
 

KATHOLIEKE UNIVERSITEIT LEUVEN 
FACULTEIT TOEGEPASTE WETENSCHAPPEN 
DEPARTEMENT ELEKTROTECHNIEK 
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee) 

MICROARRAYS: ALGORITHMS FOR 
KNOWLEDGE DISCOVERY IN ONCOLOGY 

AND MOLECULAR BIOLOGY 

Jury: 
Prof. dr. ir. P. Verbaeten, voorzitter 
Prof. dr. ir. B. De Moor, promotor 
Prof. dr. ir. S. Van Huffel 
Prof. dr. K. Kas (Harvard University; VIB)
Prof. dr. I. Vergote 
Prof. dr. D. Timmerman 

Proefschrift voorgedragen tot 
het behalen van het doctoraat 
in de toegepaste wetenschappen 
 
door 
 
Frank DE SMET 

Mei 2004 UDC 681.3*J3:616-006 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Katholieke Universiteit Leuven – Faculteit Toegepaste Wetenschappen 
Arenbergkasteel, Kasteelpark Arenberg 1, B-3001 Heverlee (Belgium) 

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd 
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm, 
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke 
toestemming van de uitgever. 

All rights reserved. No part of the publication may be reproduced in any 
form by print, photoprint, microfilm or any other means without written 
permission from the publisher. 

D/2004/7515/37 

ISBN 90-5682-503-8 



i 

 

Voorwoord 

Toen ik in het voorjaar van 1999 op zoek was naar een manier om 
mijn studies geneeskunde en toegepaste wetenschappen op een evenwichtige 
wijze te combineren, kwam ik in contact met Prof. Bart De Moor. Hij bood 
me de gelegenheid om onderzoek te doen en een doctoraat te maken in een 
nieuwe en interdisciplinaire groep die bio-informatica ging bestuderen. 
Vermits ik hier ondermeer de kans zou krijgen om me te specialiseren in de 
klinische toepassingen van deze jonge wetenschap, heb ik geen moment 
geaarzeld en met veel enthousiasme deze opdracht aanvaard. Graag zou ik 
Prof. Bart De Moor willen bedanken voor de kansen die hij me gegeven 
heeft. 

Voorts zou ik ook graag de leden van mijn begeleidingscommissie, 
Prof. Sabine Van Huffel en Prof. Koen Kas, willen bedanken voor de steun 
die ze me tijdens dit onderzoek hebben gegeven en voor het doornemen van 
dit proefschrift.  

Bovendien zou ik ook Prof. P. Verbaeten, als voorzitter, Prof. Ignace 
Vergote en Prof. Dirk Timmerman willen bedanken dat zij deel willen 
uitmaken van de jury van dit doctoraatsproefschrift. 

Natuurlijk zou de voorliggende tekst niet tot stand zijn gekomen 
zonder de interactie en hulp van de andere medewerkers van de bio-
informaticagroep en SCD. Vooraleerst heb ik zeer veel waardering voor de 
post-docs die me altijd met raad en daad hebben bijgestaan: Dr. Yves 
Moreau voor de vele inspirerende ideeën en de gemeenschappelijke interesse 
in de klinische toepassingen, Dr. Kathleen Marchal en Dr. Janick Mathys om 
me in te leiden in de geheimen van de moleculaire biologie en voor de vele 
suggesties die mijn onderzoek op het goede pad hebben gebracht. Ook zou ik 
Prof. Johan Suykens willen bedanken voor de vele discussies en tips in 
verband met de meer wiskundige aspecten van dit onderzoek. Bovendien wil 
ik ook Prof. Joos Vandewalle, als hoofd van onze afdeling, bedanken voor 
alle steun. 
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Tevens wil ik de verschillende leden bedanken van de afdeling 
gynaecologie-verloskunde van het U.Z.Leuven waarmee er op regelmatige 
basis is samengewerkt. Een speciaal dankwoord voor Prof. Dirk Timmerman 
is zeker op zijn plaats. Hij heeft me geintroduceerd bij zijn collega’s en me 
steeds met enthousiasme gestimuleerd om samen te werken. Bovendien heeft 
hij me op meerdere momenten de zo onmisbare data ter beschikking gesteld. 
Prof. Ignace Vergote wil ik ook bedanken voor het vertrouwen dat hij mij 
heeft gegeven om mee te werken aan het opstarten en aanvragen van 
meerdere projecten, die zonder zijn bijdrage nooit gerealiseerd zouden 
kunnen worden. In dit verband, zou ik hier ook Dr. Paul Van Hummelen 
(Microarray Facility van het V.I.B.) willen vermelden voor de aangename en 
professionele samenwerking tijdens deze projecten. Als laatste wil ik ook 
Prof. Thomas D’Hooghe bedanken om ons uit te kiezen als partner in 
verband met het onderzoek naar endometriose. 

I would also like to thank Dr. Elisabeth Epstein and Prof. Lil 
Valentin for giving me the chance to collaborate in a joint paper. 

Zeker mag ik mijn collega’s binnen de bioinformaticagroep en SCD, 
niet vergeten die altijd klaar stonden als ik hulp nodig had en die er steeds 
voor zorgden dat iedereen zich gewaardeerd voelde. Een speciale 
vermelding verdienen zeker Bart, Bert (2x), Cynthia, Frizo, Geert, Gert, 
Joke, Jos, Kristof, Leentje, Maarten, Nathalie, Patrick, Pieter, Raf, Ruth, 
Steffen, Stein, Steven, Tijl, en Tom. Ook mag ik Bart, Ida, Ilse en Pela niet 
vergeten voor alle logistieke steun en de hartelijke gesprekken. 

Dit onderzoek werd mogelijk gemaakt door de K.U.Leuven dat de 
nodige fondsen ter beschikking heeft gesteld om mij te financieren: eerst als 
wetenschappelijk medewerker (op het IWT-STWW-Genprom project) en 
vanaf september 2003 als doctoraatsbursaal (op het FWO-project 
G.0115.01). 

Als laatste, maar zeker niet in het minste, zou ik mijn familie willen 
bedanken voor al de liefdevolle steun die ze me hebben gegeven. Een 
speciale vermelding voor mijn ouders is hier op zijn plaats omdat zij altijd in 
mij hebben geloofd en voor de kansen die ze mij hebben gegeven gedurende 
mijn lange (11 jaren) studies. Mijn lieve echtgenote, Ilse, en mijn twee 
schatten van kindjes, Lieselot en Stijn, zou ik willen bedanken om me een 
thuis te geven waar het mogelijk was om dit werk tot een goed einde te 
brengen. 
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Abstract 

In this thesis we have studied a general data-mining framework 
(feature extraction, classification and clustering) that could be used to 
analyse clinical and microarray and, in the future, proteomic data. We have 
mainly applied this framework to oncology related problems.  

For the prediction of the degree of myometrial invasion in 
endometrial cancer, we developed three models that aim to discriminate 
between patients with and without deep myometrial invasion using 
ultrasound and histopathological data.  

For the analysis of microarray experiments, we evaluated the use of 
principal component analysis. In addition, we examined some elementary 
clustering techniques (K-means and hierarchical clustering). We applied and 
compared the performance of Fisher’s linear discriminant analysis and Least 
Squares Support Vector Machines for the classification of expression 
patterns of malignancies. Based on these results, we concluded that 
regularization or dimensionality reduction is necessary. Subsequently, we 
gave a general overview of existing techniques to cluster gene expression 
profiles and noted that they do not have all the desired properties for this 
task. This observation was the basis for the development and validation of 
our own algorithm called adaptive quality-based clustering. Finally, we 
presented an in-depth study of univariate analysis in microarray data. We 
described a method to estimate the total number of genes whose expression 
is and is not affected by a difference in tumour type. We described how a 
Receiver Operating Characteristic (ROC) curve could be applied to define an 
optimal rejection level and showed that the area under the ROC curve could 
be used to assign a quality measure to microarray data. 

In the description of our future research, we presented some concrete 
clinical projects in which we will use the data-mining framework for the 
analysis of microarray and proteomic data. 
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Samenvatting 

In dit proefschrift hebben we een algemeen kader voor 
gegevensontginning (selectie van kenmerken, classificatie en clustering) 
bestudeerd dat kan gebruikt worden voor de analyse van klinische en 
microroosterdata en, in de toekomst, van proteoomdata. We hebben dit 
hoofdzakelijk toegepast voor problemen in de oncologie. 

Betreffende de voorspelling van de diepte van myometriuminfiltratie 
bij endometriumcarcinomen, hebben we drie modellen ontwikkeld die 
gebruik maken van gegevens bekomen uit het echografisch en 
histopathologisch onderzoek en die een onderscheid trachten te maken 
tussen patiënten met en zonder diepe invasie. 

Betreffende de analyse van microroosterexperimenten, hebben we 
het gebruik van Principale Component Analyse geëvalueerd. Bovendien 
hebben we in deze context enkele elementaire clusteringstechnieken 
bestudeerd (K-means-clustering en hiërarchische clustering). We hebben 
Lineaire Discriminant Analyse en kleinste kwadraten Support Vector 
Machines gebruikt en vergeleken met betrekking tot de classificatie van 
expressiepatronen van maligniteiten. Hieruit is gebleken dat regularisatie  of 
een afname van de dimensionaliteit noodzakelijk is in combinatie met de 
classificatie van microroosterexperimenten. Vervolgens hebben we een 
overzicht gegeven van bestaande technieken voor het clusteren van 
genexpressieprofielen en opgemerkt dat deze methoden niet altijd optimaal 
zijn. Deze observatie heeft dan geleid tot de ontwikkeling en validatie van 
een nieuw algoritme dat we adaptief kwaliteitsgebaseerd clusteren hebben 
genoemd. Tot slot hebben we een grondige studie verricht van univariate 
analyse van microroostergegevens. We hebben een methode besproken die 
het mogelijk maakt om het aantal genen te schatten wiens expressie wel en 
niet wordt beïnvloed door een verschil in het type van de tumor. We hebben 
beschreven hoe een Receiver Operating Characteristic (ROC) curve kan 
gebruikt worden voor de bepaling van het optimaal niveau waarop de 
nulhypothese moet worden verworpen en hebben aangetoond dat de 
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oppervlakte onder de ROC-curve kan dienen om de kwaliteit van 
microroostergegevens te kwantificeren. 

In de beschrijving van ons toekomstig onderzoek hebben we enkele 
concrete klinische projecten voorgesteld waarin de technieken beschreven in 
dit proefschrift kunnen gebruikt worden voor de analyse van zowel 
microrooster- als proteoomdata. 
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Nederlandse samenvatting 

Microroosters: algoritmen voor 
kennisextractie in de oncologie en 

moleculaire biologie 

Hoofdstuk 1: Inleiding 

Motivatie 
Het klinisch beleid bij kwaadaardige processen is in vele gevallen 

gedeeltelijk empirisch en wordt gestuurd door gegevens uit de literatuur 
(bekomen uit klinische studies) of  de persoonlijke ervaring van de clinicus. 
De huidige diagnostische schema’s vertonen nog dikwijls een significante 
variabiliteit tussen verschillende artsen en vereisen vaak een bijkomende en 
soms subjectieve beoordeling. Bovendien kan niet alle informatie die 
klinisch relevant is uit de gegevens worden gehaald die een clinicus op dit 
moment tot zijn beschikking heeft. Methoden die bijvoorbeeld toelaten om 
een meer objectieve en betere toewijzing aan de verschillende diagnostische 
klassen te bekomen, zouden dus nuttig kunnen zijn.  

Moleculaire biologie 
De fundamentele processen die aan de basis liggen van de 

carcinogenese worden in de meeste gevallen nog niet gebruikt om het 
klinisch beleid te helpen bepalen. Het ontstaan van kanker is immers een 
proces dat zich voor een groot deel afspeelt op het niveau van het genoom. 
Onder invloed van bepaalde factoren (bestraling, virale infecties, …) kunnen 
mutaties ontstaan in bepaalde genen (bijvoorbeeld proto-oncogenen en 
tumorsuppressorgenen) met eventueel ongecontroleerde celgroei en de 
mogelijkheid tot invasie en metastasering tot gevolg.  Door deze mutaties 
kan echter ook de transcriptie of translatie van andere genen (waarin geen 
mutatie optreedt, maar waarvan de transcriptie of translatie direct of indirect 
wordt geregeld, bijvoorbeeld als het gemuteerd gen codeert voor een 
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transcriptiefactor) ontregeld worden. Het is waarschijnlijk dat het betrekken 
van de effecten van deze mutaties in de klinische besluitvorming een 
verbetering zou betekenen in vergelijking met de meer empirische 
beslissingsschema’s die nu gebruikt worden. Het behoort tot de 
verwachtingen dat de analyse van data (afkomstig van microroosters of de 
analyse van het proteoom - zie verder) die het moleculair biologisch gedrag 
van tumorcellen weerspiegelen, een belangrijke vooruitgang kan betekenen 
in het wetenschappelijk onderzoek naar het gedrag en ontstaan van tumoren. 

In dit proefschrift bestuderen we een algemeen kader voor 
gegevensontginning dat kan gebruikt worden voor de analyse van klinische, 
microrooster- en proteoomdata. We passen dit voornamelijk toe voor 
problemen uit de of gerelateerd aan oncologie. Vooraleerst is het de 
bedoeling om diagnostische vraagstukken nauwkeuriger en objectiever te 
formuleren aan de hand van klinische data. Bovendien is het de bedoeling 
om microrooster- en proteoomdata, aan de hand van specifieke algoritmen, 
te integreren in de klinische besluitvorming en om ze te gebruiken om een 
meer fundamenteel inzicht te verkrijgen in de moleculaire biologie achter de 
carcinogenese. 

In de volgende secties worden de verschillende datatypes en de 
verschillende elementen van het algemeen kader voor gegevensontginning 
verder toegelicht. 

Datatypes 
1. Klinische data: dit datatype bevat waarden voor klassieke klinische 

parameters (de variabelen; bijvoorbeeld gegevens uit de klinische 
biologie, uit de medische beeldvorming, uit het histopathologisch 
onderzoek, uit het klinisch onderzoek, uit de anamnese) die 
gewoonlijk worden vergaard in het kader van een zeker diagnostisch 
probleem voor een zekere groep van patiënten. In vergelijking met de 
volgende datatypes is het aantal variabelen meestal een aantal grootte-
ordes kleiner. 

2. Microroosterdata: microroosters bestaan uit een groot aantal sondes 
samengebracht op een klein oppervlak. Sterk vereenvoudigd kan 
gesteld worden dat ieder van deze sondes bestaat uit DNA dat 
complementair is aan één welbepaalde mRNA-streng (ze zijn dus 
specifiek voor één welbepaald gen). Iedere mRNA-streng (of het 
overeenkomstig cDNA) zal dus specifiek binden aan (of hybridiseren 
met) zijn complementaire sonde(s) wanneer het totaal mRNA, 
afkomstig uit cellen van een welbepaald celtype, in contact wordt 
gebracht met de sondes op het microrooster. De binding van iedere 
complementaire sonde met zijn overeenkomstig mRNA kan gemeten 
worden en is dus een maat voor de hoeveelheid mRNA 
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(expressieniveau) afkomstig van één welbepaald gen. De twee 
belangrijkste soorten microroosters zijn cDNA-microroosters (zie 
Duggan (1999) en Figuur 1.2) en oligonucleotideroosters (GeneChip®, 
Affymetrix Inc. - zie Lipshutz (1999)).  

Zoals gezegd, kunnen mutaties die aan de basis liggen van het 
ontstaan van kwaadaardige processen, ook bij niet-gemuteerde genen 
verstoring van hun expressie veroorzaken. Het is nu de verzameling 
van deze ontregelde genexpressies die het fenotype van de tumorcel 
bepaalt (Sager, 1997). Het meten van een groot gedeelte van deze 
expressieniveaus met microroosters zou dus van grote waarde kunnen 
zijn om het werkelijk gedrag van de tumorcellen te kennen, te 
voorspellen en te begrijpen. 

Vermits ieder experiment met een microrooster resulteert in een 
hoogdimensionale vector met duizenden waarden of componenten 
(één per sonde op het microrooster), moeten er aangepaste technieken 
worden toegepast voor de analyse van microroosterdata. 

3. Proteoomdata: omwille van posttranscriptionele modificatie en 
regulatie van biologisch actieve moleculen is het mogelijk dat door de 
meting van de expressieniveaus met microroosters niet alle relevante 
fenomenen in een cel op het moleculair biologisch vlak worden 
waargenomen. Dat wil dus zeggen dat door de studie van het 
proteoom (verzameling van alle proteïnen in een cel) het eventueel 
mogelijk is om complementaire informatie te bekomen over de 
fundamentele processen die zich afspelen binnenin een bepaalde cel. 
Dit kan gebeuren door middel van recente technologieën die 
gebaseerd zijn op massaspectrometrie en die het mogelijk maken om 
de aanwezigheid van een brede subset proteïnen in een staal te 
kwantificeren (voor een voorbeeld zie Chapman (2002)). De gegevens 
die hieruit resulteren zullen niet expliciet worden geanalyseerd in dit 
proefschrift maar wel besproken worden in het kader van de 
voorstelling van enkele concrete toepassingen die gepland zijn tijdens 
ons toekomstig onderzoek (Hoofdstuk 7). Kwalitatief bestaat de 
uitvoer van deze technologieën uit spectra die bestaan uit duizenden 
discrete waarden of piekamplitudes elk geassocieerd aan een 
welbepaalde waarde voor massa/lading die op zijn beurt overeenkomt 
met een zeker (onbekend) proteïne. Deze spectra zijn dan 
karakteristiek voor de proteïnen of een subklasse van de proteïnen 
aanwezig in een staal. Dit resulteert dus eveneens in datavectoren die 
duizenden waarden bevatten en waarbij iedere component van deze 
vector representatief is voor de hoeveelheid van een niet nader 
bepaald proteïne in het bestudeerde staal. De uitvoer is dus kwalitatief 
gelijkaardig aan microroostergegevens en kan dus mogelijks 
geanalyseerd worden met gelijkaardige technieken. 
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Algemeen kader voor gegevensontginning 
Het algemeen kader voor gegevensontginning bestaat uit de 

volgende drie elementen (zie ook Figuur 1.5): 

1. Selectie van kenmerken: niet al de variabelen in een dataset zijn 
geschikt om in verdere analyses gebruikt te worden. Het is beter om 
een beperkte verzameling van kenmerken (bijvoorbeeld individuele 
variabelen, een groep van variabelen of een combinatie van 
variabelen) te selecteren die optimaal gebruikt kunnen worden bij 
classificatie en clustering (zie volgende twee punten). In deze tekst 
beschouwen we twee verschillende manieren om kenmerken te 
selecteren: univariaat en multivariaat. 

Bij univariate selectie van kenmerken veronderstelt men dat de 
datapunten tot een beperkt aantal klassen behoren en heeft men als 
doelstelling om de individuele variabelen te selecteren die maximaal 
gecorreleerd zijn met de verschillende klassen. In dit geval maakt men 
typisch gebruik van hypothesetesten (Dawson-Saunders en Trapp, 
1994). Deze techniek wordt voor microroosterdata echter bemoeilijkt 
door het probleem van meervoudig testen.  

Een eerste techniek voor multivariate analyse betreft het selecteren 
van een groep van variabelen die, wanneer ze gecombineerd worden 
in een bepaald model, een statistisch significante bijdrage leveren tot 
de nauwkeurigheid van de voorspelling. Dit wordt modelselectie 
genoemd en gebeurt door een iteratief proces waarbij de variabelen 
achtereenvolgens worden toegevoegd aan of verwijderd uit het model. 
Deze techniek wordt veel gebruikt in combinatie met standaard 
logistieke regressie (zie Hosmer en Lemeshow (1989)). Een tweede 
techniek voor multivariate analyse betreft de identificatie van een 
(lineaire of niet-lineaire) functie of combinatie van variabelen die een 
gewenste eigenschap heeft. Bij Principale Component Analyse 
(Bishop, 1995), bijvoorbeeld, wordt er een lineaire combinatie 
gezocht van de variabelen die een maximale variantie vertoont over 
een verzameling datapunten. Dit is een techniek die we bij voorkeur 
zullen gebruiken bij de analyse van microroosterexperimenten. 

2. Classificatie: hier worden wiskundige modellen geconstrueerd die 
kunnen voorspellen tot welke klasse een welbepaald datapunt behoort. 
Aan de hand van een modelstructuur, een verzameling van kenmerken 
en een trainingsset (d.i. een verzameling datapunten waarvan reeds 
geweten is tot welke klasse ze behoren, m.a.w. de kentekens of labels 
van de datapunten zijn gekend) worden de parameters of coëfficiënten 
van het model bepaald. Dit noemt men het trainen van het model. Dit 
model kan vervolgens worden getest op nieuwe datapunten waarvan 
wordt verondersteld dat de kentekens niet gekend zijn. 
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3. Clustering: met clusteranalyse is het mogelijk om automatisch 
verschillende klassen of clusters te ontdekken in een groep datapunten 
zonder voorafgaande kennis van de eigenschappen van die clusters 
(Kaufman en Rousseeuw, 1990). Een cluster zal in het algemeen een 
aantal datapunten bevatten die een zekere graad van overeenkomst 
vertonen volgens een bepaalde afstandsfunctie. 

Hoofdstuk 2: Klinische data-analyse: voorspelling van 
de infiltratiediepte van endometriumcarcinomen 

In dit hoofdstuk wordt het algemeen kader voor gegevensontginning 
toegepast voor klinische data afkomstig van patiënten met een 
endometriumcarcinoom (kwaadaardig proces van het slijmvlies van de 
baarmoeder of uterus). De graad van myometriale invasie (myometrium = 
spierlaag van de uterus) is een belangrijke prognostische factor met een 
belangrijke impact op het beleid. Hier wordt er een onderscheid gemaakt 
tussen patiënten met een invasiediepte die kleiner is dan 50% van de totale 
dikte van het myometrium (groep I - FIGO stadium Ia of Ib) of die groter is 
dan 50% van de totale dikte van het myometrium (groep II - FIGO stadium 
Ic of hoger). Een echografisch onderzoek (transvaginale echografie (TVS) 
met kleuren Doppler (CDI)) en een histopathologisch onderzoek van een 
endometriale biopsie horen meestal bij de initiële evaluatie van deze 
patiënten. Prof. Dr. D. Timmerman (afdeling gynaecologie-verloskunde, 
U.Z.Leuven) heeft gegevens die resulteren uit deze evaluatie verzameld voor  
97 patiënten. Deze groep van patiënten noemen we verder ook de 
trainingsset en worden gebruikt voor de univariate analyse, voor de 
multivariate analyse of modelselectie en voor het trainen van drie 
modeltypes: standaard logistieke regressie en kleinste kwadraten Support 
Vector Machines (LS-SVM) met een lineaire en radiale basisfunctie (RBF) 
kernel. 

Univariate analyse (zie ook Tabel 2.2) van de echografische 
parameters wees uit dat de ratio (EV/UV) van het endometriumvolume (EV) 
en het volume van de uterus (UV) de grootste oppervlakte (AUC) onder de 
Receiver Operating Characteristic (ROC) curve had (78%) en dat deze 
oppervlakte kleiner was dan deze van de subjectieve beoordeling door de 
expert (79%). Er was echter geen significant verschil tussen de AUC van 
EV/UV en de AUCs van de endometriumdikte (ET), de myometriumdikte 
(MT), EV, de ratio (ET/AP) van ET en de voorachterwaartse diameter van 
de uterus (AP) en MT/AP. De AUC van de CDI parameters (van de linker en 
rechter arteria uterina en intratumoraal gemeten) was klein. 

Multivariate analyse met stapsgewijze logistieke regressie wees de 
differentiatiegraad, het aantal fibromen (leiomyomen), ET en EV aan als de 
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variabelen die significant bijdragen in een standaard logistiek 
regressiemodel. CDI parameters droegen niet significant bij. Dit resulteerde 
dan in het volgende logistieke regressiemodel: 

).EV.ET.NF.DD2.DD1exp(1
).EV.ET.NF.DD2.DD1exp(

543210

543210

ββββββ
ββββββ
++++++

+++++=y       (1) 

waar DD1 and DD2 gelijk zijn aan 1 als, respectievelijk, de tumor matig en 
slecht gedifferentieerd is en gelijk zijn aan 0 in alle andere gevallen. De 
coëfficiënten zijn: β0 = -3.70, β1 = 2.36, β2 = 2.42, β3 = -2.45, β4 = 0.20, en 
β5 = -0.11. De AUC van dit logistieke regressiemodel geëvalueerd op de 
trainingsset is 89% (zie ook Tabel 2.2). 

 Aan de hand van de vier variabelen die werden geselecteerd door 
stapsgewijze logistieke regressie, hebben we ook een LS-SVM-model met 
een lineaire en een LS-SVM-model met een RBF-kernel getraind. Voor het 
LS-SVM-model met een lineaire kernel is het mogelijk om, na een 
herschikking van de termen, dit te schrijven als een eenvoudige lineaire 
functie van de variabelen: 

.EV.ET.NF.DD 43210 βββββ ++++=y      (2) 

waar DD gelijk is aan 1, 2 en 3 als de tumor goed, matig en weinig 
gedifferentieerd is, respectievelijk. De coëfficiënten zijn: β0 = -1.45, 
β1 = 0.37, β2 = -0.38, β3 = 0.05, en β4 = -0.03. Het LS-SVM-model met een 
RBF-kernel kan niet in een eenvoudige vorm worden neergeschreven en 
wordt hier daarom niet expliciet beschreven. De AUCs van de LS-SVM-
modellen met een lineaire en RBF-kernel geëvalueerd op de trainingsset zijn 
88% en 99%, respectievelijk (Tabel 2.2). 

We hebben deze drie modellen eveneens prospectief gevalideerd op 
een nieuwe verzameling van 37 patiënten (zie Tabel 2.3). De AUCs van het 
standaard logistieke regressiemodel en de LS-SVM-modellen met een 
lineaire en RBF-kernel geëvalueerd op deze nieuwe dataset zijn 
respectievelijk: 81%, 90% en 92%. De drie modellen hebben allen een betere 
AUC dan de subjectieve beoordeling door de expert (74%) maar het verschil 
is enkel significant voor het LS-SVM-model met een RBF-kernel (p = 
0.0485). Uit deze resultaten blijkt dus dat dit laatste model het beste presteert 
voor de onderzochte patiënten. 

Als conclusie kunnen we zeggen dat CDI niet bijdraagt tot het 
voorspellen van de invasiediepte van endometriumcarcinomen en dat 
individuele morfologische parameters bepaald door TVS  niet voldoende zijn 
om een nauwkeurige voorspelling te maken. Het combineren van de 
differentiatiegraad, de endometriumdikte, het endometriale volume en het 
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aantal fibromen in een standaard logistiek regressiemodel, in een LS-SVM-
model met een lineaire kernel en vooral in een LS-SVM-model met een 
RBF-kernel, zouden deze voorspelling kunnen verbeteren. Deze methodiek 
zou een eenvoudige en goedkope manier kunnen vertegenwoordigen die kan 
bijdragen tot een betere preoperatieve scheiding tussen patiënten met een 
laag en hoog risico. Er is echter nog veel werk nodig vooraleer de modellen 
die hier beschreven worden, echt bruikbaar worden in de klinische praktijk. 
Vooraleerst werden de modellen afgeleid met behulp van gegevens die 
afkomstig zijn van dezelfde expert. Omdat er verschillen mogelijk zijn 
tussen verschillende experts, is het nodig om deze modellen verder te 
valideren (en indien nodig aan te passen) met gegevens die afkomstig zijn 
van meerdere centra. Bovendien kunnen er wijzigingen optreden in de 
karakteristieken van de patiëntenpopulatie, wat het nodig maakt om deze 
modellen continu te evalueren. 

Tenslotte merken we nog op dat we deelgenomen hebben aan een 
gelijkaardige studie (Epstein et al., 2002) waar we eveneens ROC-curven 
hebben gebruikt voor het vergelijken van verschillende modellen die de 
aanwezigheid van een endometriumcarcinoom trachten te voorspellen in 
vrouwen met postmenopausaal bloedverlies. 

Hoofdstuk 3: Analyse van microroosterdata 

In dit hoofdstuk wordt het algemeen kader voor gegevensontginning 
toegepast voor microroostergegevens afkomstig uit de oncologie, met de 
bedoeling om hieruit klinische en biologische informatie te halen (De Smet 
et al., 2001; Marchal et al., 2004). 

Omdat ieder microroosterexperiment de expressie meet van 
duizenden genen, resulteert dit in enorme datavectoren met duizenden 
componenten. Voor de analyse hiervan zijn speciale technieken nodig die 
extreem hoogdimensionale datapunten aankunnen. Noteer dat de vectoren 
die worden gegenereerd door verschillende microroosterexperimenten 
kunnen geschikt worden in een expressiematrix (zie Figuur 3.1). In deze 
matrix bevatten de kolommen alle expressieniveaus van een specifiek 
experiment en de rijen de expressieniveaus van een zeker gen (gemeten in de 
verschillende experimenten). De rijen van de expressiematrix worden verder 
ook genexpressieprofielen genoemd. Afhankelijk van de toepassing kunnen 
zowel de kolommen als de rijen van deze matrix beschouwd worden als 
datapunten. In het eerste geval worden de expressieniveaus van de 
verschillende genen dan beschouwd als de variabelen en in het tweede geval 
is dit zo voor de experimenten. In dit hoofdstuk echter, beschouwen we in de 
meeste gevallen de microroosterexperimenten of de kolommen van de 
expressiematrix (elk geassocieerd aan een patiënt of tumorstaal) als de 
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datapunten. Clusteranalyse van genexpressieprofielen is hierop de enige 
uitzondering. In dit hoofdstuk beschouwen we verder ook verzamelingen 
van microroosterexperimenten die tumorcellen bestuderen die afkomstig zijn 
van verschillende klassen (bijvoorbeeld experimenten afkomstig van 
patiënten met een verschillende histopathologische diagnose, een 
verschillende prognose, een verschillend antwoord op therapie).  

In hetgeen volgt, bespreken we eerst enkele stappen die nodig zijn 
ter voorbereiding van de microroostergegevens voor verdere analyse. Hierna 
onderzoeken we de drie elementen van ons algemeen kader voor 
gegevensontginning toegepast op dit datatype: selectie van kenmerken, 
clustering en classificatie. Een grondige studie van twee delen van dit 
algemeen kader zal ondernomen worden in Hoofdstuk 4, 5 en 6 (clustering 
van genexpressieprofielen en univariate analyse). Om de hier beschreven 
methodologie te illustreren hebben we ondermeer gebruik gemaakt van twee 
verzamelingen van microroostergegevens die publiek beschikbaar zijn op het 
internet (data van Golub et al. (1999) die 72 patiënten (onderverdeeld in een 
trainingsset van 38 patiënten en een testset van 34 patiënten) bestudeerden 
met acute lymfatische (ALL) of myeloïde (AML) leukemie; data van Perou 
et al. (2000) die patiënten bestudeerden met mammacarcinomen - wij maken 
hier een onderscheid tussen matig en slecht gedifferentieerde tumoren). 

Voorbereiding van de data 
Voordat de microroostergegevens kunnen gebruikt worden met de 

methoden beschreven in de volgende paragrafen, is het mogelijk dat ze eerst 
nog enkele voorbereidende stappen moeten ondergaan. Hier bespreken we 
normalisatie, niet-lineaire transformatie en de verwerking van ontbrekende 
waarden. Twee andere stappen, standaardisatie en filteren, zullen worden 
besproken in het kader van het clusteren van genexpressieprofielen. 

1. Normalisatie: In een experiment met een cDNA-microrooster bestaan 
er verschillende bronnen van ruis die systematische fouten kunnen 
veroorzaken (bijvoorbeeld veroorzaakt door verschillen in het groen 
en rood kanaal). Bij normalisatie is het de bedoeling om deze 
systematische fouten te berekenen en te verwijderen. 

2. Niet-lineaire transformaties: In vele gevallen is het de gewoonte om 
een niet-lineaire functie, zoals het logaritme, toe te passen op de 
expressiewaarden. Bij het gebruik van expressieratios (afkomstig van 
een cDNA-microrooster, waar een test- en referentiestaal worden 
gebruikt en de uiteindelijke expressiewaarde wordt bekomen door de 
ratio van de overeenkomstige intensiteiten in het rode en groene 
kanaal te beschouwen) heeft dit een bijkomend voordeel, vermits deze 
niet symmetrisch rond 1 zijn verdeeld. Het gebruik van een 
logaritmische transformatie corrigeert dit. 
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3. Verwerking van ontbrekende waarden: Microroosterdata bevatten 
dikwijls ontbrekende waarden. Vele algoritmen die gebruikt worden 
om deze gegevens te analyseren hebben hier echter problemen mee. 
Daarom zijn er technieken nodig om deze ontbrekende waarden te 
vervangen of zijn er algoritmen nodig die hiermee op een meer directe 
manier kunnen omgaan. In deze context beschrijven we twee 
technieken: verwerking van ontbrekende waarden zonder vervanging 
en de methode van de meest nabije buren.  

In sommige gevallen maken algoritmen voor de analyse van 
microroostergegevens enkel gebruik van de berekening van 
(Euclidische) afstanden of gemiddelde expressievectoren. Door een 
kleine wijziging in de definitie van deze afstanden of gemiddelde 
expressievectoren, is het mogelijk om deze ontbrekende waarden te 
verwerken zonder ze te vervangen. Meer concreet berekenen we 
afstanden tussen twee expressievectoren door enkel de componenten 
te beschouwen die aanwezig zijn in beide vectoren. Bovendien 
berekenen we de componenten van de gemiddelde expressievector van 
een verzameling expressievectoren door enkel de overeenkomstige 
componenten in rekening te brengen in deze verzameling vectoren 
waarvoor er werkelijk waarden aanwezig zijn. 

In de methode van de meest nabije buren vervangen we de 
ontbrekende waarden in een genexpressieprofiel door deze te schatten 
aan de hand van de waarden in de meest gelijkende 
genexpressieprofielen. 

Selectie van kenmerken 
Een eerste doelstelling is het verminderen van het aantal gegevens 

(of waarden) per patiënt of per microroosterexperiment. Enkel de meest 
essentiële kenmerken die zo informatief mogelijk zijn over een zeker 
klassenverschil, moeten worden geselecteerd. Dit wordt ook het probleem 
van de afname van de dimensionaliteit genoemd. Deze afname is meestal 
noodzakelijk vooraleer gestart kan worden met classificatie of clustering. 
Bovendien is het mogelijk dat op deze manier de genen worden 
geïdentificeerd die verantwoordelijk zijn voor het verschil in eigenschappen 
tussen verschillende soorten tumoren. Wanneer bijvoorbeeld normale cellen 
en tumorcellen worden vergeleken, is het mogelijk dat er genen worden 
ontdekt die betrokken zijn in de carcinogenese.  

Selectie van kenmerken kan met en zonder supervisie gebeuren. In 
selectie van kenmerken met supervisie worden de kentekens of klassenlabels 
van de verschillende patiënten expliciet gebruikt terwijl dit voor de selectie 
zonder supervisie niet het geval is. 
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We bespreken nu de twee verschillende manieren om kenmerken te 
selecteren: univariaat en multivariaat. 

1. Univariate selectie: De meest eenvoudige manier is de selectie van 
individuele genen waarvan de expressie het best gecorreleerd is met 
een bepaald klassenverschil, waarin men op een bepaald moment 
geïnteresseerd is. Deze selectie is dus steeds gesuperviseerd. Dit is 
logisch vermits niet alle genen een expressiepatroon hebben dat 
informatie bevat over een bepaald klassenverschil zodat deze genen 
kunnen worden weggelaten. Verschillende technieken zijn mogelijk 
om de graad van correlatie van een gen met een zeker klassenverschil 
te kwantificeren. Zoals reeds vermeld kunnen hiervoor 
hypothesetesten worden gebruikt die echter bemoeilijkt worden door 
het probleem van meervoudig testen, dat verder zal besproken worden 
in Hoofdstuk 6. De AUC (oppervlakte onder de Receiver Operating 
Characteristic curve) is een maat die hiervoor ook kan gebruikt 
worden. In deze tekst zullen wij ook dikwijls gebruik maken van een 
score die werd geïntroduceerd door Golub et al., (1999) en die wordt 
gegeven door: 
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 waar µ1(gi) and µ2(gi) de gemiddelde waarden zijn van het 
expressieprofiel gi in respectievelijk klasse 1 en 2 en waarbij σ1(gi) 
and σ2(gi) de geassocieerde standaard deviaties zijn. 

2. Multivariate selectie: Door de hoge dimensionaliteit van 
microroostergegevens is modelselectie niet onmiddellijk bruikbaar 
voor dit type data, althans niet zonder voorafgaande reductie van de 
dimensionaliteit met een andere methode.  

Zoals reeds vermeld is voor microroosters een andere methode voor 
multivariate selectie van de kenmerken echter meer gebruikelijk: 
Principale Component Analyse (PCA). Zo kunnen voor de trainingsset 
in de data van Golub et al., de twee principale componenten worden 
bepaald met de hoogste eigenwaarde en de microroosterexperimenten 
van de trainings- en testset kunnen hierop dan worden geprojecteerd. 
Dit resulteert dan in twee kenmerken voor iedere patiënt. Wanneer 
deze twee kenmerken worden uitgezet in een grafiek (Figuur 3.3), 
geeft dit een duidelijk zichtbare scheiding tussen patiënten met ALL 
en AML. Merk op dat in dit geval de selectie van de principale 
componenten op een niet-gesuperviseerde manier gebeurt aan de hand 
van de eigenwaarden (er wordt geen gebruik gemaakt van de 
klassenlabels). Dit kan echter ook op een gesuperviseerde manier 
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gebeuren. Door gebruik te maken van de methodiek voor univariate 
analyse kan men de principale componenten uitkiezen die 
overeenkomen met kenmerken die een maximale correlatie vertonen 
met een zeker gekend klassenverschil. Voor de data van Perou et al. 
hebben we PCA toegepast met en zonder gesuperviseerde selectie van 
twee principale componenten (Figuur 3.4). PCA met niet-
gesuperviseerde selectie van de principale componenten resulteerde 
echter in een slechte scheiding tussen patiënten met matig en slecht 
gedifferentieerde borsttumoren.  Hieruit besluiten we dat in dit geval 
de richtingen met maximale spreiding niet gedomineerd worden door 
dit verschil in klassen. Gesuperviseerde selectie van de principale 
componenten (gebaseerd op de Golub-score van Vergelijking 3) 
resulteerde echter in een veel betere scheiding. 

Clustering 
Bij het clusteren van microroosterexperimenten beoogt men 

patiënten te groeperen die een zekere overeenkomst in expressie vertonen. 
De gevonden groepen kunnen overeenkomen met een bestaand diagnostisch 
schema (dat meestal gebaseerd is op klinische waarnemingen), maar het 
behoort tot de mogelijkheden dat door clustering van expressiepatronen 
nieuwe diagnostische categorieën kunnen gevonden worden die patiënten 
bevatten waarvan het klinisch gedrag minder variatie vertoont dan in de 
bestaande schema’s. Met clustering is het dus niet de bedoeling om 
voorspellingen te gaan maken voor individuele patiënten, maar om te 
bepalen welke de verschillende tumorklassen en hun eigenschappen zijn.  In 
deze tekst hebben we twee verschillende methoden toegepast om de 72 
patiënten in de dataset van Golub et al. te clusteren: “K-means” en 
hiërarchische clustering (Figuren 3.5 en 3.6). Vermits K-means-clustering 
niet geschikt is om hoogdimensionale data te clusteren, hebben we eerst 
PCA toegepast met niet-gesuperviseerde selectie van de principale 
componenten (gesuperviseerde selectie is hier niet gepast vermits de 
klassenlabels worden verondersteld niet gekend te zijn bij clustering - ze zijn 
het resultaat van het algoritme zelf). K-means-clustering van de data van 
Golub et al. resulteerde in twee clusters die bijna perfect overeenkomen met 
het gekende verschil tussen ALL en AML en is er dus als het ware in 
geslaagd om de concepten ALL en AML te herontdekken. Hiërarchische 
clustering resulteerde in een boomstructuur waar de meeste patiënten met 
AML geconcentreerd zijn in één welbepaalde tak. 

In verband met de clustering van microroosterexperimenten kan er 
echter een kritische opmerking worden gemaakt (Levenstien et al., 2003). In 
het algemeen is het mogelijk om zeer veel verschillende resultaten met 
clustering te bekomen (bijvoorbeeld door een verschillende instelling van de 
parameters van het algoritme of door verschillende algoritmen te gebruiken). 
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Meestal zal dan het resultaat worden gekozen dat het beste beantwoordt aan 
een hypothese die men vooraf wou bewijzen (men kiest bijvoorbeeld het 
clusterresultaat dat een maximaal verschil in overleving van de patiënten in 
de verschillende clusters vertoont). Het zou echter kunnen dat dit 
clusterresultaat per toeval werd gegenereerd (en die kans verhoogt indien 
meerdere clusterresultaten beschikbaar zijn) en niet resulteert in categorieën 
die een werkelijk biologisch of medisch proces weerspiegelen. In feite gaat 
het hier opnieuw over een probleem van meervoudig testen. Uit deze 
observatie concluderen we dat ieder clusterresultaat in de literatuur met de 
nodige reserve moet worden bekeken en dat de auteurs die dergelijke 
resultaten publiceren tenminste zouden moeten vermelden hoeveel 
verschillende verzamelingen van clusters ze in overweging hebben genomen. 

Merk op dat ook de rijen van de expressiematrix 
(genexpressieprofielen) als basis kunnen dienen voor clustering. Deze 
problematiek zal verder worden besproken in Hoofdstuk 4 en 5. 

Classificatie 
In een klinische omgeving is het belangrijk dat, aan de hand van 

metingen met microroosters, voor individuele patiënten voorspellingen 
kunnen worden gedaan i.v.m. prognose, antwoord op therapie, 
stadiumbepaling, histopathologische diagnose, … Dit gebeurt aan de hand 
van wiskundige modellen. In deze tekst worden twee verschillende binaire 
classificatietechnieken voor microroosterexperimenten bestudeerd: Fisher’s 
Lineaire Discriminant Analyse (FDA) en LS-SVM. FDA is een lineaire 
classificatiemethode die geen regularisatie gebruikt en dus moet 
gecombineerd worden met voorafgaande selectie van kenmerken. LS-SVM-
classificatie gebruikt wel regularisatie en kan in principe onmiddellijk 
worden toegepast op microroostergegevens. Deze technieken werden 
toegepast op de data van Golub et al. en Perou et al. Bovendien worden de 
conclusies van een studie besproken die, aan de hand van 9 datasets, deze 
technieken vergelijkt en die het belang van dimensionaliteitsreductie of 
regularisatie en het belang van niet-lineariteit bij de classificatie van 
microroosterexperimenten onderzoekt (Pochet et al., 2004). 

Na toepassing van PCA met niet-gesuperviseerde selectie van twee 
principale componenten op de trainingsset van Golub et al., kunnen we een 
FDA-model trainen in twee dimensies. Dit model kunnen we vervolgens 
toepassen op de patiënten van de testset (Figuur 3.7). Dit resulteerde in 3 
misclassificaties (91% nauwkeurigheid). De bekomen performantie van het 
model echter, is in dit geval afhankelijk van de specifieke onderverdeling 
tussen trainings- en testset en van het aantal gekozen principale 
componenten. Om een betere beoordeling van de modelperformantie te 
bekomen, hebben we het trainen en testen van het model herhaald voor 20 
randomisaties van de originele trainings- en testset waarbij we bovendien het 
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aantal geselecteerde principale componenten hebben geoptimiseerd met 
behulp van een “leave-one-out cross-validatie” (LOO-CV) op de 
trainingsset. Dit resulteerde in een gemiddelde nauwkeurigheid van het 
model (geëvalueerd op de testset) van 94.40% (met een standaard deviatie 
van 3.84%). Gesuperviseerde selectie van de principale componenten 
resulteerde hier niet in een betere performantie. Dezelfde randomisaties 
werden gebruikt om de performantie van LS-SVM-modellen met een 
lineaire en RBF-kernel te onderzoeken (zonder voorafgaande 
dimensionaliteitsreductie). Dit resulteerde in een nauwkeurigheid van 
92.86% (σ = 4.12%) en 93.56% (σ = 4.12%), respectievelijk. 

Het gebruik van FDA tesamen met de data van Perou et al. werd 
geëvalueerd met een LOO-CV in combinatie met een gesuperviseerde 
selectie van de principale componenten in iedere iteratie. Indien er telkens 5 
principale componenten worden geselecteerd resulteerde dit in een 
nauwkeurigheid van 79%. Dit resultaat toont duidelijk aan dat de 
differentiatiegraad van borstcarcinomen kan worden voorspeld met 
expressiepatronen. 

We sluiten deze paragraaf af met een opsomming van de 3 
voornaamste conclusies van onze vergelijkende studie: 

1. LS-SVM-modellen met een lineaire en RBF-kernel zonder 
voorafgaande dimensionaliteitsreductie en die regularisatie toepassen, 
geven goede resultaten wanneer ze geëvalueerd worden op een testset. 
Het gebruik van een RBF-kernel resulteert in een evenwaardige of in 
sommige gevallen een betere performantie in vergelijking met een 
lineaire kernel. 

