sharpness: the slopes increase and de-
crease exponentially accordig to equation (10.2) with the sharpness parameters
(a) s = 0.01, (b) s = 1.5, (c) s = 5.

Fourier analysis of the transverse force on the bridge gives the following ex-
pression for the amplitude of the nth harmonic:

An =
2dT0

nπL0

1

β(1 − β)
sin βnπ, (10.1)

where T0 and L0 are the string tension and length at rest, and d the initial
displacement [30].

For synthesis purposes, we also define pluck sharpness, which enables us to
excite more higher harmonics as the excitation becomes more impulse-like.
Figures 10.6 and 10.7 show three different plucks with their corresponding
spectra. The plucks consist of exponential ramps given by

P = esx, (10.2)

White or colored noise can also be added to the excitation, resulting in snare-
drum like effects.

10.3 Single-polarization string models

The transversal motion of an ideal string is described by

∂2y

∂t2
= c2 ∂2y

∂x2
, (10.3)
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Figure 10.7: The spectra corresponding to the pluck shapes of figure 10.6. The
sharper the pluck, the more vibration modes are excited. The limit, for infinite
sharpness, is an impulse, exciting all modes evenly.

with c the transversal wave propagation speed:

c =

√

T

ρ
, (10.4)

with T the string tension and ρ the linear density of the string material. These
equations assume infinitely thin strings, which is a good approximation for
treble strings. Real strings have a finite thickness and stiffness. Including string
stiffness, and frequency-dependent losses yields a more complex equation:

T
∂2y

∂t2
= ρ

∂2y

∂x2
− κ

∂4y

∂x4
− 2b1

∂y

∂t
+ 2b3

∂3y

∂t3
, (10.5)

where b1 and b3 are the loss parameters, and the parameter κ is given as

κ =
Eπr4

4
, (10.6)

with E the Young modulus and r the radius of the string. For the lossless case
and small string stiffness, the modal frequencies are

fn = f0

√

1 + Bn2, (10.7)

with

B =
π3Er4

512TL2
. (10.8)
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Nylon Bronze Stainless steel

E4 1.08e-5 0.89e-5 2.25e-5
B3 2.5e-5 2.7e-5 6.74e-5
G3 5.8e-5 13.4e-5 30.4e-5
D3 12e-5 35.8e-5 104e-5
A2 26e-5 119e-5 318e-5
E2 66e-5 314e-5 820e-5

Table 10.1: Comparison of the values of the inharmonicity coefficient B for
three string types: classical nylon strings (D’Addario EJ45) E = 2.5GPa,
bronze 80/20 folk strings (D’Addario EJ40) E = 110GPa and stainless steel
electric guitar strings (D’Addario XLS600 Jazz medium) E = 200GPa. String
diameter and normal tension as published by the manufacturer.

The inharmonicity coefficient is quite different for the strings commonly used
on guitars. Table 10.1 compares the values for B for three string types: classical
nylon strings (D’Addario EJ45), bronze 80/20 folk strings (D’Addario EJ40)
and stainless steel electric guitar strings (D’Addario XLS600 Jazz medium).
The nylon strings are the least affected by string stiffness.

10.3.1 Double delay line model

The digital waveguide implementation of string motion is rather straightfor-
ward. Figure 10.8 shows a two-delay line model designed for acceleration waves.
The delay lines and the reflection filters Rb and Rf form a loop in which the
waveform circulates, as was discussed in chapter 5. The two reflection filters
simulate the reflection of the waveform at the termination points (the bridge
and the fret or nut). To comply to the boundary conditions for a string with
fixed-fixed ends, the reflection filters must be phase-inversive. The delay lines
are of non-integer length and consist of an integer-length delay line and a frac-
tional delay filter. Losses and inharmonicity are cared for by an allpass and a
lowpass filter. Note that the fractional delay filter itself introduces a lowpass
effect, and the lowpass filter should be designed taking into account these ex-
isting losses. The input signal is injected into the delay lines at the plucking
point. It has been shown in [103] that the ideal pluck of the string can be
approximated by a unit impulse if acceleration waves are used. We consid-
ered both combinations of acceleration/unit impulse and displacement/initial
displacement. The equivalent models produce identical output, but the dis-
placement input is easier to interpret and modify by the user, as it reflects
what the player does (that is, moving the string).

10.3.2 Single delay line model
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Figure 10.8: Double delay line model with acceleration as the wave variable.
The final output is a velocity, obtained by integration of the acceleration waves.
Both reflection coefficients Rf and Rb represent fixed ends, and are thus phase
inversive.
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Figure 10.9: Double delay line model with displacement as the wave variable.
The output is again the bridge velocity, obtained by differentiating the dis-
placement waves.

In certain cases, the initial double delay line digital waveguide model can be
reduced to a loop containing only a single delay line [43]. In this case, only the
observation of the force signal output at the bridge is possible. To obtain the
same output as the two-delay line model, one has to apply an “equivalent” input
to the single delay line model. Figure 10.10 shows the two-delay line model
of which we now derive the single-delay line equivalent model. The signal X2

entering the right-going lossy and dispersive delay line can be written as

X2 = I + RfD2
1(I + RbD

2
2X2), (10.9)
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Figure 10.10: Reference two-delay line model. This model will be simplified
such that it only contains one delay line.
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Figure 10.11: The single delay line string loop used in conjunction with Ieq has
lower computational complexity than the double delay line digital waveguide
model it is derived from.

.

or solved to X2

X2 = I(1 + RfD2
1)

1

1 − RfRbD2
1D

2
2

. (10.10)

The first factor provides us with an equivalent input Ieq

Ieq = I(1 + RfD2
1). (10.11)

Similarly, the output U can be written as

U = Y − RbY

= D2X2(1 − Rb)

= Ieq
1

1 − RfRbD2
1D

2
2

D2(1 − Rb). (10.12)

The rightmost factor consists of a pure time delay and the filtering effect of the
bridge reflection. Of this, only the filtering effect is relevant for the model. The
middle factor is the single delay line loop shown in figure 10.11. The complete
single delay line model that produces the same output as the two delay line
model of figure 10.10 is shown in figure 10.12.

Example 10.1 ? Track 21 is an example of a low A note, generated using a
single delay line, single polarization model, excited with a triangular pluck. 4

10.3.3 Non-linear effects

Several non-linear effects occur in typical string instruments. For the acous-
tic guitar, the two main non-linear effects are tension modulation (inherently
caused by the vibration of a real string), and fret beating caused by the physical
dimensions of the instrument.

Tension modulation non-linearity

As the shape of the string changes during its motion, its length and tension
changes as well. Perceptually, two phenomena occur: a pitch variation and the
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Figure 10.12: The complete single delay line string model equivalent to the two
delay line model of figure 10.10

dx
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Figure 10.13: The length of an infenitesimal piece of string due to a displace-

ment in the y direction is found to be dL =

√

1 +
(

∂y
∂x

)2

.

generation of harmonics. The non-linear properties of string have been studied
both theoretically and experimentally [16], [54], [65]. The tension of a vibrating
string is found as

T = T0 + ∆T = T0 +
ES∆L

L0
, (10.13)

with E the Young modulus, S the cross-sectional area of the string, and T0 and
L0 the string tension and length at rest. The length change ∆L can simply be
calculated as the sum of all the length changes along the string (refer to figure
10.13) :

∆L =

∫ L0

0

√

1 +

(

∂y

∂x

)2

dx − L0. (10.14)

For displacements small compared to the string length, this can be simplified
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to

∆L ≈ 1

2

∫ L0

0

∂y

∂x

2

dx. (10.15)

For the exponentially damped fundamental waveform of the form

f0(x, t) = A sin(ω0t)sin(
πx

L
)e−a0t, (10.16)

with A the initial amplitude, ω0 the fundamental frequency, and a0 the damp-
ing, the length change is well approximated by

∆L ≈ A2π2

4L
sin2(ωt)e−2a0t. (10.17)

We see that ∆L decays exponentially at twice the rate of the sinusoid. More
complex expression for the string displacement introduce sum and difference
frequencies into ∆L, causing the generation of missing harmonics. This analysis
is valid if the tension is immediately spread over the whole string by longitudinal
wave propagation. The wave propagation speed for longitudinal waves in a
string is constant and given by

cL =

√

E

ρ
, (10.18)

or quite a lot faster than for transversal wave propagation, so it can be safely
assumed that this condition is satisfied. The tension modulation affects the
transversal speed c as

c =

√

T

ρ
, (10.19)

and the fundamental frequency is linearly related to the average wave propa-
gation speed. This equation can be combined with equation 10.13:

c =

√

√

√

√

T0 + ES∆L
L0

ρL
L+∆L

, (10.20)

or

c = c0

√

1 +

(

1 +
ES

T0

)

∆L

L0
+

ES

T0

(

∆L

L0

)2

. (10.21)

Considering only the fundamental, we get that

c ≈ c0

(

1 +
A2π2

8L2
(1 +

ES

T0
)e−2a0t sin(ω0t)

)

. (10.22)

It follows from these equations that steel strings are more affected by tension
modulation because of their much larger Young modulus, despite of their gen-
erally smaller radius. The deviation from the nominal wave propagation speed
is

∆c = c − c0. (10.23)
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For use in the digital waveguide framework, a discrete formulation is neces-
sary. The discrete formulation estimates the length of the string by directly
integrating equation (10.14), and adjusts the length of the delay line and the
parameters of the fractional delay filter dynamically to match the desired length
[108], [105]. In this case, only the fractional delay filter has to be adjusted. The
discrete length change for a two-delay line digital waveguide model is approxi-
mated by

∆L(n) =

L0−1
∑

k=0

√

1 + [sr(n, k) + sl(n, k)]2 − L0, (10.24)

where sr(n, k) and sl(n, k) denote the right and left going slope waves, respec-
tively. If displacement waves are used, a first differentiation is needed. If we
assume that [sr(n, k) + sl(n, k)]2 � 1, equation (10.24) can be approximated
by

∆L ≈
L0−1
∑

k=0

[1 +
[sr(n, k) + sl(n, k)]2

2
] − L0

=
1

2

L0−1
∑

k=0

[sr(n, k) + sl(n, k)]2. (10.25)

The deviation from the nominal wave propagation speed leads to a deviation
in total delay time

d(n) = −T

n−1
∑

l=n−1−L0

∆c(l)

= −Tc0

n−1
∑

l=n−1−L0

√

1 +

(

1 +
ES

T0

)

∆L

L0
+

ES

T0

(

∆L

L0

)2

≈ −1

2

n−1
∑

l=n−1−L0

(1 +
ES

T0

∆L(l)

L0
), (10.26)

and Tc0 = 1 since T is the sampling interval and c0 equals the sampling fre-
quency in a digital waveguide system. If one is only interested in a crude
approximation of the tension modulation effects, it is also possible to estimate
the delay deviation d(n) on the behavior of the fundamental as given by equa-
tion (10.22). If the measured fundamental frequency at the start of the signal
is f̃0, the initial length difference is

∆L =
Fs

f0
− Fs

f̃0

. (10.27)

The decay rate e−a0t of the string is known in advance, and thus the delay
deviation d(n) is

d(n) = ∆Le−2at. (10.28)



148 Single String Models

integer length delay line

d(n) estimator

fractional delay

Figure 10.14: A tension modulated digital waveguide. The deviation of the
delay d(n) is estimated and used as a parameter for the fractional delay filter.

This can easily be calculated recursively.

There are several practical implementations of the time-varying fractional delay
filters [107]. A schematic representation of a digital waveguide with tension
modulation is shown in figure 10.14 A switching nonlinear filter is well-suited
for this purpose [85].

Example 10.2 ? CD Track 26-27 show the difference between a model of
a nylon string and steel string. The only difference included here are the
properties of the string material, all other (damping, fundamental) are the
same. There is a subtle difference in timbre, especially in the first second
second. 4

Fret beating

The vertical transversal displacement of a guitar string is bounded by the frets
and the fingerboard. When the excitation is large enough for the strings to
touch the frets, a non-linear distortion of the signal occurs. This can be con-
sidered as either a hard, saturating non-linearity (the fret limits the movement),
or more accurately as both a hard saturation of the displacement and an extra
velocity input (elastic bouncing on the frets). It is easy to include this effect in
the model, by comparing the output of the delay lines to a desired maximum
output and by saturating and adding the velocity input. When including fret
beating in a digital waveguide model, it is more efficient to use the two-delay
line model, as the fret beat has to be added in the two propagation directions.

