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Voorwoord

Op dit moment van schrijven is mijn vrouw ongeveer 30 dagen zwanger en het
embryo heeft zopas zijn/haar neurale buis gevormd. Enkele weken geleden, toen
het nog een blastocyst was, zouden u en ik geen verschil kunnen merken tussen
dit embryo en een embryo van, zeg een eekhoorn. Hiermee wil ik ons embryo nu
al niet een identiteitscrisis bezorgen, ik wil er enkel het volgende mee zeggen:
Wij dieren bestaan allemaal uit zowat dezelfde bouwstenen, en toch lijkt de mens
in een volgroeid stadium helemaal niet op een eekhoorntje (voor een gist wel
natuurlijk, doch dat geheel ter zijde). De clue is dat wij die bouwstenen op een
lichtjes andere manier gaan aanwenden. Het “ontwikkelingsprogramma” zit, net
als de bouwstenen zelf, gecodeerd in ons DNA. Het bestaat uit schakelaars die
onder gepaste omstandigheden keurig de juiste “genen” moeten aanschakelen die
dan de bouwstenen (lees eiwitten) leveren. De plaats van levering in het embryo,
de hoeveelheid tegelijk geleverde bouwstenen, en de duur van levering bepalen
eenvoudig gesteld of we een eekhoorn of een mens worden. Hoewel dit vanuit
een naturalistisch standpunt verder van geen betekenis is, betrapte ik mezelf
toch op een licht obsessieve drang om dat programma, en vooral die schakelaars
beter te begrijpen. Een beetje zelfkennis was al voldoende om in te zien dat een
chemisch-biologische strategie —die overigens in mijn ogen bijzonder efficient
is— niet aan mij was besteed. Toen in februari 2001 de volledige menselijke
DNA sequentie werd geopenbaard, met daarin 3 miljard “letters” die een zo
goed als onleesbare tekst vormden, dienden zich plots mogelijkheden aan om
in die letterzee naar onze schakelaars te zoeken, en wel zonder pipetten en
proefbuizen, maar met een door mij meer geliefkoosd medium, de computer
en het internet. Toen tegelijkertijd de “DNA-chip” technologie wijd verbreid
begon te worden werd het ook mogelijk om, laat ons zeggen, alle aanwezige
bouwstenen op bepaalde plaats en moment in ons lichaam te inventariseren.
Met deze werktuigen voorhanden kon men wereldwijd plots heel wat vooruitgang
boeken om de ingewikkelde puzzel van “genregulatie” op te lossen, en ik mocht
meedoen.

De mensen (lees experts) die mij de complexe spelregels hebben uitgelegd
om aan deze puzzel te werken, ben ik veel dank verschuldigd. Het bleef trouwens
niet bij de inwijding, er ontstond al gauw een boeiende samenwerking en velen
hebben mij enorm geholpen om aan wetenschap te leren doen. Dit werk mag
dan ook gezien worden als het resultaat van gezamenlijk werk, en het is een hele
eer voor mij dat ik het mag samenvatten en voorstellen in dit boek.
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Abstract

The transcriptional regulation of metazoan genes is governed by combinations of
transcription factor binding sites in cis-regulatory modules. Their central role in
gene regulatory networks makes their detection and characterization of great im-
portance for the understanding of the genetic programs encoded in the genome.
The availability of complete genome sequences of several metazoan species and
of high-throughput expression profiling using DNA microarrays is exploited in
the bioinformatics methods described here to detect sets of co-expressed genes
on the one hand, and the transcription factor binding sites that govern this co-
expression on the other hand. For the former, a case study of gene expression
profiling during in vitro neuronal differentiation in mice is described. The mi-
croarray data are preprocessed, clustered, and functionally analyzed using Gene
Ontology associations. The expression data is further compared with expression
data from in vivo differentiation. A high correlation between the systems was
found after mapping the time points of the two data sets by time warping. For
the detection of transcription factor binding sites, new algorithms are presented
to predict significant occurrences and combinations thereof as cis-regulatory
modules. The methods combine the statistical over-representation of instances
of known motif matrices in gene batteries with evolutionary sequence conserva-
tion. Their performance is tested either on artificial data sets, on benchmark
data sets, or on proprietary data sets. For module finding, a branch-and-bound
and a genetic algorithm are implemented to find the optimal combination of
binding sites in a set of co-expressed genes. Genomic searches for such newly
found modules then yield putative target genes, for which the functional co-
herence is measured to give an indication of the validity of the module. The
putative target genes are further prioritized computationally by comparing their
functional characteristics with the gene battery where the module was found.
The methods are integrated into computational analysis strategies using mul-
tiple genomic information sources and they are made available as user-friendly
software tools. Lastly, a genomic sequence analysis is performed to study the
nucleotide composition around the transcription start site in several metazoan
species.
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Samenvatting

Bij dieren verloopt de transcriptionele regulatie van genen via combinaties van
transcriptiefactorbindingsplaatsen in cis-regulatorische modules. De centrale
rol van dergelijke modules in genregulatorische netwerken maken dat de detec-
tie en de karakterisatie ervan van groot belang zijn voor een beter begrip van de
genetische programma’s die gecodeerd zijn in ons genoom. De beschikbaarheid
van volledige genoomsequenties van verscheidene dierlijke species en van “high
throughput” expressieprofilering met DNA microarrays worden aangewend in
de beschreven bio-informatica methoden voor de detectie van enerzijds groe-
pen van genen die samen tot expressie komen (genbatterijen), en anderzijds van
de transcriptiefactorbindingsplaatsen die deze co-expressie veroorzaken. Betref-
fende de genbatterijen wordt een casus beschreven van genexpressieprofilering
tijdens neuronale differentiatie in vitro in muizen. De microarray data worden
voorbehandeld, gegroepeerd, en functioneel geanalyseerd gebruik makende van
“Gene Ontology” associaties. Een vergelijking van de expressiegegevens met ge-
gevens van neuronale differentiatie in vivo toont een hoge correlatie aan tussen
beide systemen. Betreffende de detectie van transcriptiefactorbindingsplaatsen
worden nieuwe algoritmes voorgesteld om significante voorkomens en combina-
ties ervan te vinden. De methoden combineren de statistische over-representatie
van voorkomens van gekende motiefmatrices met de evolutionaire conservering
van de sequenties. De performantie wordt ofwel getest op artificiële datasets, of
op “benchmark” datasets, of op zelf ontworpen datasets. Betreffende het vin-
den van modules werden een “branch-and-bound” en een genetisch algoritme
gëımplementeerd om de optimale combinatie van bindingsplaatsen te vinden in
een genbatterij. Het zoeken naar voorkomens van op die manier ontdekte modu-
les in het hele genoom levert dan potentiële doelgenen op, en om de geldigheid
van de module na te gaan wordt de functionele coherentie van deze doelgenen
gemeten. De mogelijke doelgenen worden verder computationeel geprioritiseerd
door hun functionele karakteristieken te vergelijken met de genbatterij waar de
module werd gevonden. De methoden werden gëıntegreerd tot computationele
analyse-strategieën gebruik makende van verscheidene genomische informatie-
bronnen en ze worden beschikbaar gemaakt onder de vorm van gebruiksvriende-
lijke software programma’s. Tenslotte werd een genomische analyse uitgevoerd
om de nucleotidesamenstelling te bestuderen rond de transcriptiestartplaats van
genen in een aantal dierlijke species.
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Notation

Abbreviations

ANOVA analysis of variance
BLAST Basic Local Alignment Search Tool
BTA basal transcription apparatus
CDS coding sequence
CNS conserved non-coding sequence
CRE cis-regulatory element
CRM cis-regulatory module
DAG directed acyclic graph
DNA deoxy-ribonucleic acid
DPE downstream promoter element
EBI European Bioinformatics Institute
EMBL European Molecular Biology Laboratory
EST expressed sequence tag
GUI graphical user interface
HMM hidden Markov model
IBC intergenic background composition
IDF inverse document frequency
ISM information submodel
IUPAC International Union for Pure and Applied Chemistry
JWS Java Web Start
GFF general feature format
GO Gene Ontology
GRN gene regulatory network
GTF general transcription factor
LRA logistic regression analysis
MGED Microarray Gene Expression Data
MGI Mouse Genome Informatics
MIAME Minimum Information About a Microarray Experiment
mRNA messenger RNA
NCBI National Center for Biotechnology Information (US)
ncRNA non-coding RNA
PDB Protein Data Bank
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PF phylogenetic footprinting
PSFM position specific frequency matrix
PWM position weight matrix
RMI Remote Method Invocation
RNA ribonucleic acid
rRNA ribosomal RNA
RNAP RNA polymerase
SOAP Simple Object Access Protocol
SNF single nucleotide frequency
SNP single nucleotide polymorphism
TAF TBP associated factor
TATA TATA-box, see glossary
TBP TATA-binding protein
TCF transcription co-factor
TF transcription factor
TFBS transcription factor binding site
TLS translation start site
tRNA transport RNA
TSS transcription start site
UTR untranslated region

IUPAC ambiguous DNA characters

These characters are often used in consensus DNA binding sites:

M A or C
R A or G
W A or T
S C or G
Y C or T
K G or T
B C, G or T
D A, G or T
H A, C or T
V A, C or G
N A, C, G or T
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Gene nomenclature

All gene symbols are italicised and protein symbols are normally the same as the
encoding gene symbols but not italicised. Human gene symbols1 are designated
by upper-case Latin letters or by a combination of upper-case letters and Arabic
numerals, for example BRCA1, CYP1A2. To identify human genes we use
either HUGO symbols as found in the LocusLink and Ensembl databases or
Ensembl gene identifiers (ENS*). Mouse gene symbols2 begin with an uppercase
letter, the rest is normally lowercase, for example Brca1, Cyp1a2. We use gene
identifiers from the Mouse Genome Database (MGD). Lastly, for Drosophila
melanogaster the genetic nomenclature from FlyBase3 is used.

1Guidelines for human gene nomenclature can be found on http://www.gene.ucl.ac.uk/
nomenclature/guidelines.html [321].

2Guidelines for mouse gene nomenclature can be found on http://www.informatics.jax.
org/mgihome/nomen/ [200].

3FlyBase URL: http://fly.ebi.ac.uk:7081/docs/nomenclature/lk/nomenclature.html.
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Chapter 1

Context and scope

DECADES of reductionistic research in molecular biology, following the dis-
covery of the DNA double helix in 1953 [319], have yielded a tremendous

knowledge about the components of biological systems (genes, proteins, etc.).
Today, the genomics revolution allows for a new research approach that will
deepen our understanding of evolution, development, and life. Systems biol-
ogy uses complete genome sequences and massive amounts of data from high-
throughput technologies to understand the components, the linkages between
the components, and the dynamic behavior of biological systems [166, 182].

A key challenge of systems biology is to understand the functioning of the
entire gene regulatory network (GRN) of each organism, including human, to-
gether with its origins and adaptations through evolution. For each cell type in
our body, the particular function, shape, location, developmental stage, mitotic
phase, age, communication abilities, future state, responsiveness to stimuli, and
evolutionary trace is reflected by its set of active genes. The urge to comprehend
the regulatory program that controls gene activation is therefore obvious.

The architecture of a GRN is determined by causal cis-regulatory interac-
tions [146]: internal genes in the network are transcriptional regulatory proteins
(transcription factors) that recognize specific cis-regulatory sequences of other
internal genes and of batteries of peripheral genes (e.g., differentiation genes).
The cis-elements are therefore the central elements of a GRN. Moreover, not
only do they implement the linkages between the components, but they also
implement how the linked components interact dynamically. The latter is done
through “cis-regulatory logic” [330]. The logic can be modeled as a combina-
tion of Boolean and more complex rules that integrate all upstream inputs and
produce a scalar output that (stochastically) determines the number of mRNA
molecules being transcribed. The availability of complete genome sequences has
opened the door towards the detection and characterization of the cis-regulatory
system of each gene in an organism.

The immediate output of a GRN are messenger RNA (mRNA) molecules
that have been transcribed from the activated genes in the network. Although
a significant aspect of gene regulation may be represented by subsequent post-

1
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transcriptional and post-translational controls that lead to the ultimate protein
output, the transcriptional control itself often plays the most prominent role.
With the advent of DNA microarrays, the mRNA output levels of essentially all
genes in a genome can be measured simultaneously. Such data, together with
genome sequences, can provide a means to reversely engineer network linkages
and network dynamics. The circumstantial data that is required for the analysis
and interpretation of microarray data, like unambiguous clone identification and
functional gene annotations, are currently under continuous development and
curation.

Although today it may seem a distant aim to reconstruct the complete GRN
of an organism, the data and tools of the genomics revolution is allowing for the
first steps to be taken [78]. The role of bioinformatics or computational biology
in this respect cannot be underestimated. In the light of GRNs, bioinformat-
ics has a long history regarding the research of the network components: gene
prediction, detection of homolog sequences, protein structure recognition, bio-
logical data management, etc. Today, in the genomic era, new roles are emerging
like comparative genomics, expression profiling, proteomics, and system theory
approaches for the dynamical modeling of the network.

Aims and rationale in this work

The work presented here is performed in the light of GRNs as explained above.
Particularly it is focused on (1) the analysis of mRNA output levels of a GRN
measured with DNA microarray technology and (2) the detection of cis-regu-
latory sequences that control the transcriptional process. Unlike most of the
published work regarding the detection of transcription factor binding sites, we
will work on metazoan sequences. This involves special considerations regarding
low signal to noise ratios: small regulatory elements are located in enormous
intergenic or intronic regions. This is different from prokaryotes or lower eu-
karyotes like yeast, where most regulatory elements are located within a few
hundreds of base pairs upstream of the translation start site of a gene.

Transcription factor binding sites are short, and they can occur every few
hundred base pairs in a sequence, just by chance. To select only those sites that
have a high probability of being a real functional site in vivo, we will apply and
combine the following ideas into new methods, strategies, and generic software
tools:

1. Genes that are co-regulated by the same factors (i.e., gene batteries),
share similar binding sites. The discovery of sites that are present in all or
many of the genes in a co-regulated set, has been applied on prokaryotic
and yeast sequences since the 1990s, but barely on metazoan sequences.
Microarray data clustering allows us to construct gene groups that are
co-expressed. Depending on the quality and resolution of the data, on the
clustering itself, and on the usage of supporting data, the assumption that
tightly co-expressed genes are also co-regulated is often valid, and we will
often work under this assumption.
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2. A second feature of regulatory sequences that can be used to reduce the
search space and that increases the confidence of a prediction, is their
evolutionary conservation between orthologous genes. We will use this so
called phylogenetic footprinting, most often by aligning genomic sequences
of human and mouse orthologs, in combination with gene co-expression.

3. The transcriptional regulation in higher eukaryotes is of combinatorial
nature. A consequence thereof is that the transcription factor binding
sites that receive the multiple regulatory inputs, are often clustered within
a confined region of DNA. We will use this binding site clustering in our
site prediction methods.

The philosophy that we will adopt regularly in this work, and to which our
algorithms will be optimized is shown in Figure 1.1. As depicted in this figure,
we will also deal with the detection of target genes for certain transcription
factors in the full genome sequence. For all our goals, there are several important
sources of genomic data that help us to achieve them. The data we will use
extensively are gene expression data as measured by DNA microarrays, DNA
sequences of the fully sequenced metazoan genomes (human, mouse, fish, etc.),
and functional gene annotation data based on the Gene Ontology vocabulary.
Our aim is, on the one hand, to understand and to analyze these data sources
individually, and on the other hand to integrate and mine these heterogenous
data to find new biological hypotheses. We will validate, or at least illustrate
all developed methods, tools, and strategies with one or more biological cases.
To this end we will use either existing data sets from the literature, newly
compiled data sets from publicly available databases, or data that originates
from collaborations with molecular biologists of research groups of the university.
A last, more general aim is to bring the developed bioinformatics methods and
strategies closer to molecular biologists by making them available via intuitive
user-friendly software tools.

Achievements

The main achievements of this work are summarized in Table 1.1.



1 Context & Scope 4

Figure 1.1: Schematic overview of the analysis pipeline that is proposed in this work.
For several tasks, and also for the integration of multiple tasks into a pipeline, new
algorithms, strategies, and software tools are presented in this work. An explanation
of these achievements can be found in Table 1.1. PF1 a phylogenetic footprinting
approach to detect larger blocks of conserved non-coding sequences (CNS) between
two or more orthologous sequences. The CNSs may carry cis-regulatory potential
because of their conservation. PF2 is another PF approach to directly detect motifs
in sets of orthologous sequences.
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Chapter 2

An overview of gene
regulation: biology and
bioinformatics

THE recent completion of various genome projects (human [173, 311], fly [2],
mouse [318], rat [119], etc.) has led to estimates of the numbers of genes

much lower than expected, and the number of genes that has been found in our
own genome (∼25,000), is only two times larger than in the fruit fly genome.
Furthermore, more than 60% of human genes are related to particular genes in
the fly and the worm. It is now believed that the heritable genomic regulatory
programs largely determine the morphological differences between species and
that they underlie both evolution and development. The motivation to under-
stand how genes are regulated has therefore never been stronger [146, 78, 59].

The role of bioinformatics in the study of gene regulation has become greater
during the last decade, both because of the huge amount of sequence and anno-
tation data that are becoming available—and that make for example computa-
tional studies feasible on a genome-wide scale and across species—and because
of the use of the high-throughput measurements of gene expression using mi-
croarrays that require computational analysis methods.

In this introductory chapter we will walk through the biology of gene regula-
tion and through several computational techniques that are helping to unravel
and understand it.

2.1 Gene regulation and development

Development, in which a single fertilized egg cell grows into an entire organ-
ism, produces a certain morphology. The view that development can be seen
as a process that is harmoniously organized by gene products is now generally
accepted thanks to a better understanding of the nature of genes and of the

7
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mechanisms of gene regulation. Although the DNA of almost all cells in an
animal is identical, different cells can acquire different forms, structures and
functionalities in the diverse organs of the body. This is possible through dif-
ferential gene expression: different cells express different subsets of genes. The
regulatory program encoded in the genome accurately specifies when genes are
turned on and off over the course of development. The accuracy is illustrated
by the fact that the outcome of the regulatory program, which is the completed
organism, is always the same. An example of differential expression and of ge-
netic subprograms during development is specification, the process by which
cells acquire the identities or fates that they and their progeny will adopt. For
specification to occur, genes have to make decisions, depending on the inputs
they receive (see the information processing capacities of cis-regulatory systems
in 2.4.6). As stated by Davidson [78], this is because “development depends on
creating new spatial and temporal domains of gene expression from preexisting
information”.

2.2 Gene regulation and evolution

“If morphological diversity is all about development, and development results
from genetic regulatory programs, then is the evolution of diversity directly re-
lated to the evolution of genetic regulatory programs?” is an intriguing question
asked, among others, by Carroll et al. [59] and by Davidson [78]. Both authors
explain why the answer to this question is—simply put—yes. Before the advent
of molecular biology there were two theories to explain how diverse forms of an-
imal life arose during evolution. The first said that new forms arose because the
environment changed. But “while changes in climate or other changes defini-
tively presented selective forces, they do not generate heads or appendicular
forms; only genes do that” [78]. The second one was that point mutations in
DNA coding sequences (causing changes in the protein sequences) accumulated
little by little, providing the opportunity for selection. However, the differ-
ences between animals cannot be explained by differences in key regulators of
development—transcription factors and signalling pathways—because these are
all “panbilaterian”: they are highly similar among the bilaterally symmetrical
animals and their functional conservation can often be illustrated by the po-
tential to be exchanged between different animals (e.g., Drosophila Atonal fully
rescues the phenotype of Math1 null mice [315]). Thanks to the advancements in
regulatory molecular biology, the interpretation of evolutionary change is taking
the form that morphological differences are generated largely by alterations in
developmental regulatory sequences. Such alterations can have several causes,
such as stepwise mutational changes in cis-regulatory DNA, transpositional in-
sertions of regulatory modules or of genes in the vicinity of these modules,
sequence deletions, local genomic rearrangements, replication of genes or their
cis-regulatory target sites, gene conversion, etc [78, 59] (see also Section 2.7).
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2.3 Gene regulation and disease

As correct gene expression underlies all physiological processes, aberrant gene
expression can be a major cause for disease, including various forms of can-
cer. Indeed, alteration of transcription factor function as a result of either gain
or loss of function mutations has now been established as a frequent cause of
neoplastic transformation and tumor progression in humans. These mutations
can be of any kind, like point mutations, deletions, insertions, or chromosomal
translocations.

Some examples where transcriptional regulation is out of control can be
found in human acute leukemias where chromosomal translocations rearrange
the regulatory and coding regions of a variety of transcription factor genes [190].
For example, a translocation can cause a transcription factor that is normally
expressed at low levels to be placed under the control of a powerful enhancer.
IG (immunoglobulin) or TCR (T-cell receptor) genes are examples of highly
expressed genes for which the enhancers have driven the expression of TF’s like
MYC (e.g., in B-cell leukemia and Burkitt’s lymphoma). Chromosomal break-
points can also occur within introns between two transcription factor genes on
different chromosomes, producing a fusion gene that encodes a chimeric tran-
scription factor with altered function, for example the CBFβ-MYH11 fusion
genes lead to alterations in the CBF transcription complex in acute myeloid
leukemias.

Other types of cancer can also be caused by malfunctioning regulatory con-
trol. For example, PLAG1 (pleomorphic adenoma gene 1), which is developmen-
tally regulated, has been shown to be consistently rearranged in pleomorphic
adenomas of the salivary glands. PLAG1 is activated by the reciprocal chromo-
somal translocations involving 8q12 in a subset of salivary gland pleomorphic
adenomas (summary from LocusLink).

A better understanding of normal and aberrant gene expression could lead to
the identification of potential new targets for therapeutic intervention. Altered
gene expression of transcription factors can be a cause of disease, but altered
gene expression is often also a consequence of the disease. This fact makes it
possible to characterize tumors by the gene expression profiles of multiple genes
(i.e., molecular fingerprints), and DNA chip technology offers great promise for
diagnostic, prognostic and pharmacogenomic applications [251].

2.4 Transcriptional regulation in eukaryotes

Eukaryotes employ diverse mechanisms to regulate gene expression, including
chromatin condensation, DNA methylation, transcriptional initiation, alterna-
tive splicing of RNA, mRNA stability, translational controls, several forms of
post-translational modification, intracellular trafficking, and protein degrada-
tion [183]. Of these broad categories, the most common point of control is the
rate of transcriptional initiation [178]. For virtually every eukaryotic gene where
relevant information exists, transcriptional initiation appears to be the primary
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determinant, or one of the most important determinants, of the overall gene
expression profile [325].

Only some of the genes in a eukaryotic cell are expressed at any given mo-
ment. The proportion and composition of transcribed genes changes consid-
erably during the life cycle, among cell types, and in response to fluctuating
physiological and environmental conditions. Given that eukaryotic genomes
contain on the order of five to fifty thousand genes, regulating this differen-
tial gene expression requires an exceptionally complex array of specific physical
interactions among macromolecules. The form of the machinery that controls
transcription is that of a gene regulatory network (GRN). The GRN determines
the transient regulatory states in a cell and the batteries of downstream genes
they will express [325, 146].
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Figure 2.1: An imaginary gene regulatory network where the central elements are
cis-regulatory modules.

Figure 2.1 depicts all the elements of a GRN: several signalling pathways
that transduce network inputs (e.g., hormone binding on a cell surface recep-
tor) into the (in)activity of certain transcription factors. The central elements
of a GRN are cis-regulatory elements (CRE) on which TFs and co-activators
can assemble. CREs thereby process all the information of the fluid upstream
biochemical signalling pathways and direct the rate of transcription initiation
by communicating with the basal transcription apparatus.
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2.4.1 The eukaryotic gene

The basic nature of the gene was defined by Mendel more than a century ago.
Summarized in his two laws, the gene was recognized as a “particulate factor”
that passes unchanged from parent to progeny. A gene may exist in alternate
forms (alleles).

Now we know that a gene consists of DNA, and that a chromosome consists
of a long stretch of DNA representing many genes. A gene is one unit of DNA
that performs a function. The RNA that is formed after transcription is either
messenger RNA (mRNA) that codes for a protein or polypeptide, or the RNA
itself can be functional (i.e., RNA genes, see further). The structure of a gener-
alized eukaryotic gene (we will use the general term “gene” for protein coding
genes) is depicted in Figure 2.2. In contrast with prokaryotic genes, eukaryotic
genes are often interrupted: exons are the sequences represented in the mature
RNA, and introns are the intervening sequences that are removed when the
primary transcript is processed to give the mature RNA. For many genes there
can be multiple combinations for the recombination of multiple exons during
mRNA splicing (i.e., alternative splicing). This results in the fact that one gene
can have several distinct transcripts that can also be differentially regulated.

The cis-regulatory system of a gene (the trans system are the transcription
factors and co-factors) consists of a core promoter where the RNA polymerase
complex assembles, a proximal module with several transcription factor binding
sites (TFBS), and several distal modules, each with several TFBSs. All these
elements of the regulatory system will be described in more detail hereafter.

Gene prediction

Ever since the availability of DNA sequences there has been a need for programs
to automatically identify the proteins encoded in genomic DNA. Many advances
have been made during the 90’s, using content sensors (similarity to proteins
and transcripts, codon usage, etc.), signal sensors (translation start and stop,
splice sites, etc.), and combinations of both. The algorithms are often based
on dynamic programming or hidden Markov models. Now most nucleotides can
be identified correctly as either coding or noncoding [66, 278, 208]. However,
the most difficult part of gene prediction in eukaryotes has always been the
prediction of the complete gene structures, and this is still in need for improve-
ment. Methods based on similarity between genomic DNA and EST and cDNA
sequences, and methods based on genome comparisons (e.g., comparing the hu-
man genome with other complete vertebrate genomes such as those of mouse
and fish) are playing a crucial role in current genome annotations.

The leading source of human genome annotation is the Ensembl project
(http://www.ensembl.org [149]) that currently (Ensembl version 18 of Novem-
ber 2003) provides a comprehensive source of stable automatic annotation of the
following genomes: human (Homo sapiens), mouse (Mus musculus), rat (Rat-
tus norvegicus), zebrafish (Danio rerio), pufferfish (Fugu rubripes), fruit fly
(Drosophila melanogaster), mosquito (Anopheles gambiae), worm (Caenorhab-



2 Eukaryotic gene regulation 12

Transcription 
start site

Translation
start site

Translation
stop site

Transcription
termination sitePoly(A) site

Gene (transcription unit)

Cap

CDS

AAA…AA tail

3’UTR5’UTR

Proximal
module

Distal module
(enhancer) Exon Intron

chromatin remodeling complex

transcription co-factors

transcription factors

TAFs

pol II holoenzyme

transcription start site

chromatinchromatin modules

TATA box

TATA binding protein

looping factors

B

A

Core 
promoter 200 bp

Figure 2.2: The eukaryotic gene and its regulatory regions. (A) Organization of a
generalized eukaryotic gene showing all structural and functional components (introns,
exons, CDS, UTRs). The gene is shown in relation with the proximal and distal cis-
regulatory modules that control its transcription. (B) Idealized regulatory system in
operation: chromatin modifying factors are bound to a distal module and specific
transcription factors are bound to another distal module and interact together with
co-factors with the general transcription factors and the basal transcription machinery
at the core promoter, thereby initiating transcription. Adapted from [325] and [332].

ditis elegans and C. briggsae), and preliminary data of chimpanzee (Pan tro-
glodytes) and chicken (Gallus gallus). The gene build process of Ensembl uses
gene prediction software (GenScan [52] and GeneWise [32] programs), protein
and cDNA data, and similarities to other genomes. For the functional annota-
tion of genes, Ensembl uses data from Gene Ontology, InterPro, OMIM, SAGE
expression, and other. An example of a “contigview” of a gene is shown in
Figure 2.3.

The current estimates of the number of protein coding genes in the human
genome are converging to around 25,000 genes. Their DNA (translated and
untranslated) represents about 26.55% of the total genomic DNA and the exons
alone (i.e., coding sequences + 5’ and 3’ untranslated regions) represent only
1.48 % of the genome (calculated from Ensembl release 18 using the 22,184
Ensembl stable genes [850,113,396 bp in genes and 47,657,184 bp in exons out
of 3,201,762,515 bp]).

Next to automatic annotation there are also initiatives of systematic manual
annotation on a gene by gene basis. The best known initiative for vertebrate
genomes is the Vertebrate Genome Annotation (VEGA) database at the Sanger
Institute (http://vega.sanger.ac.uk/).
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Figure 2.3: “Contigview” in Ensembl of the 40.94 kb large genomic region spanning
the β-catenin gene (HUGO = CTNNB1). The transcript structure with exons and
introns is denoted as “Ensembl trans”, and above it are a selected number of annotated
features (out of dozens of available features). “Mm cons” are conserved regions with
the mouse CTNNB1 homolog. From the difference between the GenScan prediction
and the Ensembl prediction, it can be seen that cDNA mapping is useful for gene
prediction.

Non-coding RNA genes

Non-coding RNA genes (ncRNA) produce functional RNA molecules rather
than encoding proteins. The above mentioned methods for gene prediction
(cDNA cloning and EST sequencing, identification of conserved coding exons
by comparative genome analysis, and computational gene prediction) work best
for large, highly expressed, evolutionarily conserved protein coding genes, and
they probably underestimate the number of other genes. They essentially do
not work at all for RNA genes. Classical examples of ncRNA are transfer RNA
and ribosomal RNA, but recently, several groups have carried out systematic
searches for ncRNA genes. All of them indicate that the prevalence of ncRNA
genes has been underestimated, and new RNAs in different flavors continue
to appear, with control functions at the transcriptional or post-transcriptional
level (for review, see [95]). To our knowledge, so far there has not been a single
thorough study on the transcriptional regulation of ncRNAs. The methods in
this dissertation will deal with the transcriptional regulation of protein coding
genes.

2.4.2 The core promoter

The enzyme RNA polymerase II (RNAPII) together with the auxiliary general
transcription factors (GTF, usually described as TFIIx) constitute the basal
transcription apparatus (BTA) that is needed to transcribe any gene. The BTA
assembles at the core promoter and positions the start of transcription relative to
coding sequences. Transcription that is initiated by this minimal set of proteins
is referred to as basal transcription.

If all genes use the same machinery to initiate transcription, we may expect
to find certain conserved sequence components involved in the binding of RNA
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polymerase II and the general factors in all genes. Unfortunately for computa-
tional biologists that strive to recognize them, this is not the case. There appear
to be several classes of core promoters. One important class only consists of a
TATA-box at ∼25 bp upstream of the TSS. The TATA box is found in all eu-
karyotes and the 8 bp consensus consists entirely of A·T base pairs. Recognition
of the TATA box is conferred by the TATA-binding protein (TBP). TBP forms a
complex with TBP-associated factors (TAF) and TFIID and the whole complex
puts the RNA polymerase at the right position for the initiation of transcrip-
tion. A second class of core promoters are TATA-less promoters. These may
have an initiator (Inr) element around the TSS that may be described in the
general form YYANTAYY where the first A is at TSS. In addition to these
two promoter classes, there are also promoters which have both TATA and Inr
elements, and promoters that have neither [183, 229, 159]. Another promoter
element is the downstream promoter element (DPE) that is present in some
TATA-less, Inr-containing promoters about 30 bp downstream of the TSS. It
was found in both human and Drosophila [172].

The core promoter is necessary for transcription but is apparently not a com-
mon point of regulation, and it cannot by itself generate functionally significant
levels of mRNA [178]. The specificity and the functional activity is conferred
by a collection of diverse transcription factor binding sites often organized in
modules. Proteins bound to these sites produce a scalar response: the frequency
with which new transcripts are initiated [78] (see the modules in Figure 2.2 and
Section 2.4.6).

CpG islands

Methylation of DNA by DNA methyltransferases (Dnmt) is one of the parame-
ters that controls transcription in vertebrates. The targets for such methylation
are CpG doublets—cytosine (C) bases adjacent to guanine (G) bases (the p in
CpG denotes the phosphodiester linkage). In most human somatic cells, about
80% of CGs are methylated and the distribution of methylated and nonmethy-
lated CGs is not random, but conforms to a pattern. The most obvious features
of the pattern are large clusters of nonmethylated CGs at the promoters of
many genes (CpG islands) [28]. It has been found that DNA methylation has a
repressing effect on transcriptional activation, possibly mediated by the binding
of a specific methyl-CpG binding protein [183].

CpG islands can be found by directly testing for the absence of cytosine
methylation. But there is a simpler way of finding CpG islands. Most CpG
dinucleotides in the vertebrate genome are methylated on the C base and spon-
taneous deamination of C-methyl residues gives rise to T-residues. (Spontaneous
deamination of ordinary cytosine residues gives rise to uracil residues that are
readily recognized and repaired by the cell.) As a result, methyl-CpG din-
ucleotides steadily mutate to TpG dinucleotides. Unmethylated CpG islands
have a normal frequency of CpG dinucleotides that is roughly 4% (obtained by
multiplying the typical fraction of Cs and Gs, which is 0.21) while the rest of
the genome has a frequency of about one fifth of the expected frequency. CpG
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islands are defined as regions longer than 200 bp with over 50% of G+C content
and a CpG frequency that is at least 1.667 of that statistically expected.

The CpG density defines two classes of promoter. In the CpG-related class,
the frequency of CpGs is the same as the genome average, which is roughly one
every 100 bp. This class invariably includes genes whose expression is restricted
to a limited number of cell types (last two genes in Figure 2.4). In contrast, the
5’ end of the genes belonging to the other group is surrounded by a region of
∼1 kb long where the frequency of CpGs is approximately 10 times higher than
the genome average (the first two genes in Figure 2.4). According to [12, 11],
approximately 60% of mammalian gene promoters are associated with one or
more CpG islands. This includes all the housekeeping genes—those expressed
in all cell types—and about half of the tissue-specific genes. Davaluri et al. [80]
defined a CpG score using only the CpG dinucleotide percentage in a window
and found that about 70% of the first exons in the human genome are CpG-
related. The correlation between CG content and promoters is one of the best
features in promoter prediction (see Section 2.4.2).

Figure 2.4: CpG content around transcription start site. Two housekeeping genes
LDHA and RPS19 with many CpG doublets in the [-1000,+1000] region around TSS
and two cell-type specific genes AFP and ALB with few CpGs in this region. Figure
generated with TOUCAN [4].

DNA structure in core promoters

Packaging of DNA into chromatin limits the accessibility of the DNA tem-
plate for the BTA and has been found to inhibit transcriptional initiation. The
derepression of transcription by partial unfolding of chromatin is likely to con-
stitute an important part of gene regulation, and TFs and TCFs can play a
role in chromatin remodeling. For example, some are histone acetyltransferases
like p300/CBP, which is a coactivator that links an upstream TF (e.g., AP-1,
MyoD) to the BTA. p300/CBP acetylates the N-terminal tails of H4 in nucleo-
somes and acetylation is associated with gene activation (while the absence of
acetyl groups is associated with a more condensed, inactive structure). Another
example of how TFs can influence DNA three-dimensional structure is the bend-
ing of DNA by architectural TFs to facilitate protein binding [183, 228]. The
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three-dimensional structure of DNA can depend on the DNA sequence itself,
and like the CG content, structural information too has been used in promoter
prediction algorithms.

Promoter prediction

Algorithms for general promoter prediction can be classified into two groups:
search-by-signal and search-by-content [223]. The search-by-signal algorithms
make predictions on the basis of the detection of relatively conserved signals and
conserved spacing among patterns such as the TATA-box, Inr, DPE, or TFBS
outside the core (see further). PROMOTER2.0 [167] uses a combination of neu-
ral networks and genetic algorithms, ProScan [236] uses position weight matrices
of TFBS. The search-by-content algorithms identity promoters on the basis of
the sequence composition. Discriminant analysis has been used in CorePromoter
with pentamer frequencies in consecutive 100 bp regions as features [332]. These
programs predicted about ∼30-50% of the promoters correctly but predicted one
false positive promoter each kilobase [105]. PromoterInspector [255], which is
based on context features extracted from training sequences by an unsupervised
learning technique, produced only one false positive every 40 kb, a significant
improvement.

The more recent algorithms have included other features that improved both
sensitivity and specificity: CpG content [153, 80, 133, 91], first splice-donor
sites [80], transcript information [187], and structural sequence features such as
bendability or conformation [223].

A more direct way to find the TSS and thus the core promoter is to map
cDNA sequences to genomic DNA; the 5’ end of the cDNA should coincide with
the TSS. However, most of the cDNA sequences stored in current databases are
imperfect in the sense that they lack the precise information of 5’ end termini.
Suzuki et al. [286] have developed the 5’ oligo-capping method to obtain full-
length cDNAs. The experimentally determined TSSs for 8,793 human genes
(as of Jan 2004) are stored in the publicly available database DBTSS [287].
PromoSer is another publicly available database that contains TSSs for human,
mouse, and rat genes obtained by aligning a large number of partial or full-length
mRNA sequences to genomic DNA [131].

2.4.3 Transcription factor binding sites

Producing functionally significant levels of mRNA requires the sequence specific
association of transcription factors with DNA sequences outside the core pro-
moter [178, 325]. They can occur both in a region of ∼200-300 bp upstream
of the core promoter (i.e., the proximal promoter) and at sites more distal to
the core promoter either upstream or downstream of the gene or in introns (see
further).

Most transcription factor binding sites (TFBS) span 5-8 bp and they can
almost always tolerate at least one, and often more, nucleotide substitutions
without losing functionality (in contrast to most restriction enzymes). The
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sites of recognition are a family of similar sequences, although there can be
considerable variability. An understanding of the sequence-specificity of DNA-
protein interactions has resulted from studies of the effects of mutations in
the DNA-binding sites and the amino acid residues implicated in binding, for
which recently also microarrays were used [50]. Regulatory systems can take
advantage of this variability in the sites to control the level of transcription
because of differences in the affinities between factor and site. For example, low
affinity sites compete with high affinity sites for binding to the TF and thus
require that more TF be present [276].

TFBSs in the proximal promoter

Some transcription factors are not part of, but very frequently acting in concert
with, the BTA. The TFBS for these factors are often present in ∼200-300 bp
upstream of the TSS. For example, on the order of half of all vertebrate promot-
ers contain a somewhat conserved CCAAT-box where a large number of factors
can bind to. Ohler et al [224] have found several motifs for unknown factors in
Drosophila proximal promoters using MEME [17] and Gibbs sampling [176].

TFBSs in distal modules

Disjunct regions of DNA of several hundreds of bp in length where TFBSs are
clustered together, often produce discrete portions of the total transcription
profile. Such a region is called a cis-regulatory module (CRM or simply mod-
ule). They have also been termed enhancer (enhancing transcription) or silencer
(repressing transcription), and in fact the proximal promoter can, according to
this definition, also be regarded as a cis-regulatory module (i.e., the “proximal
module”) in case it produces a discrete portion of the expression—which is often
the case. See Section 2.4.6 and further for a discussion on modules.

Protein-DNA interactions

To unravel the stereochemical rules of protein–DNA binding, structures of pro-
tein–DNA complexes solved by X-ray crystallography can be used. A recent
classification of such complexes was done by Luscombe and colleagues [196].
About two-thirds of the contacts between amino acid side chains and nucleotide
bases are van der Waals contacts, about one-sixth are hydrogen bonds and the
last sixth are water-mediated bonds [197]. In most studies that have been per-
formed on protein-DNA interactions, there appear to be favored interactions but
the consensus is that DNA-binding varies substantially between protein fami-
lies, and that at present no simple code can adequately describe the recognition
of target sites on nucleic acids. Luscombe and colleagues [197] however claim to
have found some rules for universal specificity in all complexes and they have
constructed a web-based “Atlas of Side-Chain Base Contacts”. The DNA bind-
ing domain is often a short alpha helix, sometimes a beta strand or a loop, that
inserts into the major groove of double-stranded DNA (see Figure 2.5 for an
example).
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Figure 2.5: DNA-protein interactions. Complex of a helix-loop-helix transcription
factor SREBF1 (sterol regulatory element binding transcription factor 1) bound to the
promoter of LDLR (low density lipoprotein receptor) (the PDB entry of the complex
is 1am9). From [196].