2. Onze studie bevestigt dat regularisatie belangrijk is wanneer lineaire 
classificatie wordt ondernomen zonder voorafgaande 
dimensionaliteitsreductie. 

3. Het toepassen van kernel-PCA met RBF-kernel voor FDA geeft 
minderwaardige resultaten. 

Hoofdstuk 4: Clusteranalyse van genexpressieprofielen 

In dit hoofdstuk gaan we dieper in op een specifiek element van het 
algemeen kader voor gegevensontginning toegepast op 
microroostergegevens: clustering van genexpressieprofielen (rijen van de 
expressiematrix) (Moreau et al., 2002a; Thijs et al., 2004). In tegenstelling 
tot het vorige hoofdstuk, beschouwen we hier vooral microroosterdata die 
metingen bevatten van stalen die genomen zijn op verschillende tijdstippen 
van een biologisch proces. De genexpressieprofielen zijn in dit geval 
vectoren waarvan de componenten de expressieniveaus zijn van een 
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specifiek gen genomen op verschillende ogenblikken in de tijd. 
Clusteranalyse van genexpressieprofielen zoekt groepen van genen waarvan 
de expressie zich op gelijkaardige wijze gedraagt. Met andere woorden, deze 
techniek zoekt genexpressieprofielen die voldoende dicht tegen elkaar liggen 
(volgens een zekere afstandsmaat). Dit is belangrijk omdat gelijkaardige 
expressie (ook wel co-expressie genoemd) van genen informatie kan 
opleveren over de biologische functie van die genen. Co-expressie van genen 
verhoogt bijvoorbeeld de kans dat de transcriptie van die genen op dezelfde 
manier wordt gereguleerd (co-regulatie), d.w.z. dat ze interageren met 
dezelfde transcriptiefactor. In hetgeen volgt bespreken we eerst twee stappen 
die meestal in combinatie met clusteranalyse van genexpressieprofielen 
worden gebruikt ter voorbereiding van de data. Daarna bespreken we enkele 
eigenschappen van algoritmen van de eerste en tweede generatie. Als laatste 
geven we een woordje uitleg over de validatie van de resultaten van 
clusteralgoritmen. 

Voorbereiding van de data 
Hier bespreken we twee technieken die, naast de drie stappen die in 

Hoofdstuk 3 werden besproken, meestal worden uitgevoerd vooraleer men 
overgaat tot clusteranalyse van genexpressieprofielen. 

1. Filteren: Sommige genen waarvan de expressie wordt gemeten op een 
microrooster zijn niet betrokken in het biologisch proces dat wordt 
bestudeerd. Hun expressieniveaus vertonen dikwijls weinig variatie 
over de verschillende experimenten. Wanneer deze genen zouden 
betrokken worden in de clusteranalyse zouden ze de kwaliteit van het 
uiteindelijk resultaat in negatieve zin kunnen beïnvloeden. Het zou 
dus beter zijn om deze genen te verwijderen vooraleer over te gaan tot 
het clusteren. Dit noemt men filteren. Bij filteren is het de bedoeling 
om genen die niet beantwoorden aan een zeker criterium (bijvoorbeeld 
een minimum standaard deviatie) te verwijderen uit de dataset. 

2. Standaardisatie: Biologen zijn over het algemeen geïnteresseerd in 
groepen van genen die hetzelfde relatief gedrag vertonen, d.w.z. op 
hetzelfde moment stijgende en dalende expressiewaarden vertonen. 
Het kan echter zijn dat genen met een gelijkaardig relatief gedrag toch 
een zeer verschillend absoluut gedrag vertonen en bijgevolg een grote 
Euclidische afstand hebben (bijvoorbeeld als ze een verschillende 
amplitude hebben of een verschillende basislijn). Om dit te vermijden 
kan men de genexpressieprofielen standaardiseren. Dit betekent dat 
ieder genexpressieniveau gj in een genexpressieprofiel 
g(g1,g2,…,gj,…,ge) moet worden vervangen door:  
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waarbij µ het gemiddelde expressieniveau is van g en σ de standaard 
deviatie. 

Algoritmen van de eerste generatie 
Alhoewel er met de clusteralgoritmen van de eerste generatie (zoals 

visuele inspectie, K-means, hiërarchische clustering en “Self-Organizing 
Maps” (SOM) die oorspronkelijk ontworpen werden voor andere 
doeleinden) biologisch relevante resultaten kunnen bekomen worden, 
bezitten deze technieken een aantal eigenschappen die ze minder geschikt 
maken voor het clusteren van genexpressiedata. Zo vereisen ze bijvoorbeeld 
dat de gebruiker een arbitraire waarde voor een zekere parameter definieert 
(bijvoorbeeld het aantal clusters in K-means) die een belangrijke impact kan 
hebben op het uiteindelijk resultaat. Deze algoritmen moeten dus 
gecombineerd worden met procedures die toelaten om de meest geschikte 
waarde voor deze parameter te vinden, wat allerminst triviaal is. Een ander 
probleem is dat deze technieken ieder expressieprofiel in een cluster 
dwingen. Dit geldt ook voor de genen die niet echt betrokken zijn in het 
biologisch proces dat wordt bestudeerd. Dit kan leiden tot vervuiling van de 
clusters en een verstoring van hun gemiddeld expressiegedrag. Als laatste 
kan men vermelden dat de eerste generatie clusteralgoritmen meestal een 
rekencomplexiteit bezitten die niet toelaat om grote verzamelingen van 
genexpressieprofielen te clusteren. Vermits de datasets die meestal 
bestudeerd worden een aanzienlijke aantal genen bevatten, is deze beperking 
dikwijls onaanvaardbaar. 

Algoritmen van de tweede generatie 
Recent zijn er een aantal clusteralgoritmen gepubliceerd die 

specifiek werden ontworpen voor het clusteren van genexpressieprofielen 
(bijvoorbeeld  het “Self-organizing tree” algoritme (SOTA) (Herrero et al., 
2001), modelgebaseerd clusteren (Ghosh en Chinnaiyan, 2002; Yeung et al., 
2001a) en het kwaliteitsgebaseerd clusteren (Heyer et al., 1999)) en die een 
aantal van de problemen met de algoritmen van de eerste generatie trachten 
te verhelpen. De speciale vereisten voor het clusteren van 
genexpressieprofielen zijn ook de aanleiding geweest voor net ontwikkelen 
van een eigen clusteralgoritme dat adaptief kwaliteitsgebaseerd clusteren 
(AQBC) wordt genoemd en in het volgende hoofdstuk grondig wordt 
besproken. De techniek die werd geïntroduceerd door Heyer et al. 
(kwaliteitsgebaseerd clusteren) diende hiervoor als vertrekpunt. Hun aanpak 
resulteert in clusters die zoveel mogelijk genen bevatten die minstens een 
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minimum aan co-expressie vertonen. Dit resulteert in clusters die beter 
geschikt zouden kunnen zijn voor verdere analyse. Vermits alleen clusters 
worden gegenereerd waarin het aantal genen boven een zeker minimum 
komt, worden niet alle genen in een dataset aan een cluster toegewezen. De 
minimale graad van co-expressie die de genen in een zekere cluster minstens 
moeten vertonen, wordt echter beschreven als een clusterdiameter (ook wel 
de kwaliteit van de cluster genoemd) dat door de gebruiker moet worden 
gespecificeerd en opnieuw redelijk arbitrair is en niet noodzakelijk aangepast 
aan de lokale structuur van de data. Bovendien is hun algoritme kwadratisch 
in het aantal expressieprofielen.  

Clustervalidatie 
Een bioloog is voornamelijk geïnteresseerd in de biologische 

relevantie van de clusters die gegenereerd worden door clusteralgoritmen en 
wil deze technieken gebruiken om nieuwe biologische processen te 
ontdekken. Dit wil zeggen dat er methoden nodig zijn om te testen of 
bestaande en nieuwe clusteralgoritmen betekenisvolle resultaten opleveren. 
Het zoeken naar verrijking in bepaalde functionele categorieën (Tavazoie et 
al., 1999), “Figure of merit” (FOM) (Yeung et al., 2001b), de Rand index 
(Yeung en Ruzzo, 2001c) en de silhouette (Kaufman en Rousseeuw, 1990) 
zijn enkele van de methoden die geschikt zijn om resultaten van een 
clusteringtechniek te valideren. Bovendien wordt de dataset van Cho et al. 
(1999) (die de celcyclus van gist bestudeert) dikwijls gebruikt om de 
performantie van clusteralgoritmen te vergelijken. 

Een manier om een verzameling clusters te valideren is deze te 
vergelijken met bestaande schema’s die genen indelen volgens hun 
biologische functie. Als er clusters gevonden worden die een significant 
aantal genen bevatten uit eenzelfde functionele klasse kan dit bewijzen dat 
een clusterresultaat biologisch relevant is. De data van Cho et al. (celcyclus 
van gist), bijvoorbeeld, bevat genen die functioneel geclassificeerd zijn. Dit 
is een van de redenen dat deze dataset dikwijls gebruikt wordt voor 
clustervalidatie. Veronderstel dat een clusteralgoritme een zeker aantal 
clusters terugvindt in deze dataset. Veronderstel dat een welbepaalde cluster 
g genen bevat waarvan er k tot dezelfde functionele klasse behoren. 
Veronderstel bovendien dat deze functionele klasse op zijn beurt f genen en 
de volledige dataset n genen (in dit geval 6220) bevat. Door gebruik te 
maken van de cumulatieve hypergeometrische distributie kunnen we de kans 
of p-waarde berekenen dat dit niveau van verrijking per toeval is opgetreden, 
d.w.z, wat is de kans om minstens k genen te vinden in deze specifieke 
cluster van g genen uit een specifieke functionele klasse van f genen en uit 
een dataset met n genen: 
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Deze p-waarden kunnen worden berekend in iedere cluster voor iedere 
functionele categorie. Vermist er in dit specifiek voorbeeld ongeveer 200 
functionele klassen bestaan, moet er rekening gehouden worden met het 
probleem van meervoudig testen wat in dit geval betekent dat alleen clusters 
weerhouden worden met een p-waarde voor een zekere functionele klasse 
die kleiner is dan 0.0003. 

Hoofdstuk 5: Adaptief kwaliteitsgebaseerd clusteren van 
genexpressieprofielen 

In het vorige hoofdstuk hebben we opgemerkt dat sommige van de 
klassieke algoritmen die gebruikt worden voor het clusteren van 
genexpressieprofielen, een aantal eigenschappen bezitten die hen minder 
geschikt maakt voor deze taak. In dit hoofdstuk stellen we een algoritme 
voor dat we zelf hebben ontworpen en dat tracht tegemoet te komen aan deze 
nadelen. We hebben deze aanpak adaptief kwaliteitsgebaseerd clusteren 
genoemd (AQBC (van “Adaptive quality-based clustering”)) (De Smet et al., 
2002). Deze methode is, in essentie, een heuristisch algoritme dat in iedere 
iteratie twee stappen uitvoert. Een bijzondere eigenschap van dit algoritme is 
dat het enkel gestandaardiseerde genexpressieprofielen beschouwt. Daaruit 
volgt dat deze profielen op de doorsnede liggen van een hypervlak en een 
hypersfeer in de e-dimensionale ruimte (waarbij e het aantal componenten is 
van ieder genexpressieprofiel). Hieronder bespreken we de essentiële 
onderdelen van deze aanpak. 

Algoritme 
De gebruiker van AQBC moet twee parameters definiëren: 

MIN_NR_GENES en S. De eerste parameter geeft het minimum aantal genen 
in een cluster en de tweede parameter geeft het significantieniveau, d.w.z., 
de minimum kans dat een gen dat aan de cluster is toegewezen werkelijk tot 
de cluster behoort. Meestal wordt hiervoor 95% genomen. Merk op dat we in 
dit algoritme ervoor gekozen hebben om de ontbrekende waarden te 
verwerken zonder vervanging zoals besproken in Hoofdstuk 3. 

Gedurende iedere iteratie voert het algoritme twee stappen uit die 
hieronder worden besproken: 
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Stap 1: lokalisatie van een clustercentrum 

In de eerste stap wordt een clustercentrum gezocht waarrond een maximaal 
aantal genexpressieprofielen liggen binnen een zekere voorlopige straal (ook 
wel de kwaliteit van de cluster genoemd) waarvan de waarde gelijk is aan de 
straal die gevonden was in Stap 2 (zie verder) van de vorige iteratie. In de 
eerste iteratie wordt deze waarde geïnitialiseerd aan de hand van een formule 
die afhankelijk is van e. Dit clustercentrum wordt, samengevat, gevonden 
door het repetitief verplaatsen van het middelpunt van een hypersfeer naar 
zijn zwaartepunt (d.w.z. naar het gemiddelde van alle genexpressieprofielen 
die binnen de gegeven straal liggen - zie Figuur 5.1) totdat het middelpunt 
samenvalt met het zwaartepunt. 

Stap 2: herberekening van de straal 

In deze stap wordt de voorlopige waarde voor de straal die werd gebruikt 
voor het lokaliseren van het clustercentrum in Stap 1, herberekend zodanig 
dat alle genen van de cluster een significante co-expressie vertonen, d.w.z., 
dat ze een minimum kans (gegeven door S) moeten hebben om tot de cluster 
te behoren (het clustercentrum in deze stap blijft constant en wordt gegeven 
door het punt dat in Stap 1 werd gevonden). Om deze kans te berekenen 
hebben we de distributie van de Euclidische afstand r van de 
expressieprofielen tot het clustercentrum gemodelleerd. Dit model wordt 
gegeven door: 
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Het model in Vergelijking 6 bestaat uit twee termen. De eerste term 
beschrijft de distributie van de profielen die tot de huidige cluster behoren en 
de tweede term beschrijft de distributie van de profielen die niet tot de 
cluster behoren (dit worden ook de profielen genoemd die tot de achtergrond 
behoren). Ieder van de termen wordt ook vermenigvuldigd door zijn 
geassocieerde a-priori kans (PC en PB). De parameters van dit model (σ, PC 
en PB) worden door middel van een EM-algoritme geschat en aangepast aan 
de structuur van de data (zie Figuur 5.2). De straal van de cluster (Rk) wordt 
dan als volgt herberekend: 
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Als deze herberekende straal meer dan 10% verschilt van de voorlopige 
waarde die werd gebruikt in Stap 1, dan wordt de hele procedure (Stap 1 en 
Stap 2) opnieuw opgestart maar waarbij de hier (her)berekende waarde voor 
de straal gebruikt wordt als voorlopige waarde in Stap 1. Als de hier 
herberekende straal niet meer dan 10% verschilt van de voorlopige straal die 
werd gebruikt in Stap 1, dan worden die genexpressieprofielen die 
gedefinieerd worden door deze herberekende straal en het clustercentrum 
(bepaald in Stap 1) uit de dataset verwijderd. Bovendien wordt deze 
verzameling van profielen als een geldige cluster beschouwd en getoond aan 
de gebruiker als het aantal profielen in deze verzameling groter is dan 
MIN_NR_GENES. 

Het algoritme eindigt als aan het stopcriterium is voldaan. Dit is 
onder andere het geval als de verzameling genexpressieprofielen die uit de 
dataset wordt verwijderd een vast aantal maal en opeenvolgend minder 
elementen bevat dan MIN_NR_GENES. De rekencomplexiteit van het totale 
algoritme is lineair in n (n is het aantal genexpressieprofielen in de dataset). 
Deze methode is geïntegreerd en publiek beschikbaar in een pakket 
(INCLUSive) voor analyse van microroosterdata dat op het internet kan 
gevonden worden (Thijs et al., 2002; Coessens et al., 2003). 

Resultaten 
AQBC werd getest op een aantal datasets waaronder de data van 

Cho et al. (celcyclus in gist) die reeds werd vermeld in het vorige hoofdstuk. 
Na het filteren van de 3000 genen met de hoogste waarde voor σ / µ (voor 
standaardisatie) hebben we AQBC toegepast met S = 0.95 en 
MIN_NR_GENES = 10 (zie Figuur 5.3 voor het resultaat). We hebben het 
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resultaat gevalideerd door te zoeken naar clusters die verrijkt waren in 
bepaalde functionele categorieën, zoals eveneens besproken in het vorige 
hoofdstuk (zie Tabel 5.3). We hebben de resulterende p-waarden vergeleken 
met de p-waarden van de functioneel overeenkomende clusters die gevonden 
waren door Tavazoie et al. (1999) door het K-means-algoritme toe te passen 
op dezelfde data set. De drie belangrijkste clusters gevonden door Tavazoie 
et al. werden ook door AQBC gevonden maar de verrijking lag gevoelig 
hoger bij AQBC. 

In het hierboven beschreven resultaat hebben we hetzelfde criterium 
gebruikt als Tavazoie et al. om te filteren (gebaseerd op σ / µ) omdat we de 
vergelijking tussen K-means en AQBC niet wilden beïnvloeden door een 
verschil in filtering. We hebben echter de data van Cho et al. opnieuw 
geanalyseerd met AQBC (met dezelfde waarden voor de parameters) maar 
waarbij we de 3000 genen hebben geselecteerd met de hoogste standaard 
deviatie σ. We hebben de resulterende clusters gevalideerd en kwamen tot 
het besluit dat verschillende onder hen waren verrijkt in functionele 
categorieën van het hoogste niveau (zie Tabel 5.4). Bovendien waren we in 
staat om de rol van iedere cluster in de celcyclus van gist te bepalen en deze 
rol te correleren met het gemiddelde expressieprofiel in iedere cluster. We 
hebben ook verschillende proteïnecomplexen gevonden waarvan bijna alle 
leden tot dezelfde cluster behoorden. 

We hebben AQBC ook getest op een dataset die de ontwikkeling 
van het centraal zenuwstelsel in de rat bestudeert, op een dataset die bestaat 
uit expressiepatronen in verschillende weefsels bij muizen en op een 
kunstmatige dataset. De resultaten worden in deze samenvatting niet verder 
besproken. 

Conclusie 
In tegenstelling met de klassieke clusteralgoritmen, bezit AQBC 

enkele eigenschappen die het meer geschikt maken voor het clusteren van 
genexpressieprofielen: 

1. Het kent niet alle expressieprofielen aan een cluster toe maar enkel 
diegenen die een significante co-expressie met de andere profielen van 
de cluster vertonen (significantieniveau wordt gegeven door S). Dit 
wil zeggen dat de clusters die resulteren uit deze methode mogelijks 
een beter vertrekpunt zijn voor verdere analyses. 

2. De belangrijkste parameter die door de gebruiker moet worden 
gedefinieerd is S. De waarde die hiervoor moet gekozen worden heeft 
een specifieke statistische betekenis en is daardoor minder arbitrair en 
kan onafhankelijk van de dataset bepaald worden. Bovendien bestaat 
er een waarde (95%) voor deze parameter die in de meeste gevallen 
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betekenisvolle resultaten geeft. Het is dus meestal niet nodig om 
uitgebreid te zoeken naar een geschikte keuze voor deze parameter. 

3. AQBC produceert clusters die geen vaste straal hebben en aangepast 
zijn aan de locale datastructuur. 

4. AQBC is een snel algoritme dat lineair is in het aantal 
genexpressieprofielen. 

5. Het algoritme is publiek beschikbaar voor data-analyse. 

6. Deze aanpak werd uitgebreid biologisch gevalideerd. 

Er zijn echter ook enkele nadelen: 

1. Het is een heuristische aanpak waarvan het niet bewezen is dat ze 
convergeert in alle situaties. 

2. Het model beschreven in Vergelijkingen 6-12 geldt enkel onder 
bepaalde voorwaarden. Dit omvat de noodzaak om gestandaardiseerde 
genexpressieprofielen te gebruiken. Bovendien veronderstelt dit 
model dat de Euclidische afstand wordt gebruikt wat wil zeggen dat 
AQBC niet onmiddellijk uitbreidbaar is voor andere afstandsmaten. 

Hoofdstuk 6: Univariate analyse in microroosterdata 

In dit hoofdstuk concentreren we ons op univariate analyse in 
microroosterdata en het probleem van meervoudig testen (De Smet et al., 
2004). Om de genen in een dataset te ordenen volgens hun correlatie met een 
zeker klassenverschil (zie ook Hoofdstuk 3) - of anders gezegd, volgens hun 
graad van differentiële expressie - worden dikwijls hypothesetesten gebruikt 
die resulteren in een p-waarde voor ieder gen. Vervolgens wordt een arbitrair 
significantieniveau α gekozen. De genen met een kleinere p-waarde dan α 
worden dan verklaard differentiële expressie te hebben (of een positieve 
uitslag van de test te hebben) en de genen met een p-waarde kleiner dan α 
worden verklaard geen differentiële expressie te hebben (negatieve uitslag 
van de test). De genen waarvan de uitslag positief is worden dan 
geselecteerd om verder te worden geanalyseerd of gevalideerd (bij 
bijvoorbeeld het zoeken naar doelwitten voor geneesmiddelen).  

De keuze van α heeft echter enkele gevolgen (zie Tabel 1). Ten 
eerste kunnen genen wiens expressie niet wordt beïnvloed door het 
klassenverschil en dus geen werkelijke differentiële expressie hebben, per 
toeval toch een p-waarde hebben die kleiner is dan α. Daardoor wordt de 
uitslag van de test voor deze genen verkeerdelijk positief verklaard (vals 
positieven). Dit noemt men een Type I fout. De vals positieve genen zullen 
dus geen resultaten opleveren in verdere analyses. Omdat het totaal aantal 
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genen en het aantal genen zonder werkelijke differentiële expressie in 
microroosterdata extreem hoog kan zijn, kan het aantal vals positieve genen 
bij gebruikelijke waarden voor α (bijvoorbeeld 5%) behoorlijk hoog zijn. Dit 
noemt men ook het probleem van meervoudig testen.  

Ten tweede kan de keuze van α ook resulteren in een aantal vals 
negatieve genen. Dit zijn de genen wiens expressie wordt beïnvloed door het 
klassenverschil (en dus werkelijk differentieel tot expressie komen) maar een 
p-waarde groter hebben dan α. Dit noemt men een Type II fout die ertoe kan 
leiden dat potentieel geldige doelwitten niet in overweging worden genomen 
voor verder onderzoek. 

In de literatuur is er recent veel aandacht besteed aan het beheersen 
van de Type I fout in microroosterdata. Typisch beheerst of controleert men 
de “Family-Wise Error” (FWE) of de “False Discovery Rate” (FDR - dit is 
de ratio van het aantal vals positieven op het totaal aantal positieven). De 
controle van het aantal Type I fouten gaat echter dikwijls ten koste van het 
aantal Type II fouten dat niet gecontroleerd wordt en aanzienlijk kan zijn.  

In dit hoofdstuk stellen we een op Receiver Operating Characteristic 
(ROC) curven gebaseerde procedure voor die niet tracht om de Type I of II 
fout te controleren maar die probeert om een optimale balans tussen deze 
twee fouten te bekomen. Bovendien stelt de oppervlakte onder deze ROC-
curve (AUC (van “Area Under the Curve”)) ons in staat om de graad van 
overlapping tussen de p-waarden van de genen met en zonder werkelijke 
differentiële expressie te kwantificeren. Deze graad van overlapping bepaalt 
op zijn beurt de relatie tussen de Type I en Type II fout en bepaalt daarom 
het niveau waarop de optimale balans tussen die twee bereikt wordt. De 
AUC kan daarom als kwaliteitskenmerk beschouwd worden die de 
mogelijkheid van microroosterdata beschrijft om te discrimineren tussen 
genen met en zonder differentiële expressie. Dit kwaliteitskenmerk kan 
bijvoorbeeld gebruikt worden om verschillende datasets te vergelijken die 
dezelfde condities bestuderen en om te beslissen welke data het best geschikt 
zijn voor verdere analyse.  

Methodologie 
Onze procedure start met het toekennen van een p-waarde aan ieder 

gen volgens een zekere hypothesetest. In deze tekst gebruiken we hiervoor 
de “Wilcoxon rank sum test”. Vervolgens ordenen we de genen volgens hun 
p-waarde (in stijgende volgorde).  

Hierna berekenen we het totaal aantal genen (verder n1 genoemd) dat 
werkelijk differentieel tot expressie komt door de grootheid Vi te berekenen 
voor ieder gen: 
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waar i de rangorde (na ordening volgens de p-waarde) en pi de p-waarde is 
van een gen (i = 1,…,n) en waar n het totaal aantal genen is in de dataset. 
Wanneer men Vi tegenover i uitzet in een grafiek ziet men dat deze waarde 
een constant niveau bereikt voor hogere i (zie bijvoorbeeld Figuur 6.2). Men 
kan bewijzen dat dit constant niveau gelijk is aan n1. Na de berekening van 
n1 is het eenvoudig om n0 (totaal aantal genen zonder werkelijke differentiële 
expressie) te berekenen, vermits n0 = n - n1.  

Vervolgens kan men deze geschatte waarden voor n1 en n0 gebruiken 
om het aantal genen te schatten dat terecht positief (TPi), terecht negatief 
(TNi), vals positief (FPi - van “False Positive”) en vals negatief (FNi) is bij 
ieder mogelijk significantieniveau α = pi. Dit wordt gedaan door de formules 
van Tabel 1 toe te passen. Deze waarden weerspiegelen het verschil tussen 
werkelijke en verklaarde differentiële expressie. 

Tabel 1: Definitie van de terecht en vals positieve genen (TPi en FPi) en van de 
terecht en vals negatieve genen (TNi en FNi) en hun aantallen bij een 
significantieniveau α = pi. Voor ieder van hen is de verwachte waarde gegeven 
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Deze waarden kan men gebruiken om de sensitiviteit 
(SENSi = TPi/TPi+FNi), specificiteit (SPECi = TNi/TNi+FPi), en FDR 
(FDRi = FPi/TPi+FPi) te berekenen voor ieder mogelijk significantieniveau. 
Wanneer we vervolgens de sensitiviteit uitzetten versus 1 - specificiteit 
krijgen we een ROC-curve. 
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Deze ROC-curve kan men gebruiken om een significantieniveau αopt 
te bepalen waarbij een optimale balans tussen het aantal Type I en Type II 
fouten wordt bereikt. Dit optimum kan op verschillende manieren worden 
gedefinieerd maar in deze tekst gebruiken we het punt op de ROC-curve dat 
een raaklijn met richtingscoëfficiënt 1 heeft. Hiervan kan het bewezen 
worden dat het de som van de kans op een Type I en Type II fout minimaal 
maakt (of anders gezegd, de som van de sensitiviteit en specificiteit 
maximaal maakt). De AUC heeft ook een speciale betekenis: ze is gelijk aan 
de kans dat de p-waarde van een willekeurig gen met werkelijke differentiële 
expressie kleiner is dan de p-waarde van een willekeurig gen zonder 
werkelijke differentiële expressie. Zoals reeds gezegd karakteriseert deze 
waarde dus de graad van overlapping tussen de p-waarden van de genen met 
en zonder werkelijke differentiële expressie en bepaalt ze dus de balans 
tussen de Type en Type II fout. Ze kan beschouwd worden als een 
kwaliteitskenmerk van een bepaalde dataset met betrekking tot de studie van 
differentiële expressie. Dit kwaliteitskenmerk is onafhankelijk van een 
significantieniveau. 

Resultaten 
We hebben de hierboven beschreven procedure toegepast op 

verschillende voorbeelden waarvan we de resultaten hier kort zullen 
samenvatten. 

We hebben twee datasets vergeleken die expressiepatronen van 
patiënten bevatten met ALL en AML: de data van Golub et al. (1999) (zie 
ook Hoofdstuk 3) en de data van Armstrong et al. (2002). Zie ook Figuur 6.8 
en Tabel 6.2. De AUC van de dataset van Armstrong et al. (95.13%) is 
significant (p < 0.0001) hoger dan de AUC van de data van Golub et al. 
(91.39%) wat weerspiegeld wordt in het niveau van de balans tussen de Type 
I en Type II fout in αopt. De som van de sensitiviteit en specificiteit in αopt 
ligt dus hoger bij de data van Armstrong et al. dan bij de data van Golub et 
al. (175.82% versus 166.09%). De relatieve waarde van n1 (n1/n) is bij 
Armstrong et al. (75.49%) ook beduidend groter dan bij Golub et al. 
(45.63%) Zowel de hogere AUC als de hogere relatieve waarde voor n1 zijn 
de oorzaak van een veel gunstiger verloop van de FDR bij Armstrong et al. 
(ze stijgt veel minder vlug en bereikt een kleinere maximale waarde). Uit 
deze resultaten kunnen we dus besluiten dat de data van Armstrong et al. 
geschikter zijn om differentiële expressie tussen ALL en AML te bestuderen 
dan de data van Golub et al. 

Armstrong et al. hebben ook nog een klasse acute leukemie 
bestudeerd die ze MLL noemden. Dit gaf ons de mogelijkheid om te 
onderzoeken wat de invloed op de differentiële expressie was van een 
wijziging in conditie. We hebben de expressiepatronen in de data van 
Armstrong et al. gebruikt om de differentiële expressie te vergelijken tussen 
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ALL en AML, tussen ALL en MLL en tussen AML en MLL (zie ook Tabel 
6.2). Dit resulteerde in een significant lagere AUC voor de differentiële 
expressie tussen ALL en MLL (85.98%) in vergelijking met de differentiële 
expressie tussen ALL en AML (95.13%) en in vergelijking met de 
differentiële expressie tussen AML en MLL (94.83%). Hetzelfde geldt voor 
de relatieve waarde van n1 (de waarden hiervoor waren, respectievelijk: 
35.47%, 75.49% en 64.02%). Hieruit kunnen we dus besluiten dat de graad 
van differentiële expressie tussen ALL en MLL minder is dan de graad van 
differentiële expressie tussen ALL en AML of tussen AML en MLL. Dit 
klinkt aannemelijk vermits er reeds geweten was dat de blasten bij MLL een 
gelijkaardige morfologie hadden als bij ALL. 

Als laatste voorbeeld hebben we onze procedure toegepast op twee 
datasets die expressiepatronen bevatten van patiënten met matig en slecht 
gedifferentieerde borsttumoren: Perou et al. (2000) (zie ook Hoofdstuk 3) en 
van ’t Veer et al. (2002) (zie Figuur 6.9). De resultaten gaven opnieuw een 
duidelijk verschil in kwaliteit met betrekking tot de studie van differentiële 
expressie tussen de twee beschouwde condities: de data van van ’t Veer et al. 
was hiervoor beter geschikt dan de data van Perou et al. De AUC en 
relatieve waarde voor n1 bij de data van Perou et al. waren respectievelijk: 
87.99% en 14%. Bij van ’t Veer et al. waren die: 90.54% en 42%. De AUC 
bij van ’t Veer was significant hoger (p = 0.0001) dan de AUC van Perou et 
al. Opnieuw hebben zowel het verschil in AUC als het verschil in relatieve 
waarde voor n1 hun impact op het verloop van de FDR in beide datasets 
(gunstiger verloop bij van ’t Veer et al.). 

Discussie 
Volgens ons kan het verschil in geschiktheid van microroosterdata 

om differentiële expressie tussen welbepaalde condities te bestuderen 
(gedetecteerd door een verschil in AUC) te wijten zijn aan het gebruik van 
een andere of verbeterde microroostertechnologie en experimenteel protocol. 
Het behoort ook tot de mogelijkheden dat er een verschil bestaat in de 
specificiteit (voor een zekere pathologie of klassenverschil) van de genen die 
aanwezig zijn op het microrooster. Eventueel kunnen een verschil in de 
kwaliteit van de tumorbiopsies en een verschil in de beoordeling van de 
histopathologie, ook een wijziging in de AUC veroorzaken. 

De methode beschreven in dit hoofdstuk zou ook kunnen gebruikt 
worden om de kwaliteit van verschillende platformen te vergelijken 
(bijvoorbeeld Affymetrix versus cDNA-microroosters), om het effect van 
een verschillende voorbereiding van de data te bestuderen op de detectie van 
differentiële expressie en om het effect van additionele experimenten te 
beoordelen. Bovendien kan het voor dezelfde dataset gebruikt worden om te 
beslissen welke hypothesetest het beste resultaat geeft. 
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Hoofdstuk 7: Conclusies en toekomstig onderzoek 

In dit hoofdstuk vatten we de voornaamste conclusies en eigen 
bijdragen samen. Bovendien stellen we kort enkele specifieke 
onderzoeksprojecten voor waarin we in de toekomst willen bijdragen. Noteer 
dat twee van deze projecten het gebruik van proteoomdata inhouden. Als 
laatste deel van dit hoofdstuk bespreken we enkele algemene toekomstige 
onderzoeksvragen. 

Specifiek toekomstig onderzoek 
Ovariale tumoren: studie van het transcriptoom 

In dit onderzoek willen we wiskundige modellen construeren die aan 
de hand van genexpressiedata van sereuze (meest voorkomende 
histopathologie) ovariumcarcinomen de volgende twee binaire 
classificatieproblemen trachten op te lossen: 

1. Voorspelling of een patiënt met een stadium III (FIGO 
stadiumbepaling) ovariale tumor zal hervallen binnen 6 maanden na de 
laatste therapeutische interventie. Omdat de standaard chemotherapie 
voor ovariumcarcinomen meestal gebaseerd is op platinum, zullen deze 
modellen in staat zijn om platinumresistentie (chemosensitiviteit van de 
tumor) te voorspellen. Dit zal de geneesheer in de eerste plaats in staat 
stellen om de patiënt realistische informatie te geven in verband met 
zijn prognose, maar het kan ook toelaten om in de toekomst een 
alternatieve behandeling te ontwikkelen voor stadium III tumoren 
waarvan voorspeld wordt dat ze niet gevoelig zullen zijn aan de 
standaard chemotherapie. 

2. Voorspelling of een patiënt met een stadium I ovariale tumor zal 
hervallen na de initiële chirurgie. De patiënten met een stadium I tumor 
die volgens onze modellen een hoge kans hebben op een recidief, zijn 
ideale kandidaten die maximaal voordeel zullen halen uit een adjuvante 
therapie (chemotherapie en/of lymfadenectomie) terwijl patiënten met 
een stadium I tumor en een lage kans op recidief gespaard zouden 
kunnen blijven van de bijwerkingen van een zinloze adjuvante 
behandeling en kunnen gerustgesteld worden dat ze een hoge kans op 
blijvende genezing hebben. 

Endometriose: studie van het transcriptoom en proteoom 

Hier plannen we om zowel het transcriptoom en proteoom te 
bestuderen van weefselstalen die bestaan uit normaal uterien endometrium 
van vrouwen met en zonder endometriose. Bovendien zullen de vrouwen 
met matige-ernstige endometriose nog onderverdeeld worden in diegenen 
met en zonder herval na chirurgie. Hierdoor hopen we wiskundige modellen 
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te kunnen opstellen die de aanwezigheid van endometriose en de kans op 
herval na chirurgie kunnen voorspellen. In een eerste fase willen we 
modellen identificeren die gebaseerd zijn op één datatype (d.w.z. op 
microrooster- of proteoomdata alleen). In een volgende fase hopen we om de 
voorspellingen te optimaliseren door modellen te construeren die 
microrooster- en proteoomdata combineren (eventueel nog zelfs aangevuld 
met klinische gegevens). Bovendien is het de bedoeling om de patronen die 
bekomen werden uit de studie van het transcriptoom en proteoom met elkaar 
te vergelijken met een techniek die gebaseerd is op GSVD (Alter et al., 
2003). 

Cervix- en endometriumcarcinomen: studie van het proteoom 

In dit onderzoek willen we serum- en weefselstalen van patiënten 
onderzoeken met cervix- of endometriumcarcinomen met de bedoeling om 
prognostische informatie te bekomen. De studie van het proteoom in serum 
kan eventueel leiden tot de identificatie van merkers die kunnen bepaald 
worden aan de hand van een eenvoudig te bekomen bloedstaal (in 
tegenstelling tot het nemen van een biopsie). 

Algemene toekomstige onderzoeksvraagstukken 
Terwijl er recent verschillende publicaties zijn verschenen die 

duidelijk het potentieel van microroosters bij het bepalen van het klinische 
beleid in de oncologie aantonen, zijn er echter nog veel hindernissen die het 
gebruik van deze technologie in de dagdagelijkse klinische praktijk 
verhinderen.  

Vooraleerst zijn de meeste modellen die geconstrueerd zijn aan de 
hand van microroosterdata gebaseerd en getest op een beperkt aantal 
patiënten. Om betrouwbare modellen te bekomen moeten voldoende 
technische en biologische replica’s voorhanden zijn. Bovendien moeten deze 
modellen prospectief worden gevalideerd in klinische studies met grotere 
groepen patiënten.  

Bovendien is er ook nog het probleem van de standaardisatie. Omdat 
de experimentele procedure voor het bestuderen van het transcriptoom 
gevoelig kan variëren van plaats tot plaats, is het mogelijk dat klinische 
modellen die bekomen zijn in een bepaald centrum niet direct overdraagbaar 
zijn naar een ander centrum. Gedetailleerde experimentele richtlijnen zijn 
nodig vooraleer een implementatie in de klinische praktijk mogelijk is. Merk 
ook op dat het gebruik van een unieke referentie bij cDNA-microroosters 
een veralgemeende toepassing van de resulterende modellen onmogelijk 
maakt. 

Zoals reeds vermeld, is het mogelijk dat men door de studie van het 
proteoom meer informatie kan bekomen over het fenotype van een tumorcel. 
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Bovendien zijn voor de studie van het transcriptoom steeds weefselstalen 
nodig, wat niet altijd het geval is voor de studie van het proteoom (dat 
bijvoorbeeld ook in serum kan bepaald worden). Het gebruik van 
proteoomdata kan hierdoor de volgende stap zijn om hoogdimensionale 
moleculair biologische data in het klinisch beslissingsproces te integreren. 

Specifiek voor de mathematische analyse van hoogdimensionale 
moleculair biologische gegevens blijven er ook nog een aantal open 
onderzoeksvragen die het eventueel mogelijk maken om bijkomende 
informatie te bekomen. Dit omvat ondermeer het combineren van 
microroosterdata, proteoomdata en eventueel klinische data in hetzelfde 
model, het gebruik van Independent Component Analyse (ICA), de 
combinatie van modelselectietechnieken met andere methoden voor de 
selectie van kenmerken, het gebruik van andere afstandsmaten bij clustering 
en kernelversies van clusteralgoritmen, het gebruik van GSVD of CCA voor 
de vergelijking van microrooster- en/of proteoomdata en het gebruik van 
meta-analyse technieken voor de analyse van data die afkomstig zijn van 
verschillende bronnen of centra. 
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Notation 

List of symbols 

In the following table we alphabetically list and explain the symbols 
that are used in this text. Some of the symbols can have more than one 
meaning, which should be clear from the context. 

 

Symbol Explanation 
  
# Number of elements in a set 
∅ An empty set 
{} A set 
{x | Condition(x)} A set that contains x-values for which the Condition is 

true 
∪ Union of two sets 
\ Subtraction of two sets 
∈ Is an element of 
∉ Is not an element of 
≠ Not equal to 
≈ Approximately equal to 
* Missing value 
n! n.(n-1).(n-2)...3.2.1 

2
.  2-norm of a vector 

∑
=

I

i
ix

1
 Sum: x1+x2+x3+...+xI 

i

I

i
x

1=
Π  Product: x1 . x2 . x3 ... xI 

|x| Absolute value of x 
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Symbol Explanation 
  









m
n

 
Number of combinations of m elements chosen from a 
set of n elements 

)!(!
!

mnm
n

m
n

−
=







  

∫ Integral 
√ Square root 
∀ For all elements off 
[x1 x2 ... xn] Row vector with components x1, x2, ..., xn 
1N Row vector of dimension N where the components equal 

1 
a Number of gene pairs that are placed in the same cluster 

in two partitions 
A Expression matrix of a set of microarray experiments 

(n x e matrix) 
Ak Diagonal matrix whose elements are proportional to the 

eigenvalues of Σk 
AROC True AUC for an infinite sample 
ÂROC Estimate of the AUC 
ASORT Expression matrix where the gene expression profiles 

have been sorted (descending order) according to their 
correlation with gmv 

ACCUR_RAD Internal tuning parameter of AQBC 
AP TVS parameter - Uterine anteroposterior diameter (mm) 
α Rejection level or confidence level 
αopt Optimal rejection level 
αj Lagrange multiplier (LS-SVM) 
b Model threshold 
βi ith model parameter of a linear model 
C Cluster 
Ci Class i or cluster i 
CC Presence of a clear cell component in an endometrial 

tumour (0:not present, 1:present) 
CEIL(x) Smallest integer that is equal or larger than x 
d Number of gene pairs that are placed in different 

clusters in two partitions  
(in Chapter 5 (AQBC) this also refers to e - 2) 

d(gi,Cl) Distance from a gene expression profile gi to a cluster 
Cl. 

d(vk,vl) Euclidean distance between the expression vectors vk 
and vl 

dr Elementary thickness 
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Symbol Explanation 
  
dV Elementary volume 
D Fixed threshold for the diameter of a cluster 
D(i,j) Evaluation of the status of the jth component of the ith 

expression vector. Equals 1 if this not a missing value 
and equals 0 otherwise 

Dk Orthogonal matrix of the eigenvectors of Σk (this 
notation is also used for a design variable) 

DD Degree of differentiation of an endometrial tumour 
(1:good, 2: moderate, 3: poor) 

DIV Internal tuning parameter of AQBC 
λk Constant of proportionality of Σk 
e Number of microarray experiments in a microarray data 

set – number of columns of the expression matrix A 
ei Number of microarray experiments in a data set that 

belong to class i 
ei Error variables (LS-SVM) 
E(.) Expected value 
EE TVS parameter - Endometrial Echogenicity 

(0:homogeneous, 1:heterogeneous) 
EL TVS parameter - Endometrial Lining (0:regular, 

1:irregular) 
ET TVS parameter - Endometrial thickness (mm) 
EV TVS parameter - Endometrial volume (ml) 
f Number of genes in a functional category 
F Column vector (s x 1) that contains the s features of the 

microarray experiment with expression vector m after 
PCA 

FDRi False discovery rate at rejection level α = pi 
FNi Number of false negative genes at rejection level α = pi 
FPi Number of false positive genes at rejection level α = pi 
g Gene expression profile (1 x e row vector) (g is also 

used for the number of genes in a cluster) 
gi ith gene expression profile (1 x e row vector) 
gj jth component of gene expression profile g 
gi

j jth component of the ith gene expression profile gi 
gmv Gene expression profile with missing value 
gsi Gene expression profile with ith largest correlation with 

gmv 
g(x) Logit (logistic regression) 
G(gi) Golub score of the ith gene expression profile 
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Symbol Explanation 
  
G Collection of gene expression profiles (this notation is 

also used for the intensity in the green channel of a 
cDNA-microarray and for the G-statistic in the 
likelihood ratio test (logistic regression)) 

γ Regularization parameter of a LS-SVM model 
Γ(.) Gamma function 
H Intersection of a hypersphere and a hyperplane formed 

by standardizing gene expression profiles (AQBC) 
HL Linearised version of H (AQBC) 
H0 Null hypothesis 
H1 Alternative hypothesis 
I Number of expression vectors in a data set 
J Number of measurements or components in an 

expression vector 
J(w) Fisher criterion 
k Number of genes in a cluster that belong to a certain 

functional category 
K Number of clusters 
K(r,s) Kernel function 
l(β) Likelihood function 
ln Logarithm with base e 
L(β) Log likelihood function 
m Expression vector of a microarray experiment (n x 1 

column vector) 
mCi Mean expression vector of the expression vectors of the 

microarray experiments belonging to class i 
mj Expression vector of the jth microarray experiment (n x 

1 column vector) 
mx Sample mean of x 
max X Maximum value of set X 
mean(X) Mean value or average vector of a set X 
min X Minimum value of set X 
Mi Number of missing values in an expression vector vi 
MAXITER Internal tuning parameter of AQBC 
ME Cluster mean (AQBC) 
MI Degree of myometrial invasion of an endometrial 

tumour (0:absence of deep invasion, 1:deep invasion) 
MIN_NR_GENES User-defined parameter of AQBC - minimum number of 

genes in a cluster 
MT TVS parameter - Myometrial thickness (mm) 
µ Mean 
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Symbol Explanation 
  
µi Mean of the values belonging to class i or mean vector 

of cluster Ci 
µx True or population mean of x 
µ(gi) Mean expression level of gi 
n Number of gene expression profiles in a microarray data 

set - Number of rows of the expression matrix A 
n0 Number of genes in a microarray data set without actual 

differential expression 
n1 Number of genes in a microarray data set with actual 

differential expression 
n1calc Calculated value of n1 
ns Number of tests performed simultaneously 
N Number of data points in a data set 
Ň Set of n genes in a microarray data set 
Ň0 Set of n0 genes without actual differential expression in 

a microarray data set 
Ň1 Set of n1 genes with actual differential expression in a 

microarray data set 
N(j) Number of expression vectors in a set that do not have a 

missing value for their jth component 
NA Number of abnormal objects 
NN Number of normal objects 
NF TVS parameter - Number of fibroids 
Ok Cluster center of cluster Ck (AQBC) 
O(.) Order of computational complexity 
pi p-value of the ith gene in a microarray data set after 

sorting the genes according to their p-values 
pE Significance for entry into the model in model selection  
pR Significance for removal out of the model in model 

selection  
pk(g|µk,Σk) Multivariate Gaussian model for cluster Ck with mean µk 

and covariance matrix Σk 
p(g) Mixture model for gene expression profiles 
p(r) Probability density estimation for r in AQBC 
p(r|C) Distribution of r in the cluster (AQBC) 
p(r|B) Distribution of r in the background (AQBC) 
p(.|Ci) Class conditional density function of class i 
P Matrix (n x s) that contains the s selected principal 

components of the expression matrix A 
Pi Set of measurement numbers of the missing values in an 

expression vector vi or gene expression profile gi 
PC A priori probability of belonging to a cluster (AQBC) 
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Symbol Explanation 
  
PB A priori probability of belonging to the background 

(AQBC) 
P(C|r) Posterior probability of belonging to the cluster given r 

(AQBC) 
P(Ci|.) Posterior probability of class i 
PI CDI parameter - Pulsatility index 
PSV CDI parameter - Peak systolic velocity (cm/sec) 
πk Prior probability of belonging to cluster Ck 
Q1 Probability that two randomly chosen abnormal objects 

will both be ranked with greater suspicion than a 
randomly chosen normal object (ROC curves) 

Q2 Probability that one randomly chosen abnormal object 
will be ranked with greater suspicion than two randomly 
chosen normal objects (ROC curves) 

r Euclidean distance of a gene expression profile to its 
cluster center Ok (AQBC) 

ri,j Pearson correlation between gi and gj 
R Intensity in the red channel of a cDNA-microarray 
RAD Radius of a sphere (AQBC) 
RI CDI parameter - Resistance index 
Rk Radius or quality of cluster Ck (AQBC) 
Rk_PRELIM Preliminary estimate of the radius of a cluster (AQBC) 
s Number of selected principal components 
s(gi) Silhouette of gene expression profile gi 
se Standard error of ÂROC 
sx Sample standard deviation of x 
sign(.) Sign function 
S User-defined parameter of AQBC - significance level 

(in Appendix A this is also used for a finite sample) 
Sc Scoring function 
Sd Surface area of a unit sphere in d dimensions 
SA Sample subset with abnormal subjects 
SN Sample subset with normal subjects 
SW Within-class covariance matrix 
SA Subjective assessment of the degree of invasion of an 

endometrial tumour (0:stage Ia, 1:Ib, 2:Ic, 3:II or higher) 
SENSi Sensitivity at rejection level α = pi 
SENSopt Sensitivity at optimal rejection level αopt 
SPECi Specificity at rejection level α = pi 
SPECopt Specificity at optimal rejection level αopt 
SP Presence of a serous papillary component in an 

endometrial tumour (0:not present, 1:present); 
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Symbol Explanation 
  
σ Standard deviation 
σ2 Variance 
σi Standard deviation of the values belonging to class i 
Σ Covariance matrix 
Σk Covariance matrix of cluster Ck 
t Gene number of a gene that belongs to Ň0 and with a 

p-value that is equal or larger than the p-values of all the 
genes from Ň1 

tx Test statistic (t-distribution) 
T Threshold 
Topt Optimal threshold 
TAMXV CDI parameter - Time-averaged maximum mean 

velocity (cm/sec) 
TNi Number of true negative genes at rejection level α = pi 
TPi Number of true positive genes at rejection level α = pi 
UT Transpose of the matrix U 
UV TVS parameter - Uterine volume (ml) 
vav Mean expression vector of a set of expression vectors 
vav

j jth component of the mean expression vector 
v Expression vector 
vi ith expression vector 
vi

j jth component of the ith expression vector 
v(gi) Within dissimilarity of gene expression profile gi 
Vi .