10.4 Dual-polarization string models

Transversal waves can be decomposed in waves traveling in a plane parallel to
the soundboard (yH), and traveling in a plane perpendicular to the soundboard
(yV ). Due to the structure of the bridge and the nut, the terminations are
not isotropic, causing a difference in the properties of the wave propagation
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vertical polarization string model

horizontal polarization string modelm

1−m

Figure 10.15: Schematic representation of a dual-polarization model. Two
independent string models are use for the horizontal and vertical transversal
wave propagation modes.

on the string. The differences are large enough such that the string exhibits
slightly different resonance frequencies and a different damping for yH and yV .
The slight difference in resonance frequencies is audible as beating in most of
the partials. In this section, we consider the two polarizations as uncoupled,
independent, single-polarization strings. The coupled case will be analyzed in
chapter 11. Figure 10.15 shows a schematic reprentation of a dual-polarization
model. The total output of the dual-polarization string can be written as

y(t) =

N
∑

k=0

Ak,1e
−ak,1t sin(ωk,1t + φk,1) + Ak,2e

−ak,2t sin(ωk,2t + φk,2). (10.29)

This equation can be reformulated such that it allows for easier parameter
estimation, by setting

Ak = min(Ak,1e
−a1t, Ak,2e

−a2t), (10.30)

∆Ak = |Ak,1e−a1t − Ak,2e
−a2t|, (10.31)

ωk =
ωk,1 + ωk,2

2
, (10.32)

∆ωk =
ωk,2 − ωk,1

2
, (10.33)

φk =
φk,1 + φk,2

2
, (10.34)

∆φk =
φk,2 − φk,1

2
, (10.35)

it can be written as

y(t) =

N
∑

k=0

Ak cos(∆ωkt+∆φk) sin(ωkt+φk)+

N
∑

k=0

∆Ak sin(ω1t+φ1), (10.36)

assuming that Ak,1e
−a1t > Ak,2e

−a2t. The amplitude envelope for each partial
is then simply

Ek = Ak cos(∆ωt + ∆φ) + ∆Ak. (10.37)

The local maxima of the amplitude envelope correspond to

maxima = max(Ak,1e
−a1t, Ak,2e

−a2t) + Ak, (10.38)
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Figure 10.16: Amplitude, theoretical amplitude at the local minima, and the-
oretical amplitude at the maxima.

and the minima

minima = max(Ak,1e
−a1t, Ak,2e

−a2t) − Ak. (10.39)

These relations are illustrated in figure 10.16. A near-zero amplitude envelope
corresponding to a local minimum indicates at time tm that A1e

−a1tm ≈ A2 ×
e−a2tm . At this point, the “dominant” damped sinusoid changes. The beat
amplitude is equal to 2Ak. If there is no change in dominant damped sinusoid,
it is quite easy to completely detrend the signal and accurately determine all
parameters. One starts by determining the decaying beat amplitude, yielding
Ak(t) = Ak,2e

−a2t. This value is then added to the amplitude of the local min-
ima to find Ak,1e

−a1t. Detrending the envelope, and amplifying it results in a
beat-only envelope, perfectly suited for the determination of the beat frequency
using the STFT. Some intermediate results can be seen in figure 10.17.

10.5 Parameter estimation

The goal of the parameter estimation is to provide the string models with
parameters such that the model produces output as close as possible to the
recording used for calibration. Note that this not necessarily means that the
parameters have to be the physically correct values. The parameters to be iden-
tified are the complex frequencies and amplitudes of all the relevant partials of
the sound. We start from the simplest method using the Short Time Fourier



10.5. Parameter estimation 151

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Time (s)

A
m

pl
itu

de
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

Time (s)

A
m

pl
itu

de

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

Time (s)

A
m

pl
itu

de

Figure 10.17: (top) The signal, (middle) Detrended signal, (bottom) Amplified
signal

Transform, look at the Energy Decay Relief method and propose the subband
Hankel Singular Value Decomposition. The different methods are then com-
pared. For simplicity, we first analyze the methods for the theoretical single-
polarization case, and elaborate further on the more accurate dual-polarization
case.

We assume that the signals can be written as

y(t) =

N
∑

i=0

Aie
−aitsin(ωit + φi) + n(t), (10.40)

where n(t) is additive white noise.

The determination of the frequency of a partial is a well-studied subject and
an essential part of additive synthesis and sinusoidal modeling. The frequency
can be determined in either the time or the frequency domain [91].

10.5.1 Time domain estimation

Time-domain methods include several forms of zero-crossing and autocorrela-
tion. One method commonly used for the determination of the fundamental
frequency, is based on the autocorrelation function [89]. The short-time au-
tocorrelation function operating on a short segment of signal x(n) is defined
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as

φk(m) =
1

N

N−1
∑

i=0

x(i + k)x(i + k + m)w(i)w(i + m), (10.41)

with 0 ≤ m ≤ MC − 1, MC is the number of autocorrelation points to be
computed, N the number of samples, and w(n) the window function. The esti-
mated fundamental frequency is obtained by searching for the maximum value
of φk(m) for each k in a meaningful range of m. Quadratic interpolation is then
used to have sub-sample accuracy for the maximum. It appears that the type
of windows used has an important effect on the results obtained. Rectangular
windows yield poor results, while Hamming, Hanning, or Blackman windows
have a more acceptable quality. This method can be extended to determine all
the partials, by first filtering the signal with a bandpass filter centered around
the partial. However, it is not suited for the detection of two closely spaced
partials, and it is much more efficient to use the frequency domain methods.

10.5.2 Short-Time Fourier Transform

The easiest method is based on the Short Time Fourier Transform (STFT)
of a recording. The amplitude-time relationship is determined for each band
containing a partial, and the parameters are fitted such that the model out-
put matches the recording. This is a two-step process. First, the frequencies
of the partials are determined, and secondly, the damping ad amplitudes are
computed.

In the frequency domain, the way to determine the frequency of a partial is to
use a long FFT, with fine frequency resolution. There are several disadvantages
to this method, the most important one being the long size of the signal required
to achieve sub-Hertz resolution. It is quite hard to produce and record a guitar
note of more than ten seconds, especially for the higher strings. In the single-
polarization case, we know that there is only one sine in each bin for relatively
small FFT sizes. For the lowest note on a guitar with normal tuning, the
FFT size of 1024 is already sufficient. A sinewave is represented by a sinc-
like waveform centered around its frequency in the frequency domain. Using
quadratic interpolation, we are able to determine the frequency with sub-bin
accuracy. The peak with frequency f and amplitude A in bin kp of spectrum
X is found as the top of a parabola y(x) = a(x − p)2 + b with

p =
1

2

α − γ

α − 2β + γ
, (10.42)

f = kp + p, (10.43)

A = β − 1

4
(α − γ)p, (10.44)

where

α = y(−1) = 20 log10 |X(Kp − 1)|, (10.45)
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Figure 10.18: The spectrum of a recording of low E played on a Yamaha C70
classical guitar. The spectrum was calculated using a 262.144-point FFT, with
bin bandwidth of 0.17 Hz.

β = y(0) = 20 log10 |X(kp)|, (10.46)

γ = y(1) = 20 log10 |X(kp + 1)|. (10.47)

The situation is more complicated in the dual-polarization case, where each
peak is actually composed of two very closely spaced partials. To resolve two
sinusoids separated by ∆ Hz, it is required that the main lobe bandwidth
Bf < ∆. This can be achieved by using a long window length, but is neither
practical nor accurate. Figure 10.18 shows a part of the spectrum of a recording
of an acoustic guitar, calculated using a 218-point FFT, with bin bandwidth of
0.17 Hz. Figure 10.19 shows a detailed view of the frequency bins around the
third harmonic, where the splitting of the peak in two partials is visible.

The damping of the system poles can be determined in the pure frequency
domain by evaluating the 3dB bandwidth of the peak, but due to the fact that
the signal is only slightly damped, the peaks are very sharp and this method
is therefore extremely inaccurate. To determine the damping and amplitudes
accurately, and the frequency difference for the dual-polarization case, one
has to switch to time-frequency representations. The most widely used one is
the Short-Time Fourier Transform. An excellent overview of the Short Time
Fourier Transform and the use of windowing can be found in [2], [36]. Other
methods include the Bark Transform and the various wavelet transformations.
All these methods have a time resolution-frequency resolution trade-off.

The STFT is composed as a series of DFTs computed on windowed segments
of the signal. The segments are separated in time by the hop size parameter,
padded with zeros if necessary, and multiplied by a window function. The same
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Figure 10.19: Detailed view of figure 10.18. The double peak due to the dual-
polarization nature of the guitar is visible.

frequency bin in the sequence of FFTs represents one subband of the STFT.
Each subband of the STFT is critically sampled with sampling frequency Fs/N ,
where Fs is the sampling frequency of the original signal and N the window
length.

The STFT subbands containing the partials of the signal provide the most
useful information. The amplitude of the partial over time allows the determi-
nation of both the beating frequency and the damping as discussed in section
10.4. The accuracy of this method is limited by the presence of noise, and
the compromise between frequency resolution and time resolution. The size
of the sequence of FFTs has to be chosen such that each subband only con-
tains one partial. Taking into account the effects of windowing (leakage), this
defines a minimum window size. Healivy damped partials tend to damp in a
few windows length, and low amplitude partials are drowned in noise, making
the procedure more difficult. By using non-linear optimization, we however
achieved acceptable results.

10.5.3 Energy Decay Relief

A more accurate method was developed for the determination of room reverber-
ation parameters. This Energy Decay Curve method is based on the backwards
integration of an impulse response, and allows the determination of the aver-
age of the decay curves with a single measurement. The Energy Decay Relief
(EDR) is a frequency-domain generalization, computing the backward integra-
tion on the STFT [42]. The EDR of amplitude envelope Ak(n) is calculated as
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[42]

Ak,EDR(n) =

∞
∑

i=n

Ak(i), (10.48)

where k denotes the partial or subband of the STFT. An efficient way of com-
puting this sum is to reverse the time axis.

For the single-polarization case, we expect a exponentially decaying amplitude
for each partial. A linear model is fitted to the log-EDR, weighted such that
the noise floor is not taken into account. The linear model yk = ak + bkn is
found by minimizing

Ek(ak, bk) =

N
∑

i=0

Wk(i)[Ak,EDR(i) − yk]2. (10.49)

The slope bk corresponds to exponential decay rate.

This method assumes that there is only one partial in the frequency band of
interest - in other words, it assumes a single-polarization string. As we have
seen, this situation is very unrealistic due to the construction of most string
instruments. This method is thus unsuitable for the estimation of guitar strings
parameters.

10.5.4 Subband Hankel Singular Value Decomposition

The previous methods are either only suited to find some of the parameters,
or lack the precision needed for the accurate determination of all the model
parameter. A new subband based method was developed with better proper-
ties. It is a subband extension of the Hankel Singular Value Decomposition.
We start with the mathematical description of the method and evaluate the
results in section 10.5.6.

The goal of the algorithm is to determine the system poles in a signal of length
Q. We use a dual-polarization string model, with one delay line for each string,
with lengths L1 and L2. If the lengths L1 and L2 are kept constant, the output
signal has the form

y(t) =

N
∑

i=1

Aie
−αit sin(ωit + φi), (10.50)

where t represents time, N the number of partials, αi the damping and Ai the
initial amplitude of each partial. We now consider a sampled version of this
signal (sampling frequency Fs), written as

s[n] =

N
∑

i=1

ciV
n
i , (10.51)
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in which ci ∈ C represents the initial phase, Vi = e−αi+jωi ∈ C are the poles
and n ∈ N is the discrete time. One technique commonly used for the identifi-
cation of exponentially damped sinusoids is based on the Hankel Singular Value
Decomposition (HSVD) [110]. This method is analytically exact if the signal
conforms to equation (10.50). We start by building a Hankel matrix from the
signal of length Q

H =











s(1) s(2) . . . s(Q/2)
s(2) s(3) s(Q/2 + 1)

...
...

s(Q/2 + 1) s(Q/2 + 2) . . . s(Q)











. (10.52)

We then calculate the Singular Value Decomposition (SVD) of this matrix:

H(Q/2+1)×Q/2 = U(Q/2+1)×N · ΣN×N · T †

N×Q/2, (10.53)

for a signal with N ≤ Q/2 partials. Note that when noise is present, the matrix
Σ will be of size Q/2 × Q/2. If we only want M ≤ N poles, we select the M
largest singular values and corresponding singular vectors. This is equivalent to
calculating a rank-M approximation of the signal. We now construct a matrix
Z ′:

Z ′ = (U↓)
−1U↑, (10.54)

where U↑ denotes the upper Q/2 rows of U and U↓ the lower Q/2 rows. It is
well known that the eigenvalues of Z ′ give estimates for the poles of the system
[110].

eig(Z ′) = (V̂1, V̂2, . . . , V̂N ). (10.55)

The estimates for ωi and αi of the sampled signal s follow:

ω̂i = =(log(V̂i)), (10.56)

α̂i = −<(log(V̂i)). (10.57)

To accurately determine the poles in the presence of noise, a long signal (Q >
500) is needed. Due to the size of H this may lead to computational problems
in the calculation of the SVD. These problems can be overcome by using a sub-
band scheme that analyzes several critically sampled signals (with a reduced
number of partials) instead of the original signal, as this replaces one large H
by several smaller ones [35].

Applying a short-time Fourier Transform (STFT) of length L to signal s yields
us an L-band representation

Sm[k] =

N
∑

i=1

L−1
∑

n=0

e−j2πmn/Ls[n + kL], (10.58)
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Figure 10.20: The complexity of the calculation is reduced by building an N -
band representation and calculating the HSVD on each subband separately. As
the number of partials is smaller than the number of bands, we only calculate
the poles for the relevant bands.

where m = 0, 1, . . . , L − 1 and k the number of the time frame. Each sub-
band can thus be written as a sum of exponentially damped sinusoids, and
therefore conforms to equation (10.51). This implies that we can perform the
HSVD algorithm on each subband of the STFT (one sub-band is the sequence
of complex samples formed by the selection of one bin of the STFT over all
the time frames). This is illustrated by figure 10.20. For each sub-band, the

sampling frequency is F
(m)
s = Fs/L. We obtain an estimate for the poles V̂

(m)
i

in that sub-band. The damping and frequency for the original pole Vi of signal
y relates to V̂ ′

i as

ωi = ω̂iF
(m)
s + bin base frequency, (10.59)

αi = α̂iF
(m)
s . (10.60)

Using Least Squares, we can finally determine the phase φ̂i and initial ampli-
tudes Âi. This algorithm is called sub-band HSVD (sHSVD).

