KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT TOEGEPASTE WETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

MICROARRAYS: ALGORITHMS FOR
KNOWLEDGE DISCOVERY IN ONCOLOGY
AND MOLECULAR BIOLOGY

Jury:

Prof. dr. ir. P. Verbaeten, voorzitter

Prof. dr. ir. B. De Moor, promotor

Prof. dr. ir. S. Van Huffel

Prof. dr. K. Kas (Harvard University; VIB)
Prof. dr. I. Vergote

Prof. dr. D. Timmerman

UDC 681.3*J3:616-006 Mei 2004

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de toegepaste wetenschappen

door

Frank DE SMET



© Katholieke Universiteit Leuven — Faculteit Toegepaste Wetenschappen
Arenbergkasteel, Kasteelpark Arenberg 1, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd
en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm,
elektronisch of op welke andere wijze ook zonder voorafgaande schriftelijke
toestemming van de uitgever.

All rights reserved. No part of the publication may be reproduced in any
form by print, photoprint, microfilm or any other means without written
permission from the publisher.

D/2004/7515/37
ISBN 90-5682-503-8



VYoorwoord

Toen ik in het voorjaar van 1999 op zoek was naar een manier om
mijn studies geneeskunde en toegepaste wetenschappen op een evenwichtige
wijze te combineren, kwam ik in contact met Prof. Bart De Moor. Hij bood
me de gelegenheid om onderzoek te doen en een doctoraat te maken in een
nieuwe en interdisciplinaire groep die bio-informatica ging bestuderen.
Vermits ik hier ondermeer de kans zou krijgen om me te specialiseren in de
klinische toepassingen van deze jonge wetenschap, heb ik geen moment
geaarzeld en met veel enthousiasme deze opdracht aanvaard. Graag zou ik
Prof. Bart De Moor willen bedanken voor de kansen die hij me gegeven
heeft.

Voorts zou ik ook graag de leden van mijn begeleidingscommissie,
Prof. Sabine Van Huffel en Prof. Koen Kas, willen bedanken voor de steun
die ze me tijdens dit onderzoek hebben gegeven en voor het doornemen van
dit proefschrift.

Bovendien zou ik ook Prof. P. Verbaeten, als voorzitter, Prof. Ignace
Vergote en Prof. Dirk Timmerman willen bedanken dat zij deel willen
uitmaken van de jury van dit doctoraatsproefschrift.

Natuurlijk zou de voorliggende tekst niet tot stand zijn gekomen
zonder de interactie en hulp van de andere medewerkers van de bio-
informaticagroep en SCD. Vooraleerst heb ik zeer veel waardering voor de
post-docs die me altijd met raad en daad hebben bijgestaan: Dr. Yves
Moreau voor de vele inspirerende ideeén en de gemeenschappelijke interesse
in de klinische toepassingen, Dr. Kathleen Marchal en Dr. Janick Mathys om
me in te leiden in de geheimen van de moleculaire biologie en voor de vele
suggesties die mijn onderzoek op het goede pad hebben gebracht. Ook zou ik
Prof. Johan Suykens willen bedanken voor de vele discussies en tips in
verband met de meer wiskundige aspecten van dit onderzoek. Bovendien wil
ik ook Prof. Joos Vandewalle, als hoofd van onze afdeling, bedanken voor
alle steun.
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heeft gegeven om mee te werken aan het opstarten en aanvragen van
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kunnen worden. In dit verband, zou ik hier ook Dr. Paul Van Hummelen
(Microarray Facility van het V.I.B.) willen vermelden voor de aangename en
professionele samenwerking tijdens deze projecten. Als laatste wil ik ook
Prof. Thomas D’Hooghe bedanken om ons uit te kiezen als partner in
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mijn lange (11 jaren) studies. Mijn lieve echtgenote, Ilse, en mijn twee
schatten van kindjes, Lieselot en Stijn, zou ik willen bedanken om me een
thuis te geven waar het mogelijk was om dit werk tot een goed einde te
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Abstract

In this thesis we have studied a general data-mining framework
(feature extraction, classification and clustering) that could be used to
analyse clinical and microarray and, in the future, proteomic data. We have
mainly applied this framework to oncology related problems.

For the prediction of the degree of myometrial invasion in
endometrial cancer, we developed three models that aim to discriminate
between patients with and without deep myometrial invasion using
ultrasound and histopathological data.

For the analysis of microarray experiments, we evaluated the use of
principal component analysis. In addition, we examined some elementary
clustering techniques (K-means and hierarchical clustering). We applied and
compared the performance of Fisher’s linear discriminant analysis and Least
Squares Support Vector Machines for the classification of expression
patterns of malignancies. Based on these results, we concluded that
regularization or dimensionality reduction is necessary. Subsequently, we
gave a general overview of existing techniques to cluster gene expression
profiles and noted that they do not have all the desired properties for this
task. This observation was the basis for the development and validation of
our own algorithm called adaptive quality-based clustering. Finally, we
presented an in-depth study of univariate analysis in microarray data. We
described a method to estimate the total number of genes whose expression
is and is not affected by a difference in tumour type. We described how a
Receiver Operating Characteristic (ROC) curve could be applied to define an
optimal rejection level and showed that the area under the ROC curve could
be used to assign a quality measure to microarray data.

In the description of our future research, we presented some concrete
clinical projects in which we will use the data-mining framework for the
analysis of microarray and proteomic data.
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Samenvatting

In dit proefschrift hebben we een algemeen kader voor
gegevensontginning (selectie van kenmerken, classificatie en clustering)
bestudeerd dat kan gebruikt worden voor de analyse van klinische en
microroosterdata en, in de toeckomst, van proteoomdata. We hebben dit
hoofdzakelijk toegepast voor problemen in de oncologie.

Betreffende de voorspelling van de diepte van myometriuminfiltratie
bij endometriumcarcinomen, hebben we drie modellen ontwikkeld die
gebruik maken van gegevens bekomen uit het echografisch en
histopathologisch onderzoek en die een onderscheid trachten te maken
tussen pati€nten met en zonder diepe invasie.

Betreffende de analyse van microroosterexperimenten, hebben we
het gebruik van Principale Component Analyse geévalueerd. Bovendien
hebben we in deze context enkele elementaire -clusteringstechnieken
bestudeerd (K-means-clustering en hiérarchische clustering). We hebben
Lineaire Discriminant Analyse en kleinste kwadraten Support Vector
Machines gebruikt en vergeleken met betrekking tot de classificatie van
expressiepatronen van maligniteiten. Hieruit is gebleken dat regularisatie of
een afname van de dimensionaliteit noodzakelijk is in combinatie met de
classificatie van microroosterexperimenten. Vervolgens hebben we een
overzicht gegeven van bestaande technicken voor het clusteren van
genexpressieprofielen en opgemerkt dat deze methoden niet altijd optimaal
zijn. Deze observatie heeft dan geleid tot de ontwikkeling en validatie van
een nieuw algoritme dat we adaptief kwaliteitsgebaseerd clusteren hebben
genoemd. Tot slot hebben we een grondige studie verricht van univariate
analyse van microroostergegevens. We hebben een methode besproken die
het mogelijk maakt om het aantal genen te schatten wiens expressie wel en
niet wordt beinvloed door een verschil in het type van de tumor. We hebben
beschreven hoe een Receiver Operating Characteristic (ROC) curve kan
gebruikt worden voor de bepaling van het optimaal niveau waarop de
nulhypothese moet worden verworpen en hebben aangetoond dat de
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Samenvatting

oppervlakte onder de ROC-curve kan dienen om de kwaliteit van
microroostergegevens te kwantificeren.

In de beschrijving van ons toekomstig onderzoek hebben we enkele
concrete klinische projecten voorgesteld waarin de technieken beschreven in
dit proefschrift kunnen gebruikt worden voor de analyse van zowel
microrooster- als proteoomdata.
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Nederlandse samenvatting

Microroosters: algoritmen voor
kennisextractie in de oncologie en
moleculaire biologie

Hoofdstuk 1: Inleiding

Motivatie

Het klinisch beleid bij kwaadaardige processen is in vele gevallen
gedeeltelijk empirisch en wordt gestuurd door gegevens uit de literatuur
(bekomen uit klinische studies) of de persoonlijke ervaring van de clinicus.
De huidige diagnostische schema’s vertonen nog dikwijls een significante
variabiliteit tussen verschillende artsen en vereisen vaak een bijkomende en
soms subjectieve beoordeling. Bovendien kan niet alle informatie die
klinisch relevant is uit de gegevens worden gehaald die een clinicus op dit
moment tot zijn beschikking heeft. Methoden die bijvoorbeeld toelaten om
een meer objectieve en betere toewijzing aan de verschillende diagnostische
klassen te bekomen, zouden dus nuttig kunnen zijn.

Moleculaire biologie

De fundamentele processen die aan de basis liggen van de
carcinogenese worden in de meeste gevallen nog niet gebruikt om het
klinisch beleid te helpen bepalen. Het ontstaan van kanker is immers een
proces dat zich voor een groot deel afspeelt op het niveau van het genoom.
Onder invloed van bepaalde factoren (bestraling, virale infecties, ...) kunnen
mutaties ontstaan in bepaalde genen (bijvoorbeeld proto-oncogenen en
tumorsuppressorgenen) met eventueel ongecontroleerde celgroei en de
mogelijkheid tot invasie en metastasering tot gevolg. Door deze mutaties
kan echter ook de transcriptie of translatie van andere genen (waarin geen
mutatie optreedt, maar waarvan de transcriptie of translatie direct of indirect
wordt geregeld, bijvoorbeeld als het gemuteerd gen codeert voor een
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transcriptiefactor) ontregeld worden. Het is waarschijnlijk dat het betrekken
van de effecten van deze mutaties in de klinische besluitvorming een
verbetering zou betekenen in vergelijking met de meer empirische
beslissingsschema’s die nu gebruikt worden. Het behoort tot de
verwachtingen dat de analyse van data (afkomstig van microroosters of de
analyse van het proteoom - zie verder) die het moleculair biologisch gedrag
van tumorcellen weerspiegelen, een belangrijke vooruitgang kan betekenen
in het wetenschappelijk onderzoek naar het gedrag en ontstaan van tumoren.

In dit proefschrift bestuderen we een algemeen kader voor
gegevensontginning dat kan gebruikt worden voor de analyse van klinische,
microrooster- en proteoomdata. We passen dit voornamelijk toe voor
problemen uit de of gerelateerd aan oncologie. Vooraleerst is het de
bedoeling om diagnostische vraagstukken nauwkeuriger en objectiever te
formuleren aan de hand van klinische data. Bovendien is het de bedoeling
om microrooster- en proteoomdata, aan de hand van specifieke algoritmen,
te integreren in de klinische besluitvorming en om ze te gebruiken om een
meer fundamenteel inzicht te verkrijgen in de moleculaire biologie achter de
carcinogenese.

In de volgende secties worden de verschillende datatypes en de
verschillende elementen van het algemeen kader voor gegevensontginning
verder toegelicht.

Datatypes

1. Klinische data: dit datatype bevat waarden voor klassieke klinische
parameters (de variabelen; bijvoorbeeld gegevens uit de klinische
biologie, uit de medische beeldvorming, uit het histopathologisch
onderzoek, uit het klinisch onderzoek, uit de anamnese) die
gewoonlijk worden vergaard in het kader van een zeker diagnostisch
probleem voor een zekere groep van patiénten. In vergelijking met de
volgende datatypes is het aantal variabelen meestal een aantal grootte-
ordes kleiner.

2. Microroosterdata: microroosters bestaan uit een groot aantal sondes
samengebracht op een klein oppervlak. Sterk vereenvoudigd kan
gesteld worden dat ieder van deze sondes bestaat uit DNA dat
complementair is aan één welbepaalde mRNA-streng (ze zijn dus
specifieck voor één welbepaald gen). ledere mRNA-streng (of het
overeenkomstig cDNA) zal dus specifiek binden aan (of hybridiseren
met) zijn complementaire sonde(s) wanneer het totaal mRNA,
afkomstig uit cellen van een welbepaald celtype, in contact wordt
gebracht met de sondes op het microrooster. De binding van iedere
complementaire sonde met zijn overeenkomstig mRNA kan gemeten
worden en is dus een maat voor de hoeveelheid mRNA
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(expressieniveau) afkomstig van één welbepaald gen. De twee
belangrijkste soorten microroosters zijn cDNA-microroosters (zie
Duggan (1999) en Figuur 1.2) en oligonucleotideroosters (GeneChip®,
Affymetrix Inc. - zie Lipshutz (1999)).

Zoals gezegd, kunnen mutaties die aan de basis liggen van het
ontstaan van kwaadaardige processen, ook bij niet-gemuteerde genen
verstoring van hun expressie veroorzaken. Het is nu de verzameling
van deze ontregelde genexpressies die het fenotype van de tumorcel
bepaalt (Sager, 1997). Het meten van een groot gedeelte van deze
expressieniveaus met microroosters zou dus van grote waarde kunnen
zijn om het werkelijk gedrag van de tumorcellen te kennen, te
voorspellen en te begrijpen.

Vermits ieder experiment met een microrooster resulteert in een
hoogdimensionale vector met duizenden waarden of componenten
(één per sonde op het microrooster), moeten er aangepaste technieken
worden toegepast voor de analyse van microroosterdata.

Proteoomdata: omwille van posttranscriptionele modificatie en
regulatie van biologisch actieve moleculen is het mogelijk dat door de
meting van de expressieniveaus met microroosters niet alle relevante
fenomenen in een cel op het moleculair biologisch vlak worden
waargenomen. Dat wil dus zeggen dat door de studie van het
proteoom (verzameling van alle proteinen in een cel) het eventueel
mogelijk is om complementaire informatie te bekomen over de
fundamentele processen die zich afspelen binnenin een bepaalde cel.
Dit kan gebeuren door middel van recente technologieén die
gebaseerd zijn op massaspectrometrie en die het mogelijk maken om
de aanwezigheid van een brede subset proteinen in een staal te
kwantificeren (voor een voorbeeld zie Chapman (2002)). De gegevens
die hieruit resulteren zullen niet expliciet worden geanalyseerd in dit
proefschrift maar wel besproken worden in het kader van de
voorstelling van enkele concrete toepassingen die gepland zijn tijdens
ons toekomstig onderzoek (Hoofdstuk 7). Kwalitatief bestaat de
uitvoer van deze technologieén uit spectra die bestaan uit duizenden
discrete waarden of piekamplitudes elk geassocieerd aan een
welbepaalde waarde voor massa/lading die op zijn beurt overeenkomt
met een zeker (onbekend) proteine. Deze spectra zijn dan
karakteristiek voor de proteinen of een subklasse van de proteinen
aanwezig in een staal. Dit resulteert dus eveneens in datavectoren die
duizenden waarden bevatten en waarbij iedere component van deze
vector representatief is voor de hoeveelheid van een niet nader
bepaald proteine in het bestudeerde staal. De uitvoer is dus kwalitatief
gelijkaardig aan microroostergegevens en kan dus mogelijks
geanalyseerd worden met gelijkaardige technieken.
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Algemeen kader voor gegevensontginning

Het algemeen kader voor gegevensontginning bestaat uit de

volgende drie elementen (zie ook Figuur 1.5):

1.

Selectie van kenmerken: niet al de variabelen in een dataset zijn
geschikt om in verdere analyses gebruikt te worden. Het is beter om
een beperkte verzameling van kenmerken (bijvoorbeeld individuele
variabelen, een groep van variabelen of een combinatie van
variabelen) te selecteren die optimaal gebruikt kunnen worden bij
classificatie en clustering (zie volgende twee punten). In deze tekst
beschouwen we twee verschillende manieren om kenmerken te
selecteren: univariaat en multivariaat.

Bij univariate selectie van kenmerken veronderstelt men dat de
datapunten tot een beperkt aantal klassen behoren en heeft men als
doelstelling om de individuele variabelen te selecteren die maximaal
gecorreleerd zijn met de verschillende klassen. In dit geval maakt men
typisch gebruik van hypothesetesten (Dawson-Saunders en Trapp,
1994). Deze techniek wordt voor microroosterdata echter bemoeilijkt
door het probleem van meervoudig testen.

Een eerste techniek voor multivariate analyse betreft het selecteren
van een groep van variabelen die, wanneer ze gecombineerd worden
in een bepaald model, een statistisch significante bijdrage leveren tot
de nauwkeurigheid van de voorspelling. Dit wordt modelselectie
genoemd en gebeurt door een iteratief proces waarbij de variabelen
achtereenvolgens worden toegevoegd aan of verwijderd uit het model.
Deze techniek wordt veel gebruikt in combinatic met standaard
logisticke regressie (zie Hosmer en Lemeshow (1989)). Een tweede
techniek voor multivariate analyse betreft de identificatie van een
(lineaire of niet-lineaire) functie of combinatie van variabelen die een
gewenste eigenschap heeft. Bij Principale Component Analyse
(Bishop, 1995), bijvoorbeeld, wordt er een lineaire combinatie
gezocht van de variabelen die een maximale variantie vertoont over
een verzameling datapunten. Dit is een techniek die we bij voorkeur
zullen gebruiken bij de analyse van microroosterexperimenten.

Classificatie: hier worden wiskundige modellen geconstrueerd die
kunnen voorspellen tot welke klasse een welbepaald datapunt behoort.
Aan de hand van een modelstructuur, een verzameling van kenmerken
en een trainingsset (d.i. een verzameling datapunten waarvan reeds
geweten is tot welke klasse ze behoren, m.a.w. de kentekens of labels
van de datapunten zijn gekend) worden de parameters of coéfficiénten
van het model bepaald. Dit noemt men het trainen van het model. Dit
model kan vervolgens worden getest op nieuwe datapunten waarvan
wordt verondersteld dat de kentekens niet gekend zijn.
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3. Clustering: met clusteranalyse is het mogelijk om automatisch
verschillende klassen of clusters te ontdekken in een groep datapunten
zonder voorafgaande kennis van de eigenschappen van die clusters
(Kaufman en Rousseeuw, 1990). Een cluster zal in het algemeen een
aantal datapunten bevatten die een zekere graad van overeenkomst
vertonen volgens een bepaalde afstandsfunctie.

Hoofdstuk 2: Klinische data-analyse: voorspelling van
de infiltratiediepte van endometriumcarcinomen

In dit hoofdstuk wordt het algemeen kader voor gegevensontginning
toegepast voor klinische data afkomstig van patiénten met een
endometriumcarcinoom (kwaadaardig proces van het slijmvlies van de
baarmoeder of uterus). De graad van myometriale invasie (myometrium =
spierlaag van de uterus) is een belangrijke prognostische factor met een
belangrijke impact op het beleid. Hier wordt er een onderscheid gemaakt
tussen patiénten met een invasiediepte die kleiner is dan 50% van de totale
dikte van het myometrium (groep I - FIGO stadium Ia of Ib) of die groter is
dan 50% van de totale dikte van het myometrium (groep II - FIGO stadium
Ic of hoger). Een echografisch onderzoek (transvaginale echografie (TVS)
met kleuren Doppler (CDI)) en een histopathologisch onderzoek van een
endometriale biopsie horen meestal bij de initi€le evaluatie van deze
patiénten. Prof. Dr. D. Timmerman (afdeling gynaecologie-verloskunde,
U.Z.Leuven) heeft gegevens die resulteren uit deze evaluatie verzameld voor
97 patiénten. Deze groep van patiénten noemen we verder ook de
trainingsset en worden gebruikt voor de univariate analyse, voor de
multivariate analyse of modelselectic en voor het trainen van drie
modeltypes: standaard logistieke regressie en kleinste kwadraten Support
Vector Machines (LS-SVM) met een lineaire en radiale basisfunctie (RBF)
kernel.

Univariate analyse (zie ook Tabel 2.2) van de echografische
parameters wees uit dat de ratio (EV/UV) van het endometriumvolume (EV)
en het volume van de uterus (UV) de grootste oppervlakte (AUC) onder de
Receiver Operating Characteristic (ROC) curve had (78%) en dat deze
oppervlakte kleiner was dan deze van de subjectieve beoordeling door de
expert (79%). Er was echter geen significant verschil tussen de AUC van
EV/UV en de AUCs van de endometriumdikte (ET), de myometriumdikte
(MT), EV, de ratio (ET/AP) van ET en de voorachterwaartse diameter van
de uterus (AP) en MT/AP. De AUC van de CDI parameters (van de linker en
rechter arteria uterina en intratumoraal gemeten) was klein.

Multivariate analyse met stapsgewijze logisticke regressie wees de
differentiatiegraad, het aantal fibromen (leiomyomen), ET en EV aan als de
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variabelen die significant bijdragen in een standaard logistick
regressiemodel. CDI parameters droegen niet significant bij. Dit resulteerde
dan in het volgende logistieke regressiemodel:

_exp(f, + B,.DD1+ 3, DD2+ B, NF+ 3, ET + 5,.EV)
l+exp(f, + f,.DD1+ 3, DD2+ 5, NF+ ,.ET + ,.EV)

(1

waar DD1 and DD2 gelijk zijn aan 1 als, respectievelijk, de tumor matig en
slecht gedifferentieerd is en gelijk zijn aan O in alle andere gevallen. De
coéfficiénten zijn: f,= -3.70, f, = 2.36, ;= 2.42, f;=-2.45, B,= 0.20, en
Ps= -0.11. De AUC van dit logisticke regressiemodel geévalueerd op de
trainingsset is 89% (zie ook Tabel 2.2).

Aan de hand van de vier variabelen die werden geselecteerd door
stapsgewijze logistieke regressie, hebben we ook een LS-SVM-model met
een lineaire en een LS-SVM-model met een RBF-kernel getraind. Voor het
LS-SVM-model met een lineaire kernel is het mogelijk om, na een
herschikking van de termen, dit te schrijven als een eenvoudige lineaire
functie van de variabelen:

y=p,+3.DD+ 3, NF+ B, ET + 3, EV )

waar DD gelijk is aan 1, 2 en 3 als de tumor goed, matig en weinig
gedifferentieerd is, respectievelijk. De coéfficiénten zijn: f = -1.45,

,=0.37, f,=-0.38, f;=0.05, en S, = -0.03. Het LS-SVM-model met een
RBF-kernel kan niet in een eenvoudige vorm worden neergeschreven en
wordt hier daarom niet expliciet beschreven. De AUCs van de LS-SVM-
modellen met een lineaire en RBF-kernel ge€valueerd op de trainingsset zijn
88% en 99%, respectievelijk (Tabel 2.2).

We hebben deze drie modellen eveneens prospectief gevalideerd op
een nieuwe verzameling van 37 pati€nten (zie Tabel 2.3). De AUCs van het
standaard logisticke regressiemodel en de LS-SVM-modellen met een
lineaire en RBF-kernel geévalueerd op deze nieuwe dataset zijn
respectievelijk: 81%, 90% en 92%. De drie modellen hebben allen een betere
AUC dan de subjectieve beoordeling door de expert (74%) maar het verschil
is enkel significant voor het LS-SVM-model met een RBF-kernel (p=
0.0485). Uit deze resultaten blijkt dus dat dit laatste model het beste presteert
voor de onderzochte patiénten.

Als conclusie kunnen we zeggen dat CDI niet bijdraagt tot het
voorspellen van de invasiediepte van endometriumcarcinomen en dat
individuele morfologische parameters bepaald door TVS niet voldoende zijn
om een nauwkeurige voorspelling te maken. Het combineren van de
differentiatiegraad, de endometriumdikte, het endometriale volume en het
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aantal fibromen in een standaard logistiek regressiemodel, in een LS-SVM-
model met een lineaire kernel en vooral in een LS-SVM-model met een
RBF-kernel, zouden deze voorspelling kunnen verbeteren. Deze methodiek
zou een eenvoudige en goedkope manier kunnen vertegenwoordigen die kan
bijdragen tot een betere preoperatieve scheiding tussen patiénten met een
laag en hoog risico. Er is echter nog veel werk nodig vooraleer de modellen
die hier beschreven worden, echt bruikbaar worden in de klinische praktijk.
Vooraleerst werden de modellen afgeleid met behulp van gegevens die
afkomstig zijn van dezelfde expert. Omdat er verschillen mogelijk zijn
tussen verschillende experts, is het nodig om deze modellen verder te
valideren (en indien nodig aan te passen) met gegevens die afkomstig zijn
van meerdere centra. Bovendien kunnen er wijzigingen optreden in de
karakteristiecken van de patiéntenpopulatie, wat het nodig maakt om deze
modellen continu te evalueren.

Tenslotte merken we nog op dat we deelgenomen hebben aan een
gelijkaardige studie (Epstein et al., 2002) waar we eveneens ROC-curven
hebben gebruikt voor het vergelijken van verschillende modellen die de
aanwezigheid van een endometriumcarcinoom trachten te voorspellen in
vrouwen met postmenopausaal bloedverlies.

Hoofdstuk 3: Analyse van microroosterdata

In dit hoofdstuk wordt het algemeen kader voor gegevensontginning
toegepast voor microroostergegevens afkomstig uit de oncologie, met de
bedoeling om hieruit klinische en biologische informatie te halen (De Smet
et al., 2001; Marchal et al., 2004).

Omdat ieder microroosterexperiment de expressie meet van
duizenden genen, resulteert dit in enorme datavectoren met duizenden
componenten. Voor de analyse hiervan zijn speciale technieken nodig die
extreem hoogdimensionale datapunten aankunnen. Noteer dat de vectoren
die worden gegenereerd door verschillende microroosterexperimenten
kunnen geschikt worden in een expressiematrix (zie Figuur 3.1). In deze
matrix bevatten de kolommen alle expressieniveaus van een specifiek
experiment en de rijen de expressieniveaus van een zeker gen (gemeten in de
verschillende experimenten). De rijen van de expressiematrix worden verder
ook genexpressieprofielen genoemd. Afhankelijk van de toepassing kunnen
zowel de kolommen als de rijen van deze matrix beschouwd worden als
datapunten. In het ecerste geval worden de expressieniveaus van de
verschillende genen dan beschouwd als de variabelen en in het tweede geval
is dit zo voor de experimenten. In dit hoofdstuk echter, beschouwen we in de
meeste gevallen de microroosterexperimenten of de kolommen van de
expressiematrix (elk geassocieerd aan een patiént of tumorstaal) als de
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datapunten. Clusteranalyse van genexpressieprofielen is hierop de enige
uitzondering. In dit hoofdstuk beschouwen we verder ook verzamelingen
van microroosterexperimenten die tumorcellen bestuderen die afkomstig zijn
van verschillende klassen (bijvoorbeeld experimenten afkomstig van
patiénten met een verschillende histopathologische diagnose, een
verschillende prognose, een verschillend antwoord op therapie).

In hetgeen volgt, bespreken we eerst enkele stappen die nodig zijn
ter voorbereiding van de microroostergegevens voor verdere analyse. Hierna
onderzocken we de drie elementen van ons algemeen kader voor
gegevensontginning toegepast op dit datatype: selectie van kenmerken,
clustering en classificatie. Een grondige studie van twee delen van dit
algemeen kader zal ondernomen worden in Hoofdstuk 4, 5 en 6 (clustering
van genexpressieprofielen en univariate analyse). Om de hier beschreven
methodologie te illustreren hebben we ondermeer gebruik gemaakt van twee
verzamelingen van microroostergegevens die publiek beschikbaar zijn op het
internet (data van Golub et al. (1999) die 72 patiénten (onderverdeeld in een
trainingsset van 38 patiénten en een testset van 34 pati€nten) bestudeerden
met acute lymfatische (ALL) of myeloide (AML) leukemie; data van Perou
et al. (2000) die pati€énten bestudeerden met mammacarcinomen - wij maken
hier een onderscheid tussen matig en slecht gedifferentieerde tumoren).

Voorbereiding van de data

Voordat de microroostergegevens kunnen gebruikt worden met de
methoden beschreven in de volgende paragrafen, is het mogelijk dat ze eerst
nog enkele voorbereidende stappen moeten ondergaan. Hier bespreken we
normalisatie, niet-lineaire transformatie en de verwerking van ontbrekende
waarden. Twee andere stappen, standaardisatie en filteren, zullen worden
besproken in het kader van het clusteren van genexpressieprofielen.

1. Normalisatie: In een experiment met een cDNA-microrooster bestaan
er verschillende bronnen van ruis die systematische fouten kunnen
veroorzaken (bijvoorbeeld veroorzaakt door verschillen in het groen
en rood kanaal). Bij normalisatic is het de bedoeling om deze
systematische fouten te berekenen en te verwijderen.

2. Niet-lineaire transformaties: In vele gevallen is het de gewoonte om
een niet-lineaire functie, zoals het logaritme, toe te passen op de
expressiewaarden. Bij het gebruik van expressieratios (afkomstig van
een cDNA-microrooster, waar een test- en referentiestaal worden
gebruikt en de uiteindelijke expressiewaarde wordt bekomen door de
ratio van de overeenkomstige intensiteiten in het rode en groene
kanaal te beschouwen) heeft dit een bijkomend voordeel, vermits deze
niet symmetrisch rond 1 zijn verdeeld. Het gebruik van een
logaritmische transformatie corrigeert dit.
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3. Verwerking van ontbrekende waarden: Microroosterdata bevatten
dikwijls ontbrekende waarden. Vele algoritmen die gebruikt worden
om deze gegevens te analyseren hebben hier echter problemen mee.
Daarom zijn er technieken nodig om deze ontbrekende waarden te
vervangen of zijn er algoritmen nodig die hiermee op een meer directe
manier kunnen omgaan. In deze context beschrijven we twee
technieken: verwerking van ontbrekende waarden zonder vervanging
en de methode van de meest nabije buren.

In sommige gevallen maken algoritmen voor de analyse van
microroostergegevens enkel gebruik van de berekening van
(Euclidische) afstanden of gemiddelde expressievectoren. Door een
kleine wijziging in de definitie van deze afstanden of gemiddelde
expressievectoren, is het mogelijk om deze ontbrekende waarden te
verwerken zonder ze te vervangen. Meer concreet berekenen we
afstanden tussen twee expressievectoren door enkel de componenten
te beschouwen die aanwezig zijn in beide vectoren. Bovendien
berekenen we de componenten van de gemiddelde expressievector van
een verzameling expressievectoren door enkel de overeenkomstige
componenten in rekening te brengen in deze verzameling vectoren
waarvoor er werkelijk waarden aanwezig zijn.

In de methode van de meest nabije buren vervangen we de
ontbrekende waarden in een genexpressieprofiel door deze te schatten
aan de hand van de waarden in de meest gelijkende
genexpressieprofielen.

Selectie van kenmerken

Een eerste doelstelling is het verminderen van het aantal gegevens
(of waarden) per pati€nt of per microroosterexperiment. Enkel de meest
essentiéle kenmerken die zo informatief mogelijk zijn over een zeker
klassenverschil, moeten worden geselecteerd. Dit wordt ook het probleem
van de afname van de dimensionaliteit genoemd. Deze afname is meestal
noodzakelijk vooraleer gestart kan worden met classificatie of clustering.
Bovendien is het mogelijk dat op deze manier de genen worden
geidentificeerd die verantwoordelijk zijn voor het verschil in eigenschappen
tussen verschillende soorten tumoren. Wanneer bijvoorbeeld normale cellen
en tumorcellen worden vergeleken, is het mogelijk dat er genen worden
ontdekt die betrokken zijn in de carcinogenese.

Selectie van kenmerken kan met en zonder supervisie gebeuren. In
selectie van kenmerken met supervisie worden de kentekens of klassenlabels
van de verschillende patiénten expliciet gebruikt terwijl dit voor de selectie
zonder supervisie niet het geval is.
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We bespreken nu de twee verschillende manieren om kenmerken te

selecteren: univariaat en multivariaat.

L.

Univariate selectie: De meest eenvoudige manier is de selectie van
individuele genen waarvan de expressie het best gecorreleerd is met
een bepaald klassenverschil, waarin men op een bepaald moment
geinteresseerd is. Deze selectie is dus steeds gesuperviseerd. Dit is
logisch vermits niet alle genen een expressiepatroon hebben dat
informatie bevat over een bepaald klassenverschil zodat deze genen
kunnen worden weggelaten. Verschillende technieken zijn mogelijk
om de graad van correlatie van een gen met een zeker klassenverschil
te  kwantificeren. Zoals reeds vermeld kunnen hiervoor
hypothesetesten worden gebruikt die echter bemoeilijkt worden door
het probleem van meervoudig testen, dat verder zal besproken worden
in Hoofdstuk 6. De AUC (oppervlakte onder de Receiver Operating
Characteristic curve) is een maat die hiervoor ook kan gebruikt
worden. In deze tekst zullen wij ook dikwijls gebruik maken van een
score die werd geintroduceerd door Golub et al., (1999) en die wordt
gegeven door:

U (g)—H,(g;)
0,(g)+0,(g)

G(g,) = G)

waar f(g) and f(g) de gemiddelde waarden zijn van het
expressieprofiel g; in respectievelijk klasse 1 en 2 en waarbij o;(g))
and 0,(g;) de geassocieerde standaard deviaties zijn.

Multivariate selectie: Door de hoge dimensionaliteit van
microroostergegevens is modelselectie niet onmiddellijk bruikbaar
voor dit type data, althans niet zonder voorafgaande reductie van de
dimensionaliteit met een andere methode.

Zoals reeds vermeld is voor microroosters een andere methode voor
multivariate selectie van de kenmerken echter meer gebruikelijk:
Principale Component Analyse (PCA). Zo kunnen voor de trainingsset
in de data van Golub et al., de twee principale componenten worden
bepaald met de hoogste eigenwaarde en de microroosterexperimenten
van de trainings- en testset kunnen hierop dan worden geprojecteerd.
Dit resulteert dan in twee kenmerken voor iedere patiént. Wanneer
deze twee kenmerken worden uitgezet in een grafiek (Figuur 3.3),
geeft dit een duidelijk zichtbare scheiding tussen patiénten met ALL
en AML. Merk op dat in dit geval de selectie van de principale
componenten op een niet-gesuperviseerde manier gebeurt aan de hand
van de eigenwaarden (er wordt geen gebruik gemaakt van de
klassenlabels). Dit kan echter ook op een gesuperviseerde manier
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gebeuren. Door gebruik te maken van de methodiek voor univariate
analyse kan men de principale componenten uitkiezen die
overeenkomen met kenmerken die een maximale correlatie vertonen
met een zeker gekend klassenverschil. Voor de data van Perou et al.
hebben we PCA toegepast met en zonder gesuperviseerde selectie van
twee principale componenten (Figuur 3.4). PCA met niet-
gesuperviseerde selectie van de principale componenten resulteerde
echter in een slechte scheiding tussen patiénten met matig en slecht
gedifferentieerde borsttumoren. Hieruit besluiten we dat in dit geval
de richtingen met maximale spreiding niet gedomineerd worden door
dit verschil in klassen. Gesuperviseerde selectie van de principale
componenten (gebaseerd op de Golub-score van Vergelijking 3)
resulteerde echter in een veel betere scheiding.

Clustering

Bij het clusteren van microroosterexperimenten beoogt men
pati€nten te groeperen die een zekere overeenkomst in expressie vertonen.
De gevonden groepen kunnen overeenkomen met een bestaand diagnostisch
schema (dat meestal gebaseerd is op klinische waarnemingen), maar het
behoort tot de mogelijkheden dat door clustering van expressiepatronen
nieuwe diagnostische categorieén kunnen gevonden worden die patiénten
bevatten waarvan het klinisch gedrag minder variatie vertoont dan in de
bestaande schema’s. Met clustering is het dus niet de bedoeling om
voorspellingen te gaan maken voor individuele pati€nten, maar om te
bepalen welke de verschillende tumorklassen en hun eigenschappen zijn. In
deze tekst hebben we twee verschillende methoden toegepast om de 72
patiénten in de dataset van Golub et al. te clusteren: “K-means” en
hi€rarchische clustering (Figuren 3.5 en 3.6). Vermits K-means-clustering
niet geschikt is om hoogdimensionale data te clusteren, hebben we eerst
PCA toegepast met niet-gesuperviseerde selectiec van de principale
componenten (gesuperviseerde selectie is hier niet gepast vermits de
klassenlabels worden verondersteld niet gekend te zijn bij clustering - ze zijn
het resultaat van het algoritme zelf). K-means-clustering van de data van
Golub et al. resulteerde in twee clusters die bijna perfect overeenkomen met
het gekende verschil tussen ALL en AML en is er dus als het ware in
geslaagd om de concepten ALL en AML te herontdekken. Hiérarchische
clustering resulteerde in een boomstructuur waar de meeste patiénten met
AML geconcentreerd zijn in één welbepaalde tak.

In verband met de clustering van microroosterexperimenten kan er
echter een kritische opmerking worden gemaakt (Levenstien et al., 2003). In
het algemeen is het mogelijk om zeer veel verschillende resultaten met
clustering te bekomen (bijvoorbeeld door een verschillende instelling van de
parameters van het algoritme of door verschillende algoritmen te gebruiken).
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Meestal zal dan het resultaat worden gekozen dat het beste beantwoordt aan
een hypothese die men vooraf wou bewijzen (men kiest bijvoorbeeld het
clusterresultaat dat een maximaal verschil in overleving van de patiénten in
de verschillende clusters vertoont). Het zou echter kunnen dat dit
clusterresultaat per toeval werd gegenereerd (en die kans verhoogt indien
meerdere clusterresultaten beschikbaar zijn) en niet resulteert in categorieén
die een werkelijk biologisch of medisch proces weerspiegelen. In feite gaat
het hier opnieuw over een probleem van meervoudig testen. Uit deze
observatie concluderen we dat ieder clusterresultaat in de literatuur met de
nodige reserve moet worden bekeken en dat de auteurs die dergelijke
resultaten publiceren tenminste zouden moeten vermelden hoeveel
verschillende verzamelingen van clusters ze in overweging hebben genomen.

Merk op dat ook de rijen van de expressiematrix
(genexpressieprofielen) als basis kunnen dienen voor clustering. Deze
problematiek zal verder worden besproken in Hoofdstuk 4 en 5.