1
.

i

i

p
npi

−
−  

VC Number of valid clusters (AQBC) 
w Vector with model parameters 
w(gi) Between dissimilarity of gene expression profile gi 
W Wilcoxon statistic 
xi ith data point 
xj

i jth component of the ith data point 
y  Output of a model 
yj Output of a model for the jth data point 
yA Model output for an abnormal object 
yN Model output for a normal object 
Y Outcome variable in logistic regression 
Yi Outcome variable (0 or 1) for the ith data point in 

logistic regression 
z z statistic 
ϕ(x) Mapping function (LS-SVM) 
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Acronyms 

AFP  Alpha fetoprotein 
ALL  Acute lymphoblastic leukemia 
AML  Acute myeloid leukemia 
ANOVA Analysis of variance 
AQBC  Adaptive quality-based clustering 
AUC  Area under the ROC curve 
BIC  Bayesian information criterion 
CAST  Cluster affinity search technique 
CCA  Canonical correlation analysis 
CDI  Colour Doppler imaging 
cDNA  Complementary DNA 
CT  Computer tomography 
DNA  Deoxyribonucleic acid 
EM  Expectation-maximization 
EST  Expressed sequence tag 
FDA  Fisher’s linear discriminant analysis 
FDR  False discovery rate 
FIGO  International federation of gynaecology and obstetrics 
FN  False negative 
FOM  Figure of merit 
FP  False positive 
FWE  Family-wise error 
GSVD  Generalized singular value decomposition 
hCG  Human chorionic gonadotropin 
IT  Intratumoral 
LDH  Lactate dehydrogenase 
LOO-CV Leave-one-out cross-validation 
LS-SVM Least squares support vector machine 
MALDI-TOF Matrix-assisted laser desorption ionisation time-of-flight 
MCLUST Model-based cluster algorithm 
MIPS  Munich information center for protein sequences 
MLL  Acute leukemia involving the mixed-lineage leukemia gene 
MR  Magnetic resonance 
mRNA  Messenger RNA 
tRNA  Transfer RNA 
NaN  Not a number 
NN  Nearest neighbour 
OMIM  Online Mendelian inheritance in man 
ORF  Open reading frame 
PCA  Principal component analysis 
PCR  Polymerase chain reaction 
RBF  Radial basis function 
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RNA  Ribonucleic acid 
ROC  Receiver Operating Characteristic 
RT-PCR Reverse transcription-coupled PCR 
SELDI-TOF Surface-enhanced laser desorption ionisation time-of-flight 
SOM  Self-organizing map 
SOTA  Self-organizing tree algorithm 
TN  True negative 
TNM  Tumour, node, metastases 
TP   True positive 
TVS  Transvaginal sonography 
UA  Uterine artery 
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Chapter 1 

Introduction 

1.1 Motivation 
Cancer is the second leading cause of death after heart disease 

(Longo, 1998). The classical approach to cancer management has several 
aspects (Slapak and Kufe, 1998). Firstly, there is diagnosis and staging. An 
examination of a tumour sample under a microscope (histopathological 
diagnosis) allows verifying the malignancy, the origin, and degree of 
differentiation of the tumour. Subsequently, staging has to be performed or 
the extent of the malignant disease has to be determined. During staging, one 
aims for example to establish whether the tumour is still localized or has 
already invaded surrounding tissue, whether the lymph nodes are affected or 
whether distant metastases are present (e.g., in the lung, liver, bone or brain). 
Diagnosis and staging subsequently allow determining the most appropriate 
management strategy or therapy planning, which can be surgery, 
radiotherapy, chemotherapy or a combination. During therapy planning a 
trade-off has to be found between the goals of the treatment plan (e.g., 
curative intent, complete remission, gain in survival, palliation) and the 
possible side effects or morbidity of therapy (e.g., acute toxicity of 
chemotherapy, secondary tumours following radiotherapy and 
chemotherapy, mutilation after surgery). Diagnosis and staging also can give 
an indication of the prognosis (e.g., prediction of the therapy response, 
survival, disease-free survival, probability of disease eradication) 

This classical approach to cancer management, however, is in many 
cases empirical and based on knowledge present in the literature (usually 
derived from clinical studies) and often on the personal experience of the 
clinician. The present diagnostic schemes often exhibit significant 
interobserver variability and thus still need a considerable amount of 
personal expertise and sometimes interpretation from the physician. 
Moreover, not all information that is clinically relevant (e.g., prognostic 
information) can be extracted using the data that physicians have access to at 
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this moment. Better and more objective tools that, for example, allow 
assigning patients to a certain diagnostic category or provide prognostic 
information would be helpful, especially for non-experts.  

1.2 Molecular biology 
The fundamental mechanisms underlying carcinogenesis on a 

molecular biological level are in many cases still elusive and not taken into 
account to make the most optimal management decisions. In this context, we 
will discuss some elementary principles of molecular biology and describe 
the technologies that will be used to gather molecular biological data in this 
dissertation. 

Genes are nucleic acid sequences (double-stranded DNA) that carry 
the information that represents a particular protein or polypeptide. This 
information is stored by a specific sequence of nucleotides (symbolized by 
A, G, C and T). The genes encode for proteins through the intermediate 
action of mRNA. Transcription generates a single-stranded mRNA identical 
in sequence with one of the DNA strands. The transcription process is 
initiated by the binding of several transcription factors (specific proteins) to 
regulatory binding sites in the promoter region upstream of the transcribed 
sequence. The transcription factor proteins bind to each other to form a 
complex that associates with an enzyme called RNA polymerase. This 
association enables the binding of RNA polymerase to a specific site in the 
promoter (see Figure 1.1). Subsequently, this complex catalyses RNA 
synthesis. It should be noted that the transcription rate can be positively or 
negatively affected or regulated by the action of the transcription factors. In 
a later stage, the mRNA is processed, transported out of the nucleus, and 
translated into a protein (Moreau et al., 2002a; Lewin, 1997). 

 Cancer is a genetic disease caused by mutations in the genes of a 
cell. Distinct processes such as contact with carcinogens, viral infections, 
radiation can induce mutations in the human genome. This can transform a 
normal cell into a tumour cell, induce its proliferation and finally lead to 
invasion and metastasis. Mutations leading to cancer can either occur in 
proto-oncogenes (genes involved in controlled cell proliferation and cell 
division), in tumour suppressor genes (encoding for inhibitors of cell 
proliferation), in genes linked with apoptosis (programmed cell death), genes 
linked with invasion and metastasis, DNA repair, and so on. These mutations 
can induce changes in or dysregulate the transcription or expression of other 
genes without mutations, but whose expression levels (amount of 
transcription or mRNA produced for a specific gene) are directly or 
indirectly controlled by the mutated genes. This is for example the case 
when the mutated gene codes for a transcription factor. It will be the
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Figure 1.1: Initiation of the transcription process by the association of the complex 
of transcription factors (gene regulatory proteins), the RNA polymerase, and the 
promoter region of a gene. 

collection of these disturbed expression levels that guide the phenotype of 
the tumour (Sager, 1997) and represent the fundamental mechanisms that 
cause malignant process. It can be expected that incorporation of the effects 
of these mutations on the global expression pattern of the tumour cells into 
the clinical decision making process could be of major importance. The 
measurement of these expression patterns will therefore be of great benefit to 
know, to determine and to understand the real clinical behavior of the 
tumour cells. Furthermore, studying such data will allow gaining a more 
profound insight into the processes that lead to and determine the phenotype 
of malignancies, which could open new perspectives for fundamental cancer 
research. This could, for example, ultimately lead to the discovery of new 
drug targets and the development of new drugs that might improve the 
prognosis of cancer patients.  

One of the most promising technologies recently developed to 
measure expression patterns are microarrays. Microarrays allow to 
simultaneously measure the expression level of thousands or tens of 
thousands of genes (also called the transcriptome) in a biological sample. An 
array constitutes of a reproducible pattern of different DNAs (primarily PCR 
products or oligonucleotides - also called probes) attached to a solid support. 
Fluorescently labelled cDNA, prepared from mRNA, is hybridised to the 
complementary DNA present on the array. Hybridisation intensities are 
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measured by a laser scanner and converted to a quantitative read out. Two 
basic types of arrays are available: cDNA-microarrays (Duggan, 1999 - see 
Figure 1.2) and oligonucleotide arrays (Lipshutz, 1999). These will be 
further discussed in Chapter 3. Since each microarray experiment measures 
the expression of thousands of genes, this results in a vector with thousands 
of components (one component for each probe present on the array). When 
entire microarray experiments need to be analysed, techniques have to be 
used that can cope with extremely high-dimensional data points. The data 
produced by microarrays have been the main focus of our research and we 
will devote the largest part of this dissertation to the methods that can 
analyse it. 

It is possible although, that microarrays do not capture all relevant 
phenomena in a cell on a molecular level because of posttranscriptional 
modification and regulation of biologically active molecules. By studying 
the proteome (collections of all the proteins), it is therefore possible to obtain 
additional information about the molecular biology of a cell that is not 
captured by microarrays. The proteome can be examined using recently 
developed technology based on mass spectrometry that enables to quantify 
the presence of a large subset of proteins in a sample. We did not yet study 
this technology or the resulting data during our research, but some specific 
applications that could be investigated in the future are discussed in the last 
chapter of this thesis (Chapter 7, Section 7.2.1). In these applications we 
plan to use the ProteinChip technology developed by Ciphergen Biosystems 
(based on surface-enhanced laser desorption ionisation time-of-flight 
(SELDI-TOF) mass spectrometry - see http://www.ciphergen.com and 
Chapman (2002)) or the ClinProt system of Bruker Daltonics (based on 
matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) 
mass spectrometry - see http://www.bdal.com/clinprot.html). ProteinChip 
technology has already been applied to some selected cases in oncology 
(Kozak et al., 2003; Petricoin et al., 2002a; Petricoin et al., 2002b). 
Qualitatively, these technologies result in spectra that contain thousands of 
discrete peak amplitude values each associated with a mass/charge value, 
which, in its turn, is associated to a (unknown) protein (see Figure 1.3). 
Therefore, these spectra are characteristic for the proteins or a subset of 
proteins present in a sample and the output consists of huge data vectors 
where every component is representative for the amount of an unspecified 
protein that is present in the sample at hand. The output is thus qualitatively 
similar to microarray data and can thus possibly be analysed using similar 
techniques. 

In this thesis we will present and study a general data-mining 
framework, mainly applied to oncology, that intends to extract clinically and 
biologically meaningful information from microarray data (and proteomic
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Figure 1.3: Typical mass spectrum obtained with ProteinChip technology (from 
Petricoin et al., 2002a). This specific spectrum consists of 15.200 peak amplitudes 
associated with a mass/charge value. 

data - future research) and that aims to solve and formulate diagnostic 
problems more objectively and accurately using clinical data. This 
framework aims to apply specific algorithms to facilitate diagnosis, 
prognosis and therapy planning and to obtain a more fundamental insight 
into the molecular biology of carcinogenesis (see Figure 1.4 for the context 
of the framework in this thesis).  

1.3 Data-mining framework 
Although we will use or discuss several data sets in this thesis that 

contain patients with gynaecologic malignancies (e.g., endometrial, breast or 
ovarian cancer), we will illustrate our general data-mining framework with a 
hypothetical data set that contains patients with a malignancy that is 
exclusively male: testicular cancer. Testicular cancer is the most common 
type of cancer for men between the ages of 15 and 34 and the incidence rate 
is reported to be 4/100.000 (Güden et al., 2003). The etiology or cause is 
unknown but there is a strong association with cryptorchidism (non-
descended testicle). In contrast with ovarian cancer (see Section 7.2.1) where 
most tumours have an epithelial origin, most testicular tumours arise from 
the primordial germ cells (95%). Testicular germ cell tumours are divided in 
two major subgroups: seminomas and non-seminomas. Approximately one-
third of patients present with early or stage I disease (tumour limited to the 
testis - Motzer and Bosl, 1998). These patients are usually treated with 
inguinal orchidectomy (removal of the affected testis) followed by adjuvant 
therapy resulting in extremely high cure rates. Adjuvant therapy in most 
centers consists of radiotherapy for seminomas (irradiation of the para-aortic 
and sometimes ipsilateral iliac lymph nodes, resulting in a relapse rate of less 
than 5%) and adjuvant chemotherapy (bleomycin, etoposide and cisplatin 
combination) or retroperitoneal lymph node dissection (a major surgical 
procedure) for non-seminomas (Jones and Vasey, 2003). There is a problem 
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with adjuvant therapy, however. Without adjuvant therapy after 
orchidectomy, only 20% of patients with early stage seminomas and only 
30% of patients with early stage non-seminoma will have a relapse. Recent 
publications (Zagars et al., 2004; Huddart et al., 2003) indicate that, beside 
the acute side-effects, adjuvant therapy could have a profound impact on 
longevity in this population of predominantly young men, due to an increase 
in cardiovascular disease or cardiac death and second cancers. This means 
that for seminomas, for example, 80% of the patients that have received 
adjuvant radiotherapy will be exposed to this risk without any reason 
because they would not have had a relapse anyway. At this moment, 
however, there are no reliable clinical parameters that can distinguish 
between patients that will and will not have a recurrence without adjuvant 
therapy, which is the reason that in many centers adjuvant therapy is given to 
the majority of patients (although recently surveillance (wait-and-see) is also 
proposed as an option, which means no adjuvant therapy and a rigorous 
follow-up). We will use this example to illustrate how our data-mining 
framework could help to select the patients that would benefit from adjuvant 
therapy and to select the patients for which this would only mean an increase 
in morbidity and mortality. 

Consider a set of patients with stage I seminoma that did not have 
adjuvant radiotherapy after orchidectomy (patients under surveillance) and 
consider two groups or classes of patients: without and with relapse (e.g., 
within five years). The latter group are the patients that would have benefited 
from adjuvant radiotherapy. Suppose that the class memberships or the class 
labels are already known for each patient in this data set. Also suppose that 
we have clinical data available (e.g., values for the tumour markers (β-)hCG 
(human chorionic gonadotropin), AFP (alpha fetoprotein) and LDH (lactate 
dehydrogenase), from histopathology (e.g., TNM stage, presence of vascular 
invasion), from ultrasound examination of the testis, from CT (computer 
tomography) of the chest and abdomen, from patient and family history, and 
so on) for each patient and that the primary tumours obtained after 
orchidectomy were analysed with microarrays and that the resulting 
expression patterns are available for analysis. It should be noted that the 
number of clinical parameters is some orders of magnitude lower then the 
number of gene expression levels available for each patient. We will now 
discuss how the different elements of our data-mining framework, 
classification, clustering and feature extraction, could be applied to this data 
set (see Figure 1.5 for a schematic overview of the application of the 
elements of this framework). 
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Figure 1.4: (see opposite page) Context and overview of the general data-mining 
framework in this thesis. This framework consists of three different components: 
feature extraction, classification and clustering, each associated with specific 
methods that are, in most cases, applied through custom MATLAB or SAS scripts. 
Adaptive quality-based clustering (AQBC - an algorithm specifically designed to 
cluster gene expression profiles - see Chapter 5) is integrated in an on-line tool for 
microarray data analysis called INCLUSive. In this thesis we will use, after 
appropriate preprocessing, the different components of the framework to study 
clinical and microarray data and discuss how this methodology could be applied for 
proteomic data in the description of our future research. We will illustrate the 
analysis of these different data types with concrete data sets that contain information 
about specific diseases or biological processes. For microarrays the analysis can be 
done in two different contexts, dependent on the definition of the objects that are 
studied. In the first context, the objects are entire microarray experiments (which are 
usually expression patterns associated with specific patients) and in the second 
context the objects are the expression measurements for a specific gene over the 
different experiments (called gene expression profiles). Feature selection results in 
the identification of individual or a set of variables (sometimes called biomarkers for 
microarray or proteomic data) or in combinations of variables that are as informative 
as possible about a certain class distinction. For univariate analysis in microarray 
data we will describe a methodology that can estimate the total number of genes that 
is and is not actually differentially expressed and introduce a quality label that 
reflects the appropriateness of a microarray data set to study differential expression 
(Chapter 6). Classification results in diagnostic models that can predict the 
diagnostic category of a patient using its expression or proteomic pattern or 
associated clinical parameters. Finally, clustering results in the identification of the 
diagnostic categories itself or in groups of genes with similar expression patterns 
(coexpressed genes) dependent on the context in which the analysis is done for 
microarray data. ROC = Receiver Operating characteristic curve; PCA = Principal 
Component Analysis; LS-SVM = Least-Squares Support Vector Machine; LDA = 
Linear Discriminant Analysis. 

1.3.1 Classification 

To predict the class membership and hence select the patients that 
need and do not need adjuvant therapy, one could develop mathematical 
models (e.g., logistic regression, Fisher’s linear discriminant analysis, Least 
Squares Support Vector Machines (LS-SVM)) that could anticipate whether 
patients will have a relapse without radiotherapy. This is called 
classification. The data set that is described above and for which the class 
labels are already known, could be used to determine the coefficients of a 
chosen model structure. This is called model training and the data that is 
used to train the model is called a training set. This model can subsequently 
be applied to classify a set of new patients (called the test set) that was not 
used for training and compare the model predictions with the true outcome
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Figure 1.5:  (see opposite page) Schematic overview of the different elements of our 
general data-mining framework applied to the data set containing patients with stage 
I seminoma under surveillance (i.e., that did not receive adjuvant radiotherapy). 
Several variables (which can be clinical parameters or gene expression levels 
measured with microarrays) are available for each patient. In this scheme, the 
variables are grouped in a column vector. Two classes are considered: patients with 
(class 1) and without (class 2) tumour recurrence after orchidectomy. The class 
membership or class label of each patient is indicated in the head of the column 
vector that represents it. (1) Feature extraction or dimensionality reduction:  
selection of a limited number of features (obtained after univariate or multivariate 
analysis) that allow optimal use in subsequent analyses. (2) Model training: the 
selected features and the class labels of our data or training set are used to determine 
the coefficients of a certain classifier. (3) Classification: the classifier is 
subsequently used to predict the class membership of new patients (test set) that 
were not used to train the model. Classification is based on the same features that 
were selected in the training set (predicted class labels are indicated by < >). (4) 
Model validation: comparison of the predicted class label with the true class label of 
the patients of the test set. (5) Cluster analysis: automatic discovery of groups or 
clusters of patients (based on the selected features and, since the algorithm has to 
define the classes by itself, not on the known class labels) with a certain similarity 
that might represent unknown diagnostic categories and that might contain a 
significantly different proportion of patients that will and will not have a relapse. 
Cluster analysis of gene expression profiles is not visualised in this figure. 

of these patients. This allows estimating the accuracy or the predictive power 
of the model on independent data and is called model validation.  

In first instance, we could try to construct models that only use 
clinical data, but since the available clinical parameters probably do not to 
contain sufficient information to distinguish between patients with and 
without relapse, the resulting model accuracy can be expected not to be 
adequate. Therefore it could be helpful to incorporate expression patterns 
measured with microarrays - that represent the fundamental mechanisms on 
a molecular biological level determining the phenotype of the tumour - into 
the mathematical model and the clinical decision making process. As said 
previously, special techniques need to be applied for the classification of 
expression patterns due to the high dimensionality of this data. 

1.3.2 Clustering 

It might be possible that stage I seminomas can be classified or 
divided in different but yet unknown fundamental entities on a molecular 
biological level. Tumours belonging to these different entities or diagnostic 
categories might exhibit different behaviour that is reflected by a different 
probability of relapse under surveillance. To discover these unknown entities
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one can apply clustering techniques to the expression patterns from the 
patients of the data set that is described above.  

With cluster analysis or class discovery it is possible to 
automatically find different classes or clusters in a group of microarray 
experiments or data points without knowing the properties of these classes or 
the class labels in advance. A cluster, in general, will group data points with 
a certain degree of similarity, according to a certain distance measure. 
Ideally, after cluster analysis (with for example the K-means algorithm or 
hierarchical clustering) groups are formed in such a way that data points in 
the same cluster are as similar as possible, whereas objects in different 
clusters are as dissimilar as possible (Kaufman and Rousseeuw, 1990). 
These clusters might represent groups of patients that, in our example, might 
contain a significantly different proportion of patients that will and will not 
have a tumour recurrence under surveillance. These clusters could be the 
basis of a new diagnostic scheme in which the different categories contain 
patients with less clinical variability. In clustering, therefore, we do not 
make predictions for individual patients like in classification, but we try to 
discover the diagnostic entities or classes themselves. 

Cluster analysis of microarray data can also be applied in a different 
context. Instead of clustering entire microarray experiments, one could try to 
cluster the expression measurements of the genes over the different 
experiments (which will be called gene expression profiles further on). For 
the seminoma data set, for example, one could aim to identify groups of gene 
that have similar behavior over the different patients (these genes are called 
coexpressed) and that might have similar roles in the pathway that 
determines the behaviour of these tumours (e.g., they might be regulated by 
the same transcription factor). 

1.3.3 Feature extraction 

Not all variables (clinical parameters or gene expression levels) in 
our seminoma data set data set are ideal candidates that can be used for 
further analysis in classification or clustering. In feature extraction we want 
to identify features (which can be individual variables, sets of variables or 
combinations of the variables – see further) that allow optimal use in 
subsequent analyses. Since microarray data consists of thousands of gene 
expression levels and many classification and clustering algorithms cannot 
deal with this directly, feature reduction also aims to diminish the 
dimensionality of the data vectors (dimensionality reduction) here. In this 
text we consider two different categories of feature extraction: univariate and 
multivariate. 
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In univariate feature extraction one aims to select the individual 
clinical variables or gene expression levels (also called biomarkers) whose 
value is maximally correlated with, for example, the difference between 
seminoma patients with and without relapse under surveillance or whose 
value shows, on the average, maximal difference between these two different 
classes. This can, for example, be achieved using classical hypothesis testing 
(Dawson-Saunders and Trapp, 1994). For microarray data the use of 
hypothesis testing is complicated by the problem of multiple testing to which 
we will devote Chapter 6 in this thesis. 

However, a set of variables that, by themselves, are correlated with a 
certain class distinction can behave similarly and do not contain, as a whole, 
more information about the class distinction under consideration than one 
single variable (this set of variables could be called mutually dependent - 
e.g., this could be the case for coexpressed genes). A mathematical model 
that uses this set of variables to predict class membership of the patients 
could not be expected to perform significantly better than a model that uses 
only one variable or a fraction of the variables from this set. On the other 
hand, variables can exist that, on their own, do not contain sufficient 
information to construct a reliable model but can, when combined, result in a 
model that performs better. In model selection techniques, variables are 
selected that have a statistically significant contribution in a certain model. 
This is usually achieved by an iterative process where variables are 
sequentially added to or removed from a model (Hosmer and Lemeshow, 
1989). Model selection techniques in the context of standard logistic 
regression are further discussed in Appendix A. The entity selected by this 
technique is a limited set of variables that in combination, results in an 
adequate model performance. Model selection is therefore considered to be a 
method for multivariate feature extraction. However, to prevent overfitting, 
one needs 6 to 10 patients for each variable that is considered for inclusion 
during model selection in for example logistic regression. This means that 
this method is not directly applicable to do feature extraction in microarray 
data (at least not without reducing the number of features first using some 
other feature selection technique) due to the extremely large number of 
genes expression levels that are available compared to the number of 
patients. In this thesis we will only use model selection in the context of 
clinical data analysis. 

Another technique for multivariate feature extraction is the 
identification of a linear or non-linear function or combination of the 
different variables that has a desired property. In principal component 
analysis (Bishop, 1995), for example, one aims to find a linear combination 
of the variables that have maximal spread over a set of data points. This is 
the preferred technique for feature extraction in microarray data and will 
therefore result in linear combinations of gene expression levels. 
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1.4 Chapter-by-chapter overview of own 
contributions 

Our own work can be divided in several topics each associated with 
a certain chapter. The relation between the different chapters is visualized in 
Figure 1.6. Throughout this text, the quantifiable results of our research will 
be accentuated by footnotes where appropriate. A list of our publications can 
also be found in the beginning of this text. 

Chapter 2: Clinical data analysis: Prediction of the depth of 
invasion in endometrial cancer 

In this chapter, we analyse a data set, that contains clinical 
parameters from patients with endometrial cancer (see Appendix B, Section 
B.1.1), according to some elements of the scheme set out by our general 
data-mining framework. By univariate and multivariate analysis (model 
selection - stepwise logistic regression analysis) we investigate which 
variables contribute in predicting the degree of myometrial invasion in 
endometrial cancer. Based on this, we construct, compare and validate a 
logistic regression model and LS-SVM models with a linear and RBF kernel 
that aim to help the physician in distinguishing between tumours with and 
without deep myometrial invasion. Although this is not discussed, we also 
applied some of the techniques presented in this chapter for another study 
(Epstein et al., 2002). 

Chapter 3: Microarray data analysis 
This chapter deals with our application of the general data-mining 

framework to microarray experiments in oncology as illustrated with the 
data from Golub et al. (1999) (De Smet et al., 2001; Marchal et al., 2004) 
and the data from Perou et al. (2000) (also see Appendix B). First, in the 
context of preprocessing we describe the strategies that we have used to 
manage missing values in microarray data. Further on, we demonstrate the 
use of univariate analysis and refer to Chapter 6 for an in-depth study of this 
topic and the problems associated to it. We show how principal component 
analysis can be applied to microarray data and suggest two methods 
(unsupervised and supervised) to select the principal components. 
Subsequently, we perform cluster analysis on the microarray experiments 
from the data from Golub et al., formulate some critical remarks about these 
techniques and refer to Chapter 4 and 5 for a detailed study of cluster 
analysis of gene expression profiles. Finally, we demonstrate how Fisher’s 
linear discriminant analysis and LS-SVM models with linear and RBF 
kernels can be used to classify microarray experiments and compare these 
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techniques in a benchmarking study that uses nine data sets (Pochet et al., 
2004). 

Chapter 4: Clustering of gene expression profiles 
In this chapter we present a general review of cluster analysis of 

gene expression profiles (Moreau et al., 2002a; Thijs et al., 2004) and 
describe some algorithmic challenges. We discuss some specific 
preprocessing techniques and some of the existing first- and second-
generation algorithms that are commonly used to cluster gene expression 
profiles. An inventory of the advantages and especially the disadvantages of 
these approaches will lead to the development of our own algorithm in 
Chapter 5. Finally, we will discuss some selected topics dealing with cluster 
validation. 

Chapter 5: Adaptive quality-based clustering of gene expression 
profiles 

In this chapter we develop our own method, called adaptive quality-
based clustering (AQBC), that is specifically tailored to cluster gene 
expression profiles (De Smet et al., 2002). This method is validated on three 
existing (including the yeast cell cycle data from Cho et al. (1998) - see 
Appendix B) data sets and an artificial data set. The integration of our 
method in an on-line tool for automatic multistep analysis of microarray 
data, called INCLUSive, is also mentioned (Thijs et al., 2002a; Coessens et 
al., 2003). Finally, we compare our approach with some of the existing 
methods already mentioned in Chapter 4. 

Chapter 6: Univariate analysis in microarray data 
In this chapter we elaborate on the problems of univariate analysis 

and multiple testing in microarray data (De Smet et al., 2004). We present a 
method that enables to calculate the number of genes that is and is not 
affected by a certain class difference. Using this result we show how 
Receiver Operating Characteristic curves can be used to optimally balance 
the number of false positives (genes not affected by the difference between 
the classes but declared so) and false negatives (genes that are affected by 
the difference in classes but not declared so) and can be used to assign a 
quality measure to a certain microarray data set with respect to its ability to 
detect differential expression. Among others, we demonstrate how this 
quality measure can be used for microarray data by calculating this value for 
the data from Golub et al. and Perou et al. and by comparing this with the 
corresponding value for other data that study acute leukemia and degree of 
differentiation in breast cancer, respectively. 
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Chapter 7: Conclusions and future research  
In this chapter we will describe our main accomplishments and 

devote a section to future research directions on the shorter term and future 
prospects on the longer term. Concerning future research on the short term, 
we will present some concrete projects that have already started or are 
planned, in which the techniques that are described in this thesis could be 
applied on microarray and proteomic data. They include a project for ovarian 
cancer management using microarrays, a project that plans to combine 
transcriptomic and proteomic patterns in the endometrium for the clinical 
management of endometriosis and a project that deals with the analysis of 
proteomic patterns for the study of patients with cervical and endometrial 
malignant tumours. 

1.5 Other research 
In the past few years, we have also investigated some other research 

topics that are not discussed in this dissertation. They include our work 
related to the development of a control system for the optimization of 
glycemia in critically ill patients1 and our work related to the use of artificial 
intelligence methods for the preoperative assessment of ovarian tumours2.

                                                      
1 This research has resulted in a patent appplication where we are co-

inventor (see http://l2.espacenet.com/espacenet/viewer?PN=WO03080157&CY=gb 
&LG=en&DB=EPD). 

2 In this context, we co-authored two papers (Timmerman et al. (2003) and 
Antal et al. (2001)). 
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Figure 1.6:  Main relationships between the chapters of this thesis. For clarity, the 
arrows that connect every chapter with Chapter 7 (conclusions) are not indicated. 
After the description of the general data-mining framework in Chapter 1, we will 
apply this to clinical and microarray data in Chapter 2 and 3 and discuss its potential 
use for proteome data in Chapter 7 (future research). While Chapter 3 gives a 
general overview of the application of the framework to microarray data, a more 
thorough study of some specific items follow in Chapter 4, 5 and 6. In Chapter 4 we 
provide a general discussion of cluster analysis of gene expression profiles, which 
will result in the development of our own algorithm in Chapter 5. In Chapter 6 we 
present an in-depth study of univariate analysis in microarray data. 
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Chapter 2 

Clinical data analysis: Prediction of the 
depth of invasion in endometrial cancer 

2.1 Introduction 
In this chapter we will apply the general data-mining framework to 

analyse clinical data obtained from patients with endometrial cancer. As 
already mentioned in Chapter 1, the number of available parameters or 
variables per patient present in clinical data sets is some orders of magnitude 
lower when compared to for example microarray data (where thousands of 
features per patient are available). This means that clinical data can be 
studied using classical biostatistical techniques, which are often not directly 
applicable to high dimensional (microarray) data. Note that in this context, 
we will not discuss methods that aim to cluster these data. Although it is 
possible that for example new diagnostic categories can be discovered using 
clustering methods, the clinical value of these techniques can be expected to 
be rather limited since, in general, the existing diagnostic categories have 
already been derived and fine-tuned based on clinical information (in fact, 
the existing diagnostic categories can be regarded as empirically derived 
clusters). The probability that new and relevant diagnostic schemes emerge 
by clustering clinical data alone is therefore smaller (in comparison with 
clustering microarray data that have not yet been incorporated in most of the 
existing diagnostic categories). 

Carcinoma of the endometrium (inner lining of the uterus) is the 
most common female pelvic malignancy (Young, 1998). Most (75%) 
tumours are confined to the uterus at diagnosis and are usually curable. 
However, it is still the 7th leading cause of death from cancer in women. This 
malignancy occurs mostly in postmenopausal women and in the sixth and 
seventh decades of life. It is suggested that exposure to estrogens 
(endogenous or exogenous) may play an important etiologic role. Symptoms 
often include abnormal vaginal discharge or bleeding. Initial evaluation of 
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these patients includes ultrasound examination (Transvaginal sonography 
(TVS - grey scale examination of the morphology) with Colour Doppler 
Imaging (CDI - measurement of the blood flow in the uterine arteries and in 
the tumour itself) - see Figure 2.1) and an endometrial biopsy. 

Figure 2.1:  Transvaginal sonography (grey scale) and Colour Doppler Imaging of a 
stage IB endometrial tumour (images supplied by Prof. D. Timmerman). 

The transition between FIGO surgical stage Ib and Ic endometrial 
carcinoma is determined by the degree of myometrial (muscle layer of the 
uterus) invasion (less or more than 50% (Levine and Hoskins, 2002)) and is 
an important prognostic factor (Ludwig, 1995) that determines the treatment 
schedule in many institutions. Accurate preoperative discrimination between 
patients with stage Ia or Ib disease (group I) and patients with stage Ic or 
higher (group II - patients with deep myometrial invasion) would allow to 
identify high-risk patients who might need pelvic and para-aortic 
lymphadenectomy. This might be important because in many countries 
patients who need lymphadenectomy are referred to a gynaecological 
oncologist while patients not needing lymphadenectomy are operated by the 
general gynaecologist or surgeon. 

Several techniques are commonly used to estimate the final 
histopathological stage or degree of myometrial invasion, but all have 
specific limitations. Intraoperative gross visual inspection (Franchi et al. 
(2000) reported an accuracy of 85.3% in predicting the degree of myometrial 
invasion (403 patients)) or frozen section (Kucera et al. (2000) reported an 
accuracy of 88% in predicting the myometrial invasion (624 patients)) does 
not allow preoperative planning of the surgical procedure. MR Imaging 
(contrast-enhanced) is the most reliable method (in a meta-analysis, Kinkel 
et al. (1999) reported an area under the Receiver Operating Characteristic 
(ROC) curve (AUC - see Appendix A, Section A.2) of 91% with respect to 
the prediction of myometrial invasion) but is costly, has more limited 
availability, can induce contrast allergies, has a smaller resolution (some 
distance is present between the individual sections, which may allow small 
lesions to be missed) and is not appropriate for all patients (e.g., 
claustrophobia, obesity). TVS and CDI have been well studied but different 
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groups report the use of different morphological or CDI parameters with a 
considerable variation in the results. Presently, the largest study that 
investigates the use of TVS and/or CDI to estimate the depth of myometrial 
invasion was published by Arko et al. (2000) and contains 120 patients. This 
study reported an accuracy of 73% in predicting myometrial invasion. 

2.2 Aim and overview 
In the study presented in this chapter, we assessed the value of 

several parameters in distinguishing between patients from group I or from 
group II by analysing a data set that contains ultrasound measurements 
obtained after TVS with CDI and histopathological data from patients with 
endometrial carcinoma. We constructed models that aim to predict the 
presence of deep myometrial invasion and that could help the clinician to 
identify patients that might need more extensive surgery. 

In the Materials and Methods section we will describe the data set 
and its content and discuss the methods that we used to perform feature 
extraction and classification using clinical data. In the Results section the 
results of our analysis will be examined and their clinical value evaluated. 

2.3 Materials and Methods 
Prof. Dr. D. Timmerman from the department of Obstetrics and 

Gynaecology (University Hospitals Leuven) collected data from 97 
consecutive patients (training set) with endometrial carcinoma between 
September 1994 and February 2000. 

All patients underwent preoperative ultrasound examination with 
TVS and CDI by the same expert (Prof. Timmerman). Histopathology was 
assessed preoperatively using an endometrial biopsy. The mean age was 65.9 
years (range 45-83) and 88 women were postmenopausal. The distribution of 
the different surgical FIGO stages was as follows: 24 stage Ia, 35 Ib, 12 Ic, 8 
II, 13 III and 5 IV. The histopathological subtypes were: 76 endometrioid 
adenocarcinoma, 3 serous papillary and 18 mixed type (5 with a clear cell 
and 3 with a serous papillary component). Fifty-four tumours were highly, 
18 moderately and 25 poorly differentiated. Tumours with a serous papillary 
or a clear cell component were considered to be poorly differentiated. 
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2.3.1 Feature extraction  

In this section, we aim to identify the parameters that could be of 
value to a clinician in distinguishing between patients with and without deep 
myometrial invasion. More specifically, we want to examine which (if any) 
individual parameters obtained after TVS with CDI contribute in this 
distinction. Moreover, we want to identify which ultrasound and 
histopathological parameters significantly contribute in a standard logistic 
regression model that predicts the degree of myometrial invasion. 

Univariate analysis of the ultrasound parameters and the 
subjective assessment 

Several morphological parameters visualised by grey scale TVS are 
available for univariate analysis (endometrial (ET) and myometrial (MT) 
thickness; endometrial (EV) and uterine (UV) volume; ET/AP (uterine 
anteroposterior diameter); EV/UV; MT/AP; EE (endometrial echogenicity: 
homogeneous or heterogeneous); EL (endometrial lining: regular or 
irregular)).  CDI parameters included intratumoral peak systolic velocity 
(PSV), time-averaged maximum mean velocity (TAMXV), resistance index 
(RI) and pulsatility index (PI) (for an exact definition of these terms, see 
Timmerman (1997)). Furthermore uterine artery PSV, TAMXV (maximum 
of the values measured at both the left and right uterine artery, i.e. the worst 
case), RI and PI (minimum of the values measured at both the left and right 
uterine artery) were measured. The subjective assessment by the 
gynaecologist of the depth of myometrial invasion (using a 4-value scoring 
system - 0: stage Ia; 1: Ib; 2: Ic; 3: II or higher) was also recorded. See Table 
2.1 for an example of the possible values for these parameters and their 
units. 

Univariate analysis was performed using the SAS software package 
(Release 8.01). We performed hypothesis testing (see Appendix A, Section 
A.1) and specifically used the Wilcoxon rank-sum test (for continuous data) 
or the Fisher’s exact test (for categorical data) to calculate p-values that 
reflect if there is a significant difference between patients from group I and 
group II for a certain variable (Dawson-Saunders and Trapp, 1994). Two-
sided tests were used and p < 0.05 was used as the level of significance.  

In first instance we did not apply a Bonferroni correction (also see 
Appendix A, Section A.1 for more details) to correct for multiple testing, but 
in the Results section we will discuss the effect if such a correction would 
have been applied for this data set. This correction controls the Type I or the 
family-wise error (FWE - probability of having one or more false positives). 
This method is, however, very conservative (Perneger, 1998) and can result 
in an inflation of the Type II error and a decrease in statistical power (which
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can be extreme if this method is applied to microarray data - for further 
information on this, the problem of multiple testing and univariate analysis 
of microarray data see Chapter 6). 

In addition, the ROC curves and the AUC were estimated and 
compared for the individual variables. On the ROC curves, the optimal cut-
off point was defined as the point that obtained the best trade off between 
sensitivity and specificity (the point that maximalises the sum of the 
sensitivity and specificity). The resulting sensitivity, specificity and accuracy 
were also calculated. See Appendix A, Section A.2 for more information 
about the technical details of ROC curves and the choice of an optimal cut-
off point. 

Multivariate stepwise logistic regression 
With multivariate stepwise logistic regression analysis (using 

stepwise selection in the LOGISTIC procedure from SAS) we aimed to 
develop a standard logistic regression model that included variables with a 
coefficient significantly different from zero (see Section A.3.4 on model 
selection techniques in Appendix A for more details - also see Hosmer and 
Lemeshow (1989)). We considered the following variables for inclusion in 
the model: the ultrasound parameters discussed in the previous section, 
degree of differentiation, number of fibroids detected during ultrasound 
examination (NF; range 0-2; this parameter was previously reported to be a 
potential factor disturbing sonographic prediction (overestimation of 
invasion) (Weber et al., 1995)), presence of a clear cell component and 
presence of a serous papillary component (based on Pipelle biopsies). In the 
model, obtained at the end of the stepwise logistic regression analysis, only 
variables having a coefficient significantly different from zero (p-value < 
0.05 - Wald Chi-Square statistic) were allowed. Note that only 74 of the 97 
patients from the training set were used for the stepwise logistic regression 
analysis because of missing values in some of the considered variables (SAS 
removes patients with one or more missing values). 

To prevent overfitting, ideally, one needs 6 to 10 patients for each 
variable that is considered for inclusion during stepwise logistic regression. 
This means that in our case the number of patients is already on the low side.  

2.3.2 Classification 

The variables selected by now after the stepwise logistic regression 
analysis in the previous section, were used to fit three models, described 
below, to the training data. The single valued output of these models can also 
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be analysed and compared using hypothesis tests and ROC1 curves as 
described in Section 2.3.1. The ROC-analysis can also be used to construct 
an optimal cut-off point or threshold for these models. Patients with a model 
output larger than this cut-off are then predicted to belong to group II and 
thus have deep myometrial invasion. 

Standard logistic regression 
We fitted a standard logistic regression model with the LOGISTIC 

procedure from SAS (also see Appendix A, Section A.3) using the variables 
selected after multivariate analysis in Section 2.3.1. The class labels for 
patients from group I were 0 and 1 for patients from group II. The Wald Chi-
Square statistic was used to assess the significance of the coefficient of a 
certain variable in the fitted model. 

 Unlike the two following model building techniques based on Least 
Squares Support Vector Machines, standard logistic regression does not use 
regularization, which makes this method prone to overfitting (i.e., the 
generalization or its performance on prospective or independent data can be 
sub optimal).  

LS-SVM model with a linear kernel 
Using LS-SVMlab version 1.5 (see http://www.esat.kuleuven.ac.be 

/sista/lssvmlab/ and Suykens et al. (2002)) we trained a Least Squares 
Support Vector Machine (LS-SVM) model using a linear kernel (see 
Appendix A, Section A.4 for a definition of these models). For all LS-SVM 
models, the class labels for patients from group I were -1 and 1 for patients 
from group II. We tuned the hyperparameter (only γ in this case) using a 
linesearch approach (in the tunelssvm function from LS-SVMlab) where the 
leave-one-out cross-validation performance (LOO-CV) on the training set 
was optimised. This hyperparameter setting was subsequently used when 
training the definitive model. Note that it is possible to write a LS-SVM 
model with a linear kernel, by rearranging the terms, as a simple linear 
equation in its variables. Also note that, as said above, we will use the 
optimal cut-off point following from the ROC analysis on the training set, 
which does not have to be equal to zero (like in the classical definition of a 
LS-SVM where a sign function is used). 