For the estimation of the parameters of the dual-polarization model of fig-
ure 10.15, the window length of the STFT is chosen large enough such that
only one pair of partials (one partial for each mode) can be found in one fre-
quency bin. For each bin that contains partials, the entire time-frame sequence
is used as the input for the sHSVD algorithm but calculate only two poles, one
for each polarization mode. The estimates for ωi and αi are thus obtained. The
length of the delay lines L1 and L2 can easily be found given the knowledge of
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ωi. Once these lengths are known, the reflection coefficient R is found as

Ri = e−α̂i
Li
Fs . (10.61)

In the end, the reflection coefficients for both polarizations are known, at every
partial. This complete set of reflection coefficients enables the fitting of a linear
filter that approximates the frequency-dependence. Result for a test case and
a recorded signal are shown in section 10.5.6.

10.5.5 Other methods

Several other methods have been proposed for the determination of the string
parameters, usually applied to piano strings. These methods include the general
system identification methods, Prony’s method, or matrix pencil techniques.
Due to the structure of the piano, one is able to obtain longer and more con-
troled signals than is the case with the acoustic guitar, and the parameters can
be determined with greater accuracy.

10.5.6 Comparison

A first test consisted of estimating the parameters of a known system. To
synthesize the test signal, a dual-polarization waveguide model was used, in
which one polarization had a frequency-independent reflection coefficient and
the other polarization had a lowpass reflection characteristic. White noise was
added to simulate recording imperfections. The results can be seen in fig-
ure 10.21. For each partial, we get a pair of frequencies (f1,f2). These are
then assigned to one polarization mode (horizontal or vertical) by grouping
all the highest and all the lowest frequencies. This way, we get two series of
frequencies that almost satisfy f1, 2f1, 3f1, . . . and f2, 2f2, 3f2, . . . . The devi-
ation of the measured series compared to the theoretic series is an indication
of the inharmonic behavior. It is clear that the sHSVD algorithm is capable of
accurately separating the characteristics of the two polarizations. Table 10.2
gives a comparison of the result obtained using both the STFT and the sHSVD
methods. The sHSVD is more accurate, which is especially important at the
lower frequencies, as these results are used to determine the length of the delay
lines of the digital waveguide models.

The second test was done on a recording of a nylon string guitar. The goal is
to determine the parameters of the model shown in figure 10.22. Plotting the
frequency difference of the partials, relative to the number of the partial, gives
us information on the two polarization modes (figure 10.23). The fundamen-
tal frequencies have a 0.082 Hz difference, which is confirmed by the audible
beating in the higher partials. This leads to the delay line lengths L1 and L2,
and the fractional delays. The inharmonicity was determined by calculating
the difference between the ideal harmonic series and the measured frequencies,
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Figure 10.21: Estimated and analytic reflection coefficients for a dual-polarization
waveguide model. The estimation is the result of the sHSVD analysis of a test signal
where the first polarization had a reflection coefficient R=0.985 (the slight decrease at
higher frequencies is caused by the first order Lagrange interpolator used, cfr. chapter
5) and the second polarization had a reflection coefficient R=0.995 combined with a
first-order lowpass filter (-3dB at 7 kHz).

as can be seen on figure 10.24. The reflection coefficients for all the partials
are shown in figure 10.25. We now determined the reflection filters H1 and
H2 of the model. The lowpass and allpass parts of the reflection filter were
determined such that a good fit was obtained for both the required reflection
coefficient (results from the amplitude of H1 and H2) and inharmonicity (re-
sults from the phase). The model was excited with an impulse (comb-filtered
to approximate the plucking position) and its output was filtered using the
measured impulse response of the guitar body at the bridge. Figure 10.26 com-
pares the time evolution of the fundamental of the recorded signal with the
output of the dual-polarization model. Figure 10.27 are waterfall plots of the
STFT of both signals. The differences at higher frequencies are probably due
to differences in the excitations and the absence of coupling in the model.

Example 10.3 ? CD Track 22 was generated using a dual-polarization string
model, without string coupling. The two polarizations have slightly different
decay rates and fundamental frequency. Compare this to the single-polarization
case of track 21. 4

10.6 Conclusion

In this chapter, a single-string model for the acoustic guitar has been built.
The properties of ideal and real strings have been discussed, including ten-
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L1 Fractional delay

.995

L2 Fractional delay

.985

e[n]

Figure 10.22: The dual-polarization digital waveguide system used to test the
parameter estimation routines. One polarization has a reflection coefficient of
0.995, and its output is filtered with a first-order lowpass filter with cut-off
at 7 kHz. The second polarization has a reflection coefficient of 0.985. First-
order Lagrange interpolation was used as the fractional delay method. The
system was excited with a triangular initial displacemnt. The estimation error
increases for higher frequencies, due to the lower amplitude of these partials,
and thus to the lower signal-to-noise ratio.

Analytic STFT sHSVD
Partial Exact f Exact R f R F R

1 220.5 .995 218.1 .995 220.5 .995
220.0 .989 217.6 .989 220.0 .989

3 661.5 .995 653.3 .995 661.5 .995
660.0 .983 651.9 .983 660.0 .982

5 1102.5 .995 1136.9 .995 1102.6 .995
1100.0 .969 1139.3 .974 1100.3 .972

7 1543.5 .995 1557.3 .995 1547.1 .995
1540.0 .940 1560.2 .984 1544.6 .961

Table 10.2: Numerical results for the estimation using either the STFT method
or subband HSVD. The accuracy at the lower frequencies is the most important
factor in favor of the sHSVD method.
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Figure 10.23: The frequency difference between the two polarizations divided by
the number of the partial in the harmonic series. From this graph, we can conclude
that the two polarizations have fundamental frequencies with a mean difference of
0.082 Hz
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Figure 10.24: The frequency difference between the ideal harmonic series and the
extracted frequencies. This is due to the string stiffness and can be simulated with
an allpass filter.

sion modulation non-linearity and fret beating. The dual-polarization models
account for vibrations in two spatial planes. In section 10.5, several time-
domain, frequency-domain and subband parameter estimation algorithms have
been proposed and compared. Very accurate single-string models can be de-
termined using the techniques from this chapter.
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Figure 10.25: Estimated reflection coefficients for a dual-polarization waveguide
model. The estimation is based on a recording of a low E on a Yamaha C70 nylon
string guitar with AKG C4000B microphones (Fs = 44.1kHz, 16 bit).
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Figure 10.26: Amplitude of the fundamental of the recorded guitar signal and simu-
lation of the model shown in figure 10.22 with the parameters obtained with sHSVD.
The model was excited with an impulse and its output was filtered using the impulse
response of the guitar body.
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Figure 10.27: Short-time Fourier spectra of (top) the recorded signal and (bottom)
the output of the calibrated dual-polarization model.



164 Single String Models



Chapter 11

Multiple String Models

Approach your guitar intelligently, and if there are limits, don’t
deny them. Work within your restrictions. Some things you can

do better than others, some things you can’t do as well. So
accentuate the positive.

Chet Atkins

One important aspect that determines the natural quality of the sound of a
string instrument is the sympathetic coupling between the strings [31]. As one
string is struck, plucked or bowed, other strings of the instrument start to vi-
brate and change the decay or add beating to some partials of the sound. This
is an important aspect as a sound without some amount of beating is almost
immediately recognized as synthetic. Several structures to simulate the sym-
pathetic coupling between strings have been proposed. In this chapter, a novel
general framework is proposed that allows the comparison of the performance
of these structures and their effect on the sound. The framework also gives
clues as how to improve the parameter estimation for the structures and how
to verify the stability.

The first section of this chapter describes the mathematical background of the
behavior of N coupled oscillators and N coupled digital waveguide systems. In
section 11.2, several string coupling models are compared within the proposed
framework. Finally, we propose a simplified, fully coupled instrument model
and its associated parameter estimation routines in section 11.3.

165
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Figure 11.1: All strings interact at the bridge level. The common movement of
the bridge and the top plate is an extra input to the strings.

11.1 String coupling

Coupling is a physical phenomenon where energy flows between two or more
connected systems. If the energy flow is large enough, the systems cannot be
considered as separate entities, but as one large, interacting system, as shown
in figure 11.1. There exist several studies on the coupling and synchronization
of systems, but these studies are concerned with the forward problem (given
the coupling, what is the effect) and not as much with the estimation problem
(given the effect, how strong is the coupling).

11.1.1 Non-conservatively coupled oscillators

The differential equation describing a harmonic oscillator is simply

ÿ + ω2
0y = 0. (11.1)

Several independent oscillators can be coupled by adding a coupling term fk.
This term denotes the driving of the oscillators by the other oscillators of the
system. The equation becomes

(
d

dt
− jω0k)(

d

dt
+ jω0k)yk = fk, (11.2)

for k = 1, 2, . . . , N coupled oscillators. After some simplifications, we have

(
d

dt
− jω0k)yk =

∑

k′

Ωkk′yk′ , (11.3)

or in vector form
dY

dt
= ΩY, (11.4)
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in which the dynamical matrix Ω is made up of the elements Ωkk′ + jω0 [119].
These equations describe only one partial. A signal containing P partials on
an instrument with N strings has a set of N × P equations associated with it.
The horizontal and vertical polarizations are taken care of by introducing two
independent (but coupled) strings; one for each polarization.

The typical situation for the guitar is that we have two polarizations for each
string and possibly a coupling with a matching mode on another string. This
gives as a minimum size for Ω a two-by-two and a maximum of twelve-by-twelve
matrix, assuming that the system is linear and that the string mode frequencies
are well-separated. When we look at only one string with two polarizations,
the dynamical matrix is

Ω =

[

jω1 + ξ11 ξ21

ξ12 jω2 + ξ22

]

. (11.5)

where ωk is the string/mode frequency and ξkk a measure for the coupling. An
acceptable situation is that ξ11 6= ξ22 and ξ12 = ξ21. The eigenvalues λk of this
matrix are the poles of the system. We have

Ω = WΛW−1, (11.6)

where W contains the eigenvectors and Λ the complex eigenvalues. The generic
solution of equation 11.2 is a sum of damped sinusoids:

yk(t) =
∑

n

Akn exp(jλnt), (11.7)

where Akn denotes the amplitude of the sinusoid. The vector p of the ampli-
tudes is determined by calculating

p = W−1s, (11.8)

where s contains the desired start amplitudes. In the two-oscillator case, we
have

Λ =

[

λ1 0
0 λ2

]

, (11.9)

W =

[

w11 w12

w21 w22

]

, (11.10)

~p =

[

p1

p2

]

. (11.11)

The solution of equation 11.3 is

y1 = p1w11e
λ1t + p2w12e

λ2t, (11.12)

y2 = p1w21e
λ1t + p2w22e

λ2t, (11.13)

y = y1 + y2. (11.14)

The signal y is the theoretical approximation of the output of a system of
coupled oscillators.



168 Multiple String Models

11.1.2 Coupled waveguides

When we look at single delay-line (SDL) waveguide implementations of a guitar
with coupled strings, we have a structure as shown in figure 11.2 [103], [43],
with N = 12 fractional delay lines. In the most general case, the delay line
input ỹ is calculated as the sum of the system input I and the product of the
vectorized output y of the delay lines and a coupling matrix M

ỹ = My + I, (11.15)

The coupling matrix is

M =

















c11 c12 c13 · · · c1N

c21 c22 c23

c31 c32 c33

...
...

. . .

cN1 · · · cNN

















, (11.16)

where the elements ckm (k 6= m) represent the (lumped) transmission from
delay line m to delay line k, and the elements ckk represent the reflection for
delay line k. Note that, in general, the ckm elements are complex and frequency-
dependent and should be implemented as linear filters. To study the system,
it is easier to consider a delay-length independent coupling matrix M̃

M̃ =

















c̃11 c̃12 c̃13 · · · c̃1N

c̃21 c̃22 c̃23

c̃31 c̃32 c̃33

...
...

. . .

c̃N1 · · · c̃NN

















, (11.17)

where

c̃kk = c
1/Lk

kk , (11.18)

c̃km = ckm/Lk., (11.19)

and Lk is the length of the delay line in samples. This discrete-time coupling
matrix M̃ could be seen as an equivalent unit-delay coupling matrix to the
matrix M and is related to the continuous-time Ω matrix by a z-to-s plane
transformation. For instance, using an inverse backward Euler transform, in
the two-oscillator case, we calculate Ω as

Ω =

[

j(ω0) + (c̃11 − 1)Fs c̃21Fs

c̃12Fs jω1 + (c̃22 − 1)Fs

]

, (11.20)

where Fs is the sampling frequency.
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Figure 11.2: A general waveguide structure with string coupling through a
coupling matrix M . Elements of M are complex and frequency dependent.