Representation of TFBS

There are basically two ways to represent the range of TFBSs that can bind
a particular TF with significantly higher specificity than random DNA under
physiological conditions [145, 276]. Both are made from a set of known binding
sites that are first aligned to maximize sequence conservation (Fig 2.6.A). The
alignment method that is used can already introduce variability in the quality of
the model. The simplest and oldest model is the consensus sequence, although
the way this is defined is somewhat arbitrary. The consensus sequences match
all of the example sites closely, but not necessarily exactly, and there is a trade-
off between the number of mismatches allowed, the ambiguity in the consensus,
and the sensitivity and specificity of the representation. The alphabet used in
consensus sequences is the IUPAC (International Union for Pure and Applied
Chemistry) degenerate alphabet (see the Notation section). The second possible
representation is the matrix model. The simplest form is the alignment matrix
or count matrix, which lists the number of occurrences of each letter at each
position (Fig 2.6.B). From the count matrix, a position specific frequency matrix
(PSFM) can be constructed by calculating the frequencies of each letter at each
position and introducing pseudocounts (a zero count means this letter is not
observed at this position, but it does not mean it does not exist in the genome)
(Fig 2.6.C). The PSFM is used in the MotifScanner and MotifLocator algorithms
(see Chapter 4). Instead of a frequency matrix, a weight matrix can also be used
(Fig 2.6.D) in which the weights can be calculated using the following formula
[145]:

ln
(ni,j + pi)/(N + 1)

pi
≈ ln

fi,j

pi
, (2.1)

where N is the total number of sequences (eleven in the HNF-1 example), pi is
the a priori probability of letter i (in this example 0.25 for all the bases, but
pi’s can be calculated from the genome), and fi,j = ni,j/N is the frequency of
letter i at position j.
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Figure 2.6: Representation of transcription factor binding sites. (A) A set of aligned
human DNA sequences that are binding sites for the transcription factor HNF-1 (from
the TRANSFAC database). (B) Alignment matrix or count matrix generated from
A. (C) Position specific frequency matrix (PSFM) generated from (B). (D) Position
weight matrix generated from (C). (E) Logo computed using alpro and makelogo [257]
at http://www.bio.cam.ac.uk/seqlogo/logo.cgi. Each of these representations is ex-
plained in the text.

The PWM representation is interesting because the logarithms of the fre-
quencies are proportional to the binding energy contribution of the bases [24].
Binding sites can also be viewed from the perspective of their “information con-
tent” [258], which also fits with the binding energy analysis. The information
content at a position in a site is defined by

Iseq(i) =
T∑

b=A

fb,i log2

fb,i

pb
, (2.2)

where i is the position within the site, b refers to each of the possible bases, fb,i

is the observed frequency of each base at position i, and pb is the frequency of
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base b in the whole genome. Iseq is between 0, for positions that are 25% of
each base, and 2 bits for positions completely conserved as one base. Iseq is also
known as the relative entropy and the Kullback-Leiber distance (to the uniform
distribution). It is also a normalized log-likelihood ratio statistic and so can be
used to estimate the statistical significance of the pattern [277]. The information
content can be represented graphically in a sequence logo (Fig 2.6.E) where the
height of each letter in the stack represents the amount of information (in bits)
that this position holds and the error bars represent the confidence interval
because of the limited sample size.

The TRANSFAC database [323] contains a collection of transcription factors,
experimentally determined binding sites and target genes for these factors, and
count matrices derived from the alignment of binding sites. The professional
release 7.3 of TRANSFAC contains 13112 binding sites and 674 count matrices of
which 493 have been created from sites in vertebrate sequences. It is important
to note that the full matrix of binding sequences is not yet known for most TFs,
even in well-studied species. Recently another database named JASPAR [252]
was created and contains 111 curated non-redundant PWMs (as of March 2004).

Weight matrices are based on several assumptions that remain to be firmly
established, and their underlying principles may be an over-simplification of the
biochemistry of protein-DNA interactions. One limitation is that the recognition
sequence is of fixed length. Another assumption of PWMs is that each position
of a binding site is modeled as making an independent contribution to the overall
binding affinity of the site. Although this provides a good approximation of
the true nature of the specific protein-DNA interactions [21], there are more
sophisticated methods that model a binding site with dependencies [165, 51].

Experimental detection of TFBSs

Experimental methods to detect TFBSs in vitro are DNAse hypersensitivity
studies, electrophoretic mobility shift assays, and systematic evolution of ligands
by exponential enrichment (SELEX). SELEX is a high-throughput method to
select high-affinity binding sites to a TF of interest from randomized double-
stranded DNAs [234]. Recently two technological platforms have been developed
for location analysis, or the genome-wide detection of TFBSs in vivo. That is,
in principle all functional binding sites in the genome of a certain TF can be de-
tected in one run, at least those to which the TF is bound. These two platforms
are the ChIP-chip [247] and DamID [310] methods. In ChIP-chip, cells under
certain conditions are fixed, harvested, and disrupted and the DNA fragments
that are cross-linked to a TF of interest are enriched by immunoprecipitation
with a specific antibody. After reversal of the cross-links, the enriched DNA is
amplified, labeled with fluorescent dye (e.g., Cy5), and hybridized to a cDNA
microarray containing intergenic sequences. The positive spots are promoters
of genes that are potentially regulated by this particular factor. Iyer et al. [154]
and Ren et al. [247] have applied this technique in yeast for SBF and MBF tran-
scription factors and for Gal4 and Ste12 factors respectively. Lee et al. [177] have
applied performed such location analysis for 141 transcription factors in yeast
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and used this wealth of data to find general network motifs in the yeast regula-
tory network. DamID [310] is based on creation of a fusion protein consisting of
Escherichia coli adenine methyltransferase (Dam) and the TF of interest. The
Adenine in GATC sequences near the binding sites of this TF will be methy-
lated (while methylation of adenines is usually absent in eukaryotes) and can be
detected using Southern blot, PCR and microarray assays that take advantage
of restriction enzymes that are methylation sensitive.

Computational detection of TFBSs

TFBS can be discovered in sequences by searching for matches to a consensus
sequence or by scoring a sequence with a PWM. The latter—more sensitive—
method involves simply adding the matrix weights of each occurring letter in a
test sequence together and normalizing this for the length of the matrix. The
normalized score, between 0 and 1, is calculated as follows:

W ′(x) =
W (x)−Wmin

Wmax −Wmin
,

where W (x) is the score for a given oligonucleotide x, Wmin is the sum of the
smallest weights at each position and Wmax is the sum of all highest weights at
each position. In order to decide when a certain oligonucleotide is a “putative
hit”, a threshold for the normalized score is commonly used. This threshold
can either be fixed (e.g., 0.8), it can be different for each PWM, and it can be
different for the complete PWM and for a well conserved core of the PWM.
Such PWM-specific thresholds are often calculated by comparing the number
of hits of the PWM in promoter regions with the number of hits in second
exons. Examples of implementations of such a PWM scoring method are Signal
Scan [237], Matrix Search [63], MatInspector [241], and Match [163].

Based on random similarity, a PWM can have dozens of instances in each
kilobase of genomic DNA because of the fact that TFBSs are so short and impre-
cise. Many of these consensus matches do not bind protein in vivo and have no
influence on transcription. Identifying the binding sites that actually bind pro-
tein requires either biochemical and experimental tests, or more sophisticated
computational strategies. The most commonly used strategies—and central to
this dissertation—are the detection of over-represented TFBSs in co-regulated
genes (or gene batteries) and phylogenetic footprinting. Both will be described
further in this chapter (Sections 2.5 and 2.7) and in several other chapters.

2.4.4 Transcription factors

Transcription factors can bind to DNA via their DNA binding domain and
together with transcription co-factors (TCF) they form complexes at partic-
ular DNA locations that, through protein-protein interactions with the basal
transcription apparatus, influence the frequency with which the polymerase II
complex initiate transcription at the transcription start site (TSS).
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The most common molecular functions in the human genome are in fact the
transcription factors and proteins involved in nucleic acid metabolism [173, 311].
As summarized by Wray et al. [325], most TFs belong to gene families, whose
sizes differ considerably among genomes (Table 2.1). The reasons and functional
consequences of these differences are not understood. The Zn-finger (C2H2 type)
is also the most common InterPro domain in the human genome according
to the top 40 InterPro domains in the Ensembl database (Release 18, http:
//www.ensembl.org).

Table 2.1: Size of selected transcription factor families in three Eukaryotes.

Transcription
factor family

Caenorhabditis
elegans

Drosophila
melanogaster

Homo
sapiens

Homeodomain 109 148 267
Nuclear receptor 183 25 59
Zn-finger 437 357 706
Runt domain 2 4 3
Basic HLH 41 84 131
Paired box 23 28 38
Myb 17 18 32

Source: [311, 173, 325]

Most TFs contain several of the following domains: (1) DNA binding domains,
for example homeodomain, paired-box domain, Zn-finger; (2) Protein-protein
interaction domains, for example the pentapeptide motif of homeodomain pro-
teins; (3) Trafficking signal domains, for example a nuclear localization signal;
(4) Ligand binding domains, for example nuclear receptor family members can
have steroid hormone binding domains.

2.4.5 Transcription co-factors

The transcription factors that can bind to the unique array of cis-regulatory
sites of a gene are—at least in eukaryotes and especially in metazoans—not
enough to directly instruct the BTA to initiate RNA synthesis at a specific
core promoter. TFs interact with multiple types of co-factors in both positive
(activation) or negative (repression) ways. There are several classes of co-factors
with different properties: factors that modulate DNA binding, for example by
imposing structural effects on the domains of the TFs; proteins that interact
with the BTA; and chromatin-modifying activators and repressors [178]. The
interaction between clustered TFs and co-factors generally results in a large
protein complex, sometimes referred to as enhanceosome [58], that is capable of
communicating with the BTA through protein-protein interactions to influence
transcription (see also Figure 2.2.B).
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2.4.6 Cis-regulatory modules

A module is operationally defined as a cluster of TFBSs that produces a dis-
crete aspect of the total transcription profile. The most common terms in the
literature are enhancer and silencer. A single module typically contains about
6 to 15 binding sites and binds 4 to 8 different TFs [14, 78]. As stated by
Wray et al. [325], a single module may carry out one or a combination of the
following: (1) initiate transcription, often in a highly specific manner such as
within a single cell type or region of an embryo or at a specific time point dur-
ing development; (2) boost transcription; (3) mediate signals from outside the
cell, by binding a TF that either contains a receptor for a hormone or that is
post-translationally modified by a signal transduction system; (4) repress tran-
scription, again in a highly specific manner; (5) restrict the effect of another
module to a single basal promoter; (6) selectively “tether” other modules, by
bringing them into proximity with a single basal promoter; or (7) integrate the
status of other modules by influencing transcription differently depending on
what proteins are bound elsewhere [330, 78, 325].

A well-known example of a module is the human interferon-β (IFN-β) en-
hancer, which drives transcription of the IFN-β gene in response to viral in-
fection [281]. The presence of each TFBS and its precise arrangement within
the module are critical for the various regulatory proteins to assemble through
cooperative interactions into an enhanceosome (see Figure 2.7).

Proximal
promoter

BTANF-κB

HMGI(Y)HMGI(Y) IRF3/7HMGI(Y)

ATF-2-c-jun CBP

Figure 2.7: Cis-regulatory modules and enhanceosomes: the IFNβ enhanceosome as-
sembled on the IFNβ module [72]. Multiple transcription factor binding sites are clus-
tered within a sequence region of less than 100 bp, upstream of the IFNβ gene. Upon
viral infection, specific binding (see 2.4.3) of the transcription factors IRF, NF-κB, and
HMGI(Y) to these binding sites, and their interaction with each other and with the
co-factor CBP, creates an enhanceosome that can interact with the basal transcription
apparatus (BTA), looping out the intermediate DNA and initiating transcription of
IFNβ.

Autonomy of modules

Another example of a well studied module is the eve (even-skipped) stripe 2 en-
hancer. This module is responsible for a discrete part of the expression of eve,
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a “pair-rule” gene, namely its localized expression in the second of seven alter-
nating (on/off) “stripes” along the anterior/posterior axis of the embryo. From
the stripes the full complement of body segments is ultimately generated (see
for review [249]). The pair-rule genes that are expressed in stripes are among
the genes that initiate the process of metamerization early in the embryonic
development. The expression of eve in the seven stripes is controlled indepen-
dently; that is, different modules control the expression of different stripes. The
eve stripe 2 enhancer is roughly 700 bp long and contains multiple binding sites
for four transcription factors. The Bicoid and Hunchback proteins are broadly
distributed activators, and the boundaries of the stripe are sharpened via re-
pression by the Giant and Krüppel proteins (see Figure 2.8). The other stripe
modules are bound by different combinations of TFs found at other positions
in the embryo [78, 59].

When the stripe 2 enhancer is placed in a construct with the lacz gene as a
reporter, the endogenous stripe 2 expression is perfectly mimicked; the stripe 2
enhancer works autonomously.

Arrangement of binding sites

The stripe 2 enhancers found in different species of Drosophila are of similar size
(750-950 bp) and bind the same regulators. But the precise arrangements and
affinities of the TFBS in the modules are not the same. Despite these differences,
a module from one species directs the proper pattern of gene expression (i.e.,
in stripe 2) when introduced into another species. Thus, there is more than
one arrangement of TFBS that can bind the appropriate activators and exclude
repressors to activate the eve gene in that region of the embryo. The pattern of
stripes is slightly different in more distant relatives of Drosophila and this has
important morphological consequences. This is concluded by Ptashne [238] as:
“Nature can readily throw up functional variants for selection to work on” (see
Section 2.7).

There are other cases where the arrangement of binding sites is important,
and this has mostly to do with specific synergistic or antagonistic actions and
related structural requirements for interactions among TFs, as in the IFN-β
enhancer. Here, the individual factors have no effect on transcription, but in
combination they produce a strong effect. Such interactions involve binding
sites that typically lie no farther apart than the size of the proteins that they
bind (in practice, up to a few tens of base pairs apart). Some interactions are
precisely phased to lie on the same side of nucleosomes (∼40-bp multiples) or
completely decondensed DNA (∼10-bp multiples) [183].

Another type of specific arrangement are overlapping or adjacent binding
sites for different factors, as in the eve stripe 2 enhancer. When a repressor
is present, active, and bound to its cognate site, an activator can no longer
bind and transcription is off, at least in case the repressor has a higher binding
affinity for its site than the activator or in case the repressor concentration is
higher than the activator concentration. A consequence of the latter is that
concentrations of factors that interact with adjacent or overlapping sites can
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Figure 2.8: Autonomy of cis-regulatory modules. (A) The even-skipped stripe 2
enhancer (D) controls the expression of the eve protein within the second segment
polarity stripe of the Drosophila embryo. There are functional binding sites for four
different TFs, two activators (Bicoid and Krüppel) and two repressors (Giant and
Hunchback). (B) The spatial expression of these TFs and their relative concentrations
determine the expression profile of eve. (C) The expression of eve in the other stripes
is controlled by other independent enhancers. Taken from [59].
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have a significant impact on transcription.

Modular cis-regulatory information processing

A cis-regulatory module can be seen as a control device that becomes active
when the TF’s for which the module contains binding sites are present and
active. Each module is an information processing regulatory device: it integrates
multiple, diverse inputs (e.g., four factors for the eve stripe 2 enhancer) and
produces a single, scalar output, namely the rate of transcriptional initiation.
As mentioned in [325], one could draw an analogy with a neuron that receives
input from many sources and integrates the inputs into one output, namely how
often it fires. Figure 2.9 shows a generalized system with two distal modules
and one proximal module.

A well studied example is the cis-regulatory system of the endo16 gene of
the sea urchin Strongylocentrotus purpuratus. Within the 2.3 kb upstream of
the TSS, six modules have been found that carry out discrete functions. All
together they contain 34 TFBS for 13 different transcription factors and co-
factors. The collaboration among modules in this system results in complex
logical structures as can be seen in Figure 2.10.

Figure 2.9: Information processing by modules. An imaginary set of distal modules
showing the integration of different signals in two independent space/time domains
and the communication with the proximal module. Taken from [78].

Computational detection of modules

The major bottleneck in the study of gene regulatory networks is that the short
cis-regulatory modules lie within the expanse of genomic DNA that surrounds
each gene—flanking sequence upstream and downstream, and introns. Conven-
tionally, modules have been found by building and testing expression constructs
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Figure 2.10: Examples of cis-regulatory modules. (A) The 2.3 kb upstream region of
the endo16 gene of S. purpuratus contains six modules (A-G, Bp=proximal promoter)
with 34 binding sites in total for 13 different TFs. They carry out discrete functions
during sea urchin development. (B) The regulatory logic or computational model for
modules A and B is shown. The graph is accompanied by a set of rules, like IF(P = 1
AND CG1 = 1) THEN β = 2 ELSE β = 0 and so on. From [330, 147].

that contain successive deletions of the DNA flanking the gene or by other meth-
ods like DNAse hypersensitivity studies, location analysis, and electrophoretic
mobility shift assays. These approaches are labor-intensive and they are not
suited for large-scale analysis of complete GRNs. Help from the bioinformatics
side is therefore needed.

Literature on computational module detection has only begun to appear
during the course of this work. I propose nine categories of module detection,
and combinations of these approaches are also possible.

1. Detection of single TFBSs (they reside in modules). Single TFBS detec-
tion has been described extensively earlier in this chapter. Once a real
TFBS is identified, flanking regions can be analyzed to detect other mod-
ule elements. To our knowledge this approach has not been described in
the literature. Chapter 4 contains a case study analyzing gene regulation
in desmoid tumors using this approach.

2. Detection of dense clusters of unknown TFBSs. Marsan and Sagot [206]
use suffix trees to detect motif co-occurrences with conserved spacing be-
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tween them in a complete genome, and they used it to detect promoters
in bacterial genomes (as a combination of the -35 site and the TATA
box). Argos [242] detects genomic sequence windows that have multiple
occurrences of one motif by testing for statistical over-representation of
all motifs of a certain length.

3. Detection of similar genomic sequence regions as in a training set of known
modules using classification methods. Logistic Regression Analysis (LRA)
combined with phylogenetic footprinting (here the identification of con-
served sequences between human and mouse) was applied in [316] and [168]
to find modules in the human genome that control muscle- and liver-
specific genes respectively. The coefficients are determined by a maxi-
mum likelihood procedure to maximize the discrimination between a pos-
itive and a negative training set. Fisher Kernel Support Vector Machines
(SVM) have been applied to predict promoters (modules) based on com-
binations of motifs and the spacing between them in yeast [227].

4. “Module scanning”, or the detection of a joint occurrence of a known
combination of known TFBSs within a confined sequence window in a
single sequence or on a genomic scale:

• In the “sliding window approach” a program detects genomic se-
quence windows where all or most of the given PWMs or consensus
sequences have predicted instances, without regard to order or spac-
ing. Wagner [313] developed a statistical measure starting from the
Poisson distributions of the instances of the individual PWMs, to de-
tect clusters of TFBSs of two or more given PWMs and tested it on
the yeast genome. CIS-ANALYST [26] examines sequence windows of
length wind size, retaining only those containing at least min sites
binding sites, and collapsing all overlapping windows into a single
cluster. FlyEnhancer [205] works similarly and was used to detect
clusters of Dorsal binding sites in Drosophila. Halfon et al. [132]
and Rebeiz et al. [244] developed respectively cooccur scan.pl and
SCORE, also to find clusters of predicted binding sites for multiple
TFs in Drosophila, and they used Monte Carlo simulations to test
whether certain combinations occur less than expected (and thus
could have functional consequences). Ahab [242] computes an opti-
mal probabilistic segmentation [53] of a sequence S into binding sites
and background (modeled by a local higher-order Markov model) for
a fixed set of PWMs. MSCAN [161] is a module scanner that cal-
culates the combined statistical significance (an upper bound for the
p-value) of the instances of a given set of PWMs in a window.

• Several other module scanners use a hidden Markov model (HMM)
implementation that take distance constraints between TFBSs into
account: the first implementation was done by Crowley et al. [74], and
other flavors are Cister [115], COMET [116] with statistical signifance
(E values), MCAST [18], and Stubb [265].
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Also see our own algorithm ModuleScanner in Chapter 5 and related work.

5. Detection of a joint occurrence of newly discovered motifs by their over-
representation in a set of co-regulated genes. See Section 2.5.2.

6. Detection of a joint occurrence of newly discovered motifs by the conser-
vation in orthologous regulatory sequences. There exist no methods of this
kind to our knowledge.

7. Discovery of a joint occurrence of a new combination of known TFBSs by
their over-representation in a set of co-regulated genes. See Chapter 5 for
our algorithm ModuleSearcher and related work.

8. Discovery of a joint occurrence of a new combination of known TFBSs
by the conservation in orthologous regulatory sequences. There exist no
methods of this kind to our knowledge.

9. Detection of conserved non-coding sequences. A conserved non-coding se-
quence block is assigned a putative regulatory role and TFBSs are detected
thereafter. See Section 2.7.3 and the ModuleSearcher in Chapter 5.

2.4.7 Putting it all together

Despite many advances in discerning interactions between factors, the detailed
mechanisms by which the transcription initiation rate of an individual gene is
determined remain poorly understood.

Transcription factories

Lemon and Tijan [178] discuss several possible models. The model with the
most supporting evidence is based on cytological studies that suggest that some
co-regulators and components of the general transcription machinery may be
segregated in the nucleus [248] and exist as organized compartments that are
also referred to as transcription factories [152]. The authors propose a model
that integrates nuclear compartmentalization and transcription. The first step
involves regional chromatin remodeling events by complexes associated with the
nuclear matrix together with primary activators with some limited DNA tar-
get accessibility. After initial remodeling events, a distal module can become
accessible for binding factors that then recruit other appropriate chromatin re-
modeling factors, including histone acetyltransferases (HAT). Secondary chro-
matin remodeling including nucleosome shifting could thereafter provide access
of other activators to other modules. Subsequent cooperative interactions be-
tween sequence-bound TFs and associated TCFs, and perhaps mobilization of
the nuclear matrix, could promote the directed association of the promoter with
a transcription factory where pre-assembled parts of the BTA are present. Fol-
lowing the selective recruitment to a localized factory, cooperative interactions
between TFs and TCFs could initiate promoter binding and subsequent events
leading to the formation of an active initiation complex. Re-initiation can follow
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by concerted signals from TFs that dynamically interact with target modules
and co-factors. Subsequent events might signal for promoter de-activation. It
is even postulated that in the same factories RNA processing and even initial
translation (proofreading?) is facilitated [69, 152, 68]. In this model a gene,
with its array of cis-regulatory modules, competes with other genes for access
to a transcription factory. If all necessary TFs and TCFs are present and ac-
tivated, a functional enhanceosome can be formed that, through interactions
with proteins in a factory, can bring the core promoter in close proximity with
the BTA components in the factory, thereby looping out the sequence in be-
tween the respective module en promoter. The efficiency of this process then
determines the initiation rate.

Transcription factories can also explain some aspects of chromosomal loca-
tion effects of gene expression (for example in Drosophila [270]): co-localized
genes can be co-expressed if whole chromosomal domains are exposed to such
factories.

Enhanceosome versus information display

Apart from the discussion whether or not the transcription factory model is ap-
propriate, Kulkarni and colleagues [169] recently proposed that modules work
by information display as opposed to the enhanceosome model. In the enhanceo-
some model, the module serves as an information processing center, receiving
inputs from multiple TFs that bind it. The enhanceosome creates a stereospe-
cific interface for docking with and recruiting the BTA. Here the module serves
as a molecular computer, resolves multiple inputs and provides a single output
to the BTA. With such a module, the target gene would be activated only upon
the assembly of a complex, providing a precise on/off binary switch. Graded
responses from such an element could be achieved by varying the stability of
the entire complex, possibly in response to activator concentrations (this can
be translated into various probabilities of getting access to a transcription fac-
tory depending on factor concentrations). In the “information display module”
subelements can display contrasting information, which is then interpreted by
the BTA. The BTA “samples” discrete regions of the enhancer each composed
of a small number of TFBSs, either iteratively or simultaneously. Successive or
multiple interactions with the BTA, and the biochemical consequence of these
interactions, would dictate the overall output of the enhancer [169].

2.5 Gene batteries

Wray et al. [325] demonstrate with a simple calculation that most eukaryotic
transcription factors must bind to the promoters of many downstream genes.
They describe it as follows. Eukaryotic genomes contain on the order of 5000
to 50000 genes, only a small fraction of which encode transcription factors (see
2.4.4). Because the expression of all genes requires that transcription factors
bind to their promoters, and because most promoters contain binding sites for
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at least five different transcription factors (and often many more), transcription
factors must on average interact with the promoters of tens to hundreds of genes
[325]. Such a set of coregulated genes is called a gene battery or a regulon and
they will be of great importance in this dissertation because if the output of
a GRN can be measured for all genes at the same time, then gene batteries
can be selected by grouping together the genes with similar expression profiles,
and since the cis-regulatory elements around these genes cause their expression
profile, we should be able to find the same regulatory elements in all the genes
of a battery. So a gene battery is actually defined as a set of genes that share a
given set of regulators [78].

2.5.1 Genome-wide expression analysis

Microarray technologies have revolutionized biological research in the past few
years in the sense that instead of studying genes one by one, thousands of genes
can now be studies simultaneously.

Microarray technology

There are two types of microarray platforms depending on the method of nu-
cleic acid deposition on the chip surface. One technology involves slides with
robotically spotted probes that can be PCR products amplified from cDNA li-
braries (cDNA microarrays) [254, 189] or oligonucleotides (∼50 to 70mers). In
most experiments one compares two samples, the test and the reference sample.
These are labeled with two different fluorescent-dyes and co-hybridized to the
same array (i.e., two-channel measurements). The ratio between the two dyes
indicates the relative abundance of a gene in these two samples. The other tech-
nology is also used in computer chips fabrication, and is commercially available
from AffymetrixTM . It involves the photolithographic synthesis of short oligonu-
cleotides (∼25-mers) [186]. The two samples under comparison are labeled with
the same dye and individually hybridized to different arrays.

Extraction of raw intensity data

After the microarray hybridization experiments, laser scanning of the slides pro-
duces images from which the raw intensity data has to be extracted. The four
basic steps in image acquisition and analysis are summarized in a review by
Leung et al. [181]: (1) scanning ; (2) spot recognition or gridding, which locates
each spot on the microarray image; (3) segmentation, which differentiates the
pixels within a spot-containing region into foreground (true signal) and back-
ground; and (4) intensity extraction, which calculates the foreground (signal)
and background intensities from the pixels after the segmentation process.

Data preprocessing

For two-channel microarray data, the background corrected intensities of the
test sample are divided by the background corrected intensities of the reference
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sample to obtain expression ratios. These are log transformed so that (1) up-
regulated and downregulated values are of the same scale and comparable [240]
and (2) multiplicative effects are converted into additive effects that are easier
to model [75]. Consistent sources of variation should—if present—be removed
in a normalization step such that, for each gene, the measured value reflects the
mere expression level as caused by the condition tested [202, 203]. For cDNA
microarrays these consistent sources of variation include array, dye, condition
and spot effects. Array effects refer to the differences in hybridization efficiency
between different slides. Condition and dye effects reflect differences in respec-
tively mRNA isolation and labeling efficiencies between two distinct samples
while spot effects refer to the difference in amount of cDNA spotted on the ar-
ray. Global normalization assumes that only a small fraction of the total number
of genes on the array alters its expression level and that symmetry exists in the
number of genes that is upregulated versus downregulated. Remark therefore
that the assumption of global normalization applies only to microarrays that
contain a random set of genes and not to dedicated arrays. Under the assump-
tion of global normalization the average intensity of the test genes should be
equal to the average intensity of the reference genes. Based on the hypothesis
of global normalization, for the bulk of the genes the log2(test/reference) ratio
should equal 0. Normalizing the data consists of finding the right transfor-
mation factor that allows centering the log2(test/reference) for the bulk of the
genes around zero. Linear normalization assumes a linear relationship between
the measurements in both conditions (test and reference) and uses a constant
transformation factor that can either be the mean or median of the log intensity
ratios or a regression factor as determined by linear regression. However, the
relationship between dyes can depend on the measured intensity. More sophisti-
cated normalization techniques are needed to remove such intensity-dependent
dye effects (see Chapter 3). An alternative way of preprocessing cDNA mi-
croarray data is to use an ANOVA model with one factor for each of the above
mentioned effects [164].

Exploratory data analysis

Exploratory data analysis essentially aims at finding genes with similar expres-
sion profiles, using the expression data only. Commonly used techniques are
principal component analysis (PCA) or singular value decomposition (SVD) [9]
for dimensionality reduction, and several algorithms for clustering like hierar-
chical clustering [98], K-means [292] and self-organizing maps (SOMs) [289].

Detecting differentially expressed genes

Statistical methods for the detection of differentially expressed genes are differ-
ent for the comparison of two conditions and for the comparison of more than
two conditions (see [75] for a review). For two conditions, the simplest method
is the “fold change” cut-off where all genes that differ by more than an arbitrary
cut-off value between the conditions are taken to be differentially expressed. Of
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the statistical methods, the t test is the simplest, where the standard error can
be computed per gene (in replicated experiments) or by combining data across
all genes, although the latter is effectively a fold-change test. For small sample
sizes, the error variance may be hard to estimate and may be subject to erratic
fluctuations. There are several modifications of the t test that can obtain more
stable estimates of the error variance, such as SAM [303] and the regularized t
test [19]. If p-values are calculated from the t statistic, one should account for
multiple testing (e.g., using Bonferroni correction) since false positives (type I
errors) may accumulate when thousands of tests are conducted. Alternatively,
the false discovery rate (FDR) can be used [246]. In Chapter 3 we describe some
simple correlation measures and ANOVA approaches to detect differentially ex-
pressed genes in an experiment with more than two conditions.

2.5.2 Detecting common motifs in gene batteries

All genes of a gene battery are co-regulated and thus their cis-regulatory systems
share common TFBSs (motifs) or complete modules. There is a plethora of
techniques to discover common motifs in a collection of the regulatory sequences
of a set of co-regulated genes. But the construction of a good sequence set is not
trivial. One often has to rely on sets of co-expressed genes that are putatively
co-regulated, such as clusters of gene expression profiles from microarray data.
The motif detection algorithms therefore have to take into account that some of
the genes might be secondary response genes (or genes that have accidentally the
same expression profile) without the shared motif. Another source of noise is the
selection of putative regulatory sequences for the selected genes since promoters
and modules cannot easily be identified. Promoter or TSS prediction algorithms
can be used, sequences upstream of the translation start can be used (possibly
containing long 5’UTRs), or sequences can be selected from databases with
TSS annotations (Ensembl, DBTSS, PromoSer). Many of the motif discovery
algorithms have been tested on sets of yeast genes where promoter sequence
selection is less a problem. Since yeast has no 5’UTR, and since the intergenic
regions are short, the regulatory regions commonly lie just upstream of the
translation start codon (ATG). Therefore, when selecting ∼800bp upstream of
the TLS most regulatory regions are represented in the sequence set. When
applying the same algorithms on higher eukaryotes, special attention should
be given to sequence selection and some approaches are given in the results
chapters.

Once a set of sequences is constructed, there are basically two possible ap-
proaches for motif discovery (for review see [276]). The consensus approach uses
a consensus sequence as motif model (i.e., to represent the common motif), and
has been applied to sets of co-expressed yeast genes (based on microarray data
analysis). van Helden and colleagues [307] used the binomial formula to calcu-
late p-values for the number of matches of the 4096 possible hexanucleotides.
Hexanucleotides with significant p-values are statistically over-represented and
those may be the elements that are responsible for the common gene expression
profile. Brazma and colleagues [46] used suffix tries for the discovery of patterns
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in a sequence set.
The second approach uses a position weight matrix as motif model. Con-

sensus [279, 145] uses a greedy algorithm with Iseq (see 2.2) as the criterion for
identifying the best motif model (i.e., having the best alignment of potential
sites). MEME [17] uses Expectation-Maximization (EM) in which, in each iter-
ation, a weighted alignment is obtained from the instances of the current motif
model, and from which a new motif model (PWM) is derived for the next round
until convergence. A Gibbs sampling algorithm using a similar sequence model
was developed by Lawrence and colleagues [176]. This algorithm iterates be-
tween refining a description of the motif and aligning sites in the sequences that
may represent instances of the motif. AlignACE [150] and MotifSampler [298]
are other Gibbs sampling implementations. MotifSampler uses species-specific
higher-order background models (Markov models) to improve the robustness of
the algorithm to noise (i.e., lower the variability of the outcome of the algo-
rithm). A background model is a mathematical representation of the areas of
the sequence that do not contain motifs. The better the representation of the
background, the higher the efficiency of detecting true positive motifs in the
presence of noise [297, 204].

Instead of starting with a cluster of microarray data, the expression data
can be used more intensively during the motif search. Bussemaker et al. [54]
used a regression model in which upstream motifs contribute additively to the
log-expression level of a gene to predict statistically significant motifs. Caselle
et al. [61] first clustered genes according to over-represented motifs and then
compared the expression of the cluster with genome-wide averages to detect
significant differences.

Combinations of motifs in gene batteries

Pilpel et al. [232] used the occurrence of pairs of TFBSs in yeast sequences
instead of single TFBSs and aimed at detecting significantly synergistic com-
binations using expression coherence scores. Co-bind [128] models the synergy
between two TFs, with conserved spacing between the binding sites. A PWM is
looked upon as a simple, single layer, neural network (perceptron). Two percep-
trons are combined to model cooperativity. The detection of spaced dyads [309]
can in fact also be seen as a co-occurrence of two motifs with a conserved spac-
ing.

The above mentioned technologies have been successfully demonstrated main-
ly in prokaryotes and yeast. One of the goals in this work was to develop a
method to detect over-represented combinations of TFBSs in sets of co-regulated
metazoan genes. Independent from our work, and at the same time, Elkon and
colleagues [100] also demonstrated that similar approaches can be applied for
human genes. They revealed eight TFs whose binding sites are significantly
over-represented in promoters of genes whose expression is cell-cycle dependent.
Later, more regulatory sequence analysis studies in metazoan genes appeared
(see further).
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2.6 Gene regulatory networks

Gene regulatory networks (GRN) consist of genes and of the linkages between
genes that are implemented as cis-regulatory systems governing the expression
of the genes. Gene batteries as described above are an example of a GRN where
the linkages are between the genes encoding TFs and for example genes en-
coding differentiation proteins. The genes in the battery are called peripheral
network elements, and the TF-genes are internal network elements [14]. In gen-
eral however, there can also be multiple linkages between the internal elements.
Figure 2.11 shows an imaginary developmental GRN with three internal genes
and six peripheral genes. There are downstream connections from the internal
genes to the peripheral genes, an autoregulatory connection and two connec-
tions amongst the internal genes. Autoregulatory connections are known in
many genes that encode TFs. The first complex real GRN that was deciphered
and where all linages were experimentally validated (using perturbation and ex-
pression data) was the GRN for endomesoderm development in sea urchin [79],
see Figure 2.12.

Note that genes encoding components of signal transduction pathways caus-
ally upstream of genes encoding TFs are not part of GRNs because they involve
chains of protein-protein interactions and thus describe regulatory connections
beyond those immediately represented in the genomic DNA sequence.

Reverse engineering gene networks

Computational methods exist to model GRNs in silico and also to computation-
ally construct GRNs from data. For gene network modeling one either uses the
Boolean method (expression is ON or OFF), or the dynamical system method
where ordinary differential equations describe the rates of change of mRNA or
protein concentrations. Terms in these differential equations describe how gene
expression rates are modified by changes in the levels of transcription factors or
other effector molecules. Examples of such modeling can be found in a review
by Goldbeter [123] describing models for the complex oscillatory behavior of
gene expression in circadian rhythms [123, 268].

For GRN reconstruction, mostly microarray data has been used since it
should theoretically be possible to reverse engineer the architecture of a GRN
by measuring the network outputs, namely mRNA levels (for review see [326]).
SVD analysis has been used [328] to find underlying patterns or modes in expres-
sion data, with the intention of linking these modes to the action of transcrip-
tional regulators. Friedman and co-workers have learned a Bayesian network
from expression data [114], and Hartemink and colleagues used Bayesian net-
works to pick one of several competing models that best fits expression data
[137]. Segal et al. developed a method to identify coregulated gene modules
from large-scale gene expression data [261]. Reconciliation of expression data
with known network structures has been done for E. coli [144].
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those mediated by the cis-regulatory modules controlling
expression at a particular time of observation; and so forth.

Two examples of gene batteries are shown in Fig. 2. Fig. 2A
portrays cis-regulatory elements controlling expression of some
contractile muscle proteins, and Fig. 2B illustrates cis-regula-
tory elements of some T-cell specific genes. The individual cis-
regulatory elements of each of these batteries share most but
often not all of the set of transcriptional regulators that could
be used to define each battery. Furthermore, the order and

spacing of the target sites for shared factors are in no two cases
exactly alike. This largely reflects lack of functional constraint
with respect to spacing and order, but it may also be that some
genes are expressed in subtly different ways from others, i.e.,
at different rates and times in differentiation or under different
forms of external inducement. But the fact remains that the cis-
regulatory elements of each battery share linkages to more or
less the same set of transcriptional regulators. There are not so
many examples of cis-regulatory gene batteries defined so
extensively as those in Fig. 2. However, there are many cases
where target sites for at least one transcription factor have been
found in the cis-regulatory domains of sets of differentiation
genes which belong to some functional or developmental
cohort, and we can be sure that in each case additional factors
will be discovered to constitute a shared set of regulators. For
mammals, examples of factors that regulate genes that are in
some sense coordinately expressed include HNF-4 in liver
genes (Sladek et al., 1990), C/EBP family members in genes
required in fat cells (Christy et al., 1991; Yeh et al., 1995), Pit-1
in genes encoding various pituitary products (Andersen and
Rosenfeld, 1994) and NRSF/REST, a negative regulator utilized
in neuron-specific genes to repress expression in other cells
(Schoenherr and Anderson, 1995b). Examples are also known
in sea urchins for genes expressed in skeletogenic cells, gut cells
and aboral ectoderm cells (Nemer et al., 1995; Kirchhamer et
al., 1996a; Y.-H. Lee, C.-H. Yuh, M. Arnone and E. Davidson,

Fig. 2. Two examples of gene batteries. (A) Cis-regulatory elements
controlling the expression of some striated muscle genes: muscle
creatine kinase (MCK, Donoviel et al., 1996), myosin light chain
(MLC, Rosenthal et al., 1992; Rao et al., 1996), skeletal α-actin
(MacLellan et al., 1994), cardiac α-actin (Moss et al., 1994) and
cardiac troponin T (Mar and Ordahl, 1988; Larkin et al., 1996).
(B) Cis-regulatory elements controlling the expression of some T-cell
specific genes: T-cell receptors (TCR) α, β and γ (Leiden, 1993;
Giese et al., 1995); CD2 (Wotton et al., 1995) and CD3γ
(Georgopoulos et al., 1990, 1992; Molnár and Georgopoulos, 1994).
Symbol, name, abbreviation and nature of the DNA-binding domain
of the transcription factors portrayed in A and B are indicated on the
right side of each gene battery. The position of the TATA box and the
position of transcription start site (broken arrow), when present in the
element reported, are also indicated. The scales used for the genes
grouped in A and B are indicated by bars at the bottom right of each
panel, respectively (bp, base pairs).