                                                      
1 Together with the Department of Obstetrics and Gynaecology, Malmö 

University Hospital, Lund University, Sweden, we have contributed in a study and 
the associated publication in Ultrasound in Obstetrics and Gynecology (Epstein et 
al., 2002) where we also used ROC curves to compare the performance of different 
models that aim to predict the presence of an endometrial malignancy in women 
with postmenopausal bleeding using grey scale and power Doppler ultrasound. 
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Since regularization is performed (γ is finite), the generalization of 
this technique can be expected to be more optimal than standard logistic 
regression or other linear classifiers without regularization.  

LS-SVM model with an RBF kernel 
Using LS-SVMlab we trained a non-linear LS-SVM model using an 

RBF (Radial Basis Function) kernel. We tuned the hyperparameters (σ and γ 
in this case) using a gridsearch approach where, again, the LOO-CV 
performance was optimised. 

If non-linear effects are important in the prediction of deep 
myometrial invasion, using an RBF kernel can be expected to yield better 
performance in comparison with the use of a linear kernel. 

We fitted this LS-SVM model using the variables that significantly 
contributed in a linear logistic regression model (see Section 2.3.1), which is 
not necessarily the best selection for a non-linear LS-SVM model. This 
means that it is possible that this model is still not entirely optimal. Using 
model selection techniques in combination with LS-SVM models can thus 
possibly result in a more optimal selection of variables for LS-SVM models. 
We did not yet test this exhaustively, but using a (self developed) MATLAB 
script that implements a forward selection technique for LS-SVM models 
and that selects variables that improve the LOO-CV performance, did not 
result in models with an improved generalization. 

Prospective validation 
Due to the possibility of overfitting, applying the ROC analysis on 

the same collection of patients that was used to fit our models can result in 
optimistic estimates for the AUCs. Therefore, we prospectively validated our 
models using independent data from 37 consecutive and new patients that 
became available after the first 97 that were used to derive our models (this 
is also the main explanation for this specific subdivision between training 
and test set). The mean age of these patients was 67.1 years and 36 of them 
were postmenopausal. The distribution of the FIGO stages was: 7 stage Ia, 
20 Ib, 7 Ic, 0 II, 2 III and 1 IV. The following histopathological subtypes 
were present: 30 endometrioid adenocarcinoma and 7 mixed type (5 with a 
serous papillary and 1 with a clear cell component). Twenty tumours were 
highly, 8 moderately and 9 poorly differentiated. 

Using this data, we constructed the ROC curves and calculated the 
AUCs of the three models discussed above and compared them with the 
AUC of the subjective assessment of our expert (Prof. Timmerman). We also 
evaluated the performance of our models at the optimal cut-off points 
obtained after the ROC-analysis of the training set. 
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2.4 Results 
The results of the univariate analysis of the ultrasound parameters 

and the subjective assessment can be inspected in Table 2.2. EV/UV had the 
largest AUC from all the ultrasound parameters but there was no significant 
difference with ET, MT, EV, ET/AP and MT/AP and it was still smaller (not 
significantly) than the AUC of the subjective assessment. The AUCs of the 
CDI parameters or the blood flow indices were low. Only the uterine artery 
RI and PI were (borderline) significant at the 5% level. After applying a 
Bonferroni correction ET, MT, EV, ET/AP, EV/UV and MT/AP would 
remain statistically significant. The variables that were borderline significant 
before the Bonferroni correction would no longer be considered as 
significant after this correction. In this case, we can state that the overall 
conclusions of the univariate analysis would remain the same and the 
decrease of statistical power due to the Bonferroni correction is limited here. 
Note that this would not be the case if the number of tests that was 
performed simultaneously, was much higher (which is the case for 
microarray data). 

Multivariate stepwise logistic regression selected the degree of 
differentiation, the number of fibroids, ET and EV as variables that 
significantly contributed in a standard logistic regression model. None of the 
CDI parameters was included. 

The resulting logistic regression model fitted to the training data is 
given by (note that due to missing values in the four selected variables, only 
94 patients could be used to fit the models): 

).EV.ET.NF.DD2.DD1exp(1
).EV.ET.NF.DD2.DD1exp(

543210

543210

ββββββ
ββββββ
++++++

+++++=y     (2.1) 

where DD1 and DD2 equal 1 if, respectively, the tumour is moderately and 
poorly differentiated and 0 in other cases. The coefficients are: β0 = -3.70 
(95% CI [-5.53, -1.86], p < 0.0001), β1 = 2.36 ([0.82, 3.91], p = 0.0027), 
β2 = 2.42 ([1.00, 3.84], p = 0.0008), β3 = -2.45 ([-4.23, -0.67], p = 0.0070), 
β4 = 0.20 ([0.07, 0.32], p = 0.0021), and β5 = -0.11 ([-0.19, -0.03], 
p = 0.0054). The performance of the logistic regression model on the 
training data is also summarised in Table 2.2. 

The resulting LS-SVM model (as previously said, without the sign 
function, since we used ROC analysis to define the optimal cut-off) with 
a linear kernel fitted to the training data is, after rearrangement of the terms, 
given by: 
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.EV.ET.NF.DD 43210 βββββ ++++=y                  (2.2) 

where DD equals 1, 2 and 3 if the degree of differentiation is highly, 
moderately and poorly differentiated, respectively. The coefficients are: 
β0 = -1.45, β1 = 0.37, β2 = -0.38, β3 = 0.05, and β4 = -0.03. Note that the LS-
SVM model with an RBF kernel cannot be written in a simplified form and 
is therefore not explicitly stated here. The performance of the LS-SVM 
models with a linear and RBF kernel on the training data is also described in 
Table 2.2. 

Evaluated on the training set, the logistic regression and the LS-
SVM models with a linear and RBF kernel had a larger AUC than the 
subjective assessment (p = 0.0595, p = 0.1412 and p < 0.0001, respectively). 

The results of the prospective validation can be inspected in Table 
2.3 and Figure 2.2. From these we can conclude that prospective evaluation 
on the independent test set resulted in a better AUC for the standard logistic 
regression model and the LS-SVM model with a linear kernel, and in a 
significantly better AUC for the LS-SVM model with an RBF kernel when 
compared with AUC of the subjective assessment (p = 0.4758, p = 0.0790 
and p = 0.0485, respectively). As could be expected (see Section 2.3.2), the 
performance on the test set or level of generalization of the LS-SVM model 
with a linear kernel was better than the performance of the standard logistic 
regression model. Evaluation on the training set (Table 2.2) gave the 
opposite order of performance, although the difference was small. This 
shows that the level of overfitting for the standard logistic regression model 
was higher than for the LS-SVM model with a linear kernel. Also note that 
the LS-SVM model with an RBF kernel had the best overall performance, 
both on the training as on the independent test set. This is an indication that 
non-linear effects might play a role in the distinction between patients with 
and without deep myometrial invasion. 

2.5 Conclusions 
In this chapter we used a data set containing 97 patients to assess the 

value of different ultrasound parameters, measured using TVS with CDI, in 
discriminating between endometrial cancer patients with and without deep 
myometrial invasion. Moreover, we used this data to construct a standard 
logistic regression model and LS-SVM models with a linear and RBF kernel 
that aim to predict the presence of deep myometrial invasion. Finally we 
validated these models using independent test data containing 37 patients 
and compared their performance with the subjective assessment of an expert 
ultrasonographer.
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Table 2.3: Prospective validation: performance of the logistic regression model and 
the LS-SVM models with linear and RBF kernels for the patients of the independent 
test set (N = 37). Comparison with the ultrasound parameter (EV/UV) from Table 
2.2 with the best discriminatory potential and the subjective assessment. The optimal 
cut-off values were taken from Table 2.2 as evaluated on the training set. 

 

A
U

C
 [9

5%
 C

I]
 

p-
va

lu
e:

 
co

m
pa

ris
on

 w
ith

 A
U

C
 

of
 su

bj
. a

ss
. 

O
pt

im
al

 c
ut

 -o
ff

 v
al

ue
 

fr
om

 T
ab

le
 2

.2
 

Se
ns

iti
vi

ty
 (%

) 

Sp
ec

ifi
ci

ty
 (%

) 

A
cc

ur
ac

y 
(%

) 

EV/UV 0.74 [0.55, 0.93] - 0.085 70.00 75.00 73.53 
Subjective assessment 0.74 [0.58, 0.90] - 1 50.00 77.78 70.27 

Logistic regression 0.81 [0.64, 0.97] 0.4758 0.45 60.00 84.00 77.14 
LS-SVM with linear kernel 0.90 [0.80, 1] 0.0790 -0.31 90.00 80.00 82.86 
LS-SVM with RBF kernel 0.92 [0.83, 1] 0.0485 -0.30 100.00 72.00 80.00 

Figure 2.2: Comparison of the ROC curves for the subjective assessment, the 
logistic regression model, and the LS-SVM models with a linear and RBF kernel for 
the patients of the independent test set (N = 37). 
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In conclusion our study indicates that CDI does not contribute to the 
prediction of the degree of myometrial invasion in endometrial cancer. 
Single morphological parameters are not sufficient in making accurate 
predictions. Combining the degree of differentiation, the endometrial 
thickness and volume and the number of fibroids in a standard logistic 
regression model may deliver predictions more reliable than the subjective 
impression by an experienced ultrasonographer. Moreover, combining these 
variables in a LS-SVM model, preferably using an RBF kernel, might even 
improve these predictions. In our prospective study, which was of limited 
size though, only a LS-SVM with RBF kernel performed significantly better 
than the subjective assessment of the expert. These models could represent a 
simple and inexpensive method that might contribute to the preoperative 
discrimination between low- and high-risk patients allowing for better 
preoperative selection of patients with endometrial carcinoma. 

However, the models, described in this study, although 
mathematically interesting and illustrative, are, in our opinion, still far away 
of being useful or reliable in real clinical practice. First of all, the 
measurements that were considered in our study all originated from the same 
expert ultrasonographer. Because differences might exist between different 
centers or even individual ultrasonographers (who use different ultrasound 
equipment for example), this means that the models discussed here should at 
least be tested and, if the performance proves to be unsatisfactory, derived 
again using multicenter prospective data. Moreover, even the techniques 
used by the same expert might undergo subtle changes throughout time, 
causing a drop in model performance when the model is applied on new 
patients. These comments also apply to the evaluation of the degree of 
differentiation, which is, at least partially, a subjective measure that can also 
differ between centers, between pathologists and in time. Secondly, the 
number of patients available in our training and test set is limited (although 
this is one of the largest studies available up till now), which contain patients 
that have been examined in a limited time frame. As already discussed, this 
might (have) cause(d) problems of overfitting when for example too many 
variables relative to the number of patients are considered for inclusion in 
the model during multivariate analysis. Moreover, the characteristics of the 
population of patients might evolve, causing new patients to be drawn from a 
different distribution than the one that was used to derive the models. Again, 
this might cause a drop in model performance when applied to new data. To 
be clinically useful, these models should, in our opinion, be continuously 
evaluated and updated (which is often easier said than done since the 
available data is usually sparse), which we have planned in the near future 
using new patient data. 
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Chapter 3 

Microarray data analysis 

3.1 Introduction 
In this chapter we will use the general data-mining framework 

(feature extraction, clustering and classification), as described in Chapter 1, 
to analyse microarray data1 and specifically apply this in oncology. We aim 
to show how specific methodology can be utilised in order to extract clinical 
and biological information out of the resulting data and to obtain a more 
fundamental insight in the molecular biology of carcinogenesis and to 
facilitate diagnosis, prognosis estimation, prediction of therapy response, and 
so on. While it is still possible to analyse clinical data manually (as is done 
daily by medical doctors), this is impossible for microarray data. The 
number of genes, for which the expression levels are measured in one single 
microarray experiment, can equal several thousands. This means that each 
microarray experiment results in a data vector that contains thousands of 
values. This also means that algorithms are needed that can deal with high 
dimensional data points and that the methods that were applied in Chapter 2 
(methods to control the Type I error in multiple testing problems, model 
selection techniques, standard logistic regression - LS-SVMs are an 
exception) to analyse classical clinical data are not straightforward or 
indicated to be used here, at least not without appropriate dimensionality 
reduction, regularization or methods that can deal with the problem of 
multiple testing without severe loss of statistical power. 

As already mentioned in Chapter 1, two basic types of microarrays 
exist and will both be encountered in this chapter: 

                                                      
1 Some of the topics presented in this chapter have been published in ‘het 

Tijdschrift voor Geneeskunde’ (De Smet et al., 2001) and have also been included in 
a book chapter (Marchal et al., 2004). 
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1. Spotted arrays (Duggan, 1999) or cDNA-microarrays are small 
glass slides on which pre-synthesized single stranded DNA or 
double-stranded DNA is spotted. These DNA fragments are 
usually several hundred base pairs in length and are derived from 
ESTs (Expressed Sequence Tag) or known coding sequences 
from the organism studied. Usually each spot represents one 
single ORF (Open Reading Frame) or gene. A pair of cDNA 
samples is independently copied from the corresponding mRNA 
populations (usually derived from a reference and a test sample) 
with reverse transcriptase and labelled using distinct 
fluorochromes (green and red). These cDNA samples are 
subsequently pooled and hybridised to the array. Relative 
amounts of a particular gene transcript in the two samples are 
determined by measuring the signal intensities detected for both 
fluorochromes and calculating the ratios (here, only relative 
expression levels are usually obtained). A cDNA microarray is 
therefore a differential technique, which intrinsically normalizes 
for noise and background. Also see Figure 1.2 for a schematic 
overview of the procedure that can be followed with spotted 
arrays. 

2. GeneChip® oligonucleotide arrays (Affymetrix, Inc., Santa Clara, 
CA) (Lipshutz, 1999) are high-density arrays of oligonucleotides 
synthesized in situ using light-directed chemistry consisting of 
thousands different oligomer probes (25-mers). Each gene is 
represented by 15-20 different oligonucleotides, serving as unique 
sequence-specific detectors. In addition mismatch control 
oligonucleotides (identical to the perfect match probes except for 
a single base-pair mismatch) are added. These control probes 
allow estimation of cross-hybridisation. With this technology, 
absolute expression levels are obtained (no ratios). 

The vectors generated by several microarray experiments can be 
arranged in an expression matrix where the columns contain the expression 
levels of a specific experiment and the rows contain the expression levels of 
a specific gene in the different experiments (see Figure 3.1). The number of 
rows of the expression matrix always is much higher than the number of 
columns. Further on in this text, the rows of the expression matrix will also 
be called gene expression profiles. Dependent on the objective or 
application, both the columns and the rows of the expression matrix can be 
considered as the data points or objects for data analysis. In the first case, the 
expression levels of the different genes are considered to be the variables 
while in the second case this is true for the experiments. In this chapter, 
however, we will, in most cases, consider the microarray experiments (each 
associated with a tumour or patient - column vectors of the expression
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Figure 3.1: Construction of an expression matrix of 6 microarray experiments. The 
high dimensional vectors resulting from different microarray experiments (studying 
patients under different conditions or samples taken at different time points during a 
certain biological process) can be placed in the 6 columns of a matrix. One row of 
this matrix represents the different measurements of a specific gene over the 
different experiments and is called a gene expression profile. 

matrix) as the data points or objects and the gene expression measurements 
as the variables. Cluster analysis of gene expression profiles forms an 
exception to this rule - see further in Section 3.4.2 and Chapter 4 and 5. In 
this case, the row vectors of the expression matrix are considered to be the 
data points. 

In this Chapter, we will also consider data sets that contain 
microarray experiments that study tumour cells originating from different 
classes or conditions with different properties (while for the study of cluster 
analysis of gene expression profiles in Chapter 4 and 5 we will focus on data 
sets that contain samples taken at different time points during a certain 

Microarray experiments 

Gene 
expression 
profiles … …… … … …

Condition 1 Condition 2

OR

time
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biological process - also see Figure 3.1). These different classes could for 
example be: 

- Tumours with a different histopathological diagnosis (Golub et 
al., 1999; Nielsen et al., 2002; Pomeroy et al., 2002). 

- Tumours in a different stage of development (Shridhar et al., 
2001, Tapper et al., 2001). 

- Tumours with a different prognosis (Rosenwald et al., 2002; van 
de Vijver et al., 2002; van ‘t Veer et al., 2002; Huang et al., 
2003; Iizuka et al., 2003; Nutt et al., 2003). 

- Tumours with a different therapy response (Kihara et al., 2001; 
Chang et al., 2003). 

- Benign versus malignant tumours (Alon et al., 1999). 

- Primary tumour versus metastasis (Ramaswamy et al., 2003). 

- Sporadic versus hereditary tumours (Hedenfalk et al., 2001). 

- Tumours with different clinical behavior but using present 
clinical guidelines, assigned to the same diagnostic category 
(Alizadeh et al., 2000; Armstrong et al., 2002). 

In the following sections, we will first discuss some issues related to 
preprocessing microarray data after which we will examine the different 
elements of our data-mining framework applied to this data type: feature 
extraction, clustering and classification. An in-depth study of two sub-items 
of our data-mining framework (clustering of gene expression profiles and 
univariate analysis) will be presented in Chapter 4, 5 and 6. To illustrate the 
methodology, we will apply the algorithms to the data from Golub et al. 
(1999) (acute leukemia - ALL versus AML) and Perou et al. (2000) (degree 
of differentiation in breast tumours - grade 2 versus grade 3) as they are 
described in Appendix B. 

3.2 Preprocessing 
Before submitting microarray data to the algorithms or methods 

described in the next sections, it often has to undergo some preparatory steps 
(preprocessing). In this section some of the most common preprocessing 
steps like normalization, non-linear transformation and missing value 
replacement will be examined. Two additional preprocessing steps - filtering 
and standardization - more often associated with clustering gene expression 
profiles, are described in Chapter 4. It is important to mention that these 
steps can have an important impact on the final result.  
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3.2.1 Normalization 

The first preprocessing step that is customarily applied is the 
normalization of the hybridisation intensities within a single array 
experiment (Quackenbush, 2001; Engelen et al., 2003; Marchal et al., 2004). 
In a two-channel cDNA-microarray experiment several sources of noise  
(due to for example differences in dye, labelling, in detection efficiency, and 
in the quantity of initial RNA within the two channels) create systematic 
sources of bias. The bias can be computed and removed to correct the data. 
Since many sources can be considered and since they can be estimated and 
corrected in a variety of ways, many normalization procedures exist but will 
not be further discussed here. For an illustration, see Figure 3.2 where the 
dye related bias is removed using a Lowess fit. 

Figure 3.2: Illustration of the influence of an intensity-dependent normalization to 
remove the bias between the dyes in a cDNA-microarray experiment. Panel A: 
representation of the log-ratio log2(R/G) versus the mean log intensity 
(log2(R)+log2(G))/2 of every spot on the array (R and G are the intensities in the red 
and green channel, respectively). At low average intensities the average ratios 
become negative indicating that the green dye is consistently more intense as 
compared to the intensity of the red dye. This phenomenon is referred to as the non-
linear dye effect. Panel B: Representation of the ratio log2(R/G) versus the mean log 
intensity (log2(R)+log2(G))/2 after performing a normalization based on the Lowess 
fit (Yang et al., 2002). 

3.2.2 Non-linear transformations 

It is common practice to pass expression values through a non-linear 
function (Quackenbush, 2001). Often the logarithm is used for this non-
linear function. This is especially suited when dealing with expression ratios 
(coming from two-channel cDNA-microarray experiments, using a test and 
reference sample) since expression ratios are not symmetrical. Upregulated 
genes have expression ratios between 1 and infinity, while downregulated 
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genes have expression ratios squashed between 1 and 0. Taking the 
logarithms of these expression ratios results in more symmetry between 
expression values of up- and downregulated genes. 

3.2.3 Missing values management 

Microarray experiments often contain missing values (measurements 
absent because of technical reasons) (Troyanskaya et al., 2001). The inability 
of many algorithms to handle such missing values necessitates their 
replacement or the development of methods that can deal with these missing 
values in a more direct way. Simple replacements, which are customarily, 
such as a replacement by zero or by the average of the expression profile 
often disrupt these profiles. Indeed replacement by average values relies on 
the unrealistic assumption that all expression values are similar across 
different experimental conditions. 

In this paragraph we will describe two methods that we have used 
during our research. 

Missing value management without replacement 
In some cases, algorithms only need to calculate the (Euclidean) 

distance between expression vectors and/or calculate average expression 
vectors (like for example K-means, hierarchical clustering (see Section 
3.4.1) or our algorithm AQBC for clustering gene expression profiles that is 
described in Chapter 5). By a slight change in the definition of how distances 
and average expression vectors have to be calculated, it is possible to handle 
these missing values without replacing them (Kaufman and Rousseeuw, 
1990). 

Suppose that A = {vi(vi
1,vi

2,…,vi
j,…,vi

J)}i = 1,…,I is a set of I expression 
vectors vi where J is the number of measurements for each expression 
vector. At this moment we do not specify whether the expression vectors of 
A are entire microarray experiments (columns of expression matrix) or gene 
expression profiles (rows of the expression matrix). This is dependent on the 
definition of the data points of the specific algorithm (e.g., cluster algorithm 
for microarray experiments versus cluster algorithm for gene expression 
profiles). Suppose that the measurement numbers of the missing values for 
expression vector vi are given by the set Pi = {pi,m}m=1,…,Mi , where Mi is the 
number of missing values in vi. For example, suppose that 
v1 = (1,3,-9,*,5,*,0) (‘*’ indicates a missing value), then P1 = {4,6} (p1,1 = 4; 
p1,2 = 6; M1 = 2). 
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If we want to calculate the Euclidean distance d(vk,vl) between vk and 
vl, we have to take their missing values into account. Suppose that 
#(Pk U Pl) < J, otherwise d(vk,vl) is undefined. We define d(vk,vl) as: 
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This means that calculating distances is done by considering only those 
components for which there are values present in both expression vectors. 
Since this means that the number of terms in the sum in Equation 3.1 can 
vary, a weighing factor is applied to account for the different number of 
terms. For example if v1 = (1,*,*,-7,9,0,-1) and v2 = (*,2,*,5,1,*,*) then P1 = 
{2,3}, P2 = {1,3,6,7}, P1UP2 = {1,2,3,6,7} and #(P1UP2) = 5. The distance 
d(v1,v2) is given by: 
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If we want to calculate the mean expression profile vav of A, we also 
have to take the missing values into account. The j-th measurement of vav 
(vav

j) is defined as follows (Note that * . 0 = 0): 
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This means that the components of vav are the mean values of the 
corresponding components of the expression vectors in A for which there 
actually values present. For example if A = (v1,v2,v3) where 
v1 = (1,*,*,-7,9,0,-1), v2 = (*,2,*,5,1,*,*), and v3 = (2,3,*,-9,*,6,*) then 



Chapter 3 - Microarray data analysis 

 40

).
1
1,

2
06,

2
19,

3
957,*,

2
32,

2
21( −++−+−++=avv           (3.6) 

Nearest neighbour approach 
The second approach to deal with missing values is based on the 

hypothesis that in a microarray data set one can, for each gene with one or 
more missing values, find other genes with similar expression behavior 
(these genes are called coexpressed - also see Chapter 4) that can be used to 
estimate and replace the missing values.  

We have implemented the method as follows (also see Van den 
Enden, 2001). Consider a gene expression profile gmv with a missing value 
for the pth component and that belongs to a set of n gene expression profiles 
A = {gi(gi

1,gi
2,…,gi

j,…,gi
e)}i = 1,…,n of dimension e. The algorithm to replace 

this missing value is given in Table 3.1. First we calculate the similarity 
(concretely, we used the absolute value of the Pearson correlation 
coefficient) between gmv and every other gene expression profile in the 
microarray data set. Since the calculation of this similarity has to take the 
presence of missing values into account, this was done using an approach 
similar to the calculation of distances in the previous method for missing 
values management (only the values that are actually present in both 
expression profiles are used to calculate the correlation coefficient). Next, 
we select a fraction (default 5%) of the genes with the highest absolute value 
of the correlation with gmv and from this fraction we again select the set of 
gene expression profiles without a missing value for the pth measurement. 
Then we model the relationship between the components of gmv and the 
components of every selected gene expression profile using linear 
regression. Each linear regression model (one for each selected gene 
expression profile) can be used to estimate the missing value in gmv using the 
pth measurement in the selected gene expression profile at hand. Finally, the 
missing value is replaced by an average of these estimates. 

A slight variation on this method, in which linear regression models 
between every gene expression profile in the data and gmv are considered and 
where the missing value is replaced by a weighted average (using the 
absolute value of the correlation coefficient as weights), could also be useful. 

After the implementation of our method, Troyanskaya et al. (2001) 
published a similar method, which they called the K-nearest neighbours 
method. 

3.2.4 Examples 

As stated in the introduction, we will use the data from Golub et al.
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Table 3.1:  Nearest neighbour (NN) approach for replacing a missing value in the 
pth component of gmv ∈ A = {gi(gi

1,gi
2,…,gi

j,…,gi
e)}i = 1,…,n. 

NN (A = {gi(gi
1,gi

2,…,gi
j,…,gi

e)}i = 1,…,n, mv, p) 

FOR i = 1,...,n 
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/* Calculate correlation between gmv and every gene expression profile in A */ 

END FOR 

ASORT = {gsi} i = 1,…,n where |rs1,mv| ≥ |rs2,mv| ≥ ... ≥ |rsn,mv| 
/* Sort expression profiles according to correlation */ 

EST = 0 

COUNT = 0 

FOR i = 1,...,C where C = CEIL(0.05 x n) 
/* Calculate estimates of  gmv

p using profiles with 5% highest correlation*/ 

IF gsi
p ≠ * 

COUNT = COUNT +1 

EST = EST + w. gsi
p + b  

/* Linear regression between gsi and gmv*/ 
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b = µ(gmv) – w. µ(gsi) 

END IF 

END FOR 

EST = EST / COUNT /* Calculate average of all estimates */ 

gmv
p = EST   /* Replace missing value */ 
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and Perou et al. to illustrate the algorithms discussed in this chapter. Here we 
will briefly describe the steps that we performed to prepare the data for 
further analysis. 

The data from Golub et al. (Affymetrix chips) had undergone a 
crude normalization step before downloading (such that the overall 
intensities for each chip were equivalent - the authors called this re-scaling). 
Next and according to the original publication, every expression value below 
20 was replaced by 20 (application of a threshold), since, according to the 
authors, discrimination of expression below this level could not be 
performed with confidence. Finally, and also following the guidelines of the 
authors, a logarithmic transformation (base 10) was performed. No missing 
values were present. 

For the data of Perou et al. (cDNA-microarray technology), we first 
selected the experiments associated with moderately or poorly differentiated 
tumours after downloading (resulting in 57 microarray experiments). Next, 
we calculated the ratio of the difference between the total and background 
intensity from the tumour and reference sample. Subsequently, a simple 
normalization was performed by multiplying each array with a single scaling 
factor so that the median ratio on each array was 1 (Alizadeh et al., 2000). 
Then a logarithmic transformation (in this case with base 2, but the actual 
value for this is not important) was performed. Finally the missing values 
(8% of the values were missing) were replaced using the nearest neighbour 
approach as described above. 

3.3 Feature extraction 
Not all genes are correlated with or contain information about the 

class distinction between samples. In this section we would like to determine 
a limited number of features that are as informative as possible about a 
certain class distinction. This is also called the problem of reduction of 
dimensionality (e.g., reduction of the number of dimension from 7129 genes 
to for example 5 features that are maximally correlated with the ALL-AML 
distinction in the data set from Golub et al.). This reduction will have several 
advantages. It allows identifying the set of features that could be responsible 
for the distinction between the different sample types. For instance when 
comparing expression patterns of tumour cells to normal cells, the genes 
responsible for carcinogenesis could be pinpointed, which could open 
perspectives for appropriate drug development (identification of therapeutic 
targets (Gerhold et al., 2002)). Furthermore, dimensionality reduction will 
facilitate or even enable the other components of the data-mining framework 
(clustering and classification). Often it is a mandatory preprocessing step 
before other algorithms can be applied. 
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Feature selection can be done in a supervised or unsupervised way. 
In supervised feature extraction, the distinction between the different classes 
is used to select the features while in unsupervised feature extraction the 
class labels of the different samples or microarray experiments do not have 
to be known. Supervised feature extraction is not an appropriate preparatory 
step before cluster analysis of microarray experiments since, by definition, 
class membership of the samples is not known in advance (but is a result of 
the cluster analysis itself - see further in Section 3.4.1). Both supervised and 
unsupervised feature extraction can be used in combination with 
classification of microarray experiments. This can, for example, be 
appropriate if classifiers are used that do not use regularization (e.g., Fisher’s 
linear discriminant analysis - see Section 3.5.1). Without prior feature 
reduction the risk of overfitting would be extreme. 

Below, the two types of feature extraction - univariate and 
multivariate - that were described in Chapter 1, will be discussed in the 
context of microarray data analysis. 

3.3.1 Univariate feature extraction 

In univariate feature selection, we want to rank the individual genes 
according to their correlation with a certain class distinction and select the 
genes with a maximum degree of correlation. This is the simplest method for 
feature extraction. This selection is logical because usually microarray data 
contains a considerable number of genes whose expression is not affected by 
the different conditions that are under consideration. In univariate analysis 
one aims to remove as much of those genes as possible and only retain the 
individual genes most closely related to the class distinction. Univariate 
feature extraction is always supervised.  

Several strategies are possible to perform univariate analysis in 
microarray data and to quantify the degree of correlation with a certain class 
distinction. Golub et al. (1999) for example, have introduced a simple 
measure or score G(gi) that quantifies the correlation between a single gene 
expression profile gi and two different classes: 
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where µ1(gi) and µ2(gi) are, respectively, the mean values of the expression 
levels of gene gi belonging to samples from class 1 and 2 - σ1(gi) and σ2(gi) 
are the associated standard deviations. As an example, we calculated G(gi) 
corresponding to the class distinction ALL-AML for all the 7129 genes in 
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the leukemia data set from Golub et al. We selected the 5 genes with the 
highest absolute value of G(gi). These are displayed in the Table 3.2. 

Table 3.2: Univariate analysis using the score G(gi) introduced by Golub et al. 
Selection of the 5 genes with the highest absolute value for G(gi) in the leukemia 
data set from the same authors. These are therefore the genes that are most 
discriminative between ALL and AML, according to this score. 

Gene description G(gi) 
CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) -1.5956 
CTPS CTP synthetase 1.5494 
Leukotriene C4 synthase (LTC4S) gene -1.4959 
DF D component of complement (adipsin) -1.3935 
C-myb gene extracted from Human (c-myb) gene, complete 
primary cds, and five complete alternatively spliced cds 1.3719 

 

A related method to do univariate feature extraction in microarray 
data is to employ classical hypothesis testing (Dawson-Saunders and Trapp, 
1994 - also see Appendix A, Section A.1) where a test statistic and the 
associated p-value is assigned to each individual gene. But in the case of 
microarray data, a hypothesis test should be performed for thousands of 
genes simultaneously, which results in an extreme situation of multiple 
testing that cannot be corrected adequately using classical techniques (see 
Section A.1 (Appendix A) and Section 2.3.1 where a Bonferroni correction 
was discussed to correct for multiple testing in clinical data). This problem 
will be fully investigated in Chapter 6. 

A final approach that could be used to quantify the relation between 
the individual gene expression profiles of a microarray data set and two 
classes is to construct a receiver operating characteristic curve for the gene 
expression levels of each gene and calculate the area under the curve (see 
Appendix A, Section A.2). This last value quantifies how well the 
expression levels of the gene at hand can discriminate between the two 
classes. 

Univariate analysis is commonly used to select the genes that 
warrant further biological investigation or validation (e.g., for target 
discovery in drug development (Gerhold et al., 2002)). This could also be 
used as a preparatory step before classification or clustering, but for this task 
another feature extraction method, called principal component analysis, is 
more suitable and is discussed in the next section. 
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3.3.2 Multivariate feature extraction 

In the previous chapter we noted that, ideally, 6 to 10 patients or 
data points are needed for each variable that is considered for inclusion 
during model selection techniques (like stepwise logistic regression analysis 
- see Appendix A, Section A.3.4). Therefore and due to the high 
dimensionality of microarray experiments, these methods cannot be used 
directly in combination with microarray data to select variables or genes 
(that significantly contribute in a logistic regression model aiming to 
discriminate between two classes of microarray experiments). Other feature 
reduction techniques that decrease the dimensionality of the data points 
drastically (univariate selection or principal component analysis - see 
further) are needed first. 

We have not studied model selection techniques in combination with 
prior feature reduction for microarray data. For this type of data another 
multivariate feature selection technique that was already mentioned in 
Chapter 1 and called principal component analysis (PCA), is more common 
(Bishop, 1995; Quackenbush, 2001).  

In univariate feature selection each feature corresponds to exactly 
one gene expression level. However, in general, the distinction between 
classes is not fully determined by the activity of a single gene, but rather by 
the interaction of several genes. It is therefore better to work with a (linear or 
non-linear) combination of genes. In PCA, linear combinations of the 
different gene expression values of a microarray experiment are selected. 
The coefficients of the linear combinations in PCA are determined in such a 
way that these linear combinations have maximal spread (or standard 
deviation) for a certain collection of microarray experiments. In fact, PCA 
searches for the combinations that are most informative. Each linear 
combination results in exactly one value for each microarray experiment and 
can thus be regarded as one feature. The coefficients of the linear 
combinations can also be arranged in (column) vectors, with the same 
dimensionality as the microarray experiments, called the principal 
components for the collection of experiments at hand. The principal 
components are orthogonal and can be found by calculating the eigenvectors 
of Σ: 

,'.
1

1 AA
n −

=Σ           (3.8) 

where A is the expression matrix (n x e matrix - collection of e microarray 
experiments where n gene expression levels were measured). Σ is called the 
covariance matrix of the expression matrix A - A has to be centralized in 
Equation 3.8, i.e., the mean column vector of A has to lie in the origin. The 
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eigenvectors or principal components with the largest eigenvalues also 
correspond to the linear combinations with the largest spread in the 
collection of microarray experiments represented by A. In general, if n > e 
(which is always the case for microarray data), the rank of Σ cannot be 
higher than e-1 (because A is centralized and therefore the columns of A are 
linearly dependent) and one can find maximally e-1 principal components 
with an eigenvalue different from zero. Since, in practice, the microarray 
experiments of A are almost always linearly independent before 
centralization, exactly e-1 principal components can be identified 
corresponding to an eigenvalue that is different from zero. All these 
principal components span an e-1 dimensional subspace containing all the 
(centralized) microarray experiments in A.  

The linear combinations or features themselves can be calculated by 
projecting the expression vector of a certain microarray experiment onto the 
principal components. If all the principal components are used, this would 
constitute a dimensionality reduction n to e-1. In this case, the centralized 
microarray experiments of A can be completely reconstructed after feature 
extraction (no information is lost). In practice, however, not all the e-1 
principal components are used but a selection is made according to a certain 
criterion (see further), which means a further dimensionality reduction, but 
in this case with loss of information (the original microarray experiments of 
A cannot be fully reconstructed using this limited set of features). So if m 
(n x 1) is the centralized expression vector for a certain microarray 
experiment, the columns of P (n x s) contain s selected principal components 
of the expression matrix A and F (s x 1) is given by: 

,.mPF T=         (3.9) 

then the s components of F contain the s features or linear combinations for 
the microarray experiment with expression vector m according to the s 
principal components of the collection of microarray experiments 
represented by A.  

The selection of the principal components of A can be done in a 
unsupervised or supervised way. If the selection is unsupervised, the 
principal components that are associated with the largest eigenvalues of Σ 
(i.e., corresponding to the features with the largest spread in A), are chosen. 
The principal components associated with smaller eigenvalues are assumed 
to lie in the directions that are dominated by noise. In supervised selection of 
the principal components, the features of the microarray experiments of A 
(rows of PT.A) are considered as univariate data that can be selected using 
the methods described in Section 3.3.1.  
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In the next sections we discuss the application of PCA to the data 
from Golub et al. and on the data from Perou et al. 

PCA for the data from Golub et al. 
We calculated the principal components of the training set (e = 38) 

from Golub et al. and selected the two principal components associated with 
the two largest eigenvalues (unsupervised selection). The associated features 
of the patients of the training and test can (e = 34) be inspected in Figure 3.3. 
The separation between patients with ALL and AML (also for patients from 
the test set that were not used to derive the principal components here) is 
clearly visible. This means that, in this case, the directions in which the 
distinction between ALL and AML is prominent are also the directions with 
the largest spread in the data. One could say that the distinction between 
ALL and AML is dominant here. 

PCA for the data from Perou et al. 
We derived the principal components of the 57 patients from Perou 

et al. The features of the patients associated with the principal components 
with the two largest eigenvalues (supervised selection) can be inspected in 
the upper plot of Figure 3.4. In this case there is no clear separation between 
patients with grade 2 or grade 3 breast tumours. One can conclude that in 
this example the directions with the largest spread are not dominated by 
distinction between moderately or poorly differentiated breast tumours (but 
could possibly be caused by other factors, but since we do not have 
additional clinical information about these patients, this cannot be 
investigated). For this data set it could therefore be meaningful to perform 
supervised selection of the principal components. Based on the absolute 
value of the score introduced by Golub et al. (Equation 3.7), we selected 
principal components 5 and 30 (Golub scores: 0.48 and 0.42 respectively). 
Using this score, the features associated with principal components 1 and 2 
were ranked on the 33rd and 16th place, respectively (Golub scores: 0.07 and 
-0.13). The features associated with principal components 5 and 30 can be 
inspected in the lower plot of Figure 3.4. Although still not perfect (a large 
amount of overlap still exists), the separation between grade 2 and 3 breast 
tumours is clearly better when compared to the separation of these two 
classes if unsupervised selection of principal components was used. In this 
example, supervised selection of principal components would therefore be a 
better option if one aims to develop models that can discriminate between 
grade 2 and 3 tumours (see Section 3.5.3). 
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Figure 3.3: Principal component analysis for the data from Golub et al. The two 
principal components of the training set associated with the largest eigenvalues were 
selected (unsupervised). Every sample of the training and test set was projected onto 
these two components, resulting in two features or values (plotted in the X- and Y-
axis here) for every microarray experiment. Training set: * = ALL, + = AML; Test 
set: O = ALL, · = AML. 

3.4 Clustering 

3.4.1 Cluster analysis of microarray experiments 

As already stated in Chapter 1, with cluster analysis one aims to 
automatically find different classes in a group of data points without 
knowing the properties of these classes in advance. If these data points are 
microarray experiments, cluster analysis will group the tumour samples with 
a certain degree of similarity in expression behavior. The distinct classes or 
clusters generated by the clustering procedure will probably - at least 
partially - match with the existing diagnostic categories used for the current 
classification of tumours, which is predominantly based on clinical 
parameters. However since expression data are not customarily used for the 
present classification schemes, it is not excluded that novel, yet unknown



Chapter 3 - Microarray data analysis 

 49

 

  
Figure 3.4: Principal component analysis for the data from Perou et al. The 
principal components of the complete data set (57 patients) were determined. Every 
sample was projected onto two selected principal components. * = grade 2 tumour, 
+ = grade 3 tumour. Upper plot: unsupervised selection of principal components 
with the two largest eigenvalues. Lower plot: supervised selection of principal 
components based on the absolute value of the score introduced by Golub et al. 
(Equation 3.7). This resulted in the selection of the principal components with the 5th 
and 30th largest eigenvalue. 
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diagnostic entities might originate from these analyses, which could improve 
clinical management of cancer. Cluster analysis of microarray experiments 
could therefore be used to discover new diagnostic categories or 
subcategories that might group patients with less clinical variability. 

For example, diffuse large B-cell lymphoma is a disease that is 
clinically heterogeneous. Some patients respond well to therapy and achieve 
a durable remission, while other patients have a less favourable prognosis. 
Although clinical parameters are available that can assess the risk profile of 
the patients, these prognostic variables are not ideal yet. Using hierarchical 
clustering of microarray data (see further) Alizadeh et al. (2000) claim to 
have found two clinically distinct forms of (or clusters in) patients with 
diffuse large B-cell lymphoma with a significantly different overall survival. 
The authors conclude that these two groups of patients might represent two 
distinct subentities that could be the basis of a new classification scheme. 

Below we will apply two commonly used techniques to cluster 
microarray experiments: K-means and hierarchical clustering. We will 
illustrate these techniques using the data from Golub et al. 

K-means 
The K-means algorithm is described in Appendix A, Section A.5. 

This algorithm finds a prespecified number (K) of clusters in a set of data 
points or, in this case, microarray experiments. A form of (unsupervised) 
feature extraction has to be performed in advance if one wants to cluster high 
dimensional microarray experiments using this approach. We will use 
principal component analysis for dimensionality reduction here (see Figure 
3.5). 

We applied K-means clustering to cluster the complete data set from 
Golub et al. (72 patients - in this case, we do not consider the subdivision 
between training and test set). First, imagine that the difference between 
ALL and AML is not known. In this case we have simply a data set with 72 
patients with acute leukemia. After principal component analysis (also based 
on the complete data set) with unsupervised selection of five principal 
components, we submitted the data to a K-means algorithm with K = 2. The 
result can be inspected in Figure 3.5. The algorithm has succeeded in finding 
two clusters. When looking at the first cluster, one can see that all the 
patients - except one - have ALL. When looking at the second cluster, one 
can see that all the patients have AML. This means that the procedure was in 
fact able to redefine the concepts ALL and AML. In this example, nothing 
new is learned (because ALL and AML were already known), but the result 
clearly shows the potential of this technique. 
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Figure 3.5: K-means clustering with K=2 for the complete data set from Golub et al. 
Upper plot: visualization of the different steps to cluster microarray experiments 
with K-means. Since K-means cannot be applied in combination with high 
dimensional data, unsupervised PCA has to be performed for dimensionality 
reduction. In this case we selected the five principal components associated with the 
largest eigenvalues. Lower plot: cluster result. Only the first two principal 
components are shown in this figure, although the clustering procedure was done in 
five dimensions. Note the almost perfect correlation between the clusters and the 
clinical classification (ALL-AML). Cluster 1: * = ALL, + = AML; Cluster 2: 
O = ALL, · = AML; × = cluster means. 

Hierarchical clustering 
Hierarchical clustering is the most commonly used method for 

cluster analysis of microarray data. This method places the data points in a 
tree structure and the clusters are formed by cutting the tree at a certain level. 
See Appendix A, Section A.6 for more information. Hierarchical clustering 
can be used in combination with high-dimensional data and therefore PCA 
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or other feature reduction methods are not mandatory before analysis of 
microarray experiments with this method. 

As an example, hierarchical clustering was also applied to group the 
samples of the complete data set from Golub et al. See Figure 3.6 for the 
resulting tree structure. We used average linkage clustering and chose the 
correlation coefficient as distance measure between the data points. Most 
patients with AML are concentrated in one single branch in Figure 3.6. 

Critical remarks 
In a recent article by Levenstien et al. (2003), the authors raised an important 
problem related to the results obtained with hierarchical cluster analysis of 
microarray experiments. Since hierarchical clustering results in several 
possible sets of clusters, the biologist or medical doctor has to choose an 
‘appropriate’ set (i.e., choose a certain cut-off level). The most appropriate 
set, however, will often be the set that optimally supports a certain a-priori 
hypothesis, like a large difference in survival between the patients of the 
different clusters. Since there are multiple sets to choose between, it might 
well be that the most appropriate set (i.e., the largest difference in survival) 
was generated by accident (problem of multiple testing) and in fact does not 
represent a real biological or medical category. Levenstien et al. quantify this 
observation by assigning a global p-value to the result obtained by 
hierarchical clustering of a set of microarray experiments. This p-value 
represents, for example, the probability that the largest difference in survival 
between the patients of a set of clusters could be generated by accident. 

In our opinion, the problem of multiple testing related to cluster 
analysis of microarray experiments may even be larger in some cases. 
Firstly, when hierarchical clustering is used, it is often customary to execute 
several runs of the algorithm with different parameter settings (e.g., choice 
between single, complete, average or centroid linkage clustering; choice of 
the distance measure between data points; different choice of preprocessing) 
each resulting in several possible sets of clusters. This can inflate the number 
of possible cluster results to choose the most appropriate result from. These 
different runs are, in our opinion, often not mentioned in publications 
(because they did not give meaningful results) while they can degrade the 
significance of the result that is finally published. Secondly, the definition of 
the most appropriate cluster result or the a-priori hypothesis that has to be 
supported can vary or is not fixed before the start of the cluster analysis. Not 
only cluster results with a large difference in survival can be useful, but also 
clusters with a large difference in other characteristics of the tumour cells 
(e.g., histopathology). This can increase the number of tests that has to be 
performed for each possible set of clusters and also augment the problem of 
multiple testing. Thirdly and finally, hierarchical clustering is not the only
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cluster algorithm that is available to cluster microarray experiments. Before 
publication of a cluster result, the authors could have tried other algorithms 
(and possibly with different parameter settings again) before the selection of 
the result that will appear in the final report. 

Conclusively, we can state that each cluster result of microarray 
experiments in literature should be scrutinized. Ideally, the authors should 
mention a measure like the global p-value introduced by Levenstien et al. 
Moreover, they should mention how many different cluster results they 
obtained and removed from consideration using other parameter settings, 
other algorithms, different preprocessing techniques, and so on. Also, if 
possible, they should mention if there was an a-priori hypothesis that they 
wanted to see supported by the cluster result. 