One digital waveguide can be described as a group of oscillators, one for each
partial. The complete dynamical matrix is quite large if we include every
partial/oscillator. Two interesting approximations of the complete matrix are
analyzed here. The first one includes only the “fundamental” oscillator (at
the fundamental frequency for each string). The ensuing Ωf matrix gives an
indication of the overall amplitude envelope for the dominant frequencies. The
second variation discards the imaginary part: this is equivalent to the worst case
possible, where all oscillators have the same frequency and are easily excited
when coupled. This is the case for the lowest common multiple of the string
fundamentals. To ensure the global stability of the system, we have to ensure
that the real part of the eigenvalues of this worst-case matrix Ωw are negative
(we need a damped system).

11.2 Coupled string models

Several different coupled string models can now be compared within this frame-
work. Starting from the un-coupled situation, we proceed to the more advanced
bridge coupled and simplified coupled models found in literature. Finally, we
propose a more complete fully coupled model.

11.2.1 No coupling
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The simplest case is when there is no coupling at all (the digital waveguides
are independent systems). The matrix M is simply given by

M =













c11 0 · · · 0

0 c22

...
...

. . . 0
0 · · · 0 cNN













, , (11.21)

and the corresponding Ωf matrix is

Ωf =







jω1 + (c̃11 − 1)Fs 0
. . .

0 jωN + (c̃NN − 1)Fs






. (11.22)

The eigenvalues of Ωf are the diagonal elements. Stability is ensured if eig(Ωw) =
eig(<{Ωf}) = <{c̃kk − 1} < 0 or c̃kk < 1. This is physically sound as no am-
plification occurs.

It is now trivial to calibrate the matrix M and the delay lengths with a record-
ing. One has to measure the frequency and damping of the partials by applying
the sub-band Hankel Singular Value Decomposition. For the estimation of the
parameters using sHSVD, we choose the window length of the STFT large
enough such that only one pair of partials (one partial for each mode) can be
found in one frequency bin. For each bin that contains partials, we use the
entire time-frame sequence as the input for the sHSVD algorithm but calculate
only two poles, one for each polarization mode. We obtain the estimates for
ωi and αi = (c̃ii − 1)Fs. The length of the delay lines L1 and L2 can easily be
found given the knowledge of ωi. Based on these results, one calculates the ckk

elements. For every partial, a different set of coefficients is found. One could
fit a simple IIR filter (typically, a lowpass filter) and use it to calculate the
reflection.

11.2.2 Dual polarization coupling

In this model, the two polarizations are coupled but there is no interstring
coupling. A schematic view of a dual-polarization string pair is shown in
figure 11.3. As a result, the Ωf matrix breaks down in N/2 blocks of two
oscillators.

Ωf =













Ωf,1 . . . 0

0 Ωf,2

...
...

. . . 0
0 . . . 0 Ωf,6













, (11.23)
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11c

c22

21c

12c

L1

L2

Figure 11.3: A Dual-polarization string pair. The two delay lines represent
the two polarization modes. There is no interstring coupling. The coefficients
c11, c12, c21 and c22 are positive real.

with

Ωf,k =

[

jω1 + (c̃11 − 1)Fs c̃21Fs

c̃12Fs jω2 + (c̃22 − 1)Fs

]

(11.24)

The global system is stable if all the Ωf,k represent stable systems. The cali-
bration of the matrix M is somewhat more difficult than in the previous case.
Using the sHSVD, we measure for each partial the two poles λ1 = α1m + j ×
ω1m and λ2 = α2m + jω2m. These measured poles are the eigenvalues of the
coupled system Ωf,k. We now analytically calculate the eigenvalues of equa-
tion (11.24). When solving this expression to find the unknown coefficients
ω1, ω2, c̃11, c̃12, c̃21 and c̃22 with known λ1 and λ2, there are still two degrees
of freedom left. If we add the extra constraints that the sum of the outputs is
equal or less than the input, we obtain a set of physically meaningful solutions.
One interesting case is when the loss at the reflection point is zero or

c̃11 + c̃12 = 1, (11.25)

c̃21 + c̃22 = 1. (11.26)

This gives a unique solution: the maximal values for the coefficients. Note that
these constraints also guarantee the stability if 0 < c̃jk < 1. The solution is
given by

ω0 = (ω1m + ω2m)/2, (11.27)

ε =
√

(ω1m − ω2m)2 + 4α1mα2m, (11.28)

and

ω1 = ω0 + ε/2, (11.29)

ω2 = ω0 − ε/2. (11.30)

The coefficients are

c̃21 =
α1mω2m + α2mω1m − (α1m + α2m)ω2

−Fsε
, (11.31)
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Figure 11.4: This figure shows the comparison of the real (damping) and imag-
inary (frequency) parts of the system poles, for a resistively coupled model and
the un-coupled simplified case, as a function of the mistuning.

c̃12 =
α1m + α2m

−Fs
− c̃21, (11.32)

c̃11 = 1 − c̃12, (11.33)

c̃22 = 1 − c̃21, (11.34)

where Fs is the sampling frequency. This approach is valid when the movement
of the two polarizations are in phase, which is the case for the lower frequency
partials. At higher frequencies it is possible that the coefficients c̃jk become
complex-valued. The length of the delay lines can be determined from ω1 and
ω2, and the reflection coefficients cjk can now simply be determined with equa-
tions (11.18) and (11.19). In figure 11.4, we show the fundamental frequencies
and corresponding damping (the real part of the pole) for true resistively cou-
pled oscillators and for the un-coupled case, as a function of the mistuning of
the two strings. For large mistuning, the two models have the same output.
At small mistuning, there is a clear change in decay properties in the coupled
case.

Example 11.1 ? CD Track 23 uses the same dual-polarization model as track
22, but now including string coupling. Notice the different decay rate and
beating. 4

11.2.3 Bridge coupling

In the bridge coupled model, all the outputs of the digital waveguides are
tied to the same node. The outputs are summed and input to a linear filter
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L2

L1

−H

Figure 11.5: The bridge coupled model for the case with two delay lines.

coupling from
other strings

string

string

horizontal polarization

vertical polarization

to other strings

Figure 11.6: The simplified model including sympathetic coupling from other
strings.

representing the bridge admittance, as can be found on figure 11.5. For the
two-string case, the coupling matrix is

M =

[

1 − H −H
−H 1 − H

]

. (11.35)

This is system is stable if |2H(ejωt) − 1| ≤ 1. We see that for H ≡ 0 we have
two independent systems, and H ≡ 1 we have one long delay line. It is quite
cumbersome to analytically calculate the eigenvalues, as H(ejωt) ∈ C. H can
be estimated by numerically optimizing its value such that the eigenvalues of
Ωf match the measured poles.

The bridge coupled model is interesting because it implicitly integrates the
resonating body of the instrument into the bridge admittance. The bridge
cannot be seen independently from the body as its admittance is measured
when it is attached to the body.

11.2.4 Simplified coupling

One simple structure including sympathetic coupling was proposed in [43] and
is shown in figure 11.6. In this structure, a coupling matrix C determines the
ratio of the output signal of the horizontal polarization to the other strings.
We can easily calculate the coupling matrix M . After some manipulations of
M and the calculation of the Ω matrix, we obtain the matrix structure shown
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0
0

0
C

k

Figure 11.7: The structure of the Ω matrix after grouping the horizontal and
vertical polarizations.

in figure 11.7. The eigenvalues are the same as for the un-coupled case. This
means that the system poles are unaffected by the matrix C. Strictly speaking,
this simplified coupling is not a coupled string model, but an excited resonator
bank driving another resonator bank. To reproduce the two-stage decay accu-
rately, one has to use different reflection coefficients for each individual mode
and try to satisfy all combinations of strings. This is possible when only the two
polarizations are used, but may not be possible when coupling all the strings.
For instance, strings 1 and 2 have two-stage decay rates d1 and d2 resulting
in reflection coefficients c11 and c22; strings 5 and 6 have c55 and c66. The
reflection coefficients needed for accurate coupling of strings 1 and 6 are c†11
and c†66. It is easy to find a situation where c†11 6= c11 and c†66 6= c66. It is
thus not possible to accurately model the coupling between all the strings at
the same time. This model includes sympathetic vibration of the strings, but
no coupling effects. An advantage is the guaranteed stability of the complete
model if the individual string models are stable.

11.2.5 Full Instrument coupling

If we look at the general structure, we basically have a coupling node and a
series of resonators. We can add yet another resonator to the structure: the
body itself, as can be seen on figure 11.8. This is fairly similar to the N-
dimensional loaded waveguide junction [28], but with feedback to the same
junction. It is now possible to give an independent input to the body (e.g. a
slap as in flamenco playing) that will cause all the strings to vibrate.

Coupling matrix
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Figure 11.8: Adding the body itself as a resonator with full coupling with the
strings.

body

strings

bridgein

out

Figure 11.9: The physical structure equivalent to the Full Instrument Coupling
model
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It is clear from the bridge coupled model that the coupling matrix does not
represent the bridge as such, but the combination of body and bridge (the
admittance of the whole system measured at the bridge). If we include the body
as an independent resonator, we effectively simplify the coupling matrix as we
represent only the bridge. In the acoustic guitar case, the saddle/bridge is a
fairly rigid construction, with rather high-frequency vibration modes compared
to the body: this will lead to near-frequency independent coefficients. We
have an added degree of freedom to describe the coupling: it is possible to
couple strings through direct bridge coupling, without influence of the body
(see figure 11.10). Grouping the polarizations gives the global structure shown
in figure 11.11 The body itself could be implemented as a long FIR filter or
as several IIR filters (e.g. Kautz filters, [83]) or a combination of both. We
can now build a new waveguide model, by using the complete matrix and by
approximating it without sacrificing too much quality.

11.3 Simplified full instrument coupling

A valid approximation to the coupling matrix can be found if we have a better
understanding of the coupling mechanism itself [70]. As before, we will model
an acoustic nylon string guitar. To analyze the coupling between the strings,
we constructed a finite element model of the saddle of the guitar, and calculated
the displacement and internal stress for the static load and for unit force in X
and Y directions. The Finite Element model was built and calculated using
the ALADDIN package [5]. Figures 11.12 and 11.13 show schematic views of
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Figure 11.11: The coupling matrix M after inclusion of the body. The direct
bridge coupling is separated from the body coupling.

E A D G B E

String Tension

Figure 11.12: Mechanical structure of the bridge/saddle construction of a clas-
sical acoustic guitar. The string tension results in steady-state forces in the
bridge and the top plate. The vibration of the strings adds a dynamic load.

y x

Figure 11.13: Schematic view of the saddle. The two lower corners of the finite
element model of the saddle were fixed nodes (allowed no movement in X or Y
direction)
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78 mm

7 mm

Figure 11.14: The static stress for forces in the Y direction. The stress was
calculated using a finite element element model with a spatial resolution of
0.1 mm. Darker shades indicate a higher stress.

the saddle/bridge structure. The lower two corners of the saddle model were
fixed in X and Y direction (this is needed for a valid FE simulation). This
is valid because the top plate is flexible compared to the saddle/bridge (in
Y direction) and as rigid as the saddle/bridge in the X direction. We first
determined the stresses at rest with six string attached. The forces exerted
by the strings on the saddle were calculated for d’Addario Pro Arte EJ45
normal tension strings. Figures 11.14 and 11.15 show the calculated internal
stresses. The experiment was repeated for a unit force in the X direction
(figure 11.17) and in the Y direction (figure 11.16). The results for a load in
Y direction (string moving in vertical polarization) show that this load results
in stress in both the X and Y direction and that the effect of the load is fairly
localized around the load position (load point x = 33mm, substantial stress
between 26mm < x < 40mm). This means that almost all of the force applied
by the string is transmitted to the top plate, without directly influencing the
other strings. Of course, the displacement of the top plate due to the load
will influence all the strings. We conclude that interstring vertical-vertical
coupling occurs through body coupling. A load in the X direction (string
moving in horizontal polarization) gives a different picture. Again, there is
stress in both X and Y direction, but the effect is not localized around the load
point. The whole bridge sees a stress (and the related displacement). The X
component of the stress results in a direct coupling in the X direction for all
the strings. As the Y component in this case is rather small compared to the
Y component when loading in the Y direction, it results in less transmission
to the top plate and thus a lower damping. We conclude that interstring
horizontal-horizontal coupling occurs through direct coupling and interstring
horizontal-vertical coupling through a combination of direct and body coupling.

Intrastring coupling is somewhat more difficult to determine. A load in Y direc-
tion results in a symmetric stress pattern in the X direction. A load in X direc-
tion creates an asymmetric stress in the Y direction. We believe that this leads
to stronger horizontal-vertical intrastring coupling than vertical-horizontal in-
strastring coupling. These calculations are also valid for the dynamic case with
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Figure 11.15: The static stresses inside the saddle were obtained by finite
element analysis. The forces on the saddle were calculated for the saddle/bridge
of a Yamaha C70 acoustic guitar using d’Addario Pro Arte 45 strings under
normal tension. The saddle material was bone (E = 1.7GN/m2). The saddle
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Figure 11.16: The effect of unit force in the Y direction at the third string.
The internal stresses are symmetric in the X and Y direction. The influence at
y = 0 (on top board) is small in X direction and larger in Y direction.
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Figure 11.17: The effect of unit force in the X direction at the third string.
The internal stresses are asymmetric in the X and Y direction. The influence
at y = 0 (on top board) is small in X direction and larger in Y direction.

changing load. The time constant to achieve stress equilibrium in the saddle
is very small compared to the frequency of the load change (this is valid up to
10 kHz). This is due to the high speed of sound in bone, combined with the
small dimensions of the saddle. Including these considerations in the coupling
matrix gives the result shown in figure 11.18 or

Hin = M16×6Hout + Ihor, (11.36)

Vin = M213×6





Hout,
Vout

Bout



 + Iver, (11.37)

Bin = M313×1





Hout,
Vout

Bout



 + Ibody, (11.38)

where H, V and B are the inputs and outputs of the horizontal polarization,
the vertical polarization and the body respectively. The bridge displacements
are in phase with the string movement, so 0 < cjk < 1.