Fig. 3. A sector of an imaginary developmental gene regulatory
network. (A) Network sector. Three genes encoding transcription
factors are shown at the top. These are a spatial regulator (orange),
a temporal regulator (green) and a signal-mediated regulator
(blue). Genes encoding other transcription factors that originate
off the diagram are indicated in black type on open backgrounds.
A battery of six genes encoding some differentiation proteins
(P1-P6) is shown below. Connections between the three genes
encoding transcription factors and target sites in the P1-P6 genes
are indicated by respectively colored bent arrows and the
transcription factors as solid circles. The spatial regulatory gene is
controlled by positive and negative interactions, which establish
the limited spatial domain where it will be expressed, and it
utilizes a ubiquitous ancillary activator to achieve an appropriate
level of expression. This gene would be expressed only at certain
stages due to requirement for the factor produced by the green
temporal regulator, shown below the line binding to its target sites
in the cis-regulatory DNA. The cis-regulatory system of the
temporal regulator responds to its own transcription factor, and
also depends on a factor appearing only after a certain stage of
development, and on another ubiquitous ancillary activator. The
signal-mediated regulator produces a factor that is activated by
signals. For example, if this were a short-range signal produced by
cells adjacent to the domain of expression of the spatial orange
regulator, P1-P6 would be expressed only near the boundary. The
cis-regulatory system controlling expression of the signal-
mediated transcription factor includes target sites for the product
of the orange spatial regulator, shown binding below the line
representing the DNA, and also for two factors that work together
to promote transcription during growth, one imagined as a
regulator produced when cells are cycling, the other as a
ubiquitous co-factor. The arrows at the right indicate that each of
the three genes encoding transcription factors have many
downstream targets besides the P1-P6 gene battery. Any
resemblance between this network sector and a known regulatory element is purely coincidental. (B) A single relationship extracted from the
network. A causal diagram is shown portraying the multilevel function of the orange spatial regulator, which controls both the gene encoding
the blue signal-mediated regulator and the P1 gene; the latter, however, is also directly responsive to the spatial regulator.

Ubiq. Activator
Spatial (+)
Spatial (–)

Spatial Regulator

Stage Dep. Activator

Temporal Regulator
w/ Autoloop

Step Up Cofactor

Cell Cycle Activator
Signal Mediated
Spatial Regulator

P1

P2

P3

P4

P5

P6

P1

A

B

Ubiq. Activator

Figure 2.11: Gene regulatory networks. (A) An imaginary GRN taken from [14] with
linkages between three transcription factors and a gene battery (P1-P6). The genes in
the battery share similar (not identical) cis-regulatory modules with binding sites for
the three colored TFs. The TFs are themselves regulated by other TFs (open boxes)
that can be ubiquitous, stage dependent, or spatial activators, or spatial repressors.
Lastly, there are also linkages between the colored factors themselves, for example,
green regulates orange and orange regulates blue. (B) A single relationship between
the orange TF and two genes it is controlling, namely the blue TF and the peripheral
P1 gene. P1 is also directly responsive to the blue TF.
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Figure 2.12: Gene regulatory networks. Part of a real gene regulatory network that
controls the development of endomesoderm in the sea urchin embryo [78, 147]. Genes
are shown as horizontal black lines with an arrow indicating the TSS. Most genes
are internal transcription factors regulating each other. Note that most TFs receive
inputs from multiple other TFs rather than from a single TF. At the upper left (the
WNT pathway), maternal cytoplasmic β-catenin (cβ) is nuclearized (nβ-TCF) by the
nuclearization system χ. The five genes at the bottom are peripheral differentiation
genes like the encircled Endo16 gene.

2.7 Regulatory evolution

Gene regulatory networks can change rapidly over evolutionary time [147, 59,
325, 78]. Hood [147] illustrates this point by two striking examples. About
550 million years ago in the Cambrian era, changes in GRN’s that happened
over a short period of time (∼10-30 million years) caused an explosion of meta-
zoan organisms that resulted in the immense morphological diversity in animal
species that we see today. A second example involves the divergence of human
from its common ancestor with chimpanzees (about 6 million years ago) that
may be explained by rapid changes in the regulatory networks that drive brain
development.
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2.7.1 Mutations in cis

Mutations affecting transcription fall into several distinct classes, as stated by
Wray et al. [325]. (1) Small-scale, local mutations—single base substitutions,
small indels, and changes in repeat number—can modify, eliminate, and gen-
erate binding sites and alter their spacing. (2) New regulatory sequences can
be inserted in the neighborhood of a gene through transposition. (3) Retropo-
sition may assemble new cis-regulatory sequences. (4) Gene duplications may
fragment or recombine promoter sequences. Gene duplications that persist are
frequently followed by divergence in expression and may be followed by loss of
complementary regulatory modules. (5) Gene conversion can spread regulatory
elements within a gene family (e.g., beta and gamma globins in human). (6)
Sequences that have no prior function in regulating gene expression can become
regulatory elements.

2.7.2 Mutations in trans

Mutations in trans—loci encoding transcription factors that interact with cis-
regulatory sequences of a gene—can also be the cause of differences in gene
expression. These can be regulatory mutations in cis of the TFs, mutations
that affect the DNA binding domain of the TF, and mutations that affect the
protein-protein interaction domain of the TF. For a review see Wray et al. [325].

2.7.3 Phylogenetic footprinting

Although such cis-mutations do occur, and although the mutation rate can be
higher than in coding sequences, it should certainly be lower than in nonfunc-
tional sequences. Evolution causes nonfunctional DNA sequences to diverge,
but functional sequence elements are conserved because of selective pressure.
By comparing sequences from different species, the conserved sequences can be
detected. This fact has mostly been exploited in gene finding methods, but it
is a well-accepted view that also regulatory elements are among the conserved
sequences. This is supported by the fact that many experimentally determined
regulatory sequences have been shown afterwards to lie in regions that are con-
served between species. Only recently has sequence conservation been used
as a mean to detect cis-regulatory elements, an approach called phylogenetic
footprinting (PF) [288]. PF is a way to increase the signal to noise ratio in
the detection of TFBS, just like the use of coregulation in gene batteries was.
An advantage of PF is that it can be applied on a single gene, as long as
enough orthologous sequences are available. The use of sequence comparisons
for regulatory sequence analysis has been reviewed recently by Hardison [134],
Pennacchio and Rubin [230], Ureta-Vidal et al. [304], Zhang and Gerstein [333],
and Bulyk [49]. There are two flavors of PF, both are described in the next two
sections.
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First approach: direct motif detection

One approach is to find conserved motifs within DNA fragments that have been
experimentally shown to harbor promoters or modules. Disadvantages of this
approach are that the discovery of motifs in unaligned orthologous sequences
requires relatively large sets of orthologs to make a clear distinction between
conserved and nonconserved elements. Only sufficiently conserved motifs can
be discovered and only relatively short regions can be analyzed, as performance
of the approach decreases dramatically for longer sequences [22]. Using several
tens of kbs around a metazoan gene is not feasible. Although in principle the
same motif finding algorithms as for gene batteries could be used for orthologous
promoters, PF algorithms can use an extra feature, namely the evolutionary
distances or relationships among the involved species. A mutation in a conserved
motif can then for example be penalized more if it occurs between human and
mouse than if it occurs between human and fly. Such a technique is implemented
by Blanchette and Tompa [35, 36] and is called FootPrinter. FootPrinter is a
dynamic programming algorithm for the computation of the parsimony score of
a fixed set of aligned sequences. The inputs to the algorithm are a number of
homologous sequences, the phylogenetic tree relating them, the length k of the
motif sought, and the maximum parsimony score allowed. The k-mer with the
lowest parsimony score is selected from all 4k possibilities. It can deal with the
absence of a motif in some sequences, and can calculate a statistical significance
for each motif. FootPrinter will be used in a case study in Chapter 4 and is
available within TOUCAN as described in Chapter 4.

Second approach: conserved non-coding sequences

The second and more general approach of PF is to align large genomic regions
around orthologous genes to identify conserved non-coding regions (CNS), for
example if over 75% nucleotide identity is observed over more than 100 bp. A
CNS can then be assigned a putative regulatory role and can be further exam-
ined either computationally (e.g., detecting TFBS) or experimentally or both. A
major advantage of this approach is that in principle, only a few orthologous se-
quences (e.g., human and mouse) are required for the analysis. The evolutionary
distance between the two (or more) species that are being compared is impor-
tant. For too distantly related species, the correct identification of orthologous
genes can be difficult; it is difficult or impossible to find an accurate alignment;
and the biological roles, binding site organization, and expression patterns are
more likely to be altered [317]. Worm–human and fly–human comparisons for
example, are generally not fruitful. In too closely related species like human–
chimpanzee or mouse–rat, the evolutionary time of divergence has generally
been too short for the intergenic sequences to diverge enough so there is too lit-
tle contrast between functional and non-functional conserved regions, although
some researchers are also proposing cross-species comparison between human
and other primates, which has been described as phylogenetic shadowing [38].
Human–mouse (diverged ∼75 million years ago), the flies D. melanogaster–D.
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pseudoobscura, and the sea urchins Strongylocentrotus purpuratus and Lytechi-
nus variegatus are at good evolutionary distances for CNS to module mapping,
although a good choice of the species is likely to differ to some extent from
gene to gene. Examples where these have been used for single genes, followed
by experimental verification, are the human BTK gene [222], the human IL-4
/ IL-13 / IL-5 cytokine locus [191], the human MBP gene [104], the human
DACH gene [221], and the human SCL gene [126]. Yuh et al. [329] had a 65%
success rate when testing all CNSs of the S. purpuratus otx gene. Besides sin-
gle gene analysis, the CNS-approach has also been examined on a larger scale.
Wasserman et al. [317] found that 98% of the known experimentally determined
TFBSs in a set of 28 skeletal muscle specific genes lie within human-mouse
conserved regions. In the same study they detected the binding sites for SRF,
MEF2, and MYF factors by applying Gibbs sampling on the conserved regions,
while the same method applied to many kb around the genes, detected no mean-
ingful motifs. On the other hand, Emberley et al. [101] found that only 50-75%
of 315 binding sites from 30 known modules of D. melanogaster reside in CNSs
with D. pseudoobscura.

Alignment algorithms There are several alignment algorithms that are
suited to align large genomic regions and to detect conserved sequence blocks.
Alignment programs can be divided into two types: local alignment methods
and global alignment methods. The first search for highly similar regions in two
sequences, where the regions of similarity are not necessarily conserved in order
and orientation. BLAST-like methods like BLASTZ [260] work by first finding
very short common segments between the sequences, and then expanding out
the matching regions as far as possible. Global alignment on the other hand
(e.g., Needleman and Wunsch [218]) work under an extra assumption, namely,
that similar regions appear in the same order and orientation in the aligned se-
quences. This increases the power in finding weakly conserved regions. and the
order assumption tends to be satisfied when comparing sequences from related
organisms [42]. Global alignment algorithms have generally only been applied to
short sequences and were too slow for large genomic regions. This shortcoming
has recently been addressed by several new implementations. AVID [42] works
by first finding matches using suffix trees, selecting nonoverlapping, noncrossing
matches as anchors, and then the regions between the anchors are aligned simi-
larly in a recursive way until all bases have been aligned. The AVID output can
be fed into the visualization software VISTA [209], and an example is shown in
Figure 2.13.

Other methods with the same goal (with or without the constraint for co-
linearity) are BLASTZ together with the visualization tool PIPMaker [260],
PromoterWise (http://www.ebi.ac.uk/Wise2/promoterwise.html), BBA [335],
DBA [157], and LAGAN [48]. CONREAL [22] uses TRANSFAC-PWM matches
as anchors. Example of global alignment methods to align more than two large
sequences are MAVID [44] that uses AVID in a recursive way and MultiPip-
Maker [259].

Instead of the ad hoc alignment of orthologous sequences, CNSs can also be
retrieved from databases with pre-computed alignments like CORG [87].
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Figure 2.13: Conserved non-coding sequences. The human ATOH1 gene with flank-
ing sequences was aligned with the mouse orthologous gene MATH1 using the AVID
alignment algorithm. The plot shows the percent identity (y axis) in sequence win-
dows of minimally 100 bp around each position in the sequence (along the x axis).
Such windows with at least 75% identity are filled. The ATOH1 contains only one
exon, which is also conserved. There is a conserved non-coding region immediately
upstream of the exon (i.e., the proximal promoter), three immediately downstream,
and another two larger regions at ∼5-6 kb downstream. These two larger regions have
been found to be real enhancers in mouse [142].





Chapter 3

Microarray data analysis: a
case study in neurobiology

3.1 Introduction

IN this chapter, we consider several techniques to analyze microarray expres-
sion data using a case study of gene profiling in mouse hippocampal neurons

during development [77]. This analysis is done in collaboration with the Labo-
ratory of Neuronal Cell Biology of the K.U.Leuven. Therefore, more than in the
other chapters, the focus is not only on the bioinformatics methods, but also on
the biological interpretation of the data.

The progressive differentiation of neuronal precursor cells towards polarized,
electrically active, and synaptic transmission competent neurons is a funda-
mental aspect of brain development. The molecular analysis of this process is
difficult because of the anatomical complexity of the developing brain and the
multitude of different proteins and metabolic pathways involved in this process.
High-density oligonucleotide or cDNA arrays allow for the analysis of this com-
plex process at the RNA expression level. The isolation of sufficient RNA from
specific populations of cells at different stages of differentiation from the brain
remains however technically challenging. One way to circumvent this problem
is to isolate a certain subpopulation of neuronal precursor cells and to let them
differentiate in vitro. A classical and well-studied example of such a cell cul-
ture system is the primary culture of hippocampal neurons as developed by
Banker and collaborators [125]. Hippocampal cells are isolated from late stage
embryos and can be grown for weeks. One particular advantage of this culture
system is that cells at different stages of development in the embryonic hip-
pocampus become apparently resynchronized upon isolation [106]. They then
differentiate again in vitro, in a quite stereotypical way along five morphologi-
cally well-defined stages [90]. The neurons progressively develop neurites that
differentiate into dendrites and one axon. In a later stage of the culture, active
synapses are generated. The expression and subcellular distribution of proteins
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or RNA can be studied at any specific stage [125]. A wealth of information on
almost every aspect of neuronal differentiation, particularly neurite outgrowth,
neuronal polarization, and synapse formation and function, has been obtained
using this system [106, 39, 40, 41, 267, 148]. Axonal growth and development of
polarity is blocked by inhibitors of RNA or protein synthesis indicating changes
in gene expression during the neuronal differentiation process [156]. While a
number of genes has been studied in this developing system [41], no attempt
has been reported yet to document the global changes in gene expression during
neuronal differentiation. We used microarrays containing 21439 cDNA clones
to analyze gene expression in primary hippocampal neurons differentiating in
culture. In addition to the data and their analysis described in this chap-
ter, we have made our full data set and annotation available at our web site
(http://www.esat.kuleuven.ac.be/neurdiff), in a downloadable file format or via
a purpose-built web application. The web application implements the functional
Gene Ontology (GO) [15] annotation, and allows investigators to select sets of
genes of interest and to cluster and visualize expression profiles.

3.2 Neuronal differentiation in vitro

For details of the biological methods we refer to [77] and to the supporting meth-
ods that are available at http://www.esat.kuleuven.ac.be/neurdiff/. Hippocam-
pal neurons were plated at a cell density of approximately 10000 cells/cm2,
which corresponds to one hippocampus onto one dish. As mentioned above,
they pass through the five stages under the right experimental conditions. This
was checked by immunofluorescence using monoclonal antibodies against certain
stage specific proteins, namely Mapt, Map2, and Syp. Confocal microscope pic-
tures are shown in Figure 3.1.

Cells at 7h in culture displayed initial outgrowth of neurites (Stage 2). The
future axon was identifiable in most neurons at 18h in the culture, and we chose
18h as the first of the two time points representing “Stage 3”. Only this neurite
(future axon) stained for the Tau (Mapt) protein at 24h (Figure 3.1.B). Around
33h many axonal growth cones reached neighboring cells and we used these cells
for the second “Stage 3” time point to document possible changes in gene ex-
pression following neurite-target interaction. Future dendrites increased their
length from 72h onwards. We took the 72h and 8 days time points as early and
late “Stage 4”. It is important to note that, during “Stage 4”, axons contin-
ued to grow and branch. They are more difficult to identify morphologically,
because of the greater number of outgrowing and branching dendrites. Transi-
tion to the mature morphology (Stage 5) occurred gradually and was already
visible in some neurons at 8d in the culture. At 9d the dendrites and cell bod-
ies showed punctate synaptophysin (Syp) staining, representing newly formed
synaptic contacts (Figure 3.1.B). After 12d in culture practically all neurons
displayed mature morphology, with extensively branched dendrites and axons
forming a dense mesh on the culture dish (Figure 3.1, 12d). The amount of con-
taminating glia cells in our cultures was very low, in accordance with previously
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24h   Tau    9d   Map2    12d   Syp

7h            33h           72h          12d

A

B

Figure 3.1: Timing of the stages of neuronal differentiation. (A) Contrast phase
pictures of neurones at the indicated times in the culture. (B) Confocal pictures of
neurones fixed at the indicated times in the culture and stained for the proteins Mapt
(Tau), Map2 and Syp (synaptophysin).

published work [90].

3.3 The microarray experiment

Total RNA was isolated at 7h, 18h, 33h, 72h, 8 days, and 12 days from the start
of the culture (the culture is started with 17-day old embryos). Total RNA
from brains of newborn CD1 mice was used as a common reference for all the 6
time points. Minimum 3 independent cultures, each from one litter consisting
of 10-12 embryos, were used for every time point. Typically, we pooled RNA
from several neuronal cultures at the same time point of differentiation for a
single hybridization. The probes were prepared according to [239]. Briefly, 5
mg of total RNA was reverse transcribed, converted to double-stranded cDNA
and amplified by in vitro transcription, resulting in the amplified RNA (aRNA).
The single stranded fluorescently labeled cDNA probe was prepared from the
aRNA by a reverse transcription, in the presence of Cy3-dCTP or Cy5-dCTP.

Hybridization was done on 5 microarray slides containing in total 21,492
cDNA fragments, each spotted at two distant positions. The clone set was
composed from the 8K collection of Incyte (Mouse Gem I, Incyte, Palo Alto,
USA) and from the 15K collection of National Institute of Aging (NIA, HGMP
Resource Centre, Hinxton, UK). The complete set can be found at http://www.
microarrays.be. They represent 13606 distinct Unigene clusters (http://www.
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ncbi.nlm.nih.gov/UniGene/), or 8984 entries in the Mouse Genome Informatics
Database (http://www.informatics.jax.org/mgihome/), or 9502 Locuslink IDs
(http://www.ncbi.nlm.nih.gov/LocusLink/).

The probe synthesis and hybridizations were repeated twice, with inversion
of the dyes for the experimental samples and the reference. Such an experimen-
tal design is called a dye-swap experiment. After hybridization the slides are
scanned and the raw intensities are extracted computationally from the result-
ing images (see Section 2.5). Given the duplicate spots this resulted in eight
measurements per clone (four test intensities and four reference intensities) for
each of the six conditions tested.

3.4 Data preprocessing

It is common practice for cDNA microarrays to represent the expression level of
a gene by the relative expression of a clone that represents the gene on the chip,
as compared to the expression of the same clone in the reference (whole brain)
sample (see Section 2.5). Taking this ratio should remove the systematic spot
variation that would otherwise be present because the cDNA concentration is
not the same in each spot. For reasons pointed out in Section 2.5 we then take
the log2 of the ratios. Now we have four log transformed ratio measurements
for each clone–condition combination.

3.4.1 Normalization

A common way of visualizing these ratios is by the MA-plot [94]. M , plotted
on the y axis, is log(test/reference). A is the average of the test and reference
intensities in log scale, that is A = (log2(test) + log2(ref))/2. The upper plot in
Figure 3.2 shows the MA plot for two of the 60 performed hybridizations (for
one of the five microarray slides at one of the six time points), one for both
possible labels for the test sample (Cy3 in blue dots and Cy5 in green dots; the
reference is labeled with the other dye).

In case there would be no systematic dye effects, the MA plots would look
like those in the lower part of Figure 3.2. On average, there is no difference
between the expression level of the test and reference sample, so M = 0 on
average. However, we can see two deviations from this “perfect” cloud that is
centered around zero. First, the green cloud is shifted upwards (average>0)
and the blue cloud is shifted downwards (average<0). This means that the Cy3
dye (the numerator for the blue cloud) has systematically lower intensities than
the Cy5 dye. Second, the clouds are not straight but bended. The dye effect,
namely the systematic higher intensities for Cy5, seems to depend on the average
intensities A and increases as A decreases. Before we can compare the ratios
between different time points, we have to correct all ratios to remove this dye
effect and to get a distribution of ratios like in the bottom plot of Figure 3.2.
In a certain range of average intensities A, the log ratio M approximates a
certain constant level. In this range a constant normalization factor can be used.
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Figure 3.2: Dye-normalization shown with an MA plot. (Above) Log-transformed
expression ratios of two hybridizations at the same time point, once with the test
sample labeled with Cy3 and the reference with Cy5 (blue dots) and once the other way
around (green dots). The y axis is the log ratio and the x axis is the average of the log
transformed test and reference intensities. Both clouds show an intensity-dependent
dye effect. The green channel (Cy3) has systematically lower intensities than the red
channel (Cy5) and this error increases for lower average intensities. A LOWESS fit is
shown for both clouds (red and yellow lines through the clouds). (Below) The residuals
of the fit are the normalized ratios.

However, as the average expression value A decreases, the log ratio M deviates
from a constant level and the use of an intensity-dependent rescaling factor is
more appropriate. Therefore a global locally weighted scatterplot smoothing
named LOWESS was used [94]. This was done with a smoothing parameter of
0.2 using Matlab’s curve fitting toolbox (The Mathworks, MA, US). The results
of this fit can be used to simultaneously linearize (i.e., remove nonlinear dye
effects) and normalize the data (remove consistent sources of variation caused
by within slide dye and condition effects) [327, 94]. Since the M versus A plot
was used to fit the data, for each gene novel normalized ratio estimates were
calculated. From these normalized ratios, new values for the absolute expression
levels can be derived.

Normalization was done using only those ratios with non-zero intensities for
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test and reference. This is needed because the division by zero values or the
log of a zero value result in undefined values. However, the intensities of the
test sample that were below the background intensity, still contain information,
namely that the gene is turned off in that condition. To keep this information
in the data set, the ratios with zero intensities for the test sample are replaced
by a small value, namely the 0.025 percentile of all other normalized ratios.
The spots with a reference intensity below the background (denominator=0)
are considered as missing values in further analyses.

The fluorescent images did not suffer from serious spatial effects since the
data measured by all print-tips showed a very similar log expression ratio dis-
tribution. Also, the distribution of gene expression ratios from different slides
showed similar distributions (data not shown).

3.4.2 Filtering

Spot filtering

Each clone is spotted twice on each microarray slide and the resulting duplicate
measurements should optimally be the same. That means that the difference
between the log ratios should be zero. A distribution of this value is shown in
Figure 3.3.A. High-quality hybridizations show narrowly peaked normal distri-
butions. This was checked for each of the 60 slides as a quality control. The
normal distribution can also be used for spot filtering by removing those spots
for which the difference between the log ratios of the duplicate measurements
is bigger than some standard deviations (SD) from the mean. The latter is
implemented in the NEURODIFF web application (see further).

Clone filtering by pairwise correlation

The log-transformed dye-normalized values were used to calculate the Pearson
correlation coefficient for all six pairwise combinations of the four individual
profiles that are available for each clone:

r =
∑n

i=1(xi − x̄)(yi − ȳ)√∑n
i=1(xi − x̄)2

√∑n
i=1(yi − ȳ)2

. (3.1)

If two genes are perfectly correlated, the correlation coefficient r is 1. The
sign of the coefficient depends on a positive or negative correlation. If the
correlation is imperfect, r is less than 1 and a value of 0 indicates that there is
no relationship. For four profiles, there are six possible values of r. Clones were
filtered using a lower threshold of 0.6 for the minimum of the six correlation
coefficients.

Clone filtering by gene-wise ANOVA

An independent filtering was applied on the 4 profiles of each clone to retain
only significantly changing genes by ANOVA analysis on each clone with one
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factor (time) and six treatments, using as H0-hypothesis that the means at all
time points are equal.

Figure 3.3: Examples of filtering results. (A) Distribution of the differences between
the log ratios of duplicate measurements of the same clone on the same slide. A
standard deviation cut-off can be used to filter out bad quality spots. (B-C) Two
examples of the four replicate profiles for one clone. (B) Kif5b (pval=0.4064 and
mincorr=-0.2267) is removed by the clone filtering and (C) Kif3a (pval=7.06062E-
005, mincorr=0.8966) is retained. See text for an explanation of the clone filtering.

The result of the clone filtering is a selection of reliable (reproducible for
the four replicate profiles) average profiles. The correlation filter retained 3,341
clones (15.5 % of all) representing 2,510 distinct Unigene clusters in the dif-
ferentiating neurons (see 3.4). ANOVA tests showed that almost all (92%) of
these 3,341 reliable profiles showed highly significant (p<0.01) changes in ex-
pression during the time course. In other words, there are very few genes with
a reproducible “flat” or unchanging expression profile. For the filtered set of
high quality clones, the four profiles are averaged to give one time dependent
profile for each clone. These average profiles were stored in a MySQL database
together with the clone annotations, and they will be used for further analysis.

Clone annotation

For many practical purposes it is important that a cDNA clone is assigned to a
known entry in external databases, describing transcript (Unigene), gene (MGI),
genomic location (LocusLink), or function (GO). We reannotated our clone set
and made the annotations easy to use via our web application. Figure 3.4
summarizes the annotation.

3.5 Clustering

Several clustering runs were performed using our implementation of the K-
means algorithm [300, 292] with different values for the parameter K, and using
the Adaptive Quality Based Clustering (AQBC) algorithm [81] with different
setting for the threshold. Both algorithms group expression profiles that are
similar using the Euclidian distances between the profiles:
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Figure 3.4: Filtering and annotation of our data set. The columns represent: the
whole clone set (Total), its subset annotated with GO, the clones that pass the corre-
lation filter (reliable profile) (c > 0.6), the intersection of the previous two subsets (c
> 0.6 and GO), and the clones with reliable profile and significant change by ANOVA
(c > 0.6 and p < 0.01). The rows give numbers of distinct identifiers from the specified
transcript (Unigene) and gene (MGI, LocusLink) databases.

d =

√√√√ n∑
i=1

(xi − yi)2.

K-means groups the profiles in an iterative way into a predefined number
of clusters. AQBC differs from K-means in three aspects: (1) the number of
clusters is estimated by the algorithm itself; (2) an EM optimization step is used
to determine how large each cluster should be; and (3) if a profile does not belong
to one of the clusters it is removed. The profiles that were used for clustering
were the averages of the four replicate profiles of each clone that passed the
correlation filter described above, in log scale and normalized by subtracting
the mean and dividing by the standard deviation of the six measurements.
Figure 3.5 shows the clustering results for a K-means clustering with K=20.

Several of the clusters are enriched for genes involved in similar functions (as
compared to the other clusters). Based on these functions, four larger groups
of clusters were identified, indicated in Figure 3.5. Group A contains Clus-
ters 1 and 15, both strongly down-regulated during neuronal differentiation
(yellow box in Figure 3.5). This group contains many genes involved in the
cell cycle: DNA replication (Top2b, Prim1, Prim2, Lig1, Rev3l), chromatin
assembly (H1f0, H3f3a, H3f3b, Chaf1a, Nasp), cell-cycle regulators (Ccnb1-
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Figure 3.5: Results of a K-means clustering for K (the number of clusters) equal
to 20. Each of the 20 squares represents one cluster. On the x axis are the six time
points (7 h, 18 h, 33 h, 72 h, 8 days, 12 days) and on the y axis the log-transformed
filtered and normalized expression ratios. Each grey line represents a profile for a single
clone and the average profile of a cluster is shown as a bold red line. Each cluster
or a part of it can be visualized separately as a profile chart or as a heatmap using
our web application. The red triangles mark the maxima at 72 h and 8 days. The
clusters in which we found an over-representation of genes with stated functions were
grouped together and boxed in color. The clusters are not numbered consecutively
to maintain the correspondence between the cluster numbers in this figure and in the
original clustering results on our web site. The functions over-represented in the boxed
groups of clusters: (A) DNA replication, chromatin assembly; (B) ribosomal proteins,
RNA binding, translational regulation; (C) Golgi/ER/lysosome, protein traffic, energy,
vesicular transport; (D) energy, synaptic, App-related.
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rs, Ccna2, E2fb, Bub1b). Group A also contained several components of the
actin cytoskeleton (Actb, Myo1b, Vil2 ) indicating that also these genes become
down-regulated as a part of the reorganization of the cytoskeleton during the
neuronal differentiation. Group B, encompassing Clusters 3, 6, 7, 10, and 11
(green in Figure 3.5), contains moderately down-regulated genes. This group is
highly enriched in genes involved in RNA metabolism: ribosomal proteins (at
least 29, a full lists of genes in each cluster can be found at our web site), RNA
binding proteins (Pcbp2, Refbp1, Nsap1 ), nuclear ribonucleoproteins (Snrpa1,
Snrpd1, Snrbp, Hnrpa1, Hnrpab, Hnrpk, Hmrph1, Hnrpa2b1 ), RNA splicing fac-
tors (Sfrs2, Sfrs3, Sf3b1 ), and regulators of translation (Eif1b2, Eif4a1, Eif4g2,
Eef1a1, Naca). Overall these changes indicate a progressive switch from biosyn-
thetic activity towards more functional activity in the developing neurons (also
reflected in the upregulated genes, see further). Group B also contains several
genes of the TGF-β signaling pathway (Bmp1, Tgfb2, Tgfbr1, Madh4, Sin3b).
Notch1 can be found in Cluster 6 and the kinase Rock1 in Cluster 10, both
proteins involved in axonal and dendritic outgrowth [23, 245, 140]. Group C,
composed of Clusters 2, 4, 5, and 8 (blue in Figure 3.5), contains all genes that
were moderately up-regulated. This group is enriched for genes playing a role
in the secretory and endocytic pathways and it includes genes for ER local-
ized proteins (Hspa5, Erp29, P4ha2, Noe1-pending, Aldh3a, Sec61a2-pending),
Golgi proteins (Grs2-pending, Vcp, Siat6, Cope, Ap1b1 ), lysosomal proteins
(Ptp, Tpp2, Smpd1, Lyst), a series of intracellular protein trafficking regulators
(Rab12, Cop7a, Cop9, Arl6ip, Prnp, and Ly6e), and vacuolar sorting proteins
(Vps29, Vps41, Vps45 ). A second function clearly overrepresented in Group
C is energy metabolism, as exemplified by the presence of ATP synthases, cy-
tochrome subunits, and soluble mitochondrial enzymes. Also several synaptic
function-related genes are represented in Group C, including Syt11, Synj2bp,
and Gad1. Group D, comprising the strongly upregulated Clusters 18 and
20 (purple in Figure 3.5), contains many genes encoding proteins involved in
neuron-specific functions and energy metabolism. The latter includes ATP syn-
thase genes (Atp61, Atp6a2, Atp6b2, Atp6s1 ) and glycolysis enzymes (Aldo1,
Gpi1, Ldh1, Pgk1, Ckmt1 ). Neuron-specific functions are represented by genes
of the synaptic vesicle cycle (Syngr3, Vamp2, Nsf, Syn2, Arf2 ), a GABA re-
ceptor Gabrg2, ion channels (Kcnd2, Clcn3 ), and cytoskeletal genes (Tuba4,
Nfl, Kifc2, Kifc3, Kifap3 ). Interestingly in the light of ongoing research on the
function of the amyloid beta precursor protein (App) and its role in Alzheimer’s
disease, the majority of Alzheimer’s disease related genes also belongs to this
group. This includes App, Aplp2, Icam5, Adam9, Psen2, and Snca. In the re-
maining clusters we were not able to identify a clearly overrepresented function,
possibly because they contain a large proportion of ESTs representing unknown
genes. Nevertheless, these clusters are of interest. The genes in Cluster 12 for
example have a maximum expression at 72h in culture, correlating with the be-
ginning of dendritic outgrowth. Members of this cluster include Rac3, Kif3, and
Apc. Cluster 17, with maximum of expression at 8d in culture (which correlates
with the early stage of full polarization of the neurons), contains genes with
diverse functions.
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3.6 Analysis by gene function: the synaptic vesi-
cle cycle genes

While the clustering approach classified genes according to their expression pro-
files, followed by a functional interpretation of the clusters, an opposite approach
can also be taken to analyze the expression data, namely, by investigating shifts
in expression within functional classes of genes. Such gene sets can be created
by an expert in a certain field, from the literature, from databases of biological
pathways (e.g., Kyoto Encyclopedia of Genes and Genomes (KEGG) [287]), or
from databases of functional gene annotations like Gene Ontology (see further).

Here we illustrate this second approach for a group of genes important for
the synaptic vesicle cycle, created by an expert in the field [77]. The regulated
release of neurotransmitters is a key function of the mature neuron. Many
proteins have been implicated in the process of targeting and docking of the
synaptic vesicle at the presynaptic membrane, the priming of the vesicle, and
its fusion [185, 188]. Many of these proteins are also involved in membrane
trafficking outside the synapse [64, 226]. Conversely, for many members of the
same protein families, the subcellular localization and function is not yet known.
We decided to select all the genes in a gene family (e.g., Vamp) if at least one
member of this family (e.g., Vamp2 ) is known to play a role at a particular stage
of the synaptic vesicle cycle, essentially following [188]. During differentiation
a gradual shift in expression of members of the different families was observed
(see Figure 3.6).

The most strongly regulated gene in the membrane fusion group was Nsf,
involved at the disassembly step [299]. The early expression pattern of Vamp3,
Snap23, and Syt4 coincided temporarily with the outgrowth of the early axon
(Stage 3). These findings are in good agreement with published data showing
that Vamp3 is not found in synaptic vesicles [65] and that Snap23 is almost
undetectable in adult brain [324]. Vamp2 in contrast had a late expression pat-
tern, with a maximum at 12d (Stage 5) in the culture. Vamp2 is involved in the
synaptic vesicle fusion step as part of the SNARE complex and is essential for
secretion [8, 213]. It has been postulated that the general exocytosis machinery
[155] is used in the outgrowth of both axons and dendrites [207, 290]. A high
level of expression of the ubiquitously expressed Scamp2 coincided with axonal
outgrowth. Syn1 was expressed at a high level until 72h in culture (early Stage
4), and then became strongly down-regulated. The Syn1 protein (together with
Syp) is known to preferentially localize to the distal axon and the growth cones
at the stage of early axonal outgrowth (before cell-cell contact) [107], which
is consistent with its early expression pattern in our experiment. Of the two
transcripts of Syn1 described in rat cerebellum, the longer one is expressed
only until P7 [129] (P is postnatal day), similarly to the profile we observed.
Expression of Syn2 and Syngr3 [284] reached their maximum at 12d in the cul-
ture (Stage 5), suggesting a role in mature synapses. Exocytotic events in the
nerve terminals are compensated by endocytosis [84, 158]. In keeping with this,
the genes in the endocytosis group were also up-regulated in the late Stages
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Figure 3.6: Expression of the synaptic vesicle cycle genes. The genes were chosen as
described in the main text. Within each subgroup the similar profiles were grouped
together by hierarchical clustering (implemented at our web site). The colors indicate
level of expression at a given time-point, relative to the average expression of this gene
over all time-points, in log2 scale, with red for expression higher and green for lower
than the gene average.

4, 5 of the culture, with a maximum at 12d in culture when synapses have
been generated (Figure 3.1). In developing rat brain the expression of Dnm
starts to increase from P7 and reaches adult levels at P23 [103]. Also in the
chick embryo’s retino-tectal system dynamin is up-regulated only after synapse
formation [25]. In rat brain the mRNA expression of Arf3 increases postna-
tally, from P2 to P27 [301]. The clustering analysis discussed above revealed
co-expression of many synaptic and mitochondrial genes. Therefore it is inter-
esting to note that Synj2bp recruits synaptojanin to mitochondria, which may
affect their intracellular distribution [219]. The early-expressed Rab11b has a
role in the apical membrane recycling systems in polarized epithelial cells and
in growth cone mobility [60, 174]. The late-expressed Rab3a is up-regulated
in development only after synapse formation. Expression of this gene in the
developing barrel field occurs later than that of Sv2a, Syn1, and Syp, and coin-
cides with the onset of adult-like physiological activity [274]. The majority of
the genes encoding adaptor proteins were expressed late in our culture system,
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including Ap2a1. Similarly to what is seen in Drosophila development [89], the
expression patterns of Ap2a1 and Dnm were highly similar. Adaptor proteins
and Rab proteins are important at several stages of intracellular vesicular trans-
port, and their predominant late-expression pattern is likely to reflect increased
transport needs in mature neurons. The observed upregulation of Dyn, Rab3a,
Arf3, and Ap2a1 at 12d in the culture is in agreement with the fact that by Stage
5 the neurons had functioning synapses with active secretion and compensatory
endocytosis.

3.7 Functional exploration using Gene Ontology

It is obvious that no investigator can have such thorough knowledge of many
biological functions or pathways. Therefore, an automated retrieval or construc-
tion of functional groups would be valuable to facilitate this process. To this end
we will use the functional annotations of genes by Gene Ontology terms. The
Gene Ontology (GO) Consortium (http://www.geneontology.org/) [135] has de-
veloped a set of controlled, structured vocabularies—known as ontologies—to
describe key domains of molecular biology, including gene product attributes
and biological sequences. There are three ontologies that describe three non-
overlapping domains of molecular biology, namely Molecular Function (MF),
Biological Process (BP), and Cellular Component (CC) containing respectively
7267, 8114, and 1378 terms (as of January 5, 2004). GO is structured as a
directed acyclic graph (DAG) where the nodes are the GO terms and the arcs
between the nodes are parent-child relationships (“is-a” or “part-of”). The GO
terms all have a unique GO identifier and these are applied in the annotation
of sequences, genes, or gene products and are stored in biological databases by
collaborating model organism databases like FlyBase, Saccharomyces Genome
Database (SGD), Mouse Genome Informatics (MGI), and Ensembl (the latter
is done by GOA or GO Annotation@EBI). An example of a GO term is “motor
activity” (the GO identifier for this term is GO:0003774), which is defined in GO
as “catalysis of movement along a polymeric molecule such as a microfilament
or microtubule, coupled to the hydrolysis of a nucleoside triphosphate”. The
parent term of “motor activity” is “molecular function” (GO:0003674) and the
child terms are “microfilament motor activity” (GO:0000146) and “microtubule
motor activity” (GO:0003777). All terms and all term-term relationships in the
GO database are stored in our MySQL database together with all available GO
annotations for the 3233 MGI IDs in our data set (using the annotation as of
October 2002).

GO classes of genes can be constructed by grouping all genes that are an-
notated with a certain GO term or with one of the child terms along all the
possible paths that lead to a leaf node in the DAG downstream from that term.
This can be done interactively in the purpose-built web application.
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A web application for functional gene expression analysis

The normalized expression ratios (for all replicates and also averaged per clone),
the different gene identifiers and descriptions, the clustering results, and the GO
annotations are all stored in a MySQL database with a purpose-built data model
for fast and flexible data retrieval (not shown). On top of this database, a web
application called NEURODIFF was developed and is available at the following
URL: http://www.esat.kuleuven.ac.be/neurdiff/.