3.4.2 Cluster analysis of gene expression profiles 

Gene expression profiles can also be used as the basis for cluster 
analysis. Contrary to the other sections of this chapter, the rows of the 
expression matrix are considered as the data points or objects of our analysis 
here and the different measurements for a gene in the different microarray 
experiments as the variables. PCA could also be performed in this setting. In 
this case, PCA looks for linear combinations of the different measurements 
in a gene expression profile and the principal components lie in the row 
space of the expression matrix. But since the dimension of the gene 
expression vectors equals the number of experiments in the data set and 
since this number usually is several orders of magnitude lower than the 
dimension of a microarray experiment, feature reduction prior to cluster 
analysis is less important in this setting and usually not an issue. Moreover, 
performing PCA prior to cluster analysis of gene expression profiles often 
degrades the cluster quality (Yeung and Ruzzo, 2001c). 

An in-depth study of the methodology and specific requirements 
associated with cluster analysis of gene expression profiles will be presented 
in Chapter 4. In Chapter 5 we will describe an algorithm that we have 
specifically designed to cluster this kind of data. 

3.5 Classification 
As discussed in the introduction of this dissertation, in a clinical 

environment it is important to be able to do predictions (with regard to 
diagnosis, prognosis, therapy response, and so on - see the different classes 
discussed in Section 3.1) for individual patients using microarray 
experiments. Here a prediction must be made for samples or patients for 
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which class membership (e.g., good versus bad prognosis, benign versus 
malignant, and so on) is not known in advance. Based on a set of features 
and a training set, a model has to be trained. This model can then be used to 
classify new patients for whom the outcome is not known (or is supposed not 
to be known) - also see Figure 1.5. This approach could help to incorporate 
expression measurements that represent the fundamental mechanisms that 
guide the phenotype of the tumour, into the clinical decision making process 
for individual patients. 

In this section we will consider and illustrate two different binary 
modelling techniques: Fisher’s linear discriminant analysis (FDA) and Least 
Squares Support Vector Machines (LS-SVMs). We will apply these methods 
to the data from Golub et al. and Perou et al. Furthermore, we will briefly 
describe the conclusions of a systematic benchmarking study to compare 
several classification techniques using nine different microarray data sets. 
More specifically, we want to examine the importance of regularization or 
dimensionality reduction when classifying microarray experiments and we 
want to examine if non-linear classification can contribute in the accuracy of 
the predictions.  

3.5.1 Fisher’s linear discriminant analysis 

Fisher’s linear discriminant analysis (FDA) is a linear classification 
technique that can be used to assign data points or microarray experiments to 
one of two classes. In FDA (Bishop, 1995) one projects each microarray 
experiment mj of the expression matrix A = [m1,m2,...,mj,...,me] that contains 
the training data (each microarray experiment of this training set has a 
known class label, i.e., it belongs to one of two classes: class 1 (C1) or 2 
(C2)) onto a vector w resulting in a variable y = [y1,y2,...,yj,...,ye]: 

.. jTj mwy =        (3.10) 

The vector w is chosen to maximize the following criterion J(w): 
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where µ1 and µ2 are the mean values of yj associated with the training 
samples from C1 and C2, respectively. Note the similarity between Equation 
3.11 and 3.7 (Golub score). Maximizing Equation 3.11 gives the expression 
for w (only the direction of w is important not the magnitude of w, so scalar 
factors can be dropped, but we choose the sign of w so that µ1 < µ2): 
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where mC1 and mC2 are the average expression vectors for the microarrays of 
the training set belonging to C1 and C2, respectively. They are given by: 
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where e1 and e2 are the number of microarray experiments from the training 
set that belong to class C1 and C2, respectively. This also means that 
µ1 = wT. mC1 and µ2 = wT. mC2. The within-class covariance matrix SW is given 
by: 
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Now we have to choose a threshold b so that new microarray 
experiments mt (from a test set), for which the outcome is not supposed to be 
known, can be classified. If yt < b then mt is predicted to belong to C1 and if 
yt > b then mt is predicted to belong to C2. Bishop suggests two methods to 
derive b from the training data. Firstly, by assuming that the variable yj is the 
sum of a set of random variables (see Equation 3.10), we can invoke the 
central limit theorem and model the class-conditional density functions 
p(yj|C1) and p(yj|C2) using normal distributions and the training data. After 
using Bayes’ theorem to calculate the posterior probabilities P(C1|yj) and 
P(C2|yj), the threshold b follows from solving: 

).|()|( 21 bCPbCP =            (3.16) 

In practice we do not solve Equation 3.16 but we evaluate the posterior 
probabilities using the test sample and assign it to C1 if P(C1|yt) > P(C2|yt)  
and to C2 if P(C1|yt) < P(C2|yt). This is equivalent with the comparison of: 
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where σ1 and σ2 are the standard deviations of yj associated with the training 
samples from C1 and C2, respectively. If the value given by Equation 3.17 is 
larger than the value given by Equation 3.18, the test sample is assigned to 
C1 and if the value given by Equation 3.17 is smaller than the value given by 
Equation 3.18, the test sample is assigned to C2. From this discussion, it 
follows also that a new microarray experiments mt with yt = wT. mt can be 
classified with greater confidence if the difference between yt and b is 
greater (and therefore also the difference between P(C1|yt) and P(C2|yt)). 
Also see Figure 3.7.  

Secondly, Bishop proves that under certain assumptions the 
following is also a valid choice for b: 

,.mwb T=        (3.19) 

where m is the average expression vector of the microarrays belonging to the 
training set. This is given by: 
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Although we did not use this technique here, ROC analysis could, 
similarly to the method that was applied in Chapter 2, also be a valid 
approach to determine an optimal value of b in this context. 

FDA is a linear classification technique where the number of model 
parameters that has to be estimated (components of w), is determined by the 
number of expression values (the variables) in each microarray experiment, 
which can be considerable. Moreover, this method does not use 
regularization and thus is prone to overfitting if the number of variables in 
the model is too high relative to the number of data points in the training set. 
Since this is certainly the case for microarray data, FDA cannot be applied 
without prior feature reduction in practice. The same remarks also apply to 
standard logistic regression (see Section 2.3.2), which is a method that is 
qualitatively similar to FDA. The need for prior feature reduction in linear 
classifiers without regularization will also be confirmed by our 
benchmarking study that we will discuss below. 
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3.5.2 Least Squares Support Vector Machines 

We refer to Appendix A, Section A.4 for more details on this 
technique. Like in Chapter 2, Section 2.3.2, we used LS-SVMlab version 1.5 
to derive our LS-SVM models and tuned the hyperparameters with a 
linesearch (linear kernel) or gridsearch (Radial Basis Function (RBF) kernel) 
approach on the training set. 

LS-SVM models, unlike logistic regression or FDA, apply 
regularization (to prevent overfitting) and estimating the model parameters 
involves solving a dual problem where the number of equations is 
determined by the number of data points and not by the number of variables. 
This means that, in principle, LS-SVMs can be directly applied with good 
results for the classification of microarray experiments without prior feature 
reduction (which would be necessary if for example FDA is applied) and 
that the number of equations that has to be solved is equal to the number of 
microarray experiments (plus one for the constant term of the LS-SVM 
model) and not to the number of genes in the data set. The direct 
applicability of LS-SVM models to microarray data will also be confirmed 
by our benchmarking study.  

3.5.3 Examples 

Data from Golub et al. 
In the original publication of Golub et al., the data was divided in a 

fixed training and test set. In first instance, we used this fixed training set to 
derive a model that can distinguish between ALL and AML. After PCA on 
the training set and unsupervised selection of the first two principal 
components (see Figure 3.3) we used FDA to construct a linear model in two 
dimensions. This model applied on the fixed test set can be seen in Figure 
3.7 and resulted in three misclassifications (91% accuracy). The principal 
components of the training set were used to derive the two features for every 
patient of the test set. 

The performance of the model visualized in Figure 3.7 is not 
necessarily completely representative of the general behaviour of this 
technique using similar data, since it uses a fixed training and test set. The 
specific partitioning between training and test that was used here could have 
accidentally resulted in an over- or underestimation of the model 
performance. In order to get a more optimal assessment of the model, the 
whole procedure of model training and testing should be repeated several 
times using data where the data points have been randomly reshuffled 
between training and test set. This procedure is called randomisation.
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Figure 3.7: Model obtained using FDA for the classification of the patients of the 
Golub et al. data after PCA on the training set with unsupervised selection of the 
first two Principal Components. The parameters of the linear model (represented by 
the line here) were calculated using the patients of the training set (also see Figure 
3.3). The patients (only the patients of the test set, for which the two features in the 
X and Y axis were calculated using the principal components of the training set, are 
shown in this figure) above the line are classified as ALL and below as AML. This 
results in 3 misclassifications and these occur in patients that have a relatively small 
distance to the classification line, confirming that the classification for patients that 
lie further from this line can be done with greater confidence. Test set: O = ALL, 
· = AML. 

Moreover, the number of principal components that was selected was 
arbitrarily set to two here. It is possible that changing this number could 
increase the model performance. In the context of our systematic 
benchmarking study (see further) we evaluated the performance of FDA on 
the data from Golub et al. using 20 stratified (training and test set contain the 
same amount of samples from each class compared to the original training 
and test set) randomisations where the number of principal components was 
optimised for each randomisation using a leave-one-out cross-validation 
performance (LOO-CV) on the respective training sets. This resulted in an 
average (over the different randomisations) accuracy on the test sets of 
94.40% (with a standard deviation σ of 3.84%). Supervised selection of the 
principal components did not result in a better performance in this case, 
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which could have been expected since the separation between the two 
classes was already excellent for unsupervised selection (see Figure 3.3). 

As a part of our benchmarking study, we also evaluated the 
performance of LS-SVM models with a linear and RBF kernel on the data 
from Golub et al. using the same randomisations (without prior feature 
reduction or PCA). This resulted in an average accuracy on the test sets of 
92.86% (σ = 4.12%) for the LS-SVM model with a linear kernel and 93.56% 
(σ = 4.12%) for the LS-SVM model with an RBF kernel. 

Data from Perou et al. 
We evaluated the performance of FDA on the data of Perou et al. in 

distinguishing between grade 2 and 3 breast tumours by a LOO-CV 
approach. In each LOO-CV iteration a different sample is left out. 
Subsequently, PCA with supervised selection (based on the Golub score of 
Equation 3.7 - Figure 3.4 showed that for this data set, unsupervised 
selection could be expected not to be sufficient) of a fixed number of 
principal components is performed on the remaining data and the model is 
trained based on the resulting features. Finally, the left out data point is 
projected onto the selected principal components and evaluated using the 
trained model and the resulting prediction is compared with the real value. 

When the number of selected principal components in each iteration 
was set to five, this approach resulted in an LOO-CV accuracy of 79%. This 
result clearly demonstrates that it is possible to predict the degree of 
differentiation in breast tumours with a certain degree of accuracy using 
expression data. 

Benchmarking study2 
As already announced, we performed a systematic benchmarking 

study to evaluate the role of regularization or dimensionality reduction and 
to evaluate the role of non-linear techniques in the context of the 
classification of microarray experiments. We will outline the main elements 
of this study here. We compared the following techniques for classifying 
microarray experiments: 

1. LS-SVM models with a linear kernel (with (γ finite and tuned) 
and without regularization (γ infinite, which corresponds to FDA 
(Suykens et al., 2002))) and an RBF kernel without prior 
reduction of dimensionality. 

                                                      
2 This study was submitted as a full paper to Bioinformatics (Pochet et al., 

2004). 
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2. FDA combined with classical PCA and kernel PCA (we will not 
further discuss the details about the kernel version of classical 
PCA in this thesis - see Suykens et al. (2002)) with unsupervised 
and supervised selection of the principal components. The 
optimal number of selected principal components was determined 
by a LOO-CV approach on the training set. 

For this comparison we examined 9 binary cancer classification 
problems using 7 data sets that were publicly available, including the data 
from Golub et al. The other data sets were: Alon et al. (1999) (colon cancer), 
Hedenfalk et al. (2001) (breast cancer - sporadic versus hereditary), Iizuka et 
al. (2003) (hepatocellular carcinoma), Nutt et al. (2003) (high-grade 
gliomas), Singh et al. (2002) (prostate cancer), and van ‘t Veer et al. (2002) 
(breast cancer - good versus bad prognosis). We refer to Appendix B for 
more details about these data sets. The performance of the different 
classification techniques was also evaluated using 20 stratified 
randomisations of the training and test set. As an illustration, the test set 
accuracies obtained using randomisations of the data set from Nutt et al. are 
given in Table 3.3. 

Table 3.3: Test set accuracies of different classification techniques applied to 20 
randomisations of the data set from Nutt et al. (2003). We tested LS-SVM models 
with a linear kernel (with and without regularization) and an RBF kernel and we 
tested FDA combined with classical and kernel PCA (also with a linear and RBF 
kernel) with supervised and unsupervised selection of the principal components. The 
average test set accuracies and their standard deviations σ (over the different 
randomisations) are given. 

Classification technique Accuracy test (%) 
(± σ) 

LS-SVM linear kernel (with regularization) 61.25 ± 11.75 
LS-SVM RBF kernel (with regularization) 69.95 ± 8.59 
LS-SVM linear kernel (no regularization = FDA) 48.93 ± 10.88 
PCA (unsupervised) + FDA 67.82 ± 7.24 
PCA (supervised) + FDA 65.52 ± 11.01 
kPCA linear kernel (unsupervised) + FDA 68.31 ± 6.78 
kPCA linear kernel (supervised) + FDA 67.32 ± 11.04 
kPCA RBF kernel (unsupervised) + FDA 64.20 ± 11.19 
kPCA RBF kernel (supervised) + FDA 58.13 ± 12.24 

 

The comparison of the different classification techniques applied to 
these nine classifications problems, resulted in the following three main 
conclusions: 
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1. Our study confirmed that LS-SVM models with linear and RBF 
kernels (γ finite and tuned) without prior dimensionality reduction 
never resulted in overfitting on all data sets that were examined. 
The results obtained with RBF kernels (non-linear classifiers) are 
never worse and sometimes even significantly better compared to 
results obtained with a linear kernel in terms of the test set 
performance. 

2. Our study also confirmed that regularization appears to be very 
important when applying linear classification methods onto 
microarray data without dimensionality reduction. Linear 
classification techniques without dimensionality reduction and 
without regularization hardly perform better than random 
classifiers. 

3. Performing kernel PCA with an RBF kernel before classification 
with FDA tends to result in overfitting. 

3.6 Conclusions 
In this chapter we discussed and applied the three elements of our 

data-mining framework on expression patterns of entire microarray 
experiments and mentioned the application of clustering techniques for gene 
expression profiles, which will further be elaborated on in the next two 
chapters. We illustrated the technique using examples from oncology and 
explained how the results of the analysis of microarray data could help to 
improve the clinical management of cancer. Although several problems of a 
more technical nature still exist that can complicate the clinical use of 
microarrays (e.g., cost, heterogeneous composition of samples from solid 
tumours and existence of biological and technical variation), it can be 
expected that in the future this technology will find its way into clinical 
practice (Friend, 1999). 

In the context of data analysis of microarray experiments, we 
described some frequently used preprocessing steps (normalization, non-
linear transformations and missing value management). We noted that in 
univariate feature extraction and in cluster analysis of microarray 
experiments, multiple testing is a problem that has to be taken into account. 
For univariate analysis of microarray data, multiple testing will be studied in 
further detail in Chapter 6. In the context of cluster analysis of microarray 
experiments, we illustrated how clustering techniques can potentially 
discover diagnostic categories in a group of patients but also mentioned that 
cluster results of microarray experiments in literature should be approached 
with some caution. Furthermore, we showed that principal component 
analysis is an adequate multivariate feature selection technique that looks for 
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linear combinations of the expression values of a microarray experiment. We 
also demonstrated that principal component analysis is an appropriate 
method that can be used in combination with classification and clustering 
techniques that cannot deal with the large number of dimensions 
characteristic for expression patterns of microarray experiments. We 
explained that the selection of the principal components could be done in an 
unsupervised and supervised way. We pointed out that supervised selection 
can only be used in the context of classification and that unsupervised 
selection is appropriate before cluster analysis and could, in some cases 
where the principal components with the largest eigenvalues sufficiently 
capture the class distinction under consideration, be appropriate before 
classification. Finally, we applied and compared Fisher’s linear discriminant 
analysis and LS-SVM models with respect to the binary classification of 
microarray experiments and, in this context, presented our systematic 
benchmarking study. We concluded that regularization or dimensionality 
reduction is necessary when performing class prediction using microarray 
experiments and that the introduction of non-linear models can, in some 
cases, significantly increase model performance. 
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Chapter 4 

Clustering of gene expression profiles 

4.1 Introduction 
In the previous chapter we have given a general overview of the data 

mining framework to analyse microarray data. In this chapter we will focus 
on a specific item of this framework: cluster analysis of gene expression 
profiles1. 

As previously said, with microarrays one can measure the 
expression levels of thousands of genes simultaneously. These expression 
levels can be determined for samples taken under different conditions (e.g., 
cells originating from tumour samples with different properties, as discussed 
in the previous chapter). But since clustering of gene expression profiles has 
been mainly used for microarray data containing samples taken at different 
time points during a certain biological process (e.g., different phases of the 
yeast cell cycle), we will focus on these types of data sets in this and the next 
chapter. The discussion will therefore not be limited or focus on data 
generated to study problems in oncology, but the methodology described 
here can of course also be used to analyse them.  

For each individual gene, the arrangement of the expression 
measurements into a vector leads to what is generally called a gene 
expression profile. This is thus equivalent with a row of the expression 
matrix. These expression profiles or vectors are the objects that will be 
analysed in this chapter. 

                                                      
1 The discussion presented in this chapter has appeared in a review paper in 

the Proceedings of the IEEE (Moreau et al., 2002a) and will appear in a book 
chapter (Thijs et al., 2004). We co-authored both publications. We were also 
actively involved in writing a survey paper that has appeared in the European 
Journal of Control (De Moor et al., 2003). 
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Because relatedness in biological function often implies similarity in 
expression behavior (and vice versa) and because several genes might be 
involved in the process being studied (e.g., they might be regulated by the 
same transcription factor - see Chapter 1, Section 1.2 for more details on the 
biology), it will, in general, be possible to identify subgroups or clusters of 
genes that will have similar expression profiles (i.e., according to a certain 
distance function, the associated expression vectors are sufficiently ‘close’ to 
one another). Genes with similar expression profiles are called coexpressed.  

Conversely, coexpression of genes can thus be an important 
observation to infer the biological role of these genes. For example, 
coexpression of a gene with unknown biological function with a cluster 
containing genes with known (or partially known) function can give an 
indication of the role of the unknown gene. Also, coexpressed genes are 
more likely to be coregulated, i.e., they might interact with the same 
transcription factors. 

Clustering algorithms are designed to detect unknown classes in the 
data (see Chapter 1, Section 1.3.2). This means that cluster analysis in a 
collection of gene expression profiles aims at identifying subgroups (= 
clusters) of such coexpressed genes, which thus have a higher probability of 
participating in the same pathway. An idealized example in two dimensions 
is shown in Figure 4.1. 

Cluster analysis of gene expression profiles is only a first 
rudimentary step preceding further analysis, which includes motif finding, 
functional annotation, genetic network inference (Roth et al., 1998; Thijs et 
al., 2002a; van Helden et al., 2000). Moreover, clustering often is an 
interactive process where the biologist has to validate or further refine the 
results and combine the clusters with a priori biological knowledge. 
Claiming that the biologist can immediately obtain the desired results just by 
applying the clustering algorithm is, in our opinion, wishful thinking. 

In the following sections we will discuss some of the specific 
problems related to cluster analysis of gene expression profiles, describe 
some of the solutions that are already available and show that these solutions 
are still not entirely optimal. This has motivated us to develop a clustering 
algorithm specifically tuned towards clustering gene expression profiles that 
aims to circumvent some of the disadvantages of the existing algorithms. 
This approach will be discussed in the next chapter. 

4.2 Algorithmic challenges 
The first generation of cluster algorithms (e.g., direct visual 

inspection (Cho et al., 1998), K-means (Tou and Gonzalez, 1979), self-
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Figure 4.1: Visualization of 375 (simulated) gene expression profiles (each 
expression profile contains two expression levels measured in two different samples 
- data not standardized). It is clear that, in this case, cluster analysis will result in the 
identification of three well-separated clusters (representing three classes of genes, 
possibly associated with specific biological pathways). 

organizing maps or SOMs (Tamayo et al., 1999), hierarchical clustering 
(Eisen et al., 1998)) applied to gene expression profiles were mostly 
developed outside biologically related research. Though possible to obtain 
biologically meaningful results with these algorithms, some of their 
characteristics often complicate their use for clustering expression data 
(these methods lack fine-tuning for biological problems) (Sherlock, 2000). 
They require, for example, the predefinition of one or more arbitrary user-
defined parameters that are hard to estimate by a biologist (e.g., the 
predefinition of the number of clusters in K-means and SOM - this number is 
almost impossible to predict in advance). Moreover, changing these 
parameter settings will often have a profound impact on the final result. 
These methods therefore need extensive parameter fine-tuning, which means 
that a comparison of the results with different parameter settings is almost 
always necessary, which is not trivial. Another problem is that first-
generation clustering algorithms often force every data point into a cluster. 
In general, a considerable amount of genes included in the microarray 
experiment do not really contribute to the biological process studied and 
these genes will therefore lack coexpression with other genes (they will have 
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seemingly constant or even random expression profiles). Including these 
genes into one of the clusters will ‘contaminate’ their content (these genes 
represent noise) and make them less suitable for further analysis. Finally, the 
computational and memory complexity of some of these algorithms often 
limit the number of expression profiles that can be analysed at once. 
Considering the nature of our data sets (number of expression profiles often 
running up into thousands), this constraint is often unacceptable. 

Recently, many new clustering algorithms have emerged claiming to 
solve some of the limitations of the earlier methods (e.g., self-organizing tree 
algorithm or SOTA (Herrero et al., 2001), quality-based clustering (Heyer et 
al., 1999), model-based clustering (Ghosh and Chinnaiyan, 2002; Yeung et 
al., 2001a), simulated annealing (Lukashin and Fuchs, 2001), gene shaving 
(Hastie et al., 2000), the cluster affinity search technique or CAST (Ben-Dor 
et al., 1999)). Also, some procedures were developed that could help the 
biologist to estimate some of the arbitrary parameters needed for the first 
generation of algorithms (e.g., like the number of clusters present in the data 
(Ghosh and Chinnaiyan, 2002; Lukashin and Fuchs, 2001; Yeung et al., 
2001a)).  We will discuss a selection of these clustering algorithms in more 
detail in the following sections. Many of these methods can be used with 
different distance measures, which can also have serious implications for the 
final result. One of the reasons that there are so many different clustering 
methods (sometimes giving very different results) is that, from a biological 
point of view, these different algorithms sometimes seem to expose different 
aspects present within the data and not always generate all the relevant 
clusters. 

 An important problem that arises when performing cluster analysis 
of gene expression profiles is the preprocessing of the data. Clustering 
implies more than just submitting the raw microarray data to the cluster 
algorithm of choice. A correct preprocessing strategy is almost as important 
as the cluster analysis itself. Normalization, non-linear transformations and 
management of missing values have been discussed in Chapter 3 and are 
equally important in this setting. Moreover, it is common to (crudely) filter 
the gene expression profiles (removing the profiles that do not satisfy a 
certain criterion - see further) before proceeding with the actual clustering 
(Eisen et al., 1998). A final customarily used pre-processing step is 
standardization or rescaling of the gene expression profiles (e.g., multiplying 
every expression vector with a scale factor so that their lengths are one - 
Quackenbush, 2001). This makes sense because the aim is to cluster gene 
expression profiles with the same relative behavior (expression levels go up 
and down at the same time) and not only the ones with the same absolute 
behavior. The two latter pre-processing steps will be discussed in more detail 
in the following sections. 
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 Validation is another key issue when clustering gene expression 
profiles. When using existing algorithms or developing new ones it is not 
merely enough to submit the data to the algorithm and wait for the results. 
Cluster analysis is more than just producing clusters. The biologist using the 
algorithm is of course mainly interested in the biological relevance of these 
clusters and wants to use the results to discover new biological phenomena. 
This means that we need methods to (biologically and statistically) validate 
and objectively compare the results produced by new and existing clustering 
algorithms. Some standard methods for doing cluster validation have 
recently emerged (looking for enrichment of functional categories (Tavazoie 
et al., 1999), figure of merit or FOM (Yeung et al, 2001b), Rand index 
(Yeung and Ruzzo, 2001c), silhouette (Kaufman and Rousseeuw, 1990)) and 
will be discussed below. No real benchmark data set exists that can be used 
to unambiguously validate novel algorithms. However the yeast cell cycle 
data (Cho et al., 1998) as described in Appendix B is often used for this 
purpose. 

4.3 Methods and algorithms 
In this section some of the methods related to clustering gene 

expression will be discussed in more detail. 

4.3.1 Specific preprocessing 

Filtering 
As stated in Section 4.2, a set of microarray experiments, generating 

gene expression profiles, frequently contains a considerable number of genes 
that do not really contribute to the biological process that is being studied. 
The expression values of these profiles often show little variation over the 
different experiments (they are called “constitutive” with respect to the 
biological process studied). Moreover, these constitutive genes will have 
seemingly random and meaningless profiles after standardization (division 
by a small standard deviation resulting in noise inflation), which is also a 
very common pre-processing step (see further). Another problem with 
microarray data sets is the fact that they regularly contain highly unreliable 
expression profiles with a considerable number of missing values. Due to 
their number, replacing these missing values in these expression profiles is 
not possible within the desired degree of accuracy. 

The quality of the clusters would significantly degrade, if these data 
sets would be passed to the clustering algorithms as such. Most clustering 
algorithms assign every expression profile in the data to one of the clusters, 
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even the ones of poor quality, corrupting the content and the average profile 
of these clusters making them less suitable for further analysis. A solution to 
this problem could be to use clustering algorithms that do not assign every 
profile to a cluster. The algorithm that is proposed in the next Chapter 
(AQBC) follows this approach. Another, more simple solution (that can also 
be used in combination with the previous solution), is to remove at least a 
fraction of the undesired genes from the data. This procedure is in general 
called filtering (Eisen et al., 1998). Filtering involves removing gene 
expression profiles from the data set that do not satisfy one or possibly more 
criteria. Commonly used criteria include a minimum threshold for the 
standard deviation of the expression values in a profile (removal of 
constitutive genes) and a threshold on the maximum percentage of missing 
values. Another similar method for filtering takes a fixed number or fraction 
of genes best satisfying one criterion (like the criteria stated above). 

Standardization or rescaling 
Biologists are mainly interested in grouping gene expression profiles 

that have the same relative behavior, i.e., genes that are up- and 
downregulated together. Genes showing the same relative behavior but with 
diverging absolute behavior (e.g., gene expression profiles with a different 
base line and/or a different amplitude but going up and down at the same 
time) will have a relatively high Euclidean distance. Cluster algorithms 
based on this distance measure will therefore wrongly assign these genes to 
different clusters. 

Applying standardization or rescaling to the gene expression profiles 
can largely prevent this effect (Quackenbush, 2001). Gene expression 
profiles showing the same relative behavior will have a small(er) Euclidean 
distance after rescaling. 

Consider a gene expression profile g(g1,g2,…,gj,…,ge). Rescaling is 
commonly done by replacing every expression level gj in g by  

,
σ

µ−jg
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where µ is the average expression level of the gene expression profile and is 
given by: 
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and σ is the standard deviation given by: 
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This is repeated for every gene expression profile in the data set and results 
in a collection of expression profiles all having average zero and standard 
deviation one (i.e., the absolute differences in expression behavior have been 
largely removed). The division by the standard deviation is sometimes 
omitted (rescaling is then called mean centering). 

4.3.2 Clustering algorithms 

As already stated, several clustering methods (first and second 
generation algorithms) are available. We will discuss some of the important 
ones in more detail below. 

First-generation algorithms 
Not withstanding some of the disadvantages of these early methods, 

it has to be noted that many good implementations of these algorithms were 
already developed outside biologically related research and are ready to be 
used by biologists (which is not always the case with the newer methods) - 
see also Table 4.2. 

a) Direct visual inspection: 
This is of course the most simple and direct approach used by many 

biologists in the early days of gene expression analysis (Cho et al., 1998). 
This method is best suited where the patterns of interest are known in 
advance, but does not work for larger data sets (high number of dimensions 
or data points) or when one hopes to discover unexpected patterns. 

b) Hierarchical clustering 
Hierarchical clustering is the most widely used method for clustering 

gene expression data (Eisen et al., 1998; Quackenbush, 2001; Sherlock, 
2000) and can be seen as the de facto standard. Hierarchical clustering has 
the advantage that the results can be nicely visualized (see Figure 4.2). This 
method can also be used to cluster entire microarray experiments (columns 
of the expression matrix - see Chapter 3, Section 3.4.1). For more 
information and a description of the possible algorithms, see Appendix A, 
Section A.6. Using this method, clusters are formed by cutting a tree 
structure at a certain level or height. This level corresponds to a certain 
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pairwise distance, which in its turn is rather arbitrary (it is difficult to predict 
which level will give the most valid biological results). Finally, the 
computational complexity of hierarchical clustering is quadratic in the 
number of gene expression profiles, which can be a problem when 
considering the current size of the data sets. 

 

Figure 4.2: Typical result we obtained from an analysis using hierarchical clustering 
using 137 gene expression profiles of dimension 8. The left side of the figure 
represents the tree structure. The terminal branches of this tree are linked with the 
individual genes and the height of all the branches is proportional to the pairwise 
distance between the clusters. The right side of the figure (also called a heat map) 
corresponds to the expression matrix where each row represents a gene expression 
profile, each column a microarray experiment and the individual values are 
represented on a colour (green to red) or grey scale. 

c) K-means clustering 
K-means clustering of gene expression profiles (Tavazoie et al., 

1999; Tou and Gonzalez, 1979) results in a partitioning of the data (every 
gene expression profile belongs to exactly one cluster) using a predefined 
number K of partitions or clusters (see Figure 4.3). K-means clustering was 
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also applied to clustering microarray experiments and the algorithm is 
described in Appendix A, Section A.5. The predefinition of the number of 
clusters by the user is also rather arbitrary (it is very difficult to predict the 
number of clusters in advance). In practice, this makes it necessary to use a 
trial-and-error approach where a comparison and biological validation of 
several runs of the algorithm with different parameter settings is necessary. 

Figure 4.3: Typical result from an analysis using K-means clustering with 30 
clusters using 3000 standardized expression profiles of dimension 15 (yeast cell 
cycle data - filtering: 3000 expression profiles with the highest standard deviation 
before standardization were chosen). The sum of the number of genes in each cluster 
equals the total number of genes submitted to the algorithm (=3000). NG = Number 
of Genes. Each plot shows the individual expression profiles and the mean 
expression profile of a cluster. 

d) Self-organizing maps (SOM) 
In SOM (Kohonen, 1997; Tamayo et al., 1999), the user has to 

predefine a topology or geometry of nodes (e.g., a two-dimensional grid - 
one node for each cluster), which again is not really straightforward. These 
nodes are then mapped into the gene expression space, initially at random 
and iteratively adjusted. In each iteration, a gene expression profile is 
randomly picked and the node that maps closest to it is selected. The 
mapping of this selected node is then moved into the direction of the selected 
expression profile. The mapping of the other nodes is also moved into the 
direction of the selected expression profile but to an extent proportional to 
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the distance from the selected node in the initial two-dimensional node 
topology. 

Second-generation algorithms 
In this section we will describe several of the newer clustering 

methods that have specifically been designed to cluster gene expression 
profiles. 

a) Self-organizing tree algorithm: 
The SOTA (Herrero et al., 2001) combines both self-organizing 

maps and divisive hierarchical clustering. The topology or node geometry 
here takes the form of a dynamic binary tree. Similar to self-organizing 
maps, the gene expression profiles are sequentially and iteratively presented 
to the terminal nodes (located at the base of the tree - these nodes are also 
called cells). Subsequently, the gene expression profiles are associated with 
the cell that maps closest to it and the mapping of this cell plus its 
neighbouring nodes are updated (moved into the direction of the expression 
profile). The presentation of the gene expression profiles to the cells 
continues until convergence. After convergence the cell containing the most 
variable population of expression profiles (variation is defined here by the 
maximal distance between two profiles that are associated with the same 
cell) is split in two sister cells (causing the binary tree to grow) where after 
the entire process is restarted. The algorithm stops (the tree stops growing) 
when a threshold of variability is reached for each cell. To obtain a statistical 
definition for this threshold a randomised version of the entire data set is 
used (for each expression profile all its expression values are randomly and 
independently shuffled - this operation destroys the actual correlation 
between expression profiles) and the distances between all possible pairs of 
gene expression profiles in this version of the data are calculated. This 
results in the probability distribution of the distances that could occur by 
chance (i.e., the distribution that describes the probability that two unrelated 
expression profiles have a certain distance). The threshold of variability can 
now be defined by choosing a confidence level α (e.g., α=5%), so that only 
a fraction α of the randomised gene expression profiles have a distance 
smaller than this threshold. Using this threshold ensures that the fraction of 
misassignments (unrelated profiles assigned to the same cluster) in the actual 
cluster result is limited by the α-value. 

The approach described by Herrero et al. (2001) has some properties 
that make it potentially useful for clustering gene expression profiles: 

i. The clustering procedure itself is linear in the number of 
gene expression profiles (compare this with the quadratic 
complexity of standard hierarchical clustering). 
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ii. The number of clusters does not have to be known in 
advance. Moreover, Herrero et al. describe a statistical 
procedure to stop growing the tree. Therefore, the user is 
freed from choosing a (arbitrary) level where the tree has to 
be cut (like in standard hierarchical clustering). 

iii. A server running the program is available (see Table 4.2). 

In our opinion, this method, however, also has some disadvantages: 

i. The procedure for finding the threshold of variability is 
time-consuming since it involves the actual construction of a 
randomised data set and the calculation of the distances 
between all possible pairs of randomised expression profiles 
(quadratic!). The entire process described in Herrero et al. 
(2001) is thus in fact quadratic in the number of gene 
expression profiles. 

ii. No biological validation was provided showing that this 
algorithm indeed produces biologically relevant results. 

b) Model-based clustering 
Model-based clustering (Fraley and Raftery, 1999; Ghosh and 

Chinnaiyan, 2002; Yeung et al., 2001a) is an approach that is not really new 
and has already been used in the past for other applications outside 
bioinformatics. Its potential use for cluster analysis of gene expression 
profiles has been proposed only recently, however. In the context of 
clustering gene expression profiles we will thus treat it as a second-
generation algorithm. 

Model-based clustering assumes that a finite mixture of underlying 
probability distributions, where each distribution represents one cluster, 
generates the data. Usually, multivariate normal distributions are used for 
these probability distributions. In this case, each cluster Ck is represented by 
a multivariate Gaussian model pk in e dimensions: 
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where g is a gene expression profile or vector and µk and Σk the mean and 
covariance matrix of the multivariate normal distribution respectively. The 
covariance matrix Σk can be represented by its eigenvalue decomposition, 
which in this case is written as follows: 
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where Dk is the orthogonal matrix of the eigenvectors of Σk, Ak is a diagonal 
matrix whose elements are proportional to the eigenvalues of Σk and λk is the 
constant of proportionality. This decomposition implies a nice geometric 
interpretation of the clusters: Dk controls the orientation, Ak controls the 
shape and λk controls the volume of the cluster. Simpler forms for the 
covariance structure can be used (e.g., by having some of the parameters 
take the same values across clusters), decreasing the number of parameters 
that have to be estimated but also decreasing the model flexibility (capacity 
to model more complex data structures). The mixture model p itself takes 
then the following form: 
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where K is the number of clusters and πk is the prior probability that an 
expression profile belongs to cluster Ck so that: 
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.0≥kπ                (4.8) 

In practice we would like, given a collection of expression profiles {gi}i=1,…,n 
to estimate all the parameters (πk, µk, Σk (k=1,…,K) and K itself) of this 
mixture model. In a first step these parameters are estimated with an EM-
algorithm using a fixed value for K and a fixed covariance structure. This 
parameter estimation is then repeated for different values for K and different 
covariance structures. The result of the first step is thus a collection of 
different models fitted to the data and all having a specific value for K and a 
specific covariance structure. In a second step the best model in this group of 
models is selected (i.e., the most appropriate number of clusters and a 
covariance structure is chosen here). This model selection step involves the 
calculation of the Bayesian Information Criterion (BIC; Schwartz, 1978) for 
each model, which is not further discussed here. 

A good implementation for model-based clustering (called 
MCLUST - Fraley and Raftery, 1999) is available (see Table 4.2). Yeung et 
al. (2001a) reported good results using this software on several synthetic 
data sets and real expression data sets. They claimed that the performance of 
MCLUST on real expression data was as least as good as could be achieved 
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with a heuristic cluster algorithm (CAST - Ben-Dor et al. (1999) - not 
discussed here). 

c) Quality-based clustering 
In Heyer et al. (1999) a clustering algorithm (called QT_Clust - also 

see Table 4.1 for the basic steps of this approach) is described that produces 
clusters in a set of gene expression profiles G = {gi}i=1,…,n that have a quality 
guarantee that ensures that all members of a cluster should be coexpressed 
with all other members of this cluster. Heyer et al. define the quality of a 
cluster C as the maximum of the distance d(gk,gl) between two gene 
expression vectors gk and gl of C (called the diameter of C). Heyer et al. use 
a specific distance measure (jackknife correlation - not further discussed 
here) but the method can be easily be extended to other distance measures. 
The quality guarantee itself is defined as a fixed and user-defined threshold 
D for the quality or diameter of each cluster. 

Briefly said, the aim of QT_Clust is to find clusters, with a quality 
guarantee, containing a maximum number of expression profiles. It 
considers every expression profile in the data set as a cluster seed (one could 
call this a cluster center) and iteratively assigns the expression profiles to 
these clusters that cause a minimal increase in diameter until the diameter 
threshold D (=quality guarantee) is reached. At this stage every expression 
profile is made available to every candidate cluster and there are initially as 
many candidate clusters as there are expression profiles. At this point, the 
candidate cluster that contains the highest number of expression profiles is 
selected as a valid cluster and removed from the data set where after the 
whole process starts again. The algorithm stops when the number of points 
in the largest remaining cluster falls below a prespecified threshold 
(MIN_NR_GENES). This stop criterion implies that the algorithm will 
terminate before all expression profiles are assigned to a cluster. 

This approach was designed with cluster analysis of expression data 
in mind and has some properties that could make it very useful for this task: 

i. By using a stringent quality guarantee it is possible to find 
clusters with tightly related expression profiles (containing 
highly coexpressed genes). These clusters might therefore be 
good ‘seeds’ for further analysis. 

ii. Genes not really coexpressed with other members of the 
data set are not included in any of the clusters. 

There are, however, also some disadvantages: 

i. The quality guarantee of the clusters is a user-defined 
parameter that is hard to estimate and too arbitrary. This 
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Table 4.1: Quality-based clustering algorithm (QT_Clust) proposed by Heyer et al. 
(1999)

QT_Clust (G ={gi}i=1,…,n, MIN_NR_GENES , D) 

FOR ALL gi ∈ G /* Consider every expression profile as a seed for
candidate cluster Ci */ 

 Ci = {gi} 

FLAG = true 

WHILE FLAG = true AND Ci ≠ G 

  FIND ga ∈ (G \ Ci) that minimizes  

   Diam(Ci∪{ga}) = max{d(gk,gl)|gk, gl∈(Ci∪{ga})} 
/* Find expression profile that causes minimal increase in
diameter of Ci */ 

  IF Diam(Ci∪{ga}) > D 

   FLAG = false   
/* Cluster Ci stops growing if diameter threshold is
reached */ 

  ELSE  

   Ci = Ci∪{ga} 

  END IF 

 END WHILE 

END FOR 

FIND C ∈ {C1, C2,...,Cn} such that #C is maximal  
/* Select candidate cluster with maximum number of expression profiles */ 

IF #C < MIN_NR_GENES 

STOP /* Stop algorithm if number of elements of selected cluster
falls below threshold */ 

ELSE  

OUTPUT C 

QT_Clust (G \ C, MIN_NR_GENES, D)  /* Find next cluster */ 

END IF 
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method is therefore, in practice, hard to use by biologists 
and extensive parameter fine-tuning is necessary. 

ii. This algorithm produces clusters all having the same fixed 
diameter not optimally adapted to the local data structure. 

iii. The computational complexity is quadratic in the number of 
expression profiles. 

iv. No ready to use implementation is available. 

 

Table 4.2: Availability of clustering algorithms 

Package URL 
Cluster http://rana.lbl.gov/EisenSoftware.htm 

J-Express http://www.molmine.com 
Expression Profiler http://ep.ebi.ac.uk 

SOTA http://bioinfo.cnio.es/sotarray 
MCLUST http://www.stat.washington.edu/fraley/mclust 

AQBC (see Chapter 5) http://www.esat.kuleuven.ac.be/~dna/BioI/Software.html 

4.3.3 Cluster validation 

As mentioned before, depending on the pre-processing, the 
algorithms and the different distance measures, clustering will produce 
different results. Even random data often produces clusters. Therefore 
validation of the relevance of the cluster results is of utmost importance. 
Below, we will describe four methodologies that are often used for this task. 

Looking for enrichment of functional categories: Biological 
validation 

One way to validate results from clustering algorithms is to compare 
the gene clusters with existing functional classification schemes. In such 
schemes, the genes are allocated to one or more functional categories 
representing their biochemical properties and biological roles (Tavazoie et 
al., 1999). Finding clusters that have been significantly enriched for genes 
with similar function is proof that a specific clustering technique can 
produce biologically relevant results. Therefore the method discussed here is 
often called biological validation. 

As stated in Section 4.2, the yeast cell cycle data (Cho et al., 1998) 
described in Appendix B is often used as a benchmark data set. One of the 
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reasons is that the majority of the genes included in the data have been 
functionally classified (Mewes et al., 2000). A functional classification 
scheme is available (MIPS database - see http://mips.gsf.de/genre/proj/ 
yeast/index.jsp), which makes it possible to biologically validate the results.  

Assume that a certain clustering method finds a set of clusters in this 
data. We could objectively look for functionally enriched clusters as follows: 
Suppose that one of the clusters has g genes where k genes belong to a 
certain functional category in the MIPS database and suppose that this 
functional category in its turn contains f genes in total. Also suppose that the 
total data set contains n genes (in the yeast cell cycle data n would be 6220). 
Using the cumulative hypergeometric probability distribution, we could 
calculate the probability or p-value that this degree of enrichment could have 
occurred by chance, i.e., what is the probability of finding at least k genes in 
this specific cluster containing g genes from this specific functional category 
containing f genes (out of the whole n annotated genes) by chance: 
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These p-values can be calculated for each functional category in each 
cluster. Since there are about 200 functional categories in the MIPS 
database, only clusters where the p-value is smaller than 0.0003 for a certain 
functional category, are said to be significantly enriched (level of 
significance 0.05). These p-values can also be used to compare the results 
from functionally matching clusters identified by two different clustering 
algorithms on the same data. For an example see Chapter 5, where the results 
of our clustering algorithm have been validated using this method. Also see 
Appendix A, Section A.1 for more explanation about p-values. 

Rand index: validation against an external criterion 
The Rand index (Yeung, 2001b; Yeung and Ruzzo, 2001c) is a 

measure that reflects the level of agreement of a cluster result with an 
external criterion, i.e. an existing partition or a known cluster structure of the 
data. This external criterion could for example be an existing functional 
categorization (see previous method), a predefined cluster structure if one is 
clustering synthetic data where the clusters are known in advance, or another 
cluster result obtained using other parameter settings for a specific clustering 
algorithm or obtained using other clustering algorithms. The latter could be 
used to investigate how sensitive a cluster result is to the choice of the 
algorithm or parameter setting. If this result proves to be relatively stable, 
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one can assume that pronounced signals are present in the data possibly 
reflecting biological processes. 

Suppose we want to compare two partitions (the cluster result at 
hand and the external criterion) of a set of n genes. Suppose that a is the 
number of gene pairs that are placed in the same subset (or cluster) in both 
partitions. Suppose that d is the number of gene pairs that are placed in 
different subsets in both partitions. The Rand index is then defined as the 
fraction of agreement between both partitions: 
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The Rand index lies between 0 and 1 (1 if both partitions are identical). The 
adjusted Rand index has similar properties but is not further discussed here. 

Testing cluster coherence: Silhouette 
A gene expression profile can be considered to be well clustered if 

its distance to the other expression profiles of the same cluster is small and 
the distance to the expression profiles of other clusters is larger. This 
criterion can be formalized by using silhouettes (Kaufman and Rousseeuw, 
1990). This measure validates the cluster result on statistical grounds only 
(statistical validation). Biological information is not used here.  