Example 11.2 ? CD Track 24 is the output of a coupled dual polarization
model including the guitar body. 4

11.3.1 Calibration
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Figure 11.18: Approximation for the coupling matrix based on the finite ele-
ment analysis.
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We now have to determine the numerical values for the coupling coefficients.
The calibration process breaks down into four steps

1. Determine the decay rate for the fundamental of each string, for the two
polarizations, with all other strings damped;

2. Determine the body-string coupling by analyzing a recording of an
impulse to the body;

3. Determine string-string coupling by exciting and damping one string;

4. Adjust the values found in step 1.

The first step is easy and results in a useful dual-polarization model. The second
step requires a recording of an impulse applied to the body while leaving one
string undamped and repeating this for each string. The resulting vibration
of the string is a measure for the body-string coupling. The third step is very
similar, except that we excite and damp one string while leaving one other
string undamped. This results in coupling through the bridge and through
the body. One way to determine the coefficients is to use an optimization
algorithm with a cost function including the predicted output (eigenvalues of
the theoretical Ω matrices) and the measured output. Here, the finite element
analysis provides a starting point for the values of the coefficients.

The easiest coefficients to determine are the vertical reflection (cV r) and vertical-
to-body (cV →B) coefficients (see figure 11.18). The first step has already de-
termined the value for cV r. A starting value for cV →B is

c̃V →B = 1 − c̃V r. (11.39)

The horizontal reflection (cHr) coefficients can be determined with the same
procedure. Based on the results for the stress in X direction, we conclude
that the horizontal-horizontal (cH→H) coupling depends on the distance of the
“source” string to the “target” string. We model this by taking the coefficient
(linearly) proportional to the distance. The same holds for cH→V . According
to the finite element analysis, the displacement in the horizontal dimension is
about three times larger than in the vertical dimension, which leads to the ratio

cH→H = 3cH→V . (11.40)

The transfer from the horizontal polarization to the instrument body is more
difficult to determine. It has been found that

cH→B = 0.1(1 − cH→H), (11.41)

gives acceptable results. We can now scale the cH→V and cH→H values such
that

∑

cH→V +
∑

cH→H = 0.9(1 − cHr). (11.42)
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Figure 11.19: Exciting the body part of full model results in the impulse re-
sponse of the guitar body (top) and the sympathetic vibration of the strings
(bottom).

The last coefficients to be determined are cB→V .

Figure 11.19 shows the model output when the body is excited with an impulse.

The last step is to adjust the coupling coefficients such that
∑

k

cjk = 1, (11.43)

or the column sums of the coupling matrix are one.

Another possible method consists of exciting the body or the strings while
leaving all the strings undamped. As coupling with more than one string is
now possible, we have to determine the number of strings a specific partial is
coupled to. Assuming a linear system, the number of coupled strings depends
on the fundamental frequency of each string. Figure 11.20 shows the spectra
of two different strings. Only the overlapping parts (the common multiples
of the fundamentals) will be modified by the coupling if the system is linear.
This property enables us to calculate the number of oscillators in Ω to include
for each partial. For the calibration of the instrastring coefficients, we select
un-coupled partials. Using the same technique, we can select partials that are
coupled to only one other string to calibrate the coefficient for that specific
interstring coupling.

Example 11.3 ? CD Track 25 is an example of the complete model, calibrated
to sound like the reference note of track 20. Note that the attack is slightly
different due to the different excitation. 4
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Figure 11.20: The spectra of two different strings show the overlap at the
common multiples of the fundamentals. Only the partials will be influenced by
the interstring coupling

11.4 Conclusion

In this chapter, the single-string models were extended to multiple-string mod-
els, including the very important string coupling mechanism. A mathematical
description for the behavior of coupled oscillators was transformed for use with
digital waveguide systems. This allowed the comparison of several different
coupled string models. Finally, we proposed a more accurate fully coupled
instrument model, with its associated parameter estimation routines.



Chapter 12

Guitar Body Models

The guitar body acts as an acoustic amplifier for the vibrations of the strings.
It ensures that enough energy is reflected to the strings to sustain the note
and that a note of significant volume is audible to the listeners. The shape
and materials used are determining factors of the timbre and the spatial sound
radiation pattern of the instrument. A guitar body is a complex structure
consisting of thin, more or less flexible plates, bracings, and an enclosed air
cavity. We first discuss the acoustic properties of a guitar in section 12.1.
Several possible linear modeling techniques are then reviewed in section 12.2.1.
A non-linear Wiener-Hammerstein model of the guitar body is finally developed
in section 12.3.

12.1 Acoustic properties

The frequency response of a guitar body (figure 12.1) shows many resonances
and anti-resonances. When mechanically driven at the bridge, the lowest reso-
nance is usually a bar bending mode, but at too low a frequency to be excited
by the vibration of real strings [31]. Most guitars have three string resonances
in the 100-200 Hz range due to coupling between the fundamental modes of the
top and back plates, and the Helmholtz mode of the air cavity. At the lowest
of the three resonances, the top and back plates move in opposite directions.
The guitar top vibrates in many modes; those of low frequency bear consider-
able resemblance to those of a rectangular plate when no bracings are present.

185
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The bracings are necessary to add mechanical rigidity to the top plate, and
have a strong impact on the vibration modes of the top plate. The higher air
cavity modes resemble standing waves in a rectangular box. Disregarding the
ribs and the back plate, the top-plate and air cavity can be modeled as two
coupled oscillators. Adding the back plate yields a three-oscillator model. In
most guitars, the addition of the back results in a downward shift of the two
primary resonances [18], [61], [95]. The higher two resonances usually occur
around 200 Hz, depending upon the stiffness of the the top and back plates.
The motion of the air and the top plate is in the same direction, thus resulting
in strong sound radiation. The resonances of the top plate, back plate, and air
cavity generally combine to give at least one strong resonance around 300 Hz
in a classical guitar, but closer to 400 Hz in a cross-braced folk guitar. Above
400 Hz, the coupling between top and back plate appears to be relatively weak,
and the observed resonances are due to resonances in one of the plates. There
is a definite link between the subjective quality of a guitar and its frequency
response [62], and the knowledge of the acoustical properties of the guitar body
leads to improved guitar designs.

12.2 Linear models

For sufficiently small input signals, the body of a guitar is a linear system,
and can be modeled using all the conventional methods. The impulse response
of a guitar body excited at the bridge shows a large number of poles. It has
been shown that more than 300 poles are needed to obtain a model that is
indistinguishable from the original by the listener [83]. Figure 12.3 shows the
singular values of the Hankel matrix built from the impulse response data shown
in figure 12.2. The order needed to accurately model the body is approximately
300, which incidentally means that the human ear is quite sensitive.

12.2.1 FIR

The easiest way of modeling the guitar body is by using the complete impulse
response of the body as an FIR filter. The basis functions used in FIR filters
are the orthonormal functions z−k. A FIR model of a system G(z) ∈ H2 (H2

denoting the space of stable, strictly-proper transfer functions) consists of a
finite number of expansion terms and takes on the form

Ĝ(z) =

N
∑

k=1

g(k)z−k, (12.1)

where g(k) are impulse response coefficients. If the decay rate of the signal
is low compared to the sampling rate, very high order FIR filters are needed.
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Figure 12.1: Spectrum of the impulse response of a Yamaha C70 classical
guitar.
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Figure 12.2: Impulse response of a Yamaha C70 classical guitar. The impulse
was applied at the bridge. The response was recorded in front of the soundhole,
at a distance of 30cm, using an AKG C4000B microphone. The signal was fed
to a Tascam DAP-1 DAT recorder and sampled at 16 bit, 44.1 kHz.
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Figure 12.3: The singular values of the Hankel matrix built from the impulse
response data. There are about 350 non-zero singular values. This is a strong
indication that the model order is less or equal to 350.

The computational cost is quite high, especially when using a sample-oriented
method. When block-processing is used, several fast-convolution frequency
domain techniques can be used to speed up the computation. The long FIR
size of several tens of thousands of samples is the main bottleneck of using this
method in the fully coupled model, as this model does not easily allow block
processing.

12.2.2 IIR+FIR

The size of the FIR filter can be significantly reduced by using IIR resonators
to model the first few body resonances, and using the FIR filter only for the
residual signal. The first resonance is the Helmholtz resonance of the air cavity.
The impedance of a Helmholtz resonator has been discussed in section 4.3.3
and is given by

ZHelmholtz(s) =

(

ρL

S

)

s +

(

ρc2

Q

)

1

s
. (12.2)

The resonance peaks occur where the acoustic impedance is zero. This gives
the following transfer function for the Helmholtz resonance:

HHelmholtz(s) =
S

ρL

s

s2 + c2S/LQ
. (12.3)

This is a standard second-order tranfert function, and can be described in
discrete time by using several transforms. For frequencies much lower than
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Nyquist, the backwards Euler transform is usable. This transform has the
disadvantage that it tends lower the sharpness of resonant peaks. Therefore, the
bilinear transform is better suited. A parametric representation for a second-
order peak filter is given as

Hpeak = (1 − b)
1 − z−2

1 − 2b cos(ω0)z−1 + (2b − 1)z−2
, (12.4)

where

ω0 =
2πf0

fs
, (12.5)

∆ω =
2π∆f

fs
, (12.6)

b =
1

1 + tan(∆ω/2)
, (12.7)

with ∆f the 3dB bandwidth of the peak. The peak frequency is best found in
the frequency domain, by quadratic interpolation of the peak in the spectrum,
as was discussed in section 10.5. In this case, the damping is quite high, so
the peaks are wider, making the manual determination of the 3dB bandwidth
a possibility. Methods using the STFT are less interesting, exactly because
of the higher damping, making the signals too short in time for an accurate
measurement of the exponential slope. A better approach in this case is to use
an optimization technique to minimize the cost function

E =
∑

W (S −Hpeak)
2, (12.8)

where S is the spectrum of the body impulse response, and W a windowing
function around the peak. The residual signal is calculated by either a time-
domain subtraction of the output of the IIR resonator, or by filtering the body
impulse response with a notch filter. The procedure is then repeated for the
other modes, until the residual signal is short enough to be used as a FIR filter.

Example 12.1 The lowest resonance for the body with the spectrum shown
in figure 12.1 occurs at 94.99 Hz, with a 3dB bandwidth of 4.41 Hz. This was
determined using cost function (12.8), and a Gaussian window W around the
first resonance. 4

In general, the guitar body is a linear time invariant model, and could be de-
scribed using the standard LTI model structures. The complete model structure
is given by

A(z)yk =
B(z)

F (z)
uk +

C(z)

D(z)
ek, (12.9)

where ek is Gaussian white noise. We assume that the recording of the body
impulse only adds white noise to the output and obtain the output error (OE)
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model structure

yk =
B(z)

F (z)
uk + ek. (12.10)

As was determined before, the order of B(z)/F (z) is approximately 350. The
model parameters can be found with either prediction error methods or corre-
lation methods.

Prediction error methods are based on the minimization of the prediction error
sequence êk

êk = yk − G(z, θ)uk, (12.11)

with G(z, θ) = B(z)/F (z). This is achieved by optimizing the parameter
vectorθ with as a cost function

V (θ) =
1

N

N
∑

k=1

1

2
(êf

k(θ))2, (12.12)

where êf
k(θ) is the error sequence, filtered to stress a certain part of the spec-

trum. The frequency domain interpretation of the prediction error method
shows that this is just a generalization of the cost function (12.8) or

V (θ) =

∫ π

−π

1

2
|G0(e

jω) − G(ejω , θ)|2|L(ejω)|2|U(ω)|2dω, (12.13)

with G0(z) the real transfer function, G(z, θ) the model, U(ω) the spectrum
of the input, and L(z) the filter used to filter the prediction error. For our
purposes, instead of determining one high-order model, we calculate a set of
low-order models. Each low order model is obtained by band-pass filtering
the prediction error around the previously selected peaks in the spectrum. If
the input is a true impulse, this method simplifies to equation (12.8). When
calculating a second order model for each subband, we obtain

yk =

N
∑

i=1

b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2
uk + ek, (12.14)

with N the total number of bands considered. This procedure results in a
parallel set of IIR filters.

The practical determination using these conventional system identification meth-
ods require long, persistent excitation signals. Therefore, a synthetic output
is generated by filtering white noise with the complete impulse response data
as FIR coefficients. The resulting longer input-output signals are used during
identification.

Alternatively, one could use the sHSVD algorithm to determine the poles di-
rectly, and to design a filterbank with the same poles. This is quite similar to
the determination of a state space model.
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12.2.3 Kautz filters

Kautz filters [45], [116], [115], [37] are fixed-pole IIR filters structurally orga-
nized to produce orthonormal tap-output impulse responses. The transversal
Kautz filter can be seen as a generalization of FIR and Laguerre filter structures,
providing IIR-like parametric modeling combined with the superior numerical
properties of FIR filters [80], [83].