Classificatie

In een klinische omgeving is het belangrijk dat, aan de hand van
metingen met microroosters, voor individuele patiénten voorspellingen
kunnen worden gedaan i.v.m. prognose, antwoord op therapie,
stadiumbepaling, histopathologische diagnose, ... Dit gebeurt aan de hand
van wiskundige modellen. In deze tekst worden twee verschillende binaire
classificatietechnieken voor microroosterexperimenten bestudeerd: Fisher’s
Lineaire Discriminant Analyse (FDA) en LS-SVM. FDA is een lineaire
classificatiemethode die geen regularisatie gebruikt en dus moet
gecombineerd worden met voorafgaande selectie van kenmerken. LS-SVM-
classificatie gebruikt wel regularisatie en kan in principe onmiddellijk
worden toegepast op microroostergegevens. Deze technieken werden
toegepast op de data van Golub et al. en Perou et al. Bovendien worden de
conclusies van een studie besproken die, aan de hand van 9 datasets, deze
technieken vergelijkt en die het belang van dimensionaliteitsreductie of
regularisatiec en het belang van niet-lineariteit bij de classificatie van
microroosterexperimenten onderzoekt (Pochet et al., 2004).

Na toepassing van PCA met niet-gesuperviseerde selectie van twee
principale componenten op de trainingsset van Golub et al., kunnen we een
FDA-model trainen in twee dimensies. Dit model kunnen we vervolgens
toepassen op de pati€nten van de testset (Figuur 3.7). Dit resulteerde in 3
misclassificaties (91% nauwkeurigheid). De bekomen performantie van het
model echter, is in dit geval athankelijk van de specifiecke onderverdeling
tussen trainings- en testset en van het aantal gekozen principale
componenten. Om een betere beoordeling van de modelperformantie te
bekomen, hebben we het trainen en testen van het model herhaald voor 20
randomisaties van de originele trainings- en testset waarbij we bovendien het
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aantal geselecteerde principale componenten hebben geoptimiseerd met
behulp van een “leave-one-out cross-validatie” (LOO-CV) op de
trainingsset. Dit resulteerde in een gemiddelde nauwkeurigheid van het
model (ge€valueerd op de testset) van 94.40% (met een standaard deviatie
van 3.84%). Gesuperviseerde selectic van de principale componenten
resulteerde hier niet in een betere performantie. Dezelfde randomisaties
werden gebruikt om de performantie van LS-SVM-modellen met een
lincaire en RBF-kernel te onderzoeken (zonder voorafgaande
dimensionaliteitsreductie). Dit resulteerde in een nauwkeurigheid van
92.86% (0 =4.12%) en 93.56% (o = 4.12%), respectievelijk.

Het gebruik van FDA tesamen met de data van Perou et al. werd
geévalueerd met een LOO-CV in combinatie met een gesuperviseerde
selectie van de principale componenten in iedere iteratie. Indien er telkens 5
principale componenten worden geselecteerd resulteerde dit in een
nauwkeurigheid van 79%. Dit resultaat toont duidelijk aan dat de
differentiatiegraad van borstcarcinomen kan worden voorspeld met
expressiepatronen.

We sluiten deze paragraaf af met een opsomming van de 3
voornaamste conclusies van onze vergelijkende studie:

1. LS-SVM-modellen met een lineaire en RBF-kernel zonder
voorafgaande dimensionaliteitsreductie en die regularisatie toepassen,
geven goede resultaten wanneer ze ge€valueerd worden op een testset.
Het gebruik van een RBF-kernel resulteert in een evenwaardige of in
sommige gevallen een betere performantie in vergelijking met een
lineaire kernel.

2. Onze studie bevestigt dat regularisatie belangrijk is wanneer lineaire
classificatie wordt ondernomen zonder voorafgaande
dimensionaliteitsreductie.

3. Het toepassen van kernel-PCA met RBF-kernel voor FDA geeft
minderwaardige resultaten.

Hoofdstuk 4: Clusteranalyse van genexpressieprofielen

In dit hoofdstuk gaan we dieper in op een specifiek element van het
algemeen kader voor gegevensontginning toegepast op
microroostergegevens: clustering van genexpressieprofielen (rijen van de
expressiematrix) (Moreau et al., 2002a; Thijs et al., 2004). In tegenstelling
tot het vorige hoofdstuk, beschouwen we hier vooral microroosterdata die
metingen bevatten van stalen die genomen zijn op verschillende tijdstippen
van een biologisch proces. De genexpressieprofielen zijn in dit geval
vectoren waarvan de componenten de expressieniveaus zijn van een
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specifieck gen genomen op verschillende ogenblikken in de tijd.
Clusteranalyse van genexpressieprofielen zoekt groepen van genen waarvan
de expressie zich op gelijkaardige wijze gedraagt. Met andere woorden, deze
techniek zoekt genexpressieprofielen die voldoende dicht tegen elkaar liggen
(volgens een zekere afstandsmaat). Dit is belangrijk omdat gelijkaardige
expressie (ook wel co-expressie genoemd) van genen informatie kan
opleveren over de biologische functie van die genen. Co-expressie van genen
verhoogt bijvoorbeeld de kans dat de transcriptie van die genen op dezelfde
manier wordt gereguleerd (co-regulatie), d.w.z. dat ze interageren met
dezelfde transcriptiefactor. In hetgeen volgt bespreken we eerst twee stappen
die meestal in combinatie met clusteranalyse van genexpressieprofielen
worden gebruikt ter voorbereiding van de data. Daarna bespreken we enkele
eigenschappen van algoritmen van de eerste en tweede generatie. Als laatste
geven we een woordje uitleg over de validatie van de resultaten van
clusteralgoritmen.

Voorbereiding van de data

Hier bespreken we twee technieken die, naast de drie stappen die in
Hoofdstuk 3 werden besproken, meestal worden uitgevoerd vooraleer men
overgaat tot clusteranalyse van genexpressieprofielen.

1. Filteren: Sommige genen waarvan de expressie wordt gemeten op een
microrooster zijn niet betrokken in het biologisch proces dat wordt
bestudeerd. Hun expressieniveaus vertonen dikwijls weinig variatie
over de verschillende experimenten. Wanneer deze genen zouden
betrokken worden in de clusteranalyse zouden ze de kwaliteit van het
uiteindelijk resultaat in negatieve zin kunnen beinvloeden. Het zou
dus beter zijn om deze genen te verwijderen vooraleer over te gaan tot
het clusteren. Dit noemt men filteren. Bij filteren is het de bedoeling
om genen die niet beantwoorden aan een zeker criterium (bijvoorbeeld
een minimum standaard deviatie) te verwijderen uit de dataset.

2. Standaardisatie: Biologen zijn over het algemeen geinteresseerd in
groepen van genen die hetzelfde relatief gedrag vertonen, d.w.z. op
hetzelfde moment stijgende en dalende expressiewaarden vertonen.
Het kan echter zijn dat genen met een gelijkaardig relatief gedrag toch
een zeer verschillend absoluut gedrag vertonen en bijgevolg een grote
Euclidische afstand hebben (bijvoorbeeld als ze een verschillende
amplitude hebben of een verschillende basislijn). Om dit te vermijden
kan men de genexpressieprofielen standaardiseren. Dit betekent dat
ieder  genexpressieniveau g in  een  genexpressieprofiel
a(g'. g, ....g. ....g°) moet worden vervangen door:
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g —u
o )

waarbij 4 het gemiddelde expressieniveau is van g en o de standaard
deviatie.

Algoritmen van de eerste generatie

Alhoewel er met de clusteralgoritmen van de eerste generatie (zoals
visuele inspectie, K-means, hiérarchische clustering en “Self-Organizing
Maps” (SOM) die oorspronkelijk ontworpen werden voor andere
doeleinden) biologisch relevante resultaten kunnen bekomen worden,
bezitten deze technieken een aantal eigenschappen die ze minder geschikt
maken voor het clusteren van genexpressiedata. Zo vereisen ze bijvoorbeeld
dat de gebruiker een arbitraire waarde voor een zekere parameter definieert
(bijvoorbeeld het aantal clusters in K-means) die een belangrijke impact kan
hebben op het uiteindelijk resultaat. Deze algoritmen moeten dus
gecombineerd worden met procedures die toelaten om de meest geschikte
waarde voor deze parameter te vinden, wat allerminst triviaal is. Een ander
probleem is dat deze technieken ieder expressieprofiel in een cluster
dwingen. Dit geldt ook voor de genen die niet echt betrokken zijn in het
biologisch proces dat wordt bestudeerd. Dit kan leiden tot vervuiling van de
clusters en een verstoring van hun gemiddeld expressiegedrag. Als laatste
kan men vermelden dat de eerste generatie clusteralgoritmen meestal een
rekencomplexiteit bezitten die niet toelaat om grote verzamelingen van
genexpressieprofielen te clusteren. Vermits de datasets die meestal
bestudeerd worden een aanzienlijke aantal genen bevatten, is deze beperking
dikwijls onaanvaardbaar.

Algoritmen van de tweede generatie

Recent zijn er een aantal clusteralgoritmen gepubliceerd die
specifiek werden ontworpen voor het clusteren van genexpressieprofielen
(bijvoorbeeld het “Self-organizing tree” algoritme (SOTA) (Herrero et al.,
2001), modelgebaseerd clusteren (Ghosh en Chinnaiyan, 2002; Yeung et al.,
2001a) en het kwaliteitsgebaseerd clusteren (Heyer et al., 1999)) en die een
aantal van de problemen met de algoritmen van de eerste generatie trachten
te verhelpen. De speciale vereisten voor het clusteren van
genexpressieprofielen zijn ook de aanleiding geweest voor net ontwikkelen
van een eigen clusteralgoritme dat adaptief kwaliteitsgebaseerd clusteren
(AQBC) wordt genoemd en in het volgende hoofdstuk grondig wordt
besproken. De techniek die werd geintroduceerd door Heyer et al.
(kwaliteitsgebaseerd clusteren) diende hiervoor als vertrekpunt. Hun aanpak
resulteert in clusters die zoveel mogelijk genen bevatten die minstens een
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minimum aan co-expressie vertonen. Dit resulteert in clusters die beter
geschikt zouden kunnen zijn voor verdere analyse. Vermits alleen clusters
worden gegenereerd waarin het aantal genen boven een zeker minimum
komt, worden niet alle genen in een dataset aan een cluster toegewezen. De
minimale graad van co-expressie die de genen in een zekere cluster minstens
moeten vertonen, wordt echter beschreven als een clusterdiameter (ook wel
de kwaliteit van de cluster genoemd) dat door de gebruiker moet worden
gespecificeerd en opnieuw redelijk arbitrair is en niet noodzakelijk aangepast
aan de lokale structuur van de data. Bovendien is hun algoritme kwadratisch
in het aantal expressieprofielen.

Clustervalidatie

Een bioloog is voornamelijk geinteresseerd in de biologische
relevantie van de clusters die gegenereerd worden door clusteralgoritmen en
wil deze techniecken gebruiken om nieuwe biologische processen te
ontdekken. Dit wil zeggen dat er methoden nodig zijn om te testen of
bestaande en nieuwe clusteralgoritmen betekenisvolle resultaten opleveren.
Het zoeken naar verrijking in bepaalde functionele categorieén (Tavazoie et
al., 1999), “Figure of merit” (FOM) (Yeung et al., 2001b), de Rand index
(Yeung en Ruzzo, 2001c) en de silhouette (Kaufman en Rousseeuw, 1990)
zijn enkele van de methoden die geschikt zijn om resultaten van een
clusteringtechniek te valideren. Bovendien wordt de dataset van Cho et al.
(1999) (die de celcyclus van gist bestudeert) dikwijls gebruikt om de
performantie van clusteralgoritmen te vergelijken.

Een manier om een verzameling clusters te valideren is deze te
vergelijken met bestaande schema’s die genen indelen volgens hun
biologische functie. Als er clusters gevonden worden die een significant
aantal genen bevatten uit eenzelfde functionele klasse kan dit bewijzen dat
een clusterresultaat biologisch relevant is. De data van Cho et al. (celcyclus
van gist), bijvoorbeeld, bevat genen die functioneel geclassificeerd zijn. Dit
is een van de redenen dat deze dataset dikwijls gebruikt wordt voor
clustervalidatie. Veronderstel dat een clusteralgoritme een zeker aantal
clusters terugvindt in deze dataset. Veronderstel dat een welbepaalde cluster
g genen bevat waarvan er k tot dezelfde functionele klasse behoren.
Veronderstel bovendien dat deze functionele klasse op zijn beurt /' genen en
de volledige dataset n genen (in dit geval 6220) bevat. Door gebruik te
maken van de cumulatieve hypergeometrische distributie kunnen we de kans
of p-waarde berekenen dat dit niveau van verrijking per toeval is opgetreden,
d.w.z, wat is de kans om minstens k£ genen te vinden in deze specificke
cluster van g genen uit een specifieke functionele klasse van f genen en uit
een dataset met # genen:
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Deze p-waarden kunnen worden berekend in iedere cluster voor iedere
functionele categorie. Vermist er in dit specifiek voorbeeld ongeveer 200
functionele klassen bestaan, moet er rekening gehouden worden met het
probleem van meervoudig testen wat in dit geval betekent dat alleen clusters
weerhouden worden met een p-waarde voor een zekere functionele klasse
die kleiner is dan 0.0003.

Hoofdstuk 5: Adaptief kwaliteitsgebaseerd clusteren van
genexpressieprofielen

In het vorige hoofdstuk hebben we opgemerkt dat sommige van de
klassieke algoritmen die gebruikt worden voor het clusteren van
genexpressieprofielen, een aantal eigenschappen bezitten die hen minder
geschikt maakt voor deze taak. In dit hoofdstuk stellen we een algoritme
voor dat we zelf hebben ontworpen en dat tracht tegemoet te komen aan deze
nadelen. We hebben deze aanpak adaptief kwaliteitsgebaseerd clusteren
genoemd (AQBC (van “Adaptive quality-based clustering”)) (De Smet et al.,
2002). Deze methode is, in essentie, een heuristisch algoritme dat in iedere
iteratie twee stappen uitvoert. Een bijzondere eigenschap van dit algoritme is
dat het enkel gestandaardiseerde genexpressieprofielen beschouwt. Daaruit
volgt dat deze profielen op de doorsnede liggen van een hypervlak en een
hypersfeer in de e-dimensionale ruimte (waarbij e het aantal componenten is
van ieder genexpressieprofiel). Hieronder bespreken we de essentiéle
onderdelen van deze aanpak.

Algoritme

De gebruiker van AQBC moet twee parameters definiéren:
MIN _NR_GENES en S. De eerste parameter geeft het minimum aantal genen
in een cluster en de tweede parameter geeft het significantieniveau, d.w.z.,
de minimum kans dat een gen dat aan de cluster is toegewezen werkelijk tot
de cluster behoort. Meestal wordt hiervoor 95% genomen. Merk op dat we in
dit algoritme ervoor gekozen hebben om de ontbrekende waarden te
verwerken zonder vervanging zoals besproken in Hoofdstuk 3.

Gedurende iedere iteratie voert het algoritme twee stappen uit die
hieronder worden besproken:
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Stap 1: lokalisatie van een clustercentrum

In de eerste stap wordt een clustercentrum gezocht waarrond een maximaal
aantal genexpressieprofielen liggen binnen een zekere voorlopige straal (ook
wel de kwaliteit van de cluster genoemd) waarvan de waarde gelijk is aan de
straal die gevonden was in Stap 2 (zie verder) van de vorige iteratie. In de
eerste iteratie wordt deze waarde geinitialiseerd aan de hand van een formule
die athankelijk is van e. Dit clustercentrum wordt, samengevat, gevonden
door het repetitief verplaatsen van het middelpunt van een hypersfeer naar
zijn zwaartepunt (d.w.z. naar het gemiddelde van alle genexpressieprofielen
die binnen de gegeven straal liggen - zie Figuur 5.1) totdat het middelpunt
samenvalt met het zwaartepunt.

Stap 2: herberekening van de straal

In deze stap wordt de voorlopige waarde voor de straal die werd gebruikt
voor het lokaliseren van het clustercentrum in Stap 1, herberekend zodanig
dat alle genen van de cluster een significante co-expressie vertonen, d.w.z.,
dat ze een minimum kans (gegeven door S) moeten hebben om tot de cluster
te behoren (het clustercentrum in deze stap blijft constant en wordt gegeven
door het punt dat in Stap 1 werd gevonden). Om deze kans te berekenen
hebben we de distributiec van de Euclidische afstand » van de
expressieprofielen tot het clustercentrum gemodelleerd. Dit model wordt
gegeven door:

p(r)=P..p(r| C)+ P;.p(r|B) (6)
waar
_ Sd d-1 r
p(FIC)—WF exp(— o ™
S
r|B)y=——-4 ¢ (8)
p( | ) Sal+1(d+1)d/2
P.+P, =1 ©)
cn
d=e-2 (10)
27z_d/2
S, = 11
T T(d/2) (an

XX1V



Nederlandse samenvatting

I'(x) = qu_le_”du. (12)
0

Het model in Vergelijking 6 bestaat uit twee termen. De eerste term
beschrijft de distributie van de profielen die tot de huidige cluster behoren en
de tweede term beschrijft de distributie van de profielen die niet tot de
cluster behoren (dit worden ook de profielen genoemd die tot de achtergrond
behoren). leder van de termen wordt ook vermenigvuldigd door zijn
geassocieerde a-priori kans (P¢ en Pg). De parameters van dit model (6, Pc
en Pp) worden door middel van een EM-algoritme geschat en aangepast aan
de structuur van de data (zie Figuur 5.2). De straal van de cluster (R;) wordt
dan als volgt herberekend:

Pp(R|C)
Pe.p(Ry |C)+ Py.p(R, | B)

P(C[R,)= (13)

Als deze herberekende straal meer dan 10% verschilt van de voorlopige
waarde die werd gebruikt in Stap 1, dan wordt de hele procedure (Stap 1 en
Stap 2) opnieuw opgestart maar waarbij de hier (her)berekende waarde voor
de straal gebruikt wordt als voorlopige waarde in Stap 1. Als de hier
herberekende straal niet meer dan 10% verschilt van de voorlopige straal die
werd gebruikt in Stap 1, dan worden die genexpressieprofielen die
gedefinieerd worden door deze herberekende straal en het clustercentrum
(bepaald in Stap 1) uit de dataset verwijderd. Bovendien wordt deze
verzameling van profielen als een geldige cluster beschouwd en getoond aan
de gebruiker als het aantal profielen in deze verzameling groter is dan
MIN NR_GENES.

Het algoritme eindigt als aan het stopcriterium is voldaan. Dit is
onder andere het geval als de verzameling genexpressieprofielen die uit de
dataset wordt verwijderd een vast aantal maal en opeenvolgend minder
elementen bevat dan MIN NR_GENES. De rekencomplexiteit van het totale
algoritme is lineair in # (n is het aantal genexpressieprofielen in de dataset).
Deze methode is geintegreerd en publiek beschikbaar in een pakket
(INCLUSive) voor analyse van microroosterdata dat op het internet kan
gevonden worden (Thijs et al., 2002; Coessens et al., 2003).

Resultaten

AQBC werd getest op een aantal datasets waaronder de data van
Cho et al. (celcyclus in gist) die reeds werd vermeld in het vorige hoofdstuk.
Na het filteren van de 3000 genen met de hoogste waarde voor o/ i (voor
standaardisatiec) hebben we AQBC toegepast met S = 0.95 en
MIN NR GENES = 10 (zie Figuur 5.3 voor het resultaat). We hebben het
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resultaat gevalideerd door te zoeken naar clusters die verrijkt waren in
bepaalde functionele categorieén, zoals eveneens besproken in het vorige
hoofdstuk (zie Tabel 5.3). We hebben de resulterende p-waarden vergeleken
met de p-waarden van de functioneel overeenkomende clusters die gevonden
waren door Tavazoie et al. (1999) door het K-means-algoritme toe te passen
op dezelfde data set. De drie belangrijkste clusters gevonden door Tavazoie
et al. werden ook door AQBC gevonden maar de verrijking lag gevoelig
hoger bij AQBC.

In het hierboven beschreven resultaat hebben we hetzelfde criterium
gebruikt als Tavazoie et al. om te filteren (gebaseerd op o/ 1) omdat we de
vergelijking tussen K-means en AQBC niet wilden beinvloeden door een
verschil in filtering. We hebben echter de data van Cho et al. opnicuw
geanalyseerd met AQBC (met dezelfde waarden voor de parameters) maar
waarbij we de 3000 genen hebben geselecteerd met de hoogste standaard
deviatic 0. We hebben de resulterende clusters gevalideerd en kwamen tot
het besluit dat verschillende onder hen waren verrijkt in functionele
categorieén van het hoogste niveau (zie Tabel 5.4). Bovendien waren we in
staat om de rol van iedere cluster in de celcyclus van gist te bepalen en deze
rol te correleren met het gemiddelde expressieprofiel in iedere cluster. We
hebben ook verschillende proteinecomplexen gevonden waarvan bijna alle
leden tot dezelfde cluster behoorden.

We hebben AQBC ook getest op een dataset die de ontwikkeling
van het centraal zenuwstelsel in de rat bestudeert, op een dataset die bestaat
uit expressiepatronen in verschillende weefsels bij muizen en op een
kunstmatige dataset. De resultaten worden in deze samenvatting niet verder
besproken.

Conclusie

In tegenstelling met de klassieke clusteralgoritmen, bezit AQBC
enkele eigenschappen die het meer geschikt maken voor het clusteren van
genexpressieprofielen:

1. Het kent niet alle expressieprofielen aan een cluster toe maar enkel
diegenen die een significante co-expressie met de andere profielen van
de cluster vertonen (significantieniveau wordt gegeven door S). Dit
wil zeggen dat de clusters die resulteren uit deze methode mogelijks
een beter vertrekpunt zijn voor verdere analyses.

2. De belangrijkste parameter die door de gebruiker moet worden
gedefinieerd is S. De waarde die hiervoor moet gekozen worden heeft
een specifieke statistische betekenis en is daardoor minder arbitrair en
kan onafhankelijk van de dataset bepaald worden. Bovendien bestaat
er een waarde (95%) voor deze parameter die in de meeste gevallen

XXV1



Nederlandse samenvatting

betekenisvolle resultaten geeft. Het is dus meestal niet nodig om
uitgebreid te zoeken naar een geschikte keuze voor deze parameter.

3. AQBC produceert clusters die geen vaste straal hebben en aangepast
zijn aan de locale datastructuur.

4. AQBC is een snel algoritme dat lineair is in het aantal
genexpressieprofielen.

5. Het algoritme is publiek beschikbaar voor data-analyse.

6. Deze aanpak werd uitgebreid biologisch gevalideerd.

Er zijn echter ook enkele nadelen:

1. Het is een heuristische aanpak waarvan het niet bewezen is dat ze
convergeert in alle situaties.

2. Het model beschreven in Vergelijkingen 6-12 geldt enkel onder
bepaalde voorwaarden. Dit omvat de noodzaak om gestandaardiseerde
genexpressieprofielen te gebruiken. Bovendien veronderstelt dit
model dat de Euclidische afstand wordt gebruikt wat wil zeggen dat
AQBC niet onmiddellijk uitbreidbaar is voor andere afstandsmaten.

Hoofdstuk 6: Univariate analyse in microroosterdata

In dit hoofdstuk concentreren we ons op univariate analyse in
microroosterdata en het probleem van meervoudig testen (De Smet et al.,
2004). Om de genen in een dataset te ordenen volgens hun correlatie met een
zeker klassenverschil (zie ook Hoofdstuk 3) - of anders gezegd, volgens hun
graad van differenti€le expressie - worden dikwijls hypothesetesten gebruikt
die resulteren in een p-waarde voor ieder gen. Vervolgens wordt een arbitrair
significantieniveau « gekozen. De genen met een kleinere p-waarde dan o
worden dan verklaard differentiéle expressie te hebben (of een positieve
uitslag van de test te hebben) en de genen met een p-waarde kleiner dan «
worden verklaard geen differenti€le expressie te hebben (negatieve uitslag
van de test). De genen waarvan de uitslag positief is worden dan
geselecteerd om verder te worden geanalyseerd of gevalideerd (bij
bijvoorbeeld het zoeken naar doelwitten voor geneesmiddelen).

De keuze van o heeft echter enkele gevolgen (zie Tabel 1). Ten
eerste kunnen genen wiens expressie niet wordt beinvloed door het
klassenverschil en dus geen werkelijke differentiéle expressie hebben, per
toeval toch een p-waarde hebben die kleiner is dan . Daardoor wordt de
uitslag van de test voor deze genen verkeerdelijk positief verklaard (vals
positieven). Dit noemt men een Type I fout. De vals positieve genen zullen
dus geen resultaten opleveren in verdere analyses. Omdat het totaal aantal
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genen en het aantal genen zonder werkelijke differentiéle expressie in
microroosterdata extreem hoog kan zijn, kan het aantal vals positieve genen
bij gebruikelijke waarden voor ¢ (bijvoorbeeld 5%) behoorlijk hoog zijn. Dit
noemt men ook het probleem van meervoudig testen.

Ten tweede kan de keuze van « ook resulteren in een aantal vals
negatieve genen. Dit zijn de genen wiens expressie wordt beinvloed door het
klassenverschil (en dus werkelijk differentieel tot expressie komen) maar een
p-waarde groter hebben dan . Dit noemt men een Type II fout die ertoe kan
leiden dat potentieel geldige doelwitten niet in overweging worden genomen
voor verder onderzoek.

In de literatuur is er recent veel aandacht besteed aan het beheersen
van de Type I fout in microroosterdata. Typisch beheerst of controleert men
de “Family-Wise Error” (FWE) of de “False Discovery Rate” (FDR - dit is
de ratio van het aantal vals positieven op het totaal aantal positieven). De
controle van het aantal Type I fouten gaat echter dikwijls ten koste van het
aantal Type II fouten dat niet gecontroleerd wordt en aanzienlijk kan zijn.

In dit hoofdstuk stellen we een op Receiver Operating Characteristic
(ROC) curven gebaseerde procedure voor die niet tracht om de Type I of 11
fout te controleren maar die probeert om een optimale balans tussen deze
twee fouten te bekomen. Bovendien stelt de oppervlakte onder deze ROC-
curve (AUC (van “Area Under the Curve”)) ons in staat om de graad van
overlapping tussen de p-waarden van de genen met en zonder werkelijke
differenti€le expressie te kwantificeren. Deze graad van overlapping bepaalt
op zijn beurt de relatie tussen de Type I en Type Il fout en bepaalt daarom
het niveau waarop de optimale balans tussen die twee bereikt wordt. De
AUC kan daarom als kwaliteitskenmerk beschouwd worden die de
mogelijkheid van microroosterdata beschrijft om te discrimineren tussen
genen met en zonder differentiéle expressie. Dit kwaliteitskenmerk kan
bijvoorbeeld gebruikt worden om verschillende datasets te vergelijken die
dezelfde condities bestuderen en om te beslissen welke data het best geschikt
zijn voor verdere analyse.

Methodologie

Onze procedure start met het toekennen van een p-waarde aan ieder
gen volgens een zekere hypothesetest. In deze tekst gebruiken we hiervoor
de “Wilcoxon rank sum test”. Vervolgens ordenen we de genen volgens hun
p-waarde (in stijgende volgorde).

Hierna berekenen we het totaal aantal genen (verder n; genoemd) dat
werkelijk differentieel tot expressie komt door de grootheid V; te berekenen
voor ieder gen:
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=—, (14)

waar i de rangorde (na ordening volgens de p-waarde) en p; de p-waarde is
van een gen (i = 1,...,n) en waar n het totaal aantal genen is in de dataset.
Wanneer men V; tegenover i uitzet in een grafiek ziet men dat deze waarde
een constant niveau bereikt voor hogere i (zie bijvoorbeeld Figuur 6.2). Men
kan bewijzen dat dit constant niveau gelijk is aan n;. Na de berekening van
n; is het eenvoudig om n, (totaal aantal genen zonder werkelijke differenti€le
expressie) te berekenen, vermits ny = n - n;.

Vervolgens kan men deze geschatte waarden voor n; en ny gebruiken
om het aantal genen te schatten dat terecht positief (7P;), terecht negatief
(TN,), vals positief (FP; - van “False Positive”) en vals negatief (FN,) is bij
ieder mogelijk significantieniveau o= p;. Dit wordt gedaan door de formules
van Tabel 1 toe te passen. Deze waarden weerspiegelen het verschil tussen
werkelijke en verklaarde differentiéle expressie.

Tabel 1: Definitie van de terecht en vals positieve genen (7P; en FP;) en van de
terecht en vals negatieve genen (7N; en FN;) en hun aantallen bij een
significantieniveau &= p;. Voor ieder van hen is de verwachte waarde gegeven

Werkelijke differentiéle expressie?
JA NEE
< & TP; P, Pos;
ol SV —i-pon = pihg —;
k= ’é 2 S =i Pt Type I fout
< [75)
258 -
SES m< N, TN; Neg;
S SO i | | S
S Type II fout =P
n; ny

Deze waarden kan men gebruiken om de sensitiviteit
(SENS; = TP/TP+FN;), specificiteit (SPEC; = TN/TN+FP;), en FDR
(FDR; = FP/TP+FP;) te berekenen voor ieder mogelijk significantieniveau.
Wanneer we vervolgens de sensitiviteit uitzetten versus 1 - specificiteit
krijgen we een ROC-curve.
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Deze ROC-curve kan men gebruiken om een significantieniveau o/”'
te bepalen waarbij een optimale balans tussen het aantal Type I en Type II
fouten wordt bereikt. Dit optimum kan op verschillende manieren worden
gedefinieerd maar in deze tekst gebruiken we het punt op de ROC-curve dat
een raaklijn met richtingscoéfficiént 1 heeft. Hiervan kan het bewezen
worden dat het de som van de kans op een Type I en Type II fout minimaal
maakt (of anders gezegd, de som van de sensitiviteit en specificiteit
maximaal maakt). De AUC heeft ook een speciale betekenis: ze is gelijk aan
de kans dat de p-waarde van een willekeurig gen met werkelijke differenti€le
expressie kleiner is dan de p-waarde van een willekeurig gen zonder
werkelijke differentiéle expressie. Zoals reeds gezegd karakteriseert deze
waarde dus de graad van overlapping tussen de p-waarden van de genen met
en zonder werkelijke differenti€le expressie en bepaalt ze dus de balans
tussen de Type en Type Il fout. Ze kan beschouwd worden als een
kwaliteitskenmerk van een bepaalde dataset met betrekking tot de studie van
differenti€le expressie. Dit kwaliteitskenmerk is onathankelijk van een
significantieniveau.

Resultaten

We hebben de hierboven beschreven procedure toegepast op
verschillende voorbeelden waarvan we de resultaten hier kort zullen
samenvatten.

We hebben twee datasets vergeleken die expressiepatronen van
patiénten bevatten met ALL en AML: de data van Golub et al. (1999) (zie
ook Hoofdstuk 3) en de data van Armstrong et al. (2002). Zie ook Figuur 6.8
en Tabel 6.2. De AUC van de dataset van Armstrong et al. (95.13%) is
significant (p <0.0001) hoger dan de AUC van de data van Golub et al.
(91.39%) wat weerspiegeld wordt in het niveau van de balans tussen de Type
I en Type II fout in &”. De som van de sensitiviteit en specificiteit in o/”'
ligt dus hoger bij de data van Armstrong et al. dan bij de data van Golub et
al. (175.82% versus 166.09%). De relatieve waarde van n; (n;/n) is bij
Armstrong et al. (75.49%) ook beduidend groter dan bij Golub et al.
(45.63%) Zowel de hogere AUC als de hogere relatieve waarde voor n; zijn
de oorzaak van een veel gunstiger verloop van de FDR bij Armstrong et al.
(ze stijgt veel minder vlug en bereikt een kleinere maximale waarde). Uit
deze resultaten kunnen we dus besluiten dat de data van Armstrong et al.
geschikter zijn om differenti€le expressie tussen ALL en AML te bestuderen
dan de data van Golub et al.

Armstrong et al. hebben ook nog een klasse acute leukemie
bestudeerd die ze MLL noemden. Dit gaf ons de mogelijkheid om te
onderzoeken wat de invloed op de differentiéle expressie was van een
wijziging in conditie. We hebben de expressiepatronen in de data van
Armstrong et al. gebruikt om de differentiéle expressie te vergelijken tussen
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ALL en AML, tussen ALL en MLL en tussen AML en MLL (zie ook Tabel
6.2). Dit resulteerde in een significant lagere AUC voor de differentiéle
expressie tussen ALL en MLL (85.98%) in vergelijking met de differenti€le
expressie tussen ALL en AML (95.13%) en in vergelijking met de
differenti€le expressie tussen AML en MLL (94.83%). Hetzelfde geldt voor
de relatieve waarde van n; (de waarden hiervoor waren, respectievelijk:
35.47%, 75.49% en 64.02%). Hieruit kunnen we dus besluiten dat de graad
van differenti€le expressie tussen ALL en MLL minder is dan de graad van
differenti€le expressie tussen ALL en AML of tussen AML en MLL. Dit
klinkt aannemelijk vermits er reeds geweten was dat de blasten bij MLL een
gelijkaardige morfologie hadden als bij ALL.

Als laatste voorbeeld hebben we onze procedure toegepast op twee
datasets die expressiepatronen bevatten van pati€nten met matig en slecht
gedifferentieerde borsttumoren: Perou et al. (2000) (zie ook Hoofdstuk 3) en
van 't Veer et al. (2002) (zie Figuur 6.9). De resultaten gaven opnieuw een
duidelijk verschil in kwaliteit met betrekking tot de studie van differenti€le
expressie tussen de twee beschouwde condities: de data van van ’t Veer et al.
was hiervoor beter geschikt dan de data van Perou et al. De AUC en
relatieve waarde voor n; bij de data van Perou et al. waren respectievelijk:
87.99% en 14%. Bij van ’t Veer et al. waren die: 90.54% en 42%. De AUC
bij van ’t Veer was significant hoger (p = 0.0001) dan de AUC van Perou et
al. Opnieuw hebben zowel het verschil in AUC als het verschil in relatieve
waarde voor n; hun impact op het verloop van de FDR in beide datasets
(gunstiger verloop bij van 't Veer et al.).

Discussie

Volgens ons kan het verschil in geschiktheid van microroosterdata
om differenti€le expressie tussen welbepaalde condities te bestuderen
(gedetecteerd door een verschil in AUC) te wijten zijn aan het gebruik van
een andere of verbeterde microroostertechnologie en experimenteel protocol.
Het behoort ook tot de mogelijkheden dat er een verschil bestaat in de
specificiteit (voor een zekere pathologie of klassenverschil) van de genen die
aanwezig zijn op het microrooster. Eventueel kunnen een verschil in de
kwaliteit van de tumorbiopsies en een verschil in de beoordeling van de
histopathologie, ook een wijziging in de AUC veroorzaken.

De methode beschreven in dit hoofdstuk zou ook kunnen gebruikt
worden om de kwaliteit van verschillende platformen te vergelijken
(bijvoorbeeld Affymetrix versus cDNA-microroosters), om het effect van
een verschillende voorbereiding van de data te bestuderen op de detectie van
differentiéle expressie en om het effect van additionele experimenten te
beoordelen. Bovendien kan het voor dezelfde dataset gebruikt worden om te
beslissen welke hypothesetest het beste resultaat geeft.
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Hoofdstuk 7: Conclusies en toekomstig onderzoek

In dit hoofdstuk vatten we de voornaamste conclusies en eigen
bijdragen samen. Bovendien stellen we kort enkele specificke
onderzoeksprojecten voor waarin we in de toekomst willen bijdragen. Noteer
dat twee van deze projecten het gebruik van proteoomdata inhouden. Als
laatste deel van dit hoofdstuk bespreken we enkele algemene toekomstige
onderzoeksvragen.

Specifiek toekomstig onderzoek
Ovariale tumoren: studie van het transcriptoom

In dit onderzoek willen we wiskundige modellen construeren die aan
de hand van genexpressiedata van sereuze (meest voorkomende
histopathologie)  ovariumcarcinomen de  volgende twee  binaire
classificatieproblemen trachten op te lossen:

1. Voorspelling of een patiént met een stadium III (FIGO
stadiumbepaling) ovariale tumor zal hervallen binnen 6 maanden na de
laatste therapeutische interventie. Omdat de standaard chemotherapie
voor ovariumcarcinomen meestal gebaseerd is op platinum, zullen deze
modellen in staat zijn om platinumresistentie (chemosensitiviteit van de
tumor) te voorspellen. Dit zal de geneesheer in de eerste plaats in staat
stellen om de patiént realistische informatie te geven in verband met
zijn prognose, maar het kan ook toelaten om in de toekomst een
alternatieve behandeling te ontwikkelen voor stadium III tumoren
waarvan voorspeld wordt dat ze niet gevoelig zullen zijn aan de
standaard chemotherapie.

2. Voorspelling of een patiént met een stadium I ovariale tumor zal
hervallen na de initi€le chirurgie. De patiénten met een stadium I tumor
die volgens onze modellen een hoge kans hebben op een recidief, zijn
ideale kandidaten die maximaal voordeel zullen halen uit een adjuvante
therapie (chemotherapie en/of lymfadenectomie) terwijl patiénten met
een stadium I tumor en een lage kans op recidief gespaard zouden
kunnen blijven van de bijwerkingen van een zinloze adjuvante
behandeling en kunnen gerustgesteld worden dat ze een hoge kans op
blijvende genezing hebben.

Endometriose: studie van het transcriptoom en proteoom

Hier plannen we om zowel het transcriptoom en proteoom te
bestuderen van weefselstalen die bestaan uit normaal uterien endometrium
van vrouwen met en zonder endometriose. Bovendien zullen de vrouwen
met matige-ernstige endometriose nog onderverdeeld worden in diegenen
met en zonder herval na chirurgie. Hierdoor hopen we wiskundige modellen
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te kunnen opstellen die de aanwezigheid van endometriose en de kans op
herval na chirurgie kunnen voorspellen. In een eerste fase willen we
modellen identificeren die gebaseerd zijn op één datatype (d.w.z. op
microrooster- of proteoomdata alleen). In een volgende fase hopen we om de
voorspellingen te optimaliseren door modellen te construeren die
microrooster- en proteoomdata combineren (eventueel nog zelfs aangevuld
met klinische gegevens). Bovendien is het de bedoeling om de patronen die
bekomen werden uit de studie van het transcriptoom en proteoom met elkaar
te vergelijken met een techniek die gebaseerd is op GSVD (Alter et al.,
2003).

Cervix- en endometriumcarcinomen: studie van het proteoom

In dit onderzoek willen we serum- en weefselstalen van patiénten
onderzoeken met cervix- of endometriumcarcinomen met de bedoeling om
prognostische informatie te bekomen. De studie van het proteoom in serum
kan eventueel leiden tot de identificatie van merkers die kunnen bepaald
worden aan de hand van een eenvoudig te bekomen bloedstaal (in
tegenstelling tot het nemen van een biopsie).