The web application together with the structured data in the database can
be regarded as an “intelligent microarray data set”. The following functions can
be performed:

1. Construct a gene group by

• Gene id (Accession number, MGI, Unigene)

• Search for genes using keywords that are present in a gene’s descrip-
tion

• Gene Ontology term or ID

• Selection of a cluster from one of 15 clusterings performed off-line

2. Visualize all replicate measurements for one clone and apply a filtering
on the genes within a group based on their internal correlation or p-value
from the ANOVA analysis

3. Perform a hierarchical clustering within the gene set

4. Visualize the time profiles of the gene set in a heat map or in a profile
chart using different representations of the measurements (ratio, normal-
ized ratio, mean centered ratio; all in either log or linear scale)

5. Save the gene group as a gene set for later investigation.

The application architecture consists of three tiers: (1) a data layer, namely
the MySQL database; (2) a business layer consisting of several Java classes and
Java Beans controlled by a central Java servlet (http://java.sun.com/products/
servlet/) that run in the Apache Tomcat servlet container (http://jakarta.
apache.org/tomcat/), and of C executables for calculations (e.g., hierarchical
clustering); and (3) a visualization layer using JavaServer Pages (JSP) and
HTML.

3.8 Comparing two microarray data sets

Mody at al. [214] reported a data set consisting of 1,926 significantly changed
expression profiles in developing mouse hippocampus in vivo (H). The 3,341
expression profiles in the neurons differentiating in vitro (N), resulting from
our experiment, provided us with an exciting opportunity to compare the ex-
pression of genes in both systems. We downloaded the H data set from http:
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Figure 3.7: Screenshots of the NEURODIFF application. (A) Selection of genes
to construct a gene set. (B) Clone in the gene set that pass the chosen filter are
automatically ticked. The four replicate profiles of a clone can be visualized to double
check the filter. (C) Choose a visualization (profile chart or heatmap), whether to
cluster the gene set hierarchically, or choose to save or to characterize the gene set
with GO4G (see Chapter 5).

//braingenomics.princeton.edu. There were 475 distinct genes (defined here as
distinct Unigene IDs) represented in both data sets. Because some of the genes
were represented more than once, the number of possible comparisons (686) was
higher than the number of common genes.

N contains six time points and H contains five slightly different time points.
To make a comparison we had to find the optimal mapping of five consecutive
time points between the two experiments. This was done using two approaches.
In the first approach, we calculated the Pearson correlation coefficients (see
Equation 3.1) for the six possible order-preserving mappings of five time points
between N and H, and identified the mapping for which the median correlation
between the two data sets was highest.

In the second approach, we used a published implementation of time warping
called genewarp [1]. Similar to algorithms used for sequence alignment, time
warping aligns two time series against each other. Whereas sequence alignment
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algorithms consider the similarity of pairs of single bases or residues taken one
from each sequence, time warping considers the similarity of pairs of vectors
taken from a common k-dimensional space (feature space) taken one from each
time series. Here the feature space comprises vectors of RNA expression levels
from a common set of k genes. Dynamic programming is used to find the (many-
to-many) mapping between the time points of the two series that minimizes a
weighted sum of the k-space distances between the corresponding alignments as
paths through the grid cells, and finding the path with minimum accumulated
weighted distance score. Horizontal or vertical segments of the optimal path
identify places where multiple time points of one series correspond to a single
time point of the other. Where measurement time intervals are comparable
between the series, these may represent situations in which the instance of the
biological process measured by one series moves quickly through a phase of the
process relative to the instance measured by the other series. Such situations are
called compexps (compression/expansions) and they are analogous to the indels
(insertion/deletions) considered in sequence alignment algorithms [1]. The re-
sult of genewarp is shown in Figure 3.8, and the Pearson correlation coefficients
between expression profiles in vivo and in vitro calculated corresponding to this
mapping are plotted in Figure 3.9.

The mean and median correlation coefficient are 0.646 and 0.787 respectively.
To illustrate the significance of these values, we constructed permuted data sets
by random permutation of the time points of each gene profile separately. The
median correlation coefficient for the “optimal” mapping between the same data
sets with permuted time profiles was only 0.0394. The high correlation obtained
for the shown mapping, between an experiment in vitro lasting 12 days and
an experiment in vivo spanning 34 days, suggests that the program of gene
expression was accelerated in vitro when compared to the situation in vivo.
This is clearly the case for the highly correlated genes, which are illustrated in
Figure 3.10 where profiles are plotted on the same time scale.

The link P30–12d contributes highly to the overall high similarity between
the two expression profiles. When we calculated for instance the correlation
coefficients for all the possible mappings of four consecutive time points (thus
removing in some mappings the P30) we found that the six highest ranking
mappings included the link P30-12d (data not shown), indicating that high
similarity extends to the latest points in the two experiments.

3.9 Discussion

We provide here the first genome-wide analysis of changes in gene expression
accompanying the differentiation of hippocampal neurons in vitro. This culture
system has been used extensively in the past and is considered as an excellent
model to study neuronal cell biology [108, 39, 40, 267, 148]. We extend this
claim to the transcriptome level (Figure 3.9). We have demonstrated that neu-
ronal differentiation is characterized by changes in the expression of genes from
many different functional families. At least 2,314 genes show a change in expres-
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Figure 3.8: Comparison of gene expression in the developing hippocampus and in
the neurones differentiating in vitro. Experiments and time points used for the com-
parison of gene expression in the developing mouse hippocampus (data set from Mody
et al. [214]) and in the mouse hippocampal neurones differentiating in culture (our
data). (Left) Output of the genewarp program showing the optimal path that corre-
sponds to the optimal mapping between the conditions of the two experiments under
comparison. The time points of the in vitro experiment are on the x axis, those for the
in vivo experiment on the y axis. For example, time points 0 and 1 in vitro both map
to time point 0 in vivo. (Right) Alternative representation of the optimal mapping
but without mapping two points to a single corresponding point.

sion with a statistical certainty (p <0.01). This indicates that the rebuilding
of the rounded, unpolarized cell observed at Stages 1 and 2 (Figure 3.1) into
the highly complicated polarized and electrically active neuron in Stage 5 re-
quires an orchestrated change in expression of thousands of genes. This change
is remarkably smooth as the dominant pattern in the gene expression profiles
is a gradual up- or downregulation of gene expression over several stages of
differentiation. This pattern was seen at the global level of analysis, but also
within most functional groups (e.g., synaptic vesicle cycle in Figure 3.6), re-
sulting in replacement of early genes by the late ones with (seemingly) similar
function. The change in expression was significant at the p-level 0.01 for 2314
genes out of 2510 genes that pass the correlation (reproducibility) filter. Ap-
parently, filtering for reproducible profiles results in a bias towards the genes
with a change in expression. We hypothesize that the genes that change ex-
pression during differentiation are regulated in a more robust way (resulting in
a higher biological reproducibility) or are expressed at higher absolute levels
(which leads to more reproducible measurements). One word of caution is in-
dicated. When interpreting our data set, it is important to take into account
that the less-than-perfect developmental-phase coherence among neurons could
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Figure 3.9: Microarray data comparison. Scatter plot of the Pearson correlation
coefficients, between the log-transformed normalized profiles composed of the five time
points indicated in Figure 3.8, for each distinct pair of profiles representing the same
transcript (Unigene ID) in both data sets.

partially smoothen the slope of gene profile curves. On the other hand, the neu-
rons differentiate in a remarkably synchronized way (see Figure 3.1) and data
were sampled in duplicate at six different time points in two independent ex-
periments, providing a quite high level of resolution and reliability. The global
picture of gene expression patterns during neuronal differentiation as it emerges
from the clustering analysis makes remarkable teleological sense. In a first phase
of the culture (Stages 2, 3, early Stage 4), a high level of expression of genes
characteristic for DNA and protein synthesis is observed, which then becomes
progressively down-regulated (Figure 3.53, Group A, Clusters 1 and 15). The
later Stages 4 and 5 of differentiation are characterized by a strong enhance-
ment of protein transport (Figure 3.5, Group C: Clusters 2 and 5) and energy
generating systems (Figure 3.5, Group D: Clusters 18 and 20) and the turning
on of specific neuronal functions, such as synaptic vesicle cycling (Figure 3.5,
Group D: Clusters 18 and 20, see also Figure 3.6). The high morphological
resolution of the in vitro system permitted us to identify gene expression pat-
terns characteristic for the axonal (Stage 3) and dendritic phase (Stage 4) of
neuronal differentiation. Therefore we were able to resolve the gene expression
patterns described in [214] as “differentiation and synapse formation”, into two
very different patterns: early - characteristic for axonal outgrowth and late -
characteristic for dendritic outgrowth and maturation. The difference can be
appreciated, for example, by choosing “cytoskeleton” as the GO group at our
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Figure 3.10: Microarray data comparison. Representative profile charts for eight
genes with a high correlation coefficient showing the profiles composed of the five time
points indicated in Figure 3.8. The in vitro and in vivo profiles are plotted on the
same time scale. The x axis represents time in days from the conception and the y
axis the expression values.

web site. Classification of the approximately 1,000 genes in our data set for
which no function is known into these two classes may be a useful first step
towards the further elucidation of their function in neurons. The high similar-
ity of the expression profiles for the 475 common genes, in our data set and in
the data set published by the group of Joe Z. Tsien [214], has several impor-
tant consequences. First, each data set can be considered as an independent
confirmation of the other one. Second, we demonstrate that the results ob-
tained with two different experimental platforms can yield a good agreement.
Assuming that the measurements from both platforms are reliable, the effect
of which platform is used should be small and this is essentially what we have
found. In a recent comparison [171] of previously published data sets obtained
with cDNA microarrays [250] and with Affymetrix oligonucleotide chips [56]
the mean correlation between the two platforms was 0.278. The authors’ con-
clusion [171] was that “corresponding measurements from the two platforms
showed poor correlation [. . . ] implying a poor prognosis for a broad utiliza-
tion of gene expression measurements across platforms”. The correlations we
report here between the measurements obtained with cDNA microarrays (our
data set) and with oligonucleotide chips [214] are much higher than those re-
ported by [171]. Several factors contribute to this difference: (1) differences in
preprocessing (Lowess fit vs. constant dye normalization), (2) use of averages
across replicates, and (3) filtering of reliable expression profiles. In our case,
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the use of (1) and (2), prior to comparison with the data from [214], resulted
in the mean and median correlations of 0.385 and 0.542. The use of only the
filtered profiles increased the mean to 0.646 and the median to 0.787. Stringent
filtering has therefore a major contribution in improving the quality of the data.
This improvement comes at the cost of reducing the number of measurements
available (stringent filtering selects 3,341 clones out of 21,439) but this situa-
tion is similar to what happens with the Affymetrix platform where the use of
replicates allowed the selection of 1,926 clones out of about 11,000. Third, and
most important, the high overall similarity (median correlation 0.787) obtained
between expression profiles in vivo and in vitro demonstrates that expression
profiles of at least 50% of genes during neuronal development in vivo and in
vitro were remarkably similar, most likely reflecting the same genetic program
of neuronal differentiation. Diaz and colleagues [85] showed also recently that
a group of genes in isolated cultured granule cells exhibited very similar tem-
poral expression patterns as those observed in the cerebellum in vivo between
P6 and P20. Apparently once the cells have taken a neuronal fate, the further
program of gene expression is, for a period of time, largely independent of histo-
logical or anatomical context. Interpretation of our results shown in Figure 3.9
has to take into account the differences in timing of the two compared exper-
iments shown in Figure 3.8. From the results for the optimal mapping of five
time points shown in Figure 3.9, and also from the results of mapping of four
consecutive time points (data not shown), we conclude that not only was the
program of gene expression in vivo and in vitro largely the same, but also that
its execution in vitro was faster than in vivo. It is clear that culture conditions
(cell density, contact with of glia) can affect the rate of neuronal differentiation
(e.g., duration of the initial outgrowth of an axon (before it contacts a target
cell), or the balance between dendritic elongation and branching [23, 245]). It is
therefore understandable that the transition from the tissue to the cell culture
conditions may have a strong effect on the rate of differentiation. We do not
know what causes the observed acceleration. We are tempted to speculate that
the network of connections between neurons in culture is much less elaborate
than in the brain [233] and thus it may take much less time in vitro to com-
plete the “wiring” and to establish active synapses. It is also clear that the
similarity between the situation in vivo and in vitro breaks at some point past
Stage 5, as the neurons in the culture ultimately die. Taken together our find-
ings clearly demonstrate that hippocampal neurons in vitro are a remarkable
relevant biological system to investigate hippocampal neuronal differentiation.

3.10 Perspectives on cis-regulatory sequence anal-
ysis

For this dissertation, the microarray data set described in this chapter has been
used to make a comparison between in vitro and in vivo neuronal differentiation
and to investigate the expression in vitro for particular gene sets or gene func-
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tions. The web-based interrogation of the data is useful for investigators, for
example to infer gene function by looking for unknown genes that have similar
expression profiles (e.g., in the same cluster) as genes with a known function
during neuronal differentiation. It is also useful to analyse a group of known
genes to see whether genes with similar biological functions are expressed at
different timings (by clustering within a GO group). Another application how-
ever where this data set can be useful is to discover genetic linkages in a gene
regulatory network that regulates certain aspects of neuronal differentiation.
This can either be done by direct inference from the expression data (e.g., by
Bayesian structure learning) or by combining microarray data with motif and
module detection. Preliminary analyses to this end have been done [76] and
further work is currently in progress.

3.11 Perspectives on the comparison of microar-
ray data

In the past few years, a myriad of microarray experiments has been produced,
overwhelming the research community with a wealth of potentially valuable
data. Efficient access to this data and, in particular, efficient comparison and
integration of data obtained in related biological systems provide researchers
with an opportunity to address complex questions in an effective way. Tellingly,
larger microarray projects are scaling up towards the generation of large com-
pendia of gene expression. These will provide a comprehensive view of the
transcriptome in different organisms at different stages of development [13] or
under different environmental [118] or genetic [151] conditions and of the changes
in gene expression that are associated with a diverse series of human patholo-
gies [243]. We envisage a radical change in microarray studies comparable to
what happened in sequence analysis with the advent of the genome projects
where a division of labor takes place between a few large consortium-based
projects on the one hand and the many smaller investigation-specific projects
on the other hand. The compendium projects will chart large areas of the tran-
scriptome whereas smaller-scale projects will refine the details, starting from a
careful analysis of publicly available microarray (and sequence) data to design
experiments that validate and refine primary hypotheses. But what are the
barriers to this bonanza of information and how can they be overcome?

3.11.1 Data access and exchange

Until now, most of the publicly available microarray data have been scattered
around the internet, often as supplementary data to a published article. Con-
sequently, it has been difficult for investigators to know where the relevant
data are available. This problem has been addressed in several databases by
making it possible to search for published microarray data that has undergone
uniform processing and filtering and by providing links to the original publica-
tions for more detailed information. These databases have diverse purposes and
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are either: (1) platform specific (e.g., the Stanford Microarray Database; http:
//genome-www5.stanford.edu/MicroArray/ SMD [124]); (2) organism specific
(e.g., yeast Microarray Global Viewer; http://www.transcriptome.ens.fr/ymgv
[201]); or (3) project specific (e.g., the Lifecycle database on Drosophila de-
velopment (http://genome.med.yale.edu/Lifecycle [13]), our own NEURODIFF
database on neuronal differentiation in mouse (http://www.esat.kuleuven.ac.
be/neurdiff [77]), or the HugeIndex database on normal expression in human
tissues (http://zlab.bu.edu/HugeSearch [139]). Although supplements and mi-
croarray databases on the internet provide access to many data sets, they have
some drawbacks. (1) They lack direct access to the experimental information
that is needed to judge the quality of the data, to repeat a study or to re-analyze
the data. (2) A standard format for microarray data and experiment descrip-
tion is not used. These drawbacks make identifying, collecting and analyzing
publicly available data sets a cumbersome and error-prone process.

3.11.2 Microarray standards and repositories

The Microarray Gene Expression Data (MGED) Society (http://www.mged.
org) provides guidelines, formats and tools to overcome these two drawbacks.
The Minimum Information About a Microarray Experiment (MIAME) spec-
ification [45] is a checklist that guides the investigator in the annotation of
microarray experiments. Because numerous biological and experimental fac-
tors influence gene expression measurements (e.g., lighting conditions in plant
experiments, the exact histopathology of a tumor, the difference in specificity
of different reporter sequences for the same gene, the particularities of a sin-
gle batch of slides or the laser intensity at which a slide is scanned), this
MIAME specification includes the experimental design, array design, details
of the samples and any treatments, hybridization conditions, measurements
and normalization controls. Furthermore, the MGED ontology [275] provides
a framework of microarray concepts for this annotation and the MicroArray
Gene Expression Object Model (MAGE-OM) and Markup Language (MAGE-
ML) conceptualize MIAME for data storage and exchange [269]. In practice,
a local MIAME-supportive database will allow gradual recording of the infor-
mation generated in the laboratory. Upon publication of a study, the database
can directly export the data to a public repository. For a compendium project
(e.g., the Compendium of Arabidopsis Gene Expression which will contain 4000
full-genome Arabidopsis microarrays (http://www.psb.rug.ac.be/CAGE)), the
data can be first transferred to a consortium database and later to a repository
[275]. Currently, the only fully MIAME-supportive database is the ArrayEx-
press repository (http://www.ebi.ac.uk/arrayexpress) [47], although other mi-
croarray databases are being developed so that they will eventually support MI-
AME [117, 88]. Some journals already require publication of MIAME-compliant
data to one of the two current repositories, ArrayExpress or Gene Expression
Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) [97]. Although at this
early stage observance of the MIAME guidelines has yet to demonstrate im-
provements in the comparability of microarray experiments, it is clear that
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without this information meaningful comparison and integration of data gen-
erated in different laboratories or on different platforms will be impaired and
errors or misunderstandings could go undetected (e.g., if we had not done time
warping in our analysis). Even if these data conforms to MIAME standards,
however, comparison will remain difficult because many variables are involved
and new flexible statistical procedures will be needed that make the most of this
information.

We have submitted our microarray data of mouse hippocampal gene profiling
to ArrayExpress in MIAME format.

3.11.3 Microarray analysis in the era of repositories and
compendia

A new era is dawning on microarray analysis with large public resources of mi-
croarray data easily available for retrieval and integrated analysis across plat-
forms. But what are the obstacles lying ahead? And can we expect more benefits
than just the improved statistical efficiency offered by meta-analysis? At the
technological level, trade-offs in costs and available expertise probably mean
that several platforms will coexist for at least several years. However, sequence
identity error in cDNA clones (at least in higher organisms) is worryingly high
and sequence specificity is not optimal. Therefore, we can expect spotted cDNA
arrays to be progressively replaced by spotted arrays of long oligonucleotides or
other methodologies that improve sequence identity and specificity [73]. For
compendium projects on two-channel platforms, where the use of a common
reference is standard practice, using a specific and calibrated reference (e.g.,
an equimolar mixture of PCR products or oligonucleotides complementary to
all array features [93, 273] or external normalization spikes [305]) could greatly
improve precision and accuracy–and might even allow recovering absolute mea-
surements. At the methodological level, there is now enough evidence to suggest
that replicates of microarray experiments are essential if the data are to be of
any value [171]. It must become standard practice to require sufficient biological
replication before lending any credence to results based on microarray data. At
the practical level, we should not underestimate the burden placed on investi-
gators to keep the annotation and data of each experiment MIAME compliant.
This burden will be lessened if good software tools are developed. At the infras-
tructure level, we can expect many new powerful features (much beyond simple
storage and query). For example, data alerts could be automatically generated
when a new data set relevant to your research is deposited just like MEDLINE
can generate publication alerts based on keywords. Extensive gene-centric views
of the transcriptome could be made available for each gene, with a virtual ex-
pression profile summarizing all the available expression data [86, 149]. Even
automatic discovery alerts might be possible, after semi-automated data collec-
tion, by repeatedly performing a standard analysis script as new data becomes
available and dispatching each incremental discovery to the investigator just
like automatic daily BLASTing of a sequence of interest for homolog detection.
At the data analysis level, the ideas are broadly applicable, for example meta-
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analysis can improve the detection of differential expression, clustering of gene
expression profiles across multiple data sets, and classification methods could
benefit from similar treatments. In fact, because reliable statistics is the basis
of serious data mining, an improved statistical treatment of microarray data
across platforms probably means that most data mining techniques applied to
microarray results will eventually be able to deal with multiple data sets. If we
address fully these real challenges and pursue these exciting opportunities, in
the next decade exploring transcriptomes should become almost as natural as
exploring genomes.



Chapter 4

Detecting transcription
factor binding sites in
metazoan genes

4.1 Introduction

IN the previous chapter we have dealt with measuring the output of a gene reg-
ulatory network, namely a certain amount of mRNA molecules for the genes

of the network. From now on we will shift our attention towards the underlying
sequence elements that process all the information of a GRN and activate or de-
activate the transcription process by communicating with the basal transcription
apparatus at the core promoter. The sequence elements we are looking for are
binding sites for transcription factors. Because of their limited length (6-12 bp),
because of their redundancy, and because of the enormously large intergenic re-
gions where they are hidden, they are difficult to find and the predictions of
their location result in many false positives. In this chapter we discuss a newly
developed strategy that serves two goals in regulatory sequence analysis: (1) to
minimize the number of false positive TFBS predictions for known transcription
factors in metazoan sequences and (2) to do it fast and easy. The latter is useful
for large scale analyses, for example if many putative gene batteries obtained by
clustering algorithms from microarray experiments have to be analyzed. The
method integrates three aspects: a sensible way to predict instances of position
specific frequency matrices (PSFM, or motif models), the over-representation of
PSFM instances in gene batteries, and phylogenetic footprinting. The strategy
is implemented in a software platform called TOUCAN and is available freely
for researchers of academic institutions.

We will first describe the distinct parts of the strategy together with the
TOUCAN tool, next we will discuss several biological analyses that validate the
strategy, and also give an example how this method can be used to detect TF
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cooperativity in modules. Lastly, we will briefly discuss a case study illustrating
the use of phylogenetic footprinting alone to find binding sites in a single gene
when co-expressed genes are not available.

4.2 Constructing sets of putative regulatory se-
quences

From a given set of clone or gene identifiers in a gene battery we first have to
construct a corresponding set of DNA sequences that potentially harbor the
TFBSs needed to confer the gene battery specific expression pattern. This
can be the region 5’ upstream of the transcription start site (i.e., the proximal
promoter or proximal module) or it can be one or more regulatory regions that
lie several kilobases further upstream or downstream of the gene sequence or
within introns. The optimal sequence set that we want to approximate is the
set of all the functional regulatory regions in Figure 2.2.B labeled as “modules”.

4.2.1 Proximal promoters

As opposed to prokaryotes or lower eukaryotes like yeast, the proximal promoter
of metazoan genes is not located just upstream of the ATG translation start
codon. Instead there can be a long 5’ untranslated region (5’UTR) between the
TSS and the beginning of the coding sequence. One way to find the proximal
promoter is by using promoter prediction algorithms (see Section 2.4.2), but
because of (1) the low sensitivity and specificity of these algorithms (certainly
at the beginning of this work in 2001; confer reviews by Fickett et. al. [105]
and Pedersen et. al. [229]) and (2) the species specificity of most of these algo-
rithms (the prediction of mammalian promoters, other vertebrate promoters, or
invertebrate promoters is different), we decided to follow another route.

We investigated whether the annotation of the gene start in genome databases
like Ensembl are accurate enough to be used as TSS. The start annotations are
derived from the mapping of available cDNA transcripts to the genomic se-
quence. If for a significant number of genes the start of the Exon 1 annotation
(this is the gene start) in Ensembl coincides with or lies close to the TSS of
the gene, then the sequence directly upstream of Exon 1 would contain the
promoter-proximal sequence that we are interested in. Instead of a statistical
test, we used the following observation as an indication that for many genes this
assumption is valid.

We retrieved 2000 bp upstream of Exon 1 for 4,000 randomly selected genes
from the human genome. First, we calculated the percentages of A, C, G, and
T at each position in this stretch of DNA (see Figure 4.1.A).

The G/C content rises sharply when approaching position 1 of Exon 1 and
drops again after this position. We cannot think of any other DNA signal with
such an impact on the GCAT content other than the TSS. A similar finding
can be observed in the regions upstream of the ATG start codon in yeast [46].
Since this figure is intriguing, we decided to analyse it further from a more
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Figure 4.1: Proximal sequence detection. Representation of the genomic region 2,000
base pairs upstream of Exon 1 annotation in Ensembl and 200 base pairs after the
start of Exon 1, taken from 4,000 randomly selected genes from the human genome
(Ensembl release 8). The relative position of 0 on the x axis is the start of Exon 1. (A)
Percentages of A, C, G, and T at each position. The average base composition changes
dramatically in the sequence region upstream of the annotated gene start. The GC
content increases towards the TSS and around the TSS nucleotide skews are observable
(explained in more detail in Chapter 7). (B) The number of instances of SP1 binding
sites increases towards the annotated gene start. Both observations indicate that, on
average, the annotated gene start position (position 0 on the x axis) corresponds to
the TSS.

general perspective of genomic nucleotide composition, and to place it in per-
spective with other findings that appeared in the literature, in Chapter 7. A
second related observation to confirm the gene start statement is the rise in
the number of putative SP1 binding sites that occur within these 4,000 regions
(see Figure 4.1.B). Since SP1 is known to be a proximal cis-acting factor [69],
this analysis shows that it is likely that the first 500 bp upstream of the TSS
are predominantly promoters. Note however that these two observations pose
a chicken-and-egg problem: the G/C rise can cause the presence of more Sp1
binding sites (they are G/C rich), or the presence of Sp1 binding sites can cause
the G/C rise. In Chapter 7 we will show that the G/C rise is actually caused
by the concentration of CpG dinucleotides around the TSS.

Because the goal of the analysis is to find over-represented motifs in sets of
genes, and not in individual genes, it is still acceptable that for some genes in
the set we would not have the correct promoter-proximal sequences if for these
the start of Exon 1 would not be the TSS (e.g., if longer and yet unknown
transcripts exist). This would also be the case when using promoter prediction
algorithms. Unlike the latter, this is a very general approach that can be applied
to every sequenced organism that is available in the Ensembl database and we
can expect that the gene start annotations will only improve during the next
years when more cDNAs, ESTs, and transcript sequences determined by 5’
capping technique [287] will be mapped to the genomic sequence. In conclusion,
for our fast strategy we will use the Ensembl gene starts as TSS and use ∼400-
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800 bp upstream of this site for those analyses where we wish to find TFBSs
in the proximal promoter. In more detailed analysis, we will always be able
to check the promoters using promoter predictions or the prediction of CpG
islands. In practice however, we will focus more on the distal regulatory regions
since it is expected that these harbor more process-specific (development, tissue,
etc.) binding sites than the proximal promoter.

Note that recently, specialized databases like DBTSS [287], have appeared
that contain the experimentally determined TSS for 8,793 genes (as of January
2004), as determined by sequencing with the oligo-capping method. Suzuki and
collaborators [287] found that 34.2 % of RefSeq sequences should be extended
towards the 5’ end. The availability of such high quality data does not make
the retrieval of promoter sequences from Ensembl superseded since it is ex-
pected that the DBTSS data will be used in the annotation process of Ensembl.
Currently, DBTSS only contains TSS annotations for human genes, and not
for all genes, and is biased towards moderately to highly expressed genes (see
Chapter 7). We will compare the nucleotide frequencies between sequences with
DBTSS-defined TSSs and Ensembl annotated gene starts in Chapter 7.

4.2.2 Distal regulatory sequences

To predict other putative regulatory regions that lie more distal from the TSS,
the phylogenetic footprinting part comes in. Genomic sequences of the genes
and their flanking regions are aligned with the same regions of orthologous
genes, and the conserved non-coding sequences (CNS) are then considered to
have a putative regulatory function as discussed in Section 2.7.3. Thus out of
the hundreds of kb non-coding sequence around and within a gene, we will only
use the CNSs in the search for distal binding sites. This selection reduces the
search space for a single gene greatly (e.g., a 100 times reduction for a gene with
5 modules of 200 bp within 100,000 bp of intergenic sequence). Although this
procedure causes the potential loss of certain regulatory regions, it increases
the signal-to-noise ratio to acceptable levels as the case studies below will show.
Note that in case the upstream sequence of two orthologous genes are aligned,
the proximal promoter can as well be a CNS so using CNSs as putative regula-
tory regions is not restricted to distal regions only.

To detect CNSs, we used the specialized alignment algorithm AVID [42],
together with its visualization tool VISTA [92, 209]. A Perl script takes two
FastA1 formatted sequences as input, executes AVID, passes the output to
VISTA, and translates the VISTA output to GFF (General Feature Format,
see http://www.sanger.ac.uk/Software/formats/GFF). Figure 4.2 shows an ex-
ample of the GFF output of the Perl script for the alignment of the ATOH1
gene for which the VISTA plot was shown in Figure 4.8.

1The FastA sequence format consists of a sequence name and description on a single line
starting with the greater than symbol “>”, followed by the sequence.
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Figure 4.2: Conserved non-coding sequences. Example of the GFF output of the
alignment of the human ATOH1 gene and the mouse MATH1 gene using the AVID
algorithm and the VISTA interpretation software. The columns in the GFF file are:
<seqname> - <source> - <feature> - <start> - <end> - <score> - <strand> -
<frame> - <attribute>. In TOUCAN the fastA formatted sequences are sent to the
alignment service and this GFF file is sent back to the client and is annotated on the
active sequence set.

4.3 Detection of transcription factor binding sites

After the construction of a set of CNSs from the set of gene identifiers of a gene
battery, we wish to detect the TFBSs that could confer the battery-specific ex-
pression pattern. We have chosen to restrict ourselves to TFs for which the bind-
ing sites have been determined experimentally. As explained in section 2.4.3,
they can be modeled with position specific frequency matrices (PSFM). In a
first step we will score all sequences in the set with all available PSFMs and
annotate all PSFM instances as putative TFBSs. To this end we will use either
of two methods described further in this section, the MotifLocator (see Sec-
tion 4.3.3) and the MotifScanner (see Section 4.3.4) that both use higher-order
background models instead of single nucleotide frequency models that are used
in PWMs. An alternative approach—not discussed here but also integrated
within the TOUCAN framework—is the de novo discovery of motifs from the
sequence set as over-represented DNA words using the Gibbs sampling imple-
mentation named MotifSampler [298].

4.3.1 PSFM databases

We have transformed third-party and publicly available collections of count ma-
trices to PSFMs (with pseudocounts, see Section 2.4.3) in our proprietary format
to be used by the MotifScanner and MotifLocator scoring algorithms. The most
important collection is TRANSFAC [323], for which the professional release 7.3
(Sep 2003) contains 674 count matrices and the public release 6.0 contains 336
matrices (Jan 2001). In the case studies we have used the professional releases,
but external TOUCAN users have only access to the public release because of
licensing restrictions. Recently, another high quality and non-redundant (the
TRANSFAC collection is redundant) collection of count matrices has become
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available, namely the JASPAR database [252] and it will be used in Chapter 6.

4.3.2 Higher-order background models

Higher-order nucleotide frequency models have been used in gene prediction
(e.g., higher-order HMM in GeneMark.hmm [195]) and in de novo motif de-
tection algorithms [297, 204] to model the noisy sequence background in which
the motifs are hidden. We have adopted this approach for the prediction of
instances of PSFMs, as a first subtle way to reduce the number of false positive
predictions [296].

When referring to higher-order background models, we start from the basic
assumption that a DNA sequence can be generated with a Markov model of
order m. This means that the probability of observing a certain nucleotide in a
sequence depends on the m previous nucleotides in the sequence. The likelihood
of a sequence S being generated with a higher-order background model of order
m can then be written as

P (S|Bm) = p(b1, b2, . . . , bm)
L∏

l=m+1

p(bl|bl−1, . . . , bl−m), (4.1)

where Bm represents the parameters of the higher-order background model.
These parameters are p(b1, b2, . . . , bm), the probability of finding a specific m-
mer, and p(bl|bl−1, . . . , bl−m), the probability of finding the base bl given the m
previous bases in the sequence. The latter is stored in the transition matrix of
the Markov model.

To construct a transition matrix for a background model of order m, we
count all oligonucleotides of length m + 1 in a reference data set. We rearrange
the counts in a matrix of dimension m×4, such that each row has the same first
m bases while each column corresponds to the last base in the oligonucleotides.
Next, a pseudocount is added and each row is normalized to one so that they
represent probabilities.

Table 4.1 gives an example of a transition matrix constructed from H. sapiens
conserved non-coding sequences with M. musculus. Each entry in the matrix
represents the probability of finding the respective nucleotide given the two pre-
ceding nucleotides in the sequence. For comparison, we also included the single
nucleotide frequency (SNF) in this table. Most rows are significantly differ-
ent from the SNF. This has a profound impact on the computed probabilities
especially if the sequences become longer.

As an example, we look at the probability of the sequences AAAAAAA and
CGCGCGC being generated by this second-order background model using Equa-
tion 4.1.

P (AAAAAAA|Bm) = P (AA)P (A|AA)P (A|AA)P (A|AA)P (A|AA)P (A|AA)
= 0.068× 0.343× 0.343× 0.343× 0.343× 0.343
= 3.23e− 4 (SNF = 4.31e− 5)
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Table 4.1: Second-order background model from human-mouse conserved non-coding
sequences (CNS).

P (bb)a P (b|bb)b

A C G T
AA 0.068 0.3436 0.1689 0.2611 0.2262
AC 0.046 0.3329 0.2807 0.1101 0.2761
AG 0.073 0.2566 0.2612 0.3079 0.1741
AT 0.049 0.2106 0.2124 0.2654 0.3114
CA 0.069 0.2147c 0.2277 0.3623 0.1951
CC 0.083 0.2538 0.3189 0.1613 0.2658
CG 0.037 0.1433 0.3534 0.3651 0.1380
CT 0.072 0.1212 0.2929 0.3353 0.2503
GA 0.059 0.2936 0.1842 0.3469 0.1752
GC 0.072 0.2347 0.3210 0.1882 0.2560
GG 0.083 0.2393 0.2823 0.3226 0.1556
GT 0.046 0.1674 0.2517 0.3260 0.2546
TA 0.039 0.3219 0.1921 0.2300 0.2558
TC 0.061 0.2635 0.3377 0.0904 0.3081
TG 0.067 0.2302 0.2420 0.3028 0.2249
TT 0.068 0.1860 0.2571 0.2190 0.3377

SNF : 0.2379 0.2631 0.2619 0.2369
a Probability of finding dimer in the CNSs. b Representation
of second-order transition matrix. c An example of how this
table is read: the number 0.2147 in bold is the probability of
observing an A (the column) after a CA (the row).

P (CGCGCGC|Bm) = P (CG)P (C|CG)P (G|GC)P (C|CG)P (G|GC)P (C|CG)
= 0.037× 0.353× 0.188× 0.353× 0.188× 0.353
= 5.75e− 6 (SNF = 8.61e− 5)

This example illustrates that there are differences between the scores from the
higher-order background model and the single nucleotide frequency model. For
the shown examples, these differences make sense because both poly-A oligonu-
cleotides and GC doublet containing sequences have a functional meaning in the
genome and are either over-represented (poly-A) or under-represented (GC) in
the genome.

The classical method to find instances of a known motif model is to transform
the matrix of counts to a position-specific weight matrix (PWM) where single
nucleotide frequencies are used to calculate the weights (see Section 2.4.3). The
introduction of a higher-order background model into the scoring can be done
at the level of the PSFM. Namely, given the PSFM, Θ, and the background
model, Bm, we can compute the score of the segment being generated by the
motif model and compare this with the score of the segment being generated by
the background model. For each segment x of length W in the sequence S, we



4 Binding site detection 74

compute the corresponding score as

W (x) = log
( P (x|Θ)

P (x|S,Bm)

)
=

W∑
j=1

[log(θbj

j )− log(P (bj |S,Bm))],

where θ
bj

j is the probability of observing base bj at position j in segment x of
length W .

4.3.3 MotifLocator

As is done in the classical detection using PSFMs, we can apply a threshold
to these scores and select those segments with a score above the threshold as
putative TFBSs. To define a reliable threshold over different motif models, we
need to normalize the scores. The preferred method is to rescale the scores such
that they have values between 0 and 1. First we compute the minimal and
maximal value of W (x) over all possible segments x as

Wmin = min
x

W (x)

Wmax = max
x

W (x)

Once minimum and maximum are found, the scores W (x) are rescaled as

W̄ (x) =
W (x)−Wmin

Wmax −Wmin
. (4.2)

This results in a distribution of scores over the full sequence set, with scores
between 0 and 1. On these scores we can impose a threshold and select all
instances with a score higher than this threshold.

4.3.4 MotifScanner

A more sophisticated way of selecting PSFM instances instead of an arbitrary
threshold, is implemented in the MotifScanner algorithm [296]. A probabilistic
sequence model is used to estimate the number of instances Q of a motif model
Θ in a sequence S given the background model Bm. The expected number of
instances can be computed as

ES,Θ,Bm
(Q) =

∞∑
c=0

c× P (Q = c|S,Θ,Bm). (4.3)

To compute Equation 4.3 we need to estimate the probability P (Q = c|S,Θ,Bm)
of finding c instances of the motif in the noisy background sequence. Applying
Bayes’ rule to this probability leads to

P (Q = c|S,Θ,Bm) =
P (S|Q = c,Θ,Bm)P (Q = c|Θ,Bm)

P (S|Θ,Bm)
. (4.4)
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We can distinguish three different parts in Equation 4.4. The denominator
P (S|Θ,Bm) serves as the normalization factor. The first factor P (S|Q =
c,Θ,Bm) of the numerator is the probability that the sequence is generated
by the motif model Θ, the background model Bm, and contains c motif in-
stances. This probability can be calculated in linear time by summing over all
possible non-overlapping combinations of c motifs in sequence S,

P (S|Q = c,Θ,Bm) =
∑
a1

· · ·
∑
ac

(
P (S|Ac, Q = c,Θ,Bm)P (Ac|Q = c,Θ,Bm)

)
,

(4.5)
with Ac the set of c start positions a1, . . . , ac. Assuming that each position is
equally probable, the factor P (Ac|Q = c,Θ,Bm) is replaced by a constant in-
versely proportional to the number of possible combinations of c motif instances
in a sequence of length L. Within this model, we see the motif instances in the
context of the noisy background sequence. This implies that the longer the
sequence is the harder it is to find an instance within this noise. Therefore in
a long sequence only those instances that have a very high score with the motif
model do rise above the noise level and can be selected.

The second factor P (Q = c|Θ,Bm) in the numerator is the prior probability
of finding c instances given the motif model and the background model. Let
us define P (Q = c|Θ,Bm) as γ(c). Since the complete prior distribution is not
known, we propose one. There are two conditions to construct this distribution:
(1)

∑∞
c=0 γ(c) should be equal to 1; (2) for all c > 1, γ(c + 1) is smaller than

γ(c). The user should define only γ(1), a value between 0 and 1, the probability
of finding 1 instance. Initially γ(0) is set to 1 − γ(1) and the remainder of the
distribution γ(c) is set to κγ(c − 1) and the distribution is then normalized.
We use κ = 0.25. The effect of lowering the prior is that E[Q] decreases and
that fewer instances will be selected. Normally, we should compute the sum
in Equation 4.3 for c from 0 to ∞. Since this is unpractical, we propose to
compute the next term in the distribution P (Q = c|S,Θ,Bm) as long as the
previous value is larger than a predefined small value ε (e.g., 0.0001).

Given the previously defined formulas we can find the number of instances
of Θ in sequence S using the procedure in Program 1. The algorithm
only needs one parameter to be set: the prior γ(1). The effect of this parameter
on the performance of the algorithm, the complexity of the algorithm, and a
comparison with the MotifLocator can be found in [296, pp. 119-144].