Taking into account the high FIR filter order needed for accurate modeling,
one could use a different orthonormal basis of H2. Let the functions Fk(z)
with k ∈ N denote the basis elements of such a general basis. Then the transfer
function G(z) ∈ H2 can be expanded as

G(z) =

∞
∑

k=1

ckFk(z), (12.15)

The aim is to choose the basis {Fk(z)}k∈Z such that the expansion coefficients
ck rapidly converge to zero. A straightforward approach to this problem is to
ortho-normalize the set of functions

fi,j(z) =
1

(z − ai)j
, (12.16)

where the poles ai can in principle be any complex number with modulus
smaller than one, and i ∈ N, 1 ≤ j ≤ mi. Applying a Gram-Schmidt procedure
to the sequence of functions fi,j(z) yields the orthonormal functions

φk(z) =

√

1 − |ξk|2
z − ξk

k−1
∏

i=1

1 − ξ̄iz

z − ξi
, (12.17)

with k ∈ (N) [117]. The set of orthonormal functions {φk(z)}k∈Z is called
the Takenaka-Malmquist construction. Kautz proposed a method of rational
orthonormal basis function construction that is very close to the Takenaka-
Malmquist construction, but where the functions are constrained to be real-
rational functions [45]. The general discrete-time Kautz functions are defined
as

φ2k−1(z) =
Ck,1(1 − αk,1z)

(z − βk)(z − β̄k)

k−1
∏

i=1

(1 − β̄iz)(1 − βiz)

(z − βi)(z − β̄i)
, (12.18)

φ2k(z) =
Ck,2(1 − αk,2z)

(z − βk)(z − β̄k)

k−1
∏

i=1

(1 − β̄iz)(1 − βiz)

(z − βi)(z − β̄i)
, (12.19)

with k ∈ N. The parameter βk ∈ C are to be chosen such that |βk| < 1 and
the parameters αk,1, αk,2 ∈ R must satisfy

(1 + αk,1αk,2)
(

1 + |βk|2
)

− (αk,1 + αk,2)(βk + β̄k) = 0. (12.20)
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The constants Ck,1 and Ck,2 are given by

Ck,1 =

√

(1 − β2
k)(1 − β̂2

k)(1 − βkβ̂k)

(1 + α2
k,1)(1 + |βk|2) − 2αk,1(βk + β̄k)

, (12.21)

Ck,2 =

√

(1 − β2
k)(1 − β̂2

k)(1 − βkβ̂k)

(1 + α2
k,2)(1 + |βk|2) − 2αk,2(βk + β̄k)

. (12.22)

By the nature of the Kautz construction, poles can only occur in complex
conjugate pairs. In general the complexity of the computations and the analysis
involved in using rational bases increases as the number of different poles in
the basis increases. The best-known simplified bases that are used for filtering
purposes are the Laguerre and the two-parameter Kautz basis. The Laguerre
basis is obtained from the Takekana-Malmquist construction, using only one
real-valued pole in the construction, i.e. ξk = ξ with −1 < ξ < 1. This
makes the Laguerre basis less suitable for modeling systems that have complex
conjugate pole pairs in their transfer functions, as it is the case with the guitar
body. The two-parameter Kautz constructions is a simplification of the general
Kautz construction where βk = β and αk,1 = α1, αk,2 = α2. The set is given
by

φ2k−1 =

√
1 − c2(z − b)

z2 + b(c − 1)z − c

k−1
∏

i=1

−cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c
, (12.23)

φ2k =

√

(1 − c2)(1 − b2)

z2 + b(c − 1)z − c

k−1
∏

i=1

−cz2 + b(c − 1)z + 1

z2 + b(c − 1)z − c
, (12.24)

with the parameters α1 and α2 are chosen to be

α1 =
1 + |β|2
β + β̄

, (12.25)

α2 = 0, (12.26)

and the parameters b and c are given by

b =
β + β̄

1 + |β|2 , (12.27)

c = −|β|2. (12.28)

In the case of a guitar body model, we know the dominant poles, and can use
the full Kautz functions. A structure based on the Kautz basis functions that
is well-suited for implementation as a transversal-like filter is

φk(z) = ak
z
√

1 − |βk|2
1 − βiz

k
∏

i=0

1 − β̄iz

z − βi
. (12.29)
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Figure 12.4: The general Kautz filter with complex poles pi consists of an
allpass backbone and all-pole tap-output filters. Both the FIR and Laguerre
filters can be implemented with this structure. In the Laquerre case, pi ∈ R,
−1 < pi < 1, and for the FIR case pi = 0.

This set of basis functions leads to the complex Kautz filter structure shown in
figure 12.4 [79]. The real Kautz filter structure that is derived from equations
(12.18) and (12.19) is shown in figure 12.5. The tap output coefficients ck can
easily be found by projection on the basis functions or

ck = 〈G(z), φk(z, β)〉 =
1

2πj

∮

Γ

G(z)φk(z−1, β)z−1dz, (12.30)

with Γ a circle of radius higher than 1 and lower than 1/|β|. In practice,
the coefficients are found by feeding the time-inverted impulse response of the
guitar body h(−n) to the Kautz filter and reading the tap outputs xi(n) =
Gi[h(−n)] at n = 0 such that ci = xi(0).

For an efficient model, a good set of poles should be selected. The determination
of the poles is however not a trivial problem, and several design procedures can
be found in the literature [15]. The lowest-order models are obtained when the
basis function poles correspond to the system poles, which can be determined by
the methods described in section 12.2.2. This procedure results in a transversal
set of IIR filters.

12.3 Non-linear models

The body of a guitar is only linear for small excitations. For larger amplitudes,
the wooden top plate tends to saturate the output due to its limited flexibility
and bracings. The effect was measured using series of impulses with increasing
amplitude [76].
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Figure 12.5: The real Kautz filter consists of cascaded delay blocks and dual-tap
outputs according to equations (12.18) and (12.19). The tap output weights
are computed by projection on the basis functions.

Wiener-Hammerstein systems consist of two linear blocks and a static non-
linearity, show in figure 12.6. We assume that in the case of a guitar body,
the input is saturated, yielding a Wiener system. The output of the Wiener-
Hammerstein is

x2(t) = g(x1(t)), (12.31)

U(s) = H1(s)X2(s), (12.32)

The static non-linearity is described by a polynomial function

g(x) =

N
∑

k=1

bkxk. (12.33)

The experimental determination of the coefficients is possible by recording a
series of impulses with increasing amplitude. If the system is linear, amplifi-
cation of a low-amplitude impulse response will approximately yield the high-
amplitude impulse response. Figure 12.7 shows a polynomial approximation
of the non-linearity. The dots on the figure indicate the input-output relation
between the amplified low-amplitude impulse response, and the high-amplitude

H1 H2

x2x1
g(x)

Figure 12.6: A complete Wiener-Hammerstein system with two linear blocks
and a static non-linearity.
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Figure 12.7: This figure shows the static non-linearity added to the body model.
The dashed line shows a linear input-output relation. The dots are the measure
input-output relations for a given amplitude, and the solid line is a polynomial
fit. The compression effect is visible for the negative input values. This means
that above a specific playing level, the output amplitude will only slightly
increase, and the sound will be distorted. This effect depends on the type of
wood used and is well known by guitar players.

impulse response. First, two sequences of impulses of the same amplitude were
recorded and the expected responses were calculated. The expected values are
then placed in amplitude bins, and the input-output relation is determined.
Each dot on the figure represents thousands of samples for the lower ampli-
tudes to about hundred samples at high amplitude. We observe a saturation
characteristic at higher amplitudes. Further experiments are needed to deter-
mine the cause of this behavior.

Example 12.2 ? CD Track 29 explicitely uses the guitar body. The fully
coupled model, with the guitar body simulated as an IIR+FIR model, is excited
by an impulse on the body model. The body impulse is audible, as are the
sympathetic vibrations of the strings. 4

12.4 Conclusion

In this chapter, several different guitar body modeling techniques have been
discussed. All the linear techniques are equivalent with respect to their output,
but they differ in computational complexity and sensitivity to errors. Long
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FIR models perfectly capture the properties of the body, but due to their long
length, are not well suited for synthesis. The FIR filters can be simplified by
combining IIR models for the dominant poles with a residual FIR filter, yielding
a set of parallel filters. A different approach is to use the Kautz filter structure,
where an efficient, low-order FIR-like structure is obtained. Finally, it has been
determined that a guitar body is better modeled with the addition of a static
non-linearity that simulates the saturation of this mechanical amplifier. The
body models are an important part of the complete calibrated models used in
the next chapter.



Chapter 13

Validation

In this chapter, we describe the experimental determination of the coupling
parameters for two coupled string waveguide models. First, the measurement
setup is described in section 13.1, and all the string parameters are estimated in
section 13.2. The coupling parameters are determined for the simplified coupled
string structure and the fully coupled structures of the previous chapter [69],
[72].

13.1 Measurement setup

All measurements were done on a Taylor 514CE steel-string acoustic guitar.
This guitar has a built-in Fishman Stereo Blender with a Fishman Acoustic
Matrix undersaddle pickup and an internal electret microphone. We added a
modified Roland GK-2A hexaphonic magnetic pickup at 1 cm of the saddle,
not attached to the guitar but independently mounted on a rigid construction.
The 8-channel sensor outputs were recorded on a PC equipped with 4 synchro-
nised LynxOne soundcards, at 24-bit resolution and a 44.1 kHz sampling rate.
The recording setup is schematically shown in figure 13.1 and figure 13.2 is a
photograph of the actual setup. The recorded signals were imported in Matlab
(Mathworks Inc.) for further signal processing.

Figure 13.3 shows the outputs of the magnetic pickup, undersaddle pickup and
built-in electret microphone for the high E string. The envelopes are quite

197
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magnetic
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4 x

piezoelectric tranducer

internal electret condensor microphone

magnetic pickups
pre−amplifier
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Figure 13.1: Schematic overview of the measurement setup. The guitar is
equipped with a Fsihman Acoustic Matrix undersaddle pickup and an inter-
nal electret microphone. These signals are preamplified by a Fishman Stereo
Blender built into the guitar. The movement of each string is separately mea-
sured with a modified Roland GK-2A hexaphonic magnetic pickup, amplified
through a custom-built six-channel guitar preamplifier. All signal go through
a recording console for level adjustment. The signals are sampled using four
synchronized LynxOne soundcards, at 24 bit, 44.1 kHz.

Figure 13.2: Photograph of the measurement setup.
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Figure 13.3: Amplitude vs time plots of the recording for the high E string (a)
magnetic pickup, (b) undersaddle pickup, (c) electret microphone

similar. When looking at at the spectra of these signals (figure 13.4), the
difference is quite clear. The output of the magnetic pickup clearly shows the
comb-filter effect of the plucking point, while the internal microphone signal
shows the influence of the instrument’s body.

The magnetic pickups are inherently non-linear. Their principle of operation is
the modification of the magnetic flux through a coil by moving a ferromagnetic
string in the field of a permanent magnet. A rough calculation yields that
the output of the pickup V ∼ y−3, with y the pickup-string distance. This
gives the trade-off (for the same magnet): larger distance, smaller distortion
(relative to signal strength) but weaker signal (lower signal-to noise ratio). At
the bridge level, the string displacement is relatively small, so we disregard this
non-linear distortion. The undersaddle pickup is an electret-film transducer,
which could be seen as a capacitor with variable interplate distance. Its output
is proportional to the differential movement of the saddle and the top plate of
the guitar. Figure 13.5 shows the magnitude response of the magnetic pickup
signal and the undersaddle pickup over a wider frequency range. The response
of the undersaddle pickup shows the characteristic double peak of the body
resonances.

Finally, figure 13.6 shows the amplitude spectrum of the estimated transfer
functions from magnetic pickup to undersaddle pickup to microphone. The
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Figure 13.4: Spectrum of the recording for the high E string (a) magnetic
pickup, (b) undersaddle pickup, (c) electret microphone
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Figure 13.5: Amplitude vs Frequency plot of (a) the magnetic pickup signal
and (b) the undersaddle pickup

transfer function from undersaddle pickup to microphone is essentially flat,
while the transfer function from magnetic pickup to undersaddle pickup closely
resembles the body impulse response. The transfer functions were calculated
using Welch’s averaged periodogram method.

13.2 Parameter estimation

Figure 13.7 shows a part of the recorded signals. The figure shows the outputs
of the hexaphonic pickup, when the high E string is plucked. We see light
coupling to the D string and stronger coupling to the A and low E string.
Examination of the spectrum of the signals shows that coupling only occurs
for matching modes. This confirms the near-linearity of the guitar body and
string coupling mechanism discussed in chapter 11 . In table 13.1, we indicate
for each string which harmonic corresponds to a harmonic of the high E string.
Based on this table, we expect strong coupling between the high E and the A
and low E strings, and only slight coupling to the other strings. This is exactly
as seen in figure 13.7.