Algemene toekomstige onderzoeksvraagstukken

Terwijl er recent verschillende publicaties zijn verschenen die
duidelijk het potentieel van microroosters bij het bepalen van het klinische
beleid in de oncologie aantonen, zijn er echter nog veel hindernissen die het
gebruik van deze technologie in de dagdagelijkse klinische praktijk
verhinderen.

Vooraleerst zijn de meeste modellen die geconstrueerd zijn aan de
hand van microroosterdata gebaseerd en getest op een beperkt aantal
patiénten. Om betrouwbare modellen te bekomen moeten voldoende
technische en biologische replica’s voorhanden zijn. Bovendien moeten deze
modellen prospectief worden gevalideerd in klinische studies met grotere
groepen patiénten.

Bovendien is er ook nog het probleem van de standaardisatie. Omdat
de experimentele procedure voor het bestuderen van het transcriptoom
gevoelig kan variéren van plaats tot plaats, is het mogelijk dat klinische
modellen die bekomen zijn in een bepaald centrum niet direct overdraagbaar
zijn naar een ander centrum. Gedetailleerde experimentele richtlijnen zijn
nodig vooraleer een implementatie in de klinische praktijk mogelijk is. Merk
ook op dat het gebruik van een unieke referentie bij cDNA-microroosters
een veralgemeende toepassing van de resulterende modellen onmogelijk
maakt.

Zoals reeds vermeld, is het mogelijk dat men door de studie van het
proteoom meer informatie kan bekomen over het fenotype van een tumorcel.
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Bovendien zijn voor de studie van het transcriptoom steeds weefselstalen
nodig, wat niet altijd het geval is voor de studie van het proteoom (dat
bijvoorbeeld ook in serum kan bepaald worden). Het gebruik van
proteoomdata kan hierdoor de volgende stap zijn om hoogdimensionale
moleculair biologische data in het klinisch beslissingsproces te integreren.

Specifiek voor de mathematische analyse van hoogdimensionale
moleculair biologische gegevens blijven er ook nog een aantal open
onderzoeksvragen die het eventueel mogelijk maken om bijkomende
informatie te bekomen. Dit omvat ondermeer het combineren van
microroosterdata, proteoomdata en eventueel klinische data in hetzelfde
model, het gebruik van Independent Component Analyse (ICA), de
combinatie van modelselectietechnieken met andere methoden voor de
selectie van kenmerken, het gebruik van andere afstandsmaten bij clustering
en kernelversies van clusteralgoritmen, het gebruik van GSVD of CCA voor
de vergelijking van microrooster- en/of proteoomdata en het gebruik van
meta-analyse technieken voor de analyse van data die afkomstig zijn van
verschillende bronnen of centra.
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Notation

List of symbols

In the following table we alphabetically list and explain the symbols
that are used in this text. Some of the symbols can have more than one
meaning, which should be clear from the context.

Symbol

#
%)

{}
{x | Condition(x)}

*0 AR M- C

n!
I,
Ji

i=1

Explanation

Number of elements in a set
An empty set

A set

A set that contains x-values for which the Condition is
true

Union of two sets
Subtraction of two sets

Is an element of

Is not an element of

Not equal to

Approximately equal to
Missing value
n.(n-1).(n-2)..3.2.1

2-norm of a vector

Sum: x;+x,txszt.. . +x;

Product: x;.x5. x3... x;

Absolute value of x

XXXV



Notation

Symbol

4

]

\

A4

[x; X2 ... X4]
Iy

a
A
Ap

Aroc

Agoc,
A

ACCUR_RAD

AP
o
o’

QOOO® TR

CEIL(x)
d

d(g,C)
d(vi,vi)

dr

XXXV1

Explanation

Number of combinations of m elements chosen from a
set of n elements

n) n!
m _m!(n—m)!

Integral

Square root

For all elements off

Row vector with components x,, x, ..., X,

Row vector of dimension N where the components equal
1

Number of gene pairs that are placed in the same cluster
in two partitions

Expression matrix of a set of microarray experiments
(n X e matrix)

Diagonal matrix whose elements are proportional to the
eigenvalues of X

True AUC for an infinite sample

Estimate of the AUC

Expression matrix where the gene expression profiles
have been sorted (descending order) according to their
correlation with g,,,

Internal tuning parameter of AQBC

TVS parameter - Uterine anteroposterior diameter (mm)
Rejection level or confidence level

Optimal rejection level

Lagrange multiplier (LS-SVM)

Model threshold

i"™ model parameter of a linear model

Cluster

Class i or cluster i

Presence of a clear cell component in an endometrial
tumour (0:not present, 1:present)

Smallest integer that is equal or larger than x

Number of gene pairs that are placed in different
clusters in two partitions

(in Chapter 5 (AQBC) this also refers to ¢ - 2)

Distance from a gene expression profile g; to a cluster
C.

Euclidean distance between the expression vectors vy
and v,

Elementary thickness
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Symbol

dv

D(ij)

Dy
DD
DIV
A

€

e
E()

EL

ET
EV

FDR,
FN;
FP,

&i
g/
Emy
g si

gx)
G(g)

Explanation

Elementary volume

Fixed threshold for the diameter of a cluster
Evaluation of the status of the j™ component of the "
expression vector. Equals 1 if this not a missing value
and equals 0 otherwise

Orthogonal matrix of the eigenvectors of X (this
notation is also used for a design variable)

Degree of differentiation of an endometrial tumour
(1:good, 2: moderate, 3: poor)

Internal tuning parameter of AQBC

Constant of proportionality of %

Number of microarray experiments in a microarray data
set — number of columns of the expression matrix 4
Number of microarray experiments in a data set that
belong to class i

Error variables (LS-SVM)

Expected value

TVS parameter - Endometrial Echogenicity
(0:homogeneous, 1:heterogeneous)

TVS parameter - Endometrial Lining (0:regular,
l:irregular)

TVS parameter - Endometrial thickness (mm)

TVS parameter - Endometrial volume (ml)

Number of genes in a functional category

Column vector (s x 1) that contains the s features of the
microarray experiment with expression vector m after
PCA

False discovery rate at rejection level o= p;

Number of false negative genes at rejection level o= p;
Number of false positive genes at rejection level o= p;
Gene expression profile (1 x e row vector) (g is also
used for the number of genes in a cluster)

i™ gene expression profile (1 x e row vector)

™ component of gene expression profile g

™ component of the i gene expression profile g;

Gene expression profile with missing value

Gene expression profile with i™ largest correlation with
8gmv

Logit (logistic regression)

Golub score of the i™ gene expression profile
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Symbol

G

LB

Ci
m

m

my
max X

mean(X)
min X

M;
MAXITER
ME

MI

MIN NR_GENES

MT
U

XXXVIil

Explanation

Collection of gene expression profiles (this notation is
also used for the intensity in the green channel of a
cDNA-microarray and for the G-statistic in the
likelihood ratio test (logistic regression))
Regularization parameter of a LS-SVM model
Gamma function

Intersection of a hypersphere and a hyperplane formed
by standardizing gene expression profiles (AQBC)
Linearised version of H (AQBC)

Null hypothesis

Alternative hypothesis

Number of expression vectors in a data set

Number of measurements or components in an
expression vector

Fisher criterion

Number of genes in a cluster that belong to a certain
functional category

Number of clusters

Kernel function

Likelihood function

Logarithm with base e

Log likelihood function

Expression vector of a microarray experiment (7 x 1
column vector)

Mean expression vector of the expression vectors of the
microarray experiments belonging to class i
Expression vector of the /" microarray experiment (1 x
1 column vector)

Sample mean of x

Maximum value of set X

Mean value or average vector of a set X

Minimum value of set X

Number of missing values in an expression vector v;
Internal tuning parameter of AQBC

Cluster mean (AQBC)

Degree of myometrial invasion of an endometrial
tumour (0:absence of deep invasion, 1:deep invasion)
User-defined parameter of AQBC - minimum number of
genes in a cluster

TVS parameter - Myometrial thickness (mm)

Mean
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Symbol
MU

7
gy

no
ny

Ricale
Ny

N

%

N

%

Ny

v

N;
NG)
Ny
Ny
NF
Ok

o)
Pi

Pr
Pr

Pr(ElZr)

p(Q)
p(r)
p(r|C)
p(r1B)
p(|C)
P

P;

Pc

Explanation

Mean of the values belonging to class i or mean vector
of cluster C;

True or population mean of x

Mean expression level of g;

Number of gene expression profiles in a microarray data
set - Number of rows of the expression matrix 4
Number of genes in a microarray data set without actual
differential expression

Number of genes in a microarray data set with actual
differential expression

Calculated value of n;

Number of tests performed simultaneously

Number of data points in a data set

Set of n genes in a microarray data set

Set of 1, genes without actual differential expression in
a microarray data set

Set of n; genes with actual differential expression in a
microarray data set

Number of expression vectors in a set that do not have a
missing value for their /™ component

Number of abnormal objects

Number of normal objects

TVS parameter - Number of fibroids

Cluster center of cluster C;, (AQBC)

Order of computational complexity

p-value of the i gene in a microarray data set after
sorting the genes according to their p-values
Significance for entry into the model in model selection
Significance for removal out of the model in model
selection

Multivariate Gaussian model for cluster C; with mean
and covariance matrix X

Mixture model for gene expression profiles

Probability density estimation for » in AQBC
Distribution of r in the cluster (AQBC)

Distribution of r in the background (AQBC)

Class conditional density function of class i

Matrix (n x s) that contains the s selected principal
components of the expression matrix 4

Set of measurement numbers of the missing values in an
expression vector v; or gene expression profile g;

A priori probability of belonging to a cluster (AQBC)
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Symbol
Pp
P(Clr)

P(Ci.)
PI
PSV
T

O

0;

Ry
R, PRELIM

s
s(g)
Se

Sx
sign(.)
S

Se
Sa
S
Sn
Sw
SA

SENS;
SENS,
SPEC;
SPEC,,
SP

x1

Explanation

A priori probability of belonging to the background
(AQBC)

Posterior probability of belonging to the cluster given
(AQBC)

Posterior probability of class i

CDI parameter - Pulsatility index

CDI parameter - Peak systolic velocity (cm/sec)

Prior probability of belonging to cluster Cy

Probability that two randomly chosen abnormal objects
will both be ranked with greater suspicion than a
randomly chosen normal object (ROC curves)
Probability that one randomly chosen abnormal object
will be ranked with greater suspicion than two randomly
chosen normal objects (ROC curves)

Euclidean distance of a gene expression profile to its
cluster center O, (AQBC)

Pearson correlation between g; and g;

Intensity in the red channel of a cDNA-microarray
Radius of a sphere (AQBC)

CDI parameter - Resistance index

Radius or quality of cluster C; (AQBC)

Preliminary estimate of the radius of a cluster (AQBC)
Number of selected principal components

Silhouette of gene expression profile g;

Standard error of Agoc

Sample standard deviation of x

Sign function

User-defined parameter of AQBC - significance level
(in Appendix A this is also used for a finite sample)
Scoring function

Surface area of a unit sphere in d dimensions

Sample subset with abnormal subjects

Sample subset with normal subjects

Within-class covariance matrix

Subjective assessment of the degree of invasion of an
endometrial tumour (0:stage Ia, 1:Ib, 2:Ic, 3:I1 or higher)
Sensitivity at rejection level o= p;

Sensitivity at optimal rejection level o

Specificity at rejection level o= p;

Specificity at optimal rejection level of”

Presence of a serous papillary component in an
endometrial tumour (0:not present, 1:present);
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Symbol

M 9,9

~ M
bl

™
TAMXV

Explanation

Standard deviation
Variance
Standard deviation of the values belonging to class i
Covariance matrix
Covariance matrix of cluster C;
Gene number of a gene that belongs to N, and with a
p-value that is equal or larger than the p-values of all the
genes from N,
Test statistic (t-distribution)
Threshold
Optimal threshold
CDI parameter - Time-averaged maximum mean
velocity (cm/sec)
Number of true negative genes at rejection level = p;
Number of true positive genes at rejection level o= p;
Transpose of the matrix U
TVS parameter - Uterine volume (ml)
Mean expression vector of a set of expression vectors
J™ component of the mean expression vector
Expression vector
i"™ expression vector
™ component of the i expression vector
Within dissimilarity of gene expression profile g;
i—p.n
1-p, .
Number of valid clusters (AQBC)
Vector with model parameters
Between dissimilarity of gene expression profile g;
Wilcoxon statistic
i data point
™ component of the i data point
Output of a model
Output of a model for the /™ data point
Model output for an abnormal object
Model output for a normal object
Outcome variable in logistic regression
Outcome variable (0 or 1) for the /" data point in
logistic regression
Z statistic
Mapping function (LS-SVM)
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Acronyms

AFP Alpha fetoprotein

ALL Acute lymphoblastic leukemia

AML Acute myeloid leukemia

ANOVA Analysis of variance

AQBC Adaptive quality-based clustering
AUC Area under the ROC curve

BIC Bayesian information criterion
CAST Cluster affinity search technique
CCA Canonical correlation analysis

CDI Colour Doppler imaging

cDNA Complementary DNA

CT Computer tomography

DNA Deoxyribonucleic acid

EM Expectation-maximization

EST Expressed sequence tag

FDA Fisher’s linear discriminant analysis
FDR False discovery rate

FIGO International federation of gynaecology and obstetrics
FN False negative

FOM Figure of merit

FP False positive

FWE Family-wise error

GSVD Generalized singular value decomposition
hCG Human chorionic gonadotropin

IT Intratumoral

LDH Lactate dehydrogenase

LOO-CV Leave-one-out cross-validation
LS-SVM Least squares support vector machine

MALDI-TOF Matrix-assisted laser desorption ionisation time-of-flight
MCLUST Model-based cluster algorithm

MIPS Munich information center for protein sequences
MLL Acute leukemia involving the mixed-lineage leukemia gene
MR Magnetic resonance

mRNA Messenger RNA

tRNA Transfer RNA

NaN Not a number

NN Nearest neighbour

OMIM Online Mendelian inheritance in man

ORF Open reading frame

PCA Principal component analysis

PCR Polymerase chain reaction

RBF Radial basis function
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RNA
ROC
RT-PCR
SELDI-TOF
SOM
SOTA
TN
TNM

TP

TVS

UA

Ribonucleic acid

Receiver Operating Characteristic
Reverse transcription-coupled PCR
Surface-enhanced laser desorption ionisation time-of-flight
Self-organizing map
Self-organizing tree algorithm
True negative

Tumour, node, metastases

True positive

Transvaginal sonography

Uterine artery
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Chapter 1

Introduction

1.1 Motivation

Cancer is the second leading cause of death after heart disease
(Longo, 1998). The classical approach to cancer management has several
aspects (Slapak and Kufe, 1998). Firstly, there is diagnosis and staging. An
examination of a tumour sample under a microscope (histopathological
diagnosis) allows verifying the malignancy, the origin, and degree of
differentiation of the tumour. Subsequently, staging has to be performed or
the extent of the malignant disease has to be determined. During staging, one
aims for example to establish whether the tumour is still localized or has
already invaded surrounding tissue, whether the lymph nodes are affected or
whether distant metastases are present (e.g., in the lung, liver, bone or brain).
Diagnosis and staging subsequently allow determining the most appropriate
management strategy or therapy planning, which can be surgery,
radiotherapy, chemotherapy or a combination. During therapy planning a
trade-off has to be found between the goals of the treatment plan (e.g.,
curative intent, complete remission, gain in survival, palliation) and the
possible side effects or morbidity of therapy (e.g., acute toxicity of
chemotherapy, secondary tumours following radiotherapy and
chemotherapy, mutilation after surgery). Diagnosis and staging also can give
an indication of the prognosis (e.g., prediction of the therapy response,
survival, disease-free survival, probability of disease eradication)

This classical approach to cancer management, however, is in many
cases empirical and based on knowledge present in the literature (usually
derived from clinical studies) and often on the personal experience of the
clinician. The present diagnostic schemes often exhibit significant
interobserver variability and thus still need a considerable amount of
personal expertise and sometimes interpretation from the physician.
Moreover, not all information that is clinically relevant (e.g., prognostic
information) can be extracted using the data that physicians have access to at

1
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this moment. Better and more objective tools that, for example, allow
assigning patients to a certain diagnostic category or provide prognostic
information would be helpful, especially for non-experts.

1.2 Molecular biology

The fundamental mechanisms underlying carcinogenesis on a
molecular biological level are in many cases still elusive and not taken into
account to make the most optimal management decisions. In this context, we
will discuss some elementary principles of molecular biology and describe
the technologies that will be used to gather molecular biological data in this
dissertation.

Genes are nucleic acid sequences (double-stranded DNA) that carry
the information that represents a particular protein or polypeptide. This
information is stored by a specific sequence of nucleotides (symbolized by
A, G, C and T). The genes encode for proteins through the intermediate
action of mRNA. Transcription generates a single-stranded mRNA identical
in sequence with one of the DNA strands. The transcription process is
initiated by the binding of several transcription factors (specific proteins) to
regulatory binding sites in the promoter region upstream of the transcribed
sequence. The transcription factor proteins bind to each other to form a
complex that associates with an enzyme called RNA polymerase. This
association enables the binding of RNA polymerase to a specific site in the
promoter (see Figure 1.1). Subsequently, this complex catalyses RNA
synthesis. It should be noted that the transcription rate can be positively or
negatively affected or regulated by the action of the transcription factors. In
a later stage, the mRNA is processed, transported out of the nucleus, and
translated into a protein (Moreau et al., 2002a; Lewin, 1997).

Cancer is a genetic disease caused by mutations in the genes of a
cell. Distinct processes such as contact with carcinogens, viral infections,
radiation can induce mutations in the human genome. This can transform a
normal cell into a tumour cell, induce its proliferation and finally lead to
invasion and metastasis. Mutations leading to cancer can either occur in
proto-oncogenes (genes involved in controlled cell proliferation and cell
division), in tumour suppressor genes (encoding for inhibitors of cell
proliferation), in genes linked with apoptosis (programmed cell death), genes
linked with invasion and metastasis, DNA repair, and so on. These mutations
can induce changes in or dysregulate the transcription or expression of other
genes without mutations, but whose expression levels (amount of
transcription or mRNA produced for a specific gene) are directly or
indirectly controlled by the mutated genes. This is for example the case
when the mutated gene codes for a transcription factor. It will be the
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Figure 1.1: Initiation of the transcription process by the association of the complex
of transcription factors (gene regulatory proteins), the RNA polymerase, and the
promoter region of a gene.

collection of these disturbed expression levels that guide the phenotype of
the tumour (Sager, 1997) and represent the fundamental mechanisms that
cause malignant process. It can be expected that incorporation of the effects
of these mutations on the global expression pattern of the tumour cells into
the clinical decision making process could be of major importance. The
measurement of these expression patterns will therefore be of great benefit to
know, to determine and to understand the real clinical behavior of the
tumour cells. Furthermore, studying such data will allow gaining a more
profound insight into the processes that lead to and determine the phenotype
of malignancies, which could open new perspectives for fundamental cancer
research. This could, for example, ultimately lead to the discovery of new
drug targets and the development of new drugs that might improve the
prognosis of cancer patients.

One of the most promising technologies recently developed to
measure expression patterns are microarrays. Microarrays allow to
simultaneously measure the expression level of thousands or tens of
thousands of genes (also called the transcriptome) in a biological sample. An
array constitutes of a reproducible pattern of different DNAs (primarily PCR
products or oligonucleotides - also called probes) attached to a solid support.
Fluorescently labelled cDNA, prepared from mRNA, is hybridised to the
complementary DNA present on the array. Hybridisation intensities are
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measured by a laser scanner and converted to a quantitative read out. Two
basic types of arrays are available: cDNA-microarrays (Duggan, 1999 - see
Figure 1.2) and oligonucleotide arrays (Lipshutz, 1999). These will be
further discussed in Chapter 3. Since each microarray experiment measures
the expression of thousands of genes, this results in a vector with thousands
of components (one component for each probe present on the array). When
entire microarray experiments need to be analysed, techniques have to be
used that can cope with extremely high-dimensional data points. The data
produced by microarrays have been the main focus of our research and we
will devote the largest part of this dissertation to the methods that can
analyse it.

It is possible although, that microarrays do not capture all relevant
phenomena in a cell on a molecular level because of posttranscriptional
modification and regulation of biologically active molecules. By studying
the proteome (collections of all the proteins), it is therefore possible to obtain
additional information about the molecular biology of a cell that is not
captured by microarrays. The proteome can be examined using recently
developed technology based on mass spectrometry that enables to quantify
the presence of a large subset of proteins in a sample. We did not yet study
this technology or the resulting data during our research, but some specific
applications that could be investigated in the future are discussed in the last
chapter of this thesis (Chapter 7, Section 7.2.1). In these applications we
plan to use the ProteinChip technology developed by Ciphergen Biosystems
(based on surface-enhanced laser desorption ionisation time-of-flight
(SELDI-TOF) mass spectrometry - see http://www.ciphergen.com and
Chapman (2002)) or the ClinProt system of Bruker Daltonics (based on
matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF)
mass spectrometry - see http://www.bdal.com/clinprot.html). ProteinChip
technology has already been applied to some selected cases in oncology
(Kozak et al., 2003; Petricoin et al., 2002a; Petricoin et al., 2002b).
Qualitatively, these technologies result in spectra that contain thousands of
discrete peak amplitude values each associated with a mass/charge value,
which, in its turn, is associated to a (unknown) protein (see Figure 1.3).
Therefore, these spectra are characteristic for the proteins or a subset of
proteins present in a sample and the output consists of huge data vectors
where every component is representative for the amount of an unspecified
protein that is present in the sample at hand. The output is thus qualitatively
similar to microarray data and can thus possibly be analysed using similar
techniques.

In this thesis we will present and study a general data-mining
framework, mainly applied to oncology, that intends to extract clinically and
biologically meaningful information from microarray data (and proteomic
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Figure 1.3: Typical mass spectrum obtained with ProteinChip technology (from
Petricoin et al., 2002a). This specific spectrum consists of 15.200 peak amplitudes
associated with a mass/charge value.

data - future research) and that aims to solve and formulate diagnostic
problems more objectively and accurately using clinical data. This
framework aims to apply specific algorithms to facilitate diagnosis,
prognosis and therapy planning and to obtain a more fundamental insight
into the molecular biology of carcinogenesis (see Figure 1.4 for the context
of the framework in this thesis).

1.3 Data-mining framework

Although we will use or discuss several data sets in this thesis that
contain patients with gynaecologic malignancies (e.g., endometrial, breast or
ovarian cancer), we will illustrate our general data-mining framework with a
hypothetical data set that contains patients with a malignancy that is
exclusively male: testicular cancer. Testicular cancer is the most common
type of cancer for men between the ages of 15 and 34 and the incidence rate
is reported to be 4/100.000 (Giiden et al., 2003). The etiology or cause is
unknown but there is a strong association with cryptorchidism (non-
descended testicle). In contrast with ovarian cancer (see Section 7.2.1) where
most tumours have an epithelial origin, most testicular tumours arise from
the primordial germ cells (95%). Testicular germ cell tumours are divided in
two major subgroups: seminomas and non-seminomas. Approximately one-
third of patients present with early or stage I disease (tumour limited to the
testis - Motzer and Bosl, 1998). These patients are usually treated with
inguinal orchidectomy (removal of the affected testis) followed by adjuvant
therapy resulting in extremely high cure rates. Adjuvant therapy in most
centers consists of radiotherapy for seminomas (irradiation of the para-aortic
and sometimes ipsilateral iliac lymph nodes, resulting in a relapse rate of less
than 5%) and adjuvant chemotherapy (bleomycin, etoposide and cisplatin
combination) or retroperitoneal lymph node dissection (a major surgical
procedure) for non-seminomas (Jones and Vasey, 2003). There is a problem
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with adjuvant therapy, however. Without adjuvant therapy after
orchidectomy, only 20% of patients with early stage seminomas and only
30% of patients with early stage non-seminoma will have a relapse. Recent
publications (Zagars et al., 2004; Huddart et al., 2003) indicate that, beside
the acute side-effects, adjuvant therapy could have a profound impact on
longevity in this population of predominantly young men, due to an increase
in cardiovascular disease or cardiac death and second cancers. This means
that for seminomas, for example, 80% of the patients that have received
adjuvant radiotherapy will be exposed to this risk without any reason
because they would not have had a relapse anyway. At this moment,
however, there are no reliable clinical parameters that can distinguish
between patients that will and will not have a recurrence without adjuvant
therapy, which is the reason that in many centers adjuvant therapy is given to
the majority of patients (although recently surveillance (wait-and-see) is also
proposed as an option, which means no adjuvant therapy and a rigorous
follow-up). We will use this example to illustrate how our data-mining
framework could help to select the patients that would benefit from adjuvant
therapy and to select the patients for which this would only mean an increase
in morbidity and mortality.

Consider a set of patients with stage I seminoma that did not have
adjuvant radiotherapy after orchidectomy (patients under surveillance) and
consider two groups or classes of patients: without and with relapse (e.g.,
within five years). The latter group are the patients that would have benefited
from adjuvant radiotherapy. Suppose that the class memberships or the class
labels are already known for each patient in this data set. Also suppose that
we have clinical data available (e.g., values for the tumour markers (3-)hCG
(human chorionic gonadotropin), AFP (alpha fetoprotein) and LDH (lactate
dehydrogenase), from histopathology (e.g., TNM stage, presence of vascular
invasion), from ultrasound examination of the testis, from CT (computer
tomography) of the chest and abdomen, from patient and family history, and
so on) for each patient and that the primary tumours obtained after
orchidectomy were analysed with microarrays and that the resulting
expression patterns are available for analysis. It should be noted that the
number of clinical parameters is some orders of magnitude lower then the
number of gene expression levels available for each patient. We will now
discuss how the different elements of our data-mining framework,
classification, clustering and feature extraction, could be applied to this data
set (see Figure 1.5 for a schematic overview of the application of the
elements of this framework).
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Figure 1.4: (see opposite page) Context and overview of the general data-mining
framework in this thesis. This framework consists of three different components:
feature extraction, classification and clustering, each associated with specific
methods that are, in most cases, applied through custom MATLAB or SAS scripts.
Adaptive quality-based clustering (AQBC - an algorithm specifically designed to
cluster gene expression profiles - see Chapter 5) is integrated in an on-line tool for
microarray data analysis called INCLUSive. In this thesis we will use, after
appropriate preprocessing, the different components of the framework to study
clinical and microarray data and discuss how this methodology could be applied for
proteomic data in the description of our future research. We will illustrate the
analysis of these different data types with concrete data sets that contain information
about specific diseases or biological processes. For microarrays the analysis can be
done in two different contexts, dependent on the definition of the objects that are
studied. In the first context, the objects are entire microarray experiments (which are
usually expression patterns associated with specific patients) and in the second
context the objects are the expression measurements for a specific gene over the
different experiments (called gene expression profiles). Feature selection results in
the identification of individual or a set of variables (sometimes called biomarkers for
microarray or proteomic data) or in combinations of variables that are as informative
as possible about a certain class distinction. For univariate analysis in microarray
data we will describe a methodology that can estimate the total number of genes that
is and is not actually differentially expressed and introduce a quality label that
reflects the appropriateness of a microarray data set to study differential expression
(Chapter 6). Classification results in diagnostic models that can predict the
diagnostic category of a patient using its expression or proteomic pattern or
associated clinical parameters. Finally, clustering results in the identification of the
diagnostic categories itself or in groups of genes with similar expression patterns
(coexpressed genes) dependent on the context in which the analysis is done for
microarray data. ROC = Receiver Operating characteristic curve; PCA = Principal
Component Analysis; LS-SVM = Least-Squares Support Vector Machine; LDA =
Linear Discriminant Analysis.

1.3.1 Classification

To predict the class membership and hence select the patients that
need and do not need adjuvant therapy, one could develop mathematical
models (e.g., logistic regression, Fisher’s linear discriminant analysis, Least
Squares Support Vector Machines (LS-SVM)) that could anticipate whether
patients will have a relapse without radiotherapy. This is called
classification. The data set that is described above and for which the class
labels are already known, could be used to determine the coefficients of a
chosen model structure. This is called model training and the data that is
used to train the model is called a training set. This model can subsequently
be applied to classify a set of new patients (called the test set) that was not
used for training and compare the model predictions with the true outcome
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Figure 1.5: (see opposite page) Schematic overview of the different elements of our
general data-mining framework applied to the data set containing patients with stage
I seminoma under surveillance (i.e., that did not receive adjuvant radiotherapy).
Several variables (which can be clinical parameters or gene expression levels
measured with microarrays) are available for each patient. In this scheme, the
variables are grouped in a column vector. Two classes are considered: patients with
(class 1) and without (class 2) tumour recurrence after orchidectomy. The class
membership or class label of each patient is indicated in the head of the column
vector that represents it. (1) Feature extraction or dimensionality reduction:
selection of a limited number of features (obtained after univariate or multivariate
analysis) that allow optimal use in subsequent analyses. (2) Model training: the
selected features and the class labels of our data or training set are used to determine
the coefficients of a certain classifier. (3) Classification: the classifier is
subsequently used to predict the class membership of new patients (test set) that
were not used to train the model. Classification is based on the same features that
were selected in the training set (predicted class labels are indicated by < >). (4)
Model validation: comparison of the predicted class label with the true class label of
the patients of the test set. (5) Cluster analysis: automatic discovery of groups or
clusters of patients (based on the selected features and, since the algorithm has to
define the classes by itself, not on the known class labels) with a certain similarity
that might represent unknown diagnostic categories and that might contain a
significantly different proportion of patients that will and will not have a relapse.
Cluster analysis of gene expression profiles is not visualised in this figure.

of these patients. This allows estimating the accuracy or the predictive power
of the model on independent data and is called model validation.

In first instance, we could try to construct models that only use
clinical data, but since the available clinical parameters probably do not to
contain sufficient information to distinguish between patients with and
without relapse, the resulting model accuracy can be expected not to be
adequate. Therefore it could be helpful to incorporate expression patterns
measured with microarrays - that represent the fundamental mechanisms on
a molecular biological level determining the phenotype of the tumour - into
the mathematical model and the clinical decision making process. As said
previously, special techniques need to be applied for the classification of
expression patterns due to the high dimensionality of this data.

1.3.2 Clustering

It might be possible that stage I seminomas can be classified or
divided in different but yet unknown fundamental entities on a molecular
biological level. Tumours belonging to these different entities or diagnostic
categories might exhibit different behaviour that is reflected by a different
probability of relapse under surveillance. To discover these unknown entities
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one can apply clustering techniques to the expression patterns from the
patients of the data set that is described above.

With cluster analysis or class discovery it is possible to
automatically find different classes or clusters in a group of microarray
experiments or data points without knowing the properties of these classes or
the class labels in advance. A cluster, in general, will group data points with
a certain degree of similarity, according to a certain distance measure.
Ideally, after cluster analysis (with for example the K-means algorithm or
hierarchical clustering) groups are formed in such a way that data points in
the same cluster are as similar as possible, whereas objects in different
clusters are as dissimilar as possible (Kaufman and Rousseeuw, 1990).
These clusters might represent groups of patients that, in our example, might
contain a significantly different proportion of patients that will and will not
have a tumour recurrence under surveillance. These clusters could be the
basis of a new diagnostic scheme in which the different categories contain
patients with less clinical variability. In clustering, therefore, we do not
make predictions for individual patients like in classification, but we try to
discover the diagnostic entities or classes themselves.

Cluster analysis of microarray data can also be applied in a different
context. Instead of clustering entire microarray experiments, one could try to
cluster the expression measurements of the genes over the different
experiments (which will be called gene expression profiles further on). For
the seminoma data set, for example, one could aim to identify groups of gene
that have similar behavior over the different patients (these genes are called
coexpressed) and that might have similar roles in the pathway that
determines the behaviour of these tumours (e.g., they might be regulated by
the same transcription factor).

1.3.3 Feature extraction

Not all variables (clinical parameters or gene expression levels) in
our seminoma data set data set are ideal candidates that can be used for
further analysis in classification or clustering. In feature extraction we want
to identify features (which can be individual variables, sets of variables or
combinations of the variables — see further) that allow optimal use in
subsequent analyses. Since microarray data consists of thousands of gene
expression levels and many classification and clustering algorithms cannot
deal with this directly, feature reduction also aims to diminish the
dimensionality of the data vectors (dimensionality reduction) here. In this
text we consider two different categories of feature extraction: univariate and
multivariate.

12
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In univariate feature extraction one aims to select the individual
clinical variables or gene expression levels (also called biomarkers) whose
value is maximally correlated with, for example, the difference between
seminoma patients with and without relapse under surveillance or whose
value shows, on the average, maximal difference between these two different
classes. This can, for example, be achieved using classical hypothesis testing
(Dawson-Saunders and Trapp, 1994). For microarray data the use of
hypothesis testing is complicated by the problem of multiple testing to which
we will devote Chapter 6 in this thesis.

However, a set of variables that, by themselves, are correlated with a
certain class distinction can behave similarly and do not contain, as a whole,
more information about the class distinction under consideration than one
single variable (this set of variables could be called mutually dependent -
e.g., this could be the case for coexpressed genes). A mathematical model
that uses this set of variables to predict class membership of the patients
could not be expected to perform significantly better than a model that uses
only one variable or a fraction of the variables from this set. On the other
hand, variables can exist that, on their own, do not contain sufficient
information to construct a reliable model but can, when combined, result in a
model that performs better. In model selection techniques, variables are
selected that have a statistically significant contribution in a certain model.
This is usually achieved by an iterative process where variables are
sequentially added to or removed from a model (Hosmer and Lemeshow,
1989). Model selection techniques in the context of standard logistic
regression are further discussed in Appendix A. The entity selected by this
technique is a limited set of variables that in combination, results in an
adequate model performance. Model selection is therefore considered to be a
method for multivariate feature extraction. However, to prevent overfitting,
one needs 6 to 10 patients for each variable that is considered for inclusion
during model selection in for example logistic regression. This means that
this method is not directly applicable to do feature extraction in microarray
data (at least not without reducing the number of features first using some
other feature selection technique) due to the extremely large number of
genes expression levels that are available compared to the number of
patients. In this thesis we will only use model selection in the context of
clinical data analysis.

Another technique for multivariate feature extraction is the
identification of a linear or non-linear function or combination of the
different variables that has a desired property. In principal component
analysis (Bishop, 1995), for example, one aims to find a linear combination
of the variables that have maximal spread over a set of data points. This is
the preferred technique for feature extraction in microarray data and will
therefore result in linear combinations of gene expression levels.

13
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1.4 Chapter-by-chapter overview of own
contributions

Our own work can be divided in several topics each associated with
a certain chapter. The relation between the different chapters is visualized in
Figure 1.6. Throughout this text, the quantifiable results of our research will
be accentuated by footnotes where appropriate. A list of our publications can
also be found in the beginning of this text.

Chapter 2: Clinical data analysis: Prediction of the depth of
invasion in endometrial cancer

In this chapter, we analyse a data set, that contains clinical
parameters from patients with endometrial cancer (see Appendix B, Section
B.1.1), according to some elements of the scheme set out by our general
data-mining framework. By univariate and multivariate analysis (model
selection - stepwise logistic regression analysis) we investigate which
variables contribute in predicting the degree of myometrial invasion in
endometrial cancer. Based on this, we construct, compare and validate a
logistic regression model and LS-SVM models with a linear and RBF kernel
that aim to help the physician in distinguishing between tumours with and
without deep myometrial invasion. Although this is not discussed, we also
applied some of the techniques presented in this chapter for another study
(Epstein et al., 2002).

Chapter 3: Microarray data analysis

This chapter deals with our application of the general data-mining
framework to microarray experiments in oncology as illustrated with the
data from Golub et al. (1999) (De Smet et al., 2001; Marchal et al., 2004)
and the data from Perou et al. (2000) (also see Appendix B). First, in the
context of preprocessing we describe the strategies that we have used to
manage missing values in microarray data. Further on, we demonstrate the
use of univariate analysis and refer to Chapter 6 for an in-depth study of this
topic and the problems associated to it. We show how principal component
analysis can be applied to microarray data and suggest two methods
(unsupervised and supervised) to select the principal components.
Subsequently, we perform cluster analysis on the microarray experiments
from the data from Golub et al., formulate some critical remarks about these
techniques and refer to Chapter 4 and 5 for a detailed study of cluster
analysis of gene expression profiles. Finally, we demonstrate how Fisher’s
linear discriminant analysis and LS-SVM models with linear and RBF
kernels can be used to classify microarray experiments and compare these

14
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techniques in a benchmarking study that uses nine data sets (Pochet et al.,
2004).

Chapter 4: Clustering of gene expression profiles

In this chapter we present a general review of cluster analysis of
gene expression profiles (Moreau et al., 2002a; Thijs et al., 2004) and
describe some algorithmic challenges. We discuss some specific
preprocessing techniques and some of the existing first- and second-
generation algorithms that are commonly used to cluster gene expression
profiles. An inventory of the advantages and especially the disadvantages of
these approaches will lead to the development of our own algorithm in
Chapter 5. Finally, we will discuss some selected topics dealing with cluster
validation.

Chapter 5: Adaptive quality-based clustering of gene expression
profiles

In this chapter we develop our own method, called adaptive quality-
based clustering (AQBC), that is specifically tailored to cluster gene
expression profiles (De Smet et al., 2002). This method is validated on three
existing (including the yeast cell cycle data from Cho et al. (1998) - see
Appendix B) data sets and an artificial data set. The integration of our
method in an on-line tool for automatic multistep analysis of microarray
data, called INCLUSive, is also mentioned (Thijs et al., 2002a; Coessens et
al., 2003). Finally, we compare our approach with some of the existing
methods already mentioned in Chapter 4.

Chapter 6: Univariate analysis in microarray data

In this chapter we elaborate on the problems of univariate analysis
and multiple testing in microarray data (De Smet et al., 2004). We present a
method that enables to calculate the number of genes that is and is not
affected by a certain class difference. Using this result we show how
Receiver Operating Characteristic curves can be used to optimally balance
the number of false positives (genes not affected by the difference between
the classes but declared so) and false negatives (genes that are affected by
the difference in classes but not declared so) and can be used to assign a
quality measure to a certain microarray data set with respect to its ability to
detect differential expression. Among others, we demonstrate how this
quality measure can be used for microarray data by calculating this value for
the data from Golub et al. and Perou et al. and by comparing this with the
corresponding value for other data that study acute leukemia and degree of
differentiation in breast cancer, respectively.
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Chapter 7: Conclusions and future research

In this chapter we will describe our main accomplishments and
devote a section to future research directions on the shorter term and future
prospects on the longer term. Concerning future research on the short term,
we will present some concrete projects that have already started or are
planned, in which the techniques that are described in this thesis could be
applied on microarray and proteomic data. They include a project for ovarian
cancer management using microarrays, a project that plans to combine
transcriptomic and proteomic patterns in the endometrium for the clinical
management of endometriosis and a project that deals with the analysis of
proteomic patterns for the study of patients with cervical and endometrial
malignant tumours.