Suppose gi is an expression profile that belongs to cluster Ck. Call 
v(gi) (also called the within dissimilarity) the average distance of gi to all 
other expression profiles from Ck. Suppose Cl is a cluster different from Ck 
and define d(gi,Cl) as the average distance from gi to all expression profiles 
of Cl. Now define w(gi) (also called the between dissimilarity) as follows: 
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The silhouette s(gi) of gi is now defined as follows: 
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Note that -1 ≤ s(gi) ≤ 1. Consider two extreme situations now. Firstly, 
suppose that the within dissimilarity v(gi) is significantly smaller than the 
between dissimilarity w(gi). This is the ideal case and s(gi) will be 
approximately 1. This occurs when gi is ‘well clustered’ and there is little 
doubt that gi is assigned to an appropriate cluster. Secondly, suppose that 
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v(gi) is significantly larger than w(gi). Now s(gi) will be approximately -1 
and gi has in fact been assigned to the wrong cluster (worst case scenario). 

We can now define two other measures: the average silhouette width 
of a cluster and the average silhouette width of the entire data set. The first is 
defined as the average of s(gi) for all expression profiles of a cluster and the 
second is defined as the average of s(gi) for all expression profiles in the data 
set. This last value can be used to mutually compare different cluster results 
and can be used as an inherent part of clustering algorithms, if its value is 
optimised during the clustering process. 

Figure of merit 
“Figure of merite” or FOM (Yeung et al., 2001b) is a simple 

quantitative data-driven methodology (statistical validation) that also allows 
comparisons to be made between outputs of different cluster algorithms. The 
methodology is related to jackknife-based or leave-one-out cross-validation. 
The method goes as follows. The clustering algorithm (for the gene 
expression profiles) to be tested is applied to all experimental conditions (in 
this case the data variables) except for one left-out condition. If the 
algorithm performs well, we expect that if we look at the genes from a given 
cluster, their values for the left-out condition will be highly coherent. 
Therefore, we compute the FOM, for the left-out condition, as the root mean 
square of the deviations of each gene relative to the mean of the genes in its 
cluster for this condition. The FOM measures the within-cluster similarity of 
the expression values of the removed experiment and therefore reflects the 
predictive power of the clustering. It is expected that removing one 
experiment from the data should not interfere with the cluster output if the 
output is robust. For cluster validation, each condition is subsequently used 
as a validation condition and the aggregate FOM (sum of the all the FOM) 
over all conditions is used to compare cluster algorithms. 

4.4 Conclusion 
In this chapter a general overview of clustering gene expression 

profiles and a discussion of the specific requirements related to this task was 
given. We described a selection of the first- (hierarchical clustering, K-
means, SOM) and second-generation (SOTA, model-based and quality-
based clustering) algorithms that are frequently used to solve this problem 
and discussed some of the preprocessing steps like filtering and 
standardization that are customarily associated with these methods. Since the 
aim of clustering expression profiles is to discover new biology, we 
discussed some of the methods (looking for enrichment of functional 
categories, Rand index, silhouette and FOM) that can be used to biologically 
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or statistically validate the resulting clusters and to objectively show that the 
output of the algorithms at hand indeed produce relevant clusters. We noted 
that some of the algorithms have properties that make them less suited for 
clustering gene expression profiles. This includes the necessity to choose an 
arbitrary parameter setting or to perform extensive parameter fine-tuning, the 
inclusion of all the genes in the clusters, a high computational complexity 
and the lack of biological or other validation.  

To solve some of the difficulties associated with clustering gene 
expression profiles, we developed an algorithm that is called adaptive 
quality-based clustering and that starts from the principles introduced in 
quality-based clustering by Heyer et al. This method is described and fully 
validated in the next chapter. 
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Chapter 5 

Adaptive quality-based clustering of gene 
expression profiles 

5.1 Introduction1 
In the previous chapter we noted that algorithms for clustering gene 

expression profiles have special requirements and that the classical 
algorithms suffer from some drawbacks that make them less appropriate for 
this task. In this chapter we will present a specific solution to this challenge. 

As said, much effort is currently being done to adapt clustering 
algorithms towards the specific needs of biological problems. In this context 
the idea of quality-based clustering (Heyer et al., 1999 - see Section 4.3.2) 
was developed. Heyer et al. proposed an algorithm (which they called 
QT_Clust) that tries to identify clusters that have a certain quality or 
diameter (representing the minimal degree of coexpression needed - see 
below for the exact definition used in this chapter) and where every cluster 
contains a maximal number of points. Genes not exhibiting this minimal 
degree of coexpression with any of the clusters are excluded from further 
analysis. A problem with the quality-based approach of Heyer et al., 
however, is that this quality is a user-defined parameter that is hard to 
estimate (it is hard to find a good trade-off or optimal value: setting the 
quality too strictly will exclude a considerable number of coexpressed genes, 
setting it too loosely will include too many genes that are not really 
coexpressed). Moreover, it should be noted that the optimal value for this 
quality is, in general, different for each cluster and data set dependent. The 
computational complexity of this approach is quadratic in the number of 
gene expression profiles. 

                                                      
1 The discussion presented in this Chapter has been published as a full 

paper in Bioinformatics (De Smet et al., 2002). 



Chapter 5 - Adaptive quality-based clustering 

 86

In this chapter, we describe an adaptive quality-based clustering 
method starting from the principles described by Heyer et al. (quality-based 
approach; locating clusters, with a certain quality, in a volume where the 
density of points is maximal). The algorithm described below is in essence a 
heuristic, two-step approach that defines the clusters sequentially (the 
number of clusters is not known in advance, so it is not a parameter of the 
algorithm). The first step locates a cluster (quality-based approach) and the 
second step derives the quality of this cluster from the data (adaptive 
approach). We will make an assessment of the computational complexity of 
this approach and the performance of the algorithm is validated on real and 
artificial microarray data. We will make a theoretical comparison between 
our algorithm, the algorithm of Heyer et al., hierarchical clustering, K-means 
and self-organizing maps. Finally, we will refer to an on-line tool for 
integrated clustering, upstream sequence retrieval and motif sampling 
(INCLUSive) in which our algorithms has been integrated. 

5.2 General methodology 

5.2.1 Standardization 

As previously mentioned, it is common practice to standardize gene 
expression vectors before cluster analysis so that their mean is zero and their 
variance is one before proceeding with the actual cluster algorithm. If 
gi(gi

1,gi
2,…,gi

j,…,gi
e) is a standardized expression vector, this means that: 
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Standardized expression profiles or vectors therefore are located in an e-
dimensional space on the intersection of a hyperplane (Equation 5.1) and a 
hypersphere with a radius equal to √(e-1) (Equation 5.2).  

5.2.2 Quality R of a cluster 

The definition used in this chapter for the quality R of a cluster is 
slightly different from the definition proposed by Heyer et al. and is as 
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follows: In a collection of gene expression profiles G={gi, i=1,…,n}, a 
cluster Ck with center Ok (center not necessarily standardized) and quality Rk 
(also called radius of cluster Ck), will only contain the profiles satisfying the 
following property:   

.
2 kki ROg <−         (5.3) 

Equation 5.3 means that cluster Ck only contains gene expression profiles 
with a minimum degree of coexpression (represented by the quality 
guarantee Rk). The norm or distance measure we use here is the 2-norm or 
Euclidean distance. 

5.3 Algorithm 

5.3.1 Global algorithm 

The global cluster algorithm (AQBC - see Table 5.1) is, as 
mentioned previously, a heuristic iterative two-step approach where the 
basic steps are as described below. In this implementation we use two user-
defined parameters (MIN_NR_GENES and S - the values between brackets 
are default values), several internal tuning parameters that have a fixed value 
(the user is not allowed to change these values) and the data set itself (G). 

During each iteration, this algorithm first finds a cluster center (Ok) 
using a preliminary estimate (Rk_PRELIM) of the radius or quality of the 
cluster (Step 1). When the cluster center has been located, the algorithm 
determines a new estimate for the radius (Rk) of the cluster (Step 2). Now 
there are two possibilities: 

1. If this new estimate is approximately equal to the preliminary 
estimate (e.g., within 10% - ACCUR_RAD), the set of genes 
defined by the cluster center and the new estimate of the radius is 
removed from the data set G. Furthermore, if the number of genes 
in this set is equal or larger than a predefined value 
(MIN_NR_GENES - user-defined; default 2), this set is a valid 
cluster. The preliminary estimate of the radius to be used in Step 
1 of the next iteration (for the next cluster) is updated with the 
new estimate of the radius calculated in Step 2 of the current 
iteration (in most cases, the best preliminary estimate for the 
radius of the next cluster seems to be the radius of the previous 
cluster). 
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2. If the new estimate of the radius is substantially different from the 
preliminary estimate, the preliminary estimate Rk_PRELIM is also 
updated with the new estimate Rk and a new iteration is started. 
This is repeated until the relative difference between Rk and 
Rk_PRELIM falls under ACCUR_RAD. 

Table 5.1: Global cluster algorithm. The values between brackets are the default 
values for the user-defined parameters 

 

The iterations are terminated when the stop criterion is satisfied (see 
Section 5.3.5). 

The algorithm was implemented in MATLAB. This implementation 
uses the method described in Chapter 3 (Section 3.2.3 - missing value 
management without replacement (Kaufman and Rousseeuw, 1990)) to deal 
with missing values often occurring in expression data.  

Below we will discuss the initialisation of the preliminary estimate 
of the radius before the first iteration, the procedures used in Step 1 and 2, 

AQBC (G ={gi, i=1,…,n}, MIN_NR_GENES <2>, S <0.95>) 

ACCUR_RAD = 0.1  /* Set internal tuning parameter */ 

Initialise Rk _PRELIM  /* Radius estimate initialisation */ 

WHILE Stop criterion NOT TRUE  
 Ok = locate_cluster_center (G, Rk_PRELIM)    
  /* Localisation of a cluster center - Step 1*/ 

 Rk = recalculate_radius (G, Ok, Rk_PRELIM, S)   
  /* Re-estimation of radius - Step 2 */ 

 IF ( | Rk - Rk _PRELIM | / Rk_PRELIM) < ACCUR_RAD   
  /* Check accuracy of radius estimation */ 

   CLUSTER = {gi∈G ||gi - Ok || < Rk } 

G = G \ CLUSTER            /* Remove cluster from data set G */ 

IF #CLUSTER >= MIN_NR_GENES           /* Valid cluster ? */ 

 Output CLUSTER 

END IF 

 END IF 

Rk _PRELIM = Rk       /* Update radius estimate */ 

END WHILE 
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the stop criterion (WHILE loop) and the computational and memory 
complexity of the overall algorithm. 

5.3.2 Radius estimate initialisation 

In the global cluster algorithm, the preliminary estimate of the radius 
(Rk_PRELIM) has to be initialised before the first iteration (radius estimate 
for the first cluster - line 3 of AQBC). We use half of the radius of the 
hypersphere defined by standardization of the expression profiles (see above 
in Section 5.2.1). This is given by:  

2
1_ −= ePRELIMRk                    (5.4) 

where e is the dimension of the gene expression vectors (number of 
expression vector components). 

5.3.3 Localization of a cluster center - quality-based 
clustering (Step 1) 

Given a collection G of gene expression profiles, the objective of 
Step 1 is to find a cluster center in an area of the data set where the ‘density’ 
(or number) of expression profiles, within a sphere with radius or quality 
equal to Rk_PRELIM (preliminary estimate of the radius), is locally 
maximal. The method described here is based on the principles used by 
Heyer et al. but is significantly faster (also see the discussion in Table 5.6). 
The disadvantage with this approach is that the quality or radius of the 
clusters is a parameter that is not very intuitive (it is often hard to find a 
‘good’ value for this parameter; often a trial-and-error approach is used with 
manual validation of the clusters). Furthermore, all the clusters are forced to 
have the same radius. 

The basic steps of the algorithm used for the first step are described 
in Table 5.2 (locate_cluster_center). After initialisation of the cluster center 
(with the mean profile of all the expression profiles in the data set G), all the 
expression profiles within a sphere with radius RAD are selected. Iteratively, 
the mean profile of these expression profiles is calculated and subsequently 
the cluster center is moved to this mean profile. This approach moves the 
cluster in the direction where the ‘density’ of profiles is higher (conceptually 
visualised in Figure 5.1). 
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Table 5.2: Algorithm for the localization of a cluster center. 

Ok = locate_cluster_center (G, Rk_PRELIM) 

MAXITER = 50                    
/* Set internal tuning parameter - maximum number of iterations */ 

DIV = 1/30                    
/* Set internal tuning parameter - fraction needed to determine DELTARAD */ 

Ok  = mean (G)  /* Cluster center initialisation */ 

RAD = max {||gi - Ok ||  gi∈G}   /* Start with maximal radius */ 

DELTARAD = (RAD - Rk_PRELIM) * DIV                 
/* Determine step for decreasing radius */ 

RAD = RAD - DELTARAD  /* Decrease radius */ 

GENES_IN_SPHERE = {gi∈G ||gi - Ok || < RAD}                
/* Determine profiles within sphere */ 

ME = mean (GENES_IN_SPHERE)  /* Recalculate mean */ 

ITER = 1 

WHILE (ME ≠ Ok AND ITER < MAXITER) OR RAD > Rk_PRELIM              
/* Iterate until convergence or maximal number of iterations has been reached */ 

 ITER = ITER + 1 

 Ok = ME  /* Move cluster center to cluster mean */ 

 IF RAD > Rk_PRELIM 

RAD = RAD - DELTARAD                /* 
Decrease radius if desired quality has not been reached */ 

 END IF 

GENES_IN_SPHERE = {gi∈G ||gi - Ok || < RAD}  
 /* Determine profiles within sphere */ 

ME = mean (GENES_IN_SPHERE)  /* Re-calculate mean */ 

END WHILE 

IF ME ≠ Ok 

 Ok  = empty /* Undefined cluster center if no convergence */ 

END IF 
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Figure 5.1: Conceptual visualisation of cluster center (XOk) relocation to the cluster 
mean (XME) in two dimensions (one iteration - cluster radius constant - data not 
standardized). The number of profiles (black dots) within the sphere after relocation 
is substantially higher than the number of profiles before relocation. 

The radius RAD of the sphere is initialised so that all profiles in the 
data set are located within this sphere. Every iteration, this radius is 
decreased with a constant value (DELTARAD, a fraction (DIV) of the 
difference between the initial value of RAD and Rk_PRELIM) until the radius 
has reached the desired value (Rk_PRELIM) and then remains constant. In 
the first iterations (when RAD is still ‘large’) this technique will move the 
cluster center to regions of the data where the ‘global’ density is higher 
(these regions often contain the largest cluster(s)). After some iterations 
(when RAD is equal or close to Rk_PRELIM) the cluster center will move 
towards an actual cluster where the density is ‘locally’ higher. 

Convergence is reached if the cluster center remains stationary after 
RAD has reached Rk_PRELIM. If this does not happen within a certain 
(MAXITER) number of iterations, Ok is emptied and the algorithm stops. 
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The number of distance calculations performed during each iteration 
of locate_cluster_center is equal to the number (= n) of all expression 
profiles in G (only the distances from the expression profiles to the current 
cluster center have to be calculated). Note also that the computational 
complexity of the calculation of one distance is O(e) (e is the dimensionality 
of the expression vectors). Because the number of iterations is limited 
(MAXITER), the computational complexity for the localization of one cluster 
center is thus O(n × e). 

5.3.4 Re-estimation or adaptation of the cluster quality 
(Step 2) 

In Step 1 of the algorithm we located a cluster center Ok in a 
collection G of gene expression profiles, using a preliminary estimate 
Rk_PRELIM of the radius of the cluster. The objective of the method 
described in this paragraph is, given the cluster center that remains fixed, to 
re-calculate the radius Rk of the current cluster as to assess that genes 
belonging to this cluster are significantly coexpressed. 

To substantiate the method described here, we introduce a 
randomised version of the original data set where the components of each 
expression vector are randomly and independently permuted (Herrero et al., 
2001). This randomised version of the data will only be used for conceptual 
reasons, it will not be used during the actual calculations. This process of 
randomisation destroys the correlation between the expression vectors that 
was introduced through non-accidental mechanisms (e.g., experimental 
setup). Any correlation still existing after this procedure can be attributed to 
chance.  

First, we calculate the Euclidean distance r from every expression 
vector in the data set to the cluster center Ok. Imagine doing the same for 
every vector present in the randomised data. The distribution of these 
distances in the original data consists of two parts  - see Figure 5.2:  

1. Background: these are the expression profiles with a distance to 
the cluster center that is also significantly present in the distance 
distribution of the randomised data set. Genes belonging to the 
background of the current cluster center either do not belong to 
any cluster (noise; are not significantly coexpressed with other 
genes) or belong to another cluster. Genes belonging to other 
clusters (if not too dominant) will not significantly show up in the 
distance distribution for the current cluster center (they ‘drown’ in 
the noise or background). 
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2. Cluster: these are the expression profiles with a distance to the 
cluster center that is not significantly present in the distance 
distribution of the randomised data set (left-sided tail in the 
distribution of the original data set). Genes belonging to the 
cluster are significantly coexpressed. 

To calculate the true radius of the cluster we need to construct a model 
(probability density estimation) describing the total distribution of the 
distance r in the original data. We propose the following model structure: 

)|(.)|(.)( BrpPCrpPrp BC +=          (5.5) 

where 

.1=+ BC PP         (5.6) 

The model structure assumes that the distance measure used for r is the 
Euclidean distance. This means that our method cannot be directly 
extrapolated to other distance measures. 

The model for the total distribution described in Equation 5.5 is the 
sum of two terms (also see Figure 5.2). The first term represents the 
distribution of the cluster, the second term represents the distribution of the 
background, each multiplied by the associated a priori probability (PC and 
PB). As we will see further, this model is only valid for standardized gene 
expression vectors. Note also that this model is an approximation and only 
reliable in the neighbourhood of the cluster. Below we will discuss how 
p(r|C) and p(r|B) are constructed, how the parameters of the model are 
determined and how we will use this model to calculate the radius of the 
cluster. 

Distribution of r in the cluster: p(r|C) 
Assume that all the gene expression vectors gi in G are standardized 

and therefore are located in an e-dimensional space on the intersection of a 
hypersphere (with a radius equal to √(e-1) (Equation 5.2)) and a hyperplane 
(Equation 5.1) going through the center of the hypersphere. The intersection 
itself (we will further refer to it as H) can therefore be seen as a curved space 
with an intrinsic dimensionality of d = e-2 (H itself is a hypersphere with 
radius √(e-1) located in the (e-1)-dimensional space defined by the 
hyperplane). We simplify the problem by neglecting the curved nature of H 
in the neighbourhood of the cluster (we assume the hypersphere to be locally 
flat - said otherwise, we linearise H in the neighbourhood of the cluster - we 
will refer to this linearised version of H as HL). This approximation also 
implies that the cluster center Ok belongs to HL and that the Euclidean 
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distances to the cluster center measured in HL are equal to the real Euclidean 
distances (= r) to the cluster center. The equations derived in this section are 
therefore an approximation and thus only reliable close to the current cluster 
center Ok (r < √(e-1)  = radius H), which is sufficient for our purpose, 
because we are only interested in modelling the area where the cluster is 
situated. 

The cluster is assumed to be normally distributed around Ok within 
HL  (the variance is hypothesised to be equal in each direction (in HL) and 
given by σ2). This means that the probability of finding an expression vector 
gi of the cluster in an elementary volume dV of HL is given by (Bishop, 
1995) 

( ) ( ) ,d
2

exp
2

1d
2

exp
2

1
2

2

2/222/2
VrV

Og
d

ki
d 








−=







 −
−

σπσσπσ
     (5.7) 

where r is the Euclidean distance from the expression vector gi to the cluster 
center Ok. 

We know that the volume inside a shell with radius r around Ok in 
HL (with elementary thickness dr) equals (Bishop, 1995) 

,d1 rrS d
d

−        (5.8) 

where Sd is the surface area of a unit sphere in d dimensions given by 

( )2/
2 2/

d
S

d

d Γ
= π

           (5.9) 

and Γ is the gamma function given by 

.d)(
0

1∫
∞

−−=Γ ueux ux              (5.10) 

Replacing dV in Equation 5.7 by Equation 5.8 gives us the probability of 
finding an expression vector of the cluster inside the elementary shell: 

( ) .d)|(d
2
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2 2

2
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2/2
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S d
d
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−−

σπσ
              (5.11) 
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Said otherwise, Equation 5.11 results in the probability density estimation 
p(r|C) describing the distribution of r in the current cluster. 

Distribution of r in the background: p(r|B) 
As previously mentioned, H can be described as a d-dimensional 

curved space (hypersphere with radius √(e-1)=√(d+1)). It has a finite volume 
given by (Bishop, 1995): 

( ) ,1 2/
1

d
d dS ++         (5.12) 

where Sd+1 is the surface area of a unit sphere in d+1 dimensions. The 
background is assumed to be uniformly distributed in this finite volume. 
Dividing Equation 5.8 by Equation 5.12 gives us the probability of finding 
an expression vector of the background inside the elementary shell: 

( )
.d)|(d

1
1

2/
1

rBrprr
dS
S d

d
d

d =
+

−

+

            (5.13) 

Said otherwise, Equation 5.13 results in the probability density estimation 
p(r|B) describing the distribution of r in the background. 

Estimation of the parameters 
Two parameters (σ and PC (or PB)) still have to be determined by 

fitting the model to the distance distribution of the original data (the 
randomised data is not used for the actual calculations). This is done by an 
EM-algorithm (Bishop, 1995). We use the preliminary estimate of the radius 
Rk_PRELIM (see localisation of a cluster center) to initialise the two 
parameters to be determined by the EM-algorithm. Because the model only 
has to fit the distribution of r (distance to the cluster center - one dimension), 
the computational complexity of the EM-algorithm is low as compared to the 
computational complexity of the cluster center localisation in Step 1 and 
therefore can be neglected if e is sufficiently large. The accuracy of the fit 
(which represents the validity of the assumptions we made to construct our 
model) for the clusters found in the yeast cell cycle data (see Figure 5.3 and 
Section 5.4.1) can be inspected in Figure 5.2 for the first four clusters of 
Figure 5.3.   

Calculation of Rk 
After the estimation of σ and PC, we determine the radius Rk of the current 
cluster so that points that are assigned to the cluster have a 
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probability S or more (significance level - user-defined; default setting: 
S = 95%) to belong to the cluster: 

.
)|(.)|(.

)|(.
)|( S

BRpPCRpP
CRpP

RCP
kBkC

kC
k =

+
=       (5.14) 

To summarise, the complete input-output relation of the method explained in 
this section is given by: Rk = recalculate_radius (G, Ok, Rk_PRELIM, S). Rk 
will be empty if Ok is empty (cluster center localisation did not converge) or 
if the EM-algorithm to determine the model parameters did not converge.  

5.3.5 Stop criterion 

The iteration (WHILE loop) in the global algorithm ends when the 
stop criterion is satisfied. This is the case when one of the three following 
conditions holds true: 

1. Step 1 or 2 stops converging. 

2. If, for a specific cluster, the number of iterations necessary to 
decrease the relative difference between Rk and Rk_PRELIM 
(under ACCUR_RAD), is larger than a predefined number. 

3. If the clusters removed from the data are not valid (number of 
genes below MIN_NR_GENES) for a predefined and consecutive 
number of times. 

5.3.6 Computational and memory complexity of the 
global algorithm 

It is difficult to give an exact measure for the computational 
complexity of this heuristic approach. However, we can give an indication of 
the role of the most important variables. As previously said, the 
computational complexity of one cluster center localisation is approximately 
O(n × e) (n is the number of gene expression profiles in the data set, e is the 
dimensionality of the expression vectors) and the computational complexity 
of the re-estimation of the cluster quality is negligible. So, the computational 
complexity of one iteration in the global algorithm (WHILE loop) is also 
approximately O(n × e). Notice also that Condition 2 of the stop criterion 
sets a limit for the maximum number of iterations in the global algorithm 
needed to define one cluster (which is only valid if the number of genes in 
this cluster equals or exceeds MIN_NR_GENES). Moreover, the number of 
invalid clusters (number of genes less than MIN_NR_GENES) found before 
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one of the conditions of the stop criterion is true, is in practice also more or 
less proportional to the number of valid clusters found (e.g., for each invalid 
cluster found, two valid clusters will be found). This number of valid 
clusters is no classical attribute of the data (like n or e) used to express 
computational complexity but it is rather a measure for the complexity of the 
structure of the data. Taken together, this means that the number of iterations 
in the global algorithm is also more or less proportional to this number of 
valid clusters in the data set and since the computational complexity of one 
iteration is approximately O(n × e), the computational complexity of the 
global algorithm is thus approximately O(n × e × VC) (VC = number of valid 
clusters). Notice also that, after finding a certain number of clusters, the 
number of genes left in the data is smaller than n (clusters are discarded from 
the data). The computational complexity, as described above, is thus an 
upper limit. 

Since only the distances from the expression profiles to the current 
cluster center have to be kept in memory (this is true at any stage of the 
algorithm), the memory complexity of the global algorithm is O(n). 

5.4 Results 

5.4.1 Mitotic cell cycle of Saccharomyces cerevisiae 

The algorithm was tested on the yeast cell cycle data as it is 
described in Appendix B. As previously said, this data set can be considered 
as a benchmark and contains expression profiles for 6220 genes over 17 time 
points taken at 10-min intervals, covering nearly two full cell cycles.  

Our preprocessing included the following steps: data corresponding 
to the 90 and 100-min measurements were removed (Tavazoie et al., 1999).  
Also, we selected the 3000 most variable genes using σ /µ as a metric of 
variation (see Tavazoie et al.) (filtering). Finally, we standardized the gene 
expression profiles as described in the standardization section. The final data 
still contained 2779 missing values. The results of the cluster analysis with 
our algorithm (MIN_NR_GENES = 10, S = 0.95) are shown in Figure 5.3. 
Table 5.3 summarises the biological validation of this result by looking for 
enrichment of functional categories in individual clusters as described in 
Chapter 4 (Section 4.3.3). We mapped the genes in each cluster to the 
functional categories in the Munich Information center for Protein 
Sequences (MIPS) Comprehensive Yeast Genome Database. For each 
cluster we calculated p-values for observing the frequencies of genes in 
particular functional categories using the cumulative hypergeometric 
probability distribution. In the same table we also show, as a comparison and
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in parallel (where possible, we compare p-values of functionally matching 
clusters), the results obtained by Tavazoie et al. on the same data using the 
K-means algorithm. The three most important clusters found by Tavazoie et 
al. (cluster 1, 4 and 2 in Tavazoie et al.) could be matched with three clusters 
discovered by AQBC (cluster 1, 2 and 5). The degree of enrichment in the 
clusters identified by AQBC, however, was considerably higher and 
biologically more consistent. 

In the biological validation and comparison discussed above, we 
filtered the data using the same metric of variance (σ /µ) as proposed by 
Tavazoie et al. because different filtering strategies could produce different 
clusters independent of the clustering technique (we did not want different 
filtering to interfere with our comparison). However, in general, if filtering is 
performed, we recommend using simple measures of variation, like the 
standard deviation σ (not σ /µ) or the difference between the minimum and 
maximum value, together with AQBC. Using AQBC with the yeast cell 
cycle data indeed resulted in biologically more relevant results when using 
the standard deviation (σ) as the metric of variance to select the 3000 most 
variable genes (resulting in data with 2563 missing values). This analysis, 
with the same parameter settings as previously, produced several clusters 
enriched in top-level functional categories (see Table 5.4). 

We were able to determine the role of every cluster presented in 
Table 5.4 within the yeast cell cycle context and correlate this role with the 
behaviour of the average profiles of the clusters. We have also found several 
protein complexes where nearly all members belong to the same cluster. 
Since this is beyond the scope of this text, we will not further discuss this but 
more information on this can be found on the supplementary website of De 
Smet et al. (2002) (http://www.esat.kuleuven.ac.be/~fdesmet/ 
paper/adaptpaper.html). 

The results of AQBC in this section have been obtained without 
additional fine-tuning (we used the default value for S) of one or more 
parameters (unlike, for example, K-means (used by Tavazoie et al.) where 
the number of clusters has to be estimated in advance, which is certainly not 
trivial) and that these results can be obtained very easily and almost 
instantaneously (maximum 1.5 minutes for the examples above on a typical 
PC). 

5.4.2 Central nervous system development 

Wen et al. (1998) generated gene expression levels of 112 genes on 
9 time points during central nervous system development of the rat (also see 
Appendix B). In the original reference, clustering of gene expression profiles 
was performed by using a form of hierarchical clustering. Each gene was
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Table 5.4: Biological validation of the results of AQBC on the yeast cell cycle data 
(MIN_NR_GENES = 10, S = 0.95) using σ as the metric of variance for filtering. 
The algorithm retrieved 38 clusters. We looked for enrichment of top-level 
functional categories in individual clusters.  Notice the periodic behaviour of the 
clusters enriched with cell-cycle specific genes (cluster 3, 6 and 9). 
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represented by a 17 dimensional vector (consisting of the 9 expression 
values and 8 slopes based on a reduced time interval of 1). The hierarchical 
clustering was based on the 112x112 Euclidean distance matrix calculated 
using these 17 dimensional vectors. The hierarchical clustering resulted in 
four basic clusters (or 'major waves') identifying distinct phases of 
development and a group with largely invariant gene expression profiles 
(which we could call the constitutively expressed genes).  

We applied AQBC (MIN_NR_GENES = 10 and S = 0.95) to this 
data set after standardization. We only used the 9 dimensional vectors 
consisting of the 9 expression values. No missing values were present and no 
filtering was performed. The algorithm discovered 4 distinct gene groups, 
each highly correlated with one of the four major waves found by Wen et al. 
(cluster 1 corresponds to wave 2; cluster 2 corresponds to wave 3; cluster 3 
corresponds to wave 1; cluster 4 corresponds to wave 4). The invariant wave 
was not found, as could be expected after standardization (the division by a 
small standard deviation inflates the noise, resulting in quasi-random profiles 
not assigned to any of the clusters). 

Figure 5.4 shows the standardized expression profiles (use this 
figure to compare the average profile in each cluster with the average 
expression patterns in the major waves 1-4 found by Wen et al. - the 
similarity is striking). 

5.4.3 Measurement of expression levels in different 
tissues 

Seven two-channel cDNA microarray-experiment to characterise 
4595 expression patterns in 7 mouse tissues (brain, heart, kidney, liver, lung, 
skeletal muscle and testis) were performed in the lab of Dr. P. Van 
Hummelen of the Microarray Facility of the V.I.B.  The intention of this 
experiment was to identify groups of tissue-specific genes. See Appendix B 
for more details on the data.  

We used AQBC to cluster these gene expression vectors after 
standardization. We used the following parameter settings: S = 0.8 and 
MIN_NR_GENES = 5. We did not use the default value 0.95 for S (In this 
data set there are almost no clusters containing expression vectors that 
reached the default significance level. This could be caused by the rather low 
dimensionality (e = 7) of the data (too few experiments), giving a larger 
overlap between a cluster and the background). Except standardization, no 
other preprocessing steps were performed. 
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Figure 5.4:  Central nervous system development data from Wen et al.: Cluster 
analysis with AQBC (MIN_NR_GENES = 10, S = 0.95). Except standardization, no 
further preprocessing was performed after downloading the raw data. Each box 
corresponds to one cluster and shows the standardized expression profiles of the 
genes assigned to it and the mean expression profile. Note the similarity of these 
mean expression profiles with the four major waves found by Wen et al. NG = 
Number of Genes assigned to each cluster. 

AQBC identified 33 clusters, which can be inspected in Figure 5.5. 
A considerable number of clusters are tissue-specific (i.e., they contain genes 
differentially expressed in one or two tissues), reflecting the aims of the 
experimental setup. An overview of the most important tissue-specific 
clusters is given in Table 5.5. 

5.4.4 Artificial data 

We constructed data containing artificially created gene expression 
profiles of dimension 51. The largest part (1500 profiles) of the data 
contained totally random profiles (before standardization, these expression 
profiles were normally distributed around the origin - after standardization, 
these expression profiles were uniformly distributed on the hypersphere 
defined by standardization - see Section 5.2.1). In this set of random profiles 
we introduced 7 small clusters, containing profiles exhibiting significant
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Figure 5.5:  Measurement of expression levels in different mouse tissues: Cluster 
analysis with AQBC (MIN_NR_GENES = 5, S = 0.8). No filtering was performed. 
Each box corresponds to one cluster and shows the standardized expression profiles 
of the genes assigned to it and the mean expression profile. Note the presence of 
several tissue-specific clusters - see Table 5.5. NG = Number of Genes assigned to 
each cluster. 

Table 5.5: Overview of the most important tissue specific clusters from Figure 5.5. 

Cluster number Tissue specificity 
1 Lung 

2 Heart 
(Skeletal muscle) 

3 Brain 
4 Kidney 

5 Kidney 
Lung 

6 Heart 
Lung 

7 Testis 
8 Liver 

10 Kidney 
Liver 

20 Skeletal muscle 
(Heart) 

30 Heart 
Skeletal muscle 
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coexpression. These clusters were created by superposing normally 
distributed noise (the variance of this noise was different for each cluster) on 
copies of 7 template profiles (the number of copies was also different for 
each cluster) - see Figure 5.6. We used 5 cosine-like template profiles (3 
with phase shifts and 2 with frequency shifts) and 2 template profiles that 
were random. A data set created by this procedure was used for cluster 
analysis with our algorithm. After standardization, we used the default 
settings, except for MIN_NR_GENES (which we set equal to 15, which is the 
number of profiles in the smallest cluster, to avoid finding small clusters 
accidentally present in the 1500 random profiles). The algorithm was able to 
identify the clusters introduced in the data set and separate the 1500 random 
profiles from the profiles in the clusters (these random profiles were not 
assigned to any of the clusters). This result is shown in Figure 5.7. 

We also created a second artificial data set by introducing 8377 
missing values (about 10% of the entries) in the first set. The introduction of 
these missing values did not change the results obtained by our algorithm 
(using the same settings for S and MIN_NR_GENES as before). 

The results above demonstrate the ability of the algorithm to 
separate small subsets of significantly coexpressed gene expression profiles 
from a large collection of unrelated profiles and the ability to discriminate 
between individual subsets or clusters (even between the 3 clusters on the 
left side of Figure 5.6 - clusters with cosine-like template profiles with phase 
shifts). 

5.5 INCLUSive2 
Our algorithm AQBC is publicly available for data analysis and can be 
found on http://www.esat.kuleuven.ac.be/~thijs/Work/Clustering.html. This 
method has also been integrated in an on-line tool, called INCLUSive (see 
http://www.esat.kuleuven.ac.be/~dna/BioI/Software.html), which is a suite 
of web-based tools and is aimed at the automatic multistep analysis of 
microarray data. The goal is to provide an integrated platform where several 
sources of information can be linked together to facilitate the analysis of 
microarray data. Currently, preprocessing of microarray data (Engelen et al., 
2003), AQBC, information retrieval of genes in clusters (cluster validation), 
retrieval of upstream sequences and motif finding algorithms (Thijs et al., 
2001; Thijs et al., 2002b) are accessible from this website. 

                                                      
2 INCLUSive has appeared as an Application Note in Bioinformatics (Thijs 

et al., 2002a) and an updated version has been published in the web software issue of 
Nucleic Acids Research (Coessens et al., 2003). 
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Figure 5.7: Cluster analysis with AQBC (MIN_NR_GENES = 15, S = 0.95) of the 
standardized artificial data set. Each box corresponds to one cluster and shows the 
standardized expression profiles of the genes assigned to it and the mean expression 
profile. The clusters introduced in Figure 5.6 have all been completely recovered 
and the random profiles have been excluded from the result. NG = Number of Genes 
assigned to each cluster. 

5.6 Discussion and conclusion 
The algorithm proposed in this chapter is designed to find clusters of 

significantly coexpressed genes (higher degree of coexpression than could be 
expected by chance) in high-density areas of the data (high-density areas 
were assumed by Heyer et al. to be, biologically seen, the most interesting 
regions in the data). Genes not exhibiting an expression profile significantly 
similar to the expression profile of other genes in the data are not assigned to 
any of the clusters. The same applies to genes lying in low-density areas of 
the data. The size or radius for each cluster separately is determined - 
through the significance level S - by limiting the probability of a false 
positive result (a gene assigned to the cluster that is not really coexpressed 
with the other members of the cluster). The default value for the significance 
level S guarantees that a gene, which has been assigned to the cluster, has a 
probability of 95% or more to belong to the cluster (this means that the 
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probability of being a false positive is 5% or less). In other words, the genes 
in the cluster are significantly coexpressed with a certain confidence.  

Therefore, clusters formed by our algorithm might be good ‘seeds’ 
for further analysis of expression data (see INCLUSive and Thijs et al. 
(2002a)) since they only contain a limited number of false positives. When 
the presence of false positives in a cluster is undesirable, a more stringent 
value for the significance level S might be applied (e.g., 99%; for noise-
sensitive analyses such as motif finding) which will result in smaller clusters 
exhibiting a more tightly related expression. The presence of a lower number 
of false positives was confirmed by the comparison in Table 5.3 of the 
cluster result of AQBC and K-means applied to the data from Cho et al. This 
comparison showed that the degree of enrichment in the clusters retrieved by 
AQBC was substantially higher. From a biological point of view, the control 
of the number of false positives is the main advantage of our algorithm. 

The significance level S, in turn, can be seen as a constant quality 
criterion for the clusters (while the quality criterion R as defined in Equation 
5.3 differs among the clusters defined by our algorithm). Our algorithm can 
thus be regarded as being a pure quality-based clustering method where all 
the clusters have a constant quality represented by the significance level S 
(the term adaptive quality-based clustering is thus only valid when using 
Equation 5.3 as quality criterion). When compared to the previous definition 
(quality measure R), this new quality measure S has the advantage that it has 
a strict statistical meaning  (it is therefore much less arbitrary) and that, in 
most cases, it can be chosen independently of a specific data set or cluster. In 
addition, it allows for the setting of a meaningful default value (95%). 

In Table 5.6 a detailed comparison between our global algorithm 
(AQBC) and the algorithm proposed by Heyer et al. (QT_Clust) is made. 
Because we focus on algorithmic aspects, the QT_Clust algorithm in our 
comparison uses the same distance and quality measure as we did (Euclidean 
distance and quality defined as in Equation 5.3 - In Heyer et al. the jackknife 
correlation was used together with a quality measure defined as a diameter). 
This change of distance and quality measure does not significantly change 
the structure of QT_Clust and in essence, there is no fundamental difference 
between a quality defined as a radius and a quality defined as a diameter. 

To complete the picture, Table 5.7 gives a summary of the 
differences between our method, hierarchical clustering, SOM and K-means. 

In summary, some of the properties of the AQBC approach make it 
very suited for cluster analysis of gene expression profiles: 

i. AQBC can be considered as an intuitively appealing and 
user-friendly algorithm where the principal user-defined 
parameter is a significance level S, which has a strict
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statistical meaning and is therefore much less arbitrary than 
for example the predefinition of the number of clusters or 
the quality guarantee used in standard quality-based 
clustering.  It can be chosen independently of a specific data 
set or cluster and it allows for a meaningful default value 
that often gives meaningful results. There is no need for 
extensive parameter fine-tuning. 

ii. AQBC produces clusters adapted to the local data structure 
(the clusters do not have the same radius). 

iii. Only genes that are significantly coexpressed are assigned to 
a cluster. 

iv. AQBC is a fast algorithm with a computational complexity 
that is linear in the number of expression profiles. 

v. A server running the program is publicly available for data 
analysis.  

vi. Our implementation has an integrated approach for missing 
values without the necessity to replace them. 

vii. AQBC was extensively biologically validated. 

AQBC, however, also has some limitations: 

i. It is a heuristic approach not proven to converge in every 
situation. 

ii. Due to the model structure used in Step two (Section 5.3.4) 
some additional constraints have to be imposed. They 
include: 

a. Only standardized expression profiles are allowed. 

b. AQBC has to be used in combination with the 
Euclidean distance and cannot directly be extended to 
other distance measures. 
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Chapter 6 

Univariate analysis in microarray data 

6.1 Introduction 
As already announced, in this chapter we will focus on the problem 

of univariate analysis and multiple testing in microarray data1. 

Microarrays allow for the simultaneous measurement of expression 
levels of thousands of genes in a certain tissue (e.g., in a tumour). These 
measurements can be repeated under different conditions (e.g., originating 
from tumours or tissues with different properties such as normal and 
malignant tissues (Alon et al., 1999); tumours that are and are not sensitive 
to chemotherapy (Kihara et al., 2001); tumours with good and poor 
prognosis (van ’t Veer et al, 2002); tumours with and without metastatic 
potential (Ramaswamy et al., 2003); and so on). Also see Figure 3.1.  

Usually a test statistic or a hypothesis test (resulting in a p-value for 
each gene - univariate analysis) is used to rank the genes with respect to 
their differential expression between the different tumour types or 
experimental conditions. See Appendix A, Section A.1 for more details 
about hypothesis testing. Subsequently, an arbitrary threshold or rejection 
level α (genes with a p-value smaller than α are declared to be positive or 
differentially expressed) is chosen to select the genes that warrant further 
investigation or validation (e.g., for target discovery in drug development 
(Gerhold et al., 2002)).  

However, due to the overlap of the p-values of the genes that are and 
are not actually differentially expressed (i.e., the genes whose expression is 
and is not affected by the difference between the experimental conditions), 
the choice of this rejection level has some consequences (also see Table 6.1). 

                                                      
1 A summary of the discussion in this chapter has been submitted to the 

British Journal of Cancer as a full paper (De Smet et al., 2004). 
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Firstly, genes whose expression is not affected by the difference between the 
different tumour types and therefore have no actual differential expression, 
can accidentally have a p-value that is lower than the rejection level and are 
therefore wrongly declared to be differentially expressed. In statistics this is 
also called a Type I error. This results in a number of false positive genes 
that will not yield any results in further investigations. Since the number of 
genes in a microarray, that is not actually differentially expressed, usually is 
high in microarray data, the number of false positive genes at commonly 
used rejection levels (e.g., 5%), can be considerable (problem of multiple 
testing). See the Results section for some examples. 

Secondly, the choice of the rejection level can also result in a certain 
number of false negative genes (Type II error). These are the genes that are 
actually differentially expressed but that have a p-value that is larger than the 
rejection level, resulting in discarding potentially valid targets. 

Recently, much attention has been paid in literature to the control of 
the number of false positives or Type I error (Keselman et al., 2002; Reiner 
et al., 2003; Storey and Tibshirani, 2003). Classically and as already 
discussed in Chapter 2 for the analysis of clinical data, by applying a 
Bonferroni correction (also see Appendix A, Section A.1), one can control 
the family-wise error (FWE - probability of having one or more false 
positives) at a given level, fixed beforehand. However, for microarray data, 
where usually a considerable number of genes is actually differentially 
expressed, controlling the FWE is too stringent and results in an 
unacceptable Type II error (leading to an unacceptable loss of statistical 
power). Controlling the False Discovery Rate (FDR; expected fraction of 
genes falsely declared positive among all the genes declared differentially 
expressed) (Benjamini and Hochberg, 1995; Reiner et al., 2003; Storey and 
Tibshirani, 2003) is less stringent and seems a more sensible approach for 
microarray data but still does not control the Type II error, which could still 
be large and lead to the loss of a considerable number of missed targets. 
Control of the Type I error in microarray data often goes at the expense of 
the Type II error that remains uncontrolled and (too) large. While the study 
of multiple testing finds its roots in genetic studies where the number of 
positives is usually small and control of false positives is paramount, the 
number of positives in studies of differential expression between patient 
biopsies is large and false negatives become an equally important issue. 
Because of this historical reason, we believe that the control of false 
negatives in multiple testing methods has been somewhat overlooked. 

In this chapter we will first describe a method to estimate the total 
number of genes that is actually differentially expressed starting from the p-
values assigned by a certain hypothesis test to every gene and independent of 
a certain rejection level defined in advance. Using this result, we present a 
method based on Receiver Operating Characteristic (ROC) curves that does 
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not control the Type I or Type II errors but that obtains an optimal balance 
between them. We aim to obtain a sensible or optimal - according to a 
certain criterion - trade-off between false positives and negatives. 

Moreover, the use of ROC curves enables us to estimate the degree 
of overlap between the p-values of genes that are and are not actually 
differentially expressed. This amount of overlap in its turn determines the 
relationship between the false positives and negatives and the level of the 
(optimal) trade-off or balance between them (i.e., the lower the amount of 
overlap, the better the balance). The assessment of the amount of overlap 
between the p-values by ROC curves can therefore be used to assign a 
quality measure to a specific microarray data set. This quality measure can 
help to compare different data sets that study the same experimental 
conditions with respect to their ability to discriminate between genes whose 
expression is and is not affected by the different conditions. This can help 
the biologist to decide which data set is best suited for further analysis, 
without first having to choose an arbitrary rejection level. 

Below, we will first describe the methodology in detail and apply 
this, among others, using two pairs of data sets that are publicly available 
(one pair dealing with acute leukemia and one pair dealing with degree of 
differentiation in breast cancer). 