To simplify things, we assume that only two strings interact. The procedure is
however applicable to N coupled strings. First, we determine the parameters
of the model shown in figure 13.9 and discussed in section 11.2.4. This is the
simplified coupling structure with two strings and two polarizations per string.
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Figure 13.6: Amplitude response of the estimated transfer function from (a)
the magnetic pickup to undersaddle pickup and (b) the undersaddle pickup to
electret microphone

high E 329.6 Hz fund 2nd 3rd 4th

B 246.9 Hz 4th
G 195.9 Hz 5th
D 146.8 Hz 9th
A 110.0 Hz 3rd 4th 9th 12th
low E 82.4 Hz 4th 8th 12th 16th

Table 13.1: This table indicates which harmonics of the non-excited strings
correspond to within a few Hz to the harmonics of the high E strings. Based
on this table, we expect strong coupling to the A and low E strings, and weak
coupling to the other strings
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Figure 13.7: This figure shows the output of the hexaphonic magnetic pickup.
From top to bottom: high E, B, G, D, A, low E. The high E string was plucked.
Note that the scale for the high E string is ten times larger.

The input of the digital waveguides is characterized by

X = I +









R11 0 0 0
0 R12 c21 0
0 0 R21 0

c12 0 0 R22









Y, (13.1)

where Y denotes the output of the waveguides and I the excitation input, Rij

are the reflection coefficients and cij the coupling parameters. This system
consists of a pair of digital waveguides driving a second pair of waveguides.
It is always stable if all Rij < 1. Several ways are possible to determine the
model parameters, as described in chapter 10 [99], [52], [71]. One could use
the analytical solution for two coupled oscillators, and determine the pair-
wise coupling parameters, or use a non-linear optimization algorithm [73]. We
need two sets of measurements: one with the high E string excited and the
low E string at rest, and one were the low E string is excited. The coupling
parameters in both directions should be concurrently determined. Using non-
linear optimisation, we obtain the set of parameters shown in table 13.2 (for
delay line lengths of 533.23 for the low E and 133.22 for the high E string
respectively). We obtain one lightly and one strongly damped polarization,
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Figure 13.8: This figure shows a part of the spectrum of the signals shown in
Figure 13.7. The full lines are the fundamental and the first three harmonics
of the high E string. The dashed lines indicate the fundamentals of the other
strings. We see coupling to matching modes only. Note that the scale for the
high E string is different

and quite similar coupling coefficients c12 and c21 between high E and low E
strings. Note that R11 + c12 ≈ R21 + c21 ≈ 1. Figure 13.11 shows the recorded
and simulated amplitude envelopes for a common harmonic of the high and low

Simplified Coupling Full Coupling
R11 0.9969 0.9969
R12 0.9142 0.9642
R21 0.9896 0.9896
R22 0.9423 0.9823
c12 0.0188
c21 0.0204

Table 13.2: The parameters determined for the two models. For the simplified
coupling case, we obtain one strongly and one lightly damped polarization,
while in the full coupling case, both polarizations are lightly damped.
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R11

R12

R21

R22

Second string

First string

c21

c12

Figure 13.9: This simplified coupled string structure has two polarizations per
string. The first polarization of the first string drives the second polarization
of the second string, with no feedback.

output

input

Body model

String models
Coupling

matrix

Figure 13.10: The fully coupled string model has twelve separate string models
(two for each string) and a body model. All the outputs are mixed using a
13 × 13 coupling matrix and used as inputs.
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Figure 13.11: This figure shows the amplitude envelope of (full line) the record-
ing of magnetic pickup, and (dotted line) the actual model output. Shown are
(a) high E string excited (top pair), coupling with low E string (bottom pair);
and (b) low E excited, coupling with high E

E strings. The fully coupled model is more difficult to calibrate. In this model,
we have twelve string models and one body model, all coupled using a 13× 13
coupling matrix. As there is feedback, care must be taken to ensure that the
global model is stable. The heuristic rules as described in section 11.3 give a
good starting point for further optimisation [73]. When using these rules, one
only determines the decay rate of the fundamentals for the two polarizations of
each string. All other model parameters follow from basic principles. Exactly
calibrating the parameters for this model requires non-linear optimisation, as
the system stability has to be ensured. Slightly altering the feedback from the
body to the strings yields the output shown in figure 13.12. This is a close
match to the recording. Note that the two-stage decay now results from true
coupling, as the two polarizations have comparable reflection coefficients.

Example 13.1 ? CD Track 28 is the output of a fully coupled guitar model,
where the coupling parameters were set such that the system was at the limit
of stability. An arpegiated chord was played on the six strings. 4
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Figure 13.12: Amplitude envelopes for the same two cases as figure 13.11, when
using the fully coupled model and after having slightly altered the parameters
determined using the heuristic rules.

13.3 Conclusion

In this chapter, a practical measurement setup was described that allows the
determination of all the digital waveguide model parameters. We determined
the coupling parameters for the simplified and the fully coupled structures.
Both models are capable of closely simulating the behavior of the real instru-
ment, where the fully coupled model holds the advantage that two-stage decay
and beating are included in the model.
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Chapter 14

Implementation

for i=1:100

...
{

}

In this chapter, the implementation issues specific to string instruments are re-
viewed. After introducing the global structure of the implementation in section
14.1, we focus on an MPEG-4 SAOL implementation. Section 14.2 discusses
the core DSP routines, and in section 14.3, the score interpreter and the player
model are introduced.

14.1 Structure

The implementation of the guitar model consists of multiple layers, show in fig-
ure 14.1. The two main layers are the core signal processing routine stringcore
and the score interpreter. The score interpreter can be subdivided in two sub-
parts, depending on the score language used: one that calculates the correct
parameters to control the digital waveguide model, and one that models the be-
havior of a player. This multi-layered implementation structure is independent
of the actual programming language used.

14.2 stringcore implementation

The core of the implementation is based on the digital waveguide models pro-
posed in chapter 11. It consists of the twelve digital waveguides, the body

209
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score−level FSM

stringcore

MIDI interpreter
MIDI input

SASL input

SASL−like input

low−level model control

output

status

Figure 14.1: System overview of the complete guitar model. The single chan-
nel of multichannel MIDI input is interpreted by the MIDI interpreter, which
generates SASL-level score information. The score-level Finite State Machine
translates the requests to play or end a note into a series of low-level control
commands for the stringcore datapath-like opcode.

model and the coupling matrix, as shown in figure 14.2. The stringcore rou-
tine is the lowest computation level of the model. It represents the physical
behavior of a real instrument and cannot be modified, only controlled through
a restricted number of parameters. stringcore provides the higher-level rou-
tines with status information.

14.2.1 Sample based processing

The simplest implementation is sample-based, like the implementations of digi-
tal waveguide models for string instruments discussed in chapter 9. In the case
of string instruments, the actual implementation of the string loop is quite
straightforward, as the model is purely linear, and no danger of aliasing ex-
ists if the model input is band-limited. When using SAOL, this is the default
mode of operation, as the SAOL language is sample-oriented. The actual com-
putation might be done otherwise, but this is invisible for the programmer’s
viewpoint, and depends on the SAOL compiler. Sample based processing is
not known for its high performance, but adequate speeds can nonetheless be
achieved [53]. The Matlab implementation is straightforward, while the SAOL
implementation requires the definition of a few user opcodes for fractional delay
and matrix-vector products.

14.2.2 Block processing

Block processing is more complex, as the outputs of all the individual string
models have to be combined by the coupling matrix. The block size is thus
limited to the shortest delay line used in the model. Just as with the wind
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~y yI
d1

d2

d3

dN

Body Model
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stringcore

pluck control string control string status control
damping & coupling

Figure 14.2: stringcore is the core signal processing routine of the implemen-
tation. It is implemented as a SAOL user opcode, and consists of the twelve
digital waveguides, the coupling matrix, the body model, and a pluck generator.

instrument implementations, it is easier to define a fixed processing block size,
by using the shortest block size. In the case of the acoustic guitar, we could set
the highest note playable as the 16th fret of the high E string. This corresponds
to a frequency of 830.61 in the equally tempered tuning, or a delay line length
of about 53 samples. This implementation type is not possible using SAOL.

14.3 Score interpreter implementation

The score interpreter is the part of the implementation that transforms score-
level directives (note pitch, attack velocity, duration, etc.) into digital waveg-
uide control parameters (delay line length, excitation, etc.). The score inter-
preter largely determines the naturalness of the synthesis of a sequence of notes,
while stringcore is the main responsible for the naturalness of a single note.
The score interpreter has to make decision on the note-to-string allocation,
and on the type and place of the string excitation. As will become clear, score
interpretation for a polyphonic multiple-fret instrument is non-causal and thus
not possible in low-latency, real-time conditions. We only discuss the SAOL
implementation, as this more clearly shows the different design decisions. We
start by looking at the use of the MPEG-4 native SASL control language, and
then extend this with single-channel and multichannel MIDI.
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Action Commands

damp a string alter coupling
pluck a string accept input
select fret if string active

begin

set coupling (damp)
wait 100ms
end

rescale delay line
set coupling for new delay length

Table 14.1: Breakdown of the most common SASL-level events into stringcore
low-level control.

14.3.1 SASL-MPEG interpreter

Using SASL allows the programmer to define all control parameters directly.
The control structure of figure 14.1 is used. The guitar model is not accessed
directly by the SASL input, but by a score-level Finite State Machine. The
FSM translates the physical control parameters like string number, fret number,
pluck type, position etc. into a sequence of elementary commands for the digital
waveguide model stringcore. The stringcore routine has a very low-level
functionality. The algorithm recognizes commands to rescale the delay lines,
alter the coupling coefficients, or to accept input. Some actions, like a fret
change, require a sequence of commands. The most commonly used low-level
commands are summarized in table 14.1.

14.3.2 MIDI

In the MPEG-4 interpretation of the MIDI standard, every MIDI note received
by de orchestra results in a new instance of the instrument requested. The
note is then sent to that particular instance, and when the Note Off message
is received, that instance dies. This is obviously not what we want, as all the
notes should be played on the same virtual instrument. To solve this, the MIDI
interpreter dynamically creates a unique instance of the instrument, and sets a
flag through a global variable to direct all other MIDI notes to that instance.
This is schematically represented in figure 14.4. We consider two different types
of MIDI input: single-channel MIDI, and multichannel MIDI, where one MIDI
channel is used for every string.

Single channel MIDI-MPEG interpreter
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Figure 14.3: The MIDI interpreter generates SASL-like output for both the
left hand control parameters (string number, fret), and the right hand control
parameters (pluck type, position, angle, amplitude, velocity, etc.).

MIDI interpreter
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MIDI interpreter
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MIDI interpreter
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guitar model instance

create

flag

Figure 14.4: The first instance of the MIDI interpreter creates a dynamic in-
stance of the guitar model. All subsequent instances of the interpreter direct
their output to that particular instrument instance.
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The guitar inherently requires a more complex player model than any wind
instrument, or even many string instruments. The problem with the guitar is
that different notes can be played on more than one string simultaneously, and
the same note can be played on more than one string. The player has to decide
on which string a particular note has to be played. A real player takes into
account

• the note to be played

• the duration of the note

• the next notes to be played

• the specific indications written on the score.

This requires practice of the piece.

In the context of streaming MIDI, the virtual player model can only decide
the “best” string and fret combination to play a particular note on the past
notes. The algorithm selected to achieve this is fairly simple and tries to use
the string with minimum fret number (that is, use the string with the lowest
possible playing position if available)

• calculate min(fret) over all strings

• select the string with minimum fret number

• if the string corresponding to min(fret) is busy, select another string
with minimal fret

• if no other valid string/fret combination exists, damp the vibration on
the string corresponding to min(fret), and select that string

• resize the delay line and excite the model

This system of string selection guarantees that every note of the MIDI stream
is played, but does not guarantee that every note is played during the required
time. The composer is also somewhat restricted to the preprogrammed abilities
of the player model.

Multiple channel MIDI-MPEG interpreter

The most versatile implementation for streaming MIDI input, assigns a MIDI
channel to each string. The composer can now decide on which string every
note is to be played.
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string status
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fret allocation

decision

score interpretation

single channel
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Figure 14.5: The score interpretation part of the MIDI interpreter decides on
which string and which fret the incoming MIDI note will be played.

Example 14.1 ? CD Track 30 is a straightforward rendering of the first sixteen
bars of Leyenda (Asturias) by Isaac Albeniz. It is the unedited output of
the SAOL implementation with a very simple score and almost no dynamic
information. Every pluck is somewhat different by the addition of a random
pluck angle and amplitude variation to mimic a human player. ? CD Track 31

has been synthesized using the multiple MIDI channel SAOL implementation.
It is the fifth movement of a piece written for physically modeled guitar by Nick
Collins. It shows the power of the physical model in rendering transhuman
performance while keeping a natural sound. In this case, the pluck position
was determined automatically depending on the string the notes were played,
and the pluck type depends on the dynamic indication in the score. A seven-
track output was generated (one track for each string, and one for the body).
Finally, the different track were mixed by the composer using Protools. Some
reverberation was also added. It is the result of several rendering-listening
iterations, needed to improve the musical interpretation of the score by the
rendering engine. 4

14.4 Comparison with other synthesis techniques

In this section, the properties of the Fully coupled digital waveguide model
is compared to other techniques commonly used for the synthesis of string
instrument tones.