4.3.5 Discussion

We use this probabilistic model to estimate the number of instances of a motif
in a specific sequence given the background model and the motif model, in-
stead of using a predefined threshold that is independent of the sequence being
scored. The advantages of this method can be summarized as follows. Firstly,
by choosing an appropriate background model for the sequences to be scored we
can reduce the number of false positive hits [204]. For example, when scoring
human promoter sequences using a 3rd-order background model that is calcu-
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Program 1 The MotifScanner algorithm.
• Input: sequence in FastA format

• Initialization of the prior distribution [[1− γ(1), γ(1)]] and i=0

• Algorithm

1. Score each segment x in S with the motif model Θ.

2. Score each segment x in S with background model Bm.

3. Compute P (Q = 0|S,Θ,Bm) and P (Q = 1|S,Θ,Bm).

4. While P (Q = i|S,Θ,Bm) > ε

(a) Increment i

(b) Update P (Q = c|S,Θ,Bm) for c = 0, . . . , i.

5. Compute the expected number of instances as E(S,Θ,Bm)[Q] according
to equation 4.4.

6. Select the Q best scoring positions as motif instances.

• Output: start and stop positions, and score of each motif instance, in GFF
format.

lated from a large set of human promoters, a putative motif instance would
need a higher resemblance to the PSFM to be a positive hit than when using
a background model of mouse sequences to score the same human promoters.
Another example can be given by the fact that a A/T rich motif scores higher
with MotifScanner in a G/C rich context than in a A/T rich context. Because
the presence of a motif in a dissimilar context can imply a functional conser-
vation we believe that its detection should indeed be promoted. Secondly, by
estimating the number of motif instances instead of using a threshold, only the
best matching instances are considered as hits instead of all the instances that
score above a certain threshold. This approach reflects the situation in a cell
where a transcription factor is bound more often to the stronger sites than to
the weaker sites. However, if one also wishes to select the weaker sites then the
prior parameter can be increased, the sequences trimmed (to remove noise), or
the MotifLocator can be used.

The disadvantages of the MotifScanner algorithms are (1) the prior is difficult
to interpret and (2) which and how many PSFM instances are retained as hits
depends on the length of the sequence. To control the latter, a good choice of the
prior is necessary. For ∼500 bp sequences like proximal promoters, a prior of 0.2-
0.5 is suitable, while for 200 bp sequences like CNSs, a prior of 0.05-0.2 is better.
Although these parameter settings have resulted from thorough testing [296], a
possible improvement of the MotifScanner could be the automatic determination
of the prior parameter from the sequence length.

In this chapter we have only used the MotifScanner, not the MotifLocator,
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to detect TFBSs. We have only used the MotifLocator briefly in Chapter 5 in
one of the validation procedures.

4.4 Statistical test for over-representation

A binomial distribution model is used to correlate all PSFMs that have at least
one instance in the sequence set—as determined with the MotifScanner—with a
p value and a significance score based on the number of PSFM instances in the
sequence set relative to the expected number of instances that is based on the
expected frequency of the PSFM. This statistical test with the calculation of a
p-value and a significance score for each motif was done as described in [307],
where it was developed to detect over-represented hexanucleotides within the
upstream regions of families of coregulated genes in yeast.

The expected frequencies for all PSFMs are calculated by scoring large ref-
erence sequence sets with all available PSFMs using the MotifScanner. The
reference sets can for example be all experimentally defined promoter sequences
of the Eukaryotic Promoter Database (EPD, see http://www.epd.isb-sib.ch/),
or the 500 bp 5’ upstream sequence of all genes in Ensembl, or all (or a set of
randomly selected) CNSs in all (or a set of randomly selected) genes in Ensembl,
etc. The number of occurrences in the reference set divided by the number of
base pairs where an occurrence can begin (i.e., almost the total number of bp
in the reference set) is used as the expected frequency for each motif m, Fe{m}.
The expected frequencies are used to calculate the expected number of occur-
rences for each motif in the set of regulatory regions under analysis:

E(occ{m}) = Fe{m} × 2×
NS∑
i=1

(Li − w + 1) = Fe{m} × T,

where T is (by definition) the number of possible start positions, Li is the length
of the ith sequence, NS is the number of sequences in the set, and w is the length
of the motif. The probability to observe exactly n occurrences of the motif m
is estimated by the binomial formula:

P (occ{m} = n) =
T !

(T − n)!× n!
× (Fe{m})n × (1− Fe{m})T−n.

The probability to observe n or more occurrences of the motif m is:

P (occ{m} ≥ n) =
T∑

j=n

P (occ{m} = n).

A significance coefficient sig is used to select the most over-represented patterns:

sig = − log10[P (occ{m} ≥ n)×D]

where D is the number of distinct motifs that are used. The highest values
for this parameter correspond to the most over-represented patterns. When
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selecting only the patterns for which sig > 0, one expects less than one pattern
to occur at random within each possible sequence set. Each increment of 1 for
the significance coefficient represents a drop of a factor of 10 for the occurrence
probability. In other words, one expects to find at random one pattern with
sig > 1 every ten sequence sets, one with sig > 2 every 100 sets, and one with
sig > s every 10s sets [307].

The choice of the reference set to calculate the expected frequencies is im-
portant, both functionally (e.g., proximal versus distal) and technically. The
latter refers to the dependency of the MotifScanner hits on the length of the
sequence being scored. To get unbiased p-values, the sequences in the reference
set should be of the same length as the sequences in the set under study. At
the ftp site ftp://ftp.esat.kuleuven.ac.be/pub/sista/aerts/software/freqfiles/ we
provide several files with expected frequencies calculated from EPD or from the
upstream regions or CNSs of random gene subsets from complete genomes.

4.5 TOUCAN

The software tool TOUCAN that was fully developed in this work is the embod-
iment of the above mentioned strategy that integrates the methods for sequence
selection, TFBS detection, and TFBS over-representation scoring. Figure 4.3
shows local and remote components and the relationships with local and exter-
nal databases.

A generalized regulatory sequence analysis in Toucan can be described as a
sequence of the following steps:

1. Loading a local sequence file (in fastA, EMBL or GenBank format) or
sequence retrieval from Ensembl using gene identifiers (Ensembl stable
gene ID, HUGO gene name, LocusLink ID, or any other identifier that is
mapped to an Ensembl gene in the Ensembl database), and specifying (a)
the species, (b) the sequence wanted (upstream of Exon 2, upstream of
the CDS, or whole gene with flanking sequences), and (c) the species for
which the orthologous sequence should be retrieved if it is known;

2. CpG island prediction2 in proximal sequences if required;

3. Alignment of orthologous sequences to annotate CNSs;

4. Sequence manipulation, for example selecting a number of proximal re-
gions or CNSs into a new sequence set;

5. TFBS prediction on this set using MotifScanner, specifying which PSFM
collection to use, the prior, and the background model;

2A CpG island is a region of at least 200 bp with a G/C content over 60% and a CG
doublet frequency that is at least 1.667 times the expected genomic CG frequency.
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Figure 4.3: Overview of the functional components of TOUCAN. URLs for the re-
mote tools can be found in appendix B.

6. Binomial analysis and sorting of all PSFMs according to their sig value3.
An alternative analysis step instead of the combination of (5) and (6) can
be the detection of over-represented sequence motifs using the MotifSam-
pler.

In Figure 4.4 several screenshots are shown that capture some of these analysis
steps in action.

TOUCAN technicalities

Figure 4.5 summarizes the computational system from an IT perspective.
TOUCAN has a Graphical User Interface (GUI) implemented in Java (Sun

Microsystems). The application can be started directly from our web site using
Java Web Start (JWS, http://java.sun.com/products/javawebstart/) and has
been tested under the Windows, Linux, and MacOS operating systems. The
layer of “business logic” is implemented in the Java package sista.sequence.*
and uses the BioJava package (http://www.biojava.org) for most sequence han-
dling tasks, and the ensj core package of Ensembl to access genomic sequences
and annotations in the Ensembl database.

3In Chapter 5 the binomial analysis is replaced by searching for the optimal combination
of TFBS predictions using the ModuleSearcher algorithm.
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Figure 4.4: Description on next page.

The algorithms in the grey boxes in Figure 4.3 are used through web services
using the Apache implementation of SOAP (Simple Object Access Protocol),
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Version 2.3. The services that reside on a Tomcat server, start the actual pro-
grams on a Linux “numbercruncher” using Java Remote Method Invocation
(RMI). The fact that these functions work remotely is transparent for the user.
Generally, fastA formatted sequences together with the required parameters are
sent to the service, and GFF formatted output is sent back to the GUI where
the features are directly annotated and visualized on the corresponding active
sequences. This setup ensures the advantages of a local installation (e.g., a
higher user interactivity) and the advantages of distributed computing using
web services [272].

4.6 Case studies

We have performed several analyses on human gene sets. The first two case
studies serve to validate the proposed strategies and their implementations:
(1) the automated retrieval of proximal promoter sequences from the Ensembl
database, and the subsequent detection of over-represented TFBSs is tested on

Figure 4.4 (Previous page) Screenshots of TOUCAN during the analysis fof liver-
specific genes. (A) Dialog where all gene names (HUGO symbols) are entered as a
comma separated list. In the second drop-down box “Human” is selected to search
for and retrieve human genes. All organisms that are available in Ensembl (see
http://www.ensembl.org) can be chosen from this list, and in the “Preferences”
menu the user can update these settings if Ensembl were to add new organisms.
Depending on which organism is chosen, the third drop-down box shows all avail-
able external database identifiers that can be mapped to a stable Ensembl gene.
The fourth drop-down box allows to choose between “complete gene”, “upstream
of CDS”, and “upstream of Exon 1”. The latter corresponds in most cases to
the region upstream of the TSS. The text boxes labeled with “bp before” and
“bp within” specify how many base pairs should be retrieved as flanking sequence
upstream or around the specified region. In the last drop-down menu “mouse” is
selected to retrieve also the mouse orthologous sequences for each human gene in
the list. (B) Every region that seems likely to contain putative regulatory mod-
ules (e.g., because it is conserved between species or because it contains a CpG
island), can be selected and added to a sequence sublist. (C) Feature map. All
open boxes represent human-mouse aligned regions that are at least 75% identical,
resulting from the AVID/VISTA web service. (D) Matrices, background model,
and all other parameters are set to run the MotifScanner. (E) Dialog showing the
background models on our server. The values are retrieved transparently through
the web service when the user presses the “GET” button. (F) The results of the
MotifScanner that can either be saved or can be automatically added as features
on the currently active sequence set. (G) Results of the binomial formula to de-
tect over-represented motifs, where n is the number of occurrences of a binding
site within this set, the third column is the p-value for this motif, and the fourth
column is the sig value. The top scoring motifs for the human-mouse conserved
regions in 10kb upstream sequence of liver-specific genes are shown.
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Figure 4.5: The TOUCAN software environment. The TOUCAN software tool is
started by a user from his/her web browser using Java Web Start. The Graphical
User Interface (GUI) that becomes visible is programmed to allow for flexible and
user-friendly sequence manipulations and visualizations. The business logic (second
tier) uses the BioJava open source library, which contains for example functions for
feature annotations. The data access layer (third tier) uses the ensj-core library from
Ensembl for the retrieval of sequences and annotation from the Ensembl database.
The Simple Object Access Protocol (SOAP) is used to send XML messages to remote
services on an ESAT server that start algorithms (see Figure 4.3) on another ESAT
server. Communication between both servers is done with Remote Method Invocation
(RMI).

a set of E2F target genes, for which the E2F binding sites are often located
proximal to the TSS (deduced from TFBSs locations in TRANSFAC); and (2)
the automated retrieval of long upstream sequences of all human-mouse ortholo-
gous gene pairs in a co-regulated gene set, followed by the selection of conserved
non-coding sequences (CNS), and the detection of over-represented TFBSs is
tested on two benchmark data sets of muscle and liver specific genes. The usage
of CNSs is compared with known distal enhancers and with proximal promoters.

The third and fourth case study are performed in collaboration with molec-
ular biology groups, and illustrate alternative usages of the TOUCAN software
system and its algorithms.
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4.6.1 E2F target genes

In this example, we investigated eight human genes of which the E2F complex
is a known regulating transcription factor: CAV1, CDC6, MYC, DHFR, E2F2,
RBL1, TK1, and RB1. Since E2F mostly binds to the proximal promoter of its
target genes, a region of 500bp upstream of the putative TSS (start of Exon 1)
was obtained using the direct Ensembl access within TOUCAN.

Figure 4.6: Promoter regions of eight E2F target genes with the over-represented
TFBSs. The sequences were retrieved from Ensembl starting from a comma separated
list of HUGO symbols and choosing “upstream of Exon 1”, 500 “bp before”, and 10
“bp within”.

All retrieved sequences are visualized in a sequence feature map. Next we
have scored these sequences with PSFMs that reside on our server by using
the MotifScanner web service. Although a low prior (0.2) was used, most of
the sequences are packed with putative binding sites. Running the binomial
analysis we could select the significantly over-represented motifs. The expected
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frequencies needed for this statistic were calculated by scoring the same matrices
on all human sequences in EPD. The presence of E2F, ETF, and SP1 was
significant (sig ≥ 2). Figure 4.6 shows the sequence set with the instances of
these motifs annotated. The presence of two to three putative ETF binding
sites in almost all E2F target genes is interesting since this is also the case in
the mouse P53 promoter, which is bound by E2F and ETF upon adenovirus
infection in the presence of the Early 1a protein [130].

4.6.2 Liver and muscle genes

Wasserman and Fickett [316] and Krivan and Wasserman [168] have compiled
and analyzed respectively muscle-specific and liver-specific regulatory regions
that are experimentally verified. They found a significant occurrence of specific
binding site clusters within these regions. We have tested the MotifScanner and
the over-representation statistic three times: (1) on their training sets of known
enhancers, (2) on sets of proximal promoters of the human genes represented in
their training sets, and (3) on sets of CNSs of the same genes.

Known enhancers

The fastA formatted sequence files were downloaded from http://bio.cse.psu.
edu/mousegroup/Reg annotations/ and loaded straight into TOUCAN (after
removing blanks within the sequences). We used the MotifScanner with the
TRANSFAC collection of vertebrate matrices, a prior of 0.2, and a background
model of vertebrate sequences of EPD.

Among the over-represented motifs, some are known to be muscle specific:
SRF, myogenin, MYOD, MEF-2, MZF, MINI, and MEF-3; so their presence
in these sequences is not surprising. The only muscle-specific factor that was
used in [316] that we could not confirm with sig ≥ 2 is TEF. Some others can
interact with muscle-specific factors: E12 (dimerizes with MYOD and myogenin
of the Myf family) and HEB (interacts with E12 and myogenin). The finding
that their actual binding sites are significantly present in these sequences is new.
The detection of SP1 is not surprising since it is a general promoter element.
Some of the remaining factors may not be muscle-specific but they may play
a role in transcriptional regulation in certain circumstances. VDR (vitamin D
receptor) for example is involved in the genomic response of avian embryonic
skeletal muscle cells to vitamin D(3) [57], LMO2 (LIM-only protein) may play a
role in differentiation and myofibrillogenesis of heart [184], and LBP-1 (UBP-1)
binds at the promoter of skeletal troponin I [220]. For the remaining factors we
could not find any references that point to regulation of muscle genes. These
are MAZ (Pur-1, Zif87), MAZR (MAZ related factor), ZIC, and RREB (Ras-
responsive element binding protein).

An analogous analysis on the set of liver-specific regions shows similar results,
although fewer factors have over-represented sites. HNF1 and C/EBP were also
used by Krivan and Wasserman [168] and are known to be liver-specific. Other
significant factors include COUP, which may antagonize with HNF4 [211], and
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IPF (Insulin Promoter Factor). Mutations in IPF or HNF both result in a
common progression of maturity-onset diabetes of the young (MODY) [280].
They can therefore be interesting hypotheses. The last one is AP1, a general
regulatory factor.

Proximal promoters

We used the same genes that were represented in the set of known regulatory
sequences used above: for the muscle set these are CHRM2, CHRM3, ACTC,
CKM, DES, MYF6, MYOG, MYL1, MYLA, TNNI3, MYHCA, ACTA1, DMD,
ANF, and ALDOA; and for liver set these are ALDOB, APOB, CYP2H1,
CYP7A1, DDC, G6PC, GC, IGF1, INS, PAH, PROC, SLCA2, SULT2A2,
SULT2A1, TTR, UGT1A1. When using only 400 bp upstream of Exon 1 like
in the E2F analysis, fewer elements were detected both for the muscle and for the
liver genes (see Figure 4.7). For muscle, the highly significant elements are SRF
and MAZR, and for liver HNF-1 and FOX (previously called HNF-3/forkhead
transcription factors).

Conserved non-coding sequences

If we look at the location of the known regulatory regions relative to the TSS, we
see that most of the regions are actually enhancers that lie further upstream, or
even downstream of the TSS. We therefore retrieved, in a new analysis, 10 kilo-
bases of sequence upstream of the translation start (start of CDS annotation)
together with the same part of the mouse ortholog when such a correspondence
was available. Figure 4.4 shows screenshots of several steps performed in TOU-
CAN of the analysis for the liver genes. For each pair of orthologous sequences
we used AVID and VISTA to detect regions having minimal 75% of base iden-
tity in a sliding window of 100 bp. The regions located 5’ upstream of the TSS
or in the 5’ UTR were selected and scored with the TRANSFAC collection of
vertebrate matrices using the same parameter settings as before. The statisti-
cal analysis performed thereafter showed over-representation of HEB, LBP and
MEF-2 in the muscle regions and HNF-3, HNF-4, C/EBP, COUP, and AP1 in
the liver regions.

These are probably factors that bind to sites in distal modules rather than
in the region just upstream of the TSS. There are also factors that were present
in neither of the two other analyses: for muscle RSRFC4 (SRF-related), STAT6
(involved in hypercontractility of smooth muscle cells) and others without es-
tablished muscle relatedness; for liver TCF4 (tumors arising in the liver can
be caused by a complex of TCF4 and mutated beta-catenin), DBP (a member
of the C/EBP family that is enriched in liver) and others without established
liver relatedness. This shows that putative regulatory motifs can be detected
computationally that have not been detected experimentally yet, which might
be caused by the difficulty of mimicking every developmental and metabolic
condition in the cell. The presence of factors without a direct link with the
experimental setup can sometimes be due to the fact that they recognize se-
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quences that are related to the sites of other factors. This is probably the case
for v-MAF, which binds to AP-1 sites since v-MAF forms heterodimers with
Fos and Jun (the consensus binding site of v-MAF is TGCTGACTCAGCA and
the consensus site of AP-1 is GVTGACTCA, so they are very similar).

Conclusions for the muscle and liver genes

It is shown that the retrieval of orthologous sequences (here human and mouse)
enables the selection of putative regulatory regions through comparative se-
quence analysis. Starting from upstream sequences tens of kilobases long, this
selection narrows down the search region for regulatory modules to a couple
hundred base pairs—this length restriction is essential for the detection of over-
represented motifs (if not, the over-representation statistic is buried by the
sequence noise). Reasonable results can be obtained by the detection of over-
represented instances of available PSFMs: most of the TFs for which there are
over-represented binding sites are related to muscle or liver specific gene expres-
sion respectively. Furthermore it is clear that some of the expected TFs can be
found back in CNSs and not in proximal promoters, and the other way around
(see Figure 4.7), and that some “statistically significant” motifs are probably
still false positive predictions.

There are also limitations: (1) treating all CNSs of a single gene indepen-
dently creates a lot of noise in the data set (this will be dealt with in the next
Chapter); (2) the reference sequence set that is used to calculate the expected
frequencies influences the results of the statistical analysis because of the length
dependency of the MotifScanner (we did not show different results using differ-
ent frequency files here); (3) the choice of which sequences to use is not always
clear (e.g., use only human CNSs or human and mouse CNSs); (4) the collec-
tion of matrices is limited, the quality of the matrices is uncertain, and it is not
certain whether a matrix model from TRANSFAC is able to generalize; and (5)
there can be a significant redundancy in the PSFMs that are over-represented.
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SRF, Myogenenin, 
MAZ, MZF, LBP1
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Figure 4.7: TFBS over-representation. Transcription factors for which the TFBSs
are over-represented in the three examined sequence sets of muscle genes (A) and
liver genes (B). Exp = experimentally determined enhancers; CNS = computationally
detected conserverd non-coding sequences between 10 kb of the human and mouse
orthologous upstream sequences; Prox = 400 bp sequence 5’ upstream of the gene
start as annotated in Ensembl.
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4.6.3 TCF3-β-catenin target genes

In collaboration with the Center for Human Genetics we have analyzed two
sets of genes that are differentially regulated in desmoid tumors (aggressive
fibromatosis, locally invasive soft tissue tumors) as compared to normal fascia
tissue. Sporadic desmoids harbor somatic mutations in either the APC gene
or in the β-catenin gene—key components of the WNT signalling pathway—
resulting in β-catenin protein stabilization and nuclear accumulation. Here
it interacts with members of the TCF/Lef family of transcription factors to
modulate transcription of target genes. In colorectal cancer it is the TCF4
member of this family that forms a complex with β-catenin, while in desmoids
it is TCF3 [293]. The consensus binding site for the TCFs is WWCAAWG.

The selection of the genes that are differentially expressed was done using
Affymetrix DNA chips [83]. For a gene to be selected as differentially expressed,
it had to be expressed at least 2.5 fold higher or lower in the desmoid samples
compared to the fascia samples and with a minimum difference in hybridization
signal of 200. Where expression was below baseline, it was determined to be
absent and set at 50, the background level. This way 33 genes were found to
be up-regulated and 36 genes down-regulated. Of the down-regulated genes,
IGFBP6 was shown to be a direct target of the TCF4–β-catenin [83].

If the TCF–β-catenin complex can regulate different target genes in colorec-
tal cancer and desmoids, and if furthermore the same complex can up-regulate
certain genes and down-regulate other genes, the cis-regulatory system involved
has to be more complex than only the TCF binding site. As a first test we have
checked whether the copy number of TCF binding sites in the proximal pro-
moters (2000 bp upstream of Exon 1) of the two gene sets is different from the
genomic frequency. The IUPAC annotation functionality (i.e., regular expres-
sion matching) of the TOUCAN framework was used to annotate instances of
the WWCAAWG motif, in all 2000 bp upstream sequences of the genome and
in the sets of differentially expressed genes. These expected and observed fre-
quencies were used to calculate a p value with the binomial formula. Neither for
the up-regulated gene set, nor for the down-regulated gene set, the copy number
of motif instances was statistically over-represented.

Next we have tested whether flanking base pairs around putative TCF bind-
ing sites are conserved within these sets. In TOUCAN we annotated the proxi-
mal promoter sequences with the IUPAC annotation functionality and selected
the TCF3 instances most proximal to the gene with 5 bp flanking sequences
using the cut functionality. A sequence logo of the resulting set did not reveal
any conserved flanking base pairs (not shown, see [82]). This however could
also be due to the fact that not all genes in the sets are direct targets of TCF–
β-catenin. Last, we hypothesized that other TFs could be involved that work
together with the TCF–β-catenin complex. In TOUCAN we now selected the
two WWCAAWG occurrences most proximal to the TSS with 100 bp flanking
sequence on both sides. This set was scored with the MotifScanner and the com-
plete TRANSFAC collection of PSFMs. The over-represented TFBS (sig >1)—
as determined with the binomial analysis—were CDXA, OCT1, GATA2, OCT1,
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EN1, and STAT5A for the up-regulated genes and GEN-INI2, GEN-INI, IK-2,
STAT5A, GEN-INI3 and ISRE for the down-regulated genes.

Although this analysis is an illustration of the usage of TOUCAN to detect
TF cooperativity, the biological feasibility of this study is not so clear. It is not
certain for example whether the gene sets contain enough direct targets to find
over-represented motifs in the proximity of a TCF binding site and neither is it
certain that among all the selected WWCAAWG occurrences there are enough
functional binding sites. Therefore we can conclude that although some binding
sites in the final sequence sets are statistically over-represented, their biological
function is uncertain. The same analysis should optimally be performed on gene
sets with more verified direct targets with verified TCF3 binding sites, which
are currently not available.

4.6.4 Binding site detection without gene batteries: a case
study in neurogenesis

In the previous examples we have used gene batteries to find over-represented
TFBSs. In case we wish to find TFBSs in a single gene for which there are
no coregulated or co-expressed genes known or available, we can fall back on
pure phylogenetic footprinting (PF). A recently published method for PF is
FootPrinter [35, 36], as described in Section 2.7.3. A limitation to this method
however is that only small (the authors mention ∼1000 bp) sequences can be
used. This poses a problem for metazoan sequences for which we know that
several tens of kb can harbor the regulatory elements.

To solve this problem we have combined the two approaches of PF, namely
the CNS detection and the motif discovery in the analysis of the regulation of the
gene atonal in Drosophila melanogaster, in collaboration with the Laboratory for
Neurogenetics of the K.U.Leuven. atonal gets its name4 from the disruptive ef-
fects the gene’s mutation has on chordotonal neuron differentiation5. Figure 4.8
shows all CNSs as open rectangles obtained by pairwise alignments between
D. melanogaster (Dm) and D. pseudoobscura (Dp) and between Homo sapiens
(Hs) and Mus musculus (Mm) and between H. sapiens and Rattus norvegicus
(Rn). All sequences except the Dp sequence were obtained from Ensembl using
the gene names (ato for Dm and ATOH1 for Hs) and the ortholog mappings.
The Dp contig sequence was found by BLAST on the pre-assembled Dp genome
at the Human Genome Sequencing Center (HGSC), Baylor College of Medicine
(http://www.hgsc.bcm.tmc.edu).

We have concatenated all CNSs of a single gene into one sequence. These
sequences of ∼2-4 kb were submitted to the FootPrinter web service in TOU-
CAN (see Section 2.7.3 and Figure 4.3) with the following parameter settings:
phylogenetic tree = ((Hs,(Mm,Rn)), (Dm,Dp)); Motif size = 10; Maximum par-
simony score = 2; Maximum number of mutations per branch = 1. This resulted

4The system of gene nomenclature used by Drosophila workers is largely based on mutant
phenotypes.

5For a biological overview of atonal see http://flybase.bio.indiana.edu/allied-data/lk/
interactive-fly/neural/atonal.htm.
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in two conserved motifs over all five species, namely TTTTATTTTG and CY-
TAATTARA. These were annotated in TOUCAN on the original sequences, as
shown in Figure 4.8. In flies, both motifs are found in the 5’ upstream region of
the atonal CDS, while in mammals they are found in the 3’ downstream region.
The difference between 5’ and 3’ can also be found in the existing knowledge of
the regulation of atonal, namely the two known enhancers of ATOH1 (see Fig-
ure 2.13 and [142]) are located 3’ of the gene and the known regulatory regions
of Ato in D. melanogaster for its expression in R8s, antenna, Leg/Wing, and
embryo are all located 5’ of the gene [285]. Autoregulation is known for atonal
so the location of one of these new motifs in a CNS that also contains an Atonal
binding site (see Figure 4.8) could be an interesting finding.

Figure 4.8: Phylogenetic footprinting. Sequence of atonal and of four atonal or-
thologs with upstream and downstream flanking sequences. The open boxes are CNSs,
either between Dm and Dp or between Hs and Mm or Rn. The black arrows point at
conserved motifs found with the FootPrinter algorithm [35] in a set of concatenated
CNSs. The red arrows indicate that the sequences in the upper part of the figure
continue in the lower part.
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4.7 Related work

TOUCAN was designed with the analysis of regulation in gene sets of higher
eukaryotes as its primary goal. It is in this setting that it provides the user
with the most added value as compared to existing tools. TOUCAN can be
considered an ‘all-in-one’ application, allowing for multiple approaches in reg-
ulatory sequence analysis, making it sometimes difficult to compare with other
tools. Other multi-purpose tools are the web-based RSAT (Regulatory Sequence
Analysis Tools [308]) and Genomatix (http://www.genomatix.de) suites. RSAT
however is better suited for the analysis of prokaryotic and yeast sequences and
Genomatix is a commercial package with different functionalities.

A brief list of the possible approaches for TFBS detection is given below
together with some of the available tools and algorithms. They are classified ac-
cording to the number of species used (one or multiple, the latter is phylogenetic
footprinting), the number of genes used (one or more, the latter is a battery of
co-regulated genes with shared motifs), and the technique used (sequence scor-
ing with PSFMs or de novo motif discovery). In fact most of the existing tools
for regulatory sequence analysis are compatible with TOUCAN as long as their
output is formatted as, or can be converted to GFF that can be imported into
TOUCAN. The detection of cis-regulatory modules or combinations of TFBSs
is not included in this list, it is discussed in Section 2.4.6 and in Chapter 5.

1. Single gene - single species - PSFM : predict PSFM instances or occur-
rences of a consensus sequence, for example with RSAT or TOUCAN (IU-
PAC annotation or MotifScanner). The disadvantage is the high number
of false positive predictions and for that reason all other tools mentioned
here have been developed.

2. Single gene - single species - motif : not possible unless a regulatory re-
gion contains multiple binding sites of the same TF. In that case Gibbs
sampling, suffix trees, etc. could be used.

3. Single gene, phylogenetic footprinting, PSFM : TraFaC [160], rVISTA [192]
and ConSite [179] can be used but are limited to two species. TFBSs are
predicted in aligned orthologous sequences and only those TFBSs are re-
tained that are conserved and that have equivalent positions in the aligned
sequences. The remainder of the sites, which are not conserved between
the two species, are considered to be false positives and are eliminated.
rVISTA uses the TRANSFAC database of PSFMs, ConSite uses the JAS-
PAR database. Alternatives for multiple species are: (1) use FootPrinter
and search for a corresponding TF in TRANSFAC or use MotifScan-
ner in TOUCAN (TRANFAC, JASPAR, or both) on the same set and
compare the motif and PSFM instances; or (2) use TOUCAN with over-
representation statistics as if it were a gene battery, thereby losing the
phylogenetic information.

4. Single gene, phylogenetic footprinting, motif : the FootPrinter algorithm [35].
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5. Gene battery, single species, PSFM : MotifScanner and statistics in TOU-
CAN (restricted to proximal sequences). This approach has been applied
independently in [334] using proximal promoters from EPD.

6. Gene battery, single species, motif : Oligo-analysis [307], MotifSampler,
MEME, etc. (see 2.5.2).

7. Gene battery, phylogenetic footprinting, PSFM : Select CNSs in TOUCAN
(proximal and distal but only for two species) followed by MotifScanner
and Statistics. Alternative for multiple species: PhyloCon [314] followed
by MotifScanner to compare the instances, or search for a corresponding
TF in TRANSFAC for the PhyloCon motifs.

8. Gene battery, phylogenetic footprinting, motif : the PhyloCon algorithm.

4.8 Conclusions

Toucan provides an efficient and integrated environment for gene regulation
bioinformatics. Starting only from gene identifiers, it can retrieve, visualize,
annotate, and analyze proximal and distal regulatory sequences of coregulated
genes. Because we use web services, we can add more services that work with
fastA formatted sequence files and we will be able to link with bioinformatics
service registries in the future. This flexibility will help to improve the inter-
operability among visualization tools, algorithms, and data providers for gene
regulation bioinformatics [272]. As discussed under the liver and muscle case
studies, the over-representation method has several limitations. We will try to
solve some of these in the next Chapter where we describe a method to de-
tect over-represented combinations of TFBSs as modules, which should cause a
further decrease in the number of false positive TFBS predictions.





Chapter 5

Detecting cis-regulatory
modules

5.1 Introduction

WORKING with combinations of factors makes it possible for the cell to
integrate multiple inputs and this further provides cross-coupling of signal

transduction and gene regulatory pathways. This way, a cis-regulatory module
(CRM) functions as an information processing device (see Chapter 2). It is
therefore meaningful in a biological sense to search for the co-occurrence of
multiple TFBSs within a confined window of DNA sequence. In a computational
sense, the detection of combinations of TFBSs has the advantage of reduced
false positive predictions and of specificity. Namely, it will be feasible to search
for target genes in the full genome that are putatively controlled by a given
combination of TFs while this is not feasible for single TFs.

Here we present a novel approach for finding combinations of TFBSs that
occur several times across multiple coregulated human genes. Again we combine
coregulation with phylogenetic footprinting by focussing our search to syntenic
regions with respective mouse orthologous genes. We apply a score function that
combines the scores generated by the MotifScanner (i.e., log likelihood ratios) of
individual PSFMs from TRANSFAC. Here, attention is paid to the sensitivity
and specificity of the PSFM scoring. Obviously an efficient algorithm is needed
to search the enormous set of possible combinations of binding sites1. The
ModuleSearcher algorithm implements the score function in an A∗ tree search
and in a faster Genetic Algorithm (GA) version. We show the results of the
ModuleSearcher obtained on four artificial data sets and explore the sensitivity
and specificity of the algorithm. We justify the methodology and the different
thresholds and parameters used along the road by applying the ModuleSearcher
on real biological data. For the latter we have chosen a coherent cluster of

1For example, if we have 400 factors then there are 4005/5! = 8.1010 possibilities for a
CRM with 5 binding sites.
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gene expression profiles, as captured by a microarray study on the cell cycle
in a human cancer cell line. The modules we find are proven to contain real
regulatory information. To our knowledge, this shows for the first time that
module detection in microarray clusters of human genes is feasible, when taking
all precautions discussed here to reduce the level of noise into account.

The score function alone is used in the ModuleScanner program to detect
genes in the genome that might be controlled by a certain CRM. We have tested
this program using the IFN-β enhancer as a model, and using the predicted
CRM of the microarray cluster. Predicted targets are validated in silico using
Gene Ontology annotation.

5.2 Module score function

Analogous with the distinction between a binding site and a motif model (a
PSFM is a motif model and is denoted as Θ), we distinguish modules (or CRM),
denoted as m and module models (CRM models) denoted as M. Modules are
clusters of sequence segments x. In our analyses, the xs are predicted binding
sites, namely instances of PSFMs on the sequence as predicted by a scoring
algorithm like the MotifScanner. Module models are thus sets of motif models.
The score of a CRM model M on a set of sequences set = (seq1, . . . , seqn) is
calculated as

SM(set) =
n∑

i=1

SM(seqi). (5.1)

The score of a CRM model M on one sequence seq is calculated as

SM(seq) = max
m∈T

p(m)×
∑
x∈m

W (x). (5.2)

The different elements of this formula are the following.

• W (x) = log
(

P (x|Θ)
P (x|Bm)

)
=

∑W
j=1[log(θbj

j )− log(P (bj |Bm))], as described in
Chapter 4;

• m is a module (a collection of xs);

• x is a short sequence segment that is an instance of a Θ and thus a putative
TFBS;

• T is the collection of all valid ms, or in other words all possible instances
of M on a seq. Whether a module m is valid is determined by:

– the xs of m can only be instances of one of the Θs of the module
model M=[Θ1, . . ., ΘnΘ

], where M is a parameter of the score
function. Instances of other motif models are not taken into account.
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– All xs of m have to lie together within a sequence window of max-
imally maxLength base pairs. In other words, the largest distance
between two xs can maximally be maxLength base pairs. maxLength
is a parameter of the score function for which the default value is 200
bp.

– Another parameter of the score function is overlapAllowedYesNo.
If this is set to true, then the xs are allowed to overlap.
If overlapAllowedYesNo is false then ms with overlapping xs are
not part of T .

T is constructed “on the fly” in the recursive score function
computeBestTarget(seq,M,maxLength,allowOverlapYesNo,penalizeYesNo)

• The factor p(m) functions as a penalization for CRMs that do not contain
an instance of one of the Θs in M. It is the number of xs in the module
m divided by the number of motif models nΘ in M. Penalization of
incomplete modules can be enabled or disabled, as required by the user.
If it is disabled, p(m) = 1.

This score function does not take the motif order into account, nor the dis-
tance between motifs. The only distance constraint is the total length of m as
defined by the window size maxLength. The simple score function presented
here was satisfactory for our current goals. However, more complicated score
functions based on hidden Markov models could be tested in the future, such
as COMET [116].

Technically, the score function is implemented in Java and uses the xs and
W(x)s from the GFF output of the MotifScanner.

5.3 The A∗ search algorithm

Our search for the best CRM model on a set of sequences is handled with
an A∗ procedure, a branch-and-bound search2 with a heuristic estimate of the
remaining distance to the solution. A∗ algorithms are admissible [136, 194].
This means that “it is guaranteed to find a minimal path to a solution [in our
case this is a solution with the maximal score] whenever such a path exists”
[194]. In bioinformatics, the A∗ algorithm has already been used for multiple
sequence alignment [180]. Each node in the implicit search tree is a CRM model
M. Creating child nodes involves adding Θs to parent Ms. Since we do not
consider the order of sites in this step, we have removed redundant nodes by
allowing only alphabetically ordered CRM models. A function GM = SM+HM

2Branch-and-bound searches do not consider all possible paths but instead eliminate un-
necessary work by only extending, at each iteration, the node with the best score in the queue.
The new nodes (new paths) that are generated this way are added to a queue that is sorted
according the score (path length). In our algorithm, not the path length is used but the score
of a node. This is possible because only alphabetically ordered modules are considered and
thus there are no redundant paths that lead to the same node.
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is used, where SM is the score-function, and HM is a heuristic overestimate of
the rise in score from M to the best child Mb. To explain how this heuristic
is calculated, consider the following example. For a module M=[Θ249,Θ34]
(nΘ=2) somewhere in the search tree, and for NΘ=5 (the desired number of
elements in the module, NΘ is a parameter of the algorithm to be specified by
the user), HM is the sum of the scores of the 3 (5-2=3) best single element
modules on the set. This can be calculated off-line before the algorithm starts,
by summing the maximal scores (i.e., the best hits) of each Θi on each sequence.
Since these instances do not obey the distance constraints, the heuristic is always
an overestimate of the rise in score of this M.

The collection of Θs that is used (TRANSFAC professional release 7.x) is
redundant, so to avoid adding motif models to a module model that already
contains a similar motif model (for which the instances will largely overlap), we
have constructed classes of motif models as follows. For each pair of motifs Θ1

and Θ2, the similarity is measured with the mutual information or Kullback-
Leiber distance [170]. The mutual information is computed as

1
W

W∑
j=n

T∑
b=A

Θ1(j, b)log
Θ1(j, b)
Θ2(j, b)

where Θ1(j, b) is the probability of finding base b at position j in motif model Θ1.
Since this equation is asymmetric, we take the average between the distance from
Θ1 to Θ2 and from Θ2 to Θ1. All motif models are considered similar if their
distance is lower than, for example, 0.2. The distances are saved in a text file
that is passed to the algorithm as a parameter. Thus, different thresholds can
be used.

The algorithm, searching for the maximal score, is shown here:

1. Initialization

(a) Queue contains the root node as only element (the empty CRM
model).

(b) Solution is null.
(c) The parameter NΘ is set, which is the number of sites a module

should contain.
(d) The parameters of the score function are initialized.

2. While GM(set) ≥ SSolution(set), where M is the first CRM model in the
Queue (or while no Solution is found yet), do

(a) Remove the first M from Queue.
(b) Consider all Θi for which there is no Θ of the same class (see above)

already present in M. Also consider those Θi for which exactly
the same Θ is already present in M, but only if the parameter
multipleCopiesAllowedYesNo==true. For all these Θi do:
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i. Create a new CRM model Mnew,i = [M,Θi] (add Θi to M).
ii. If the size of Mnew,i is NΘ, and if SMnew,i

(set) > SSolution(set),
then Solution = Mnew,i.

iii. If the size of Mnew,i does not equal NΘ, add Mnew,i to Queue.

(c) Sort the Queue by descending G(set)

3. Solution now contains the optimal M.

5.4 Validation of the A∗ ModuleSearcher

5.4.1 Semi-artificial sequence sets

A 3rd-order Markov model was calculated from all human-mouse syntenic re-
gions within the 10 kb gene-upstream sequence (i.e., the “syntenic fastA data-
base”, see further), representing the base pair composition of conserved regions
(see Section 4.3.2). Artificial sequences were generated by sampling symbols
from this background model. Transcription factor binding sites were implanted
at random locations by sampling a TFBS from position-specific frequency matri-
ces. To reflect a more realistic biological situation, we added artificial sequences
without implanted binding sites that represent false positive sequences3. The
first column of Table 5.1 describes the contents of the four constructed test
sets. In Art 4 multiple of these artificial sequences were implanted themselves
into larger sequences. Figure 5.3 shows 10 such sequences with four implanted
CRMs each, separated by Ns. The blanks between the modules illustrate the
fact that we will consider only the syntenic regions, not other intergenic DNA.