1.5 Other research

In the past few years, we have also investigated some other research
topics that are not discussed in this dissertation. They include our work
related to the development of a control system for the optimization of
glycemia in critically ill patients' and our work related to the use of artificial
intelligence methods for the preoperative assessment of ovarian tumours’.

' This research has resulted in a patent appplication where we are co-
inventor (see http://12.espacenet.com/espacenet/viewer?PN=WO003080157&CY=gb
&LG=en&DB=EPD).

% In this context, we co-authored two papers (Timmerman et al. (2003) and
Antal et al. (2001)).
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Figure 1.6: Main relationships between the chapters of this thesis. For clarity, the
arrows that connect every chapter with Chapter 7 (conclusions) are not indicated.
After the description of the general data-mining framework in Chapter 1, we will
apply this to clinical and microarray data in Chapter 2 and 3 and discuss its potential
use for proteome data in Chapter 7 (future research). While Chapter 3 gives a
general overview of the application of the framework to microarray data, a more
thorough study of some specific items follow in Chapter 4, 5 and 6. In Chapter 4 we
provide a general discussion of cluster analysis of gene expression profiles, which
will result in the development of our own algorithm in Chapter 5. In Chapter 6 we
present an in-depth study of univariate analysis in microarray data.
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Chapter 2

Clinical data analysis: Prediction of the
depth of invasion in endometrial cancer

2.1 Introduction

In this chapter we will apply the general data-mining framework to
analyse clinical data obtained from patients with endometrial cancer. As
already mentioned in Chapter 1, the number of available parameters or
variables per patient present in clinical data sets is some orders of magnitude
lower when compared to for example microarray data (where thousands of
features per patient are available). This means that clinical data can be
studied using classical biostatistical techniques, which are often not directly
applicable to high dimensional (microarray) data. Note that in this context,
we will not discuss methods that aim to cluster these data. Although it is
possible that for example new diagnostic categories can be discovered using
clustering methods, the clinical value of these techniques can be expected to
be rather limited since, in general, the existing diagnostic categories have
already been derived and fine-tuned based on clinical information (in fact,
the existing diagnostic categories can be regarded as empirically derived
clusters). The probability that new and relevant diagnostic schemes emerge
by clustering clinical data alone is therefore smaller (in comparison with
clustering microarray data that have not yet been incorporated in most of the
existing diagnostic categories).

Carcinoma of the endometrium (inner lining of the uterus) is the
most common female pelvic malignancy (Young, 1998). Most (75%)
tumours are confined to the uterus at diagnosis and are usually curable.
However, it is still the 7" leading cause of death from cancer in women. This
malignancy occurs mostly in postmenopausal women and in the sixth and
seventh decades of life. It is suggested that exposure to estrogens
(endogenous or exogenous) may play an important etiologic role. Symptoms
often include abnormal vaginal discharge or bleeding. Initial evaluation of
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these patients includes ultrasound examination (Transvaginal sonography
(TVS - grey scale examination of the morphology) with Colour Doppler
Imaging (CDI - measurement of the blood flow in the uterine arteries and in
the tumour itself) - see Figure 2.1) and an endometrial biopsy.

Figure 2.1: Transvaginal sonography (grey scale) and Colour Doppler Imaging of a
stage IB endometrial tumour (images supplied by Prof. D. Timmerman).

The transition between FIGO surgical stage Ib and Ic endometrial
carcinoma is determined by the degree of myometrial (muscle layer of the
uterus) invasion (less or more than 50% (Levine and Hoskins, 2002)) and is
an important prognostic factor (Ludwig, 1995) that determines the treatment
schedule in many institutions. Accurate preoperative discrimination between
patients with stage la or Ib disease (group I) and patients with stage Ic or
higher (group II - patients with deep myometrial invasion) would allow to
identify high-risk patients who might need pelvic and para-aortic
lymphadenectomy. This might be important because in many countries
patients who need lymphadenectomy are referred to a gynaecological
oncologist while patients not needing lymphadenectomy are operated by the
general gynaecologist or surgeon.

Several techniques are commonly used to estimate the final
histopathological stage or degree of myometrial invasion, but all have
specific limitations. Intraoperative gross visual inspection (Franchi et al.
(2000) reported an accuracy of 85.3% in predicting the degree of myometrial
invasion (403 patients)) or frozen section (Kucera et al. (2000) reported an
accuracy of 88% in predicting the myometrial invasion (624 patients)) does
not allow preoperative planning of the surgical procedure. MR Imaging
(contrast-enhanced) is the most reliable method (in a meta-analysis, Kinkel
et al. (1999) reported an area under the Receiver Operating Characteristic
(ROC) curve (AUC - see Appendix A, Section A.2) of 91% with respect to
the prediction of myometrial invasion) but is costly, has more limited
availability, can induce contrast allergies, has a smaller resolution (some
distance is present between the individual sections, which may allow small
lesions to be missed) and is not appropriate for all patients (e.g.,
claustrophobia, obesity). TVS and CDI have been well studied but different
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groups report the use of different morphological or CDI parameters with a
considerable variation in the results. Presently, the largest study that
investigates the use of TVS and/or CDI to estimate the depth of myometrial
invasion was published by Arko et al. (2000) and contains 120 patients. This
study reported an accuracy of 73% in predicting myometrial invasion.

2.2 Aim and overview

In the study presented in this chapter, we assessed the value of
several parameters in distinguishing between patients from group I or from
group II by analysing a data set that contains ultrasound measurements
obtained after TVS with CDI and histopathological data from patients with
endometrial carcinoma. We constructed models that aim to predict the
presence of deep myometrial invasion and that could help the clinician to
identify patients that might need more extensive surgery.

In the Materials and Methods section we will describe the data set
and its content and discuss the methods that we used to perform feature
extraction and classification using clinical data. In the Results section the
results of our analysis will be examined and their clinical value evaluated.

2.3 Materials and Methods

Prof. Dr. D. Timmerman from the department of Obstetrics and
Gynaecology (University Hospitals Leuven) collected data from 97
consecutive patients (training set) with endometrial carcinoma between
September 1994 and February 2000.

All patients underwent preoperative ultrasound examination with
TVS and CDI by the same expert (Prof. Timmerman). Histopathology was
assessed preoperatively using an endometrial biopsy. The mean age was 65.9
years (range 45-83) and 88 women were postmenopausal. The distribution of
the different surgical FIGO stages was as follows: 24 stage Ia, 35 Ib, 12 Ic, 8
II, 13 III and 5 IV. The histopathological subtypes were: 76 endometrioid
adenocarcinoma, 3 serous papillary and 18 mixed type (5 with a clear cell
and 3 with a serous papillary component). Fifty-four tumours were highly,
18 moderately and 25 poorly differentiated. Tumours with a serous papillary
or a clear cell component were considered to be poorly differentiated.
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Chapter 2 - Clinical data analysis

2.3.1 Feature extraction

In this section, we aim to identify the parameters that could be of
value to a clinician in distinguishing between patients with and without deep
myometrial invasion. More specifically, we want to examine which (if any)
individual parameters obtained after TVS with CDI contribute in this
distinction. Moreover, we want to identify which ultrasound and
histopathological parameters significantly contribute in a standard logistic
regression model that predicts the degree of myometrial invasion.

Univariate analysis of the ultrasound parameters and the
subjective assessment

Several morphological parameters visualised by grey scale TVS are
available for univariate analysis (endometrial (ET) and myometrial (MT)
thickness; endometrial (EV) and uterine (UV) volume; ET/AP (uterine
anteroposterior diameter); EV/UV; MT/AP; EE (endometrial echogenicity:
homogeneous or heterogeneous); EL (endometrial lining: regular or
irregular)). CDI parameters included intratumoral peak systolic velocity
(PSV), time-averaged maximum mean velocity (TAMXYV), resistance index
(RI) and pulsatility index (PI) (for an exact definition of these terms, see
Timmerman (1997)). Furthermore uterine artery PSV, TAMXV (maximum
of the values measured at both the left and right uterine artery, i.e. the worst
case), RI and PI (minimum of the values measured at both the left and right
uterine artery) were measured. The subjective assessment by the
gynaecologist of the depth of myometrial invasion (using a 4-value scoring
system - 0: stage Ia; 1: Ib; 2: Ic; 3: II or higher) was also recorded. See Table
2.1 for an example of the possible values for these parameters and their
units.

Univariate analysis was performed using the SAS software package
(Release 8.01). We performed hypothesis testing (see Appendix A, Section
A.1) and specifically used the Wilcoxon rank-sum test (for continuous data)
or the Fisher’s exact test (for categorical data) to calculate p-values that
reflect if there is a significant difference between patients from group I and
group Il for a certain variable (Dawson-Saunders and Trapp, 1994). Two-
sided tests were used and p < 0.05 was used as the level of significance.

In first instance we did not apply a Bonferroni correction (also see
Appendix A, Section A.1 for more details) to correct for multiple testing, but
in the Results section we will discuss the effect if such a correction would
have been applied for this data set. This correction controls the Type I or the
family-wise error (FWE - probability of having one or more false positives).
This method is, however, very conservative (Perneger, 1998) and can result
in an inflation of the Type Il error and a decrease in statistical power (which
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Chapter 2 - Clinical data analysis

can be extreme if this method is applied to microarray data - for further
information on this, the problem of multiple testing and univariate analysis
of microarray data see Chapter 6).

In addition, the ROC curves and the AUC were estimated and
compared for the individual variables. On the ROC curves, the optimal cut-
off point was defined as the point that obtained the best trade off between
sensitivity and specificity (the point that maximalises the sum of the
sensitivity and specificity). The resulting sensitivity, specificity and accuracy
were also calculated. See Appendix A, Section A.2 for more information
about the technical details of ROC curves and the choice of an optimal cut-
off point.

Multivariate stepwise logistic regression

With multivariate stepwise logistic regression analysis (using
stepwise selection in the LOGISTIC procedure from SAS) we aimed to
develop a standard logistic regression model that included variables with a
coefficient significantly different from zero (see Section A.3.4 on model
selection techniques in Appendix A for more details - also see Hosmer and
Lemeshow (1989)). We considered the following variables for inclusion in
the model: the ultrasound parameters discussed in the previous section,
degree of differentiation, number of fibroids detected during ultrasound
examination (NF; range 0-2; this parameter was previously reported to be a
potential factor disturbing sonographic prediction (overestimation of
invasion) (Weber et al., 1995)), presence of a clear cell component and
presence of a serous papillary component (based on Pipelle biopsies). In the
model, obtained at the end of the stepwise logistic regression analysis, only
variables having a coefficient significantly different from zero (p-value <
0.05 - Wald Chi-Square statistic) were allowed. Note that only 74 of the 97
patients from the training set were used for the stepwise logistic regression
analysis because of missing values in some of the considered variables (SAS
removes patients with one or more missing values).

To prevent overfitting, ideally, one needs 6 to 10 patients for each
variable that is considered for inclusion during stepwise logistic regression.
This means that in our case the number of patients is already on the low side.

2.3.2 Classification

The variables selected by now after the stepwise logistic regression
analysis in the previous section, were used to fit three models, described
below, to the training data. The single valued output of these models can also
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be analysed and compared using hypothesis tests and ROC' curves as
described in Section 2.3.1. The ROC-analysis can also be used to construct
an optimal cut-off point or threshold for these models. Patients with a model
output larger than this cut-off are then predicted to belong to group II and
thus have deep myometrial invasion.

Standard logistic regression

We fitted a standard logistic regression model with the LOGISTIC
procedure from SAS (also see Appendix A, Section A.3) using the variables
selected after multivariate analysis in Section 2.3.1. The class labels for
patients from group [ were 0 and 1 for patients from group II. The Wald Chi-
Square statistic was used to assess the significance of the coefficient of a
certain variable in the fitted model.

Unlike the two following model building techniques based on Least
Squares Support Vector Machines, standard logistic regression does not use
regularization, which makes this method prone to overfitting (i.e., the
generalization or its performance on prospective or independent data can be
sub optimal).

LS-SVM model with a linear kernel

Using LS-SVMlab version 1.5 (see http://www.esat.kuleuven.ac.be
/sista/lssvmlab/ and Suykens et al. (2002)) we trained a Least Squares
Support Vector Machine (LS-SVM) model using a linear kernel (see
Appendix A, Section A.4 for a definition of these models). For all LS-SVM
models, the class labels for patients from group I were -1 and 1 for patients
from group II. We tuned the hyperparameter (only 7y in this case) using a
linesearch approach (in the tunelssvm function from LS-SVMlab) where the
leave-one-out cross-validation performance (LOO-CV) on the training set
was optimised. This hyperparameter setting was subsequently used when
training the definitive model. Note that it is possible to write a LS-SVM
model with a linear kernel, by rearranging the terms, as a simple linear
equation in its variables. Also note that, as said above, we will use the
optimal cut-off point following from the ROC analysis on the training set,
which does not have to be equal to zero (like in the classical definition of a
LS-SVM where a sign function is used).

! Together with the Department of Obstetrics and Gynaecology, Malmé
University Hospital, Lund University, Sweden, we have contributed in a study and
the associated publication in Ultrasound in Obstetrics and Gynecology (Epstein et
al., 2002) where we also used ROC curves to compare the performance of different
models that aim to predict the presence of an endometrial malignancy in women
with postmenopausal bleeding using grey scale and power Doppler ultrasound.
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Since regularization is performed (7 is finite), the generalization of
this technique can be expected to be more optimal than standard logistic
regression or other linear classifiers without regularization.

LS-SVM model with an RBF kernel

Using LS-SVMlab we trained a non-linear LS-SVM model using an
RBF (Radial Basis Function) kernel. We tuned the hyperparameters (¢ and y
in this case) using a gridsearch approach where, again, the LOO-CV
performance was optimised.

If non-linear effects are important in the prediction of deep
myometrial invasion, using an RBF kernel can be expected to yield better
performance in comparison with the use of a linear kernel.

We fitted this LS-SVM model using the variables that significantly
contributed in a linear logistic regression model (see Section 2.3.1), which is
not necessarily the best selection for a non-linear LS-SVM model. This
means that it is possible that this model is still not entirely optimal. Using
model selection techniques in combination with LS-SVM models can thus
possibly result in a more optimal selection of variables for LS-SVM models.
We did not yet test this exhaustively, but using a (self developed) MATLAB
script that implements a forward selection technique for LS-SVM models
and that selects variables that improve the LOO-CV performance, did not
result in models with an improved generalization.

Prospective validation

Due to the possibility of overfitting, applying the ROC analysis on
the same collection of patients that was used to fit our models can result in
optimistic estimates for the AUCs. Therefore, we prospectively validated our
models using independent data from 37 consecutive and new patients that
became available after the first 97 that were used to derive our models (this
is also the main explanation for this specific subdivision between training
and test set). The mean age of these patients was 67.1 years and 36 of them
were postmenopausal. The distribution of the FIGO stages was: 7 stage Ia,
20 Ib, 7 Ic, 0 II, 2 III and 1 IV. The following histopathological subtypes
were present: 30 endometrioid adenocarcinoma and 7 mixed type (5 with a
serous papillary and 1 with a clear cell component). Twenty tumours were
highly, 8 moderately and 9 poorly differentiated.

Using this data, we constructed the ROC curves and calculated the
AUCs of the three models discussed above and compared them with the
AUC of the subjective assessment of our expert (Prof. Timmerman). We also
evaluated the performance of our models at the optimal cut-off points
obtained after the ROC-analysis of the training set.
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2.4 Results

The results of the univariate analysis of the ultrasound parameters
and the subjective assessment can be inspected in Table 2.2. EV/UV had the
largest AUC from all the ultrasound parameters but there was no significant
difference with ET, MT, EV, ET/AP and MT/AP and it was still smaller (not
significantly) than the AUC of the subjective assessment. The AUCs of the
CDI parameters or the blood flow indices were low. Only the uterine artery
RI and PI were (borderline) significant at the 5% level. After applying a
Bonferroni correction ET, MT, EV, ET/AP, EV/UV and MT/AP would
remain statistically significant. The variables that were borderline significant
before the Bonferroni correction would no longer be considered as
significant after this correction. In this case, we can state that the overall
conclusions of the univariate analysis would remain the same and the
decrease of statistical power due to the Bonferroni correction is limited here.
Note that this would not be the case if the number of tests that was
performed simultaneously, was much higher (which is the case for
microarray data).

Multivariate stepwise logistic regression selected the degree of
differentiation, the number of fibroids, ET and EV as variables that
significantly contributed in a standard logistic regression model. None of the
CDI parameters was included.

The resulting logistic regression model fitted to the training data is
given by (note that due to missing values in the four selected variables, only
94 patients could be used to fit the models):

_exp(B,+ B,.DD1+ 3, DD2+ 5, NF+ 3, ET + 5,.EV)
l+exp(f, + 5,.DD1+ 3, DD2+ 5, NF+ ,.ET + ,.EV)

@.1)

where DD1 and DD2 equal 1 if, respectively, the tumour is moderately and
poorly differentiated and 0 in other cases. The coefficients are: 3, = -3.70
(95% CI [-5.53, -1.86], p < 0.0001), B, = 2.36 ([0.82, 3.91], p = 0.0027),
p>=2.42 ([1.00, 3.84], p = 0.0008), £; = -2.45 ([-4.23, -0.67], p = 0.0070),
B = 0.20 ([0.07, 0.32], p = 0.0021), and S5 = -0.11 ([-0.19, -0.03],
p=0.0054). The performance of the logistic regression model on the
training data is also summarised in Table 2.2.

The resulting LS-SVM model (as previously said, without the sign
function, since we used ROC analysis to define the optimal cut-off) with
a linear kernel fitted to the training data is, after rearrangement of the terms,
given by:
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y=p,+5,.DD+ B, NF+ S,.ET+ ,.EV (2.2)

where DD equals 1, 2 and 3 if the degree of differentiation is highly,
moderately and poorly differentiated, respectively. The coefficients are:
B=-1.45, B=0.37, f=-0.38, B;=0.05, and S, = -0.03. Note that the LS-
SVM model with an RBF kernel cannot be written in a simplified form and
is therefore not explicitly stated here. The performance of the LS-SVM
models with a linear and RBF kernel on the training data is also described in
Table 2.2.

Evaluated on the training set, the logistic regression and the LS-
SVM models with a linear and RBF kernel had a larger AUC than the
subjective assessment (p = 0.0595, p=10.1412 and p < 0.0001, respectively).

The results of the prospective validation can be inspected in Table
2.3 and Figure 2.2. From these we can conclude that prospective evaluation
on the independent test set resulted in a better AUC for the standard logistic
regression model and the LS-SVM model with a linear kernel, and in a
significantly better AUC for the LS-SVM model with an RBF kernel when
compared with AUC of the subjective assessment (p = 0.4758, p = 0.0790
and p = 0.0485, respectively). As could be expected (see Section 2.3.2), the
performance on the test set or level of generalization of the LS-SVM model
with a linear kernel was better than the performance of the standard logistic
regression model. Evaluation on the training set (Table 2.2) gave the
opposite order of performance, although the difference was small. This
shows that the level of overfitting for the standard logistic regression model
was higher than for the LS-SVM model with a linear kernel. Also note that
the LS-SVM model with an RBF kernel had the best overall performance,
both on the training as on the independent test set. This is an indication that
non-linear effects might play a role in the distinction between patients with
and without deep myometrial invasion.

2.5 Conclusions

In this chapter we used a data set containing 97 patients to assess the
value of different ultrasound parameters, measured using TVS with CDI, in
discriminating between endometrial cancer patients with and without deep
myometrial invasion. Moreover, we used this data to construct a standard
logistic regression model and LS-SVM models with a linear and RBF kernel
that aim to predict the presence of deep myometrial invasion. Finally we
validated these models using independent test data containing 37 patients
and compared their performance with the subjective assessment of an expert
ultrasonographer.
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Table 2.3: Prospective validation: performance of the logistic regression model and
the LS-SVM models with linear and RBF kernels for the patients of the independent
test set (NV = 37). Comparison with the ultrasound parameter (EV/UV) from Table
2.2 with the best discriminatory potential and the subjective assessment. The optimal
cut-off values were taken from Table 2.2 as evaluated on the training set.
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Subjective assessment 0.74 [0.58, 0.90] - 1 50.00 77.78 70.27
Logistic regression 0.81[0.64, 0.97] | 0.4758 0.45 60.00 84.00 77.14
LS-SVM with linear kernel 0.90 [0.80, 1] 0.0790 -0.31 90.00 80.00 82.86
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Figure 2.2: Comparison of the ROC curves for the subjective assessment, the
logistic regression model, and the LS-SVM models with a linear and RBF kernel for
the patients of the independent test set (N = 37).
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In conclusion our study indicates that CDI does not contribute to the
prediction of the degree of myometrial invasion in endometrial cancer.
Single morphological parameters are not sufficient in making accurate
predictions. Combining the degree of differentiation, the endometrial
thickness and volume and the number of fibroids in a standard logistic
regression model may deliver predictions more reliable than the subjective
impression by an experienced ultrasonographer. Moreover, combining these
variables in a LS-SVM model, preferably using an RBF kernel, might even
improve these predictions. In our prospective study, which was of limited
size though, only a LS-SVM with RBF kernel performed significantly better
than the subjective assessment of the expert. These models could represent a
simple and inexpensive method that might contribute to the preoperative
discrimination between low- and high-risk patients allowing for better
preoperative selection of patients with endometrial carcinoma.

However, the models, described in this study, although
mathematically interesting and illustrative, are, in our opinion, still far away
of being useful or reliable in real clinical practice. First of all, the
measurements that were considered in our study all originated from the same
expert ultrasonographer. Because differences might exist between different
centers or even individual ultrasonographers (who use different ultrasound
equipment for example), this means that the models discussed here should at
least be tested and, if the performance proves to be unsatisfactory, derived
again using multicenter prospective data. Moreover, even the techniques
used by the same expert might undergo subtle changes throughout time,
causing a drop in model performance when the model is applied on new
patients. These comments also apply to the evaluation of the degree of
differentiation, which is, at least partially, a subjective measure that can also
differ between centers, between pathologists and in time. Secondly, the
number of patients available in our training and test set is limited (although
this is one of the largest studies available up till now), which contain patients
that have been examined in a limited time frame. As already discussed, this
might (have) cause(d) problems of overfitting when for example too many
variables relative to the number of patients are considered for inclusion in
the model during multivariate analysis. Moreover, the characteristics of the
population of patients might evolve, causing new patients to be drawn from a
different distribution than the one that was used to derive the models. Again,
this might cause a drop in model performance when applied to new data. To
be clinically useful, these models should, in our opinion, be continuously
evaluated and updated (which is often easier said than done since the
available data is usually sparse), which we have planned in the near future
using new patient data.
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Chapter 3

Microarray data analysis

3.1 Introduction

In this chapter we will use the general data-mining framework
(feature extraction, clustering and classification), as described in Chapter 1,
to analyse microarray data' and specifically apply this in oncology. We aim
to show how specific methodology can be utilised in order to extract clinical
and biological information out of the resulting data and to obtain a more
fundamental insight in the molecular biology of carcinogenesis and to
facilitate diagnosis, prognosis estimation, prediction of therapy response, and
so on. While it is still possible to analyse clinical data manually (as is done
daily by medical doctors), this is impossible for microarray data. The
number of genes, for which the expression levels are measured in one single
microarray experiment, can equal several thousands. This means that each
microarray experiment results in a data vector that contains thousands of
values. This also means that algorithms are needed that can deal with high
dimensional data points and that the methods that were applied in Chapter 2
(methods to control the Type I error in multiple testing problems, model
selection techniques, standard logistic regression - LS-SVMs are an
exception) to analyse classical clinical data are not straightforward or
indicated to be used here, at least not without appropriate dimensionality
reduction, regularization or methods that can deal with the problem of
multiple testing without severe loss of statistical power.

As already mentioned in Chapter 1, two basic types of microarrays
exist and will both be encountered in this chapter:

! Some of the topics presented in this chapter have been published in ‘het
Tijdschrift voor Geneeskunde’ (De Smet et al., 2001) and have also been included in
a book chapter (Marchal et al., 2004).
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1. Spotted arrays (Duggan, 1999) or cDNA-microarrays are small
glass slides on which pre-synthesized single stranded DNA or
double-stranded DNA is spotted. These DNA fragments are
usually several hundred base pairs in length and are derived from
ESTs (Expressed Sequence Tag) or known coding sequences
from the organism studied. Usually each spot represents one
single ORF (Open Reading Frame) or gene. A pair of cDNA
samples is independently copied from the corresponding mRNA
populations (usually derived from a reference and a test sample)
with reverse transcriptase and labelled wusing distinct
fluorochromes (green and red). These cDNA samples are
subsequently pooled and hybridised to the array. Relative
amounts of a particular gene transcript in the two samples are
determined by measuring the signal intensities detected for both
fluorochromes and calculating the ratios (here, only relative
expression levels are usually obtained). A cDNA microarray is
therefore a differential technique, which intrinsically normalizes
for noise and background. Also see Figure 1.2 for a schematic
overview of the procedure that can be followed with spotted
arrays.

2. GeneChip® oligonucleotide arrays (Affymetrix, Inc., Santa Clara,
CA) (Lipshutz, 1999) are high-density arrays of oligonucleotides
synthesized in situ using light-directed chemistry consisting of
thousands different oligomer probes (25-mers). Each gene is
represented by 15-20 different oligonucleotides, serving as unique
sequence-specific detectors. In addition mismatch control
oligonucleotides (identical to the perfect match probes except for
a single base-pair mismatch) are added. These control probes
allow estimation of cross-hybridisation. With this technology,
absolute expression levels are obtained (no ratios).

The vectors generated by several microarray experiments can be
arranged in an expression matrix where the columns contain the expression
levels of a specific experiment and the rows contain the expression levels of
a specific gene in the different experiments (see Figure 3.1). The number of
rows of the expression matrix always is much higher than the number of
columns. Further on in this text, the rows of the expression matrix will also
be called gene expression profiles. Dependent on the objective or
application, both the columns and the rows of the expression matrix can be
considered as the data points or objects for data analysis. In the first case, the
expression levels of the different genes are considered to be the variables
while in the second case this is true for the experiments. In this chapter,
however, we will, in most cases, consider the microarray experiments (each
associated with a tumour or patient - column vectors of the expression
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Figure 3.1: Construction of an expression matrix of 6 microarray experiments. The
high dimensional vectors resulting from different microarray experiments (studying
patients under different conditions or samples taken at different time points during a
certain biological process) can be placed in the 6 columns of a matrix. One row of
this matrix represents the different measurements of a specific gene over the
different experiments and is called a gene expression profile.

matrix) as the data points or objects and the gene expression measurements
as the variables. Cluster analysis of gene expression profiles forms an
exception to this rule - see further in Section 3.4.2 and Chapter 4 and 5. In
this case, the row vectors of the expression matrix are considered to be the
data points.

In this Chapter, we will also consider data sets that contain
microarray experiments that study tumour cells originating from different
classes or conditions with different properties (while for the study of cluster
analysis of gene expression profiles in Chapter 4 and 5 we will focus on data
sets that contain samples taken at different time points during a certain
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biological process - also see Figure 3.1). These different classes could for
example be:

- Tumours with a different histopathological diagnosis (Golub et
al., 1999; Nielsen et al., 2002; Pomeroy et al., 2002).

- Tumours in a different stage of development (Shridhar et al.,
2001, Tapper et al., 2001).

- Tumours with a different prognosis (Rosenwald et al., 2002; van
de Vijver et al., 2002; van ‘t Veer et al., 2002; Huang et al.,
2003; lizuka et al., 2003; Nutt et al., 2003).

- Tumours with a different therapy response (Kihara et al., 2001;
Chang et al., 2003).

- Benign versus malignant tumours (Alon et al., 1999).
- Primary tumour versus metastasis (Ramaswamy et al., 2003).
- Sporadic versus hereditary tumours (Hedenfalk et al., 2001).

- Tumours with different clinical behavior but using present
clinical guidelines, assigned to the same diagnostic category
(Alizadeh et al., 2000; Armstrong et al., 2002).

In the following sections, we will first discuss some issues related to
preprocessing microarray data after which we will examine the different
elements of our data-mining framework applied to this data type: feature
extraction, clustering and classification. An in-depth study of two sub-items
of our data-mining framework (clustering of gene expression profiles and
univariate analysis) will be presented in Chapter 4, 5 and 6. To illustrate the
methodology, we will apply the algorithms to the data from Golub et al.
(1999) (acute leukemia - ALL versus AML) and Perou et al. (2000) (degree
of differentiation in breast tumours - grade 2 versus grade 3) as they are
described in Appendix B.

3.2 Preprocessing

Before submitting microarray data to the algorithms or methods
described in the next sections, it often has to undergo some preparatory steps
(preprocessing). In this section some of the most common preprocessing
steps like normalization, non-linear transformation and missing value
replacement will be examined. Two additional preprocessing steps - filtering
and standardization - more often associated with clustering gene expression
profiles, are described in Chapter 4. It is important to mention that these
steps can have an important impact on the final result.
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3.2.1 Normalization

The first preprocessing step that is customarily applied is the
normalization of the hybridisation intensities within a single array
experiment (Quackenbush, 2001; Engelen et al., 2003; Marchal et al., 2004).
In a two-channel cDNA-microarray experiment several sources of noise
(due to for example differences in dye, labelling, in detection efficiency, and
in the quantity of initial RNA within the two channels) create systematic
sources of bias. The bias can be computed and removed to correct the data.
Since many sources can be considered and since they can be estimated and
corrected in a variety of ways, many normalization procedures exist but will
not be further discussed here. For an illustration, see Figure 3.2 where the
dye related bias is removed using a Lowess fit.

A) Prior t¢ nermalization B) After normalization

log{RIG)
1]
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{log;R + logGN2 (log;R + lag; G2

Figure 3.2: Illustration of the influence of an intensity-dependent normalization to
remove the bias between the dyes in a cDNA-microarray experiment. Panel A:
representation of the log-ratio logy(R/G) versus the mean log intensity
(loga(R)+logy(G))/2 of every spot on the array (R and G are the intensities in the red
and green channel, respectively). At low average intensities the average ratios
become negative indicating that the green dye is consistently more intense as
compared to the intensity of the red dye. This phenomenon is referred to as the non-
linear dye effect. Panel B: Representation of the ratio log,(R/G) versus the mean log
intensity (logy(R)+log,(G))/2 after performing a normalization based on the Lowess
fit (Yang et al., 2002).

3.2.2 Non-linear transformations

It is common practice to pass expression values through a non-linear
function (Quackenbush, 2001). Often the logarithm is used for this non-
linear function. This is especially suited when dealing with expression ratios
(coming from two-channel cDNA-microarray experiments, using a test and
reference sample) since expression ratios are not symmetrical. Upregulated
genes have expression ratios between 1 and infinity, while downregulated
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genes have expression ratios squashed between 1 and 0. Taking the
logarithms of these expression ratios results in more symmetry between
expression values of up- and downregulated genes.

3.2.3 Missing values management

Microarray experiments often contain missing values (measurements
absent because of technical reasons) (Troyanskaya et al., 2001). The inability
of many algorithms to handle such missing values necessitates their
replacement or the development of methods that can deal with these missing
values in a more direct way. Simple replacements, which are customarily,
such as a replacement by zero or by the average of the expression profile
often disrupt these profiles. Indeed replacement by average values relies on
the unrealistic assumption that all expression values are similar across
different experimental conditions.

In this paragraph we will describe two methods that we have used
during our research.

Missing value management without replacement

In some cases, algorithms only need to calculate the (Euclidean)
distance between expression vectors and/or calculate average expression
vectors (like for example K-means, hierarchical clustering (see Section
3.4.1) or our algorithm AQBC for clustering gene expression profiles that is
described in Chapter 5). By a slight change in the definition of how distances
and average expression vectors have to be calculated, it is possible to handle
these missing values without replacing them (Kaufman and Rousseeuw,
1990).

Suppose that 4 = {v,»(v,-],viz, v ...,vij)},-: 1.1 18 a set of I expression
vectors v; where J is the number of measurements for each expression
vector. At this moment we do not specify whether the expression vectors of
A are entire microarray experiments (columns of expression matrix) or gene
expression profiles (rows of the expression matrix). This is dependent on the
definition of the data points of the specific algorithm (e.g., cluster algorithm
for microarray experiments versus cluster algorithm for gene expression
profiles). Suppose that the measurement numbers of the missing values for
expression vector v; are given by the set P; = {p;u}tm=1,. 1 , Where M; is the
number of missing values in v. For example, suppose that
vy =(1,3,-9,*%,5,*,0) (‘*” indicates a missing value), then P; = {4,6} (p;;=4;
Pi12= 6; M] = 2)

38



Chapter 3 - Microarray data analysis

If we want to calculate the Euclidean distance d(v;,v;) between v, and
v, we have to take their missing values into account. Suppose that
#(P, U P)) <J, otherwise d(v;,v)) is undefined. We define d(v;,v)) as:

dwv,,v)= | ——-—— ) 3.1
(Ww'L#wUmm;& 3.1)

This means that calculating distances is done by considering only those
components for which there are values present in both expression vectors.
Since this means that the number of terms in the sum in Equation 3.1 can
vary, a weighing factor is applied to account for the different number of
terms. For example if v; = (1,*,*,-7,9,0,-1) and v, = (¥,2,*,5,1,*,*) then P, =
{2,3}, P,= {1,3,6,7}, P;,UP, = {1,2,3,6,7} and #(P;UP,) = 5. The distance
d(v;,v,) is given by:

d(v,,v,)= \/—< 7-5° +0-1%] (32)

If we want to calculate the mean expression profile v,, of 4, we also
hav¢ to take the missing values into account. The j-th measurement of v,,
(va)) is defined as follows (Note that * . 0 = 0):

v =N )Zw DGi.j) i N()#0 )
* if N(])—O
where
1 if jeP
D@, j)= ' 34
() {o it jer (3.4)
and
I
N(j) =D, )). (3.5)
i=1

This means that the components of v, are the mean values of the

corresponding components of the expression vectors in 4 for which there

actually values present. For example if 4 = (v,v5,v;) where
= (1,%,%,-7,9,0,-1), v, = (¥,2,*,5,1,*% %), and v; = (2,3,*%,-9,%,6,%) then
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1+2 243, -7+5-9 9+1 6+0 -1
* =) (3.6)
2 2 3 2 2 1

b 2 9 b 2
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Nearest neighbour approach

The second approach to deal with missing values is based on the
hypothesis that in a microarray data set one can, for each gene with one or
more missing values, find other genes with similar expression behavior
(these genes are called coexpressed - also see Chapter 4) that can be used to
estimate and replace the missing values.

We have implemented the method as follows (also see Van den
Enden, 2001). Consider a gene expression profile g,, with a missing value
for the p™ component and that belongs to a set of n gene expression profiles
A= {gi(g,«l,g,«z,...,g,f,...,gf)}[ - 1...n of dimension e. The algorithm to replace
this missing value is given in Table 3.1. First we calculate the similarity
(concretely, we used the absolute value of the Pearson correlation
coefficient) between g,, and every other gene expression profile in the
microarray data set. Since the calculation of this similarity has to take the
presence of missing values into account, this was done using an approach
similar to the calculation of distances in the previous method for missing
values management (only the values that are actually present in both
expression profiles are used to calculate the correlation coefficient). Next,
we select a fraction (default 5%) of the genes with the highest absolute value
of the correlation with g,, and from this fraction we again select the set of
gene expression profiles without a missing value for the p™ measurement.
Then we model the relationship between the components of g,, and the
components of every selected gene expression profile using linear
regression. Each linear regression model (one for each selected gene
expression profile) can be used to estimate the missing value in g, using the
p™ measurement in the selected gene expression profile at hand. Finally, the
missing value is replaced by an average of these estimates.

A slight variation on this method, in which linear regression models
between every gene expression profile in the data and g,,, are considered and
where the missing value is replaced by a weighted average (using the
absolute value of the correlation coefficient as weights), could also be useful.

After the implementation of our method, Troyanskaya et al. (2001)
published a similar method, which they called the K-nearest neighbours
method.

3.2.4 Examples

As stated in the introduction, we will use the data from Golub et al.
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Table 3.1: Nearest neighbour (NN) approach for replacing a missing value in the
p"™ component of g,,, € 4 = {gi(g/". g’ & 8) iz 1.

NN 4= {gf(g/,giz, ~~,gij, --wgie)}i: 1.y MV, D)

FORi=1,..,n
2 (8 — (g8, —1(g,)
I j# PP,
i,mv . P -
Z(gij _lu(gt)) Z(gmvj _ll'l(gmv))z
JjepUP,, JjeP,uP,,

/* Calculate correlation between g,,, and every gene expression profile in 4 */

END FOR

SO.
A RT = {gsi} i=1,..,n Where |rs1,mv| 2 |rs2,mv| 2.2 |rsn,mv|

/* Sort expression profiles according to correlation */
EST=0
COUNT=0

FOR i = 1,...,C where C = CEIL(0.05 x n)
/* Calculate estimates of g,/ using profiles with 5% highest correlation*/

IFg/+#*
COUNT = COUNT +1

EST=EST+w. g/ +b
/* Linear regression between g; and g,,,*/

(g —u(gNg, —1(g,,)

_ JEPi Vb,

3 (g, —ug,)

JEPG O

b= p(gmy) —w. 1(gsi)
END IF
END FOR
EST=EST/ COUNT /* Calculate average of all estimates */

gm! = EST /* Replace missing value */
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and Perou et al. to illustrate the algorithms discussed in this chapter. Here we
will briefly describe the steps that we performed to prepare the data for
further analysis.

The data from Golub et al. (Affymetrix chips) had undergone a
crude normalization step before downloading (such that the overall
intensities for each chip were equivalent - the authors called this re-scaling).
Next and according to the original publication, every expression value below
20 was replaced by 20 (application of a threshold), since, according to the
authors, discrimination of expression below this level could not be
performed with confidence. Finally, and also following the guidelines of the
authors, a logarithmic transformation (base 10) was performed. No missing
values were present.