Table 14.2 gives an overview of the techniques that are compared here. We
selected the most successful and widespread types, and compare them to the
fully coupled model presented in this work. It is a qualitative comparison that
looks at different aspects of the synthesis techniques. We compare the fully
coupled model with a commuted digital waveguide model with the simplified
coupling mechanism described in section 11.2.4 SimCo [43], a model based on
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Description

FullCo [69] Physical model
Digital waveguide
Simplified Full Coupling

SimCo [43] Physical model
Commuted digital waveguide
Simplified coupling

NumSol [106] Physical model
Multi-dimensional Transfer Function Model

Modal [1] Physical model
Vibrating substructures

CORDIS [32] Physical model
Mass-spring networks

Add [64] Spectral model
Additive synthesis
Per note

Sampling Processed recording
Per note

Table 14.2: Description of the different techniques available for the synthesis
of string instrument tones.

the functional transformation of the partial differential equation describing the
string movement NumSol [106], with a modal synthesis model Modal [1], a
model based on the simulation of mass-spring networks CORDIS [32], a spectral
additive synthesis model Add [64], and with wavetable synthesis Sampling.

Most of the existing models are physics-based, starting from the basic mechan-
ical vibration properties of the instrument. The models differ in the way the
solution to the equations describing the system is determined.

The SimCo digital waveguide model for the acoustic guitar is comparable to
the FullCo model. It is a single-delay-line, dual polarization model with the
simplified coupling mechanism described in section 11.2.4. The main difference
is in the use of an excitation signal database, obtained by inverse-filtering
recorded tones with the calibrated model, and the absence of a body model
in the coupling mechanism. The FullCo model has more possibilities due to
the way the body model is included, and a more accurate coupling mechanism.
The SimCo model produces tones with a more natural attack because of the
excitation database. The parameter estimation techniques that we developed
in this work can also be used for the calibration of the SimCo model.

The NumSol method transforms a continuous model for the vibrating body,
given a partial differential equation, into a multi-dimensional transfer function
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model, taking into account the initial and boundary conditions, and the exci-
tation function. The functional transformation yields a model with the same
accuracy as a finite element model, but with a much lower computation load.
These models use the physical parameters of the strings (length, cross section,
density, etc.) which makes calibration quite hard. The sound quality is very
high. The method is more accurate than FullCo, but requires a considerable
to build each individual model, and does not account for the resonator.

Modal synthesis is based on the simulation of vibrating structures. The user
defines a set of coupled substructures, defined by modal data. The method can
be applied to structures of arbitrary complexity, calibration is possible, but
the model requires an enormous computational effort, and is not suited for the
real-time synthesis of practical systems. It is used for the theoretical analysis
of complex coupled vibrating systems. It has the same synthesis capabilities
as FullCo, but no calibration, a much higher computational load, and more
difficult model design.

The CORDIS system attempts to model the acoustical system using simple ideal
mechanical elements. By interconnecting a large number of these elementary
systems, a model of a musical instrument can be obtained. As with all numer-
ical acoustics synthesis methods, the sound quality can be very high, but with
high computational cost.

The most widely used technique is Sampling, or wavetable synthesis. In this
synthesis method, a prerecorded tone is played back at the desired pitch. Con-
trary to the wind instrument case, this method is quite acceptable for string
instrument tones, as these have clearly defined attack and decay parts. In some
cases, no looping is needed at all. By sampling every single note of the instru-
ment with different attacks, very convincing tones can be produced. The player
has then to select the appropriate sample for playback, according to the pluck
amplitude, pluck type and plucking point. The main disadvantage is the very
high memory requirement for good-quality synthesis. The best sample-based
digital piano models have sample databases containing more than a gigabyte
of data. Compared to FullCo, it is much more difficult to have realistic sym-
pathetic vibrations.

14.5 Conclusion

The control of a physical model is both easy and complicated. The main
advantage for a human player is that sensor inputs are directly mapped to the
parameters controlling the model. If the sound has to be synthesized based on
a score, the situation is more complex, and artificial input has to be generated.
Part of this task can be delegated to the composer of the piece when either SASL
or multichannel MIDI are used. When the usual single-channel MIDI is used,
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a string/fret allocation algorithm is needed, which is in essence a player model.
The actual input of the model could be either selected from an excitation signal
database or could be generated during synthesis by the use of a parametric
input model. The most practical and compact solution is the combination
of a single-channel MIDI input interpreter and a parametric pluck generator.
The best sound quality and musical expression is however achieved with a
multichannel MIDI model, excited with samples out of a recomputed database.



Chapter 15

Conclusions and Further

Research

In the first section of this chapter, the global conclusions are formulated. In
section 15.2 some suggestions are given for further research.

15.1 Conclusions

This thesis was divided in three major parts: Part I on acoustic theory, Part

II on wind instruments, and Part III on string instruments.

In part I, an introduction has been provided on musical acoustics and the
digital waveguide modeling technique.

We started by providing a qualitative overview of the wind instrument family in
chapter 2. We discussed two single-reed instruments (clarinet and saxophone),
an air-jet driven instrument (the modern flute) and a lip-driven instrument (the
trumpet). It was concluded that they all share the same basic structure, and
that a general digital waveguide model could be used to model all the instru-
ments. Chapter 3 gave an qualitative overview of the acoustic properties of
string instruments. Three different types of string instruments were compared:
the acoustic and electric guitars, the violin family, and the piano. It is con-
cluded that the members of string instrument family mostly differ in the string
excitation mechanism, while all other properties are comparable. Chapter 4

provided an introduction to linear musical acoustics. Starting from the gen-
eral equations describing sound propagation in air and strings, the properties
of common acoustic building blocks of musical instruments were derived. The
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different elements were then combined into acoustic systems. In chapter 5,
the acoustic elements were discretized using the digital waveguide modeling
technique as the general traveling-wave solution to the wave equation. We dis-
cussed the importance of fractional delay, and showed that Catmull-Rom and
B-spline based interpolation are possible alternatives to Lagrage interpolation
and allpass filtering. These two chapters were then used as a base for the
development of models for specific musical instruments.

In Part II, the properties of wind instruments have been studied and specific
modeling and parameter estimation techniques were developed.

In chapter 6, a complete acoustic model has been built for a single-reed instru-
ment, disregarding the influence of the toneholes. We discussed the resonator
of a clarinet and a saxophone, and elaborated on the excitation mechanism.
We introduced high-order linear and non-linear models to describe the reed
movement. The core of Part II was contained in chapter 7, where we built a
discrete time model of a clarinet, as an example of the single-reed instruments.
We combined source-filter synthesis with the digital waveguide modeling tech-
nique and obtained a novel model class that is both easy to calibrate and flexible
from a performance point of view [74]. The model consists of a non-linear exci-
tation mechanism, a linear resonator, and an input-dependent dynamic filter.
This post-equalization filter, or Formant filter, can be obtained using several
filter design techniques. We compared low-order direct estimation [68], Linear
Predictive Coding, cepstrum based methods, and simple Wiener filter designs.
For sufficiently high filter orders, a very good match with a recorded signal was
obtained. The models were then expanded into multinote models in chapter

8 [67]. We compared several structures, and propose a parallel crossfading
method to simulate the transition between notes. Finally, an MPEG-4 SAOL
implementation was presented in chapter 9.

Part III addressed string instruments.

In chapter 10, we presented a single-string model for the acoustic guitar. The
properties of ideal and real strings were discussed, including tension modula-
tion non-linearity and fret beating. The dual-polarization models accounted
for vibrations in two spatial planes. The focus of this chapter was on the pa-
rameter estimation: we compared different methods in the time and frequency
domains, and showed that the subband Hankel Singular Value Decomposition
offer both high accuracy and automated estimation [71]. These single-string
models were then extended in chapter 11, where we proposed a new general
framework that allows the performance comparison of coupled string structures
[69]. The framework indicated how to improve the parameter estimation for
the structures and how to verify the stability. We derive the properties for N
coupled strings and N coupled digital waveguides, and compared five coupled
string structures. Finally, we proposed a fully coupled digital waveguide model
for the acoustic guitar [73]. This model allowed expressive musical effects not
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achieveable with previous models. The body of an acoustic guitar is the main
factor determining the timbre a the instrument, and is an important part of
the fully coupled digital waveguide model In chapter 12, we discussed several
linear modeling techniques for the guitar body, and proposed a non-linear ex-
tension to catch the subtle differences between the different tone woods used in
guitar building [76]. The model has been validated in chapter 13 [72]. Finally,
chapter 14 discussed the implementation of the guitar model. It was shown
that a primitive player model is needed to obtain natural-sounding output. A
multi-layered MPEG-4 SAOL model was presented [75]. The complete model
has an equivalent or better sound quality than the best of the other published
techniques, and with more and different sonic abilities and easier control by
the player.

15.2 Further research

This thesis put more emphasis on the theoretical aspects of the modeling. There
are some implementation issues that were not addressed, and some model-
related problems as well.

For the wind instruments in particular, the numerical properties of the different
types of formant filters should be compared from the implementation point of
view. As these are dynamic filters, transient noises must be minimized. This
requires a careful examination of the filter structure and its finite-precision
properties. The non-linear excitation mechanism could result in audible aliasing
if the cut-off frequency of the reflection filter is set quite high. Oversampling
and steeper filters can alleviate this.

For the string instruments, the main problem remains in the determination of
a suitable parametrization of the finger-string interaction. There is very little
quantitative literature to be found on what exactly happens when a note is
plucked. Professional guitar players are not able to exactly describe what they
do, the tonal character of the notes played merely results from years of practice
and subtle improvements of the playing technique. Further, the coupled string
models should be applied to larger systems, like the orchestral harp or the piano.
It might be beneficial to link the coupled digital waveguide representations of
the strings with a waveguide mesh implementation of the resonator, to obtain
a more accurate interaction. In general, higher dimensional digital waveguide
structures can be used to solve some sub-problems encountered. One of the
issues is the way a one-dimensional waveguide is linked to a two- or three-
dimensional waveguide mesh.

Finally, some of the techniques used in this thesis can be used to improve the
output of the circular waveguides and the waveguide meshes, with possible
applications in reverb and virtual acoustics.
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Appendix A

CD track list

The first three tracks relate to chapter 5, and are the simulated response of
cylindrical and conical bores excited with white noise. Note the difference in
timbre between the first and third tracks.

Track 1. Cylindrical bore, closed-open, excited with white noise, length=25 cm

Track 2. Cylindrical bore, closed-open, excited with white noise, length=50 cm

Track 3. Conical bore, complete cone, excited with white noise, length=50 cm

The next 16 tracks illustrate some issue in chapters 7 and 8. First, the same
single-reed model is used in conjunction with a cylindrical and a conical bore.
The formant filter examples show that for the higher notes, the model output
is very close to the reference when higher-order filters are used. For the lower
note, a higher filter order is needed. Finally, tracks 18 and 19 are examples of
serial crossfading and the much simpler joint parallel crossfading techniques.

Track 4. Cylindrical bore with reed model (clarinet-like)

Track 5. Conical bore with reed model (saxophone-like)

Track 6. Clarinet, low note, pp, reference

Track 7. Clarinet, low note, pp, 2nd order LPC formant filter

Track 8. Clarinet, low note, pp, 20th order LPC formant filter

Track 9. Clarinet, low note, ff, reference

Track 10. Clarinet, low note, ff, 2nd order LPC formant filter
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Track 11. Clarinet, low note, ff, 20th order LPC formant filter

Track 12. Clarinet, high note, pp, reference

Track 13. Clarinet, high note, pp, 2nd order LPC formant filter

Track 14. Clarinet, high note, pp, 20th order LPC formant filter

Track 15. Clarinet, high note, ff, reference

Track 16. Clarinet, high note, ff, 2nd order LPC formant filter

Track 17. Clarinet, high note, ff, 20th order LPC formant filter

Track 18. Clarinet, multinote, serial crossfading

Track 19. Clarinet, multinote, joint parallel crossfading

The last series of tracks relate to the string instruments models. Track 20 is
the reference recording of a low A played on a classical guitar. The next tracks
are a sequence of model improvements, culminating in the fully coupled model,
with parameters extracted from the reference recording. Tracks 26 and 27 are
examples of tension modulation non-linearity, with the parameters of nylon
strings and steel strings - there is a quite subtle difference in timbre during the
attack. Track 28 is a fully coupled guitar model where the coupling parameters
are maximized to the limit of system stability. Track 29 is a fully coupled guitar
model, excited by an impulse to the body. Note the sympathetic vibration of
the strings. Track 30 is the output of the MPEG-4 SAOL implementation of
the fully coupled model. Finally, Track 31 is the last movement of the Suite
for Physically Modeled Guitar, and shows the many compositional possibilities
offered by a physical model. The piece cannot be play by a human.

Track 20. Guitar, reference

Track 21. Guitar, simulation, single string, single polarization

Track 22. Guitar, simulation, single string, dual polarization without coupling

Track 23. Guitar, simulation, dual polarization with coupling

Track 24. Guitar, simulation, dual polarization with coupling and guitar body

Track 25. Guitar, simulation, matched fully coupled model

Track 26. Guitar, simulation, tension modulation non-linearity, nylon string

Track 27. Guitar, simulation, tension modulation non-linearity, steel string

Track 28. Guitar, simulation, maximum coupling, arpeggio
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Track 29. Guitar, simulation, body impulse with undamped strings

Track 30. Guitar, simulation, normal playing, excerpt from Leyenda by Albéniz

Track 31. Guitar, simulation, transhuman performance, Suite for Physically
Modeled Guitar, mvt 5 by Nick Collins
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