Table 5.1 lists the results obtained on semi-artificial data. Analysis of Art 1
shows that the ModuleSearcher is able to detect a module of 5 elements cor-
rectly (all 5 elements are found) when it is hidden in 10 sequences of 200 bp and
when another 10 random sequences of the same length are added. The results
on the Art 2 set show that the ModuleSearcher can detect 2 distinct modules
that are hidden in a set of 15 sequences, although some elements were misiden-
tified: 4 out of 5 elements of Module 1 are correct, and 2 out of 3 elements of
Module 2 are correct. Figure 5.1 shows Art 2 when scored with the MotifScan-
ner. It can be seen from this figure that many implanted sites are missed in the
scoring step, which causes an important limitation on the sensitivity of module
detection. In Figure 5.2 the implanted sites are compared with the output of
the ModuleSearcher (i.e., the best hit of the found module on each sequence).

We search for a combination of factors that is over-represented in a set;
therefore a distinction can be made between treating all syntenic regions of one
gene independently (in that case, a set contains all regions of all genes separately,
like for the liver and muscle sets in Section 4.6.2) and keeping all regions of a
gene together (the set contains all genes, each having one or more regions). The
effect is that in the case of combining the syntenic regions of a single gene,

3A real set of sequences that all contain the same CRM can probably never be found and
sequence sets could consist of multiple gene batteries each containing another CRM.
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a good module will have to be found in at least one of the syntenic regions
of most genes, while in the case of treating the regions independently, a good
module will have to be found in most of the syntenic regions. To investigate
this effect, and more importantly to decide whether to keep the regions in a real
biological data set together, we tested both possibilities on semi-artificial data
as well. Comparing Art 3 (where all regions are added independently to a set)
and Art 4 (where multiple syntenic regions of one gene are kept together, see
Figure 5.3) shows that the second approach is advisable, so this will be applied
further on the co-expressed gene set.

5.4.2 Sensitivity to PSFM scoring

Because the ModuleSearcher algorithm uses the scores of individual matrix hits,
we have compared the effectiveness of the algorithm using different types of
scoring. The Art 1 set was scored with the MotifScanner using different values
for the prior parameter. When 0.1 or 0.2 were used, the ModuleSearcher found
5 out of 5 correct CRM elements. Using 0.5 as a prior, it found 4 out of 5
elements. The same set was also scored with the MotifLocator, with varying
threshold values. The MotifLocator can be compared with other programs that
score frequency matrices such as Matinspector [241]. Setting the threshold to
0.75 resulted in 4 out of 5 correct elements, but this threshold yields 12 times
as many hits as for the MotifScanner with prior 0.2. A threshold of 0.8 resulted
in 3 out of 5 correct elements; 0.85 in 1 out of 5 and 0.9 in 0 out of 5. Taken
together, the MotifScanner (with its probabilistic estimation of the number of
hits) confers robustness to the ModuleSearcher and will be used in the Syntenic
GFF database and in the study of co-expressed genes.

5.5 ModuleSearcher on real gene batteries

Figure 5.4 shows a flow chart that overviews the system for detecting regulatory
modules. All human-mouse orthologous pairs were selected from Ensembl Re-
lease 9 (19,914 pairs). Ten kilobases of sequence upstream of the coding sequence
of the human and mouse gene were selected (18,778 pairs with successful selec-
tion). Each 10kb pair was aligned with AVID [42] and the alignment output was
parsed using VISTA [209] to select regions with at least 75% identity in windows
of 100 bp (10,049 pairs had at least one region; 33,282 regions in total). These
regions form the “Syntenic fastA” database. All syntenic regions were scanned
to predict transcription factor binding sites (TFBSs) using the MotifScanner
algorithm (prior parameter set to 0.2). Frequency matrices were taken from
TRANSFAC Professional Release 6.3, which contained 429 vertebrate matrices.
All occurrences are stored in GFF format in the “Syntenic GFF” database that
is both used for the selection of annotated regions of coregulated genes (to find
CRMs) and for “genomic searches” to find genes containing a given CRM. In
the current version we have limited the intergenic sequence space to 10kb up-
stream of the coding sequence, but extensions towards syntenic regions located
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Table 5.1: Results of the ModuleSearcher on four artificial sequence sets (a Motif
belongs to the same class as the implanted motif; b Motif that was not implanted).

Data set Highest scoring module

Art 1: 10 random sequences of 200bp,
each with following implants:8>>>><>>>>:

M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
M00174-V$AP1 Q6
M00206-V$HNF1 C

+ 10 random sequences of 200bp without
implants (i.e., noise)

8>>>><>>>>:
M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
aM00188-V$AP1 Q6
M00206-V$HNF1 C

The found module contains all 5
hidden elements.

Art 2: 5 random sequences of 200bp,
each with following implants:8>>>><>>>>:

M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
M00174-V$AP1 Q6
M00206-V$HNF1 C

+ 5 random sequences of 200bp, each
with following implants:8<:

M00054-V$NFKAPPAB 01
M00747-V$IRF1 Q6
M00750-V$HMGIY Q6

+ 5 ran-

dom sequences of 200bp without implants
(i.e., noise). See Figure 5.1

First run:8>>>><>>>>:
M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
aM00188-V$AP1 Q6
bM00328-V$PAX8 B

The first module was found with 4 out
of 5 elements correct.
Second run:8<:

aM00052-V$NFKAPPAB65 01
M00750-V$HMGIY Q6
bM00158-V$COUP 01

The second module was found after
masking the elements of the first mod-
ule; 2 out of 3 elements of the second
module are correct.

Art 3: 5 random sequences of 200bp,
each with following implants:8>>>><>>>>:

M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
M00174-V$AP1 Q6
M00206-V$HNF1 C

+ 35 random sequences of 200bp without
implants (i.e., noise)

8>>>><>>>>:

bM00446-V$SPZ1 01
bM00285-V$TCF11 01
bM00748-V$STAT5B Q6
bM00137-V$OCT1 03
bM00734-V$CIZ 01

The hidden module is not found
when it is present in only 5 out of 40
sequences.

Art 4: 5 genes with 1 module as in Art 1
and 3 empty regions, well separated + 5
genes with 4 empty regions.
The empty stretches between the regions
are not scored with TRANSFAC. See Fig-
ure 5.3

8>>>><>>>>:
M00134-V$HNF4 01
M00131-V$HNF3B 01
M00190-V$CEBP Q2
aM00188-V$AP1 Q6
M00206-V$HNF1 C

When different regions of the same
gene are grouped together, the level of
noise is reduced and the module can be
found, with 5 out of 5 elements correct.
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Figure 5.1: Module detection in artificial data sets. (A) Set Art 2 as described in
Table 5.1, showing only the implanted binding sites, sampled from the respective
matrices from TRANSFAC. (B) The same set, scored with the MotifScanner using all
available matrices. This is the actual data in which the ModuleSearcher will search
for modules. (C) The same as in (B), but now only displaying the instances of the
matrices that were implanted. It is clear that there are many false positives and many
true negatives, a fact that obviously hinders module detection.
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Figure 5.2: Results of the ModuleSearcher on the Art 2 set presented in Figure 5.1
(A) In blue are the results of a first run of the ModuleSearcher and in grey the im-
planted sites as in Figure 5.1.A. (B) In red and green are two of the three hidden
matrices, as detected in a second run on the same set (masking the results of the first
run) of the ModuleSearcher.
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Figure 5.3: Set Art 4 as described in Table 5.1, resembling the biological situation
where multiple syntenic regions of one gene belong together. Only the encircled regions
have implanted modules (5 out of 40 regions), and these can still be detected.

in introns or downstream of the gene are possible.

5.5.1 Gene Ontology statistics

We have developed a software tool, GO4G, to calculate the functional coherence
of a gene set based on Gene Ontology associations. GO4G will be used further
below to validate newly found modules by the functional coherence of putative
target genes of this module. It is available at http://www.esat.kuleuven.ac.
be/∼saerts/software/go4g.html and works as follows. All annotated GO terms
for a set of genes are retrieved from the GOA annotations of the EBI (http:
//www.ebi.ac.uk/GOA/). For each term, each path to the root of the GO tree
is followed and each encountered term is added to a gene’s annotation. For each
term, the frequency of this term is then the number of genes that have the term
in their extended annotation divided by the total number of genes in the gene
set. The binomial formula (see Section 4.4) is then used to calculate p-values
for each frequency, where the expected frequencies are calculated from a large
reference set, such as the complete human genome. For the analysis described
here we have used the set of human genes that have a mouse ortholog. The p-
values are then corrected for multiple testing. GO4G can be used for testing the
functional coherence of a gene set and is therefore useful for validating predicted
target genes.

5.5.2 Genomic searches

Using the ModuleScanner we can score the complete “Syntenic GFF” database
to find syntenic regions that potentially contain a CRM. To determine the speci-
ficity of target detection, we have compared the scores of the sequences in the
Art 1 set (using the best CRM found with the ModuleSearcher in this set) with
the scores of the same (artificial) CRM on the database. There are 6 regions
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Fig. 1. Overview of the system to detect regulatory modules. All DNA regions, ranging from 100 to several hundreds of base pairs, resulting
from global alignment of all human-mouse ortholog pairs are stored, as are the hits of all transcription factors of TRANSFAC, in GFF format.
The GFF can be selected for a set of genes, and the ModuleSearcher finds the best module model within the set. Such a model can then be
used to find putative targets, using the same GFF database.

x = [b1; b2; : : : ; bw] in a sequence s is computed as

W (x) =

Qw

j=1�(bj ; j)Qw

j=1 P (bj js;Bm)
;

where bj is the nucleotide found at position j in the
segment x, �(bj ; j) is the probability of finding bj at
position j according to the PSFM and P (bj js;Bm) is
the probability of finding bj in the sequence according to
the background model. This formula indicates how likely
it is that the segment is generated by the motif model
with respect to the background. The use of higher-order
background models have been described extensively in
(Thijs et al., 2001).

These scores can be used directly, as in a PWM scoring
scheme (Stormo, 2000), by computing the logarithm of
W (x) and rescaling the scores to a value between 0
and 1. By defining a threshold, we retain all segments
with a score greater than this threshold. The resulting
program is called MotifLocator. The second program,
MotifScanner, uses a probabilistic sequence model to
estimate the number of instances c of a motif model that
are hidden in a noisy background sequence (Aerts et al.,
2003). If the estimated number of instances is c, the c sites
with the highest score W (x) in the sequence are selected.

Matrix similarity Motif models are redundant at two
levels: (1) there can be multiple matrices describing the
binding site of the same TF and (2) there can be distinct
TFs with similar PSFMs. Consequently there is a limit
on the sensitivity to distinguish some models computa-
tionally. The similarity between two motif models, �1

and �2, is measured with the Kullback-Leiber distance
(Kullback, 1959), which is computed as

max
A

1

w

wX

j=1

TX

b=A

�1(j; b)log
�1(j; b)

�2(j; b)

where �1(j; b) is the probability of finding base b at
position j in Motif 1, w is the length of the motif, andA is
the set of all possible alignments for an allowed shift (e.g.,
2 base pairs). Since this equation is asymmetric, we take
the average between the distance from�1 to�2 and from
�2 to �1. The motif models can be grouped into classes
depending on an imposed threshold on this distance.
We have used threshold values of 0.2 (high stringency),
0.3 (moderate stringency), and 0.4 (low stringency) to
construct classes of motif models.

Module score function Analogous with the distinction
between a binding site and a motif model (a frequency

3

Figure 5.4: Overview of the system to detect regulatory modules. All syntenic DNA
regions, ranging from 100 to several hundreds of base pairs, resulting from global
alignment of all human-mouse ortholog pairs are extracted from the genomic sequence
and stored in a “Syntenic FastA database”. A 3rd order background model is calcu-
lated from these sequences. The sequences are scored with all vertebrate matrices of
TRANSFAC, and contrasted with this background model in the MotifScanner algo-
rithm. The output of the MotifScanner, in GFF format, is stored in a “Syntenic GFF
database”. If now, one wishes to find a module in a set of co-regulated genes, the rel-
evant features (i.e., MotifScanner hits) are extracted from the Syntenic GFF database
and used as input for the ModuleSearcher. A first “CRM validation” can be the visual
inspection of the modules in TOUCAN, although the structure of a module (the or-
dering and spacing of the elements) is often not conserved throughout a sequence set.
A better validation of a newly found module is therefore to scan all syntenic regions
in the Syntenic GFF database with this module, using the ModuleScanner algorithm.
The list of putative target genes with the highest scores (e.g., the top 20 genes) can
be inspected either manually in the literature or automatically with GO4G to check
their functional coherence. All of these steps and the used algorithms are explained
further in the text.

(out of the 10 regions where we implanted it) that have a higher score than all
the regions in the database.

A second test was carried out, this time using a known cis-regulatory module,
namely the IFN-β enhancer [217]. This module contains, within less than 100
base pairs, functional binding sites for NF-κβ, ATF2/JUN, IRF, and HMGI(Y)
(four copies and one overlaps with the NFκβ site, see Figure 2.7). The TRANS-
FAC database only contains matrices for HMGI(Y), NFκβ, and IRF-1 so we
used these three to specify a module model. The ModuleScanner scored the
GFF database with this model, and the top 10 scoring genes were fed into the
GO4G program. Table 5.3 shows the significantly over-represented GO terms
within these 10 genes, and it can be seen that they are related to the response
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of a cell to viral infection, the process where the IFN-β enhancer is active. The
IFN-β gene itself was found as fourth best scoring gene. Other high scoring
genes include: EH-domain containing protein 1 (testilin, EHD1 ) involved in the
recycling of major histocompatibility complex class I molecules to the plasma
membrane; IL-1 β precursor (catabolin, IL1B), an important mediator of the
inflammatory response; NF-κβ inhibitor alpha (NFKBIA), involved in apopto-
sis and possibly pointing at feedback control mechanisms; and semaphorin 3B
precursor (SEMA3B), involved in cell-cell signaling and possibly coregulated
with IFN-β to mediate contacts between dendritic cells and T lymphocytes. By
combining transcription factors in modules, the specificity increases to a level
where genomic searches become feasible. This result opens the door to the val-
idation of predicted modules, as illustrated in the next paragraph, because a
genomic search with a false module will retrieve random top scoring genes that
have an extremely low chance of statistical significant functional coherence.

5.5.3 Biological validation of the ModuleSearcher

Sets of co-expressed genes were selected using SOURCE [86]. A typical case of
coregulation is the cell cycle and we have queried the SOURCE database for
cyclin B2 (CCNB2). In the “expression view” we have chosen the data set of
gene expression during the cell cycle in a human cancer cell line (HeLa) [322].
By searching for genes that have a similar profile, using the functionality pro-
vided by the application, we selected 44 genes that might share a common
cis-regulatory element. Of these, 34 had an Ensembl identifier, and in this set
we found 13 genes with at least one syntenic region with the respective mouse
orthologous gene (32 regions in total).

The selected gene cluster around cyclin B2 is functionally tight: among
the highly significantly over-represented Gene Ontology terms are cell cycle (15
genes, p-value = 10−14), M phase (9 genes, p-value = 3.10−13), and microtubule
cytoskeleton (9 genes, p-value = 2.10−7). The best module model in the cluster,
as selected by the ModuleSearcher (window=100bp and nΘ=4) consisted of
NFY, STAF, TCF4, and CEBPA.

Table 5.2: Results of the ModuleSearcher on a set of co-regulated cell cycle genes.

Data set Highest scoring module
CCNB2 clus: Set of 13 human genes
co-expressed with cyclin B2 during the
cell cycle in HeLa cells; selected from
SOURCE. In total they have 32 con-
served sequence blocks within 10kb up-
stream of the CDS. The blocks of a gene
are grouped together as in Art 4.

8>><>>:
M00116-V$CEBPA 01
M00264-V$STAF 02
M00287-V$NFY 01
M00671-V$TCF4 Q5

This result was validated by find-
ing target genes of the module using the
ModuleScanner, see text.

It has been shown that NFY (nuclear factor Y) regulates genes (e.g., cy-
clinB1) in a cell type specific and cell-cycle dependent fashion [162]. TCF4



105 5 Module detection

regulates cyclin D1 expression in a complex with β-catenin [294], so its in-
volvement in cell-cycle specific expression of other genes is plausible. CEBPA
(CCAAT/enhancer binding protein alpha) overlaps with some of the NFY sites
(see Figure 5.5), which could explain its presence in the module. The fourth ele-
ment, STAF, is a zinc finger protein that is a promiscuous activator for enhanced
transcription by RNA polymerases II and III [253].

Figure 5.5: Biological validation. Six of the 20 highest scoring syntenic regions with
the CEBPA-STAF-NFY-TCF4 model that was found in the cyclin B2 microarray
cluster. The closed boxes are the sites of the module and the open boxes are putative
sites of the same factors scored with a lower threshold. Taking the open and closed
boxes together, each region has at least one instance of each module factor.

Using the [STAF–CEBPA–NFY–TCF4] module in a genomic search with the
ModuleScanner shows indeed that this combination contains cell-cycle specific
regulatory information, because (1) 30.8% (4 out of 13) of the original cluster is
found in the top 100 scoring genes, and (2) the GO4G statistics on the top 20
scoring genes show a significance (corrected p-value smaller than 0.05) for terms
like “mitosis”, “regulation of cell cycle”, and “cell proliferation” (see Table 5.3).
Figure 5.5 shows the actual modules in some of the top 20 scoring cell cycle
genes. Polo-like kinase (PLK) is possibly active in chromosomal segregation,
NEK2 is involved in chromosome segregation and centrosome separation. CDC2
(cell division cycle 2) is a catalytic subunit of the highly conserved protein kinase
complex known as M-phase promoting factor (MPF), which is essential for G1/S
and G2/M phase transitions of eukaryotic cell cycle. CKS1B is also known as
CDC2 associated protein so its coregulation with CDC2 is plausible.
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5.6 Genetic Algorithm version of the Module-
Searcher

Although the A∗ method guarantees to find the optimal solution, it can be slow
for certain parameter settings, for large sequence sets, or for modules that con-
tain many different transcription factors (e.g., more than five). Therefore we
have implemented another search algorithm based on Genetic Algorithms (GA)
[6], which is faster and more practical. The algorithm, which is summarized in
Figure 5.6.A starts with the creation of p random modules. A module is a vector
that contains nΘ position specific probability matrices derived from TRANS-
FAC [323] or from other matrix collections that are available on our server. The
list of modules is sorted according to the score function (see Section 5.2), and
the s highest scoring modules are retained for the reproduction step. In the
reproduction step the population grows back to size p by successive pairing and
mutating of randomly selected modules (see Figure 5.6.B). When two modules
are paired, for each position in the vector one element is chosen from either of
the two parents, unless this element or a similar element is already present in the
child module. Each element of a child module can then be mutated according
to a mutation probability ρ. After g generations the “fittest” module is selected
as solution.

Figure 5.6: Genetic Algorithms version of the ModuleSearcher. (A) Procedure of the
genetic algorithm; g is the number of generations. (B) Example of the generation of
child modules by pairing (1) and mutations (2). Each geometrical figure represents a
transcription factor.

For the technical and biological validation of the algorithm we refer to the
validation of the A* algorithm. Since the GA does not guarantee optimality the
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user can perform multiple runs of the GA and select only those modules that
are consistently found among different runs. To compare GA with A* in terms
of accuracy (i.e., does GA also find the optimal solution that A* finds?) and of
speed, we have run the GA and the A* version on the same set of sequences as
in Section 5.5.3. The CPU time (on a 1 GHz Pentium III processor running Red
Hat Linux) taken by GA, setting L to 100 bp and g to 100 iterations, is about
7, 10, 13, and 18 minutes when nΘ is set to 4,5,6, and 7 respectively. The time
required for A* increases more dramatically with nΘ. For nΘ = 4, A* takes
about 30 minutes, and for nΘ = 5 it takes between five hours and three days
depending on the data set and on L. nΘ > 5 was not feasible for this particular
data set, neither in time, nor in memory.

The maximum scores of three GA-runs with 100 iterations is, for nΘ=3,4,5
exactly the same (and thus the optimal module is found) as in A*. Although
we have no results of A* for nΘ > 5, the results of GA for larger nΘs show the
same scores in multiple runs of GA (e.g., in two out of three runs), and therefore
these can be assumed to be the optimal scores. In conclusion, the GA version
of the ModuleSearcher is able to find the optimal combination of binding sites
without a limitation of the number of sites, and within a fraction of the time
that A* needs.

5.7 Availability within Toucan

The ModuleSearcher is included in Toucan as a web service (see Figure 4.4).
The GFF formatted TFBS instances and scores are sent to the service and
the best instances of the optimal module are returned in GFF format and are
annotated on the active sequence set.

5.8 Discussion

We have first tested the module detection algorithms on artificial data and
showed that we could find back the hidden modules with a high sensitivity
(i.e., after adding multiple sequences without the module), even if many of the
implanted sites are missed by the matrix scoring step. The influence of the
latter on the robustness of module finding was also tested and it was shown
that our probabilistic estimation of the number of hits is more reliable than
traditional log-odds scoring. Another test showed that the signal to noise ratio
is much higher when the syntenic regions of a gene are kept together instead of
separating them.

Our current program always finds a “best” module model in a set of se-
quences. Therefore, it is necessary to validate the module. Some possibilities
are (1) the ability to retrieve target genes in the genome, (2) functional co-
herence of predicted target genes, (3) structure conservation of the modules in
the training set and in the top-scoring database modules, and (4) phylogenetic
footprinting. Structure conservation can imply conserved strand preferences or
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distances between binding sites. Here we have only used (1) and (2). We tested
these approaches using the known IFN-β enhancer model and the results show
that real module models are specific enough to find back their instances in the
full genome. Lastly, we predicted a module in a set of co-expressed genes and
validated the prediction using the same approach. It was shown that module de-
tection can yield valuable hypotheses and these can ultimately help in cracking
the complex gene regulatory code.

How exactly the top scoring genes are related to the modules remains to
be investigated. We believe however that using the described approaches, the
in silico generated hypotheses regarding cis-regulation should have a higher
success rate compared to approaches based on single factors or that do not take
cross-species sequence conservation into account.

Related work

Module searching

To our knowledge there is only one algorithm to detect over-represented com-
binations of TFBSs in sets of co-regulated genes, namely CREME [262], devel-
oped independently and published at the same moment as the ModuleSearcher.
CREME does not work with all PSFMs but only with those that are individ-
ually over-represented (p-value<0.01) and then filters similar PSFMs using a
greedy algorithm. Possible combinations of PSFMs are generated with a hash-
ing algorithm and tested on the sequence set. However, not all combinations
are tested but those with consecutive instances. That is, clusters that contain
at least one instance of the combination that is tested and no instances of other
PSFMs. Thus, the search space is first reduced drastically and then searched
exhaustively. A statistical significance of a cluster is also calculated based on
its count in a gene set as compared to a background set using a hypergeomet-
ric distribution. Similar clusters are filtered afterwards and module validation
is done by measuring the expression profile coherence [232] of a gene set with
pairwise similarities.

Module scanning

Several methods have been published recently that take the individual matrices
of a module as input and that return putative modules in the genome with a
certain statistical significance: COMET [116], MSCAN [161], Stubb [265], and
MCAST [18].

Functional coherence of a set of target genes

We believe that a newly found module should be validated in silico by screening
the full genome of the species that was used. A module that was found in the
“training set” by using the ModuleSearcher (either the A* or the GA version)
can be retained for experimental validation in case (1) multiple top-scoring genes
found in the genome scan overlap with the genes of the training set; and (2)
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the top-scoring genes are functionally coherent and related to the function of
the genes in the training set. Besides our own GO4G, the latter can also be
investigated by other tools that similarly compare the over-represented Gene
Ontology annotations of both gene sets, like FatiGO ( http://fatigo.bioinfo.
cnio.es/), GOMiner [331], EASE (http://david.niaid.nih.gov/david/ease.htm).
A list of software tools for GO analysis in general can be found at http://www.
geneontology.org/GO.tools.html.



Chapter 6

Data integration for module
and target validation

6.1 Introduction

GENOME-WIDE searches for cis-regulatory modules using combinations of
position weight matrices yielded lists of putative target genes in the previ-

ous chapter. In silico validation of these genes was needed to determine whether
the newly found module is a real module, and we proposed the functional coher-
ence of the target genes (based on GO) as a possible validation procedure. In
this chapter we will take this validation one step further and propose a frame-
work that allows for the simultaneous validation of a putative module and for
the prioritization of the putative targets (or the removal of false positive targets
from the list). The latter seems useful because there were only small differ-
ences between the scores of the module instances and because there can be false
positive module instances. In a molecular biology environment this could be
useful before the wet-lab validation of the targets. Instead of using only Gene
Ontology annotations, we have developed a data integration strategy based on
multiple information sources, namely (1) microarray expression data, (2) EST
expression data, (3) Gene Ontology annotation, (4) InterPro protein domain
data, (5) KEGG pathway membership, and (6) textual data from LocusLink
and Medline [3]. The statistical prioritization is based on order statistics.

The idea is to build a modelM for a set of n training genes denoted asA (this
can be the gene battery or a set of known target genes) and to score a set of m
test genes denoted B (these are the putative target genes as found by genome-
wide module detection) with M. The genes of B are then ranked according
to how good they match the training genes, or more generally how good they
belong to the biological process that is represented by the training genes.

All genes are represented internally by their Ensembl stable gene id [31] and
each data source is mapped to this identifier.

111



6 Data integration 112

6.2 Data sources

All data that can contribute to the characterization of a gene can ultimately be
included in the framework. Each data source is used to build an “information
submodel” (ISM), the test genes are scored with each ISM separately, and af-
terwards all ISM scores are combined. Depending on the format of the data,
the training and representation of the ISM and the scoring of test genes with
the ISM is different. We distinguish two categories of data types: vector data
and non-vector data.

6.2.1 Vector data

In the vector model, the data of gene g are represented as an attribute vector
Vg = [w1, ..., wN ] where each wk can be any normalized score or weight. The
ISM for vector data is simply the average vector over all training genes in A:
VA = [w̄1, ..., w̄N ]. A test gene h is scored with an ISM by calculating the cosine
similarity between Vh and VA:

r(Vh,VA) =
Vh ·VA

||Vh||||VA||
=

∑N
k=1 wk,VA · wk,Vh√∑N

k=1 w2
k,VA

·
√∑N

k=1 w2
k,Vh

. (6.1)

We used the cosine similarity measure as it is the one primarily used in most
Information Retrieval (IR) systems.

Microarray data

In case a module was found in a set of co-regulated genes obtained by clus-
tering microarray data, the same microarray data set (or data sets originating
from similar conditions) can be used to train an ISM. The only requirement
is that the clones (or oligos) are mapped to Ensembl identifiers, for which the
MatchMiner tool [55] or the Ensembl database itself can be used. The Su data
set [283] is available by default. It contains expression measurements from 101
different samples taken from 47 different human tissues and cell lines under nor-
mal physiological state. Large repositories of microarray data like ArrayExpress
or GEO can be queried manually for suitable microarray data to be imported
into the framework.

The effect of scoring with a microarray ISM is that genes with similar ex-
pression profiles as the average expression profile of the training genes will get
high scores (a small angle between the vectors results in a cosine value close to
1).

Textual data

The bioinformatics group at the department of Electrical Engineering ESAT
(BioI@SCD) has a record in text mining research [10, 120, 121, 122]. We have
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integrated our system with the TxtGate framework [122]. TxtGate contains a
text vector Vg for each gene that is present in the LocusLink database. Each
element wk,g in Vg is a weight for term t from the vocabulary of size N . This
representation is often referred to as bag-of-words. Briefly, the indexing of all
textual information is done in the following steps:

1. A vocabulary is built from textual information contained in the Gene
Ontology database, namely by extracting all GO terms and the words in
the descriptions of the terms.

2. For each gene in a downloaded textual version of LocusLink, the GeneRIF 1,
summary, and sum func fields are selected and the words forming its text
are extracted. Further, all the PubMed identifiers in the LocusLink record
are used to retrieve the corresponding MEDLINE abstracts of which the
words are also extracted.

3. Stemming [110] is applied to reduce the words to their stems by using
suffix stripping. These stems are called terms. After stemming, all words
that have the same stem are supposed to be reduced to the same item and
thus treated as the same. In this manner, the discrimination among the
documents is increased. Weights of the terms are calculated based on the
frequencies of the terms in the document and the number of documents
that contain that particular term over the whole document collection. The
weight of a term is calculated by its TF-IDF (Term Frequency Inverse
Document Frequency) value:

wk,g = fk,g × log2(Ng/fk) (6.2)

where wk,g is the weight of term k in the concatenated document of a
certain gene g, fk,g is the frequency of term k in the text of g (i.e., term
frequency), fk is the number of genes for which the documents contain
term t (i.e., document frequency), and Ng is the total number of genes in
the collection.

4. Vectors are normalized by their lengths to cope with documents of differ-
ing lengths. This is accomplished by computing the length of the vector
representing the document and dividing the weights of the terms by this
value. The length of vector Vg is

Vg√∑
k w2

k,Vg

. (6.3)

B is scored according to the cosine similarity with the average text profile of
A as mentioned above.

1GeneRIFs (“Gene Reference into Function”) are systematically assigned statements about
gene function as described by a publication in MEDLINE [212].
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6.2.2 Non-vector data

Gene annotation data that cannot be represented by a vector, or where a vector
representation causes the loss of information, is treated as follows.

1. If the annotation is represented as a tree (e.g., EST expression data) or
a diacyclic graph (DAG) (e.g., GO), the initial annotation of a gene (i.e.,
certain leaves or nodes in the tree or DAG) is extended with all nodes on
all possible paths to the root. If the annotation is represented as a simple
attribute, it is left unchanged.

2. The frequency of the all resulting annotations in the training set is com-
pared with the expected frequency in the genome using the binomial for-
mula (see Section 4.4) and the resulting p-values are corrected for multiple
testing. Thus, each annotated attribute is correlated with a p-value.

The p-values in A are used for the scoring of the B genes. For each annotated
term or parent term of test gene h, the corresponding p-value in A is used. The
p-values of all terms of h are combined with Fisher’s Chi-square method:

χ2
df=2k = −2

∑
log(pi), (6.4)

where k is the number of combined p-values. This way, the score of h is actually
a new p-value describing the probability of being similar to A.

Data sources that are suitable for this approach are (1) Gene Ontology an-
notation from Ensembl, (2) EST expression data from Ensembl that represent
the anatomical sites in the body where a gene is already found to be expressed,
(3) pathway membership data from the KEGG database [287], and (4) InterPro
protein domains from the Ensembl database.

6.3 Order statistics and overall ranking

For each gene in B the scoring with M gives six different rankings r1, r2, ..., r6,
one for each of the six data sources that are currently considered. The ranks
are divided by the total number of ranked genes to obtain rank ratio’s. The
joint cumulative distribution of a n-dimensional order statistic is then used to
compute a p-value as was also done by Stuart and colleagues [282] (see http:
//www.math.uah.edu/statold/sample/sample7.html for a description):

P (r1, r2..., rn) = n!
∫ r1

0

∫ r2

0

. . .

∫ rn

0

ds1ds2...dsn (6.5)

This can be computed efficiently with the recursive formula:

P (r1, r2..., rn) =
n∑

i=1

(rn−i+1 − rn−i)P (r1, r2, ..., rn−i, rr−i+2, ..., rn), (6.6)
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where r0=0. Since we included six information sources, we used n = 6. This
p-value represents the probability of getting the observed rank ratios by chance.
These values are corrected for multiple testing and B is then sorted according
to these values. Next to the original six rankings, we now have a seventh which
is the combined ranking.

6.4 ENDEAVOUR

The complete software framework that implements the methodology is called
ENDEAVOUR and can be used freely by academic investigators. ENDEAV-
OUR consists of a platform independent Java client that can be started from a
web browser using Java Web Start, several SOAP web services and a MySQL
database running at our department, and an interface for direct communication
with the Ensembl database. Training genes and test genes are loaded into the
client by their Ensembl, HUGO, or LocusLink IDs and all other IDs, descrip-
tions, and so on. are loaded automatically from the Ensembl database. Model
training is as easy as selecting the desired data sources, and all data fetch-
ing is done automatically either from Ensembl or from tables in our database.
Figure 6.1 shows the software environment and the interfaces with different
databases and in Figure 6.2.A a screenshot of ENDEAVOUR is shown in the
“training set view”. The scoring of test genes is simply done by pressing a
button, after which the genes can be sorted according to all individual and
combined rankings. Visualization of the results is done with a “sprintplot”
where all rankings can be viewed at once (Figure 6.2.B).

Figure 6.1: Information technological overview of ENDEAVOUR. The M within the
main square is the model to be trained, connected with all information submodels
(ISM) represented as stars. For each link with an external or local database, the
communication details in each direction are given.
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6.5 Cross validation

To validate the proposed methodology, that is to test whether the test genes
that are most related to the training genes have the best combined rank and
whether they have a significant p-value, we have performed a cross-validation
procedure using a set of 14 liver-specific genes [168]. In each of 14 runs, one
gene is left out, and a model is trained for the other 13 genes using the six data
sources mentioned above. Then 199 randomly selected genes from the human
genome together with the left-out gene are scored with the model. We have
done this for three different random sets and averaged the rankings. For the
combined ranking, the left-out gene was found in the top 3 (of 200) in 12 of
the 14 runs (85.7%). The other two left-out genes were ranked 12th and 24th
on average. The overall average combined rank was 4.5, and for 13 out of 14
genes the Bonferroni-corrected combined p-value obtained by Equation 6.6 was
significant for α < 0.05. The rankings (within 200 test genes) according to the
individual data sources were on average 1 for the EST expression data (always
ranked first), 1.74 for the KEGG model (although not many genes have KEGG
annotation), 5.93 for the microarray data, 12.26 for GO, 13.10 for text, and
24.12 for InterPro. This is 9.69 on average, which is slightly worse than the
average combined rank of 4.5. In conclusion, these data prove that sorting in
ENDEAVOUR, both using the data separately and combined, is biologically
meaningful.

6.6 Case studies

The ModuleSearcher was used to detect a module in the same set of liver genes
that was used for the cross-validation. This set is the training set A. For 10 out
of the 14 genes we found a mouse orthologous gene in Ensembl that has at least
one conserved non-coding sequence (CNS) in the 10 kb upstream of the coding
sequence as detected with AVID (see Chapters 4 and 5). The ModuleSearcher
then finds the optimal combination of PWMs in the set of CNSs using all 86
PWMs in the JASPAR database [252]. For 5 PWMs and a 100 bp window
the best module was mod=[MA0042/HFH-3, MA0038/Gfi, MA0045/HMG-IY,
MA0047/HNF-3beta, MA0046/HNF-1] which seems reasonable for liver speci-
ficity. We aligned all human-mouse orthologous gene pairs and scored all CNSs
with all PWMs of JASPAR. Then we used our ModuleScanner [7] to score the
CNSs with mod. The best scoring 200 genes are then used as test set B in
ENDEAVOUR. When they are scored with the model trained on A, the best 4
genes of B are also part of A. That means that mod was specific enough to find
four of the ten genes back in the genome. Among the other significant or highly
ranked genes are liver related genes like albumin, hyaluronan binding protein 2,
follistatin, ARAF1, and RERE.

As a second example of target gene prioritization after module scanner, we
have used the set of genes that are co-regulated with cyclin B2 as described
in Section 5.5.3 as training genes and the top 200 genes of the ModuleScan-



117 6 Data integration

Figure 6.2: Screenshots of the ENDEAVOUR graphical user interface. (A) training
set and a number of trained submodels are shown. The view of a test set is similar. (B)
One view of the results is a sprintplot where each column contains a ranking according
to one of the submodels. Each gene has a color, for example the TTR gene in red is
ranked 1st, 2nd, 3rd, none, 4th, 1st for the respective submodels. Another view of the
results that is not shown here is a spreadsheet-like table view with the genes as rows
and the submodels as columns where the genes can be sorted according to either of
the submodels.
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ner as test genes. The following genes have a statistically significant rank-
ing (p-value<0.05): PLK, CDC2, NEK2, CKS1B, SHC1, HMG20B, PRG4,
PRKAA2, DDX5, BPAG1, SEMA3C, TOP2B, and ORC6L. Even more genes
than reported in Section 5.5.3 (reported by manual literature searching) seem
related with the training genes and it could therefore be worth investigating the
role of the detected module for these genes.

6.7 Conclusions

In this chapter we discussed the design and implementation of a strategy to
prioritize a set of test genes according to their similarity with a set of training
genes, based on multiple genomic information sources. The cross-validation
showed the capabilities of the system, and in the case studies the system could
properly prioritize putative target genes of a cis-regulatory module.

The major limitation of the system regarding the validation of cis-regulatory
module is that the presence of significantly highly ranked test genes cannot
guarantee that the module is a real module. It can only help the investigator to
choose the best candidate targets for further investigation (e.g., experimental
validation). This problem might be caused by a too low stringency in the
statistical procedure or by the ranking methodology in general. A possible
solution to this problem is the use of pattern classification methods like Support
Vector Machines (SVM).

6.7.1 Perspectives

We are currently investigating other data sources like phylogenetic data and
promoter profiles of TFBSs (both vector data). Another data source that is
being tested is the actual DNA sequence (the coding sequence) of the genes. This
data type does not fall under the vector based system nor under the non-vector
based system described in this chapter. Rather, each test gene is aligned with
all training genes using BLAST and are ranked according to the best similarity
score. Note that this gene-by-gene comparison instead of the comparison with
the average training profile can also be interesting for the other data types. A
test gene is then scored better if it is very similar to one training gene and not
necessarily to all or the average of the training genes. A further perspective
regarding the microarray data source is that the framework can potentially be
linked directly with microarray repositories like ArrayExpress or GEO in the
future (possibly via Ensembl). This would allow for the comparison of gene
expression measured under hundreds of conditions.

6.7.2 Perspectives on the computational prioritization of
candidate disease genes

It is clear that the ENDEAVOUR framework can be used to sort any list of genes
according to a list of training genes. A particularly interesting application is
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the prioritization of candidate disease genes in chromosomal regions that are
mapped to a disease by linkage and association studies. Such regions may con-
tain ∼100-200 genes, which is too much for individual experimental validation2

or large-scale SNP association studies in human populations. Therefore, a com-
putational prioritization could lead to a reduction of the potential candidates
and hopefully to a high success rate when testing only the top scoring genes (e.g.,
the top 10). The training set for this application can be constructed either by
an expert in the genetics of the disease under study, or by using databases with
gene-disease information like the Online Mendelian Inheritance in Man resource
(OMIM).

Several studies have recently appeared that describe the computational pri-
oritization of candidate disease genes [302, 138, 306, 210, 113, 231]. However,
none of these has used a large coverage of data types as available in ENDEAV-
OUR.

2Experimental validation of candidate disease genes in model organisms is expensive and
time consuming. For example, the construction of a mouse knockout takes up to one year
and experimental tests in zebrafish using morpholino’s [70, 141] can cost up to 1000 EUR per
gene.