6.2 Methodology 
Consider microarray data containing several sets of experiments, 

each analysing tissues originating from a specific group of malignancies or a 
specific condition, and containing expression levels for n genes gi (we call 
this set of genes Ň - so n = # Ň). Assume that we have already used a certain 
hypothesis test to calculate the p-values pi of the respective genes (also see 
Appendix A, Section A.1 for more details about hypothesis testing). These 
p-values reflect the probability that an equally good or better test statistic, 
quantifying the difference between the gene expression levels of the 
different conditions, is generated if a certain null hypothesis is true. In 
general, the null hypothesis states that there is no actual differential 
expression. Also assume that the genes are ordered according to this p-value, 
so that p1 < p2 < … < pn. Note, that in this chapter, we chose the Wilcoxon 
rank sum test (a nonparametric test that examines the null hypothesis that the 
medians of the expression levels from two conditions for a certain gene are 
identical) to generate the p-values (Pagano and Gauvreau, 2000; 
Troyanskaya et al., 2002). This test uses a test statistic that is based on the 
ranks of the expression levels of one gene rather than on the values 
themselves. Note, that in principle, every procedure (e.g., through random 
column permutations of the data to simulate the distribution of the test 
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statistic under the null hypothesis (Tusher et al., 2001)) or hypothesis test 
(e.g., Kruskal-Wallis test if there are more than two conditions), that 
generates p-values for every individual gene, is suitable as long as its 
underlying assumptions are checked or assumed. 

Now assume that the number of genes that is actually differentially 
expressed is n1 (for these genes the null hypothesis is false - we call this set 
of genes Ň1, so n1 = # Ň1). Assume further that the number of genes that is 
not actually differentially expressed is n0 (for these genes the null hypothesis 
is true - we call this set of genes Ň0, so n0 = # Ň 0). Of course, these numbers 
are not known in advance and have to be estimated from the data. 

Starting with the estimation of n1 and n0, we proceed by calculating 
the number of true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) at each rejection level. Using these estimates, the 
sensitivities and specificities at each rejection level can be calculated. 
Finally, we use these quantities to construct a ROC curve. All methods 
described in this chapter were implemented in MATLAB but are 
straightforward to implement using other packages. 

6.2.1 Estimation of n1 and n0 

Assume that a gene gt with associated p-value pt can be found with t 
defined as follows: 

{ }. : and |min 10 jiij ppNgNgjt ≤∈∀∈=
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                 (6.1) 

The assumption of the existence of such a gene gt comes down to the 
fact that one supposes that the largest p-value in the data set belongs to Ň0 
(which is logical since genes belonging Ň1 will, in general, have relatively 
small p-values because they are not generated under the null hypothesis). 

Now choose any gene gk with pk ≥ pt (by definition gk belongs to Ň0, 
since all genes belonging to Ň1 have p-values smaller than pt). Since the 
genes were ordered according to their p-value, k is the number of genes 
belonging to Ň with a p-value equal to or smaller than pk. Since Ň = Ň1 ∪ Ň0, 
we can write the following set of equations: 
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Since, by definition, all genes belonging to Ň1 have p-values smaller than pk, 
the first term in Equation 6.2 equals n1.  To calculate the second term, we 
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assume that the test statistics of the gene expression profiles of Ň0 (that are 
generated under the null hypothesis) are independent (all genes, that exhibit 
coexpression that can change the test statistic, are assumed to belong to Ň1). 
Under this condition and by definition, the probability, that a gene from Ň0 
has an equally good or better test statistic than gk  (i.e., has a p-value equal to 
or smaller than pk), equals pk. This means that the expected value (mean of 
the binomial distribution) of the second term in Equation 6.2 equals pk.n0  
and that we can approximate Equation 6.2 as follows: 

.. 01 npnk k+≈           (6.4) 

Deriving n1 from the set of Equations 6.3 and 6.4 gives: 
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For a given data set, n1 is constant. Now define Vi, for every gene gi, as 
follows:  
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According to Equation 6.5 and for pi ≥ pt, Vi is constant and equals n1. 
Moreover, it is easy to prove that Vi < n1 when pi < pt and that Vi goes to zero 
when pi gets smaller.  

Using this information, we can present an easy method to derive n1 
(and n0 through Equation 6.3): Calculate Vi for every gene gi and plot these 
values in a graph (e.g., i on the X-axis and Vi on the Y-axis). If this graph 
reaches a constant level at a certain gene, this gives us respectively n1 and gt. 
In practice, after reaching the constant level, the graph will slightly fluctuate 
around a mean value (because of the approximation we used to derive 
Equation 6.4). So for the calculation of n1, it is better to take the mean of Vi 
in a certain interval [r,s] where r > t and s << n, if possible (if i ≈ n, pi ≈ 1 
and the denominator in Equation 6.6 gets very small and the formula for Vi 
becomes ill conditioned). See the Results section for some examples of this 
method. 

Alternative derivation 
Storey and Tibshirani (2003) recently reported a method (in PNAS), 

using a somewhat different reasoning than given above, to estimate n0 (this 
was published after the development of our method). We will discuss the 
main ideas of their approach below (using a notation that is consistent with 
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the one that is used here) and will show that their result is completely 
equivalent with the method described above. 

First consider a data set that does not contain any genes with actual 
differential expression (this can be approximated by randomising an existing 
microarray data set containing genes with actual differential expression 
through an independent and random permutation of the elements of every 
row in the expression matrix). The test statistic of the genes of such data 
follows the null distribution and the p-values are uniformly distributed 
between 0 and 1, which can be seen in Figure 6.1 where a histogram of the 
p-values of a randomised data set is shown. 

Now consider a real microarray data set containing genes with and 
without actual differential expression. A histogram of the p-values of a 
representative data set can also be inspected in Figure 6.1. The distribution 
of the p-values in this case is a superposition of a uniform distribution 
assumed to be generated by the genes that are not actually differentially 
expressed (like in the randomised data set) and a distribution assumed to be 
generated by the genes with actual differential expression (whose test 
statistic does not follow the null distribution). The genes in this last 
distribution have p-values that are concentrated in the lower range and that 
are almost absent in the higher range (close to one). 

Figure 6.1: Left: Histogram of the p-values from a data set only containing genes 
without actual differential expression (randomisation of the data set that was used 
for the histogram on the right). This represents a uniform distribution; Right: 
Histogram of the p-values of a data set that contains genes with and without actual 
differential expression. The distribution of the p-values is a superposition of two 
distributions separated by the horizontal line. The distribution under the horizontal 
line is a uniform distribution representing the genes without actual differential 
expression and the distribution above the horizontal line represents the genes with 
actual differential expression where the p-values are concentrated in the lower range. 

The number of genes that generate the uniform distribution under 
the horizontal line in the histogram on the right in Figure 6.1 is given by n0. 
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Storey and Tibshirani propose to estimate this number as follows: consider a 
gene from Ň with a p-value pi. Since the distribution of the p-values of the 
genes without actual differential expression is assumed to be uniform, the 
number of genes from Ň0 with a p-value larger than pi can be estimated by: 

{ } ).1(|# 00 iijj pnppNg −=>∈
(

          (6.7) 

If pi → 1, the following applies: 
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since most of the genes from Ň with p-value close to 1 have no actual 
differential expression and therefore belong to Ň0. From Equation 6.7 and 
6.8 follows that 
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Equation 6.9 is the main formula that has to be evaluated in Storey and 
Tibshirani. Since n1 = n - n0, the following applies: 
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Equation 6.8 also applies for pi in the neighbourhood of 1 since the 
distribution (as represented in the right histogram in Figure 6.1) becomes 
reasonably flat for p-values relatively close to 1. This also means that, in 
Equation 6.10, the limit value will already be reached and the expression 
behind the limit will become more or less constant for pi in the 
neighbourhood of 1. Since this expression is equal to the one given in 
Equation 6.6, this shows that the method of Storey and Tibshirani is 
equivalent to the method described at the start of this section. Storey and 
Tibshirani assume that the p-values of the genes without actual differential 
expression follow a uniform distribution. For the derivation of Equation 6.6 
we have assumed that that the test statistics of the gene expression profiles 
without actual differential expression are independent and that all genes, that 
exhibit coexpression that can influence the test statistic, are assumed to 
belong to Ň1. The assumptions concerning the uniform distribution and the 
independence of the test statistics of the genes that belong to Ň0 are in fact 
equivalent and follow from each other. 
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6.2.2 Estimation of the number of true positive, true 
negative, false positive and false negative genes 

Suppose that we declare the genes with a p-value smaller than or 
equal to a certain rejection level α = pi as differentially expressed (i.e., the 
null hypotheses for these genes are rejected - one could say that the 
expression of these genes is predicted not to be affected by the difference in 
conditions) and the genes with a p-value larger than this rejection level as 
not differentially expressed (i.e., the null hypotheses for these genes are not 
rejected - one could say that the expression of these genes is predicted not to 
be affected by the difference in conditions). When the declared status of 
differential expression is compared with the actual status of differential 
expression (or with the actual status of the null hypothesis - false or true), 
four categories of genes (true positive (TPi), true negative (TNi), false 
positive (FPi) and false negative (FNi) genes) emerge that are defined in 
Table 6.1. Using the value of n1 and n0, derived in the previous section, we 
can calculate the number of genes in each category using the formulas from 
Table 6.1. 

Table 6.1: Definition of True and False Positive genes (TPi and FPi) and of True 
and False Negative genes (TNi and FNi) at a certain level of rejection α = pi (p-value 
of the ith gene after ranking them in ascending order by p-value). For each of them, 
the formula of the expected value is given. 
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6.2.3 Sensitivity and specificity 

Using the values calculated in Table 6.1, the sensitivity (SENSi) at a 
certain rejection level α  =  pi is defined as  (Pagano and Gauvreau, 2000) 
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which is the fraction of actually differentially expressed genes that are 
declared differentially expressed. Note that 1 - sensitivity equals the 
probability that a gene with actual differential expression is not declared 
differentially expressed, which is exactly the probability of a Type II error. 

The specificity (SPECi) at a certain rejection level α = pi is defined 
as (Pagano and Gauvreau, 2000) 
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which is the fraction of genes without actual differential expression that are 
not declared differentially expressed. Note that 1 - specificity equals the 
probability that a gene without actual differential expression is declared 
differentially expressed, which is exactly the probability of a Type I error. 

6.2.4 Construction and interpretation of ROC curves 

Suppose that we calculate the sensitivities and specificities at all 
possible rejection levels α = pi (i = 1,…,n) and that we construct a Receiver 
Operating Characteristic (ROC) curve (sensitivity plotted versus 1- 
specificity - also see Appendix A, Section A.2.1). ROC curves are a popular 
method to compare and characterise the performance of diagnostic tests in 
medicine (e.g., Epstein et al. (2002)). We will discuss and use them here to 
quantify our ability to discriminate between genes with and without actual 
differential expression.  

First of all, a ROC curve shows the trade-off or balance between 
specificity and sensitivity (and hence between the Type I and Type II errors) 
for every possible rejection level and therefore allows for the selection of a 
rejection level αopt with an optimal balance between specificity and 
sensitivity or between the Type I and Type II errors. Optimal can be defined 
in several ways and depends on the context or the requirements of the 
application. Often, the point on the ROC curve (and associated rejection 
level) with a tangent line with slope 1 is chosen, for which it can be proven 
that it maximizes the sum of the sensitivity and specificity (and hence 
minimises the sum of the probability of a Type I and Type II error) - this is 
also the definition of optimal that will be used in this chapter. Alternatively, 
one can also try to optimise a more custom defined cost function of the Type 
I and Type II errors that meets some specific requirements. One could, for 
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example, use a cost function that puts more weight on either the Type I or 
Type II error, dependent on which is most important for a specific situation. 
In fact, by minimising the sum of the probability of the Type I and Type II 
errors (as said, this is done in this chapter), the number of false positives and 
negatives are weighed by the inverse of the number of genes without and 
with actual differential expression, respectively. This means, for example, 
that the ‘cost’ of a false negative will be higher if the number of genes that 
are actually differentially expressed (or that are actually positive) is lower 
and vice versa, which is logical since the impact of missing a rare target is 
higher than the impact of missing one of many targets. 

Secondly, the Area under the ROC curve (AUC) has a special 
meaning (see Appendix A, Section A.2.2 for a method to calculate the AUC 
and its standard deviation). Suppose we randomly select a gene gi with actual 
differential expression with p-value pi and a gene gj without actual 
differential expression with p-value pj, then it can be proven that 

),( ji ppPAUC <=              (6.13) 

i.e., the AUC equals the probability that the p-value of the gene with actual 
differential expression is lower than the p-value of the gene without actual 
differential expression and therefore it is the probability that pi and pj are 
ranked correctly. The AUC quantifies how well the genes whose expression 
is and is not affected by the difference between the tumour types can be 
discriminated using the p-values of these genes independently of the choice 
of an arbitrary rejection level and independently of the relative values for n1 
and n0. The AUC increases if the overlap between the p-values of the genes 
with and without actual differential expression decreases.  This means that 
the level of the (optimal) balance between Type I and Type II errors (e.g., 
reflected by the sum of the specificity and sensitivity) improves if the AUC 
increases. Therefore, the AUC can be seen as a quality measure with respect 
to the detection of differential expression for a specific set of microarray 
experiments, given a certain hypothesis test. Provided the same hypothesis 
test is consistently applied, the AUC can be used to compare (see Appendix 
A, Section A.2.3 for a method to compare AUCs) the ability of different 
gene expression data sets to discriminate between genes whose expression is 
and is not affected by the difference in conditions. For example, one could 
calculate this quality measure for several data sets, which study gene 
expression levels under the same conditions, from different sources or 
institutions. As another example, one could try to study the effect on the 
differential expression and on this quality measure by a change in one or 
both conditions (see Results section). 
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6.2.5 False discovery rate 

The False discovery rate (FDRi) (Benjamini and Hochberg, 1995; 
Tusher et al., 2001; Rhodes et al., 2002; Keselman et al., 2002; Reiner et al., 
2003; Storey and Tibshirani (2003)) at a certain rejection level α  =  pi can 
be defined as 
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which is the expected value of the fraction of genes falsely declared 
differentially expressed from all the genes that are declared differentially 
expressed. The false discovery rate is a measure that is often used to quantify 
and control the Type I error. Using the formulas from Table 6.1, we estimate 
this quantity by the expression in the right hand side of Equation 6.14. If one 
would, for example, try to validate all the genes that are declared 
differentially expressed, the false discovery rate reflects the fraction of genes 
where the validation procedure is expected to be unsuccessful. Selecting a 
rejection level with a low FDRi limits the Type I error and yields higher 
efficacy for the target validation. The estimated number of false positive 
genes (in the nominator for FDRi) is based on n0 and not on n (like for 
example in Tusher et al. (2001) or Rhodes et al. (2002) - the false discovery 
rate is overestimated there because the number of false positives is based on 
the number of null hypotheses that would be rejected if the null hypotheses 
were true for all the genes in the data set). This is important if n1 is large, 
which is often the case.  

Two main factors independently determine the behaviour of the false 
discovery rate: the AUC and the relative value of n1 (reflected by the fraction 
n1/n). An increased value for the AUC (reflecting less overlap between the 
distributions of the p-values of Ň1 and Ň0) causes FDRi to start approaching 
its maximum value at higher values of i. An increased value for n1/n (or a 
decreased value for n0/n = 1- n1/n, which is the maximum value for the false 
discovery rate in Equation 6.14, since pn  ≈ 1) causes an overall decrease of 
the false discovery rate. 
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6.3 Results 

6.3.1 Acute leukemia 

In this paragraph we will apply the methodology described above on 
microarray data from two sources that contain measurements for two or three 
classes of patients with acute leukemia. 

The first set contains the data from Golub et al. (1999) as it is 
described in Appendix B and already used for data analysis in Chapter 3. In 
summary, it contains expression profiles of 72 patients with acute 
lymphoblastic (ALL - Condition 1) or myeloid (AML - Condition 2) 
leukemia. In the original publication the patients are divided into a training 
(38 patients; 27 ALL and 11 AML) and a test set (34 patients; 20 ALL and 
14 AML). The data contains n = 7129 genes. No additional preprocessing 
was performed after downloading. 

The second data set (Armstrong et al., 2002) also contains several 
microarray experiments obtained from patients with acute leukemia but 
contains patients from a third condition (called MLL leukemia) besides ALL 
and AML. Also see Appendix B for more information. The data contains 
expression profiles for 12582 genes measured using Affymetrix technology. 
In total, 24 ALL patients, 28 AML patients and 20 MLL patients are 
available.  

We will first illustrate our procedure for univariate analysis of 
microarray data using only the patients of the training set from Golub et al. 
We will also analyse a randomised version of this training set and use this as 
a basis to construct an artificial data set. Next, we will use our methodology 
to compare the complete data from Golub et al. (training + test set) with the 
data set from Armstrong et al. with respect to the detection of differential 
expression between ALL and AML. Finally, we will investigate the effect of 
a change in condition (replacement of ALL or AML patients with MLL 
patients in the data from Armstrong et al.). 

Training set from Golub et al. 
The results of our analysis using the 38 patients from the training set 

from Golub et al. can be inspected in Figure 6.2-6.4. In Figure 6.2, Vi 
reaches a fairly constant level of about 2821 (n1 = mean of Vi for i between 
5000 and 6000; n1/n = 40%) at about g5000 (t = 5000). This means that if we 
would use p5000 = 0.509 as rejection level α, we can expect to have retained 
all the genes that are actually differentially expressed. Moreover, increasing 
the rejection level will only include genes whose expression is not affected 
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Figure 6.2: Analysis of the training set of Golub et al. Plot of Vi versus the gene 
number i (sorted according to their p-value). Vi reaches a constant level of about 
2821 at g5000, which is the estimate for n1. 

by the difference between ALL and AML and for which biological 
validation is not expected to yield any positive results.  

The behaviour of the number of true positives TPi (= i - pi.(n-n1) ) in 
Figure 6.3 confirms these findings and gives additional proof that the 
calculated value of n1 (in Figure 6.3 called n1calc = 2821) is indeed the correct 
one. The correct curve for TPi (curve in the middle in Figure 6.3) rises until 
g5000 and then reaches a constant level of 2821. If we evaluate the formula 
for TPi with a value for n1 that is smaller than 2821, this would result in a 
curve like the two lowest ones in Figure 6.3 (curve reaches a maximum level 
and then starts declining again). If we evaluate the formula for TPi with a 
value for n1 that is larger than 2821, this would result in a curve like the two 
upper ones in Figure 6.3 (curve keeps rising without reaching a constant 
level).  

In the original paper of Golub et al. and also based on the patients of 
the training set alone, it was stated that roughly 1100 genes were more 
highly correlated with the AML-ALL class distinction than would be 
expected by chance (this number was derived using a method called 
neighbourhood analysis at an arbitrary level of significance - moreover, the 
number of false positives at this level of significance was derived (and
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Figure 6.3: Analysis of the training set of Golub et al. Plot of the estimated number 
of true positives (TPi = i - pi.(n-n1)) versus the gene number i for different values of 
n1. If n1 is set to the correct value n1calc = 2821, the curve in the middle is obtained, 
which reaches a constant level of 2821, as expected. If n1 is smaller than n1calc, 
curves like the two lowest ones are obtained. If n1 is set to a value larger than n1calc, 
the result is like the two upper curves. 

overestimated) by calculating the median number of genes that would 
accidentally reach this level of significance assuming that none of the genes 
were correlated with the class distinction). Our result suggests that this 
number should be more than doubled. 

In Figure 6.4 one can inspect the sensitivity, specificity and false 
discovery rate plotted versus i and the ROC curve. The AUC equals 90.13% 
with a standard deviation of 0.41%. The point that maximizes the sum of the 
sensitivity and specificity (optimal sensitivity-specificity trade-off) has an 
associated rejection level α = 0.227 with a sensitivity of 86.29% and a 
specificity of 77.26%. 

Randomised training set from Golub et al. 
We randomly and independently permuted the components of each 

gene expression vector, resulting in a data set expected not to contain genes 
with actual differential expression between ALL and AML (the conditions or 
class labels remained constant) - also see Figure 6.1. After analysis, one can
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Figure 6.4: Analysis of the training set of Golub et al.  Upper curves: sensitivity 
(SENSi), specificity (SPECi), false discovery rate (FDRi) and the p-values (pi) versus 
the gene number i. Lower curve: ROC curve. 
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see (Figure 6.5) - as expected - that Vi reaches its constant level of 
approximately zero (so n1 ≈ 0, the null hypothesis is true for all the genes) 
starting from the first gene (t = 1), confirming that this data does not contain 
genes that, individually, contain real information about the difference 
between ALL and AML. 

Figure 6.5: Plot of Vi versus the gene number i for the randomised training set of 
Golub et al. The constant level of Vi is approximately zero. 

Simulated data 
To construct an artificial data set we arbitrarily selected the gene 

expression profile from the non-randomised training set from Golub et al. 
that, after sorting according to the p-value, was on the 1000th place (= g1000). 
This gene had a p-value of 0.015 and therefore can, on its own, be 
considered as differentially expressed between ALL and AML. 
Consequently, we superimposed noise to the components of this expression 
profile drawn from a uniform distribution in the range of [-σ/4,σ/4], where σ 
was the standard deviation of the components of g1000 (σ = 396). This was 
repeated 1000 times and resulted in 1000 expression profiles (with p-value 
ranging from 0.00079 to 0.38), which are, by design, not accidentally 
correlated with the class distinction ALL-AML and therefore can be 
considered actually differentially expressed. Finally, we added these 1000 
expression profiles to the 7129 profiles without actual differential expression 
from the randomised training set described above, resulting in a data set with 
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known values of n = 8129, n1 = 1000 and n0 = 7129. The distribution of p-
values in this data set was similar to the distribution of p-values in all the 
real data sets we studied (see Figure 6.1). 

A plot of Vi can be inspected in Figure 6.6. It reaches a constant 
level of about 1009 (mean of Vi for i between 1800 and 3000, which is our 
estimate for n1) at the 1800th gene. Since, by design, we know the actual 
status for each individual gene expression vector in this data, we can 
calculate the real value of the false discovery rate and sensitivity at each 
level of rejection and compare this with the estimated false discovery and 
sensitivity by our method. This is done in Figure 6.7. The difference is 
minimal. 

Figure 6.6: Analysis of the simulated data with known values for n1 = 1000 and n0 = 
7129. Plot of Vi versus the gene number i. Vi reaches a constant level of about 1009, 
which is the estimated value for n1. 

Complete data set from Golub et al. 
In order to compare the (complete) results of Golub et al. with the 

results of Armstrong et al. with respect to the detection of differential 
expression between ALL and AML, we first performed univariate analysis 
using all 72 patients from Golub et al. (training + test set). The results can be 
inspected in Table 6.2. A graph of the ROC and the false discovery rate can 
be inspected in Figure 6.8. 
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Figure 6.7: Analysis of the simulated data with known values for n1 = 1000 and n0 = 
7129. Comparison between the actual values for the false discovery rate (FDR) and 
sensitivity and the estimated values for the FDR and sensitivity (derived using the 
estimated value of n1 (Figure 6.6), Equations 6.11 and 6.14. and the formulas in 
Table 6.1). In this case, the estimated value for the sensitivity does not always stay 
below is theoretical limit of one. Calculating the value for the sensitivity as max ((i-
pi.n0)/n1, 1) would reduce the difference between the actual and estimated sensitivity 
even more. 

Comparison with the data from Armstrong et al. (ALL versus 
AML) 

We removed the 20 MLL patients from the study of Armstrong et al. 
and analysed the resulting data (24 ALL patients and 28 AML patients) with 
respect to the detection of differential expression between ALL and AML. 
The results can also be inspected in Table 6.2 and Figure 6.8. 

The AUC of the data from Armstrong et al. (95.13%) is significantly 
(p < 0.0001; two-sided, unpaired test (see Appendix A, Section A.2.3)) 
different from the AUC derived from the complete data set from Golub et al. 
(91.39%), which is reflected in the fact that the level of the optimal balance 
between (or, in our case, the maximum sum of) sensitivity and specificity is 
higher in the data from Armstrong et al. when compared to the data from 
Golub et al. (175.82% versus 166.09%). 
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Figure 6.8: Comparison of the results of the univariate analysis for the complete 
data set from Golub et al. and for the data set from Armstrong et al. with respect to 
the difference between ALL and AML. Upper curves: ROC curves. Lower curves: 
false discovery rates versus the relative position of the genes (= i/n). 
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The fraction n1/n is considerably higher in the data from Armstrong 
et al. (75%) than in the complete data set from Golub et al. (46%). As 
previously said, both the difference in AUC and in the relative value of n1 
have an independent impact on the relative behaviour of the false discovery 
rate of both studies (the false discovery rate for the data of Armstrong et al. 
starts increasing later and its maximum value is lower). 

Effect of a change in condition 
We analysed the data from Armstrong et al. with respect to the 

detection of differential expression between ALL and MLL (after removal of 
the 28 AML patients) and with respect to the detection of differential 
expression between MLL and AML (after removal of the 24 ALL patients) 
and compared this with the previous results with respect to the detection of 
differential expression between ALL and AML on the same data set. The 
results can also be inspected in Table 6.2.  

The difference between MLL and AML did not result in any 
statistically significant change in AUC when compared with the difference 
between ALL and AML. However, the difference between ALL and MLL 
did result in a significant decrease in AUC when compared with the 
difference between ALL and AML (85.98% versus 95.13%, p<0.0001), 
which also resulted in a considerable decrease of the level of the optimal 
balance between sensitivity and specificity (maximum of sensitivity + 
specificity = 154.71% versus 175.82%), as could be expected. 

6.3.2 Breast cancer: degree of differentiation 

In this section we will compare two microarray data sets that study 
human breast tumours that are moderately or poorly differentiated (grade 2 
or 3 - the degree of differentiation reflects the degree of anaplasia or the 
degree of malignancy of the tumour and is an important prognostic factor). 

The first data set was published by Perou et al. (2000) (see Appendix 
B) and was already used in Chapter 3. In short, this data contains 21 
microarray experiments with grade 2 and 36 with grade 3 breast tumours. In 
each experiment, the expression levels for 9216 genes were measured. A 
similar preprocessing strategy as was used in Chapter 3, Section 3.2.4 was 
followed, except the missing values replacement, which was omitted since 
missing values do not interfere with our analysis here (p-values can be 
calculated using only the values that are really present). 

The second data set was produced by van ‘t Veer et al. (2002) and is 
also described in Appendix B. These authors studied primary breast tumours 
using a cDNA-microarray (24481 genes). In total 27 patients had a tumour 
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with grade 2 and 78 patients had a tumour with grade 3. We did no further 
preprocessing, since this was already appropriately done.  

For the study of Perou et al. and with respect to the detection of 
differential expression between grade 2 and grade 3 breast tumours, n1 was 
calculated to be about 1306 (n1/n = 14%) and the AUC was 87.99% ± 
0.63%. For the study of van ‘t Veer et al. both n1/n and the AUC were higher 
(n1 was 10208 (n1/n = 42%) and the AUC was 90.54% ± 0.21%, which was 
significantly different (p = 0.0001) from the AUC from Perou et al.) and 
explain the more optimal behavior of the associated false discovery rate. See 
Figure 6.9 for a comparison. Although the balance between Type I and Type 
II errors was better for rejection levels in the lower range, in this specific 
case the higher AUC for the study of van ‘t Veer et al. did not result in a 
dramatic improvement of the balance between Type I or Type II errors at 
αopt in comparison with the study of Perou et al. This is caused by the fact 
that the two ROC curves almost coincide for rejection levels in the higher 
range and at αopt. 

6.3.3 Breast cancer: prognosis of sporadic lymph node 
negative patients 

van ‘t Veer et al. also studied the expression signature of breast 
cancer patients with negative lymph nodes with a good prognosis (i.e., who 
did not develop distant metastases within 5 years - 51 patients) and a bad 
prognosis (i.e., who did develop metastases within 5 years - 46 patients). van 
‘t Veer et al. developed a classifier based on the expression levels of 70 
genes to distinguish between these two groups and proved it to be a powerful 
predictor (van de Vijver et al. (2002)). Clinically this is extremely important 
because this enables us to give adjuvant systemic therapy specifically to the 
patients who might benefit from it while withholding it from patients for 
which this might only mean unnecessary toxicity (presently, the available 
prognostic factors are not ideal to predict the clinical behaviour of this 
disease; on a clinical level, the phenotype of the two tumours is not that 
different). We used the procedure for univariate analysis to determine the 
total number of genes that are actually differentially expressed between good 
and bad prognosis breast tumours to see whether the differences on the 
molecular level between these two phenotypes are only subtle or whether we 
are dealing with tumour cells that are profoundly different. n1 was calculated 
to be about 6449 (n1/n = 27% - see Figure 6.10) and the AUC was 88.54% ± 
0.28%.
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Figure 6.9: Comparison of the results of the univariate analysis for the data set from 
Perou et al. and for the data set from van ‘t Veer et al. with respect to the difference 
between grade 2 and 3 breast tumours. Upper curves: ROC curves. Lower curves: 
false discovery rates versus the relative position of the genes (= i/n). 



Chapter 6 - Univariate analysis 

 138

Figure 6.10: Analysis of the data from van ‘t Veer et al. with respect to the 
difference between good and bad prognosis patients. Vi reaches a constant level of 
about 6449 (our estimate for n1) at about g16000. 

6.4 Discussion and conclusion 
In this chapter we described a procedure for univariate analysis of 

microarray data that accounts for multiple testing starting from the p-values 
assigned by a certain hypothesis test to every gene. Here we have used p-
values that were generated using the Wilcoxon rank sum test that does not 
assume a specific distribution of the gene expression levels. Troyanskaya et 
al. (2002) showed that this test was a robust and valid choice for studying 
differential expression and concluded that it was more conservative than two 
other nonparametric approaches. Moreover, this test does not require 
calculating test statistics in a great number of randomly permuted data sets 
(like in, for example, the nonparametric t-test described in Troyanskaya et al. 
or in SAM (Tusher et al. (2001)), which can be computationally intensive. 
Using this test in combination with our procedure therefore results in a 
method with low computational complexity, which takes at most a few 
minutes for the largest data sets. 

In theory, using other procedures or tests to derive the p-values, can 
have an effect on the final result of our analysis. Therefore, as an example, 
we repeated all the analyses in the Results section using a two-sample 
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(parametric) t-test (although we could be far from certain that its 
distributional assumptions were satisfied) instead of the Wilcoxon test. In 
general, this resulted in about the same values for n1. In some cases the 
AUCs differed somewhat, but their ranking did not change, resulting in the 
exactly the same conclusions for our comparisons.  Therefore, it is important 
to stress that a comparison of microarray data sets with respect to the 
detection of differential expression should only be done when the p-values in 
both data sets were derived using the same method or hypothesis test. 

Using this set of p-values and independent of a certain rejection 
level, we described a method (determination of the constant level of Vi) for 
the estimation of the total number of genes that are and are not actually 
differentially expressed (n1 and n0) and therefore can be expected to be 
affected by the difference in conditions. We applied this method, among 
others, on a randomised and simulated data set and accurately estimated n1 
and n0. We also used this method to see if, on a molecular level, profound 
differences exist between breast tumours with good and bad prognosis 
(Section 6.3.3). The results of this analysis seem to indicate that we are 
dealing with more than subtle changes between these two categories of 
tumours and that it should indeed be possible to accurately distinguish these 
two types of breast tumours using gene expression levels.  

Subsequently, the estimates for n1 and n0 are used to assess the 
difference between actual and declared differential expression at each 
rejection level (i.e., to estimate the number of true and false positives and the 
number of true and false negatives). Using these estimates, the sensitivities, 
specificities, and false discovery rates can be calculated, which, in one way 
or another, reflect the quality of the prediction of actual differential 
expression at a certain rejection level. Finally, the knowledge of the 
sensitivities and specificities allow us to construct an ROC curve, which 
shows the trade-off or balance of the Type I and II errors at different 
rejection levels. 

In contrast with current practice only to control the Type I error, 
ROC curves enable to optimally balance the Type I and Type II errors 
according to a certain criterion or cost function and enable, through the use 
of the AUC, to quantify our ability to discriminate between genes with and 
without actual differential expression in a specific data set using a certain 
hypothesis test. The AUC also reflects how well the Type I and Type II 
errors can be (optimally) balanced. We therefore propose to use the AUC as 
a quality measure to compare microarray data sets for their appropriateness 
to detect differential expression provided the same hypothesis test is used 
consistently.  This quality measure could be used for different types of 
comparisons. We illustrated two of these comparisons. 



Chapter 6 - Univariate analysis 

 140

As a first type of comparison, we investigated how this quality 
measure could be used to compare data sets that study the same conditions 
(ALL versus AML and grade 2 versus grade 3 breast tumours) but that 
originate from different sources or institutions. Firstly, after comparing the 
AUCs, we concluded that the data from Armstrong et al. is more appropriate 
to discriminate between genes that are and are not differentially expressed 
between ALL and AML than the data from Golub et al., although the last 
data set contained more experiments than the first (72 versus 52). In our 
opinion, the optimisation of the Affymetrix technology and protocol (year 
2002 versus 1999) and perhaps a more optimal selection of the genes arrayed 
on the chip for Armstrong et al. could have contributed to this difference in 
quality, which was accurately detected by the rise in AUC. The methodology 
described here could be suited to compare the performance of different 
microarray platforms (e.g., cDNA-microarrays versus Affymetrix). 
Secondly, both the values for n1/n and for the AUC indicate that the study of 
van ‘t Veer et al., when compared to the study of Perou et al., is of 
substantially higher quality to study differential gene expression in breast 
tumours with grade 2 or 3. Again, possible causes that could have attributed 
to this gap in quality are differences in technology, differences in 
experimental protocol and experimental setup, differences in surgical 
procedure and quality of the resected tumour biopsy, the choice of the genes 
on the array (more specifically chosen to study breast cancer in van ‘t Veer 
et al.) and so on. Since the determination of the degree of differentiation can 
vary between pathologists, this is also a factor that could have contributed. 
Both the absolute and relative value for n1 are considerable (especially in the 
study of van ‘t Veer), suggesting that tumour cells with a different grade 
have a profoundly different phenotype. 

As a second type of comparison, we examined what the effect on the 
AUC could be of a change in condition (replacement of ALL or AML 
patients by MLL patients). The difference between MLL and AML did not 
result in a significant decrease in AUC when compared to the difference 
between ALL and AML, while the difference between ALL and MLL did. 
The lower number of experiments that was available for the analysis of the 
difference between ALL and MLL (44 versus 52 for the analysis of the 
difference between ALL and AML) could have partially caused the 
significant drop in AUC, but this was, in a lesser extent, also true for the 
analysis of the difference between MLL and AML (48 patients), which did 
not show a drop in AUC. The behavior of the AUC and the results in Table 
6.2 suggest that the degree of differential expression between ALL and MLL 
is less pronounced than the degree of differential expression between ALL 
and AML or between MLL and AML. This seems plausible, because the 
leukemic cells in MLL patients have a lymphoblastic morphology and have 
previously been classified as ALL. Again, this has been accurately detected 
by our analysis of the AUCs. 
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In our opinion, several other situations can be conceived where a 
comparison of AUCs could be informative, although we did not study them 
in detail here. For example, one could compare the AUCs of a data set for 
which the raw experimental data have been preprocessed or normalized - in 
order to remove different systematic sources of experimental variation from 
microarray data (also see Chapter 3, Section 3.2.1) - using different 
strategies (e.g., Lowess fit (Yang et al., 2002), ANOVA based methods 
(Kerr et al., 2000), …) and select a preprocessing strategy that results in a 
maximal AUC or maximal discrimination between the genes that are and are 
not differentially expressed.  

Evaluation of the usefulness of additional experiments with respect 
to the detection of differential expression is another example where a ROC 
analysis could be valuable. Suppose one has done a basic set of microarray 
experiments (under two or more conditions) and suppose one performs a set 
of additional experiments in order to obtain a more optimal identification of 
the genes that are actually differentially expressed. Comparison of the AUCs 
of the basic set and of the basic + additional set could quantify if this has 
succeeded and could even help us to decide if more additional experiments 
would be beneficial (e.g., if the set of additional experiments has not resulted 
in a satisfactory rise in AUC, it could be expected that more additional 
experiments also will fail to do this). 

Another situation where ROC analysis of microarray data could be 
useful is to select a test statistic, hypothesis test or method to calculate the p-
values that gives a maximal AUC for one specific microarray data set. This 
is another setting than described in this chapter where we emphasised the 
comparison between different microarray data sets (evaluated using the same 
hypothesis test). In a recent publication, Broberg (2003) suggests such an 
approach, although the author uses a less refined method to estimate n0 and 
another measure than the AUC to quantify the balance between Type I and II 
errors. 

Finally, we have shown in this chapter that the relative value for n1 
(n1/n) and the AUC can accurately summarise the behavior of the false 
discovery rate, which is a quantity that is often used to describe and control 
the Type I error. A higher value for n1/n results in generally lower values for 
the false discovery rate and a lower maximum value for this quantity. For 
equal values of n1/n, a higher value for the AUC results in lower values for 
the false discovery rate when the p-values are in the lower range (but the 
maximum value of the false discovery rate remains unchanged). 
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Chapter 7 

Conclusions and future research 

7.1 General conclusions and accomplishments 
The application of the general data-mining framework to clinical and 

microarray data in this thesis has lead to several concrete results and 
observations, which we will summarize in this section. We will conclude this 
dissertation with a short description of some concrete clinical problems that 
will be studied in the future. 

In the context of the prediction of deep myometrial invasion in 
endometrial cancer with ultrasound measurements and histopathological 
data, univariate and multivariate analysis have showed that Colour Doppler 
Imaging does not contribute to this prediction. Stepwise logistic regression 
analysis selects the degree of differentiation, the endometrial thickness and 
volume and the number of fibroids as significantly contributing in a logistic 
regression model. In a prospective study of limited size, we showed that a 
logistic regression model and LS-SVM models with linear and RBF kernel 
- based on the selected variables and in ascending level of performance - 
performed better than the subjective assessment of an expert 
ultrasonographer. This difference was only statistically significant for the 
LS-SVM model with an RBF kernel. In a concluding remark, we added a 
word of caution with respect to the clinical use of these models and noted 
that they should be evaluated using multicenter studies and regularly 
updated. 

We applied the three elements of our data-mining framework to 
microarray data containing expression patterns from patients with acute 
leukemia (Golub et al., 1999) and from patients with breast tumours (Perou 
et al., 2000). In this context we implemented and used two methods to deal 
with missing values: missing values management without replacement and a 
nearest neighbour approach. We performed principal component analysis on 
these data and noted that for the data from Golub et al. and Perou et al., 
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unsupervised selection of the principal components did and did not, 
respectively, capture the class difference under consideration (ALL versus 
AML for Golub et al. and grade 2 and 3 breast tumours for Perou et al.) and 
concluded that, for the data from Perou et al., supervised selection of 
principal components before classification would be a better option. 
Furthermore, cluster analysis of the data from Golub et al. succeeded in 
redefining the concepts ALL and AML when using a K-means algorithm 
based on the features after unsupervised PCA (which could have been 
expected since, as showed, the directions with the largest spread are also the 
directions in which the distinction between ALL and AML were prominent). 
In the context of cluster analysis of microarray experiments, we noted that 
due to the large number of possible cluster results and/or the presence of 
several a-priori hypotheses, multiple testing is a problem that has to be 
accounted for when interpreting a cluster result. Finally, in a systematic 
benchmarking study we evaluated the performance of several approaches to 
perform linear and non-linear binary classification with and without 
regularization and dimensionality reduction. We concluded that 
regularization or dimensionality reduction is necessary for the classification 
of microarray experiments. Moreover, we noted that, in general and within 
the bounds of our study, a non-linear LS-SVM model with an RBF kernel 
could be the model of choice to do class prediction with microarray 
experiments. 

In a general overview of techniques related to the cluster analysis of 
gene expression profiles we noted that the properties of existing clustering 
algorithms complicate their use for this task. This includes the choice of 
user-defined and arbitrary parameter settings or the need for extensive 
parameter fine-tuning, inclusion of all the genes - even the ones that do not 
participate in the biological process under study - in a cluster, a high 
computational complexity and the lack of biological validation or ready to 
use implementation. These observations were the basis of the development 
of our own algorithm called adaptive quality-based clustering that was 
specifically designed to cluster gene expression profiles and to tackle some 
of the problems of the other algorithms. In summary, this algorithm, which 
was integrated in an on-line tool for microarray data analysis (INCLUSive), 
is a heuristic two-step approach in which the radius of a cluster is adapted to 
the local data structure after localisation of a cluster center. Among others, 
we applied the algorithm to a data set that studies the yeast cell cycle and 
biologically validated it by looking for clusters that have been significantly 
enriched with genes that belong to a certain functional category. We noted 
that the degree of enrichment in our result was significantly higher when this 
was compared to the most prominent and functionally matching clusters 
obtained by another group using K-means on the same data set. 
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The sixth chapter of this thesis was devoted to univariate analysis 
and the related problem of multiple testing in microarray data. We noted that 
the p-values for genes that are and are not affected by a certain difference 
between tumour classes overlap and that using a certain rejection level 
results in a number of false positive and negative results. After calculation of 
these p-values using a certain hypothesis for every gene, we showed, based 
on a plot of a simple quantity and independent from a certain rejection level, 
how to estimate the number of genes that are and are not differentially 
expressed in different tumour types. Moreover, we showed that this 
approach is completely equivalent with a method recently published in 
PNAS. These estimates can subsequently be used to derive the number of 
true positives and negatives, the number of false positives and negatives, the 
sensitivity, the specificity and the false discovery rate for every possible 
rejection level and to construct an ROC curve. In contrast with current 
practice only to control the Type I error, we described how this ROC curve 
could be used to define a rejection level that results in an optimal balance 
between the Type I and II error according to a certain criterion or cost 
function that describes the relative importance of a false positive versus a 
false negative result. Moreover, we proved that the area under the ROC 
curve could be used as a quality measure for microarray data with respect to 
its ability to detect differential expression that quantifies the amount of 
overlap between the p-values of the genes that are and are not actually 
differentially expressed. Using this quality measure, we demonstrated, 
among others, that the data from Armstrong et al. (2002) is more suited to 
discriminate between genes that are and are not differentially expressed 
between ALL and AML than the data from Golub et al. Moreover, we 
showed that the degree of differential expression between MLL (a third class 
of acute leukemias) and ALL is less pronounced than the degree of 
differential expression between ALL and AML or between MLL and AML. 
In a second test case, we concluded that the study of van ‘t Veer et al. is of 
substantially higher quality to study differential expression between grade 2 
and 3 breast tumours than the study of Perou et al. 

In this thesis we have used ROC curves in two contexts with a subtle 
difference between them. Firstly, ROC curves were applied to test or 
compare the ability of univariate data or single valued output of a model to 
discriminate between patients belonging to two classes. In this case the class 
membership is known for each patient or data point individually. Using the 
class labels and the value for the univariate variable or model output, the 
number of true positives and negatives and the number of false positives and 
negatives (and hence the sensitivity and specificity) can be derived exactly 
(by simple counting) for every possible cut-off level and set of data points at 
hand. Secondly, ROC curves were applied to test and compare the ability of 
p-values - assigned using a certain hypothesis test to every gene in a 
microarray data set - to discriminate between genes that are and are not 
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actually differentially expressed. In this context, however, the class labels 
(i.e., the actual status of differential expression) for the individual data points 
or genes are not known or taken into account. In this case the ROC curve is 
constructed through an estimate of the sensitivity and specificity for every 
possible rejection level. Although it is possible to estimate the number of 
true positives and negatives and the number of false positives and negatives 
for every rejection level using microarray data alone, it is impossible to 
predict which individual genes exactly are true positive or negative or are 
false positive or negative. This means that the algorithm (and associated 
MATLAB script) used to construct the ROC curves in the first context 
(where the input of the algorithm consists of the class labels for every data 
point and the associate model output or value for the univariate variable) 
needed to be adapted to be useful for constructing ROC curves in the second 
context (where the input consists of the estimate of the number of true 
positives and negatives and the number of false positives and negatives for 
every possible rejection level). 

7.2 Future research 
In this section we will first discuss some specific ongoing or 

submitted project proposals in which we are involved. In this research we 
aim to apply some of the techniques described in this thesis for concrete 
clinical problems. Two of these projects involve the use of proteomic data 
that have not been explicitly analysed in this dissertation and that are, as 
stated in Chapter 1 (Section 1.2), qualitatively similar to microarray data 
with respect to the use of our methodology. 

At the end of this section, we will briefly examine some general 
research prospects.  

7.2.1 Specific future research 

Ovarian cancer: transcriptomics 
Ovarian cancer accounts for 4% of new cases of cancer and for 6% 

of cancer deaths in women. The prognosis of the disease is generally poor 
with an overall five year survival of approximately 30%. Approximately 85-
90% of ovarian neoplasms are of epithelial origin (derived from tissues that 
come from the mesothelium). These tumors may be benign (50%), malignant 
(33%), or borderline malignant (16%). The serous histologic type is the most 
common epithelial tumour of the ovary (46-75%) and will be the focus of 
our attention here. About 30% of ovarian cancer patients are diagnosed with 
early-stage disease and about 10%-50% of them will have a recurrence after 
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initial surgery. Most women with advanced disease will respond to initial 
(chemo)therapy but most of them will eventually relapse.  