For the data of Perou et al. (¢cDNA-microarray technology), we first
selected the experiments associated with moderately or poorly differentiated
tumours after downloading (resulting in 57 microarray experiments). Next,
we calculated the ratio of the difference between the total and background
intensity from the tumour and reference sample. Subsequently, a simple
normalization was performed by multiplying each array with a single scaling
factor so that the median ratio on each array was 1 (Alizadeh et al., 2000).
Then a logarithmic transformation (in this case with base 2, but the actual
value for this is not important) was performed. Finally the missing values
(8% of the values were missing) were replaced using the nearest neighbour
approach as described above.

3.3 Feature extraction

Not all genes are correlated with or contain information about the
class distinction between samples. In this section we would like to determine
a limited number of features that are as informative as possible about a
certain class distinction. This is also called the problem of reduction of
dimensionality (e.g., reduction of the number of dimension from 7129 genes
to for example 5 features that are maximally correlated with the ALL-AML
distinction in the data set from Golub et al.). This reduction will have several
advantages. It allows identifying the set of features that could be responsible
for the distinction between the different sample types. For instance when
comparing expression patterns of tumour cells to normal cells, the genes
responsible for carcinogenesis could be pinpointed, which could open
perspectives for appropriate drug development (identification of therapeutic
targets (Gerhold et al., 2002)). Furthermore, dimensionality reduction will
facilitate or even enable the other components of the data-mining framework
(clustering and classification). Often it is a mandatory preprocessing step
before other algorithms can be applied.
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Feature selection can be done in a supervised or unsupervised way.
In supervised feature extraction, the distinction between the different classes
is used to select the features while in unsupervised feature extraction the
class labels of the different samples or microarray experiments do not have
to be known. Supervised feature extraction is not an appropriate preparatory
step before cluster analysis of microarray experiments since, by definition,
class membership of the samples is not known in advance (but is a result of
the cluster analysis itself - see further in Section 3.4.1). Both supervised and
unsupervised feature extraction can be wused in combination with
classification of microarray experiments. This can, for example, be
appropriate if classifiers are used that do not use regularization (e.g., Fisher’s
linear discriminant analysis - see Section 3.5.1). Without prior feature
reduction the risk of overfitting would be extreme.

Below, the two types of feature extraction - univariate and
multivariate - that were described in Chapter 1, will be discussed in the
context of microarray data analysis.

3.3.1 Univariate feature extraction

In univariate feature selection, we want to rank the individual genes
according to their correlation with a certain class distinction and select the
genes with a maximum degree of correlation. This is the simplest method for
feature extraction. This selection is logical because usually microarray data
contains a considerable number of genes whose expression is not affected by
the different conditions that are under consideration. In univariate analysis
one aims to remove as much of those genes as possible and only retain the
individual genes most closely related to the class distinction. Univariate
feature extraction is always supervised.

Several strategies are possible to perform univariate analysis in
microarray data and to quantify the degree of correlation with a certain class
distinction. Golub et al. (1999) for example, have introduced a simple
measure or score G(g;) that quantifies the correlation between a single gene
expression profile g; and two different classes:

)= 1(g,)— 1, (g,)

&)= G e ron(e)

(3.7)

where £,(g;) and i(g;) are, respectively, the mean values of the expression
levels of gene g; belonging to samples from class 1 and 2 - o;(g;) and 0x(g;)
are the associated standard deviations. As an example, we calculated G(g;)
corresponding to the class distinction ALL-AML for all the 7129 genes in
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the leukemia data set from Golub et al. We selected the 5 genes with the
highest absolute value of G(g;). These are displayed in the Table 3.2.

Table 3.2: Univariate analysis using the score G(g;) introduced by Golub et al.
Selection of the 5 genes with the highest absolute value for G(g;) in the leukemia
data set from the same authors. These are therefore the genes that are most
discriminative between ALL and AML, according to this score.

Gene description G(g)
CST3 Cystatin C (amyloid angiopathy and cerebral hemorrhage) -1.5956
CTPS CTP synthetase 1.5494
Leukotriene C4 synthase (LTC4S) gene -1.4959
DF D component of complement (adipsin) -1.3935
C-myb gene extracted from Human (c-myb) gene, complete 13719
primary cds, and five complete alternatively spliced cds )

A related method to do univariate feature extraction in microarray
data is to employ classical hypothesis testing (Dawson-Saunders and Trapp,
1994 - also see Appendix A, Section A.l) where a test statistic and the
associated p-value is assigned to each individual gene. But in the case of
microarray data, a hypothesis test should be performed for thousands of
genes simultaneously, which results in an extreme situation of multiple
testing that cannot be corrected adequately using classical techniques (see
Section A.1 (Appendix A) and Section 2.3.1 where a Bonferroni correction
was discussed to correct for multiple testing in clinical data). This problem
will be fully investigated in Chapter 6.

A final approach that could be used to quantify the relation between
the individual gene expression profiles of a microarray data set and two
classes is to construct a receiver operating characteristic curve for the gene
expression levels of each gene and calculate the area under the curve (see
Appendix A, Section A.2). This last value quantifies how well the
expression levels of the gene at hand can discriminate between the two
classes.

Univariate analysis is commonly used to select the genes that
warrant further biological investigation or validation (e.g., for target
discovery in drug development (Gerhold et al., 2002)). This could also be
used as a preparatory step before classification or clustering, but for this task
another feature extraction method, called principal component analysis, is
more suitable and is discussed in the next section.
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3.3.2 Multivariate feature extraction

In the previous chapter we noted that, ideally, 6 to 10 patients or
data points are needed for each variable that is considered for inclusion
during model selection techniques (like stepwise logistic regression analysis
- see Appendix A, Section A.3.4). Therefore and due to the high
dimensionality of microarray experiments, these methods cannot be used
directly in combination with microarray data to select variables or genes
(that significantly contribute in a logistic regression model aiming to
discriminate between two classes of microarray experiments). Other feature
reduction techniques that decrease the dimensionality of the data points
drastically (univariate selection or principal component analysis - see
further) are needed first.

We have not studied model selection techniques in combination with
prior feature reduction for microarray data. For this type of data another
multivariate feature selection technique that was already mentioned in
Chapter 1 and called principal component analysis (PCA), is more common
(Bishop, 1995; Quackenbush, 2001).

In univariate feature selection each feature corresponds to exactly
one gene expression level. However, in general, the distinction between
classes is not fully determined by the activity of a single gene, but rather by
the interaction of several genes. It is therefore better to work with a (linear or
non-linear) combination of genes. In PCA, linear combinations of the
different gene expression values of a microarray experiment are selected.
The coefficients of the linear combinations in PCA are determined in such a
way that these linear combinations have maximal spread (or standard
deviation) for a certain collection of microarray experiments. In fact, PCA
searches for the combinations that are most informative. Each linear
combination results in exactly one value for each microarray experiment and
can thus be regarded as one feature. The coefficients of the linear
combinations can also be arranged in (column) vectors, with the same
dimensionality as the microarray experiments, called the principal
components for the collection of experiments at hand. The principal
components are orthogonal and can be found by calculating the eigenvectors
of 2

1
n—1

> =

AA', (3.8)

where A4 is the expression matrix (n X e matrix - collection of e microarray
experiments where n gene expression levels were measured). X is called the
covariance matrix of the expression matrix 4 - A has to be centralized in
Equation 3.8, i.e., the mean column vector of 4 has to lie in the origin. The
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eigenvectors or principal components with the largest eigenvalues also
correspond to the linear combinations with the largest spread in the
collection of microarray experiments represented by A. In general, if n > e
(which is always the case for microarray data), the rank of X cannot be
higher than e-1 (because A4 is centralized and therefore the columns of 4 are
linearly dependent) and one can find maximally e-1 principal components
with an eigenvalue different from zero. Since, in practice, the microarray
experiments of A4 are almost always linearly independent before
centralization, exactly e-1 principal components can be identified
corresponding to an eigenvalue that is different from zero. All these
principal components span an e-1 dimensional subspace containing all the
(centralized) microarray experiments in 4.

The linear combinations or features themselves can be calculated by
projecting the expression vector of a certain microarray experiment onto the
principal components. If all the principal components are used, this would
constitute a dimensionality reduction n to e-1. In this case, the centralized
microarray experiments of 4 can be completely reconstructed after feature
extraction (no information is lost). In practice, however, not all the e-1
principal components are used but a selection is made according to a certain
criterion (see further), which means a further dimensionality reduction, but
in this case with loss of information (the original microarray experiments of
A cannot be fully reconstructed using this limited set of features). So if m
(nx 1) is the centralized expression vector for a certain microarray
experiment, the columns of P (n x s) contain s selected principal components
of the expression matrix 4 and F (s x 1) is given by:

F=P'm, (3.9)

then the s components of F contain the s features or linear combinations for
the microarray experiment with expression vector m according to the s
principal components of the collection of microarray experiments
represented by 4.

The selection of the principal components of 4 can be done in a
unsupervised or supervised way. If the selection is unsupervised, the
principal components that are associated with the largest eigenvalues of X
(i.e., corresponding to the features with the largest spread in 4), are chosen.
The principal components associated with smaller eigenvalues are assumed
to lie in the directions that are dominated by noise. In supervised selection of
the principal components, the features of the microarray experiments of A
(rows of P'.4) are considered as univariate data that can be selected using
the methods described in Section 3.3.1.
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In the next sections we discuss the application of PCA to the data
from Golub et al. and on the data from Perou et al.

PCA for the data from Golub et al.

We calculated the principal components of the training set (e = 38)
from Golub et al. and selected the two principal components associated with
the two largest eigenvalues (unsupervised selection). The associated features
of the patients of the training and test can (e = 34) be inspected in Figure 3.3.
The separation between patients with ALL and AML (also for patients from
the test set that were not used to derive the principal components here) is
clearly visible. This means that, in this case, the directions in which the
distinction between ALL and AML is prominent are also the directions with
the largest spread in the data. One could say that the distinction between
ALL and AML is dominant here.

PCA for the data from Perou et al.

We derived the principal components of the 57 patients from Perou
et al. The features of the patients associated with the principal components
with the two largest eigenvalues (supervised selection) can be inspected in
the upper plot of Figure 3.4. In this case there is no clear separation between
patients with grade 2 or grade 3 breast tumours. One can conclude that in
this example the directions with the largest spread are not dominated by
distinction between moderately or poorly differentiated breast tumours (but
could possibly be caused by other factors, but since we do not have
additional clinical information about these patients, this cannot be
investigated). For this data set it could therefore be meaningful to perform
supervised selection of the principal components. Based on the absolute
value of the score introduced by Golub et al. (Equation 3.7), we selected
principal components 5 and 30 (Golub scores: 0.48 and 0.42 respectively).
Using this score, the features associated with principal components 1 and 2
were ranked on the 33™ and 16™ place, respectively (Golub scores: 0.07 and
-0.13). The features associated with principal components 5 and 30 can be
inspected in the lower plot of Figure 3.4. Although still not perfect (a large
amount of overlap still exists), the separation between grade 2 and 3 breast
tumours is clearly better when compared to the separation of these two
classes if unsupervised selection of principal components was used. In this
example, supervised selection of principal components would therefore be a
better option if one aims to develop models that can discriminate between
grade 2 and 3 tumours (see Section 3.5.3).
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Figure 3.3: Principal component analysis for the data from Golub et al. The two
principal components of the training set associated with the largest eigenvalues were
selected (unsupervised). Every sample of the training and test set was projected onto
these two components, resulting in two features or values (plotted in the X- and Y-
axis here) for every microarray experiment. Training set: * = ALL, + = AML; Test
set: O =ALL, - = AML.

3.4 Clustering

3.4.1 Cluster analysis of microarray experiments

As already stated in Chapter 1, with cluster analysis one aims to
automatically find different classes in a group of data points without
knowing the properties of these classes in advance. If these data points are
microarray experiments, cluster analysis will group the tumour samples with
a certain degree of similarity in expression behavior. The distinct classes or
clusters generated by the clustering procedure will probably - at least
partially - match with the existing diagnostic categories used for the current
classification of tumours, which is predominantly based on clinical
parameters. However since expression data are not customarily used for the
present classification schemes, it is not excluded that novel, yet unknown
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Figure 3.4: Principal component analysis for the data from Perou et al. The
principal components of the complete data set (57 patients) were determined. Every
sample was projected onto two selected principal components. * = grade 2 tumour,
+ =grade 3 tumour. Upper plot: unsupervised selection of principal components
with the two largest eigenvalues. Lower plot: supervised selection of principal
components based on the absolute value of the score introduced by Golub et al.
(Equation 3.7). This resulted in the selection of the principal components with the 5™
and 30" largest eigenvalue.
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diagnostic entities might originate from these analyses, which could improve
clinical management of cancer. Cluster analysis of microarray experiments
could therefore be used to discover new diagnostic categories or
subcategories that might group patients with less clinical variability.

For example, diffuse large B-cell lymphoma is a disease that is
clinically heterogeneous. Some patients respond well to therapy and achieve
a durable remission, while other patients have a less favourable prognosis.
Although clinical parameters are available that can assess the risk profile of
the patients, these prognostic variables are not ideal yet. Using hierarchical
clustering of microarray data (see further) Alizadeh et al. (2000) claim to
have found two clinically distinct forms of (or clusters in) patients with
diffuse large B-cell lymphoma with a significantly different overall survival.
The authors conclude that these two groups of patients might represent two
distinct subentities that could be the basis of a new classification scheme.

Below we will apply two commonly used techniques to cluster
microarray experiments: K-means and hierarchical clustering. We will
illustrate these techniques using the data from Golub et al.

K-means

The K-means algorithm is described in Appendix A, Section A.5.
This algorithm finds a prespecified number (K) of clusters in a set of data
points or, in this case, microarray experiments. A form of (unsupervised)
feature extraction has to be performed in advance if one wants to cluster high
dimensional microarray experiments using this approach. We will use
principal component analysis for dimensionality reduction here (see Figure
3.5).

We applied K-means clustering to cluster the complete data set from
Golub et al. (72 patients - in this case, we do not consider the subdivision
between training and test set). First, imagine that the difference between
ALL and AML is not known. In this case we have simply a data set with 72
patients with acute leukemia. After principal component analysis (also based
on the complete data set) with unsupervised selection of five principal
components, we submitted the data to a K-means algorithm with K =2. The
result can be inspected in Figure 3.5. The algorithm has succeeded in finding
two clusters. When looking at the first cluster, one can see that all the
patients - except one - have ALL. When looking at the second cluster, one
can see that all the patients have AML. This means that the procedure was in
fact able to redefine the concepts ALL and AML. In this example, nothing
new is learned (because ALL and AML were already known), but the result
clearly shows the potential of this technique.
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Figure 3.5: K-means clustering with K=2 for the complete data set from Golub et al.
Upper plot: visualization of the different steps to cluster microarray experiments
with K-means. Since K-means cannot be applied in combination with high
dimensional data, unsupervised PCA has to be performed for dimensionality
reduction. In this case we selected the five principal components associated with the
largest eigenvalues. Lower plot: cluster result. Only the first two principal
components are shown in this figure, although the clustering procedure was done in
five dimensions. Note the almost perfect correlation between the clusters and the
clinical classification (ALL-AML). Cluster 1: * = ALL, + = AML; Cluster 2:
O =ALL, - = AML; X = cluster means.

Hierarchical clustering

Hierarchical clustering is the most commonly used method for
cluster analysis of microarray data. This method places the data points in a
tree structure and the clusters are formed by cutting the tree at a certain level.
See Appendix A, Section A.6 for more information. Hierarchical clustering
can be used in combination with high-dimensional data and therefore PCA
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or other feature reduction methods are not mandatory before analysis of
microarray experiments with this method.

As an example, hierarchical clustering was also applied to group the
samples of the complete data set from Golub et al. See Figure 3.6 for the
resulting tree structure. We used average linkage clustering and chose the
correlation coefficient as distance measure between the data points. Most
patients with AML are concentrated in one single branch in Figure 3.6.

Critical remarks

In a recent article by Levenstien et al. (2003), the authors raised an important
problem related to the results obtained with hierarchical cluster analysis of
microarray experiments. Since hierarchical clustering results in several
possible sets of clusters, the biologist or medical doctor has to choose an
‘appropriate’ set (i.e., choose a certain cut-off level). The most appropriate
set, however, will often be the set that optimally supports a certain a-priori
hypothesis, like a large difference in survival between the patients of the
different clusters. Since there are multiple sets to choose between, it might
well be that the most appropriate set (i.e., the largest difference in survival)
was generated by accident (problem of multiple testing) and in fact does not
represent a real biological or medical category. Levenstien et al. quantify this
observation by assigning a global p-value to the result obtained by
hierarchical clustering of a set of microarray experiments. This p-value
represents, for example, the probability that the largest difference in survival
between the patients of a set of clusters could be generated by accident.

In our opinion, the problem of multiple testing related to cluster
analysis of microarray experiments may even be larger in some cases.
Firstly, when hierarchical clustering is used, it is often customary to execute
several runs of the algorithm with different parameter settings (e.g., choice
between single, complete, average or centroid linkage clustering; choice of
the distance measure between data points; different choice of preprocessing)
each resulting in several possible sets of clusters. This can inflate the number
of possible cluster results to choose the most appropriate result from. These
different runs are, in our opinion, often not mentioned in publications
(because they did not give meaningful results) while they can degrade the
significance of the result that is finally published. Secondly, the definition of
the most appropriate cluster result or the a-priori hypothesis that has to be
supported can vary or is not fixed before the start of the cluster analysis. Not
only cluster results with a large difference in survival can be useful, but also
clusters with a large difference in other characteristics of the tumour cells
(e.g., histopathology). This can increase the number of tests that has to be
performed for each possible set of clusters and also augment the problem of
multiple testing. Thirdly and finally, hierarchical clustering is not the only
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Chapter 3 - Microarray data analysis

cluster algorithm that is available to cluster microarray experiments. Before
publication of a cluster result, the authors could have tried other algorithms
(and possibly with different parameter settings again) before the selection of
the result that will appear in the final report.

Conclusively, we can state that each cluster result of microarray
experiments in literature should be scrutinized. Ideally, the authors should
mention a measure like the global p-value introduced by Levenstien et al.
Moreover, they should mention how many different cluster results they
obtained and removed from consideration using other parameter settings,
other algorithms, different preprocessing techniques, and so on. Also, if
possible, they should mention if there was an a-priori hypothesis that they
wanted to see supported by the cluster result.

3.4.2 Cluster analysis of gene expression profiles

Gene expression profiles can also be used as the basis for cluster
analysis. Contrary to the other sections of this chapter, the rows of the
expression matrix are considered as the data points or objects of our analysis
here and the different measurements for a gene in the different microarray
experiments as the variables. PCA could also be performed in this setting. In
this case, PCA looks for linear combinations of the different measurements
in a gene expression profile and the principal components lie in the row
space of the expression matrix. But since the dimension of the gene
expression vectors equals the number of experiments in the data set and
since this number usually is several orders of magnitude lower than the
dimension of a microarray experiment, feature reduction prior to cluster
analysis is less important in this setting and usually not an issue. Moreover,
performing PCA prior to cluster analysis of gene expression profiles often
degrades the cluster quality (Yeung and Ruzzo, 2001¢).

An in-depth study of the methodology and specific requirements
associated with cluster analysis of gene expression profiles will be presented
in Chapter 4. In Chapter 5 we will describe an algorithm that we have
specifically designed to cluster this kind of data.

3.5 Classification

As discussed in the introduction of this dissertation, in a clinical
environment it is important to be able to do predictions (with regard to
diagnosis, prognosis, therapy response, and so on - see the different classes
discussed in Section 3.1) for individual patients using microarray
experiments. Here a prediction must be made for samples or patients for
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which class membership (e.g., good versus bad prognosis, benign versus
malignant, and so on) is not known in advance. Based on a set of features
and a training set, a model has to be trained. This model can then be used to
classify new patients for whom the outcome is not known (or is supposed not
to be known) - also see Figure 1.5. This approach could help to incorporate
expression measurements that represent the fundamental mechanisms that
guide the phenotype of the tumour, into the clinical decision making process
for individual patients.

In this section we will consider and illustrate two different binary
modelling techniques: Fisher’s linear discriminant analysis (FDA) and Least
Squares Support Vector Machines (LS-SVMs). We will apply these methods
to the data from Golub et al. and Perou et al. Furthermore, we will briefly
describe the conclusions of a systematic benchmarking study to compare
several classification techniques using nine different microarray data sets.
More specifically, we want to examine the importance of regularization or
dimensionality reduction when classifying microarray experiments and we
want to examine if non-linear classification can contribute in the accuracy of
the predictions.

3.5.1 Fisher’s linear discriminant analysis

Fisher’s linear discriminant analysis (FDA) is a linear classification
technique that can be used to assign data points or microarray experiments to
one of two classes. In FDA (Bishop, 1995) one projects each microarray
experiment 77 of the expression matrix 4 = [m',m’,...,n7,...,m"] that contains
the training data (each microarray experiment of this training set has a
known class label, i.e., it belongs to one of two classes: class 1 (C;) or 2
(C>)) onto a vector w resulting in a variable y = [y’ )7",.../,...)°]:

v =whm’. (3.10)

The vector w is chosen to maximize the following criterion J(w):

(4, — 1)’
JOw) = | 4 , G.11)
Z o’ _/ul)z + Z(yj _/uz)z
m'eC, m'eC,

where 1, and 1, are the mean values of )/ associated with the training
samples from C; and C,, respectively. Note the similarity between Equation
3.11 and 3.7 (Golub score). Maximizing Equation 3.11 gives the expression
for w (only the direction of w is important not the magnitude of w, so scalar
factors can be dropped, but we choose the sign of w so that ; < 1):
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wee S;'(m —m), (3.12)

where m’ and m® are the average expression vectors for the microarrays of
the training set belonging to C; and C, respectively. They are given by:

1 .
mi=— > m, (3.13)
€ micc,
and
1 _
m® == >"m, (3.14)
€ micc,

where e; and e, are the number of microarray experiments from the training
set that belong to class C; and C,, respectively. This also means that
;=w'. m“ and u, = w'. m“. The within-class covariance matrix Sy is given
by:

Sy = 2 m' =m ) m’ =m ) + Y =)' =m) . 313)

m’eC, m’eC,

Now we have to choose a threshold » so that new microarray
experiments m' (from a test set), for which the outcome is not supposed to be
known, can be classified. If y' < b then m' is predicted to belong to C; and if
y' > b then m' is predicted to belong to C,. Bishop suggests two methods to
derive b from the training data. Firstly, by assuming that the variable )’ is the
sum of a set of random variables (see Equation 3.10), we can invoke the
central limit theorem and model the class-conditional density functions
p(/|C) and p(y/|C,) using normal distributions and the training data. After
using Bayes’ theorem to calculate the posterior probabilities P(C,)’) and
P(C,]y’), the threshold b follows from solving:

P(C,|b)=P(C, |b). (3.16)
In practice we do not solve Equation 3.16 but we evaluate the posterior

probabilities using the test sample and assign it to C; if P(C;])") > P(C,))
and to C, if P(C,[y") < P(C,"). This is equivalent with the comparison of?

¢ 2
—M —ln0'1+1ni 3.17)

207 e
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and

r 2
—M —Ino, +lne—2, (3.18)

20, e

where o7 and o> are the standard deviations of )/ associated with the training
samples from C; and C,, respectively. If the value given by Equation 3.17 is
larger than the value given by Equation 3.18, the test sample is assigned to
C; and if the value given by Equation 3.17 is smaller than the value given by
Equation 3.18, the test sample is assigned to C,. From this discussion, it
follows also that a new microarray experiments m' with y'=w’. m' can be
classified with greater confidence if the difference between ' and b is
greater (and therefore also the difference between P(C;)) and P(C,")).
Also see Figure 3.7.

Secondly, Bishop proves that under certain assumptions the
following is also a valid choice for b:

b=w"m, (3.19)

where m is the average expression vector of the microarrays belonging to the
training set. This is given by:

m==>m’. (3.20)

Although we did not use this technique here, ROC analysis could,
similarly to the method that was applied in Chapter 2, also be a valid
approach to determine an optimal value of b in this context.

FDA is a linear classification technique where the number of model
parameters that has to be estimated (components of w), is determined by the
number of expression values (the variables) in each microarray experiment,
which can be considerable. Moreover, this method does not use
regularization and thus is prone to overfitting if the number of variables in
the model is too high relative to the number of data points in the training set.
Since this is certainly the case for microarray data, FDA cannot be applied
without prior feature reduction in practice. The same remarks also apply to
standard logistic regression (see Section 2.3.2), which is a method that is
qualitatively similar to FDA. The need for prior feature reduction in linear
classifiers without regularization will also be confirmed by our
benchmarking study that we will discuss below.
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3.5.2 Least Squares Support Vector Machines

We refer to Appendix A, Section A.4 for more details on this
technique. Like in Chapter 2, Section 2.3.2, we used LS-SVMlab version 1.5
to derive our LS-SVM models and tuned the hyperparameters with a
linesearch (linear kernel) or gridsearch (Radial Basis Function (RBF) kernel)
approach on the training set.

LS-SVM models, unlike logistic regression or FDA, apply
regularization (to prevent overfitting) and estimating the model parameters
involves solving a dual problem where the number of equations is
determined by the number of data points and not by the number of variables.
This means that, in principle, LS-SVMs can be directly applied with good
results for the classification of microarray experiments without prior feature
reduction (which would be necessary if for example FDA is applied) and
that the number of equations that has to be solved is equal to the number of
microarray experiments (plus one for the constant term of the LS-SVM
model) and not to the number of genes in the data set. The direct
applicability of LS-SVM models to microarray data will also be confirmed
by our benchmarking study.

3.5.3 Examples

Data from Golub et al.

In the original publication of Golub et al., the data was divided in a
fixed training and test set. In first instance, we used this fixed training set to
derive a model that can distinguish between ALL and AML. After PCA on
the training set and unsupervised selection of the first two principal
components (see Figure 3.3) we used FDA to construct a linear model in two
dimensions. This model applied on the fixed test set can be seen in Figure
3.7 and resulted in three misclassifications (91% accuracy). The principal
components of the training set were used to derive the two features for every
patient of the test set.

The performance of the model visualized in Figure 3.7 is not
necessarily completely representative of the general behaviour of this
technique using similar data, since it uses a fixed training and test set. The
specific partitioning between training and test that was used here could have
accidentally resulted in an over- or underestimation of the model
performance. In order to get a more optimal assessment of the model, the
whole procedure of model training and testing should be repeated several
times using data where the data points have been randomly reshuffled
between training and test set. This procedure is called randomisation.
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Figure 3.7: Model obtained using FDA for the classification of the patients of the
Golub et al. data after PCA on the training set with unsupervised selection of the
first two Principal Components. The parameters of the linear model (represented by
the line here) were calculated using the patients of the training set (also see Figure
3.3). The patients (only the patients of the test set, for which the two features in the
X and Y axis were calculated using the principal components of the training set, are
shown in this figure) above the line are classified as ALL and below as AML. This
results in 3 misclassifications and these occur in patients that have a relatively small
distance to the classification line, confirming that the classification for patients that
lie further from this line can be done with greater confidence. Test set: O = ALL,
- =AML.

Moreover, the number of principal components that was selected was
arbitrarily set to two here. It is possible that changing this number could
increase the model performance. In the context of our systematic
benchmarking study (see further) we evaluated the performance of FDA on
the data from Golub et al. using 20 stratified (training and test set contain the
same amount of samples from each class compared to the original training
and test set) randomisations where the number of principal components was
optimised for each randomisation using a leave-one-out cross-validation
performance (LOO-CV) on the respective training sets. This resulted in an
average (over the different randomisations) accuracy on the test sets of
94.40% (with a standard deviation o of 3.84%). Supervised selection of the
principal components did not result in a better performance in this case,
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which could have been expected since the separation between the two
classes was already excellent for unsupervised selection (see Figure 3.3).

As a part of our benchmarking study, we also evaluated the
performance of LS-SVM models with a linear and RBF kernel on the data
from Golub et al. using the same randomisations (without prior feature
reduction or PCA). This resulted in an average accuracy on the test sets of
92.86% (0= 4.12%) for the LS-SVM model with a linear kernel and 93.56%
(o= 4.12%) for the LS-SVM model with an RBF kernel.

Data from Perou et al.

We evaluated the performance of FDA on the data of Perou et al. in
distinguishing between grade 2 and 3 breast tumours by a LOO-CV
approach. In each LOO-CV iteration a different sample is left out.
Subsequently, PCA with supervised selection (based on the Golub score of
Equation 3.7 - Figure 3.4 showed that for this data set, unsupervised
selection could be expected not to be sufficient) of a fixed number of
principal components is performed on the remaining data and the model is
trained based on the resulting features. Finally, the left out data point is
projected onto the selected principal components and evaluated using the
trained model and the resulting prediction is compared with the real value.

When the number of selected principal components in each iteration
was set to five, this approach resulted in an LOO-CV accuracy of 79%. This
result clearly demonstrates that it is possible to predict the degree of
differentiation in breast tumours with a certain degree of accuracy using
expression data.

Benchmarking study’

As already announced, we performed a systematic benchmarking
study to evaluate the role of regularization or dimensionality reduction and
to evaluate the role of non-linear techniques in the context of the
classification of microarray experiments. We will outline the main elements
of this study here. We compared the following techniques for classifying
microarray experiments:

1. LS-SVM models with a linear kernel (with (y finite and tuned)
and without regularization (y infinite, which corresponds to FDA
(Suykens et al.,, 2002))) and an RBF kernel without prior
reduction of dimensionality.

? This study was submitted as a full paper to Bioinformatics (Pochet et al.,
2004).
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2. FDA combined with classical PCA and kernel PCA (we will not
further discuss the details about the kernel version of classical
PCA in this thesis - see Suykens et al. (2002)) with unsupervised
and supervised selection of the principal components. The
optimal number of selected principal components was determined
by a LOO-CV approach on the training set.

For this comparison we examined 9 binary cancer classification
problems using 7 data sets that were publicly available, including the data
from Golub et al. The other data sets were: Alon et al. (1999) (colon cancer),
Hedenfalk et al. (2001) (breast cancer - sporadic versus hereditary), lizuka et
al. (2003) (hepatocellular carcinoma), Nutt et al. (2003) (high-grade
gliomas), Singh et al. (2002) (prostate cancer), and van ‘t Veer et al. (2002)
(breast cancer - good versus bad prognosis). We refer to Appendix B for
more details about these data sets. The performance of the different
classification techniques was also evaluated using 20 stratified
randomisations of the training and test set. As an illustration, the test set
accuracies obtained using randomisations of the data set from Nutt et al. are
given in Table 3.3.

Table 3.3: Test set accuracies of different classification techniques applied to 20
randomisations of the data set from Nutt et al. (2003). We tested LS-SVM models
with a linear kernel (with and without regularization) and an RBF kernel and we
tested FDA combined with classical and kernel PCA (also with a linear and RBF
kernel) with supervised and unsupervised selection of the principal components. The
average test set accuracies and their standard deviations o (over the different
randomisations) are given.

Classification technique Accuracy test (%)
9
LS-SVM linear kernel (with regularization) 61.25+11.75
LS-SVM RBEF kernel (with regularization) 69.95 + 8.59
LS-SVM linear kernel (no regularization = FDA) 48.93 £ 10.88
PCA (unsupervised) + FDA 67.82 +7.24
PCA (supervised) + FDA 65.52+11.01
kPCA linear kernel (unsupervised) + FDA 68.31 £6.78
kPCA linear kernel (supervised) + FDA 67.32+11.04
kPCA RBEF kernel (unsupervised) + FDA 64.20+11.19
kPCA RBEF kernel (supervised) + FDA 58.13+12.24

The comparison of the different classification techniques applied to
these nine classifications problems, resulted in the following three main
conclusions:
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1. Our study confirmed that LS-SVM models with linear and RBF
kernels (y finite and tuned) without prior dimensionality reduction
never resulted in overfitting on all data sets that were examined.
The results obtained with RBF kernels (non-linear classifiers) are
never worse and sometimes even significantly better compared to
results obtained with a linear kernel in terms of the test set
performance.

2. Our study also confirmed that regularization appears to be very
important when applying linear classification methods onto
microarray data without dimensionality reduction. Linear
classification techniques without dimensionality reduction and
without regularization hardly perform better than random
classifiers.

3. Performing kernel PCA with an RBF kernel before classification
with FDA tends to result in overfitting.

3.6 Conclusions

In this chapter we discussed and applied the three elements of our
data-mining framework on expression patterns of entire microarray
experiments and mentioned the application of clustering techniques for gene
expression profiles, which will further be elaborated on in the next two
chapters. We illustrated the technique using examples from oncology and
explained how the results of the analysis of microarray data could help to
improve the clinical management of cancer. Although several problems of a
more technical nature still exist that can complicate the clinical use of
microarrays (e.g., cost, heterogeneous composition of samples from solid
tumours and existence of biological and technical variation), it can be
expected that in the future this technology will find its way into clinical
practice (Friend, 1999).

In the context of data analysis of microarray experiments, we
described some frequently used preprocessing steps (normalization, non-
linear transformations and missing value management). We noted that in
univariate feature extraction and in cluster analysis of microarray
experiments, multiple testing is a problem that has to be taken into account.
For univariate analysis of microarray data, multiple testing will be studied in
further detail in Chapter 6. In the context of cluster analysis of microarray
experiments, we illustrated how clustering techniques can potentially
discover diagnostic categories in a group of patients but also mentioned that
cluster results of microarray experiments in literature should be approached
with some caution. Furthermore, we showed that principal component
analysis is an adequate multivariate feature selection technique that looks for
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linear combinations of the expression values of a microarray experiment. We
also demonstrated that principal component analysis is an appropriate
method that can be used in combination with classification and clustering
techniques that cannot deal with the large number of dimensions
characteristic for expression patterns of microarray experiments. We
explained that the selection of the principal components could be done in an
unsupervised and supervised way. We pointed out that supervised selection
can only be used in the context of classification and that unsupervised
selection is appropriate before cluster analysis and could, in some cases
where the principal components with the largest eigenvalues sufficiently
capture the class distinction under consideration, be appropriate before
classification. Finally, we applied and compared Fisher’s linear discriminant
analysis and LS-SVM models with respect to the binary classification of
microarray experiments and, in this context, presented our systematic
benchmarking study. We concluded that regularization or dimensionality
reduction is necessary when performing class prediction using microarray
experiments and that the introduction of non-linear models can, in some
cases, significantly increase model performance.
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Chapter 4

Clustering of gene expression profiles

4.1 Introduction

In the previous chapter we have given a general overview of the data
mining framework to analyse microarray data. In this chapter we will focus
on a specific item of this framework: cluster analysis of gene expression
profiles'.

As previously said, with microarrays one can measure the
expression levels of thousands of genes simultaneously. These expression
levels can be determined for samples taken under different conditions (e.g.,
cells originating from tumour samples with different properties, as discussed
in the previous chapter). But since clustering of gene expression profiles has
been mainly used for microarray data containing samples taken at different
time points during a certain biological process (e.g., different phases of the
yeast cell cycle), we will focus on these types of data sets in this and the next
chapter. The discussion will therefore not be limited or focus on data
generated to study problems in oncology, but the methodology described
here can of course also be used to analyse them.

For each individual gene, the arrangement of the expression
measurements into a vector leads to what is generally called a gene
expression profile. This is thus equivalent with a row of the expression
matrix. These expression profiles or vectors are the objects that will be
analysed in this chapter.

! The discussion presented in this chapter has appeared in a review paper in
the Proceedings of the IEEE (Moreau et al., 2002a) and will appear in a book
chapter (Thijs et al., 2004). We co-authored both publications. We were also
actively involved in writing a survey paper that has appeared in the European
Journal of Control (De Moor et al., 2003).
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Because relatedness in biological function often implies similarity in
expression behavior (and vice versa) and because several genes might be
involved in the process being studied (e.g., they might be regulated by the
same transcription factor - see Chapter 1, Section 1.2 for more details on the
biology), it will, in general, be possible to identify subgroups or clusters of
genes that will have similar expression profiles (i.e., according to a certain
distance function, the associated expression vectors are sufficiently ‘close’ to
one another). Genes with similar expression profiles are called coexpressed.

Conversely, coexpression of genes can thus be an important
observation to infer the biological role of these genes. For example,
coexpression of a gene with unknown biological function with a cluster
containing genes with known (or partially known) function can give an
indication of the role of the unknown gene. Also, coexpressed genes are
more likely to be coregulated, i.e., they might interact with the same
transcription factors.

Clustering algorithms are designed to detect unknown classes in the
data (see Chapter 1, Section 1.3.2). This means that cluster analysis in a
collection of gene expression profiles aims at identifying subgroups (=
clusters) of such coexpressed genes, which thus have a higher probability of
participating in the same pathway. An idealized example in two dimensions
is shown in Figure 4.1.

Cluster analysis of gene expression profiles is only a first
rudimentary step preceding further analysis, which includes motif finding,
functional annotation, genetic network inference (Roth et al., 1998; Thijs et
al., 2002a; van Helden et al., 2000). Moreover, clustering often is an
interactive process where the biologist has to validate or further refine the
results and combine the clusters with a priori biological knowledge.
Claiming that the biologist can immediately obtain the desired results just by
applying the clustering algorithm is, in our opinion, wishful thinking.

In the following sections we will discuss some of the specific
problems related to cluster analysis of gene expression profiles, describe
some of the solutions that are already available and show that these solutions
are still not entirely optimal. This has motivated us to develop a clustering
algorithm specifically tuned towards clustering gene expression profiles that
aims to circumvent some of the disadvantages of the existing algorithms.
This approach will be discussed in the next chapter.

4.2 Algorithmic challenges

The first generation of cluster algorithms (e.g., direct visual
inspection (Cho et al., 1998), K-means (Tou and Gonzalez, 1979), self-
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Figure 4.1: Visualization of 375 (simulated) gene expression profiles (each
expression profile contains two expression levels measured in two different samples
- data not standardized). It is clear that, in this case, cluster analysis will result in the
identification of three well-separated clusters (representing three classes of genes,
possibly associated with specific biological pathways).

organizing maps or SOMs (Tamayo et al., 1999), hierarchical clustering
(Eisen et al., 1998)) applied to gene expression profiles were mostly
developed outside biologically related research. Though possible to obtain
biologically meaningful results with these algorithms, some of their
characteristics often complicate their use for clustering expression data
(these methods lack fine-tuning for biological problems) (Sherlock, 2000).
They require, for example, the predefinition of one or more arbitrary user-
defined parameters that are hard to estimate by a biologist (e.g., the
predefinition of the number of clusters in K-means and SOM - this number is
almost impossible to predict in advance). Moreover, changing these
parameter settings will often have a profound impact on the final result.
These methods therefore need extensive parameter fine-tuning, which means
that a comparison of the results with different parameter settings is almost
always necessary, which is not trivial. Another problem is that first-
generation clustering algorithms often force every data point into a cluster.
In general, a considerable amount of genes included in the microarray
experiment do not really contribute to the biological process studied and
these genes will therefore lack coexpression with other genes (they will have
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seemingly constant or even random expression profiles). Including these
genes into one of the clusters will ‘contaminate’ their content (these genes
represent noise) and make them less suitable for further analysis. Finally, the
computational and memory complexity of some of these algorithms often
limit the number of expression profiles that can be analysed at once.
Considering the nature of our data sets (number of expression profiles often
running up into thousands), this constraint is often unacceptable.