Chapter 7

Comprehensive analysis of
the base composition
around the transcription
start site in Metazoa

THE transcription start site (TSS) of a metazoan gene remains poorly under-
stood, mostly because there is no clear signal present in all genes. Now that

several sequenced metazoan genomes have been annotated, we have been able
to compare the base composition around the TSS for all genes across multiple
genomes. The most prominent feature in the base compositions is a significant
local variation in G+C content over a large region around the TSS. The change
is present in all animal phyla but the extent of variation is different between dis-
tinct classes of vertebrates, and the shape of the variation is completely different
between vertebrates and arthropods. Furthermore, the height of the variation
correlates with CpG frequencies in vertebrates but not in invertebrates and it
also correlates with gene expression, especially in mammals. We also detect
GC and AT skews in all clades (%G6=%C or %A6=%T respectively) but these
occur in a more confined region around the TSS and in the coding region. The
dramatic changes in nucleotide composition in human are a consequence of CpG
nucleotide frequencies and of gene expression, the changes in fugu could point
to primordial CpG islands, and the changes in fly are of a totally different kind
and unrelated to dinucleotide frequencies.

7.1 Background

Genomic DNA sequences display compositional heterogeneity on several scales—
for example, long-range variations in G+C content (large blocks of DNA of dif-
ferent compositions are often referred to as “isochores” [27]), CpG suppression
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in vertebrate genomes [30], or skews caused by mutation biases intrinsic to mu-
tation and repair mechanisms [127]. Both neutralist hypotheses and selection-
ist hypotheses have been made to explain the various compositional variations
[102, 112]. Until recently it was difficult to investigate more local variations in
base composition (for example, at one position relative to some genomic sig-
nal). Although there are currently many efforts to understand metazoan gene
regulation and transcriptional control, we have only a limited knowledge of the
exact start of transcription. In this study we re-evaluate the average base com-
position around the transcription start site of animal genes [5]. We could both
confirm several aspects regarding nucleotide composition and we discovered new
aspects, especially in invertebrates. It is most obvious from our results that the
average nucleotide composition around the TSS across the genome is signifi-
cantly different from the composition in the intergenic and coding regions and
some aspects of these composition variations are furthermore different among
the investigated species.

7.2 Data and methods

For each sequenced organism that is available in the Ensembl database Re-
lease 14 (Homo sapiens, Mus musculus, Rattus norvegicus, Fugu rubripes, Danio
rerio, Drosophila melanogaster [109], Anopheles gambiae, Caenorhabditis ele-
gans [135], and Caenorhabditis briggsae [135]), we have randomly selected 5000
stable gene identifiers [149]. These lists were used to retrieve 2000 base pairs
(bp) of single stranded DNA from the synonymous strand upstream of the an-
notated starting point(s) of each gene and 1000 bp downstream. This was done
using the EnsMart data mining tool (http://www.ensembl.org/EnsMart). The
analysis and plotting of the average base pair composition of these sequences is
done as follows. For each position in the 3000 bp long sequences the percentage
of A, T, C, and G over the 5000 genes is calculated and this value is represented
on the y axis of all profile figures. The x axis shows the position along the
sequence and x=0 corresponds to position +1, the start of the annotated gene
or the putative transcription start site. This way of representing the nucleotide
composition at an aligned genomic position across many genes—as opposed to
a classical average base composition calculated over a window along the DNA
strands as in [264]—has been used before for purposes like the study of GC skews
in Arabidopsis [291], the base composition of complete genes (introns, exons,
etc.) [199, 193], and promoter prediction [46, 223]. Many genes have multiple
alternative transcripts with a different TSS. Using DNA regions around each
possible TSS of a gene or only around the furthest 5’ reaching TSS did not
influence the composition profiles (data not shown). For the sake of brevity we
only discuss human, fly, and fugu profiles. Mouse and rat were very similar to
human, profiles of mosquito were noisy and difficult to interpret, and C. elegans
and C. briggsae are omitted because the interpretation would be too difficult
because of trans-splicing at the 5’ end of the genes [37, 312].
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7.3 Results and discussion

7.3.1 Comparing Ensembl and DBTSS human gene start
annotations

From the extraordinary shapes of the composition profiles calculated using the
gene start annotations of Ensembl (Figure 7.1.B and Figure 7.2) it can already be
postulated that a significant degree of correct start annotation must be present
in Ensembl to get such high resolutions. To double check this statement (for hu-
man only) we have downloaded all human promoter sequences from DBTSS [287]
for which the TSS has been determined experimentally. It can be seen from Fig-
ure 7.1 that the Ensembl data (using 5000 randomly selected genes with at least
100 bp 5’UTR) is noisier but that most of the composition characteristics (as
discussed below) are also present in the profiles generated from the Ensembl
data. The TATA box is less clear and the GC rise is lower for the Ensembl
data than for the DBTSS data. The reason for the latter observation will be
given below. We have also checked the quality of the Drosophila start points
by comparing the nucleotide frequencies around Ensembl (i.e., annotation from
FlyBase) gene starts with a data set of experimentally determined TSSs of [224],
and they were highly similar (not shown).

Figure 7.1: Comparing Ensembl gene starts with DBTSS. (A) Nucleotide frequencies
around the experimentally determined transcription start site of all genes in DBTSS.
(B) Frequencies around the annotated gene start in Ensembl for 5000 randomly se-
lected genes.

7.3.2 Variations in base composition in different phyla

Figure 7.2 shows the nucleotide frequencies around TSS for human, fly, and
fugu. A characteristic that is shared among all investigated species is that the
A/T content (W, IUPAC alphabet) is greater than the G/C content (S, IU-
PAC alphabet) in the intergenic region; for example, at -2000 bp upstream of
the TSS. This is the result of the fact that in general the G:C→A:T base pair
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Figure 7.2: Nucleotide frequencies around the annotated gene start in Ensembl, cal-
culated from 5000 randomly selected genes in human (A), Drosophila (B), and fugu
(C).

transition frequency is significantly higher than that of the reverse T:A→C:G
transition. Thus accumulation of neutral substitutions results in a generally
GC-poor composition of mammalian genomes [198], and apparently also of
other vertebrate and also invertebrate genomes. We will further denote this
composition as the intergenic background composition (IBC), and we will de-
note a difference between the A+T content and the G+C content as ∆WS
=#[(A+T)-(G+C)]/(A+T+G+C).

The most notable features of the composition profiles are the dramatic
changes in ∆WS in the region [-1000,+1000] around the TSS. In human for
example, ∆WS changes from ∼ 10% in the IBC to ∼ -20% at the TSS (also see
Figure 7.8). A similar polarity switch of ∆WS can be seen in the other verte-
brates: mouse, rat, fugu, and zebrafish (see Figure 7.2.C for fugu). The mouse
patterns are similar to human (not shown). The fugu and zebrafish patterns also
have the same shape with a polarity switch but the composition starts to change
later than in mammals and is restored faster as well. The fast drop in G+C
content might be caused by the fact that the 5’UTRs in fish are much shorter
than in human so the coding region (where codon usage largely determines base
composition) starts immediately after the TSS. A common explanation for the
G+C rise that is seen here in the mammalian profile in the proximity of the TSS
is the presence of CpG islands, which is related to DNA methylation, or more
precisely to a lack of DNA methylation (see further). Drosophila (Figure 7.2.B)
also shows a significant change in ∆WS, but without a polarity switch: it in-
creases from ∼ 12% in the IBC to ∼ 26% at the TSS. The maximal difference
between ∆WSIBC and ∆WSTSS is not reached at the TSS itself as in verte-
brates, but about 150 base pairs before the TSS. We have no explanation for
the Drosophila patterns that show almost an opposite behavior to that of ver-
tebrates, but because of the absence of DNA methylation in Drosophila, a rise
in G+C because of an over-representation of CpG dinucleotides would not be
expected anyway (although DNA methylation in insects has been the subject
of some debate [143]).

Interestingly, because Drosophila does have a change in ∆WS, namely an
opposite change to that of vertebrates, there are perhaps factors other than DNA
methylation that influence the base composition in this species. One factor could
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be the general presence of more AT-rich binding sites for transcription factors
or histone modification factors [266]. An alternative hypothesis could be that
another type of DNA modification than CpG methylation would be involved in
a genome-wide marking of promoter regions in Drosophila.

7.3.3 Nucleotide composition and CpG islands

Above we have made the remark that the G+C rise in mammals and maybe
generally in vertebrates is probably caused by the higher number of CpG dinu-
cleotides in the promoter region. Normally CpGs are present at a frequency of
only ∼1.5% instead of their expected frequency of ∼5% based on the individual
frequencies of C and G (0.225 × 0.225). Indeed, most CpGs in the genome
are methylated at the cytosine [29] and those methylated cytosines frequently
mutate to thymines [71].

To investigate the relationship between CpG frequency and the observed
composition profiles, we compared the base compositions between genes with
and without a CpG island around the TSS. We did not use a CpG predic-
tion algorithm however to separate CpG-related genes from non-CpG-related
genes because CpG island prediction is done using an arbitrary threshold on
the number of CpG doublets as compared to the genome frequency. Instead
we have taken another approach by simply counting the CpG doublets in the
[-400,+400] region around TSS. The same technique was used by Ioshikhes and
colleagues [153]. A histogram of CpG numbers for 5000 randomly selected genes
is bimodal for human, but not for fly nor fish (see Figure 7.3). For human, the
first peak represents the genes with CpG numbers that correspond more or less
to the genome frequency and the second peak represents genes with more than
expected numbers of CpGs.

Figure 7.3: Dinucleotide frequencies. Frequency distributions of the CpG dinu-
cleotide in the [-400,400] region around the TSS in human (A), fly (B), and fugu
(C). The number of CG doublets in this window is on the x axis and the number of
regions (genes) containing this number of CGs is on the y axis.

The histogram of CpG scores for fish shows almost no second peak, but
the distribution is slightly broader than the first peak of the human distribu-
tion. This could mean that there is some DNA methylation and some CpG
over-representation around TSS but not as much as in human. Auf der Maur
et al. [16] have suggested that CpG islands of fish may represent a primordial
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stage of CpG island evolution. This could indeed be a plausible explanation for
the fugu distribution.

The distribution of CpG frequencies in Drosophila is a normal distribution,
which means that there is nothing special about CpG doublets in Drosophi-
la. This is in agreement with the fact that there is no DNA methylation in
Drosophila. To test whether another dinucleotide than CpG is over-represented
around TSS in fly, we have performed the same analysis for the fifteen other
possible dinucleotides and looked for a distribution like the CpGs for human or
fish, but all dinucleotide frequencies were normally distributed and similar to
the CpG distribution, although the WpW dinucleotides (AA, AT, TA, TT) had
a slightly broader distribution and a higher mean.

To see the effect of the CpG concentration on the overall nucleotide composi-
tion, we have plotted the base composition profiles separately for the 15% lowest
scoring and the 15% highest scoring genes (see Figure 7.4). In human (A-B),
this shows that ∆WS can be completely attributed to CpG over-representation.
The results for fugu (C-D) show that some genes could have CpG islands (D)
since for those the nucleotide composition is similar to the mammalian profiles.
This again can be in agreement with the hypothesis of primordial CpG island
evolution in other vertebrates than mammals, although other tests are needed
to check for a possible functional consequence of the differences between the
extremes of the CpG frequency distribution. If we look at the two ends of the
distribution of AT dinucleotides in Drosophila, we can see a similar breaking
apart of the composition profiles into genes with a small ∆WS and genes with
a large ∆WS (E-F). The question is whether these gene classes in fugu and fly
also have a functional meaning like in human, or that these visualizations are
artefacts due to plotting the extremes of the distributions. One clue that sup-
ports a functional meaning for such gene classes is the fact that the profiles of
fly genes with many (respectively few) CpGs or few (respectively many) ApTs
are exactly the same and that 50% of the genes classified in the “few CpG”
category are also present in the “many ApT category”. Below we will test the
dependency of the composition profiles on gene expression.

7.3.4 Nucleotide composition and gene expression

It is generally known that the presence of a CpG island around the TSS is related
to the expression pattern of the gene. Unmethylated DNA can have an open
chromatine structure that facilitates the interaction of transcription factors with
the promoter region. Housekeeping genes (HK genes), which are transcribed in
all somatic cells and under all circumstances (and thus should be easily acti-
vated) frequently have a CpG island in their promoter region [175, 235]. Ponger
et al. [235] showed that early embryo genes (both housekeeping and tissue spe-
cific genes) that are active at the totipotent cell stage or in the blastocyste are
associated with CpG islands [235]. We have shown above that our composition
profiles are caused by CpG islands, so we can expect to see differences in base
composition between genes with different expression patterns. We identified sets
of widely and narrowly expressed genes using microarray data using a similar
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Figure 7.4: Nucleotide frequencies of several gene classes, separated according to the
concentration of a dinucleotide in the [-400,400] region around the TSS. (A) Human
genes with few CpG doublets. (B) Human genes with many CpG doublets. (C) Fugu
genes with few CpGs. (D) Fugu genes with many CpGs. (E) Fly genes with many
ApTs. (F) Fly genes with few ApT’s.

analysis as Eisenberg and colleagues in [99]. We used microarray expression data
from 101 different samples taken from 47 different human tissues and cell lines
under normal physiological state [283]. The experiments measuring replicates of
the same biological condition were averaged to reduce the measurement noise,
resulting in 47 data points per probe. We have selected three probe sets with
an average reading above 200 standard Affymetrix difference units [99] in the
following conditions: (1) in all tissues, these are widely expressed genes; (2) in
20 to 29 out of 47 tissues (medium expression); and (3) in only 1 tissue (narrow
expression). Then we mapped the Affymetrix probe identifiers to HUGO gene
names using MatchMiner [55] and used these lists to retrieve the corresponding
sequences using EnsMart. The size of the sets are respectively 647, 886, and
783 genes. Figure 7.5 shows the average base composition graphs for the three
sets.

It can be seen that the more widely the genes are expressed, the more pro-
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Figure 7.5: Nucleotide frequencies of three human gene groups: genes with a narrow
expression pattern (A), a medium pattern (B), and a wide pattern(C).

nounced the variations in ∆WS are. These differences prove that the composi-
tion changes and the effect of methylation on gene expression are functionally
conserved, and that the nucleotide compositions are not the result of some kind
of mutational bias. The fact that widely expressed genes, regardless of the level
of expression, would need a promoter that is easily accessible (e.g., by an open
chromatine structure) would make sense in an evolutionary perspective. For
these genes one could expect that their regulation depends less on specific cis-
regulatory modules than on the accessibility of the proximal promoter. Also
note that the fact that the profiles from DBTSS in Figure 7.1 show a steeper
rise than the Ensembl-based profiles can be the result of a slight bias of DBTSS
towards genes with high expression levels.

To test whether the nucleotide composition also depends on gene expression
in fugu, we have worked under the assumption that fugu genes that are orthol-
ogous to human genes that are widely (or narrowly) expressed, are also widely
(or narrowly) expressed. For each of the three human gene sets above, the fugu
orthologous genes were retrieved from the Ensembl database and the nucleotide
frequencies were calculated (see Figure 7.6). As opposed to human, almost no
variation between the groups is observed. This can be due to the fact that the
control of methylation (i.e., keeping promoters unmethylated; for human this
is reflected in the second peak of the bimodal CpG distribution) is not or only
slightly present in fugu. It cannot be ruled out however that the absence of a
clear trend could be due to the fact that the expression patterns among orthol-
ogous genes are not well preserved or again that the gene start annotations are
of too low quality.

Drosophila shows a completely different behavior in composition changes so
we were interested to see whether these changes also vary with the level of gene
expression. Unfortunately we could not find a similar microarray experiment
in Drosophila that compares different tissues under normal circumstances, and
the mapping of human genes to Drosophila orthologs results in too few genes.
As an alternative we have selected gene sets with different EST expression pat-
terns from the Unigene database, namely (1) Unigene clusters with only one
expression site (and leaving out the clusters with whole body expression) (nar-
row expression) and (2) the 2000 clusters with the most expression sites (wide
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Figure 7.6: Nucleotide frequencies of three groups of Fugu genes that are orthologous
to the respective gene groups in Figure 7.5.

expression). These two sets are displayed in Figure 7.7.

Figure 7.7: Nucleotide frequencies of two fly gene groups: genes with a narrow ex-
pression pattern (A), and a wide pattern(B) as determined by their EST expression
pattern obtained from the Unigene database.

The difference between the profiles of wide and narrow expression is minimal.
The A+T maximum and the G+C minimum are more or less the same, only
the rise in A+T is a little bit steeper in the widely expressed genes. This finding
however might be caused by the quality of the data set and since there is a small
observable difference we would not rule out the possibility that differences could
be seen in the future when more appropriate data sets are available.

Another way of visualizing the variation of ∆WS, is by directly plotting
∆WS, as done in Figure 7.8.

7.3.5 GC and AT skews around the TSS

Chargaff’s second parity rule states that the number of As equals the number
of Ts, and the number of Cs equals the number of Gs in a single strand over
windows of sufficient size, often in the order of 1000 bp [62]. In our composition
profiles, at least in the intergenic regions, the number of As also equals the num-
ber of Ts (and %G=%C), but this is measured at one position across 5000 genes.
An “ergodic”1 version of Chargaff’s second parity rule seems to hold. This vari-
ant rule is broken in the [-60,+60] region around the TSS, and also further

1%G=%C along one sequence and also at one position along multiple sequences.
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Figure 7.8: ∆WS plotted for different gene groups. (A) ∆WS for four sets of human
genes: 5000 randomly selected genes, and the three groups with different expression
properties as used in Figure 7.5. It can be seen that ∆WS is indeed varying more in in
genes with wide expression. (B) Similar plots for three Drosophila gene groups: 5000
random genes and the two gene groups used in Figure 7.7. The differences in ∆WS
variation between the groups is clearly less than for human, as discussed in the text.

downstream of the TSS in most species. In vertebrates %A>%T and %G>%C
and in invertebrates %T>%A and %C>%G. Such differences are called AT and
GC skews and they are measured as (A-T)/(A+T) and (G-C)/(G+C) respec-
tively. The same observation was also made by Louie et al. [193]. The tran-
scription process is asymmetric and might bias mutation patterns between the
transcribed and nontranscribed strands by exposing the nontranscribed strand
to DNA damage [111]. Both transcription-coupled repair and deamination have
been shown experimentally to produce an excess of C→T mutations on the
nontranscribed strand in E. coli [20, 225]. Green and colleagues have shown
that A→G transitions can occur significantly more than T→C transitions in
transcribed than in non-transcribed regions (in mammals), which can explain
the GC skew (G>C) that is present in the whole region after the TSS in ver-
tebrates [127] (we have used the nontranscribed or synonymous strand in all
the analyses). In general, they show that transcripts have a significant G+T
compositional excess, and we also see that T>A after TSS. Majewski performed
a genome-wide study in human and reported the same mutational asymmetry
and he further established a correlation between this symmetry and gene ex-
pression [198]. All of this however seems only to make sense for the vertebrate
skews. Since A>T after the TSS in Drosophila (while the opposite is true in
human), either the transcriptional machinery that causes the mutational bias
differs between these organisms, or else the skews are functionally conserved
with a different function in the two phyla. A last observation regarding skews
is the sudden AT skew (where the A and T profiles separate in the plots) that
occurs right before the TSS in vertebrates and right after the TSS in arthropods.
A similar although less pronounced sudden GC skew can be seen right after the
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TSS in vertebrates, but not in arthropods. For these observations we have no
explanation.

7.4 Conclusions

In human there is a continuum in gene expression (low–medium–high or narrow-
medium-broad) that goes hand in hand with a continuum of CpG doublet con-
centration around TSS and both are reflected in a continuum of nucleotide fre-
quencies (small–medium–large ∆WS). In other words, genes can differ in their
CpG content (and thus in their nucleotide composition) and this difference has a
functional meaning (large ∆WS is needed for an “easy” expression, early in the
embryo or in many tissues) and is therefore evolutionary conserved. For CpGs
in fugu these relations are not so clear, perhaps because CpG islands in fish
seem primordial. For Drosophila we could not find an analogy of CpG islands.
A possible explanation for the A+T rise in the base composition in Drosophila
could then be that fly genes differ in their AT-content because of differences in
the concentration of AT-rich transcription factor binding sites around the TSS.





Chapter 8

General discussion

I have shown that, by integrating multiple data and multiple methods, mean-
ingful results can be obtained for the regulatory sequence analysis in metazoan
species, with their large intergenic regions. Several of the methods are new and
in some cases combined with existing ones. Also, several of the data sources
used have been created during this study and others were taken from public
databases.

The general scope of this dissertation is broad and different aspects of the
analysis of gene regulatory networks (GRN) are touched upon, some in more
detail than others. However, although the principles of GRNs have steered this
research, the actual inference, construction, or completion of GRNs is outside
the scope of this work. Therefore, the achievements described can be seen as
putting out feelers and smoothing the way for computational GRN analysis in
Metazoa. To achieve the latter, improvements in bioinformatics techniques are
required at the level of microarray data analysis, microarray data comparisons,
the detection of transcription factor binding sites in regulatory regions and
the detection of the regions themselves, in silico validation of computationally
generated hypotheses, network structure inference, etc. In this dissertation we
have looked at some of these building blocks of systems biology and suggested
strategies to make them better or easier to use.

Microarray data analysis

The quantity of mRNA molecules of a gene is the immediate output of a GRN
in action. If we want to reversely engineer a GRN, we can therefore use the
respective mRNA levels. Of course, since for most GRNs the constituting genes
are not yet known, we can only get the mRNA output of all GRNs. It is in
this massive amount of data that we have to find correlations between genes
that could imply a linkage between them. The most straightforward correlation
is co-expression: genes with the same expression pattern are potentially co-
regulated by the same set of transcription factors, that is they form a gene
battery, peripheral in the GRN. The inference of linkages between internal genes
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(encoding TFs) is more difficult because they are generally expressed at lower
levels and because their correlation requires the measurement of mRNA levels
at higher resolution (e.g., at many conditions), which is currently still expensive.

We have studied gene batteries during neuronal differentiation. Before clus-
tering, we had to remove systematic errors for which we applied state-of-the-art
preprocessing techniques that appeared just then [327], and we had to filter
the genes to remove bad measurements. For the latter we invented a gene-
wise ANOVA filter to detect only those genes with significantly similar replicate
measurements and a filter based on the correlation between the replicate mea-
surements. The clustering was done with existing algorithms (K-means and
AQBC [81]) and the clusters were interpreted manually by an expert to dissect
the different gene batteries. We also suggested an alternative way to find partic-
ular gene batteries in the large heap of GRN outputs, namely by first selecting
all genes that are known to be involved in the a particular process (using Gene
Ontology) followed by a hierarchical clustering within this group. This resulted
in the finding that for many processes there are gene batteries called into action
early during neuronal differentiation, and other gene batteries are activated at
later stages. The data set and the analysis system is available to the research
community as a web-based software tool called NEURODIFF.

If the goal in systems biology is to reversely engineer all GRNs we will need
massive amounts of mRNA expression levels during all possible conditions. We
have written a review paper to give a perspective on the possibilities in this
matter [215]. As was realized early by the MGED consortium, a clear description
of the biological and experimental conditions of sampling is crucial for the data
to be valuable for other investigators. An illustration of the fact that this is not
always trivial can be seen in our own comparison of microarray data measured
during neuronal differentiation in vitro and in vivo. It required time warping to
find out that the differentiation process in vitro proceeded faster than in vivo.
Thus caution should be taken when comparing or averaging conditions in the
repositories.

Cis-regulatory sequence analysis

The human genome sequence was published in February 2001 [173, 311] and I
started this research path in June 2001. The genomic sequences of worm [295]
and fly [2] were available earlier. The sequences of mouse [318], rat, fugu, and
zebrafish followed rapidly. Ensembl, a joint project between EMBL-EBI and the
Sanger Institute, has taken a leading role in the management of the metazoan
sequence assemblies and has created a software system for the automatic anno-
tation of the sequences. Our work has gone together with the developments of
Ensembl.

Relevant information in Ensembl for this work include (1) a catalogue of
genes for each species with their chromosomal location and an unambiguous
identifier, (2) external references for each gene (HUGO name, LocusLink ID, GO
associations, protein domains, etc.), (3) the gene structure with exons, introns,
5’UTR, and 3’UTR. The latter was extremely useful to retrieve the 5’ upstream
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sequence of a gene. We have analyzed the properties of such upstream sequences
in several metazoans in Chapter 6 and discovered some intriguing phenomena
regarding nucleotide skews and regarding differences in nucleotide composition
around the transcription start site between clades. Moreover, we have used
these upstream sequences to select putative proximal promoter sequences and
to find conserved non-coding sequences (CNS) between human and mouse.

These genomic sequences were treated as putative regulatory sequences and
were subjected to further analysis, namely the detection of transcription factor
binding sites (TFBS). To overcome the high level of false positive predictions we
proposed a new method to score a sequence with a position specific frequency
matrix (PSFM) that discriminates between a motif and the background and
that estimates the number of instances (the MotifScanner). Although this
resulted in a more robust scoring scheme—showing less variation with the vary-
ing parameter—, the short TFBS sequences still occur everywhere by chance
without necessarily being functional. We therefore used an approach that is
around for about a decade now, namely using only those putative TFBS that
are present in a all or many genes of a gene battery. Until now, this approach
was used to detect new motifs (i.e., DNA words of a certain length) in a se-
quence set (see Section 2.5.2). By taking advantage of the growing databases
of PSFMs like TRANSFAC, we have taken an alternative route by considering
only instances of known PSFMs. We used the binomial statistic to measure
a significant over-representation. The combination of phylogenetic footprint-
ing (selecting human-mouse conserved regions), the MotifScanner, the known
PSFMs, and the over-representation is thus the resulting strategy that, at least
for the benchmark data sets, gives meaningful results regarding the transcrip-
tional control of human genes. The system was made available to the research
community in the form of a Java software tool called TOUCAN.

Then we moved one step further by not selecting the single over-represented
TFBSs in a gene battery, but instead detecting a significant combination of TF-
BSs, following the biological model of combinatorial transcriptional control in
the form of cis-regulatory modules. The resulting ModuleSearcher algorithm
was proven to work on artificial data sets, and the results on a cell cycle gene
battery were promising. We realized that since the ModuleSearcher lacks a sta-
tistical measure of significance for a module, supporting evidence was needed
to check the functional meaning of a certain combination of TFBSs. To this
end, we developed the ModuleScanner to scan all human-mouse CNSs of the
human genome for clusters of these binding sites. The functional coherence of
the top scoring genes validated this approach. Further, we developed a strategy
to prioritize the top scoring genes according to their functional similarity with
the original gene battery where the module was found. The combination of
microarray-based expression data, EST-based expression data, information in
scientific abstracts, KEGG pathway membership information, predicted protein
domains, and Gene Ontology associations was proven to give better prioritiza-
tions than the individual sources. The computational prioritization is also being
made available as a Java tool called ENDEAVOUR.

There are several severe limitations for both versions of the strategy (the
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single over-representation and the modules). Firstly, the availability of high
quality PSFMs is still limited. TRANSFAC contains 493 vertebrate matrices
but the recent high quality non-redundant database JASPAR (based on SELEX-
determined matrices) contains only 111 matrices, while the estimated number
of transcription factors is ∼1850 [311]. Secondly, for noise reduction we have
restricted the detection of TFBS detection to CNSs while not all experimentally
determined TFBSs or modules are located in such CNSs. Thirdly, the TFBS
prediction by the MotifScanner depends on the sequence length, which makes
the calculation of expected frequencies for the binomial formula difficult.

Future research directions

For some of these limitations, the improvement of the computational efficiency
in gene regulation bioinformatics depends on biological advances in field, like
more high-quality PSFMs, more high quality and annotated microarray data
sets, improved gene start annotations, more experimentally verified enhancers,
etc. Regardless of that, we can think of some bioinformatics improvements per
se as well.

A follow-up of the ModuleSearcher algorithm will have to use more than
only the CNSs. One can imagine an algorithm that uses CNSs as seeds or
anchors to find an initial module, then to extend the search space to the com-
plete upstream, downstream, and intronic sequences, and improve the module
iteratively. A further improvement could be a more thorough phylogenetic foot-
printing (PF) using this module again as a seed, and comparing the module
structures (e.g., the arrangement of the binding sites therein) between multiple
species, and taking the evolutionary distances into account. Such a PF-aware
ModuleSearcher could also be used to find modules in a single gene represented
by multiple orthologous sequences of different species, instead of being restricted
to gene batteries. In this respect however, the question rises whether modular
structures are conserved well enough across species to be detected. An al-
ternative to the detailed PF, the selection of CNSs as anchors could also be
extended to regions that are conserved across multiple species, instead of using
only human-mouse conservation. In that case, multiple alignment algorithms
like MAVID [44] (instead of AVID that we used for two species) can be used.
Another possible improvement in the ModuleSearcher can be a more complex
score function, for example based on hidden Markov models like in [115].

If the performance of the current, or an improved version of the Module-
Searcher proves to be high enough, a database of hypothetical modules could
be constructed where biologists can find the predictions for their “pet gene” or
their own hypotheses generated in the lab by comparing them with the compu-
tationally generated hypotheses in the database.

The ENDEAVOUR system for computational prioritization currently imple-
ments a simple ranking scheme where the test genes that are ranked best are
considered as the best candidates to be related to the training genes. Although
the ranking is accompanied with a p-value, this only indicates the probability
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of observing the combined ranking by chance. If one can construct a set of
negative training genes (or maybe randomly selected genes from the genome),
then a pattern classification approach could improve the prioritization. Support
Vector Machines could be suitable to this end, by combining the kernel matrices
that could be generated for each data source.

A last, more general perspective can be given regarding the analysis of gene
regulatory networks. It should be feasible to construct an analysis pipeline for a
certain process under study, using the methods discussed in this work and other
available methods. The pipeline could start with the analysis of all available
microarray data in public repositories measured in conditions relevant for the
process, to select high-quality gene batteries or even to infer linkages between
transcription factors. This can be followed by TFBS and module detection
and in silico validation of the predicted GRN linkages. This way, complete
subnetworks can be predicted that could be experimentally validated. Such
an analysis however requires a biological research environment or at least a
collaboration between bioinformatics researchers and molecular biologists.





Appendix A. Glossary

This glossary has been constructed mainly from the 2can glossary of the European Bioinfor-
matics Institute, available at http://www.ebi.ac.uk/2can/, and from [59].

activator A protein that positively regulates transcription of a gene.

annotation A combination of comments, notations, references, and citations, either in free
format or utilising a controlled vocabulary, that together describe all the experimental
and inferred information about a gene or protein. Annotations can also be applied
to the description of other biological systems. Batch, automated annotation of bulk
biological sequence is one of the key uses of Bioinformatics tools.

base pair A pair of nitrogenous bases (a purine and a pyrimidine), held together by
hydrogen bonds, that form the core of DNA and RNA i.e the A:T, G:C and A:U
interactions.

Bilateria The bilaterally symmetrical animals, including all protostomes and deuteros-
tomes, but not sponges, cnidarians, or ctenophores.

binding site A place on cellular DNA to which a protein (such as a transcription factor)
can bind. Typically, binding sites might be found in the vicinity of genes, and would be
involved in activating transcription of that gene (promoter elements), in enhancing the
transcription of that gene (enhancer elements), or in reducing the transcription of that
gene (silencers). Note that whether the protein in fact performs these functions may
depend on some condition, such as the presence of a hormone, or the tissue in which
the gene is being examined. Binding sites could also be involved in the regulation of
chromosome structure or of DNA replication.

chromatin The material into which DNA in the cell nucleus is packaged with proteins.

cis-regulatory element A discrete region of DNA that affects transcription of a gene.

cis-regulatory module See cis-regulatory element. The word module is used because of
the modular organization of cis-regulatory elements.

CpG island CpG refers to a C nucleotide immediately followed by a G. The ’p’ in ’CpG’
refers to the phosphate group linking the two bases. Detection of regions of genomic
sequences that are rich in the CpG pattern is important because such regions are
resistant to methylation and tend to be associated with genes which are frequently
switched on. Regions rich in the CpG pattern are known as CpG islands. It has been
estimated that about half of all mammalian genes have a CpG-rich region around their
5’ end. It is said that all mammalian housekeeping genes have a CpG island. Non-
mammalian vertebrates have some CpG islands that are associated with genes, but
the association gets equivocal in the farther taxonomic groups. Finding a CpG island
upstream of predicted exons or genes is good contributory evidence.

enhancer An enhancer is a nucleotide sequence to which transcription factor(s) bind,
and which increases the transcription of a gene. It is not part of a promoter; the
basic difference being that an enhancer can be moved around anywhere in the general
vicinity of the gene (within several thousand nucleotides on either side or even within
an intron), and it will still function. It can even be clipped out and spliced back
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in backwards, and will still operate. A promoter, on the other hand, is position-
and orientation-dependent. Some enhancers are ”conditional”—in other words, they
enhance transcription only under certain conditions, for example in the presence of a
hormone.

gene A unit of DNA that performs one function. Usually, this is equated with the produc-
tion of one RNA or one protein. A gene contains coding regions, introns, untranslated
regions, and control regions.

gene battery A set of target genes of a regulatory network that are co-regulated by the
same set of regulators

housekeeping genes Genes that encode proteins required for basic functions required in
all cells.

Metazoa Multicellular animals, including diploblasts and triploblasts.

microarray Microarrays allow snapshots to be made of expression levels for thousands of
genes in a single experiment.

orthologs Homologous genes in different species that arose from a single gene in the last
common ancestor of these species.

paralogs Homologous genes that are related by duplication of an ancestral gene.

parsimony Refers to a rule used to choose among possible trees, which states that the
tree implying the least number of changes in character states is the best.

phylogeny The evolutionary relationships among organisms; the patterns of lineage branch-
ing produced by the true evolutionary history of the organisms being considered.

promoter The genomic sequence immediately upstream of the transcriptional start site
defined by the 5’ end of an mRNA. It is this region that is presumed to bind the
trans-acting factors required to transcribe the gene.

pseudogene The remnant of a gene that has been rendered nonfunctional through the
accumulation of mutations.

regulatory evolution Evolutionary changes in gene regulation.

regulon A set of co-regulated genes (they have the same cis-regulatory elements).

repressor A transcription factor that negatively regulates the expression of a gene, often
by binding directly to DNA sequences in a cis-regulatory element.

TATA-box A sequence found in the promoter (part of the 5’ flanking region) of many
genes. Deletion of this site (the binding site of transcription factor TFIID) causes a
marked reduction in transcription, and gives rise to heterogeneous transcription initi-
ation sites.

transcription The process of copying DNA to produce an RNA transcript. This is the
first step in the expression of any gene. The resulting RNA, if it codes for a protein,
will be spliced, polyadenylated, transported to the cytoplasm, and by the process of
translation will produce the desired protein molecule.

transcription factor A protein that is involved in the transcription of genes. These
usually bind to DNA as part of their function (but not necessarily). A transcription
factor may be general (i.e. acting on many or all genes in all tissues), or tissue-specific
(i.e., present only in a particular cell type, and activating the genes restricted to that
cell type). Its activity may be constitutive, or may depend on the presence of some
stimulus; for example, the glucocorticoid receptor is a transcription factor that is active
only when glucocorticoids are present.
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Computationele detectie van

cis-regulatorische modules in dierlijk

DNA

Inleiding

Bij de recentelijke voltooiing van verschillende genoomprojecten [173, 311, 318,
2] bleek het aantal opgetekende genen minder dan verwacht. Zo is het aantal
genen in het menselijk genoom (∼25000) slechts het dubbel van het aantal genen
in de fruitvlieg, en zowat 10% van de menselijke genen zijn bovendien duidelijk
verwant aan bepaalde genen in vlieg en worm. Daarom is de motivatie om te
begrijpen hoe genen gereguleerd worden sterker als nooit tevoren en er wordt
aangenomen dat evolutie en ontwikkeling beide uitingen zijn van de erfelijke
regulatorische programma’s die bepalen hoe de morfologische kenmerken van
elke soort eruit zien [146, 78, 59].

De rol van de bio-informatica bij de studie van genregulatie is groter ge-
worden tijdens het afgelopen decennium, zowel door de enorme hoeveelheden
sequentie- en annotatiegegevens die beschikbaar worden, als door het gebruik
van “high-throughput” metingen van genexpressie met behulp van DNA micro-
arrays waarvoor computationele analysemethoden vereist zijn.

Genregulatorische netwerken en cis-regulatorische modules

Bij dieren, en ook meer algemeen bij Eukaryoten, zijn diverse mechanismen in
werking om genexpressie te reguleren, waaronder chromatinecondensatie, DNA-
methylatie, transcriptie-initiatie, alternatieve “splicing” van RNA, mRNA-sta-
biliteit, translationele controles, verschillende vormen post-translationele modi-
ficatie, intracellulaire traffiek, en eiwitdegradatie [183]. Van al deze categorieën
ligt de voornaamste controle bij de snelheid van transcriptie-initiatie [178].

Slechts enkele genen in een eukaryotische cel komen tot expressie op een
bepaald moment. De verhouding en de samenstelling van de afgeschreven genen
verandert aanzienlijk tijdens de levenscyclus, tussen celtypes, en als respons op

147
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veranderende fysiologische en omgevingsfactoren. Gegeven dat eukaryotische
genomen qua grote-orde 0.5 tot 5 ×104 genen bevatten, vereist de differentiële
regulatie ervan een buitengewoon complex verzameling van specifieke fysische
interacties tussen macromolecules. De vorm van de machinerie die transcriptie
controleert is dat van een genregulatorisch netwerk (GRN, zie Figuur 8.1). Een
GRN bepaalt de transiënte regulatorische toestanden in een cel en de batterijen
van stroomafwaartse genen die ze tot expressie brengen [146, 325].

ECCB Sep 2003

• Different tissues
• Different lineages
• Cell cycle control

Environmental stimuli
Signals from adjacent cells

TSS

mRNA
protein

INPUT

INPUT

OUTPUT

Signal transduction pathways

Gene battery: 
co-expressed
target genes

cis-regulatory DNA 
sequence elements

Proximal
Promoter

Transcriptional activators
Transcriptional repressors

Feedbacks

Figuur 8.1: Een imaginair generegulatorisch netwerk met de cis-regulatory modules
als centrale elementen.

Zoals weergegeven in Figuur 2.1 zijn de centrale elementen in een GRN de
cis-regulatorische modules (CRM of kortweg module) waarop transcriptiefacto-
ren (TF) en co-factoren kunnen assembleren. CRM’s behandelen op die manier
alle informatie van de stroomopwaartse biochemische signaaltransductiebanen
en door te communiceren met het basaal transcriptie-apparaat dirigeren zij de
snelheid van transcriptie-initiatie. Een CRM wordt operationeel gedefinieerd
als een cluster van transcriptiefactorbindingsplaatsen (TFBP) die een discreet
aspect van het totale transcriptieprofiel van een gen produceert. De meest ge-
hanteerde termen in de literatuur voor een CRM zijn enhancer en silencer. Een
module bevat typisch ongeveer 6 tot 15 bindingsplaatsen en er binden 4 tot 8
TF’en [78].

Het doel van dit werk is om nieuwe methoden te ontwikkelen om groepen van
genen te vinden die samen tot expressie komen, via microarray data-analyse, en
om de TFBP’en en de modules te ontdekken die verantwoordelijk zijn voor deze
co-expressie. Wat betreft de TFBP’en wordt er gebruik gemaakt van bestaan-
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de modelleringsmethoden. De twee voornaamste modellen voor een TFBP zijn
de consensus sequentie en de positiespecifieke frequentiematrix (PSFM). Beide
worden opgebouwd of getraind vertrekkende van een alignering van experimen-
teel bepaalde bindingsplaatsen1. De consensus sequentie komt goed, maar niet
noodzakelijk exact, overeen met elk van de individuele plaatsen en er is een al-
tijd een afweging tussen het aantal toegelaten afwijkingen, the ambiguteit in de
consensus, en de specificiteit en sensitiviteit van de voorstelling. De voorstelling
door een PSFM, die wij voornamelijk zullen hanteren, is een benadering van
de bindingsenergie van een TF op een bindingsplaats [24] en wordt als volgt
voorgesteld:

Θ =


wA,1 wA,2 . . . wA,L

wC,1 wC,2 . . . wC,L

wG,1 wG,2 . . . wG,L

wT,1 wT,2 . . . wT,L

 , (8.1)

waar wb,j de probabiliteit is om nucleotide b te vinden op positie j in de bindings-
plaats van lengte L. Om nu instanties van een dergelijk motiefmodel terug te
vinden in een sequentie, wordt voor elk sequentiesegment x een score berekend:

W (x) =
L∑

j=1

wb,j . (8.2)

Een algemeen toegepaste techniek is om deze segmenten x te weerhouden als
mogelijke bindingsplaats of positieve “hit”, wanneer de genormaliseerde score
groter is dan een bepaalde drempelwaarde.