Presently, no clinical parameters are available that can reliably 
predict chemosensitivity in FIGO stage III ovarian cancer (tumour with 
abdominal extension or extension to regional nodes) or the probability of 
recurrence after initial surgery in FIGO stage I ovarian cancer (tumour 
limited to one or both ovaries). Therefore we (in cooperation with Prof. I. 
Vergote and Prof. D. Timmerman, department of Obstetrics and 
Gynaecology of the University Hospitals Leuven, and Dr. P. Van Hummelen 
of the Microarray Facility of the Flanders Interuniversity Institute for 
Biotechnology (V.I.B.)) aim to develop and test models that use cDNA-
microarray data and that: 

1. Predict if a stage III ovarian tumour will relapse within 6 months 
after the last therapeutic intervention. Since standard 
chemotherapy for advanced ovarian cancer is usually platinum 
based (e.g., carboplatinum + paclitaxel), this model will be able to 
predict platinum resistance (or chemosensitivity of the tumour). 
This has mainly prognostic significance but might allow to 
develop new therapeutic strategies in the future for tumours that 
are predicted not to respond adequately to the standard 
chemotherapeutic regimen. 

2. Predict if a stage I ovarian tumour will have a recurrence after 
initial surgery. The subset of women with early-stage disease and, 
according to our model, with a high probability of recurrence are 
ideal candidates that might maximally benefit from adjuvant 
treatment (chemotherapy and/or lymphadenectomy) while the 
women with early-stage disease and a low probability of 
recurrence might be spared the side-effects of adjuvant therapy. 

In the first phase of the study, the models will be trained using 
appropriate training sets of microarray experiments (100 are planned). This 
will include expression patterns from tumour samples obtained after initial 
surgery from patients with stage III disease that have relapsed within 6 
months after the last therapeutic intervention, from patients with stage III 
disease that have had a therapy-free interval of minimum 12 months and 
from stage I patients that have and have not had a recurrence. In a second 
phase, the models will be validated using data from additional microarray 
experiments with new tumour samples (100 additional experiments are 
planned). The resulting model predictions will be compared with the true 
outcome of the patients in order to evaluate what the usefulness of the 
models in real clinical practice would be. If, during this validation phase, the 
predictive power of some of the models trained in the first phase would seem 
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inadequate, the additional microarray experiments could be used to refine the 
first version of the models. 

Another aim of this project is to identify differentially expressed 
genes between the different diagnostic classes considered (univariate 
analysis) and that might represent clinically useful biomarkers. All 200 
microarray experiments that are planned will be available for this analysis. 

At this moment we are preparing to perform the first 21 
experiments. We have carried out an extensive search in literature (more 
than 80 papers were screened), several databases that are publicly available 
(e.g., LocusLink, OMIM) and other on-line sources to discover known genes 
that are involved in the distinction between several classes of ovarian 
tumours. This search resulted in a list of about 5000 UnigeneID’s of which 
about 85% was finally spotted onto the microarray. In our opinion, this effort 
was necessary to ensure that the microarray will be sufficiently enriched in 
ovarian cancer related genes. RNA extraction and amplification was already 
performed for 14 stage III tumours (7 with and 7 without relapse) and 7 
stage I tumours. In first instance, we have chosen to use a common pool of 
reference RNA for all the experiments (classical reference design – with 
colour flip). Sufficient reference RNA (obtained from the first 21 test 
samples and from a limited number of ovarian tumours for which sufficient 
tissue was available) was extracted to provide for about 200 experiments. At 
this moment the hybridisation and labelling process is being refined and the 
expression patterns from the first 21 experiments should be available soon. 

Endometriosis: proteomics and transcriptomics 
Endometriosis is an important and benign gynaecological disorder 

associated with pain and infertility and is defined as a benign proliferation of 
endometrial tissue outside the uterine cavity. This condition can be found in 
80% of women with dysmenorrhea (discomfort or pain during menstrual 
bleeding), dyspareunia (pain during sexual intercourse) and/or chronical pain 
in the lower abdomen and in about 50% of women with subfertility. This 
disease can be diagnosed through laparoscopic surgery, which is an invasive 
procedure that can visualise the involvement of the internal genitalia. The 
lesions can be minimal but can also consist of large endometriosis cysts and 
extensive adhesions that can distort the organs involved and deform the 
anatomy of the small pelvis. Therefore endometriosis is classified in four 
stages: minimal, mild, moderate and severe. This disease cannot be cured 
completely. Surgery can improve the symptoms like pain and infertility but 
relapse is frequent (50%), certainly in severe forms. Hormonal treatment can 
inhibit the lesions but has important side effects and the disease recurs when 
the treatment is interrupted.  
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In this research we (in cooperation with Prof. T. D’Hooghe, 
coordinator Leuven University Fertility Center) aim to analyse 
transcriptomic patterns (measured with microarrays), proteomic patterns and 
possibly clinical data related to the study of endometriosis. The 
transcriptomic and proteomic patterns will be obtained from normal eutopic 
(from the uterus itself) endometrium from women with and without 
endometriosis. The tissue samples were or will be acquired through an 
endometrial biopsy taken during general anaesthesia for surgery (with 
hysteroscopy and laparascopy, planned for pain or subfertility) or taken 
during consolation (Pipelle de Cornier) on an outpatient basis. Due to the 
possible effect of the menstrual cycle on the state of the endometrium, we 
will only analyse samples obtained during the luteal phase and preferably 
samples histologically dated on day 19-21 of the menstrual cycle. These 
samples will be specifically selected from a tissue bank constructed for this 
study.  

We plan to perform 100 microarray experiments: 25 using 
endometrium from women with a normal pelvis, 25 using endometrium from 
women with minimal-mild endometriosis (of which minimally 10 are treated 
for pain and minimally 10 are treated for subfertility), 25 using endometrium 
from women with moderate-severe endometriosis without relapse within 2 
years after surgery, and 25 from women with moderate-severe endometriosis 
with relapse within 2 years after surgery. Moreover, endometrial biopsies 
originating from the same patients will be analysed by the technology 
described in Section 1.2. to measure proteomic patterns.  

Since we will study eutopic endometrium of patients with and 
without endometriosis and since women with (moderate-severe) 
endometriosis will be subdivided in a group with and a group without 
relapse after surgery, two binary classification problems can be defined 
using these transcriptomic and/or proteomic patterns: prediction of absence 
or presence of endometriosis and prediction of absence or presence of 
relapse after surgery. These models might help the clinician in detecting 
endometriosis and in assessing its prognosis using only eutopic 
endometrium. In a first phase, we aim to construct models (and compare 
their performances) that are based on microarray data or on proteomic data 
alone. In a next phase, we will investigate if it is possible to further optimise 
the predictions by combining microarray and proteomic data, potentially 
complemented with clinical data. The results of this combined approach will 
be compared to the results of the analysis of proteomic, transcriptomic or 
clinical data alone. This comparison will possibly allow assessing the 
complementarity of the different data sources with respect to clinical 
predictions.  

Moreover, it might be possible to compare the microarray data set 
with the corresponding proteomic data set using an approach introduced by 
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Alter et al. (2003). They describe a method based on Generalized Singular 
Value Decomposition (GSVD) to compare two microarray datasets of 
different origin. Simplified, the goal is to identify fundamental gene 
expression profiles that are present in one or in both datasets, and that 
represent biological processes exclusive for one dataset or common between 
both. The main condition for this method to be useful is that experiments in 
both datasets need to be paired to each other (for any experiment in one of the 
data sets, there is a corresponding experiment in the other). This makes the 
setup in the work of Alter et al. methodologically equivalent with the setup as 
proposed in our project (here microarray and proteomic data are paired, since 
they originate from the same patients). In our setting, this method makes it 
possible to detect fundamental patterns that are present in the microarray data 
and not in the proteomic data or vice versa, or to detect patterns that appear in 
both data sets. This again can provide information concerning the 
complementarity of microarray and proteomic data and can provide 
information concerning the correspondence and differences between processes 
that take place at the level of the transcriptome or proteome.  

Finally, another important goal of this project again concerns the 
identification of genes that show a different RNA expression between the 
classes under study and, on the other hand, the identification of mass/charge 
values corresponding to peak amplitudes (and the corresponding proteins) 
that differ between the classes (univariate analysis – identification of 
biomarkers). Moreover, multivariate feature extraction methods (e.g., PCA) 
might be able to identify combinations of gene expression levels (microarray 
data) and peak amplitudes (proteomic data) that might result in more optimal 
separation between the classes. 

Cervical and endometrial cancer: proteomics 
In this research project (submitted by Prof. Vergote - we were asked 

to collaborate for data analysis) proteomic patterns in serum and tissue 
samples of patients with endometrial and cervical cancer will be obtained 
and analysed. Again, in this study we wish to develop mathematical models 
that can provide prognostic information (e.g., prediction of the presence of 
subclinical metastases, prediction of response to chemo- or radiotherapy) 
and we aim to discover new biomarkers with different behaviour between 
patients with a different prognosis. The study of proteomic patterns in serum 
might lead to markers that can be easily determined by a simple blood 
sample (while this might not be the case for biomarkers identified through 
tissue sampling since these proteins might not be secreted and therefore 
could only be determined through a more invasive procedure or biopsy). 
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7.2.2 General research prospects 

When we wrote our article in ‘Tijdschrift voor Geneeskunde’ (De 
Smet et al., 2001) we predicted how genome-wide analysis technologies like 
microarrays could be used in guiding clinical management in oncology. We 
described, for example, how microarrays might be used to distinguish 
between tumours with and without metastatic phenotype, to predict therapy 
response or to provide prognostic information that is impossible to derive 
from clinical parameters only. At the moment of writing, these examples 
were of a rather hypothetical nature and not yet supported by concrete cases 
in literature. At this moment however, several publications have appeared 
that confirm the potential clinical applicability of microarrays we 
hypothesized earlier (e.g., van ‘t Veer et al.,2002; Ramaswamy et al., 2003; 
Chang et al., 2003). 

While these publications clearly prove that microarrays could be an 
invaluable clinical tool, a considerable amount of work and research needs to 
be done before widespread use of expression patterns in real clinical practice 
is feasible. Several issues or problems need to be addressed in this context. 
First of all, most of the models have been developed and tested using a 
limited number of patients. Before reliable statistical conclusions can be 
drawn, microarray data sets need to contain a sufficient amount of technical 
and biological replicates (e.g., in order to account for technical variation, 
inter-individual variation (which can be considerable in humans), variation 
in the composition of the tissues analysed (tissue heterogeneity)). Moreover, 
mathematical models need to be validated in prospective clinical trials where 
larger patient groups are studied. Furthermore, there is the issue of 
standardization (Tumor Analysis Best Practices Working Group, 2004). 
Since the experimental procedure (e.g., surgical procedures, tissue 
processing, RNA extraction, labelling, data preprocessing, and so on) can 
vary extensively from place to place and can have a significant impact on the 
data, clinical models reported by one group are not directly applicable in 
other centers. Moreover, the use of a uniquely constructed reference pool in 
cDNA-microarrays makes extended use of the derived models impossible. 
Before widespread implementation into clinical practice of algorithms based 
on expression patterns is possible, detailed experimental guidelines and 
standards have to be agreed upon. 

As previously mentioned, microarrays do not capture all relevant 
phenomena in a cell on a molecular level and by studying the proteome it is 
possible to obtain more information about the phenotype of a (tumour) cell. 
Moreover, since microarrays measure intracellular RNA levels, tissue 
samples are always needed, which can be difficult or impossible (e.g., if 
macroscopic tumour residues are not longer present in a patient) in some 
situations. Since tumour cells can exhibit aberrant secretion of several 
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proteins, the study of proteomic patterns in serum (see the study of cervical 
and endometrial cancer in the previous section) could be helpful in these 
cases. The use of proteomic patterns could therefore be the next step in the 
integration of high throughput technologies into the clinical decision making 
process. Moreover, microarray, proteomic and possibly clinical data might 
be, at least partially, complementary and a combined analysis might improve 
the clinical performance of the resulting methods (also see the study of 
endometriosis in the previous section).  

From a mathematical point of view, some techniques applied to high 
dimensional biological data might merit further investigation in the future. 
These include: classifiers that combine different data types (microarray, 
proteome and clinical data - e.g., committee networks), independent 
component analysis (ICA), the combination of model selection techniques 
with other methods for feature extraction, the use of different distance 
measures and kernel-based algorithms in clustering, the use of GSVD or 
canonical correlation analysis (CCA) to compare microarray and/or 
proteome data sets and the use of meta-analysis techniques to analyse data 
from different sources. 

In conclusion, the use and development of the techniques mentioned 
in this thesis for the analysis of patient specific transcriptomic and proteomic 
patterns and the implementation of the results into clinical practice will be 
and remain the main focus of our research. 
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Appendix A 

Methods 

In this appendix we will give some technical details about some of 
the methods that have been applied or referred to on multiple occasions 
throughout this thesis. The following methods will be discussed: hypothesis 
testing and Bonferroni correction, receiver operating characteristic curves, 
logistic regression and model selection, least squares support vector 
machines, K-means clustering, and hierarchical clustering. 

A.1 Hypothesis testing and Bonferroni correction 
Hypothesis testing examines the belief in a certain property of a 

population parameter (or populations parameters) based on the data in a 
statistical sample (Dawson-Saunders and Trapp, 1994). Suppose, for 
example, we want to examine if the true or population mean µx of a certain 
variable x (e.g., the mean cholesterol level in all patients with cardiovascular 
disease) is equal to a given value (e.g., 190 mg/dl) based on the 
measurements of this variable in a certain sample (e.g., the measurement of 
the total cholesterol levels in N=100 patients). The sample mean and 
standard deviation are noted as mx and sx, respectively (e.g., the mean and 
standard deviation of the total cholesterol levels in our sample of 100 
patients). Hypothesis testing involves the following steps: 

1. Definition of the null and alternative hypothesis: the null 
hypothesis H0 states that there is no difference between the 
population parameter and its hypothesized value. In our example 
the null hypothesis states that µx=190 mg/dl. The alternative 
hypothesis H1 states the opposite: µx≠190 mg/dl. 

2. Definition of a test statistic that reflects in one way or another 
how the sample at hand deviates from the null hypothesis and for 
which the distribution is assumed to be know if the null 
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hypothesis is true. In our example we can define the following 
test statistic and calculate its value for our sample of 100 patients: 
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Under the null hypothesis and if x is normally distributed, this test 
statistic follows a t-distribution with N-1 degrees of freedom. 

3. Calculation of the p-value: the p-value equals the probability that, 
under the null hypothesis, the test statistic will have a value that is 
as extreme as or more extreme than the test statistic for the 
sample at hand. This can be easily calculated since the 
distribution of the test statistic under the null hypothesis is 
known. In our example, the p-value is given by the probability 
that the test statistic is larger or equal than |tx| plus the probability 
that the test statistic is smaller or equal than -|tx|, which in this 
case can be computed by calculating the appropriate areas under 
the t-distribution. 

4. Drawing the final conclusion: if the calculated p-value is smaller 
than a predefined rejection level α (usually set at 5%), it is 
unlikely that the sample at hand was generated under the null 
hypothesis. In this case the null hypothesis is rejected in favor of 
the alternative hypothesis. One can state that the test result is 
significant, i.e., according to the evidence presented by the 
sample, one can conclude that the population parameter is 
different from its hypothesized value. In our example this would 
mean that we conclude that the mean cholesterol level in patients 
with cardiovascular disease is different from 190 mg/dl. 

If, on the other hand, the p-value is larger than the rejection level 
α, the null hypothesis is not rejected and there is not sufficient 
evidence to accept a real difference between the population 
parameter and its hypothesized value. 

It should be noted that if there is no real difference between the 
population parameter and its hypothesized value, it is still possible that the 
null hypothesis will be (erroneously) rejected. The probability of falsely 
rejecting the null hypothesis is called a Type I error and its probability is 
given by the rejection level that is applied. If multiple tests are performed 
simultaneously, the probability that at least one test is declared significant 
due to chance increases. A common method to protect against this is to apply 
a Bonferroni correction (Keselman et al, 2002). In this procedure the 
rejection level that is applied for every individual test is set equal to the 
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original rejection level α divided by the number of tests performed 
simultaneously (e.g., 0.05/ns, where ns is the number of tests performed at 
the same time). It can be proven that a Bonferroni correction guarantees that 
the probability of committing at least on Type I error (also called the family-
wise error (FWE)) will not be larger than α. 

A.2 Receiver Operating Characteristic curves 

A.2.1 Definition, use and interpretation 

Suppose we have a set of objects (e.g., patients, genes, microarray 
experiments) that belong to one of two classes. Suppose that objects that do 
not and do exhibit a certain property belong to class 1 and class 2, 
respectively (e.g., patients without and with a certain disease, genes without 
and with differential expression - in some situations it is appropriate to call 
the objects of class 1 normal and the objects of class 2 abnormal). Also 
suppose that each object i is associated with a single value or variable yi 
(e.g., the output of a model, a p-value, a measurement - i=1,...,N) that is 
generated to predict the class membership of this object.  

Now consider a certain threshold or cut-off level T. If yi > T, the test 
result for object i is declared positive (i.e., object i is predicted to belong to 
class 2). If yi ≤ T, the test result for object i is declared to be negative (i.e., 
object i is predicted to belong to class 1). If we compare the test results with 
the actual class memberships of the objects, four categories emerge: true and 
false positive and true and false negative objects. These categories are 
defined in Table A.1. Subsequently, the number of objects in each of these 
categories can be used to define the sensitivity (TP/TP+FN = TP/NA) and 
specificity (TN/TN+FP = TN/NN), which summarize the correlation between 
the test results and the actual class memberships for the set of objects under 
consideration.  

The sensitivity and specificity are dependent on the choice for the 
threshold T and can be recalculated for other values of T. In this context, 
there is a trade-off between sensitivity and specificity because each change 
in the threshold that results in a higher sensitivity will also result in a lower 
specificity and vice versa.  The plot of the sensitivity versus 1 - specificity 
(1 - specificity is also called the false positive rate) for varying values of T is 
called a Receiver Operating Characteristic (ROC) curve (Dawson-Saunders 
and Trapp, 1994; Swets, 1996) for the set or sample of objects under 
consideration. For an example, see Figure A.1. An ROC curve therefore, 
summarizes the trade-off between sensitivity and specificity for all possible 
values of the threshold T in one single plot and can therefore be used to
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Table A.1: Definition of True and False Positive objects (TP and FP) and of True 
and False Negative objects (TN and FN) for a certain choice of the threshold T. 
NN = number of objects belonging to class 1; NA = number of objects belonging to 
class 2. 
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Figure A.1:  Example of an ROC curve. A small circle indicates the point on the 
ROC curve that maximizes the sum of the sensitivity and specificity and that has a 
tangent line with slope 1. 
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select an optimal (according to a certain criterion) threshold or cut-off point 
Topt. In this thesis we consistently use the point that maximizes the sum of 
the sensitivity and specificity and for which it can be proven that the 
associated point on the ROC curve has a tangent line with slope 1 (see 
Figure A.1). 

The area under the ROC curve (AUC) has a special meaning 
(Hanley and McNeil, 1982). It is a measure for the ability of the variable 
under consideration to discriminate between objects from class 1 and class 2. 
If this variable represents the output of a certain model for example, the 
AUC quantifies the discriminatory power or accuracy of the associated 
model. Suppose we randomly select an object from class 1 with associated 
value yN and that we randomly select an object from class 2 with associated 
value yA. Then, it can be proven that the AUC equals the probability that 
yA > yN. Said otherwise, the AUC equals the probability that an object 
randomly selected from class 1 and an object randomly selected from class 2 
are ranked correctly. It reflects the degree of overlap of yi for objects from 
class 1 and class 2. The AUC does not depend on the choice of the threshold 
T. Two extreme situations are possible. If the variable under consideration 
has no discriminatory power whatsoever, the AUC will equal 0.5. If, on the 
other hand, the variable under consideration can result in a perfect 
classification of the objects, the AUC will equal 1. 

In the next sections we will discuss how the AUC can be derived 
from a finite sample and how different AUCs can be compared. All the 
methods are available in the form of own MATLAB scripts. Worth 
mentioning is that some of these scripts were integrated in LS-SVMlab (see 
http://www.esat.kuleuven.ac.be/sista/lssvmlab/ and Suykens et al. (2002)). 

A.2.2 Estimation of the AUC from a finite sample 

Suppose we have a finite sample S consisting of a subset SN with NN 
normal objects and a subset SA with NA abnormal objects. Suppose we want 
to estimate the true AUC (i.e., the AUC for an infinite sample), denoted as 
AROC, using this finite sample. This estimate of the AUC, denoted as ÂROC, 
can be obtained by calculating the Wilcoxon statistic W given by (Hanley 
and McNeil, 1982): 
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where Sc is a scoring function given by: 
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The estimate ÂROC is a stochastical variable (it depends on the specific finite 
sample S) with mean AROC (the true are AUC) and standard error s given by: 
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where Q1 is the probability that two randomly chosen abnormal objects will 
both be ranked with greater suspicion than a randomly chosen normal object 
and where Q2 is the probability that one randomly chosen abnormal object 
will be ranked with greater suspicion than two randomly chosen normal 
objects. Q1 and Q2 can be estimated from the finite sample but can also be 
approximated by the following equations: 
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Replacing Q1, Q2 and AROC by their estimates (obtained in Equation A.5 and 
A.2) in Equation A.4 results in an estimate ŝe for the standard error of ÂROC. 

A.2.3 Comparison of the AUC 

Suppose that we have two variables y1 and y2 (e.g., given by the 
output of two different models) that have been generated to distinguish 
between objects from class 1 and 2. In this section we want to examine 
whether the discriminatory potential of these two variables is different, i.e., 
whether there is a difference in the respective true AUCs: AROC1 and AROC2. 
Since, in practice, we can only estimate these AUCs (ÂROC1 and ÂROC2) and 
their standard errors (ŝe1 and ŝe2) from a finite sample, we have to investigate 
whether there is a significant difference between these estimates. In this 
context, two designs are possible: unpaired and paired (Hanley and McNeil, 
1983). 
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Unpaired design 
In an unpaired design, the AUCs for the two variables y1 and y2 are 

estimated from two different finite samples S1 and S2, respectively, that do 
not contain the same objects. In this case it is assumed that under the null 
hypothesis (that states that the true AUCs are equal), the following statistic 
follows a standard normal distribution: 
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which can be used to calculate the probability or p-value that an equally 
large or larger value for z (or |z| if a two-sided test is used) will be obtained if 
the null hypothesis is true. If this p-value is smaller than a certain rejection 
level (e.g., 5%), the null hypothesis is rejected and the estimates of the 
AUCs are declared significantly different. 

Paired design 
In a paired design, the AUCs for the two variables y1 and y2 are 

estimated from the same finite sample S, i.e., the values for variables y1 and 
y2 are both available for the objects belonging to S. This situation, for 
example, is often encountered when the discriminatory performance of 
different mathematical models is being compared because usually the 
models can be evaluated using all available objects. In general and if 
possible, a paired design is preferred in comparison with an unpaired design, 
since a paired design results in an increase in statistical power (i.e., a true 
difference between the AUCs will be detected with a higher probability - i.e., 
the Type II error is lower). 

In a paired design the estimates ÂROC1 and ÂROC2 are no longer 
independent but are positively correlated and an adapted z-statistic can be 
applied: 
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where r is a quantity that represents the correlation between ÂROC1 and ÂROC2, 
caused by using the same sample of objects to estimate both AUCs. This 
quantity can be found in tabular form (Hanley and McNeil, 1983). 
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A.3 Logistic regression and model selection 

A.3.1 Definition 

Logistic regression (Hosmer and Lemeshow, 1989) describes the 
relationship between one or several independent or explanatory variables (or 
data point x = (x1,x2,...,xp) ) and a binary (i.e., can only take on two possible 
values: 0 or 1) outcome variable Y. This outcome variable Y has a binomial 
distribution where the probability P(Y = 1|x) (conditional probability of Y = 1 
given the explanatory variables) is represented by y(x). In a standard logistic 
regression model, y(x) is written or modelled in a specific form: 
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where g(x) is called the logit and is given by: 

,...)( 22110 pp xxxxg ββββ ++++=               (A.9) 

where β = (β0,β1,...,βp) are the parameters or coefficients of the logistic 
regression model. 

If some of the independent variables are discrete, nominal scaled 
variables (e.g., colour), these variables cannot be included in the logistic 
regression model as such. This situation requires the definition of design 
variables. In general, if the nominal scaled variable has k possible values, 
then k-1 design variables are needed. For example, suppose one considers a 
variable that represents a colour and that can take on three values: ‘black’, 
‘white’ and ‘grey’.  In this case two design variables have to be introduced in 
the logistic regression model: D1 and D2. One possible coding strategy is 
then as follows: if the value for the nominal scaled variable is ‘white’, D1 
and D2 are set equal to zero. If this value is ‘black’, D1 is set to one and D2 is 
set to zero. If this value is ‘grey’, D1 is set to zero and D2 is set to one. 

A.3.2 Model fitting: maximum likelihood 

Suppose we have a sample of N independent observation (training 
set) of the pair {xi(x1

i,x2
i,...,xp

i),Yi}i=1,...,N and we want to estimate the 
parameters or coefficients β = (β0,β1,...,βp)  of a logistic regression model 
that agrees most closely with the data. This is done by maximizing the 
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likelihood function l(β), which equals the probability of finding the observed 
data given the model parameters. This is given by: 
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Mathematically it is easier (but equivalent) to maximize the logarithm of the 
likelihood function ln[l(β)]. This is called the log likelihood L(β): 
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The values for the parameters that maximize this (log) likelihood function 
are called the maximum likelihood estimates of these parameters. To find 
these maximum likelihood estimates we have to differentiate L(β) with 
respect to β = (β0,β1,...,βp). However the resulting equations are non-linear in 
the parameters and therefore numerical and iterative methods built into 
logistic regression software have to be used. 

The coefficients in a logistic regression model can be interpreted as 
the log of the odds ratio of the outcome for a unit increase of the associated 
variable. 

A.3.3 Significance of an individual coefficient 

Several hypothesis tests are available to test whether the maximum 
likelihood estimate of an individual coefficient differs significantly from 
zero (i.e., to test whether the true value of this coefficient is zero or whether 
the associated variable is significantly related to the outcome). We will 
mention two of these tests here: the likelihood ratio test and the Wald test. 

Likelihood ratio test 
Suppose we want to test whether the true value of a coefficient βj is 

zero. Under the null hypothesis that βj is zero, the statistic G given by 

,
 with model fitted of likelihood

 without model fitted of likelihood
ln2












−=

j

j

x
x

G              (A.12) 

will follow a chi-square distribution with one degree of freedom. The 
likelihood of a fitted model can be found by evaluating Equation A.10 using 
the maximum likelihood estimates of the coefficients of the model at hand. 
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A specific sample of observations will result in a specific value for G and 
using the chi-square distribution, the probability can be calculated that an 
equally large or larger value for G will be obtained under the null 
hypothesis. If this probability or p-value is smaller than a certain rejection 
level (e.g., 5%), the null hypothesis is rejected and the true value of βj is 
declared to be different from zero. 

Wald test 
In the Wald test it is assumed that under the null hypothesis, the 

ratio of the maximum estimate of the coefficient of a certain variable and its 
standard error will follow a standard normal distribution (or equivalently, it 
is assumed that the square of this ratio follows a chi-square distribution with 
one degree of freedom). Again, this can be used to calculate a p-value for a 
specific value for the maximum likelihood estimate of a certain coefficient. 

A.3.4 Model selection 

As described in Chapter 1, Section 1.3.3, in model selection we aim 
to select the most parsimonious set of variables from a group of considered 
variables that, when combined in a model, adequately explains the data. In 
this context, the model in which the variables are combined is a logistic 
regression model. In this section we will explain three possible strategies to 
perform model selection in logistic regression: forward, backward and 
stepwise selection. 

Forward selection 
In forward selection, the following procedure is applied based on a 

sample of observations and a group of variables that is considered for 
inclusion in the model: 

5. Begin with a logistic regression model with only the intercept 
(constant term) and that does not include any variables. 

6. Choose a significance level pE for entry into the model (e.g., pE = 
0.15 - not too stringent). 

7. For each variable that has not been included into the model: 
analyse a separate logistic regression model using this variable 
and the variables that already have been included in the model. 
Calculate the significance level or p-value (e.g., with the 
likelihood ratio or Wald test) for the coefficient of the variable in 
this model. 



Appendix A - Methods 

 163

8. Select the variable associated with the smallest p-value. If this p-
value is smaller than pE: include the variable in the model and, if 
there remain variables that have not been included, return to step 
3. Stop if this p-value is equal or larger than pE or if all variables 
have been included. 

Backward selection 
In backward selection, the following procedure is applied: 

1. Begin with a fitted logistic regression model where all the 
variables that are considered for inclusion are effectively included 
and calculate the significance level of the coefficient of each 
variable. 

2. Choose a significance level pR for removal out of the model (e.g., 
pR = 0.20 - again, not too stringent). 

3. Select the variable associated with the largest p-value. If this p-
value is larger than pR: remove the variable from the model. Stop 
if this p-value is equal or smaller than pR. 

4. Fit a logistic regression model with the variables that remain 
included in the model and calculate the significance level of the 
coefficient of each variable. Return to step 3. Stop if no variables 
remain included. 

Stepwise selection 
Stepwise selection is a combination of forward and backward 

selection. The basic scheme is the same as for forward selection with the 
following modification: after each inclusion of a variable, a logistic 
regression model is fitted using all the variables presently included, the 
significance level of the coefficient of each variable is calculated and the 
variable associated with the largest p-value is removed if this p-value is 
larger than pR. This means that each forward selection step can be followed 
by a backward selection step. The algorithm stops if no variables can be 
included or removed.  

From the previous it follows that a stepwise logistic regression 
procedure requires the specification of a value for pR and pE. As mentioned, 
0.15 and 0.20, respectively, are reasonable choices, which are not too 
stringent and prevent that important variables would not be included in the 
model. The stepwise logistic regression therefore results in a logistic 
regression model that includes or contains variables that are important 
relative to the criteria pR and pE. If pR and pE do not correspond to our belief 
for statistical significance (usually fixed at a lower level of 5%), these may 
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not be the variables reported in the final model and further selection is 
necessary. The methodology that may be used to achieve this will not be 
discussed further here. 

A.4 Least Squares Support Vector Machines 
Least Squares Support Vector Machine (LS-SVM) classifiers are a 

modified version of Support Vector Machines that can be used for binary 
classification (Suykens et al., 2002). Given a training 
set {xi(x1

i,x2
i,...,xp

i),yi}i=1,...,N with input data xi and corresponding class labels 
yi ∈ {-1,+1}. The LS-SVM classifier takes the following (primal) form: 

[ ],)(sign)( bxwxy T += ϕ               (A.13) 

where the input data (that is said to belong to the input space) is mapped to a 
high dimensional feature space (which can be infinite dimensional) by a 
mapping function ϕ(x) (that does not have to be specified – see further). This 
means that, conceptually, the classification is done in a high dimensional 
feature space where w is an element.  

To determine the parameters of this model, the following 
optimisation problem has to be solved: 
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subject to: 

[ ] .,...,1,1)( Niebxwy iiTi =−=+ϕ        (A.15) 

The first term in Equation A.14 is called the regularization term and is 
representative of the model complexity and the second term in Equation 
A.14 is representative for the training set error. The optimisation problem 
therefore seeks a balance between minimizing model complexity and 
minimizing training set error. The process of limiting model complexity is 
called regularization and is necessary to prevent overfitting and enhance the 
generalization performance of this model. Note that γ is a hyperparameter of 
the model, which is called the regularization parameter. Also note that γ 
determines the degree of balance that has to be reached between model 
complexity and training set error. If γ is chosen to be infinite, no 
regularization is performed and only the training set error is minimized. 
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The optimisation problem is dealt with by solving the Lagrangian, 
which results in: 
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and the following dual problem to be solved in α and b: 
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and where the elements of the matrix Ω are given by: 
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As said previously, the mapping function ϕ(x) does not have to be 
constructed explicitly. We only have to specify the inner product in the 
feature space. This is represented by a (symmetric) kernel function that 
satisfies the Mercer condition: 
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where r and s belong to the input space. In this thesis we consider two 
possible kernel functions: a linear kernel given by: 

,),( srsrK T=             (A.21) 

and a Radial Basis Function (RBF) kernel given by: 
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where σ again is a hyperparameter. Applying this kernel trick to Equation 
A.19 results in 

).,( lklk
kl xxKyy=Ω        (A.23) 

After applying Equation A.21 or A.22 to Equation A.23, all the coefficients 
of the set of equations given in Equation A.17 are known.  

Finally, substitution of Equation A.16 in Equation A.13 results in the 
LS-SVM classifier in the dual form: 
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In the dual form, the model parameters are α and b that have been 
determined in Equation A.17. Equation A.17 is a set of N+1 linear equations 
in N+1 unknowns (α1, α2,...,αN and b). Its size is therefore not determined by 
the number of dimensions in the input space but by the number of objects in 
the training set. Also not that using a linear kernel results in a linear 
classifier and using an RBF kernel results in a non-linear classifier. 

Finally and in order to optimise model performance, the 
hyperparameter(s) γ (and possibly σ if an RBF kernel is chosen) have to be 
determined by a procedure that optimises the leave-one-out cross-validation 
performance on the training set. 

A.5 K-means clustering 
K-means (Tou and Gonzalez, 1979 - also see Table A.2 for the basic 

steps of this algorithm) is a cluster algorithm in which the user has to define 
in advance the number of clusters K that the algorithm will retrieve. The 
algorithm starts by assigning all the data points {xi}i=1,...,N to one of the K 
clusters at random (or pseudo-random like in Table A.2). Iteratively, the 
center (which corresponds to the average vector) of each cluster is 
calculated, followed by a re-assignment of the data points to the cluster with 
the closest (according to the Euclidean distance - the use of other distance 
measures is also possible but not discussed here) cluster center. Convergence 
is reached when the clusters do not further change. The result of the 
algorithm is dependent on K and the initial assignment of the data points to 
the K clusters. A form of (unsupervised) feature extraction has to be 
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performed in advance if one wants to cluster high dimensional data (i.e., 
microarray experiments) using the K-means algorithm. 

Table A.2: K-means algorithm.  

 

A.6 Hierarchical clustering 
Another method to cluster data points is hierarchical clustering. The 

results of this method can be visualized in a tree structure. Two approaches 
are possible: a top down approach (divisive clustering - see Alon et al. 
(1999) for an example) and a bottom-up approach (agglomerative clustering 
- see Eisen et al. (1998)). The latter is the most commonly used method and 
is discussed and used in this thesis. In the agglomerative approach each data 

K-means ({xi}i=1,...,N, K) 

C1 = C2 = ... = CK = ∅ 

FOR i = 1,...,N 

 Ci - K.(CEIL(i/K) - 1) = Ci - K.(CEIL(i/K) - 1) ∪ {xi} 
   /* assign   x1 to C1, x2 to C2, ... , xK to CK,  

        xK+1 to C1, xK+2 to C2, ... , x2K to CK, ... */ 

END FOR 

REPEAT  

 FOR i = 1,...,K 

  µi = mean(Ci) /* (Re)calculate average cluster vector */ 

 END FOR 

 C1
bef = C1; C2

bef = C2; ... ; CK
bef = CK 

 C1 = C2 = ... = CK = ∅ 

 FOR i = 1,...,N 

kjxxxCC j
i

k
ii

kk ≠∀−<−∪=        if   }{
22

µµ  

/* Re-assign each data point to the cluster with the nearest 
average vector */ 

END FOR 

UNTIL C1 = C1
bef AND C2 = C2

bef AND ... AND CK = CK
bef 

/* Convergence if clusters have not changed */ 

OUTPUT C1, C2,..., CK 
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point is initially assigned to a single cluster. Iteratively, the distance between 
every couple of clusters is determined and the two clusters that are closest 
are merged. This approach gives rise to the tree structure where the height of 
the branches is proportional to the pairwise distance between the clusters. 
Merging stops if only one cluster is left. Finally, clusters are formed by 
cutting the tree at a certain level or height. Different types of agglomerative 
clustering are possible, dependent on the definition of the distance between 
clusters: 

1. Single linkage clustering: in this case the distance between two 
clusters is defined as the minimum of all pairwise distances 
between two data points (again according to a certain distance 
measure; e.g., correlation coefficient, Euclidean distance) 
belonging to the different clusters. 

2. Complete linkage clustering: here the distance between two 
clusters is defined as the maximum of all pairwise distances 
between members of the different clusters. 

3. Average linkage clustering: In this type of hierarchical clustering 
the distance between two clusters is defined as the mean of all 
pairwise distances between two vectors of the different clusters. 

4. Centroid linkage clustering: in this case the distance between two 
clusters is defined as the distance between their centroids (average 
of the data points). 

Feature reduction methods are not mandatory prior to the analysis of 
high-dimensional data with hierarchical clustering. 
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Appendix B 

Data sets 

In this appendix we will list and give an overview of the 
characteristics of most data sets that were used in this dissertation. 

B.1 Clinical data 

B.1.1 Endometrial cancer 

This data set, kindly provided to us by Prof. Dr. D. Timmerman 
from the department of Obstetrics and Gynaecology (University Hospitals 
Leuven), contains patients diagnosed with endometrial cancer and typifies 
clinical data. Each patient is associated with a set of variables obtained after 
ultrasound and histopathological examination. The patients are divided into 
two classes dependent on the degree of invasion (with or without deep 
invasion) into the surrounding myometrium, which is an important 
prognostic parameter that has to be determined during staging. The training 
set contains 97 and the test set 37 patients. For each patient the subjective 
assessment of the degree of invasion by our expert ultrasonographer is 
available, which can be used as a reference. This data is analysed and 
discussed in further detail in Chapter 2 and serves as a typical example of 
clinical data analysis there. 

B.2 Microarray or expression data 
See Table B.1 for an overview of the URLs where the different data 

sets can be downloaded, if available. 
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B.2.1 Acute leukemia (1) 

Golub et al. (1999) studied microarray data obtained from bone 
marrow or peripheral blood of 72 patients with acute lymphoblastic (ALL) 
or myeloid leukemia (AML) using an Affymetrix chip. Although the 
structure of this data set is simple and the separation between the two 
conditions is more pronounced than in most other cases, it can still be 
considered as a benchmark (paper cited over 1203 times) and serves as an 
illustration on several occasions in this text. In the original publication, the 
patients are divided into two sets: a fixed training set with 38 patients (27 
ALL and 11 AML) and a fixed test set with 34 patients (20 ALL and 14 
AML). The expression matrix contains 7129 genes or rows. 

B.2.2 Acute leukemia (2) 

Armstrong et al. (2002) also produced several microarray 
experiments obtained from patients with ALL or AML and from a third class 
or condition (called MLL leukemia) containing acute lymphoblastic 
leukemias with a chromosomal translocation involving the mixed-lineage 
leukemia gene. Armstrong et al. discovered that MLL leukemias have a 
distinct expression pattern and can be considered as a separate disease 
distinguishable from ALL and AML. It contains expression profiles for 
12582 genes measured using Affymetrix technology. In total, 24 ALL 
patients, 28 AML patients and 20 MLL patients are available. This resulted 
in a data set containing 72 patients. 

B.2.3 Breast cancer: degree of differentiation (1) 

Perou et al. (2000) analysed surgical specimens of human breast 
tumours using cDNA-microarray technology with a common reference 
sample. Their study contained, among others, 37 tumours that were 
moderately or poorly differentiated (grade 2 or 3 - the degree of 
differentiation is assessed by the pathologist and reflects the degree of 
anaplasia or the degree of malignancy of the tumour and is an important 
prognostic factor). Twenty of these tumours were sampled twice (before and 
after a 16-week course of doxorubicin chemotherapy or paired with a lymph 
node metastasis) resulting in 57 microarray experiments (21 with grade 2 
and 36 with grade 3). The raw data for each experiment (9216 genes) and the 
associated grade are available for downloading. 
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B.2.4 Breast cancer: degree of differentiation (2) and 
prognosis 

van ‘t Veer et al. (2002) studied primary breast tumours with cDNA-
microarrays (from sporadic lymph node negative patients and from patients 
with BRCA1 or BRCA2 germline mutations). In total 117 patients were 
analysed (24481 gene expression profiles are present in the data). The data 
included 51 patients with sporadic breast cancer (we also included the 
patients from the independent set) that did and 46 patients that did not 
develop distant metastases within five years. With respect to the degree of 
differentiation, 27 patients had a tumour with grade 2 and 78 had a tumour 
with grade 3. The data that is available can be downloaded under the form of 
log-ratios (and was already appropriately preprocessed, which was not the 
case for the data from Perou et al.). 

B.2.5 Breast cancer: sporadic versus hereditary 

Hedenfalk et al. (2001) studied sporadic breast tumours (7 patients), 
breast tumours carrying a BRCA1 mutation (7 patients) and breast tumours 
carrying a BRCA2 mutation (7 patients) using a cDNA-microarray. Three 
binary classification problems follow from this study (one class versus the 
rest). The authors selected 3226 genes for there analyses according to a set 
of prespecified criteria. 

B.2.6 Colon cancer 

Alon et al. (1999) studied 40 tumour and 22 normal colon tissue 
samples using an Affymetrix chip. The array contained probes for more than 
6500 genes but the data that can be downloaded includes only the 2000 
genes with highest minimal intensity across the 62 tissues. 

B.2.7 Hepatocellular carcinoma 

Using an Affymetrix chip, Iizuka et al. (2003) studied hepatocellular 
carcinomas with and without early intrahepatic recurrence after surgery for 
hepatic resection. Their data contained 60 patients originally divided in a 
training set of 33 and a test set of 27. In total, 20 patients had an early 
recurrence of their disease. The data contained 7129 gene expression 
profiles. 
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B.2.8 High-grade gliomas 

Nutt et al. (2003) analysed the expression patterns of 50 patients 
with high-grade gliomas with an Affymetrix chip (12625 genes). They 
compared two histopathological subclasses: glioblastomas (poor prognosis - 
28 patients) and anaplastic oligodendrogliomas (more favourable prognosis - 
22 patients). The training set contained 21 patients (14 glioblastomas and 7 
anaplastic oligodendrogliomas). 

B.2.9 Prostate cancer 

Singh et al. (2002) studied, among others, expression patterns of 
normal and malignant prostate samples using oligonucleotide arrays with 
probes for 12600 genes. A training set with 102 patients (52 prostate 
tumours and 52 normal samples) and a test set with 34 patients (25 prostate 
tumours and 9 normal samples) are available for downloading. 

B.2.10  Yeast cell cycle 

Cho et al. (1998) studied the yeast cell cycle in a synchronised 
culture on an Affymetrix chip (also see Spellman et al. (1998)). This data set 
contains expression profiles for 6220 genes over 17 time points taken at 10-
min intervals, covering nearly two full cell cycles. Although, this data does 
not originate directly from oncology, it is related because dysregulation of 
the cell cycle plays an important role in carcinogenesis. Moreover, we chose 
to include this data because it studies microarray experiments taken at 
different time points of a biological process rather than microarray 
experiments belonging to different classes and is especially suited to 
examine cluster analysis of gene expression profiles, a topic that is 
investigated thoroughly in this thesis. Moreover in this context it can be 
considered as a benchmark (De Smet et al., 2002; Jakt et al., 2001; Yeung et 
al., 2001b; Heyer et al., 1999; Tamayo et al., 1999; Tavazoie et al., 1999).  

B.2.11 Central nervous system development 

Wen et al. (1998) studied gene expression levels of 112 genes on 9 
time points during central nervous system development of the rat, using 
tissue of the cervical spinal cord using reverse transcription-coupled PCR 
(RT-PCR). Unfortunately, the website where the data was downloaded from, 
is no longer available. 
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B.2.12 Measurement of expression levels in 
different tissues 

Seven two-channel cDNA microarray-experiments (obtained from 
Dr. P. Van Hummelen of the Microarray Facility of the V.I.B. - data not 
publicly available) were performed to characterise 4595 expression patterns 
in 7 mouse tissues. A common reference pool was used for each of the 
experiments (green channel). The red channel corresponds to a RNA pool 
obtained from one of 7 tissues: 

- Experiment 1: Brain 

- Experiment 2: Heart 

- Experiment 3: Kidney 

- Experiment 4: Liver 

- Experiment 5: Lung 

- Experiment 6: Skeletal muscle 

- Experiment 7: Testis 

The intention of this experimental setup was to detect groups of 
tissue-specific genes (mostly upregulated genes in one or two tissues). The 
data set itself contains 4595 seven-dimensional expression vectors. A 
fraction of the expression ratios is missing (approximately 3.5%). 

Table B.1: Overview of the URLs of the different microarray data sets 

Authors URL 
Golub et al. http://www-genome.wi.mit.edu/cancer/ 

Armstrong et al. http://research.dfci.harvard.edu/korsmeyer/MLL.htm 
Perou et al. http://genome-www.stanford.edu/molecularportraits/ 

van ’t Veer et al. http://www.rii.com/publications/default.htm (log ratios) 
http://www.nature.com (suppl. inform. - degree of diff.) 

Alon et al.  http://microarray.princeton.edu/oncology/affydata/index.html 

Iizuka et al. http://surgery2.med.yamaguchi-u.ac.jp/research/DNAchip/hcc
-recurrence/index.html 

Nutt et al. http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 
Singh et al. http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi 
Cho et al. http://cellcycle-www.stanford.edu 

Wen et al. (1998) http://rsb.info.nih.gov/mol-physiol/PNAS/GEMtable.html 
(no longer available) 
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