Recently, many new clustering algorithms have emerged claiming to
solve some of the limitations of the earlier methods (e.g., self-organizing tree
algorithm or SOTA (Herrero et al., 2001), quality-based clustering (Heyer et
al., 1999), model-based clustering (Ghosh and Chinnaiyan, 2002; Yeung et
al., 2001a), simulated annealing (Lukashin and Fuchs, 2001), gene shaving
(Hastie et al., 2000), the cluster affinity search technique or CAST (Ben-Dor
et al., 1999)). Also, some procedures were developed that could help the
biologist to estimate some of the arbitrary parameters needed for the first
generation of algorithms (e.g., like the number of clusters present in the data
(Ghosh and Chinnaiyan, 2002; Lukashin and Fuchs, 2001; Yeung et al.,
2001a)). We will discuss a selection of these clustering algorithms in more
detail in the following sections. Many of these methods can be used with
different distance measures, which can also have serious implications for the
final result. One of the reasons that there are so many different clustering
methods (sometimes giving very different results) is that, from a biological
point of view, these different algorithms sometimes seem to expose different
aspects present within the data and not always generate all the relevant
clusters.

An important problem that arises when performing cluster analysis
of gene expression profiles is the preprocessing of the data. Clustering
implies more than just submitting the raw microarray data to the cluster
algorithm of choice. A correct preprocessing strategy is almost as important
as the cluster analysis itself. Normalization, non-linear transformations and
management of missing values have been discussed in Chapter 3 and are
equally important in this setting. Moreover, it is common to (crudely) filter
the gene expression profiles (removing the profiles that do not satisfy a
certain criterion - see further) before proceeding with the actual clustering
(Eisen et al., 1998). A final customarily used pre-processing step is
standardization or rescaling of the gene expression profiles (e.g., multiplying
every expression vector with a scale factor so that their lengths are one -
Quackenbush, 2001). This makes sense because the aim is to cluster gene
expression profiles with the same relative behavior (expression levels go up
and down at the same time) and not only the ones with the same absolute
behavior. The two latter pre-processing steps will be discussed in more detail
in the following sections.
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Validation is another key issue when clustering gene expression
profiles. When using existing algorithms or developing new ones it is not
merely enough to submit the data to the algorithm and wait for the results.
Cluster analysis is more than just producing clusters. The biologist using the
algorithm is of course mainly interested in the biological relevance of these
clusters and wants to use the results to discover new biological phenomena.
This means that we need methods to (biologically and statistically) validate
and objectively compare the results produced by new and existing clustering
algorithms. Some standard methods for doing cluster validation have
recently emerged (looking for enrichment of functional categories (Tavazoie
et al., 1999), figure of merit or FOM (Yeung et al, 2001b), Rand index
(Yeung and Ruzzo, 2001¢), silhouette (Kaufman and Rousseeuw, 1990)) and
will be discussed below. No real benchmark data set exists that can be used
to unambiguously validate novel algorithms. However the yeast cell cycle
data (Cho et al., 1998) as described in Appendix B is often used for this

purpose.

4.3 Methods and algorithms

In this section some of the methods related to clustering gene
expression will be discussed in more detail.

4.3.1 Specific preprocessing

Filtering

As stated in Section 4.2, a set of microarray experiments, generating
gene expression profiles, frequently contains a considerable number of genes
that do not really contribute to the biological process that is being studied.
The expression values of these profiles often show little variation over the
different experiments (they are called “constitutive” with respect to the
biological process studied). Moreover, these constitutive genes will have
seemingly random and meaningless profiles after standardization (division
by a small standard deviation resulting in noise inflation), which is also a
very common pre-processing step (see further). Another problem with
microarray data sets is the fact that they regularly contain highly unreliable
expression profiles with a considerable number of missing values. Due to
their number, replacing these missing values in these expression profiles is
not possible within the desired degree of accuracy.

The quality of the clusters would significantly degrade, if these data
sets would be passed to the clustering algorithms as such. Most clustering
algorithms assign every expression profile in the data to one of the clusters,
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even the ones of poor quality, corrupting the content and the average profile
of these clusters making them less suitable for further analysis. A solution to
this problem could be to use clustering algorithms that do not assign every
profile to a cluster. The algorithm that is proposed in the next Chapter
(AQBC) follows this approach. Another, more simple solution (that can also
be used in combination with the previous solution), is to remove at least a
fraction of the undesired genes from the data. This procedure is in general
called filtering (Eisen et al., 1998). Filtering involves removing gene
expression profiles from the data set that do not satisfy one or possibly more
criteria. Commonly used criteria include a minimum threshold for the
standard deviation of the expression values in a profile (removal of
constitutive genes) and a threshold on the maximum percentage of missing
values. Another similar method for filtering takes a fixed number or fraction
of genes best satisfying one criterion (like the criteria stated above).

Standardization or rescaling

Biologists are mainly interested in grouping gene expression profiles
that have the same relative behavior, i.e., genes that are up- and
downregulated together. Genes showing the same relative behavior but with
diverging absolute behavior (e.g., gene expression profiles with a different
base line and/or a different amplitude but going up and down at the same
time) will have a relatively high Euclidean distance. Cluster algorithms
based on this distance measure will therefore wrongly assign these genes to
different clusters.

Applying standardization or rescaling to the gene expression profiles
can largely prevent this effect (Quackenbush, 2001). Gene expression
profiles showing the same relative behavior will have a small(er) Euclidean
distance after rescaling.

Consider a gene expression profile g(gl,gz,...', g, ....g°). Rescaling is
commonly done by replacing every expression level ¢ in g by

g —u
O

R 4.1

where 4 is the average expression level of the gene expression profile and is
given by:

p=" @2)
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and o'is the standard deviation given by:

0=\/Li( - uf. 43)

6—1 j=1

This is repeated for every gene expression profile in the data set and results
in a collection of expression profiles all having average zero and standard
deviation one (i.e., the absolute differences in expression behavior have been
largely removed). The division by the standard deviation is sometimes
omitted (rescaling is then called mean centering).

4.3.2 Clustering algorithms

As already stated, several clustering methods (first and second
generation algorithms) are available. We will discuss some of the important
ones in more detail below.

First-generation algorithms

Not withstanding some of the disadvantages of these early methods,
it has to be noted that many good implementations of these algorithms were
already developed outside biologically related research and are ready to be
used by biologists (which is not always the case with the newer methods) -
see also Table 4.2.

a) Direct visual inspection:

This is of course the most simple and direct approach used by many
biologists in the early days of gene expression analysis (Cho et al., 1998).
This method is best suited where the patterns of interest are known in
advance, but does not work for larger data sets (high number of dimensions
or data points) or when one hopes to discover unexpected patterns.

b) Hierarchical clustering

Hierarchical clustering is the most widely used method for clustering
gene expression data (Eisen et al.,, 1998; Quackenbush, 2001; Sherlock,
2000) and can be seen as the de facto standard. Hierarchical clustering has
the advantage that the results can be nicely visualized (see Figure 4.2). This
method can also be used to cluster entire microarray experiments (columns
of the expression matrix - see Chapter 3, Section 3.4.1). For more
information and a description of the possible algorithms, see Appendix A,
Section A.6. Using this method, clusters are formed by cutting a tree
structure at a certain level or height. This level corresponds to a certain
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pairwise distance, which in its turn is rather arbitrary (it is difficult to predict
which level will give the most valid biological results). Finally, the
computational complexity of hierarchical clustering is quadratic in the
number of gene expression profiles, which can be a problem when
considering the current size of the data sets.
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Figure 4.2: Typical result we obtained from an analysis using hierarchical clustering
using 137 gene expression profiles of dimension 8. The left side of the figure
represents the tree structure. The terminal branches of this tree are linked with the
individual genes and the height of all the branches is proportional to the pairwise
distance between the clusters. The right side of the figure (also called a heat map)
corresponds to the expression matrix where each row represents a gene expression
profile, each column a microarray experiment and the individual values are
represented on a colour (green to red) or grey scale.

¢) K-means clustering

K-means clustering of gene expression profiles (Tavazoie et al.,
1999; Tou and Gonzalez, 1979) results in a partitioning of the data (every
gene expression profile belongs to exactly one cluster) using a predefined
number K of partitions or clusters (see Figure 4.3). K-means clustering was
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also applied to clustering microarray experiments and the algorithm is
described in Appendix A, Section A.5. The predefinition of the number of
clusters by the user is also rather arbitrary (it is very difficult to predict the
number of clusters in advance). In practice, this makes it necessary to use a
trial-and-error approach where a comparison and biological validation of
several runs of the algorithm with different parameter settings is necessary.

Cluster 1 NG=85 Cluster2 NG=137 Cluster 3 NG=82 Cluster 4 NG=72 Cluster 5 NG=84 Cluster 6 NG=155

Cluster 9 NG=106 Cluster 10 NG=62

Cluster 15 NG=90 Cluster 16 NG=47

Cluster 21 NG=62 Cluster 22 NG=96

Cluster 27 NG=122 Cluster 28 NG=45 Cluster 30 NG=90

Figure 4.3: Typical result from an analysis using K-means clustering with 30
clusters using 3000 standardized expression profiles of dimension 15 (yeast cell
cycle data - filtering: 3000 expression profiles with the highest standard deviation
before standardization were chosen). The sum of the number of genes in each cluster
equals the total number of genes submitted to the algorithm (=3000). NG = Number
of Genes. Each plot shows the individual expression profiles and the mean
expression profile of a cluster.

d) Self-organizing maps (SOM)

In SOM (Kohonen, 1997; Tamayo et al., 1999), the user has to
predefine a topology or geometry of nodes (e.g., a two-dimensional grid -
one node for each cluster), which again is not really straightforward. These
nodes are then mapped into the gene expression space, initially at random
and iteratively adjusted. In each iteration, a gene expression profile is
randomly picked and the node that maps closest to it is selected. The
mapping of this selected node is then moved into the direction of the selected
expression profile. The mapping of the other nodes is also moved into the
direction of the selected expression profile but to an extent proportional to
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the distance from the selected node in the initial two-dimensional node
topology.

Second-generation algorithms

In this section we will describe several of the newer clustering
methods that have specifically been designed to cluster gene expression
profiles.

a) Self-organizing tree algorithm:

The SOTA (Herrero et al., 2001) combines both self-organizing
maps and divisive hierarchical clustering. The topology or node geometry
here takes the form of a dynamic binary tree. Similar to self-organizing
maps, the gene expression profiles are sequentially and iteratively presented
to the terminal nodes (located at the base of the tree - these nodes are also
called cells). Subsequently, the gene expression profiles are associated with
the cell that maps closest to it and the mapping of this cell plus its
neighbouring nodes are updated (moved into the direction of the expression
profile). The presentation of the gene expression profiles to the cells
continues until convergence. After convergence the cell containing the most
variable population of expression profiles (variation is defined here by the
maximal distance between two profiles that are associated with the same
cell) is split in two sister cells (causing the binary tree to grow) where after
the entire process is restarted. The algorithm stops (the tree stops growing)
when a threshold of variability is reached for each cell. To obtain a statistical
definition for this threshold a randomised version of the entire data set is
used (for each expression profile all its expression values are randomly and
independently shuffled - this operation destroys the actual correlation
between expression profiles) and the distances between all possible pairs of
gene expression profiles in this version of the data are calculated. This
results in the probability distribution of the distances that could occur by
chance (i.e., the distribution that describes the probability that two unrelated
expression profiles have a certain distance). The threshold of variability can
now be defined by choosing a confidence level o (e.g., 0=5%), so that only
a fraction o of the randomised gene expression profiles have a distance
smaller than this threshold. Using this threshold ensures that the fraction of
misassignments (unrelated profiles assigned to the same cluster) in the actual
cluster result is limited by the a-value.

The approach described by Herrero et al. (2001) has some properties
that make it potentially useful for clustering gene expression profiles:

1. The clustering procedure itself is linear in the number of
gene expression profiles (compare this with the quadratic
complexity of standard hierarchical clustering).
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il. The number of clusters does not have to be known in
advance. Moreover, Herrero et al. describe a statistical
procedure to stop growing the tree. Therefore, the user is
freed from choosing a (arbitrary) level where the tree has to
be cut (like in standard hierarchical clustering).

iil. A server running the program is available (see Table 4.2).
In our opinion, this method, however, also has some disadvantages:

1. The procedure for finding the threshold of variability is
time-consuming since it involves the actual construction of a
randomised data set and the calculation of the distances
between all possible pairs of randomised expression profiles
(quadratic!). The entire process described in Herrero et al.
(2001) is thus in fact quadratic in the number of gene
expression profiles.

il. No biological validation was provided showing that this
algorithm indeed produces biologically relevant results.

b) Model-based clustering

Model-based clustering (Fraley and Raftery, 1999; Ghosh and
Chinnaiyan, 2002; Yeung et al., 2001a) is an approach that is not really new
and has already been used in the past for other applications outside
bioinformatics. Its potential use for cluster analysis of gene expression
profiles has been proposed only recently, however. In the context of
clustering gene expression profiles we will thus treat it as a second-
generation algorithm.

Model-based clustering assumes that a finite mixture of underlying
probability distributions, where each distribution represents one cluster,
generates the data. Usually, multivariate normal distributions are used for
these probability distributions. In this case, each cluster C; is represented by
a multivariate Gaussian model p; in e dimensions:

1 1 _
Pi(g 1, 2y) :Texp(_z(g_ﬂk)TZkl(g_/'lk)j’ 4.4
Qr)? 12, 7
where g is a gene expression profile or vector and 4 and X, the mean and
covariance matrix of the multivariate normal distribution respectively. The

covariance matrix X; can be represented by its eigenvalue decomposition,
which in this case is written as follows:

X, =AD,AD/, (4.5)
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where Dy is the orthogonal matrix of the eigenvectors of X;, 4, is a diagonal
matrix whose elements are proportional to the eigenvalues of X; and /; is the
constant of proportionality. This decomposition implies a nice geometric
interpretation of the clusters: D; controls the orientation, A4; controls the
shape and A; controls the volume of the cluster. Simpler forms for the
covariance structure can be used (e.g., by having some of the parameters
take the same values across clusters), decreasing the number of parameters
that have to be estimated but also decreasing the model flexibility (capacity
to model more complex data structures). The mixture model p itself takes
then the following form:

K
p(g)zzﬂ.k‘pk(g|:ukazk) (4.6)

k=1

where K is the number of clusters and 7; is the prior probability that an
expression profile belongs to cluster C; so that:

K
Yo =1 (4.7)
k=1

and

z, 0. (4.8)

In practice we would like, given a collection of expression profiles {g;}:-1.....

to estimate all the parameters (7, th, X¢ (k=1,...,K) and K itself) of this
mixture model. In a first step these parameters are estimated with an EM-
algorithm using a fixed value for K and a fixed covariance structure. This
parameter estimation is then repeated for different values for K and different
covariance structures. The result of the first step is thus a collection of
different models fitted to the data and all having a specific value for K and a
specific covariance structure. In a second step the best model in this group of
models is selected (i.e., the most appropriate number of clusters and a
covariance structure is chosen here). This model selection step involves the
calculation of the Bayesian Information Criterion (BIC; Schwartz, 1978) for
each model, which is not further discussed here.

A good implementation for model-based -clustering (called
MCLUST - Fraley and Raftery, 1999) is available (see Table 4.2). Yeung et
al. (2001a) reported good results using this software on several synthetic
data sets and real expression data sets. They claimed that the performance of
MCLUST on real expression data was as least as good as could be achieved
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with a heuristic cluster algorithm (CAST - Ben-Dor et al. (1999) - not
discussed here).

¢) Quality-based clustering

In Heyer et al. (1999) a clustering algorithm (called QT Clust - also
see Table 4.1 for the basic steps of this approach) is described that produces
clusters in a set of gene expression profiles G = {g;} ..., that have a quality
guarantee that ensures that all members of a cluster should be coexpressed
with all other members of this cluster. Heyer et al. define the quality of a
cluster C as the maximum of the distance d(g;.g) between two gene
expression vectors g; and g; of C (called the diameter of C). Heyer et al. use
a specific distance measure (jackknife correlation - not further discussed
here) but the method can be easily be extended to other distance measures.
The quality guarantee itself is defined as a fixed and user-defined threshold
D for the quality or diameter of each cluster.

Briefly said, the aim of QT _Clust is to find clusters, with a quality
guarantee, containing a maximum number of expression profiles. It
considers every expression profile in the data set as a cluster seed (one could
call this a cluster center) and iteratively assigns the expression profiles to
these clusters that cause a minimal increase in diameter until the diameter
threshold D (=quality guarantee) is reached. At this stage every expression
profile is made available to every candidate cluster and there are initially as
many candidate clusters as there are expression profiles. At this point, the
candidate cluster that contains the highest number of expression profiles is
selected as a valid cluster and removed from the data set where after the
whole process starts again. The algorithm stops when the number of points
in the largest remaining cluster falls below a prespecified threshold
(MIN_NR_GENES). This stop criterion implies that the algorithm will
terminate before all expression profiles are assigned to a cluster.

This approach was designed with cluster analysis of expression data
in mind and has some properties that could make it very useful for this task:

i. By using a stringent quality guarantee it is possible to find
clusters with tightly related expression profiles (containing
highly coexpressed genes). These clusters might therefore be
good ‘seeds’ for further analysis.

il. Genes not really coexpressed with other members of the
data set are not included in any of the clusters.

There are, however, also some disadvantages:

i. The quality guarantee of the clusters is a user-defined
parameter that is hard to estimate and too arbitrary. This
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Table 4.1: Quality-based clustering algorithm (QT_Clust) proposed by Heyer et al.
(1999)

QT _Clust (G={g;}i1 ..., MIN_NR_GENES , D)

FORALL g e G /* Consider every expression profile as a seed for
candidate cluster C; */
Gi={g}
FLAG = true

WHILE FLAG = true AND C; # G
FIND g, € (G | C;) that minimizes

Diam(Ciu{g.}) = max{d(g.gnlgr g€ (Co{ga})}
/* Find expression profile that causes minimal increase in
diameter of C; */

IF Diam(Cu{g,}) > D

FLAG = false
/* Cluster C; stops growing if diameter threshold is
reached */

ELSE
G = Cuiga)
END IF
END WHILE
END FOR

FIND C e {C,, C,,...,C,} such that #C is maximal
/* Select candidate cluster with maximum number of expression profiles */

IF #C < MIN_NR_GENES

STOP /* Stop algorithm if number of elements of selected cluster
falls below threshold */

ELSE

OUTPUT C

QT Clust (G\ C, MIN_NR_GENES,D) /* Find next cluster */
END IF
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method is therefore, in practice, hard to use by biologists
and extensive parameter fine-tuning is necessary.

il. This algorithm produces clusters all having the same fixed
diameter not optimally adapted to the local data structure.

1. The computational complexity is quadratic in the number of
expression profiles.

iv. No ready to use implementation is available.

Table 4.2: Availability of clustering algorithms

Package URL
Cluster http://rana.lbl.gov/EisenSoftware.htm
J-Express http://www.molmine.com

Expression Profiler | http://ep.ebi.ac.uk

SOTA http://bioinfo.cnio.es/sotarray
MCLUST http://www.stat.washington.edu/fraley/mclust

AQBC (see Chapter 5) | http://www.esat.kuleuven.ac.be/~dna/Biol/Software.html

4.3.3 Cluster validation

As mentioned before, depending on the pre-processing, the
algorithms and the different distance measures, clustering will produce
different results. Even random data often produces clusters. Therefore
validation of the relevance of the cluster results is of utmost importance.
Below, we will describe four methodologies that are often used for this task.

Looking for enrichment of functional categories: Biological
validation

One way to validate results from clustering algorithms is to compare
the gene clusters with existing functional classification schemes. In such
schemes, the genes are allocated to one or more functional categories
representing their biochemical properties and biological roles (Tavazoie et
al., 1999). Finding clusters that have been significantly enriched for genes
with similar function is proof that a specific clustering technique can
produce biologically relevant results. Therefore the method discussed here is
often called biological validation.

As stated in Section 4.2, the yeast cell cycle data (Cho et al., 1998)
described in Appendix B is often used as a benchmark data set. One of the
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reasons is that the majority of the genes included in the data have been
functionally classified (Mewes et al., 2000). A functional classification
scheme is available (MIPS database - see http://mips.gsf.de/genre/proj/
yeast/index.jsp), which makes it possible to biologically validate the results.

Assume that a certain clustering method finds a set of clusters in this
data. We could objectively look for functionally enriched clusters as follows:
Suppose that one of the clusters has g genes where k& genes belong to a
certain functional category in the MIPS database and suppose that this
functional category in its turn contains f genes in total. Also suppose that the
total data set contains n genes (in the yeast cell cycle data n would be 6220).
Using the cumulative hypergeometric probability distribution, we could
calculate the probability or p-value that this degree of enrichment could have
occurred by chance, i.e., what is the probability of finding at least k genes in
this specific cluster containing g genes from this specific functional category
containing f'genes (out of the whole »n annotated genes) by chance:

(1) 502

SPANC B/ z ~ NS 7 (4.9)

SV

These p-values can be calculated for each functional category in each
cluster. Since there are about 200 functional categories in the MIPS
database, only clusters where the p-value is smaller than 0.0003 for a certain
functional category, are said to be significantly enriched (level of
significance 0.05). These p-values can also be used to compare the results
from functionally matching clusters identified by two different clustering
algorithms on the same data. For an example see Chapter 5, where the results
of our clustering algorithm have been validated using this method. Also see
Appendix A, Section A.1 for more explanation about p-values.

p=1-

Rand index: validation against an external criterion

The Rand index (Yeung, 2001b; Yeung and Ruzzo, 2001c) is a
measure that reflects the level of agreement of a cluster result with an
external criterion, i.e. an existing partition or a known cluster structure of the
data. This external criterion could for example be an existing functional
categorization (see previous method), a predefined cluster structure if one is
clustering synthetic data where the clusters are known in advance, or another
cluster result obtained using other parameter settings for a specific clustering
algorithm or obtained using other clustering algorithms. The latter could be
used to investigate how sensitive a cluster result is to the choice of the
algorithm or parameter setting. If this result proves to be relatively stable,
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one can assume that pronounced signals are present in the data possibly
reflecting biological processes.

Suppose we want to compare two partitions (the cluster result at
hand and the external criterion) of a set of n genes. Suppose that a is the
number of gene pairs that are placed in the same subset (or cluster) in both
partitions. Suppose that d is the number of gene pairs that are placed in
different subsets in both partitions. The Rand index is then defined as the
fraction of agreement between both partitions:

a+d
N
2
The Rand index lies between 0 and 1 (1 if both partitions are identical). The
adjusted Rand index has similar properties but is not further discussed here.

(4.10)

Testing cluster coherence: Silhouette

A gene expression profile can be considered to be well clustered if
its distance to the other expression profiles of the same cluster is small and
the distance to the expression profiles of other clusters is larger. This
criterion can be formalized by using silhouettes (Kaufman and Rousseeuw,
1990). This measure validates the cluster result on statistical grounds only
(statistical validation). Biological information is not used here.

Suppose g; is an expression profile that belongs to cluster C;. Call
v(g;) (also called the within dissimilarity) the average distance of g; to all
other expression profiles from C;. Suppose C; is a cluster different from C;
and define d(g,C)) as the average distance from g; to all expression profiles
of C;. Now define w(g;) (also called the between dissimilarity) as follows:

w(g;) =ming . d(g;,C)). .11
The silhouette s(g;) of g; is now defined as follows:

W(g, ) - V(gi ) )
max{v(g,), w(g,)}

s(g;) = (4.12)

Note that -1 < s(g;) < 1. Consider two extreme situations now. Firstly,
suppose that the within dissimilarity v(g;) is significantly smaller than the
between dissimilarity w(g;). This is the ideal case and s(g;) will be
approximately 1. This occurs when g; is ‘well clustered’ and there is little
doubt that g; is assigned to an appropriate cluster. Secondly, suppose that
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v(g;) is significantly larger than w(g;). Now s(g;) will be approximately -1
and g; has in fact been assigned to the wrong cluster (worst case scenario).

We can now define two other measures: the average silhouette width
of a cluster and the average silhouette width of the entire data set. The first is
defined as the average of s(g;) for all expression profiles of a cluster and the
second is defined as the average of s(g;) for all expression profiles in the data
set. This last value can be used to mutually compare different cluster results
and can be used as an inherent part of clustering algorithms, if its value is
optimised during the clustering process.

Figure of merit

“Figure of merite” or FOM (Yeung et al., 2001b) is a simple
quantitative data-driven methodology (statistical validation) that also allows
comparisons to be made between outputs of different cluster algorithms. The
methodology is related to jackknife-based or leave-one-out cross-validation.
The method goes as follows. The clustering algorithm (for the gene
expression profiles) to be tested is applied to all experimental conditions (in
this case the data variables) except for one left-out condition. If the
algorithm performs well, we expect that if we look at the genes from a given
cluster, their values for the left-out condition will be highly coherent.
Therefore, we compute the FOM, for the left-out condition, as the root mean
square of the deviations of each gene relative to the mean of the genes in its
cluster for this condition. The FOM measures the within-cluster similarity of
the expression values of the removed experiment and therefore reflects the
predictive power of the clustering. It is expected that removing one
experiment from the data should not interfere with the cluster output if the
output is robust. For cluster validation, each condition is subsequently used
as a validation condition and the aggregate FOM (sum of the all the FOM)
over all conditions is used to compare cluster algorithms.

4.4 Conclusion

In this chapter a general overview of clustering gene expression
profiles and a discussion of the specific requirements related to this task was
given. We described a selection of the first- (hierarchical clustering, K-
means, SOM) and second-generation (SOTA, model-based and quality-
based clustering) algorithms that are frequently used to solve this problem
and discussed some of the preprocessing steps like filtering and
standardization that are customarily associated with these methods. Since the
aim of clustering expression profiles is to discover new biology, we
discussed some of the methods (looking for enrichment of functional
categories, Rand index, silhouette and FOM) that can be used to biologically
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or statistically validate the resulting clusters and to objectively show that the
output of the algorithms at hand indeed produce relevant clusters. We noted
that some of the algorithms have properties that make them less suited for
clustering gene expression profiles. This includes the necessity to choose an
arbitrary parameter setting or to perform extensive parameter fine-tuning, the
inclusion of all the genes in the clusters, a high computational complexity
and the lack of biological or other validation.

To solve some of the difficulties associated with clustering gene
expression profiles, we developed an algorithm that is called adaptive
quality-based clustering and that starts from the principles introduced in
quality-based clustering by Heyer et al. This method is described and fully
validated in the next chapter.

83



Chapter 4 - Clustering gene expression profiles

84



Chapter 5 - Adaptive quality-based clustering

Chapter 5

Adaptive quality-based clustering of gene
expression profiles

5.1 Introduction!

In the previous chapter we noted that algorithms for clustering gene
expression profiles have special requirements and that the classical
algorithms suffer from some drawbacks that make them less appropriate for
this task. In this chapter we will present a specific solution to this challenge.

As said, much effort is currently being done to adapt clustering
algorithms towards the specific needs of biological problems. In this context
the idea of quality-based clustering (Heyer et al., 1999 - see Section 4.3.2)
was developed. Heyer et al. proposed an algorithm (which they called
QT Clust) that tries to identify clusters that have a certain quality or
diameter (representing the minimal degree of coexpression needed - see
below for the exact definition used in this chapter) and where every cluster
contains a maximal number of points. Genes not exhibiting this minimal
degree of coexpression with any of the clusters are excluded from further
analysis. A problem with the quality-based approach of Heyer et al.,
however, is that this quality is a user-defined parameter that is hard to
estimate (it is hard to find a good trade-off or optimal value: setting the
quality too strictly will exclude a considerable number of coexpressed genes,
setting it too loosely will include too many genes that are not really
coexpressed). Moreover, it should be noted that the optimal value for this
quality is, in general, different for each cluster and data set dependent. The
computational complexity of this approach is quadratic in the number of
gene expression profiles.

" The discussion presented in this Chapter has been published as a full
paper in Bioinformatics (De Smet et al., 2002).
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In this chapter, we describe an adaptive quality-based clustering
method starting from the principles described by Heyer et al. (quality-based
approach; locating clusters, with a certain quality, in a volume where the
density of points is maximal). The algorithm described below is in essence a
heuristic, two-step approach that defines the clusters sequentially (the
number of clusters is not known in advance, so it is not a parameter of the
algorithm). The first step locates a cluster (quality-based approach) and the
second step derives the quality of this cluster from the data (adaptive
approach). We will make an assessment of the computational complexity of
this approach and the performance of the algorithm is validated on real and
artificial microarray data. We will make a theoretical comparison between
our algorithm, the algorithm of Heyer et al., hierarchical clustering, K-means
and self-organizing maps. Finally, we will refer to an on-line tool for
integrated clustering, upstream sequence retrieval and motif sampling
(INCLUSive) in which our algorithms has been integrated.

5.2 General methodology

5.2.1 Standardization

As previously mentioned, it is common practice to standardize gene
expression vectors before cluster analysis so that their mean is zero and their
variance is one before proceeding with the actual cluster algorithm. If
gi(g’.g’....gl,....g°) is a standardized expression vector, this means that:

1& ;
-> g’ =0, (5.1)
e

(5.2)

Standardized expression profiles or vectors therefore are located in an e-
dimensional space on the intersection of a hyperplane (Equation 5.1) and a
hypersphere with a radius equal to V(e-1) (Equation 5.2).

5.2.2 Quality R of a cluster

The definition used in this chapter for the quality R of a cluster is
slightly different from the definition proposed by Heyer et al. and is as
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follows: In a collection of gene expression profiles G={g;, i=l,...,n}, a
cluster C; with center Oy (center not necessarily standardized) and quality R,
(also called radius of cluster Cy), will only contain the profiles satisfying the
following property:

||g,. -0, ||2 <R,. (5.3)

Equation 5.3 means that cluster C; only contains gene expression profiles
with a minimum degree of coexpression (represented by the quality
guarantee R;). The norm or distance measure we use here is the 2-norm or
Euclidean distance.

5.3 Algorithm

5.3.1 Global algorithm

The global cluster algorithm (AQBC - see Table 5.1) is, as
mentioned previously, a heuristic iterative two-step approach where the
basic steps are as described below. In this implementation we use two user-
defined parameters (MIN _NR_GENES and S - the values between brackets
are default values), several internal tuning parameters that have a fixed value
(the user is not allowed to change these values) and the data set itself (G).

During each iteration, this algorithm first finds a cluster center (Oy)
using a preliminary estimate (R, PRELIM) of the radius or quality of the
cluster (Step 1). When the cluster center has been located, the algorithm
determines a new estimate for the radius (R;) of the cluster (Step 2). Now
there are two possibilities:

1. If this new estimate is approximately equal to the preliminary
estimate (e.g., within 10% - ACCUR_RAD), the set of genes
defined by the cluster center and the new estimate of the radius is
removed from the data set G. Furthermore, if the number of genes
in this set is equal or larger than a predefined value
(MIN_NR _GENES - user-defined; default 2), this set is a valid
cluster. The preliminary estimate of the radius to be used in Step
1 of the next iteration (for the next cluster) is updated with the
new estimate of the radius calculated in Step 2 of the current
iteration (in most cases, the best preliminary estimate for the
radius of the next cluster seems to be the radius of the previous
cluster).
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2. If the new estimate of the radius is substantially different from the
preliminary estimate, the preliminary estimate R, PRELIM is also
updated with the new estimate R; and a new iteration is started.
This is repeated until the relative difference between R; and
R, PRELIM falls under ACCUR_RAD.

Table 5.1: Global cluster algorithm. The values between brackets are the default
values for the user-defined parameters

AQBC (G ={g;, i=1,...,n}, MIN_NR_GENES <2>, § <0.95>)
ACCUR _RAD=0.1 /* Set internal tuning parameter */
Initialise R, PRELIM /* Radius estimate initialisation */

WHILE Stop criterion NOT TRUE

Oy = locate_cluster center (G, R, PRELIM)
/* Localisation of a cluster center - Step 1*/

R, =recalculate radius (G, Oy, R, PRELIM, S)
/* Re-estimation of radius - Step 2 */

IF (| Re- Ry _PRELIM |/ Ry PRELIM) < ACCUR_RAD
/* Check accuracy of radius estimation */

CLUSTER = {gie G| |lg;- Ol| <Ry}
G =G\ CLUSTER /* Remove cluster from data set G */
IF #CLUSTER >= MIN_NR_GENES /* Valid cluster ? */
Output CLUSTER
END IF
END IF
R, PRELIM =R, /* Update radius estimate */
END WHILE

The iterations are terminated when the stop criterion is satisfied (see
Section 5.3.5).

The algorithm was implemented in MATLAB. This implementation
uses the method described in Chapter 3 (Section 3.2.3 - missing value
management without replacement (Kaufman and Rousseeuw, 1990)) to deal
with missing values often occurring in expression data.

Below we will discuss the initialisation of the preliminary estimate
of the radius before the first iteration, the procedures used in Step 1 and 2,
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the stop criterion (WHILE loop) and the computational and memory
complexity of the overall algorithm.

5.3.2 Radius estimate initialisation

In the global cluster algorithm, the preliminary estimate of the radius
(Ri_PRELIM) has to be initialised before the first iteration (radius estimate
for the first cluster - line 3 of AQBC). We use half of the radius of the
hypersphere defined by standardization of the expression profiles (see above
in Section 5.2.1). This is given by:

(5.4)

VJe—1
2

R, PRELIM =

where e is the dimension of the gene expression vectors (number of
expression vector components).

5.3.3 Localization of a cluster center - quality-based
clustering (Step 1)

Given a collection G of gene expression profiles, the objective of
Step 1 is to find a cluster center in an area of the data set where the ‘density’
(or number) of expression profiles, within a sphere with radius or quality
equal to Ry PRELIM (preliminary estimate of the radius), is locally
maximal. The method described here is based on the principles used by
Heyer et al. but is significantly faster (also see the discussion in Table 5.6).
The disadvantage with this approach is that the quality or radius of the
clusters is a parameter that is not very intuitive (it is often hard to find a
‘good’ value for this parameter; often a trial-and-error approach is used with
manual validation of the clusters). Furthermore, all the clusters are forced to
have the same radius.

The basic steps of the algorithm used for the first step are described
in Table 5.2 (locate_cluster_center). After initialisation of the cluster center
(with the mean profile of all the expression profiles in the data set G), all the
expression profiles within a sphere with radius R4D are selected. Iteratively,
the mean profile of these expression profiles is calculated and subsequently
the cluster center is moved to this mean profile. This approach moves the
cluster in the direction where the ‘density’ of profiles is higher (conceptually
visualised in Figure 5.1).
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Table 5.2: Algorithm for the localization of a cluster center.

Oy = locate_cluster_center (G, R, PRELIM)

MAXITER = 50

/* Set internal tuning parameter - maximum number of iterations */

DIV =1/30

/* Set internal tuning parameter - fraction needed to determine DELTARAD */
O, =mean (G) /* Cluster center initialisation */

RAD =max {||g; - Ox|| | g€ G} /* Start with maximal radius */

DELTARAD = (RAD - R, PRELIM) * DIV
/* Determine step for decreasing radius */

RAD = RAD - DELTARAD /* Decrease radius */

GENES IN SPHERE = {g G| |lg; - Oi|| < RAD}
/* Determine profiles within sphere */

ME = mean (GENES _IN SPHERF) /* Recalculate mean */
ITER =1

WHILE (ME # O, AND ITER < MAXITER) OR RAD > R, PRELIM
/* Iterate until convergence or maximal number of iterations has been reached */

ITER =ITER + 1

O,=ME /* Move cluster center to cluster mean */
IF RAD > R, PRELIM
RAD = RAD - DELTARAD /*
Decrease radius if desired quality has not been reached */
END IF

GENES IN SPHERE = {ge G | llg; - Oxl| < RAD}
/* Determine profiles within sphere */

ME = mean (GENES IN SPHERE) /* Re-calculate mean */
END WHILE
IF ME # Oy

O, =empty /* Undefined cluster center if no convergence */
END IF
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Figure 5.1: Conceptual visualisation of cluster center (Xqy) relocation to the cluster
mean (Xyg) in two dimensions (one iteration - cluster radius constant - data not
standardized). The number of profiles (black dots) within the sphere after relocation
is substantially higher than the number of profiles before relocation.

The radius RAD of the sphere is initialised so that all profiles in the
data set are located within this sphere. Every iteration, this radius is
decreased with a constant value (DELTARAD, a fraction (DIV) of the
difference between the initial value of RAD and R, PRELIM) until the radius
has reached the desired value (R, PRELIM) and then remains constant. In
the first iterations (when RAD is still ‘large’) this technique will move the
cluster center to regions of the data where the ‘global’ density is higher
(these regions often contain the largest cluster(s)). After some iterations
(when RAD is equal or close to Ry PRELIM) the cluster center will move
towards an actual cluster where the density is ‘locally’ higher.

Convergence is reached if the cluster center remains stationary after
RAD has reached R, PRELIM. If this does not happen within a certain
(MAXITER) number of iterations, Oy is emptied and the algorithm stops.
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The number of distance calculations performed during each iteration
of locate_cluster_center is equal to the number (= n) of all expression
profiles in G (only the distances from the expression profiles to the current
cluster center have to be calculated). Note also that the computational
complexity of the calculation of one distance is O(e) (e is the dimensionality
of the expression vectors). Because the number of iterations is limited
(MAXITER), the computational complexity for the localization of one cluster
center is thus O(n X e).

5.3.4 Re-estimation or adaptation of the cluster quality
(Step 2)

In Step 1 of the algorithm we located a cluster center O in a
collection G of gene expression profiles, using a preliminary estimate
Ry, PRELIM of the radius of the cluster. The objective of the method
described in this paragraph is, given the cluster center that remains fixed, to
re-calculate the radius R, of the current cluster as to assess that genes
belonging to this cluster are significantly coexpressed.