Gezien de beperkte lengte van een TFBP en gezien de ontaarding van een
TFBP (er is veel variatie toegelaten op de bindingssequentie), komen TFBP’en
overal voor in het genoom, maar slechts een beperkt aantal voorkomens zijn
functionele TFBP’en. Wij zullen via drie benaderingswijzen het aantal vals po-
sitieve TFBP-voorspellingen trachten te reduceren: ten eerste door een meer
robuuste voorspelling van TFBP’en met PSFM’en; ten tweede door het verklei-
nen van de zoekruimte, hetgeen kan op twee mogelijke manieren, namelijk door
“phylogenetic footprinting” of het in rekening brengen van evolutionaire conser-
vering en door het gebruik van “co-expressie”, gemeten met DNA microarrays;
en ten derde door het zoeken naar combinaties van TFBP’en als modules i.p.v.
naar enkelvoudige TFBP’en.

Microarray data-analyse: een casus in de neuro-
biologie

Hier beschrijven we enkele nieuwe en reeds bestaande technieken om microarray
expressiegegevens te analyseren, gebruik makende van een casus betreffende de
genprofilering in hippocampale neuronen in muis tijdens differentiatie [77]. Deze

1Een voorbeeld van een in vitro methode om TFBP’en te bepalen is SELEX (systematische
evolutie van liganden door exponentiële verrijking).
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analyse werd uitgevoerd in samenwerking met het Laboratorium voor Neuronale
Celbiologie van de KULeuven o.l.v. Professor B. De Strooper. Van 17-dagen
oude muisembryo’s werden neuronen uit de hippocampus in cultuur gebracht
en onder bepaalde condities tot differentiatie gebracht. Na 7h, 18h, 33h, 72h,
8 dagen en 12 dagen werd mRNA uit de cellen geëxtraheerd en telkens twee-
maal op vijf microarray “slides” gehybridiseerd, waarbij mRNA van de volledige
hersenen als controle werd gebruikt.

De logaritmen van de ruwe expressie-ratio’s (test/referentie) werden eerst
voorbehandeld om systematische fouten weg te filteren. In het bijzonder werd
een LOWESS fit gebruikt om de data te corrigeren voor sterk optredende
kleurstof-specifieke fouten. Vervolgens werd een filter ontworpen op basis van
een ANOVA procedure om de genen te selecteren die consistent hetzelfde tijds-
profiel vertoonden voor de vier herhaalde metingen2. Dit resulteerde in min-
stens 2314 genen die een verandering in expressie vertonen met een statistische
betrouwbaarheid (p-waarde<0.01).

De gefilterde en genormaliseerde profielen werden vervolgens onderworpen
aan een clusteranalyse (zie Figuur 3.5). De duidelijkste trends in genexpressie
tijdens neuronale differentiatie zijn gestadige “up”- en “down”-regulatie. Dit pa-
troon is zichtbaar in de globale analyse, maar ook binnen de meeste functionele
groepen (bv. de synaptische vesikelcyclus), hetgeen resulteert in het vervangen
van vroege genen door late genen met (schijnbaar) gelijkaardige functies. De
resultaten van een “K-means” clustering met K=20 werden door een bioloog
gëınterpreteerd en als volgt samengevat. Tijdens een eerste fase van de cultuur is
er een hoog expressieniveau van genen voor DNA- en protëınesynthese, die dan
geleidelijk minderen in expressie. De latere differentiatiestadia worden gekarak-
teriseerd door een sterke vooruitgang van de systemen voor protëınetransport en
energie-ontwikkeling, en het aanzetten van specifieke neuronale functies, zoals
de synaptische vesikelcyclus. Voor deze laatste functie werden alle betrokken
gekende genen die in hun expressie veranderen bekeken en vergeleken met be-
staande literatuur. De creatie van dergelijke functionele groepen van genen is
arbeidsintensief en vereist een uitgebreide biologische kennis. Om gengroepen
van andere functies te onderzoeken werd een webapplicatie ontwikkeld (NEU-
RODIFF) die toelaat om eerst een groep van genen te selecteren o.b.v. hun
functie, hetgeen wordt bewerkstelligd door “Gene Ontology” associaties, en om
vervolgens deze gengroep verder op te splitsen d.m.v. een hiërarchische cluste-
ring van hun expressieprofielen. Hieruit bleek inderdaad dat de gestadige stij-
ging en daling in expressie ook binnen de functionele groepen van kracht was.
De NEURODIFF toepassing is vrij beschikbaar voor vorsers van academische
instellingen. Dergelijke groepen van genen die een gelijkaardig expressiepro-
fiel vertonen én bij hetzelfde biologisch proces betrokken zijn, worden mogelijk
gecontroleerd door dezelfde groep transcriptiefactoren en zouden bijgevolg een
aantal transcriptiefactorbindingsplaatsen gemeenschappelijk kunnen hebben in
proximale of distale modules. Het onderzoek naar modules in deze groepen is

2Op elke slide staat tweemaal dezelfde kloon en het hele experiment werd tweemaal her-
haald.
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momenteel aan de gang [76].
Het systeem van in vitro differentiatie werd reeds veelvuldig gebruikt om ver-

schillende aspecten van neuronale differentiatie te bestuderen. Om na te gaan
of de genetische programma’s die in vitro en in vivo worden aangewend dezelfde
zijn, werden de hier bekomen genexpressieprofielen vergeleken met deze beko-
men tijdens in vitro differentiatie, zoals gemeten door Mody et al. [214]. Voor
de laatste werden echter verschillende tijdspunten als voor de eerste gebruikt.
Daarom werd de optimale overeenkomst tussen de experimenten bepaald via
“time warping” (letterlijk “het doen krommen van de tijd”), waarbij het alig-
neren van de tijdsprofielen kan vergeleken worden met sequentiealignering. De
correlatie tussen de expressieprofielen van de genen die in beide experimenten
werden gemeten was gemiddeld 0.646 en de mediaan was 0.787. Deze hoge cor-
relatie leidde tot de volgende conclusies: (1) hetzelfde genetisch programma is
actief tijdens in vitro en in vivo differentiatie van hippocampale neuronen in
de muis en dus is het in vitro systeem een goed model om genexpressie tijdens
differentiatie te bestuderen; (2) aangezien het in vivo experiment gebeurde met
Affymetrix oligo-DNA-chips en het in vitro experiment met cDNA microarrays
blijkt dat de resultaten van beide platformen vergelijkbaar kunnen zijn, mits
een goede voorbehandeling en filtering van de data. In een review [215] zijn wij
verder ingegaan op het vergelijken van microarray data en op de mogelijkheden
van microarray “repositories”.

Detectie van transcriptiefactorbindingsplaatsen in
genen bij dieren

De casus rond genexpressie-analyse illustreerde dat het mogelijk is om met be-
hulp van de microarray technologie clusters van genen te vinden die een gelijk-
aardig expressiepatroon vertonen tijdens een proces onder studie. In deze sectie
introduceren we enkele methoden om TFBP’en te detecteren in de regulatori-
sche sequenties van de genen in zo’n cluster die mogelijk verantwoordelijk zijn
voor de co-expressie. Aangezien het testen van nieuwe methoden best gebeurt
met gegevens waarvoor de uitkomst op voorhand geweten is, of waarvoor de
uitkomst makkelijk gëınterpreteerd kan worden, worden onze methoden gevali-
deerd m.b.v. “benchmark” datasets.

Vooreerst werd er aandacht besteed aan het verkleinen van de zoekruimte
waarin gezocht wordt naar TFBP’en. De DNA sequenties waarin regulatorische
elementen kunnen liggen, spreiden zich bij hogere eukaryoten namelijk uit tot
tientallen kilobasen stroomopwaarts van een gen, stroomafwaarts van een gen,
en in de grote intronische gebieden van een gen. Er werden twee manieren ge-
bruikt om de zoekruimte te verkleinen: (1) het gebruik van groepen van genen
die samen tot expressie komen, zodanig dat een statistische over-representatie
van een TFBP in een set berekend kan worden; en (2) het gebruik van “phy-
logenetische footprinting” door enkel deze DNA sequenties te onderzoeken die
geconserveerd zijn tussen twee gerelateerde organismen. In deze studie werden



Nederlandse samenvatting 152

daarvoor orthologe genenparen van mens en muis gebruikt. Het tijdstip van evo-
lutionaire divergentie van mens en muis (de speciatie) is zodanig dat blokken
van geconserveerde sequentie makkelijk gedetecteerd kunnen worden. Boven-
dien hebben deze een relatief grote kans hebben om een regulatorische functie
te herbergen [329]. De gespecialiseerde algoritmen die vereist zijn voor de alig-
nering van grote genomische sequenties werden beschikbaar tijdens dit werk
(hier werd AVID [43] gebruikt). Aangezien echter algemeen aanvaard wordt
dat er in de proximale promotergebieden altijd functionele TFBP’en aanwezig
kunnen zijn, onafgezien van een mogelijke evolutionaire conservering, werd te-
vens een manier bestudeerd om dergelijke proximale gebieden van voldoende
kwaliteit te bekomen. Na een analyse van de nucleotidesamenstelling rond de
startplaats van menselijke genen zoals die in de Ensembl databank geannoteerd
is (zie ook verder), werd geconcludeerd dat deze startplaatsen in voldoende mate
overeenstemmen met de werkelijke transcriptiestartplaatsen. Bijgevolg kan het
onmiddellijk gebied stroomopwaarts ervan (bv. 400 bp) als proximale promoter
gebruikt worden. Deze aanpak heeft als voordeel dat er geen promoter-predictie
algoritmen gebruikt dienen te worden. Van dergelijke algoritmen is de perfor-
mantie vaak immers onvoldoende (bv. tot 70%), en het gebruik ervan afhangt af
van het organisme (promoterpredictie bij menselijke genen verschilt bijvoorbeeld
van promoterpredictie bij fruitvlieggenen).

Nadat de gewenste sequenties geselecteerd zijn voor een groep van genen,
wordt elke individuele sequentie “gescoord” met alle PSFM’s uit de TRANS-
FAC databank [323]. De reeds gekende scoringsalgoritmen werken alle door
elk subsegment in de sequentie als een bindingplaats (of “hit”) te beschouwen
waarvoor de genormaliseerde som van de logaritmen van alle probabiliteiten
overeenkomstig de PSFM boven een ingestelde drempelwaarde ligt (bv. 0.75).
Wij hebben een nieuwe scoringsmethode ontwikkeld en getest die twee nieuwe
elementen introduceert. Het eerste is het gebruik van een hoger-orde achter-
grondmodel waarmee het subsegment ook gescoord wordt en waarmee de score
volgens de PSFM vergeleken wordt. Dit zorgt voor een bevoordeling van mo-
tiefinstanties die ‘uit de achtergrond springen’:

W (x) = log
( P (x|Θ)

P (x|S,Bm)

)
=

W∑
j=1

[log(θbj

j )− log(P (bj |S,Bm))]. (8.3)

De eerste term in deze formule beschrijft de kans dat een segment een instan-
tie is van een motiefmodel θ. De tweede term beschrijft de kans dat het segment
overeenkomt met de background. Ten tweede worden niet alle instanties boven
de drempelwaarde als positief aanschouwd, maar wordt het verwachte aantal
instanties berekend in een probabilistisch model dat vergelijkbaar is met het
schatten van het aantal instanties tijdens het zoeken naar nieuwe motieven met
“Gibbs sampling” [298]. De drempelwaarde-parameter is dan vervangen door
een parameter die de kans weergeeft dat er een instantie in de sequentie aan-
wezig zal zijn (de ‘prior’, bijvoorbeeld 0.2). Deze prior wordt in de formule van
Bayes gebruikt waarmee het aantal instanties wordt afgeleid. Het resulterende
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algoritme is de MotifScanner.
Om de statistische over-representatie te berekenen voor alle PSFM’s die bij

het scoren gebruikt werden, wordt een binomiale analyse uitgevoerd. De ver-
wachte frequentie aan instanties van een PSFM wordt hierin vergeleken met de
geobserveerde frequentie en resulteert in een p-waarde voor elke PSFM. Na een
correctie die dient te gebeuren omdat multipele tests worden uitgevoerd, kunnen
die PSFM’s als over-gerepresenteerd beschouwd worden, die een voldoende hoge
significantie vertonen. Om de verwachte frequenties van elke PSFM te berekenen
werden alle mens-muis geconserveerde gebieden in 10 kilobasen stroomopwaarts
van de genstart gescoord.

Deze procedure van sequentieophaling uit Ensembl, mens-muis sequentie-
alignering, PSFM scoring, en binomiale analyse werd gëımplementeerd in een
software tool TOUCAN, waarbij de PSFM scoring niet lokaal gebeurt, maar
op de ESAT servers. De communicatie tussen de TOUCAN-klant en de ESAT
servers gebeurt d.m.v. een XML-gebaseerd protocol SOAP genaamd (“Simple
Object Access Protocol”). TOUCAN kan worden gedownload van onze website
en is vrij te gebruiken door vorsers van academische instellingen.

TOUCAN en de voorgestelde strategie werden gevalideerd door de signi-
ficant over-gerepresenteerde bindingsplaatsen voor een set van spierspecifieke
en een set van leverspecifieke genen te bepalen. De resultaten kwamen goed
overeen met de verwachte resultaten die werden afgeleid uit twee voorheen ver-
schenen studies [168, 316] waarin de experimenteel bepaalde TFBP’en werden
samengevat en gemodelleerd. Deze studie toont aan dat functionele TFBP’en
kunnen gevonden worden in co-gereguleerde menselijke genen, hetgeen door de
grote intergenische gebieden voorheen niet in op een “high-throughput” com-
putationele manier kon worden uitgevoerd. Wij postuleren dat deze resultaten
erop wijzen dat ook clusters van genen die enkel vermoedelijk co-gereguleerd
zijn (bijvoorbeeld clusters van genen bekomen met microarray data) betrouw-
bare resultaten kunnen opleveren. Dit geldt des te meer indien er daarenboven
bijkomende aanwijzingen zijn voor co-regulatie (bv. indien de genen naast een
gelijkaardig expressieprofiel ook in hetzelfde of een gelijkaardige proces actief
zijn). Er dient verder opgemerkt dat de keuze van de sequentieset om de ver-
wachte frequenties te berekenen een significante invloed heeft op de resultaten
hetgeen een negatief effect heeft op de robuustheid van de aanpak (een prag-
matische oplossing hiervoor wordt gegeven in de volgende sectie). Tevens is
de methode afhankelijk van beschikbare PSFM’s in databanken als TRANS-
FAC of JASPAR [252], waarvan het aantal en de kwaliteit tot op heden nog
niet optimaal zijn. Een laatste beperking van de aanpak is de restrictie van
de zoekruimte tot geconserveerde gebieden. Door deze beperking neemt het
aantal vals positieve voorspellingen inderdaad gunstig af, maar het aantal vals
negatieven neemt toe. De beperkte biologische kennis van distale regulatorische
gebieden en hun conservering maken dat een schatting van deze percentages
momenteel nog moeilijk is.

Ten slotte werd TOUCAN gebruikt voor regulatorische sequentie-analyses
tijdens twee gezamenlijke projecten met moleculaire biologen van het Cen-
trum Menselijke Erfelijkheid betreffende de regulatorische analyse van mogelijke
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TCF-3-β-catenine doelgenen [83] en van het gen Atonal in Drosophila melano-
gaster m.b.v. phylogenetische footprinting.

Detectie van cis-regulatorische modules

Verscheidene experimentele studies hebben uitgewezen dat de transcriptionele
regulatie van een gen door een combinatie van transcriptiefactoren eerder regel
is dan uitzondering. Dit gegeven kan worden aangewend bij de voorspelling van
TFBP’en door enkel deze TFBP’en te beschouwen die in gewenste combinatie
met andere TFBP’en voorkomen binnen een beperkt DNA gebied (bv. 200-500
bp). In plaats van de statistische over-representatie van elke individuele PSFM
afzonderlijk te bekijken, werd een algoritme ontwikkeld om de beste combinatie
van PSFM’s te vinden. Een dergelijke module omvat PSFM’s waarvoor de
instanties vaak samen voorkomen binnen een DNA-venster, en dit in zoveel
mogelijk sequenties van een set. Een score-functie wordt gehanteerd die voor
een PSFM-combinatie het logaritme van de MotifScanner scores van elke PSFM-
instantie binnen een DNA-venster sommeert en die vervolgens de scores van de
beste scorende DNA-vensters van elke sequentie sommeert. Het best scorende
wordt als volgt berekend:

SM(set) =
n∑

i=1

SM(seq) =
n∑

i=1

max
T

p(m)×
∑
x∈m

W (x), (8.4)

met W (x) de PSFM score zoals beschreven in 8.3, m een module (een verzame-
ling van x’en), x een instantie van een Θ en T een verzameling van alle geldige
m’s, of met andere woorden alle mogelijke instanties van M in een sequentie
seq.

Aangezien nu het aantal PSFM’s van vertebraten in TRANSFAC 493 is
(voor versie 7.3), is het computationeel niet mogelijk om voor alle combinaties
van bijvoorbeeld 5 PSFM’s de score te berekenen om zo de meest optimale te
selecteren. Er werden twee efficiënte zoekalgoritmen gëımplementeerd om de
zoekruimte te doorzoeken. Het eerste is gebaseerd op A*, waarbij een boom
doorzocht wordt waarin elke knoop een deel is van een mogelijke oplossing.
De “root” van de boom is de lege module, en op elk niveau wordt één PSFM
toegevoegd. Met behulp van een heuristiek wordt de boom op een intelligente
manier doorzocht zodat niet alle knopen moeten worden afgegaan. A* vindt
gegarandeerd het optimale pad in de boom, en dus de optimale module [136].
Met de “A* ModuleSearcher” werd de voorgestelde aanpak gevalideerd.

De ModuleSearcher werd getest op semi-artificiële datasets: random sequen-
ties werden gegenereerd door “sampling” van een 3de orde achtergrondmodel
(gemaakt van alle mens-muis geconserveerde gebieden) en daarin werden op wil-
lekeurige posities niet-overlappende instanties gëımplanteerd door “sampling”
van een PSFM. Het scoren van deze sequenties met alle PSFM’s uit TRANSFAC
resulteert in een enorm aantal vals positieve TFBP-predicties (er zijn namelijk
veel “hits” van PSFM op plaatsen waar geen instantie werd gëımplanteerd).
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Het algoritme was echter in staat om 80 % (4/5) tot 100 % (5/5) van de
gëımplanteerde elementen correct terug te vinden als module.

Als biologische test werd een groep van genen samengesteld die samen tot
expressie komen tijdens de celcyclus. Hiervoor werd gebruik gemaakt van de
SOURCE [86] webapplicatie die toelaat naar genen te zoeken in een microar-
ray experiment die een gelijkaardig expressieprofiel vertonen, als een “query”.
Als query gebruikten wij CCNB2 (cycline B2) en als microarray experiment
de metingen tijdens de celcyclus van HeLa cellen van Whitfield et al. [322].
Voor die genen waarvoor een muisortholoog gekend is in Ensembl, werd de 10
kb stroomopwaartse sequentie afgehaald en de mens-muis orthologe gebieden
werder gealigneerd met AVID. In de geconserveerde niet-coderende sequenties
(CNS) werd naar de optimale combinatie van 4 TF’en gezocht binnen DNA
vensters van 200 bp. De beste module was [CEBPA-STAF-NFY-TCF4].

Om dit resultaat te valideren, werd een strategie ontwikkeld die gebaseerd is
op de hypothese dat een “query” op het hele menselijke genoom (of minstens op
alle CNS’en) met een functionele module, een aantal van de doelgenen van deze
module moet kunnen terugvinden (i.e., een goede sensitiviteit) zonder te veel
vals positieve “hits” (i.e., een goede specificiteit). De ModuleScanner methode
werd ontwikkeld en is gebaseerd op de scorefunctie van de ModuleSearcher. In-
dien de CNS’en met de hoogste score voor de geteste module in de buurt liggen
van genen die alle tot hetzelfde proces behoren, dan is de module plausibel. Deze
aanpak werd getest door de IFN-β-enhancer [IRF-HMGIY-NFKB] als query te
gebruiken. Als alle CNS’en gerangschikt worden volgens score, staat het IFN-β
gen op nummer 4 (van meer dan 10.000 genen). Enkele andere genen uit de top
10 zijn duidelijk verwant met het de anti-virale functie van IFN-β. Een meer
systematische aanpak werd vervolgens uitgewerkt om manuele opzoekingen in de
literatuur en subjectieve beslissingen te vermijden. Zoals er voor de analyse van
genexpressiegegevens gebruik gemaakt werd van Gene Ontology associaties om
genen met een bepaalde functie te groeperen, zullen wij hier dezelfde bron van
informatie gebruiken om de functionele coherentie van een gengroep als volgt
te bepalen. Voor elke geannoteerde term van een gen worden alle termen bij de
genannotatie gevoegd die op een van de mogelijke paden liggen naar de ‘root‘
in de “directed acyclic graph” (DAG). Vervolgens wordt voor elke term in deze
uitgebreide annotatie de frequentie berekend in de hele genset. Met de binomi-
ale formule wordt dan een p-waarde berekend die aangeeft hoe waarschijnlijk
deze geobserveerde frequentie is t.o.v. de verwachte frequentie. Deze laatste
kan geschat worden door de frequentie van elke term te berekenen in een set
van alle genen van het genoom. Voor de IFN-β-enhancer zijn er enkele termen
significant over-gerepresenteerd in de top 10 scorende genen die met de Module-
Scanner bekomen werden, zoals onder meer “apoptosis”, “cytokine activity” en
“innate immune response”. Voor de nieuwe [CEBPA-STAF-NFY-TCF4] modu-
le die in de CCNB2 -set werd gevonden waren GO-termen als “mitosis”, “nuclear
division” en “cell proliferation” over-gerepresenteerd. De nieuwe module is dus
in staat om celcyclus-specifieke genen uit het genoom te selecteren en is daarom
potentieel ook functioneel. Het systeem om modules te zoeken en te valideren
is schematisch voorgesteld in Figuur 8.2.
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Fig. 1. Overview of the system to detect regulatory modules. All DNA regions, ranging from 100 to several hundreds of base pairs, resulting
from global alignment of all human-mouse ortholog pairs are stored, as are the hits of all transcription factors of TRANSFAC, in GFF format.
The GFF can be selected for a set of genes, and the ModuleSearcher finds the best module model within the set. Such a model can then be
used to find putative targets, using the same GFF database.

x = [b1; b2; : : : ; bw] in a sequence s is computed as

W (x) =

Qw

j=1�(bj ; j)Qw

j=1 P (bj js;Bm)
;

where bj is the nucleotide found at position j in the
segment x, �(bj ; j) is the probability of finding bj at
position j according to the PSFM and P (bj js;Bm) is
the probability of finding bj in the sequence according to
the background model. This formula indicates how likely
it is that the segment is generated by the motif model
with respect to the background. The use of higher-order
background models have been described extensively in
(Thijs et al., 2001).

These scores can be used directly, as in a PWM scoring
scheme (Stormo, 2000), by computing the logarithm of
W (x) and rescaling the scores to a value between 0
and 1. By defining a threshold, we retain all segments
with a score greater than this threshold. The resulting
program is called MotifLocator. The second program,
MotifScanner, uses a probabilistic sequence model to
estimate the number of instances c of a motif model that
are hidden in a noisy background sequence (Aerts et al.,
2003). If the estimated number of instances is c, the c sites
with the highest score W (x) in the sequence are selected.

Matrix similarity Motif models are redundant at two
levels: (1) there can be multiple matrices describing the
binding site of the same TF and (2) there can be distinct
TFs with similar PSFMs. Consequently there is a limit
on the sensitivity to distinguish some models computa-
tionally. The similarity between two motif models, �1

and �2, is measured with the Kullback-Leiber distance
(Kullback, 1959), which is computed as

max
A

1

w

wX

j=1

TX

b=A

�1(j; b)log
�1(j; b)

�2(j; b)

where �1(j; b) is the probability of finding base b at
position j in Motif 1, w is the length of the motif, andA is
the set of all possible alignments for an allowed shift (e.g.,
2 base pairs). Since this equation is asymmetric, we take
the average between the distance from�1 to�2 and from
�2 to �1. The motif models can be grouped into classes
depending on an imposed threshold on this distance.
We have used threshold values of 0.2 (high stringency),
0.3 (moderate stringency), and 0.4 (low stringency) to
construct classes of motif models.

Module score function Analogous with the distinction
between a binding site and a motif model (a frequency

3

Figuur 8.2: Overzicht van het systeem om cis-regulatorische modules te detecteren.
Alle geconserveerde niet-coderende sequenties (CNS) vanaf 100 bp, gevonden door
globale alignering van alle mens-muis orthologe genparen, zijn opgeslagen. Alle CNS’en
werden gescoord met alle beschikbare PSFM’en voor vertebraten uit TRANSFAC,
waarvan het resultaat als GFF wordt bewaard. Voor een te bestuderen genset worden
de relevante GFF rijen uit de GFF-databank opgehaald, en kunnen gebruikt worden
als input voor de ModuleSearcher. Deze vindt het beste module-model in de set,
samen met de instanties van het model op alle sequenties. Het model kan tevens
gebruikt worden om mogelijke doelgenen te vinden in de GFF-databank m.b.v. de
ModuleScanner.

Aangezien de A* implementatie traag kan zijn voor grote sequentiesets of
grote modules (bv. meer dan 5 elementen), werd een alternatieve zoekmetho-
de ontworpen die gebaseerd is op Genetische Algoritmen (GA). Hierbij wordt
vertrokken van een populatie van random gegenereerde modules die volgens
dezelfde scorefunctie als in A* gerangschikt worden. De beste “survivors” wor-
den onderling gekruist (totdat dezelfde grote van populatie opnieuw bereikt is)
en sommige PSFM’s kunnen muteren tot een andere PSFM. Dit proces wordt
een vooraf opgegeven aantal iteraties herhaald (i.e., de generaties). Deze GA-
ModuleSearcher werd gevalideerd door de resultaten op de CCNB2 -genset voor
verschillende parameterinstellingen te vergelijken met de uitkomst van de A*-
ModuleSearcher. Indien GA twee tot driemaal herhaald wordt met 100 genera-
ties, is de uitkomst dezelfde als voor A* en de winst aan snelheid is significant
(enkele minuten voor GA i.p.v. uren of zelfs dagen voor A*).

Als conclusie kunnen we stellen dat de ModuleSearcher samen met de Modu-
leScanner en de statistiek voor GO-overrepresentatie—alle in dit werk ontwikkeld—
, een valabele methode is om nieuwe cis-regulatorische modules te ontdekken
in dierlijke genomen, hetgeen tot voorheen niet mogelijk was. Er zijn diverse
methoden gepubliceerd die zoals de ModuleScanner naar genomische instanties
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zoeken van gekende combinaties van TF’en (gebruik makende van de respec-
tievelijke PSFM’s). Het CREME algoritme [262] heeft hetzelfde doel als de
ModuleSearcher maar gebruikt andere technieken (o.m. een hashing algorit-
me om combinaties van PSFM’s te genereren) en werd onafhankelijk van en
gelijktijdig met de ModuleSearcher [7] gepubliceerd.

Data integratie voor de validatie van modules en
doelgenen

Het testen van de functionele coherentie van potentiële doelgenen die door de
ModuleScanner gevonden worden kan worden aangewend om deze doelgenen te
karakteriseren en om de query-module te valideren. Naast de hierboven aan-
gewende Gene Ontology associaties van de doelgenen kan echter ook andere
data gebruikt worden. Wij hebben een aantal genomische informatiebronnen
gëıntegreerd in een software systeem ENDEAVOUR die voor elk data type, net
als voor GO, de karakteristieken van een genset (bv. de top N scorende genen uit
ModuleScanner) weergeeft. In een tweede stap stellen wij een methode voor om
de doelgenen te rangschikken volgens hun overeenkomst met de co-gereguleerde
genset waarin de query-module werd ontdekt met de ModuleSearcher. Dit is
nuttig in een moleculair biologische omgeving waarin hypothetische doelgenen
experimenteel gevalideerd worden. De scores van de ModuleScanner verschillen
namelijk weinig en er wordt aangenomen dat de genen waarvoor volgens exter-
ne informatie geweten is dat zij betrokken zijn bij het bestudeerde proces het
meeste kans hebben om ook in vivo werkelijke doelgenen van de module te zijn.

Er worden twee data types gebruikt die genexpressie uitdrukken, namelijk
microarray genexpressiedata en EST-gebaseerde expressie data. Voor de EST-
data wordt dezelfde techniek gehanteerd met de binomiale statistiek zoals hier-
boven beschreven voor GO. Zo kan bijvoorbeeld de anatomische plaats “Ner-
vous → brain → diencephalon → hypothalamus” over-gerepresenteerd zijn in
een genset. Microarray data (meerdere datasets zijn gëıntegreerd) worden mo-
menteel niet aangewend om de expressionele coherentie te meten, maar enkel
voor de sortering van de doelgenen (zie verder). Andere data types die ook met
de binomiale statistiek worden behandeld zijn “KEGG pathways” die aangeven
welke pathway over-gerepresenteerd is in een genset, en InterPro data die aan-
geven welk protëıne-domein over-gerepresenteerd is (bv. “DNA-binding” kan
duiden op een set van transcriptiefactoren). Tenslotte wordt tekstuele data ge-
bruikt die met “text mining” technieken [121] geëxtraheerd wordt uit teksten
die de functie van een gen beschrijven. Deze teksten zijn o.a. een omschrij-
ving van een gen en korte “GeneRIF” zinnen uit de LocusLink databank, en
enkele “abstracts” van artikels die het gen in kwestie behandelen (hiervoor wor-
den de PubMed ID’s gebruikt die in een LocusLink record van gen terug te
vinden zijn). De tekstuele bron resulteert in een aantal (bv. 20) “keywords”
die over-gerepresenteerd zijn in de beschrijvende teksten van een genset. Een
IT-overzicht van de data-integratie wordt voorgesteld in Figuur 8.3.
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Figuur 8.3: Informatie-technologisch overzicht van ENDEAVOUR. De M binnen het
gekleurde vierkant is het model dat getraind wordt, en is verbonden met alle informa-
tiesubmodellen (ISM), voorgesteld als sterren. Voor elke link met een externe of lokale
databank zijn de communicatiedetails weergegeven. Bij het trainen van een ISM wordt
voor elk gen in de trainingset de beschikbare data uit de relevante databanken opge-
vraagd en verwerkt. Hetzelfde gebeurt voor elk gen van de testset dat gescoord wordt
met elk getraind ISM. De databronnen die rechts van het centrale vierkant zijn weer-
gegeven worden direct vanuit ENDEAVOUR aangesproken via MySQL queries of via
SOAP services. De databronnen die links van het centrale vierkant zijn weergegeven
werden off-line voorbehandeld en beschikbaar gemaakt in een MySQL databank.

Om de ModuleScanner doelgenen te rangschikken worden de bovenvermelde
samenvattingen van alle gehanteerde data types als een submodel beschouwd en
alle submodellen samen vormen een model van een trainingset (een trainingset
kan bijvoorbeeld de originele co-gereguleerde genset zijn waarin een module
werd gevonden). Het scoren van een testset (bijvoorbeeld de top 200 doelgenen
uit de ModuleScanner) gebeurt voor elke submodel afzonderlijk. Voor vector-
gebaseerde data types (microarray data en tekstuele data) wordt de Pearson
correlatie (i.e., de cosinus van de hoek tussen twee vectoren) berekend tussen
elk testgen en het gemiddelde van de trainingsgenen. De testgenen worden
gesorteerd volgens die correlatie. Voor niet-vector-gebaseerde data types (de
overige, namelijk GO, EST, KEGG, InterPro) worden de p-waarden van deze
attributen in de trainingset (zoals zij door de binomiale analyse bepaald werden)
die voor het testgen relevant zijn gecombineerd tot een nieuwe p-waarde m.b.v.
Fisher’s Chi-square methode.

De testgenen kunnen op n mogelijke manieren worden gerangschikt, waarbij
n het aantal gebruikte submodellen voorstelt (n kan groter zijn dan het aantal
data types; voor microarray data bijvoorbeeld wordt voor elke data set een apart
submodel getraind). De significantie van alle rangschikkingen kan berekend
worden met “order statistics”:
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P (r1, r2..., rn) = n!
∫ r1

0

∫ r2

0

. . .

∫ rn

0

ds1ds2...dsn (8.5)

Genen met een p-waarde kleiner dan bijvoorbeeld (0.05 × aantal geteste
genen) kunnen als gelijkaardig met de trainingsgenen beschouwd worden. Het
systeem en de orde-statistiek werden getest d.m.v. een “cross-validatie” en
de sortering van potentiële doelgenen van een cis-regulatorische module werd
getest voor een gekende leverspecifieke en een nieuwe celcyclusspecifieke module.
Deze tests tonen aan dat het voorgestelde systeem biologisch zinvolle resultaten
oplevert betreffende de computationele prioritisering van de mogelijke doelgenen
van een combinatie van transcriptiefactoren.

Uitgebreide analyse van de base-samenstelling rond
de transcriptiestartplaats in Metazoa

De Ensembl databank is essentieel geweest voor het onderzoek dat in dit werk
beschreven is. In TOUCAN worden genomische sequenties stroomopwaarts van
een gen geselecteerd en opgehaald uit Ensembl, gebaseerd op de annotatie van
de startplaats van het gen (i.e., de start van Exon 1). Deze annotatie is afgeleid
van een mapping van beschikbare cDNA’s op de genomische sequentie. Indien
deze cDNA’s volledig zijn qua lengte, dan komt de startplaats overeen met de
werkelijke transcriptiestartplaats (TSP) van het gen. De algemene kennis van de
TSP in hogere eukaryoten (met mogelijks lange 5’UTR’s) is nog steeds beperkt,
onder meer doordat er niet één bepaald sequentiesignaal aanwezig is rond de
TSP van alle genen. Enerzijds om de kwaliteit van de startplaatsannotaties
te verifiëren (om ze te gebruiken voor de identificatie van proximale promoters
in TOUCAN), en anderzijds om een vergelijking te treffen tussen verschillende
dierlijke klassen, werd de nucleotidesamenstelling van de sequentie rond de TSP
geanalyseerd.

Voor elk organisme waarvoor de genomische sequentie beschikbaar is in En-
sembl werd voor 5000 random geselecteerde genen 3000 bp sequentie gedown-
load, 2000 bp stroomopwaarts en 1000 bp stroomafwaarts van de TSP. De karak-
teristieken van zoogdieren (gerepresenteerd door mens), andere vertebraten (ge-
representeerd door de Japanse Fugu of Kogelvis Fugu rubripes) en invertebraten
(gerepresenteerd door de fruitvlieg Drosophila melanogaster) worden besproken
en in het licht van bestaande literatuur geplaatst. Om de base-samenstelling
visueel voor te stellen wordt op elke positie het gemiddeld voorkomen berekend
van A, C, G, en T en uitgezet t.o.v. de positie van de TSP (zie Figuur 8.4).

Uit Figuur 8.4 blijkt dat voor alle drie de base-samenstelling drastisch ver-
andert rond de TSP. Laten we deze verandering noteren als ∆WS = [(A+T)-
(G+C)]/(A+T+G+C). Bij zoogdieren verandert ∆WS van ∼10% in de achter-
grond (bv. op -2000) tot ∼-20% op de TSP. Voor andere vertebraten zoals fugu
is de vorm van ∆WS gelijkaardig, maar is veel minder uitgespreid. Dit kan een
gevolg zijn van het feit dat de 5’UTR in fugu onbestaande of zeer kort zijn,
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Figuur 8.4: Nucleotide frequencies around the annotated gene start in Ensembl, cal-
culated from 5000 randomly selected genes in human (A), Drosophila (B), and fugu
(C).

waardoor de overheersende periodische samenstelling van de coderende sequen-
tie snel de overhand haalt. Invertebraten, en in het bijzonder de fruitvlieg3,
vertonen ook een significante verandering van ∆WS, gaande van ∼12% in de
achtergrond tot ∼26% aan de TSP. Dit is een tegengestelde verandering als bij
vertebraten, en het maximale verschil wordt niet op de TSP zelf bereikt, maar
ongeveer 150 bp ervoor.

Om een beeld te krijgen van de fenomenen die dergelijke fluctuaties in base-
samenstelling over grote afstanden veroorzaken, werden enkele analyses uitge-
voerd. Daaruit is gebleken dat de ∆WS veranderingen bij zoogdieren praktisch
volledig veroorzaakt worden door het gehalte aan CpG dinucleotiden. Door de
DNA methylatie in deze species (methylatie van cytosine, die dan vaak deami-
neert tot thymine) zijn CpG doubletten onder-gerepresenteerd in het genoom.
Echter, rond de TSP is dit voor vele genen (vnl. genen die makkelijk of veel
tot expressie moeten komen) niet het geval, hetgeen de uitgesproken profielen
veroorzaakt. Dit fenomeen staat bekend als CpG eilanden. Uit gelijkaardige
tests in fugu bleek dat er mogelijk “primordiale” CpG eilanden aanwezig zijn,
dus veel minder uitgesproken. In fruitvlieg is er geen DNA methylatie en zijn er
geen CpG eilanden. De profielen in fruitvlieg zouden mogelijks te wijten kunnen
zijn aan het voorkomen van A/T-rijke transcriptiefactorbindingsplaatsen in de
nabijheid van de TSP.

Conclusies

In dit werk is aangetoond dat het mogelijk is om betekenisvolle resultaten te
bekomen in de regulatorische sequentie-analyse in dierlijke genomen, voorna-
melijk door de integratie van meerdere computationele methoden en meerdere
data types. Het beschreven werk heeft een brede omvang en er worden ver-
schillende aspecten behandeld voor de analyse van genregulatorische netwerken

3Op de profielen van mug waren werd veel ruis waargenomen, waarschijnlijk door gebrek-
kige annotatie, en die van de wormen Caenorhabditis elegans en C. briggsae worden niet
besproken omdat het “trans-splicing” fenomeen in deze species de interpretatie bemoeilijkt
[37, 312].



161 Nederlandse samenvatting

(GRN), sommige in meer detail dan andere. Ondanks het feit dat de principes
van GRN’s dit onderzoek hebben gestuurd, valt de eigenlijke computationele
inferentie, constructie, of vervollediging van GRN’s buiten het draagvlak van
dit werk. De beschreven prestaties kunnen daarom gezien worden als een af-
tasten en een nivelleren van de weg die leidt naar de computationele analyse
van GRN’s in Metazoa. Om dit laatste te bereiken zijn verbeteringen van de
bioinformatica-technieken nodig op niveau van microarray data-analyse, verge-
lijkingen van microarray data, detectie van transcriptiefactorbindingsplaatsen in
regulatorische sequenties en de detectie zelf van deze sequenties, in silico vali-
datie van computationeel gegenereerde hypothesen, netwerkstructuur-inferentie,
enzovoort. In dit proefschrift werden enkele van deze bouwblokken van “Sys-
tems Biology” behandeld en werden strategieën voorgesteld —vaak door “Proof
of Concept”— om ze te verbeteren of om het gebruik ervan te vergemakkelijken.
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