To substantiate the method described here, we introduce a
randomised version of the original data set where the components of each
expression vector are randomly and independently permuted (Herrero et al.,
2001). This randomised version of the data will only be used for conceptual
reasons, it will not be used during the actual calculations. This process of
randomisation destroys the correlation between the expression vectors that
was introduced through non-accidental mechanisms (e.g., experimental
setup). Any correlation still existing after this procedure can be attributed to
chance.

First, we calculate the Euclidean distance » from every expression
vector in the data set to the cluster center 0. Imagine doing the same for
every vector present in the randomised data. The distribution of these
distances in the original data consists of two parts - see Figure 5.2:

1. Background: these are the expression profiles with a distance to
the cluster center that is also significantly present in the distance
distribution of the randomised data set. Genes belonging to the
background of the current cluster center either do not belong to
any cluster (noise; are not significantly coexpressed with other
genes) or belong to another cluster. Genes belonging to other
clusters (if not too dominant) will not significantly show up in the
distance distribution for the current cluster center (they ‘drown’ in
the noise or background).
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2. Cluster: these are the expression profiles with a distance to the
cluster center that is not significantly present in the distance
distribution of the randomised data set (left-sided tail in the
distribution of the original data set). Genes belonging to the
cluster are significantly coexpressed.

To calculate the true radius of the cluster we need to construct a model
(probability density estimation) describing the total distribution of the
distance r in the original data. We propose the following model structure:

p(r)=F..p(r|C)+ Py.p(r|B) (5.5)
where
P.+P, =1. (5.6)

The model structure assumes that the distance measure used for r is the
Euclidean distance. This means that our method cannot be directly
extrapolated to other distance measures.

The model for the total distribution described in Equation 5.5 is the
sum of two terms (also see Figure 5.2). The first term represents the
distribution of the cluster, the second term represents the distribution of the
background, each multiplied by the associated a priori probability (Pc and
Pp). As we will see further, this model is only valid for standardized gene
expression vectors. Note also that this model is an approximation and only
reliable in the neighbourhood of the cluster. Below we will discuss how
p(r|C) and p(r|B) are constructed, how the parameters of the model are
determined and how we will use this model to calculate the radius of the
cluster.

Distribution of r in the cluster: p(r|C)

Assume that all the gene expression vectors g; in G are standardized
and therefore are located in an e-dimensional space on the intersection of a
hypersphere (with a radius equal to V(e-1) (Equation 5.2)) and a hyperplane
(Equation 5.1) going through the center of the hypersphere. The intersection
itself (we will further refer to it as H) can therefore be seen as a curved space
with an intrinsic dimensionality of d = e-2 (H itself is a hypersphere with
radius V(e-1) located in the (e-1)-dimensional space defined by the
hyperplane). We simplify the problem by neglecting the curved nature of H
in the neighbourhood of the cluster (we assume the hypersphere to be locally
flat - said otherwise, we linearise H in the neighbourhood of the cluster - we
will refer to this linearised version of H as H;). This approximation also
implies that the cluster center O, belongs to H; and that the Euclidean
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distances to the cluster center measured in H; are equal to the real Euclidean
distances (= r) to the cluster center. The equations derived in this section are
therefore an approximation and thus only reliable close to the current cluster
center O; (r < V(e-1) = radius H), which is sufficient for our purpose,
because we are only interested in modelling the area where the cluster is
situated.

The cluster is assumed to be normally distributed around O, within
H,; (the variance is hypothesised to be equal in each direction (in H;) and
given by ¢°). This means that the probability of finding an expression vector
g; of the cluster in an elementary volume d} of H is given by (Bishop,
1995)
2

! (_ ls. ~0u] r
2

1
dV = exp| —
252 J (27[0_2 )d/z p( 20

where r is the Euclidean distance from the expression vector g; to the cluster
center Oy.

)dV, (5.7)

We know that the volume inside a shell with radius » around O in
H; (with elementary thickness dr) equals (Bishop, 1995)

S, ridr, (5.8)

where S, is the surface area of a unit sphere in d dimensions given by

22
S, = 5.9
‘T T(d/2) ¢
and I is the gamma function given by
I'x)= qu_le_”du. (5.10)
0

Replacing dV in Equation 5.7 by Equation 5.8 gives us the probability of
finding an expression vector of the cluster inside the elementary shell:

S _ r’
W”d ! exp(— 20_2 jdl" = p(l" ‘ C)dl" (5.11)
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Said otherwise, Equation 5.11 results in the probability density estimation
p(r|C) describing the distribution of 7 in the current cluster.

Distribution of r in the background: p(r|B)

As previously mentioned, H can be described as a d-dimensional
curved space (hypersphere with radius V(e-1)=V(d+1)). It has a finite volume
given by (Bishop, 1995):

S, (d+1)""2, (5.12)

where Sy.; is the surface area of a unit sphere in d+1 dimensions. The
background is assumed to be uniformly distributed in this finite volume.
Dividing Equation 5.8 by Equation 5.12 gives us the probability of finding
an expression vector of the background inside the elementary shell:

Sy

d-1
—————r“"dr=p(r| B)dr. (5.13)

Sd+1 (d + l)d/2
Said otherwise, Equation 5.13 results in the probability density estimation
p(r|B) describing the distribution of 7 in the background.

Estimation of the parameters

Two parameters (o and P (or Pp)) still have to be determined by
fitting the model to the distance distribution of the original data (the
randomised data is not used for the actual calculations). This is done by an
EM-algorithm (Bishop, 1995). We use the preliminary estimate of the radius
Ry, PRELIM (see localisation of a cluster center) to initialise the two
parameters to be determined by the EM-algorithm. Because the model only
has to fit the distribution of  (distance to the cluster center - one dimension),
the computational complexity of the EM-algorithm is low as compared to the
computational complexity of the cluster center localisation in Step 1 and
therefore can be neglected if e is sufficiently large. The accuracy of the fit
(which represents the validity of the assumptions we made to construct our
model) for the clusters found in the yeast cell cycle data (see Figure 5.3 and
Section 5.4.1) can be inspected in Figure 5.2 for the first four clusters of
Figure 5.3.

Calculation of R,

After the estimation of o and P, we determine the radius R, of the current
cluster so that points that are assigned to the cluster have a
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Chapter 5 - Adaptive quality-based clustering

probability S or more (significance level - user-defined; default setting:
S'=95%) to belong to the cluster:

PC'p(Rk | C) _
P..p(R, | C)+ P,.p(R, | B)

P(C|R,)= (5.14)

To summarise, the complete input-output relation of the method explained in
this section is given by: R; = recalculate radius (G, Oy, R, PRELIM, S). Ry
will be empty if Oy is empty (cluster center localisation did not converge) or
if the EM-algorithm to determine the model parameters did not converge.

5.3.5 Stop criterion

The iteration (WHILE loop) in the global algorithm ends when the
stop criterion is satisfied. This is the case when one of the three following
conditions holds true:

1. Step 1 or 2 stops converging.

2. If, for a specific cluster, the number of iterations necessary to
decrease the relative difference between R, and R; PRELIM
(under ACCUR_RAD), is larger than a predefined number.

3. If the clusters removed from the data are not valid (number of
genes below MIN _NR_GENES) for a predefined and consecutive
number of times.

5.3.6 Computational and memory complexity of the
global algorithm

It is difficult to give an exact measure for the computational
complexity of this heuristic approach. However, we can give an indication of
the role of the most important variables. As previously said, the
computational complexity of one cluster center localisation is approximately
O(n X e) (n is the number of gene expression profiles in the data set, e is the
dimensionality of the expression vectors) and the computational complexity
of the re-estimation of the cluster quality is negligible. So, the computational
complexity of one iteration in the global algorithm (WHILE loop) is also
approximately O(n X e). Notice also that Condition 2 of the stop criterion
sets a limit for the maximum number of iterations in the global algorithm
needed to define one cluster (which is only valid if the number of genes in
this cluster equals or exceeds MIN NR GENES). Moreover, the number of
invalid clusters (number of genes less than MIN NR GENES) found before
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one of the conditions of the stop criterion is true, is in practice also more or
less proportional to the number of valid clusters found (e.g., for each invalid
cluster found, two wvalid clusters will be found). This number of valid
clusters is no classical attribute of the data (like n or e) used to express
computational complexity but it is rather a measure for the complexity of the
structure of the data. Taken together, this means that the number of iterations
in the global algorithm is also more or less proportional to this number of
valid clusters in the data set and since the computational complexity of one
iteration is approximately O(n X e), the computational complexity of the
global algorithm is thus approximately O(n X e X VC) (VC = number of valid
clusters). Notice also that, after finding a certain number of clusters, the
number of genes left in the data is smaller than n (clusters are discarded from
the data). The computational complexity, as described above, is thus an
upper limit.

Since only the distances from the expression profiles to the current
cluster center have to be kept in memory (this is true at any stage of the
algorithm), the memory complexity of the global algorithm is O(n).

5.4 Results

5.4.1 Mitotic cell cycle of Saccharomyces cerevisiae

The algorithm was tested on the yeast cell cycle data as it is
described in Appendix B. As previously said, this data set can be considered
as a benchmark and contains expression profiles for 6220 genes over 17 time
points taken at 10-min intervals, covering nearly two full cell cycles.

Our preprocessing included the following steps: data corresponding
to the 90 and 100-min measurements were removed (Tavazoie et al., 1999).
Also, we selected the 3000 most variable genes using o /i as a metric of
variation (see Tavazoie et al.) (filtering). Finally, we standardized the gene
expression profiles as described in the standardization section. The final data
still contained 2779 missing values. The results of the cluster analysis with
our algorithm (MIN NR GENES = 10, § = 0.95) are shown in Figure 5.3.
Table 5.3 summarises the biological validation of this result by looking for
enrichment of functional categories in individual clusters as described in
Chapter 4 (Section 4.3.3). We mapped the genes in each cluster to the
functional categories in the Munich Information center for Protein
Sequences (MIPS) Comprehensive Yeast Genome Database. For each
cluster we calculated p-values for observing the frequencies of genes in
particular functional categories using the cumulative hypergeometric
probability distribution. In the same table we also show, as a comparison and
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Chapter 5 - Adaptive quality-based clustering

in parallel (where possible, we compare p-values of functionally matching
clusters), the results obtained by Tavazoie et al. on the same data using the
K-means algorithm. The three most important clusters found by Tavazoie et
al. (cluster 1, 4 and 2 in Tavazoie et al.) could be matched with three clusters
discovered by AQBC (cluster 1, 2 and 5). The degree of enrichment in the
clusters identified by AQBC, however, was considerably higher and
biologically more consistent.

In the biological validation and comparison discussed above, we
filtered the data using the same metric of variance (o /g) as proposed by
Tavazoie et al. because different filtering strategies could produce different
clusters independent of the clustering technique (we did not want different
filtering to interfere with our comparison). However, in general, if filtering is
performed, we recommend using simple measures of variation, like the
standard deviation o (not ¢ /) or the difference between the minimum and
maximum value, together with AQBC. Using AQBC with the yeast cell
cycle data indeed resulted in biologically more relevant results when using
the standard deviation (o) as the metric of variance to select the 3000 most
variable genes (resulting in data with 2563 missing values). This analysis,
with the same parameter settings as previously, produced several clusters
enriched in top-level functional categories (see Table 5.4).

We were able to determine the role of every cluster presented in
Table 5.4 within the yeast cell cycle context and correlate this role with the
behaviour of the average profiles of the clusters. We have also found several
protein complexes where nearly all members belong to the same cluster.
Since this is beyond the scope of this text, we will not further discuss this but
more information on this can be found on the supplementary website of De
Smet et al. (2002) (http://www.esat.kuleuven.ac.be/~fdesmet/
paper/adaptpaper.html).

The results of AQBC in this section have been obtained without
additional fine-tuning (we used the default value for S) of one or more
parameters (unlike, for example, K-means (used by Tavazoie et al.) where
the number of clusters has to be estimated in advance, which is certainly not
trivial) and that these results can be obtained very easily and almost
instantaneously (maximum 1.5 minutes for the examples above on a typical
PC).

5.4.2 Central nervous system development

Wen et al. (1998) generated gene expression levels of 112 genes on
9 time points during central nervous system development of the rat (also see
Appendix B). In the original reference, clustering of gene expression profiles
was performed by using a form of hierarchical clustering. Each gene was
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Table 5.4: Biological validation of the results of AQBC on the yeast cell cycle data
(MIN_NR _GENES = 10, S = 0.95) using o as the metric of variance for filtering.
The algorithm retrieved 38 clusters. We looked for enrichment of top-level
functional categories in individual clusters. Notice the periodic behaviour of the
clusters enriched with cell-cycle specific genes (cluster 3, 6 and 9).
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1 426 energy 47 10
transport facilitation 40
3 196 cell growth, cell division and DNA synthesis 48 5
4 149 protein synthesis 71 50
cellular organisation 107 19
5 159 cell rescue, defense, cell death and ageing 20 4
6 171 cell growth, cell division and DNA synthesis 76 24
9 78 cell growth, cell division and DNA synthesis 23 4
37 11 metabolism 9 6
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represented by a 17 dimensional vector (consisting of the 9 expression
values and 8 slopes based on a reduced time interval of 1). The hierarchical
clustering was based on the 112x112 Euclidean distance matrix calculated
using these 17 dimensional vectors. The hierarchical clustering resulted in
four basic clusters (or 'major waves') identifying distinct phases of
development and a group with largely invariant gene expression profiles
(which we could call the constitutively expressed genes).

We applied AQBC (MIN NR _GENES = 10 and S = 0.95) to this
data set after standardization. We only used the 9 dimensional vectors
consisting of the 9 expression values. No missing values were present and no
filtering was performed. The algorithm discovered 4 distinct gene groups,
each highly correlated with one of the four major waves found by Wen et al.
(cluster 1 corresponds to wave 2; cluster 2 corresponds to wave 3; cluster 3
corresponds to wave 1; cluster 4 corresponds to wave 4). The invariant wave
was not found, as could be expected after standardization (the division by a
small standard deviation inflates the noise, resulting in quasi-random profiles
not assigned to any of the clusters).

Figure 5.4 shows the standardized expression profiles (use this
figure to compare the average profile in each cluster with the average
expression patterns in the major waves 1-4 found by Wen et al. - the
similarity is striking).

5.4.3 Measurement of expression levels in different
tissues

Seven two-channel cDNA microarray-experiment to characterise
4595 expression patterns in 7 mouse tissues (brain, heart, kidney, liver, lung,
skeletal muscle and testis) were performed in the lab of Dr. P. Van
Hummelen of the Microarray Facility of the V.I.B. The intention of this
experiment was to identify groups of tissue-specific genes. See Appendix B
for more details on the data.

We used AQBC to cluster these gene expression vectors after
standardization. We used the following parameter settings: S = 0.8 and
MIN NR _GENES = 5. We did not use the default value 0.95 for S (In this
data set there are almost no clusters containing expression vectors that
reached the default significance level. This could be caused by the rather low
dimensionality (e = 7) of the data (too few experiments), giving a larger
overlap between a cluster and the background). Except standardization, no
other preprocessing steps were performed.
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Cluster 1 NG=33 Cluster2 NG=10 Cluster 3 NG=12 Cluster 4 NG=10
T T T T T T T T T T T T T T

Figure 5.4: Central nervous system development data from Wen et al.: Cluster
analysis with AQBC (MIN_NR_GENES = 10, S = 0.95). Except standardization, no
further preprocessing was performed after downloading the raw data. Each box
corresponds to one cluster and shows the standardized expression profiles of the
genes assigned to it and the mean expression profile. Note the similarity of these
mean expression profiles with the four major waves found by Wen et al. NG =
Number of Genes assigned to each cluster.

AQBC identified 33 clusters, which can be inspected in Figure 5.5.
A considerable number of clusters are tissue-specific (i.e., they contain genes
differentially expressed in one or two tissues), reflecting the aims of the
experimental setup. An overview of the most important tissue-specific
clusters is given in Table 5.5.

5.4.4 Artificial data

We constructed data containing artificially created gene expression
profiles of dimension 51. The largest part (1500 profiles) of the data
contained totally random profiles (before standardization, these expression
profiles were normally distributed around the origin - after standardization,
these expression profiles were uniformly distributed on the hypersphere
defined by standardization - see Section 5.2.1). In this set of random profiles
we introduced 7 small clusters, containing profiles exhibiting significant
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Cluster 1 NG=361 Cluster2 NG=183 Cluster 3 NG=262 Cluster 4 NG=152 Cluster 5 NG=82 Cluster 6 NG=89
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Figure 5.5: Measurement of expression levels in different mouse tissues: Cluster
analysis with AQBC (MIN_NR_GENES =5, S = 0.8). No filtering was performed.
Each box corresponds to one cluster and shows the standardized expression profiles
of the genes assigned to it and the mean expression profile. Note the presence of
several tissue-specific clusters - see Table 5.5. NG = Number of Genes assigned to
each cluster.

Table 5.5: Overview of the most important tissue specific clusters from Figure 5.5.

Cluster number Tissue specificity
1 Lung
2 Heart
(Skeletal muscle)
3 Brain
4 Kidney
5 Kidney
Lung
6 Heart
Lung
7 Testis
8 Liver
Kidney
10 Liver
20 Skeletal muscle
(Heart)
Heart
30 Skeletal muscle
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coexpression. These clusters were created by superposing normally
distributed noise (the variance of this noise was different for each cluster) on
copies of 7 template profiles (the number of copies was also different for
each cluster) - see Figure 5.6. We used 5 cosine-like template profiles (3
with phase shifts and 2 with frequency shifts) and 2 template profiles that
were random. A data set created by this procedure was used for cluster
analysis with our algorithm. After standardization, we used the default
settings, except for MIN NR_GENES (which we set equal to 15, which is the
number of profiles in the smallest cluster, to avoid finding small clusters
accidentally present in the 1500 random profiles). The algorithm was able to
identify the clusters introduced in the data set and separate the 1500 random
profiles from the profiles in the clusters (these random profiles were not
assigned to any of the clusters). This result is shown in Figure 5.7.

We also created a second artificial data set by introducing 8377
missing values (about 10% of the entries) in the first set. The introduction of
these missing values did not change the results obtained by our algorithm
(using the same settings for S and MIN NR_GENES as before).

The results above demonstrate the ability of the algorithm to
separate small subsets of significantly coexpressed gene expression profiles
from a large collection of unrelated profiles and the ability to discriminate
between individual subsets or clusters (even between the 3 clusters on the
left side of Figure 5.6 - clusters with cosine-like template profiles with phase
shifts).

5.5 INCLUSive’

Our algorithm AQBC is publicly available for data analysis and can be
found on http://www.esat.kuleuven.ac.be/~thijs/Work/Clustering.html. This
method has also been integrated in an on-line tool, called INCLUSive (see
http://www.esat.kuleuven.ac.be/~dna/Biol/Software.html), which is a suite
of web-based tools and is aimed at the automatic multistep analysis of
microarray data. The goal is to provide an integrated platform where several
sources of information can be linked together to facilitate the analysis of
microarray data. Currently, preprocessing of microarray data (Engelen et al.,
2003), AQBC, information retrieval of genes in clusters (cluster validation),
retrieval of upstream sequences and motif finding algorithms (Thijs et al.,
2001; Thijs et al., 2002b) are accessible from this website.

2 INCLUSive has appeared as an Application Note in Bioinformatics (Thijs
et al., 2002a) and an updated version has been published in the web software issue of
Nucleic Acids Research (Coessens et al., 2003).
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Cluster 1 NG=20 Cluster 2 NG=15 Cluster 3 NG=30 Cluster 4 NG=25

Cluster 5 NG=17 Cluster 6 NG=21 Cluster 7 NG=18

Figure 5.7: Cluster analysis with AQBC (MIN_NR_GENES = 15, § = 0.95) of the
standardized artificial data set. Each box corresponds to one cluster and shows the
standardized expression profiles of the genes assigned to it and the mean expression
profile. The clusters introduced in Figure 5.6 have all been completely recovered
and the random profiles have been excluded from the result. NG = Number of Genes
assigned to each cluster.

5.6 Discussion and conclusion

The algorithm proposed in this chapter is designed to find clusters of
significantly coexpressed genes (higher degree of coexpression than could be
expected by chance) in high-density areas of the data (high-density areas
were assumed by Heyer et al. to be, biologically seen, the most interesting
regions in the data). Genes not exhibiting an expression profile significantly
similar to the expression profile of other genes in the data are not assigned to
any of the clusters. The same applies to genes lying in low-density areas of
the data. The size or radius for each cluster separately is determined -
through the significance level S - by limiting the probability of a false
positive result (a gene assigned to the cluster that is not really coexpressed
with the other members of the cluster). The default value for the significance
level S guarantees that a gene, which has been assigned to the cluster, has a
probability of 95% or more to belong to the cluster (this means that the
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probability of being a false positive is 5% or less). In other words, the genes
in the cluster are significantly coexpressed with a certain confidence.

Therefore, clusters formed by our algorithm might be good ‘seeds’
for further analysis of expression data (see INCLUSive and Thijs et al.
(2002a)) since they only contain a limited number of false positives. When
the presence of false positives in a cluster is undesirable, a more stringent
value for the significance level S might be applied (e.g., 99%; for noise-
sensitive analyses such as motif finding) which will result in smaller clusters
exhibiting a more tightly related expression. The presence of a lower number
of false positives was confirmed by the comparison in Table 5.3 of the
cluster result of AQBC and K-means applied to the data from Cho et al. This
comparison showed that the degree of enrichment in the clusters retrieved by
AQBC was substantially higher. From a biological point of view, the control
of the number of false positives is the main advantage of our algorithm.

The significance level S, in turn, can be seen as a constant quality
criterion for the clusters (while the quality criterion R as defined in Equation
5.3 differs among the clusters defined by our algorithm). Our algorithm can
thus be regarded as being a pure quality-based clustering method where all
the clusters have a constant quality represented by the significance level S
(the term adaptive quality-based clustering is thus only valid when using
Equation 5.3 as quality criterion). When compared to the previous definition
(quality measure R), this new quality measure S has the advantage that it has
a strict statistical meaning (it is therefore much less arbitrary) and that, in
most cases, it can be chosen independently of a specific data set or cluster. In
addition, it allows for the setting of a meaningful default value (95%).

In Table 5.6 a detailed comparison between our global algorithm
(AQBC) and the algorithm proposed by Heyer et al. (QT_ Clust) is made.
Because we focus on algorithmic aspects, the QT Clust algorithm in our
comparison uses the same distance and quality measure as we did (Euclidean
distance and quality defined as in Equation 5.3 - In Heyer et al. the jackknife
correlation was used together with a quality measure defined as a diameter).
This change of distance and quality measure does not significantly change
the structure of QT Clust and in essence, there is no fundamental difference
between a quality defined as a radius and a quality defined as a diameter.

To complete the picture, Table 5.7 gives a summary of the
differences between our method, hierarchical clustering, SOM and K-means.

In summary, some of the properties of the AQBC approach make it
very suited for cluster analysis of gene expression profiles:

1. AQBC can be considered as an intuitively appealing and
user-friendly algorithm where the principal user-defined
parameter is a significance level S, which has a strict
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Chapter 5 - Adaptive quality-based clustering

il.

iil.

1v.

V1.

Vii.

statistical meaning and is therefore much less arbitrary than
for example the predefinition of the number of clusters or
the quality guarantee used in standard quality-based
clustering. It can be chosen independently of a specific data
set or cluster and it allows for a meaningful default value
that often gives meaningful results. There is no need for
extensive parameter fine-tuning.

AQBC produces clusters adapted to the local data structure
(the clusters do not have the same radius).

Only genes that are significantly coexpressed are assigned to
a cluster.

AQBC is a fast algorithm with a computational complexity
that is linear in the number of expression profiles.

A server running the program is publicly available for data
analysis.

Our implementation has an integrated approach for missing
values without the necessity to replace them.

AQBC was extensively biologically validated.

AQBC, however, also has some limitations:

1.

il.

114

It is a heuristic approach not proven to converge in every
situation.

Due to the model structure used in Step two (Section 5.3.4)
some additional constraints have to be imposed. They
include:

Only standardized expression profiles are allowed.

b. AQBC has to be used in combination with the
Euclidean distance and cannot directly be extended to
other distance measures.



Chapter 6

Univariate analysis in microarray data

6.1 Introduction

As already announced, in this chapter we will focus on the problem
of univariate analysis and multiple testing in microarray data'.

Microarrays allow for the simultaneous measurement of expression
levels of thousands of genes in a certain tissue (e.g., in a tumour). These
measurements can be repeated under different conditions (e.g., originating
from tumours or tissues with different properties such as normal and
malignant tissues (Alon et al., 1999); tumours that are and are not sensitive
to chemotherapy (Kihara et al., 2001); tumours with good and poor
prognosis (van 't Veer et al, 2002); tumours with and without metastatic
potential (Ramaswamy et al., 2003); and so on). Also see Figure 3.1.

Usually a test statistic or a hypothesis test (resulting in a p-value for
each gene - univariate analysis) is used to rank the genes with respect to
their differential expression between the different tumour types or
experimental conditions. See Appendix A, Section A.l for more details
about hypothesis testing. Subsequently, an arbitrary threshold or rejection
level « (genes with a p-value smaller than ¢« are declared to be positive or
differentially expressed) is chosen to select the genes that warrant further
investigation or validation (e.g., for target discovery in drug development
(Gerhold et al., 2002)).

However, due to the overlap of the p-values of the genes that are and
are not actually differentially expressed (i.e., the genes whose expression is
and is not affected by the difference between the experimental conditions),
the choice of this rejection level has some consequences (also see Table 6.1).

" A summary of the discussion in this chapter has been submitted to the
British Journal of Cancer as a full paper (De Smet et al., 2004).
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Chapter 6 - Univariate analysis

Firstly, genes whose expression is not affected by the difference between the
different tumour types and therefore have no actual differential expression,
can accidentally have a p-value that is lower than the rejection level and are
therefore wrongly declared to be differentially expressed. In statistics this is
also called a Type I error. This results in a number of false positive genes
that will not yield any results in further investigations. Since the number of
genes in a microarray, that is not actually differentially expressed, usually is
high in microarray data, the number of false positive genes at commonly
used rejection levels (e.g., 5%), can be considerable (problem of multiple
testing). See the Results section for some examples.

Secondly, the choice of the rejection level can also result in a certain
number of false negative genes (Type Il error). These are the genes that are
actually differentially expressed but that have a p-value that is larger than the
rejection level, resulting in discarding potentially valid targets.

Recently, much attention has been paid in literature to the control of
the number of false positives or Type I error (Keselman et al., 2002; Reiner
et al., 2003; Storey and Tibshirani, 2003). Classically and as already
discussed in Chapter 2 for the analysis of clinical data, by applying a
Bonferroni correction (also see Appendix A, Section A.1), one can control
the family-wise error (FWE - probability of having one or more false
positives) at a given level, fixed beforehand. However, for microarray data,
where usually a considerable number of genes is actually differentially
expressed, controlling the FWE is too stringent and results in an
unacceptable Type Il error (leading to an unacceptable loss of statistical
power). Controlling the False Discovery Rate (FDR; expected fraction of
genes falsely declared positive among all the genes declared differentially
expressed) (Benjamini and Hochberg, 1995; Reiner et al., 2003; Storey and
Tibshirani, 2003) is less stringent and seems a more sensible approach for
microarray data but still does not control the Type II error, which could still
be large and lead to the loss of a considerable number of missed targets.
Control of the Type I error in microarray data often goes at the expense of
the Type II error that remains uncontrolled and (too) large. While the study
of multiple testing finds its roots in genetic studies where the number of
positives is usually small and control of false positives is paramount, the
number of positives in studies of differential expression between patient
biopsies is large and false negatives become an equally important issue.
Because of this historical reason, we believe that the control of false
negatives in multiple testing methods has been somewhat overlooked.

In this chapter we will first describe a method to estimate the total
number of genes that is actually differentially expressed starting from the p-
values assigned by a certain hypothesis test to every gene and independent of
a certain rejection level defined in advance. Using this result, we present a
method based on Receiver Operating Characteristic (ROC) curves that does
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Chapter 6 - Univariate analysis

not control the Type I or Type II errors but that obtains an optimal balance
between them. We aim to obtain a sensible or optimal - according to a
certain criterion - trade-off between false positives and negatives.

Moreover, the use of ROC curves enables us to estimate the degree
of overlap between the p-values of genes that are and are not actually
differentially expressed. This amount of overlap in its turn determines the
relationship between the false positives and negatives and the level of the
(optimal) trade-off or balance between them (i.e., the lower the amount of
overlap, the better the balance). The assessment of the amount of overlap
between the p-values by ROC curves can therefore be used to assign a
quality measure to a specific microarray data set. This quality measure can
help to compare different data sets that study the same experimental
conditions with respect to their ability to discriminate between genes whose
expression is and is not affected by the different conditions. This can help
the biologist to decide which data set is best suited for further analysis,
without first having to choose an arbitrary rejection level.

Below, we will first describe the methodology in detail and apply
this, among others, using two pairs of data sets that are publicly available
(one pair dealing with acute leukemia and one pair dealing with degree of
differentiation in breast cancer).

6.2 Methodology

Consider microarray data containing several sets of experiments,
each analysing tissues originating from a specific group of malignancies or a
specific condition, and containing expression levels for n genes g; (we call
this set of genes N - so n = # N). Assume that we have already used a certain
hypothesis test to calculate the p-values p; of the respective genes (also see
Appendix A, Section A.1 for more details about hypothesis testing). These
p-values reflect the probability that an equally good or better test statistic,
quantifying the difference between the gene expression levels of the
different conditions, is generated if a certain null hypothesis is true. In
general, the null hypothesis states that there is no actual differential
expression. Also assume that the genes are ordered according to this p-value,
so that p; < p, < ... < p,. Note, that in this chapter, we chose the Wilcoxon
rank sum test (a nonparametric test that examines the null hypothesis that the
medians of the expression levels from fwo conditions for a certain gene are
identical) to generate the p-values (Pagano and Gauvreau, 2000;
Troyanskaya et al., 2002). This test uses a test statistic that is based on the
ranks of the expression levels of one gene rather than on the values
themselves. Note, that in principle, every procedure (e.g., through random
column permutations of the data to simulate the distribution of the test
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statistic under the null hypothesis (Tusher et al., 2001)) or hypothesis test
(e.g., Kruskal-Wallis test if there are more than two conditions), that
generates p-values for every individual gene, is suitable as long as its
underlying assumptions are checked or assumed.

Now assume that the number of genes that is actually differentially
expressed is n; (for these genes the null hypothesis is false - we call this set
of genes Ny, son; =#N, 1). Assume further that the number of genes that is
not actually differentially expressed is n, (for these genes the null hypothesis
is true - we call this set of genes Ny, song=#N 0). Of course, these numbers
are not known in advance and have to be estimated from the data.

Starting with the estimation of »n; and ny, we proceed by calculating
the number of true positives (7P), true negatives (7N), false positives (FP),
and false negatives (FN) at each rejection level. Using these estimates, the
sensitivities and specificities at each rejection level can be calculated.
Finally, we use these quantities to construct a ROC curve. All methods
described in this chapter were implemented in MATLAB but are
straightforward to implement using other packages.

6.2.1 Estimation of n; and n,

Assume that a gene g, with associated p-value p, can be found with ¢
defined as follows:

t:min{j g€ ]\70 and Vg, € N, ip; < pj}. (6.1

The assumption of the existence of such a gene g,comes down to the
fact that one supposes that the largest p-value in the data set belongs to N,
(which is logical since genes belonging N; will, in general, have relatively
small p-values because they are not generated under the null hypothesis).

Now choose any gene g; with p; > p, (by definition g; belongs to N,
since all genes belonging to N, have p-values smaller than p,). Since the
genes were ordered according to their p-value, k is the number of genes
belonging to N with a p-value equal to or smaller than p;. Since N= N, U N,
we can write the following set of equations:

kz#{giEN1|piSpk}+#{giENolpiSpk} (6.2)
n=n,+n,. (6.3)

Since, by definition, all genes belonging to N, have p-values smaller than p,
the first term in Equation 6.2 equals n;. To calculate the second term, we
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assume that the test statistics of the gene expression profiles of N, (that are
generated under the null hypothesis) are independent (all genes, that exhibit
coexpression that can change the test statistic, are assumed to belong to N,).
Under this condition and by definition, the probability, that a gene from N,
has an equally good or better test statistic than g; (i.e., has a p-value equal to
or smaller than py), equals p;. This means that the expected value (mean of
the binomial distribution) of the second term in Equation 6.2 equals p;.ny

and that we can approximate Equation 6.2 as follows:
k=n +p,n,. (6.4)
Deriving n; from the set of Equations 6.3 and 6.4 gives:

ny = P (6.5)

1-p,

For a given data set, n; is constant. Now define V;, for every gene g;, as
follows:

Vi = ﬂ (6.6)

1-p,

According to Equation 6.5 and for p; > p,, V; is constant and equals 7;.
Moreover, it is easy to prove that V; < n; when p; < p, and that V; goes to zero
when p; gets smaller.

Using this information, we can present an easy method to derive n;
(and ny through Equation 6.3): Calculate V; for every gene g; and plot these
values in a graph (e.g., i on the X-axis and V; on the Y-axis). If this graph
reaches a constant level at a certain gene, this gives us respectively »; and g;.
In practice, after reaching the constant level, the graph will slightly fluctuate
around a mean value (because of the approximation we used to derive
Equation 6.4). So for the calculation of #,, it is better to take the mean of V;
in a certain interval [r,s] where r > ¢ and s << n, if possible (if i = n, p; = 1
and the denominator in Equation 6.6 gets very small and the formula for V;
becomes ill conditioned). See the Results section for some examples of this
method.

Alternative derivation

Storey and Tibshirani (2003) recently reported a method (in PNAS),
using a somewhat different reasoning than given above, to estimate 7, (this
was published after the development of our method). We will discuss the
main ideas of their approach below (using a notation that is consistent with
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the one that is used here) and will show that their result is completely
equivalent with the method described above.

First consider a data set that does not contain any genes with actual
differential expression (this can be approximated by randomising an existing
microarray data set containing genes with actual differential expression
through an independent and random permutation of the elements of every
row in the expression matrix). The test statistic of the genes of such data
follows the null distribution and the p-values are uniformly distributed
between 0 and 1, which can be seen in Figure 6.1 where a histogram of the
p-values of a randomised data set is shown.

Now consider a real microarray data set containing genes with and
without actual differential expression. A histogram of the p-values of a
representative data set can also be inspected in Figure 6.1. The distribution
of the p-values in this case is a superposition of a uniform distribution
assumed to be generated by the genes that are not actually differentially
expressed (like in the randomised data set) and a distribution assumed to be
generated by the genes with actual differential expression (whose test
statistic does not follow the null distribution). The genes in this last
distribution have p-values that are concentrated in the lower range and that
are almost absent in the higher range (close to one).

1400/ 1400’
12001 1 1200
1000/ 1000’

8001 800/

Number of gen
Number of genes

600/ 600/

400 1 400/

]

Figure 6.1: Left: Histogram of the p-values from a data set only containing genes
without actual differential expression (randomisation of the data set that was used
for the histogram on the right). This represents a uniform distribution; Right:
Histogram of the p-values of a data set that contains genes with and without actual
differential expression. The distribution of the p-values is a superposition of two
distributions separated by the horizontal line. The distribution under the horizontal
line is a uniform distribution representing the genes without actual differential
expression and the distribution above the horizontal line represents the genes with
actual differential expression where the p-values are concentrated in the lower range.

200 N ﬂ‘ﬂm,‘v;»m

ol —=
o

The number of genes that generate the uniform distribution under
the horizontal line in the histogram on the right in Figure 6.1 is given by n,.
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Storey and Tibshirani propose to estimate this number as follows: consider a
gene from N with a p-value p,. Since the distribution of the p-values of the
genes without actual differential expression is assumed to be uniform, the
number of genes from N, with a p-value larger than p; can be estimated by:

g, € Ny | p, > pif=n,(1-p,). (6.7)
If p; —> 1, the following applies:
#{g_/ENO|p_/>p[}:#{gjej\7|pj>p[}:n_i7 (6.8)

since most of the genes from N with p-value close to 1 have no actual
differential expression and therefore belong to »,. From Equation 6.7 and
6.8 follows that

n—i

n, = lim . (6.9)

piml]— P
Equation 6.9 is the main formula that has to be evaluated in Storey and
Tibshirani. Since n; = n - ny, the following applies:

. [ n—i J . I—pn
n, =lim| n— = lim . (6.10)
pi—1 l_pl pi—1 l_pl
Equation 6.8 also applies for p; in the neighbourhood of 1 since the
distribution (as represented in the right histogram in Figure 6.1) becomes
reasonably flat for p-values relatively close to 1. This also means that, in
Equation 6.10, the limit value will already be reached and the expression
behind the limit will become more or less constant for p; in the
neighbourhood of 1. Since this expression is equal to the one given in
Equation 6.6, this shows that the method of Storey and Tibshirani is
equivalent to the method described at the start of this section. Storey and
Tibshirani assume that the p-values of the genes without actual differential
expression follow a uniform distribution. For the derivation of Equation 6.6
we have assumed that that the test statistics of the gene expression profiles
without actual differential expression are independent and that all genes, that
exhibit coexpression that can influence the test statistic, are assumed to
belong to N;. The assumptions concerning the uniform distribution and the
independence of the test statistics of the genes that belong to N are in fact

equivalent and follow from each other.
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6.2.2 Estimation of the number of true positive, true
negative, false positive and false negative genes

Suppose that we declare the genes with a p-value smaller than or
equal to a certain rejection level o = p; as differentially expressed (i.e., the
null hypotheses for these genes are rejected - one could say that the
expression of these genes is predicted not to be affected by the difference in
conditions) and the genes with a p-value larger than this rejection level as
not differentially expressed (i.e., the null hypotheses for these genes are not
rejected - one could say that the expression of these genes is predicted not to
be affected by the difference in conditions). When the declared status of
differential expression is compared with the actual status of differential
expression (or with the actual status of the null hypothesis - false or true),
four categories of genes (true positive (7P;), true negative (7TN), false
positive (FP;) and false negative (FV;) genes) emerge that are defined in
Table 6.1. Using the value of n; and ny, derived in the previous section, we
can calculate the number of genes in each category using the formulas from
Table 6.1.

Table 6.1: Definition of True and False Positive genes (7P; and FP;) and of True
and False Negative genes (7N; and FNN;) at a certain level of rejection &= p; (p-value
of the i™ gene after ranking them in ascending order by p-value). For each of them,
the formula of the expected value is given.

Actually differentially expressed?
YES NO
n = TP; P, Pos;
2 e = v L = pi.hg _ il
3 -g 3 S =1 pelo Type I error
<
a= ~ .
REG o= i v, Neg,
= Z A =n;-i+p.ny ~ (1-p)n — i
S Type II error Pi)-Mo
n; no

6.2.3 Sensitivity and specificity

Using the values calculated in Table 6.1, the sensitivity (SENS;) at a
certain rejection level & = p; is defined as (Pagano and Gauvreau, 2000)
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TP TP
SENS, = ——1— =1, (6.11)
TP +FN, n,

which is the fraction of actually differentially expressed genes that are
declared differentially expressed. Note that 1 - sensitivity equals the
probability that a gene with actual differential expression is not declared
differentially expressed, which is exactly the probability of a Type II error.

The specificity (SPEC;) at a certain rejection level o = p; is defined
as (Pagano and Gauvreau, 2000)

TN, TN,
SPEC, = Lt (6.12)
TN, +FP.  n,

which is the fraction of genes without actual differential expression that are
not declared differentially expressed. Note that 1 - specificity equals the
probability that a gene without actual differential expression is declared
differentially expressed, which is exactly the probability of a Type I error.

6.2.4 Construction and interpretation of ROC curves

Suppose that we calculate the sensitivities and specificities at all
possible rejection levels o= p; (i = 1,...,n) and that we construct a Receiver
Operating Characteristic (ROC) curve (sensitivity plotted versus 1-
specificity - also see Appendix A, Section A.2.1). ROC curves are a popular
method to compare and characterise the performance of diagnostic tests in
medicine (e.g., Epstein et al. (2002)). We will discuss and use them here to
quantify our ability to discriminate between genes with and without actual
differential expression.

First of all, a ROC curve shows the trade-off or balance between
specificity and sensitivity (and hence between the Type I and Type Il errors)
for every possible rejection level and therefore allows for the selection of a
rejection level o with an optimal balance between specificity and
sensitivity or between the Type I and Type II errors. Optimal can be defined
in several ways and depends on the context or the requirements of the
application. Often, the point on the ROC curve (and associated rejection
level) with a tangent line with slope 1 is chosen, for which it can be proven
that it maximizes the sum of the sensitivity and specificity (and hence
minimises the sum of the probability of a Type I and Type II error) - this is
also the definition of optimal that will be used in this chapter. Alternatively,
one can also try to optimise a more custom defined cost function of the Type
I and Type II errors that meets some specific requirements. One could, for
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example, use a cost function that puts more weight on either the Type I or
Type II error, dependent on which is most important for a specific situation.
In fact, by minimising the sum of the probability of the Type I and Type II
errors (as said, this is done in this chapter), the number of false positives and
negatives are weighed by the inverse of the number of genes without and
with actual differential expression, respectively. This means, for example,
that the ‘cost’ of a false negative will be higher if the number of genes that
are actually differentially expressed (or that are actually positive) is lower
and vice versa, which is logical since the impact of missing a rare target is
higher than the impact of missing one of many targets.

Secondly, the Area under the ROC curve (AUC) has a special
meaning (see Appendix A, Section A.2.2 for a method to calculate the AUC
and its standard deviation). Suppose we randomly select a gene g; with actual
differential expression with p-value p; and a gene g; without actual
differential expression with p-value p;, then it can be proven that

AUC=P(p, <p);), (6.13)

i.e., the AUC equals the probability that the p-value of the gene with actual
differential expression is lower than the p-value of the gene without actual
differential expression and therefore it is the probability that p; and p; are
ranked correctly. The AUC quantifies how well the genes whose expression
is and is not affected by the difference between the tumour types can be
discriminated using the p-values of these genes independently of the choice
of an arbitrary rejection level and independently of the relative values for n;
and ny. The AUC increases if the overlap between the p-values of the genes
with and without actual differential expression decreases. This means that
the level of the (optimal) balance between Type I and Type II errors (e.g.,
reflected by the sum of the specificity and sensitivity) improves if the AUC
increases. Therefore, the AUC can be seen as a quality measure with respect
to the detection of differential expression for a specific set of microarray
experiments, given a certain hypothesis test. Provided the same hypothesis
test is consistently applied, the AUC can be used to compare (see Appendix
A, Section A.2.3 for a method to compare AUCs) the ability of different
gene expression data sets to discriminate between genes whose expression is
and is not affected by the difference in conditions. For example, one could
calculate this quality measure for several data sets, which study gene
expression levels under the same conditions, from different sources or
institutions. As another example, one could try to study the effect on the
differential expression and on this quality measure by a change in one or
both conditions (see Results section).
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6.2.5 False discovery rate

The False discovery rate (FDR;) (Benjamini and Hochberg, 1995;
Tusher et al., 2001; Rhodes et al., 2002; Keselman et al., 2002; Reiner et al.,

2003; Storey and Tibshirani (2003)) at a certain rejection level & = p; can
be defined as

FP )
FDR =E | Pt (6.14)
TP + FP i

which is the expected value of the fraction of genes falsely declared
differentially expressed from all the genes that are declared differentially
expressed. The false discovery rate is a measure that is often used to quantify
and control the Type I error. Using the formulas from Table 6.1, we estimate
this quantity by the expression in the right hand side of Equation 6.14. If one
would, for example, try to validate all the genes that are declared
differentially expressed, the false discovery rate reflects the fraction of genes
where the validation procedure is expected to be unsuccessful. Selecting a
rejection level with a low FDR; limits the Type I error and yields higher
efficacy for the target validation. The estimated number of false positive
genes (in the nominator for FDR;) is based on ny and not on n (like for
example in Tusher et al. (2001) or Rhodes et al. (2002) - the false discovery
rate is overestimated there because the number of false positives is based on
the number of null hypotheses that would be rejected if the null hypotheses
were true for all the genes in the data set). This is important if »; is large,
which is often the case.

Two main factors independently determine the behaviour of the false
discovery rate: the AUC and the relative value of n; (reflected by the fraction
n;/n). An increased value for the AUC (reflecting less overlap between the
distributions of the p-values of N; and N,) causes FDR; to start approaching
its maximum value at higher values of i. An increased value for n;/n (or a
decreased value for ny/n = 1- n;/n, which is the maximum value for the false
discovery rate in Equation 6.14, since p, = 1) causes an overall decrease of
the false discovery rate.
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6.3 Results

6.3.1 Acute leukemia

In this paragraph we will apply the methodology described above on
microarray data from two sources that contain measurements for two or three
classes of patients with acute leukemia.

The first set contains the data from Golub et al. (1999) as it is
described in Appendix B and already used for data analysis in Chapter 3. In
summary, it contains expression profiles of 72 patients with acute
lymphoblastic (ALL - Condition 1) or myeloid (AML - Condition 2)
leukemia. In the original publication the patients are divided into a training
(38 patients; 27 ALL and 11 AML) and a test set (34 patients; 20 ALL and
14 AML). The data contains n = 7129 genes. No additional preprocessing
was performed after downloading.

The second data set (Armstrong et al., 2002) also contains several
microarray experiments obtained from patients with acute leukemia but
contains patients from a third condition (called MLL leukemia) besides ALL
and AML. Also see Appendix B for more information. The data contains
expression profiles for 12582 genes measured using Affymetrix technology.
In total, 24 ALL patients, 28 AML patients and 20 MLL patients are
available.

We will first illustrate our procedure for univariate analysis of
microarray data using only the patients of the training set from Golub et al.
We will also analyse a randomised version of this training set and use this as
a basis to construct an artificial data set. Next, we will use our methodology
to compare the complete data from Golub et al. (training + test set) with the
data set from Armstrong et al. with respect to the detection of differential
expression between ALL and AML. Finally, we will investigate the effect of
a change in condition (replacement of ALL or AML patients with MLL
patients in the data from Armstrong et al.).

Training set from Golub et al.

The results of our analysis using the 38 patients from the training set
from Golub et al. can be inspected in Figure 6.2-6.4. In Figure 6.2, V;
reaches a fairly constant level of about 2821 (n; = mean of V; for i between
5000 and 6000; n;/n = 40%) at about gspgp (¢ = 5000). This means that if we
would use psp0 = 0.509 as rejection level @, we can expect to have retained
all the genes that are actually differentially expressed. Moreover, increasing
the rejection level will only include genes whose expression is not affected
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Figure 6.2: Analysis of the training set of Golub et al. Plot of V; versus the gene
number i (sorted according to their p-value). V; reaches a constant level of about
2821 at gsg99, which is the estimate for n;.

by the difference between ALL and AML and for which biological
validation is not expected to yield any positive results.

The behaviour of the number of true positives 7P; (=i - p;.(n-n;) ) in
Figure 6.3 confirms these findings and gives additional proof that the
calculated value of n; (in Figure 6.3 called n,.,. = 2821) is indeed the correct
one. The correct curve for TP; (curve in the middle in Figure 6.3) rises until
Zsoo0 and then reaches a constant level of 2821. If we evaluate the formula
for TP; with a value for n; that is smaller than 2821, this would result in a
curve like the two lowest ones in Figure 6.3 (curve reaches a maximum level
and then starts declining again). If we evaluate the formula for 7P; with a
value for n; that is larger than 2821, this would result in a curve like the two
upper ones in Figure 6.3 (curve keeps rising without reaching a constant
level).

In the original paper of Golub et al. and also based on the patients of
the training set alone, it was stated that roughly 1100 genes were more
highly correlated with the AML-ALL class distinction than would be
expected by chance (this number was derived using a method called
neighbourhood analysis at an arbitrary level of significance - moreover, the
number of false positives at this level of significance was derived (and
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Figure 6.3: Analysis of the training set of Golub et al. Plot of the estimated number
of true positives (7P; = i - p;.(n-n;)) versus the gene number i for different values of
n;. If n; is set to the correct value n;.,. = 2821, the curve in the middle is obtained,
which reaches a constant level of 2821, as expected. If n; is smaller than n;.,,
curves like the two lowest ones are obtained. If n; is set to a value larger than n;.,
the result is like the two upper curves.

overestimated) by calculating the median number of genes that would
accidentally reach this level of significance assuming that none of the genes
were correlated with the class distinction). Our result suggests that this
number should be more than doubled.

In Figure 6.4 one can inspect the sensitivity, specificity and false
discovery rate plotted versus i and the ROC curve. The AUC equals 90.13%
with a standard deviation of 0.41%. The point that maximizes the sum of the
sensitivity and specificity (optimal sensitivity-specificity trade-off) has an
associated rejection level o = 0.227 with a sensitivity of 86.29% and a
specificity of 77.26%.

Randomised training set from Golub et al.

We randomly and independently permuted the components of each
gene expression vector, resulting in a data set expected not to contain genes
with actual differential expression between ALL and AML (the conditions or
class labels remained constant) - also see Figure 6.1. After analysis, one can
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see (Figure 6.5) - as expected - that V; reaches its constant level of
approximately zero (so n; = 0, the null hypothesis is true for all the genes)
starting from the first gene (¢ = 1), confirming that this data does not contain
genes that, individually, contain real information about the difference
between ALL and AML.
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Figure 6.5: Plot of V; versus the gene number i for the randomised training set of
Golub et al. The constant level of V; is approximately zero.

Simulated data

To construct an artificial data set we arbitrarily selected the gene
expression profile from the non-randomised training set from Golub et al.
that, after sorting according to the p-value, was on the 1000™ place (= g;000).
This gene had a p-value of 0.015 and therefore can, on its own, be
considered as differentially expressed between ALL and AML.
Consequently, we superimposed noise to the components of this expression
profile drawn from a uniform distribution in the range of [-074,074], where o
was the standard deviation of the components of g;p0 (0= 396). This was
repeated 1000 times and resulted in 1000 expression profiles (with p-value
ranging from 0.00079 to 0.38), which are, by design, not accidentally
correlated with the class distinction ALL-AML and therefore can be
considered actually differentially expressed. Finally, we added these 1000
expression profiles to the 7129 profiles without actual differential expression
from the randomised training set described above, resulting in a data set with
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known values of n = 8129, n; = 1000 and ny, = 7129. The distribution of p-
values in this data set was similar to the distribution of p-values in all the
real data sets we studied (see Figure 6.1).

A plot of V; can be inspected in Figure 6.6. It reaches a constant
level of about 1009 (mean of V; for i between 1800 and 3000, which is our
estimate for ;) at the 1800™ gene. Since, by design, we know the actual
status for each individual gene expression vector in this data, we can
calculate the real value of the false discovery rate and sensitivity at each
level of rejection and compare this with the estimated false discovery and
sensitivity by our method. This is done in Figure 6.7. The difference is
minimal.
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400
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1 1 1 1
0 500 1000 1500 2000 2500 3000
Gene number i (sorted according to P-value)

Figure 6.6: Analysis of the simulated data with known values for n; = 1000 and n, =
7129. Plot of V; versus the gene number i. V; reaches a constant level of about 1009,
which is the estimated value for n;.

Complete data set from Golub et al.

In order to compare the (complete) results of Golub et al. with the
results of Armstrong et al. with respect to the detection of differential
expression between ALL and AML, we first performed univariate analysis
using all 72 patients from Golub et al. (training + test set). The results can be
inspected in Table 6.2. A graph of the ROC and the false discovery rate can
be inspected in Figure 6.8.
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Figure 6.7: Analysis of the simulated data with known values for n;, = 1000 and n, =
7129. Comparison between the actual values for the false discovery rate (FDR) and
sensitivity and the estimated values for the FDR and sensitivity (derived using the
estimated value of n; (Figure 6.6), Equations 6.11 and 6.14. and the formulas in
Table 6.1). In this case, the estimated value for the sensitivity does not always stay
below is theoretical limit of one. Calculating the value for the sensitivity as max ((i-
ping)/n;, 1) would reduce the difference between the actual and estimated sensitivity
even more.

Comparison with the data from Armstrong et al. (ALL versus
AML)

We removed the 20 MLL patients from the study of Armstrong et al.
and analysed the resulting data (24 ALL patients and 28 AML patients) with
respect to the detection of differential expression between ALL and AML.
The results can also be inspected in Table 6.2 and Figure 6.8.

The AUC of the data from Armstrong et al. (95.13%) is significantly
(p < 0.0001; two-sided, unpaired test (see Appendix A, Section A.2.3))
different from the AUC derived from the complete data set from Golub et al.
(91.39%), which is reflected in the fact that the level of the optimal balance
between (or, in our case, the maximum sum of) sensitivity and specificity is
higher in the data from Armstrong et al. when compared to the data from
Golub et al. (175.82% versus 166.09%).
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Figure 6.8: Comparison of the results of the univariate analysis for the complete
data set from Golub et al. and for the data set from Armstrong et al. with respect to
the difference between ALL and AML. Upper curves: ROC curves. Lower curves:
false discovery rates versus the relative position of the genes (= i/n).
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The fraction #n,/n is considerably higher in the data from Armstrong
et al. (75%) than in the complete data set from Golub et al. (46%). As
previously said, both the difference in AUC and in the relative value of n;
have an independent impact on the relative behaviour of the false discovery
rate of both studies (the false discovery rate for the data of Armstrong et al.
starts increasing later and its maximum value is lower).

Effect of a change in condition

We analysed the data from Armstrong et al. with respect to the
detection of differential expression between ALL and MLL (after removal of
the 28 AML patients) and with respect to the detection of differential
expression between MLL and AML (after removal of the 24 ALL patients)
and compared this with the previous results with respect to the detection of
differential expression between ALL and AML on the same data set. The
results can also be inspected in Table 6.2.

The difference between MLL and AML did not result in any
statistically significant change in AUC when compared with the difference
between ALL and AML. However, the difference between ALL and MLL
did result in a significant decrease in AUC when compared with the
difference between ALL and AML (85.98% versus 95.13%, p<0.0001),
which also resulted in a considerable decrease of the level of the optimal
balance between sensitivity and specificity (maximum of sensitivity +
specificity = 154.71% versus 175.82%), as could be expected.

6.3.2 Breast cancer: degree of differentiation

In this section we will compare two microarray data sets that study
human breast tumours that are moderately or poorly differentiated (grade 2
or 3 - the degree of differentiation reflects the degree of anaplasia or the
degree of malignancy of the tumour and is an important prognostic factor).

The first data set was published by Perou et al. (2000) (see Appendix
B) and was already used in Chapter 3. In short, this data contains 21
microarray experiments with grade 2 and 36 with grade 3 breast tumours. In
each experiment, the expression levels for 9216 genes were measured. A
similar preprocessing strategy as was used in Chapter 3, Section 3.2.4 was
followed, except the missing values replacement, which was omitted since
missing values do not interfere with our analysis here (p-values can be
calculated using only the values that are really present).

The second data set was produced by van ‘t Veer et al. (2002) and is
also described in Appendix B. These authors studied primary breast tumours
using a cDNA-microarray (24481 genes). In total 27 patients had a tumour
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with grade 2 and 78 patients had a tumour with grade 3. We did no further
preprocessing, since this was already appropriately done.

For the study of Perou et al. and with respect to the detection of
differential expression between grade 2 and grade 3 breast tumours, n; was
calculated to be about 1306 (n,/n = 14%) and the AUC was 87.99% =
0.63%. For the study of van ‘t Veer et al. both n,/n and the AUC were higher
(n; was 10208 (n;/n = 42%) and the AUC was 90.54% =+ 0.21%, which was
significantly different (p = 0.0001) from the AUC from Perou et al.) and
explain the more optimal behavior of the associated false discovery rate. See
Figure 6.9 for a comparison. Although the balance between Type I and Type
II errors was better for rejection levels in the lower range, in this specific
case the higher AUC for the study of van ‘t Veer et al. did not result in a
dramatic improvement of the balance between Type I or Type Il errors at
o’ in comparison with the study of Perou et al. This is caused by the fact
that the two ROC curves almost coincide for rejection levels in the higher
range and at o/”".

6.3.3 Breast cancer: prognosis of sporadic lymph node
negative patients

van ‘t Veer et al. also studied the expression signature of breast
cancer patients with negative lymph nodes with a good prognosis (i.e., who
did not develop distant metastases within 5 years - 51 patients) and a bad
prognosis (i.e., who did develop metastases within 5 years - 46 patients). van
‘t Veer et al. developed a classifier based on the expression levels of 70
genes to distinguish between these two groups and proved it to be a powerful
predictor (van de Vijver et al. (2002)). Clinically this is extremely important
because this enables us to give adjuvant systemic therapy specifically to the
patients who might benefit from it while withholding it from patients for
which this might only mean unnecessary toxicity (presently, the available
prognostic factors are not ideal to predict the clinical behaviour of this
disease; on a clinical level, the phenotype of the two tumours is not that
different). We used the procedure for univariate analysis to determine the
total number of genes that are actually differentially expressed between good
and bad prognosis breast tumours to see whether the differences on the
molecular level between these two phenotypes are only subtle or whether we
are dealing with tumour cells that are profoundly different. n; was calculated
to be about 6449 (n,/n = 27% - see Figure 6.10) and the AUC was 88.54% +
0.28%.
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Figure 6.9: Comparison of the results of the univariate analysis for the data set from
Perou et al. and for the data set from van ‘t Veer et al. with respect to the difference
between grade 2 and 3 breast tumours. Upper curves: ROC curves. Lower curves:
false discovery rates versus the relative position of the genes (= i/n).
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Figure 6.10: Analysis of the data from van ‘t Veer et al. with respect to the
difference between good and bad prognosis patients. V; reaches a constant level of
about 6449 (our estimate for ;) at about g;sp0-

6.4 Discussion and conclusion

In this chapter we described a procedure for univariate analysis of
microarray data that accounts for multiple testing starting from the p-values
assigned by a certain hypothesis test to every gene. Here we have used p-
values that were generated using the Wilcoxon rank sum test that does not
assume a specific distribution of the gene expression levels. Troyanskaya et
al. (2002) showed that this test was a robust and valid choice for studying
differential expression and concluded that it was more conservative than two
other nonparametric approaches. Moreover, this test does not require
calculating test statistics in a great number of randomly permuted data sets
(like in, for example, the nonparametric #-test described in Troyanskaya et al.
or in SAM (Tusher et al. (2001)), which can be computationally intensive.
Using this test in combination with our procedure therefore results in a
method with low computational complexity, which takes at most a few
minutes for the largest data sets.

In theory, using other procedures or tests to derive the p-values, can
have an effect on the final result of our analysis. Therefore, as an example,
we repeated all the analyses in the Results section using a two-sample

138



Chapter 6 - Univariate analysis

(parametric) t¢-test (although we could be far from certain that its
distributional assumptions were satisfied) instead of the Wilcoxon test. In
general, this resulted in about the same values for ;. In some cases the
AUCs differed somewhat, but their ranking did not change, resulting in the
exactly the same conclusions for our comparisons. Therefore, it is important
to stress that a comparison of microarray data sets with respect to the
detection of differential expression should only be done when the p-values in
both data sets were derived using the same method or hypothesis test.

Using this set of p-values and independent of a certain rejection
level, we described a method (determination of the constant level of V;) for
the estimation of the total number of genes that are and are not actually
differentially expressed (n; and ny) and therefore can be expected to be
affected by the difference in conditions. We applied this method, among
others, on a randomised and simulated data set and accurately estimated n;
and ny. We also used this method to see if, on a molecular level, profound
differences exist between breast tumours with good and bad prognosis
(Section 6.3.3). The results of this analysis seem to indicate that we are
dealing with more than subtle changes between these two categories of
tumours and that it should indeed be possible to accurately distinguish these
two types of breast tumours using gene expression levels.

Subsequently, the estimates for n; and n, are used to assess the
difference between actual and declared differential expression at each
rejection level (i.e., to estimate the number of true and false positives and the
number of true and false negatives). Using these estimates, the sensitivities,
specificities, and false discovery rates can be calculated, which, in one way
or another, reflect the quality of the prediction of actual differential
expression at a certain rejection level. Finally, the knowledge of the
sensitivities and specificities allow us to construct an ROC curve, which
shows the trade-off or balance of the Type I and II errors at different
rejection levels.

In contrast with current practice only to control the Type I error,
ROC curves enable to optimally balance the Type I and Type II errors
according to a certain criterion or cost function and enable, through the use
of the AUC, to quantify our ability to discriminate between genes with and
without actual differential expression in a specific data set using a certain
hypothesis test. The AUC also reflects how well the Type I and Type II
errors can be (optimally) balanced. We therefore propose to use the AUC as
a quality measure to compare microarray data sets for their appropriateness
to detect differential expression provided the same hypothesis test is used
consistently. This quality measure could be used for different types of
comparisons. We illustrated two of these comparisons.
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As a first type of comparison, we investigated how this quality
measure could be used to compare data sets that study the same conditions
(ALL versus AML and grade 2 versus grade 3 breast tumours) but that
originate from different sources or institutions. Firstly, after comparing the
AUCs, we concluded that the data from Armstrong et al. is more appropriate
to discriminate between genes that are and are not differentially expressed
between ALL and AML than the data from Golub et al., although the last
data set contained more experiments than the first (72 versus 52). In our
opinion, the optimisation of the Affymetrix technology and protocol (year
2002 versus 1999) and perhaps a more optimal selection of the genes arrayed
on the chip for Armstrong et al. could have contributed to this difference in
quality, which was accurately detected by the rise in AUC. The methodology
described here could be suited to compare the performance of different
microarray platforms (e.g., cDNA-microarrays versus Affymetrix).
Secondly, both the values for n,;/n and for the AUC indicate that the study of
van ‘t Veer et al., when compared to the study of Perou et al., is of
substantially higher quality to study differential gene expression in breast
tumours with grade 2 or 3. Again, possible causes that could have attributed
to this gap in quality are differences in technology, differences in
experimental protocol and experimental setup, differences in surgical
procedure and quality of the resected tumour biopsy, the choice of the genes
on the array (more specifically chosen to study breast cancer in van ‘t Veer
et al.) and so on. Since the determination of the degree of differentiation can
vary between pathologists, this is also a factor that could have contributed.
Both the absolute and relative value for n; are considerable (especially in the
study of van ‘t Veer), suggesting that tumour cells with a different grade
have a profoundly different phenotype.

As a second type of comparison, we examined what the effect on the
AUC could be of a change in condition (replacement of ALL or AML
patients by MLL patients). The difference between MLL and AML did not
result in a significant decrease in AUC when compared to the difference
between ALL and AML, while the difference between ALL and MLL did.
The lower number of experiments that was available for the analysis of the
difference between ALL and MLL (44 versus 52 for the analysis of the
difference between ALL and AML) could have partially caused the
significant drop in AUC, but this was, in a lesser extent, also true for the
analysis of the difference between MLL and AML (48 patients), which did
not show a drop in AUC. The behavior of the AUC and the results in Table
6.2 suggest that the degree of differential expression between ALL and MLL
is less pronounced than the degree of differential expression between ALL
and AML or between MLL and AML. This seems plausible, because the
leukemic cells in MLL patients have a lymphoblastic morphology and have
previously been classified as ALL. Again, this has been accurately detected
by our analysis of the AUCs.
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In our opinion, several other situations can be conceived where a
comparison of AUCs could be informative, although we did not study them
in detail here. For example, one could compare the AUCs of a data set for
which the raw experimental data have been preprocessed or normalized - in
order to remove different systematic sources of experimental variation from
microarray data (also see Chapter 3, Section 3.2.1) - using different
strategies (e.g., Lowess fit (Yang et al., 2002), ANOVA based methods
(Kerr et al., 2000), ...) and select a preprocessing strategy that results in a
maximal AUC or maximal discrimination between the genes that are and are
not differentially expressed.

Evaluation of the usefulness of additional experiments with respect
to the detection of differential expression is another example where a ROC
analysis could be valuable. Suppose one has done a basic set of microarray
experiments (under two or more conditions) and suppose one performs a set
of additional experiments in order to obtain a more optimal identification of
the genes that are actually differentially expressed. Comparison of the AUCs
of the basic set and of the basic + additional set could quantify if this has
succeeded and could even help us to decide if more additional experiments
would be beneficial (e.g., if the set of additional experiments has not resulted
in a satisfactory rise in AUC, it could be expected that more additional
experiments also will fail to do this).

Another situation where ROC analysis of microarray data could be
useful is to select a test statistic, hypothesis test or method to calculate the p-
values that gives a maximal AUC for one specific microarray data set. This
is another setting than described in this chapter where we emphasised the
comparison between different microarray data sets (evaluated using the same
hypothesis test). In a recent publication, Broberg (2003) suggests such an
approach, although the author uses a less refined method to estimate n, and
another measure than the AUC to quantify the balance between Type I and II
errors.

Finally, we have shown in this chapter that the relative value for #n;
(n;/n) and the AUC can accurately summarise the behavior of the false
discovery rate, which is a quantity that is often used to describe and control
the Type I error. A higher value for n,/n results in generally lower values for
the false discovery rate and a lower maximum value for this quantity. For
equal values of n,/n, a higher value for the AUC results in lower values for
the false discovery rate when the p-values are in the lower range (but the
maximum value of the false discovery rate remains unchanged).
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Chapter 7

Conclusions and future research

7.1 General conclusions and accomplishments

The application of the general data-mining framework to clinical and
microarray data in this thesis has lead to several concrete results and
observations, which we will summarize in this section. We will conclude this
dissertation with a short description of some concrete clinical problems that
will be studied in the future.

In the context of the prediction of deep myometrial invasion in
endometrial cancer with ultrasound measurements and histopathological
data, univariate and multivariate analysis have showed that Colour Doppler
Imaging does not contribute to this prediction. Stepwise logistic regression
analysis selects the degree of differentiation, the endometrial thickness and
volume and the number of fibroids as significantly contributing in a logistic
regression model. In a prospective study of limited size, we showed that a
logistic regression model and LS-SVM models with linear and RBF kernel
- based on the selected variables and in ascending level of performance -
performed better than the subjective assessment of an expert
ultrasonographer. This difference was only statistically significant for the
LS-SVM model with an RBF kernel. In a concluding remark, we added a
word of caution with respect to the clinical use of these models and noted
that they should be evaluated using multicenter studies and regularly
updated.

We applied the three elements of our data-mining framework to
microarray data containing expression patterns from patients with acute
leukemia (Golub et al., 1999) and from patients with breast tumours (Perou
et al., 2000). In this context we implemented and used two methods to deal
with missing values: missing values management without replacement and a
nearest neighbour approach. We performed principal component analysis on
these data and noted that for the data from Golub et al. and Perou et al.,
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unsupervised selection of the principal components did and did not,
respectively, capture the class difference under consideration (ALL versus
AML for Golub et al. and grade 2 and 3 breast tumours for Perou et al.) and
concluded that, for the data from Perou et al., supervised selection of
principal components before classification would be a better option.
Furthermore, cluster analysis of the data from Golub et al. succeeded in
redefining the concepts ALL and AML when using a K-means algorithm
based on the features after unsupervised PCA (which could have been
expected since, as showed, the directions with the largest spread are also the
directions in which the distinction between ALL and AML were prominent).
In the context of cluster analysis of microarray experiments, we noted that
due to the large number of possible cluster results and/or the presence of
several a-priori hypotheses, multiple testing is a problem that has to be
accounted for when interpreting a cluster result. Finally, in a systematic
benchmarking study we evaluated the performance of several approaches to
perform linear and non-linear binary classification with and without
regularization and dimensionality reduction. We concluded that
regularization or dimensionality reduction is necessary for the classification
of microarray experiments. Moreover, we noted that, in general and within
the bounds of our study, a non-linear LS-SVM model with an RBF kernel
could be the model of choice to do class prediction with microarray
experiments.

In a general overview of techniques related to the cluster analysis of
gene expression profiles we noted that the properties of existing clustering
algorithms complicate their use for this task. This includes the choice of
user-defined and arbitrary parameter settings or the need for extensive
parameter fine-tuning, inclusion of all the genes - even the ones that do not
participate in the biological process under study - in a cluster, a high
computational complexity and the lack of biological validation or ready to
use implementation. These observations were the basis of the development
of our own algorithm called adaptive quality-based clustering that was
specifically designed to cluster gene expression profiles and to tackle some
of the problems of the other algorithms. In summary, this algorithm, which
was integrated in an on-line tool for microarray data analysis (INCLUSive),
is a heuristic two-step approach in which the radius of a cluster is adapted to
the local data structure after localisation of a cluster center. Among others,
we applied the algorithm to a data set that studies the yeast cell cycle and
biologically validated it by looking for clusters that have been significantly
enriched with genes that belong to a certain functional category. We noted
that the degree of enrichment in our result was significantly higher when this
was compared to the most prominent and functionally matching clusters
obtained by another group using K-means on the same data set.
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The sixth chapter of this thesis was devoted to univariate analysis
and the related problem of multiple testing in microarray data. We noted that
the p-values for genes that are and are not affected by a certain difference
between tumour classes overlap and that using a certain rejection level
results in a number of false positive and negative results. After calculation of
these p-values using a certain hypothesis for every gene, we showed, based
on a plot of a simple quantity and independent from a certain rejection level,
how to estimate the number of genes that are and are not differentially
expressed in different tumour types. Moreover, we showed that this
approach is completely equivalent with a method recently published in
PNAS. These estimates can subsequently be used to derive the number of
true positives and negatives, the number of false positives and negatives, the
sensitivity, the specificity and the false discovery rate for every possible
rejection level and to construct an ROC curve. In contrast with current
practice only to control the Type I error, we described how this ROC curve
could be used to define a rejection level that results in an optimal balance
between the Type I and II error according to a certain criterion or cost
function that describes the relative importance of a false positive versus a
false negative result. Moreover, we proved that the area under the ROC
curve could be used as a quality measure for microarray data with respect to
its ability to detect differential expression that quantifies the amount of
overlap between the p-values of the genes that are and are not actually
differentially expressed. Using this quality measure, we demonstrated,
among others, that the data from Armstrong et al. (2002) is more suited to
discriminate between genes that are and are not differentially expressed
between ALL and AML than the data from Golub et al. Moreover, we
showed that the degree of differential expression between MLL (a third class
of acute leukemias) and ALL is less pronounced than the degree of
differential expression between ALL and AML or between MLL and AML.
In a second test case, we concluded that the study of van ‘t Veer et al. is of
substantially higher quality to study differential expression between grade 2
and 3 breast tumours than the study of Perou et al.

In this thesis we have used ROC curves in two contexts with a subtle
difference between them. Firstly, ROC curves were applied to test or
compare the ability of univariate data or single valued output of a model to
discriminate between patients belonging to two classes. In this case the class
membership is known for each patient or data point individually. Using the
class labels and the value for the univariate variable or model output, the
number of true positives and negatives and the number of false positives and
negatives (and hence the sensitivity and specificity) can be derived exactly
(by simple counting) for every possible cut-off level and set of data points at
hand. Secondly, ROC curves were applied to test and compare the ability of
p-values - assigned using a certain hypothesis test to every gene in a
microarray data set - to discriminate between genes that are and are not
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actually differentially expressed. In this context, however, the class labels
(i.e., the actual status of differential expression) for the individual data points
or genes are not known or taken into account. In this case the ROC curve is
constructed through an estimate of the sensitivity and specificity for every
possible rejection level. Although it is possible to estimate the number of
true positives and negatives and the number of false positives and negatives
for every rejection level using microarray data alone, it is impossible to
predict which individual genes exactly are true positive or negative or are
false positive or negative. This means that the algorithm (and associated
MATLAB script) used to construct the ROC curves in the first context
(where the input of the algorithm consists of the class labels for every data
point and the associate model output or value for the univariate variable)
needed to be adapted to be useful for constructing ROC curves in the second
context (where the input consists of the estimate of the number of true
positives and negatives and the number of false positives and negatives for
every possible rejection level).

7.2 Future research

In this section we will first discuss some specific ongoing or
submitted project proposals in which we are involved. In this research we
aim to apply some of the techniques described in this thesis for concrete
clinical problems. Two of these projects involve the use of proteomic data
that have not been explicitly analysed in this dissertation and that are, as
stated in Chapter 1 (Section 1.2), qualitatively similar to microarray data
with respect to the use of our methodology.

At the end of this section, we will briefly examine some general
research prospects.

7.2.1 Specific future research

Ovarian cancer: transcriptomics

Ovarian cancer accounts for 4% of new cases of cancer and for 6%
of cancer deaths in women. The prognosis of the disease is generally poor
with an overall five year survival of approximately 30%. Approximately 85-
90% of ovarian neoplasms are of epithelial origin (derived from tissues that
come from the mesothelium). These tumors may be benign (50%), malignant
(33%), or borderline malignant (16%). The serous histologic type is the most
common epithelial tumour of the ovary (46-75%) and will be the focus of
our attention here. About 30% of ovarian cancer patients are diagnosed with
early-stage disease and about 10%-50% of them will have a recurrence after
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initial surgery. Most women with advanced disease will respond to initial
(chemo)therapy but most of them will eventually relapse.

Presently, no clinical parameters are available that can reliably
predict chemosensitivity in FIGO stage III ovarian cancer (tumour with
abdominal extension or extension to regional nodes) or the probability of
recurrence after initial surgery in FIGO stage I ovarian cancer (tumour
limited to one or both ovaries). Therefore we (in cooperation with Prof. I.
Vergote and Prof. D. Timmerman, department of Obstetrics and
Gynaecology of the University Hospitals Leuven, and Dr. P. Van Hummelen
of the Microarray Facility of the Flanders Interuniversity Institute for
Biotechnology (V.I.B.)) aim to develop and test models that use cDNA-
microarray data and that:

1. Predict if a stage III ovarian tumour will relapse within 6 months
after the last therapeutic intervention. Since standard
chemotherapy for advanced ovarian cancer is usually platinum
based (e.g., carboplatinum + paclitaxel), this model will be able to
predict platinum resistance (or chemosensitivity of the tumour).
This has mainly prognostic significance but might allow to
develop new therapeutic strategies in the future for tumours that
are predicted not to respond adequately to the standard
chemotherapeutic regimen.

2. Predict if a stage I ovarian tumour will have a recurrence after
initial surgery. The subset of women with early-stage disease and,
according to our model, with a high probability of recurrence are
ideal candidates that might maximally benefit from adjuvant
treatment (chemotherapy and/or lymphadenectomy) while the
women with early-stage disease and a low probability of
recurrence might be spared the side-effects of adjuvant therapy.

In the first phase of the study, the models will be trained using
appropriate training sets of microarray experiments (100 are planned). This
will include expression patterns from tumour samples obtained after initial
surgery from patients with stage III disease that have relapsed within 6
months after the last therapeutic intervention, from patients with stage III
disease that have had a therapy-free interval of minimum 12 months and
from stage I patients that have and have not had a recurrence. In a second
phase, the models will be validated using data from additional microarray
experiments with new tumour samples (100 additional experiments are
planned). The resulting model predictions will be compared with the true
outcome of the patients in order to evaluate what the usefulness of the
models in real clinical practice would be. If, during this validation phase, the
predictive power of some of the models trained in the first phase would seem
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inadequate, the additional microarray experiments could be used to refine the
first version of the models.

Another aim of this project is to identify differentially expressed
genes between the different diagnostic classes considered (univariate
analysis) and that might represent clinically useful biomarkers. All 200
microarray experiments that are planned will be available for this analysis.

At this moment we are preparing to perform the first 21
experiments. We have carried out an extensive search in literature (more
than 80 papers were screened), several databases that are publicly available
(e.g., LocusLink, OMIM) and other on-line sources to discover known genes
that are involved in the distinction between several classes of ovarian
tumours. This search resulted in a list of about 5000 UnigenelD’s of which
about 85% was finally spotted onto the microarray. In our opinion, this effort
was necessary to ensure that the microarray will be sufficiently enriched in
ovarian cancer related genes. RNA extraction and amplification was already
performed for 14 stage III tumours (7 with and 7 without relapse) and 7
stage | tumours. In first instance, we have chosen to use a common pool of
reference RNA for all the experiments (classical reference design — with
colour flip). Sufficient reference RNA (obtained from the first 21 test
samples and from a limited number of ovarian tumours for which sufficient
tissue was available) was extracted to provide for about 200 experiments. At
this moment the hybridisation and labelling process is being refined and the
expression patterns from the first 21 experiments should be available soon.

Endometriosis: proteomics and transcriptomics

Endometriosis is an important and benign gynaecological disorder
associated with pain and infertility and is defined as a benign proliferation of
endometrial tissue outside the uterine cavity. This condition can be found in
80% of women with dysmenorrhea (discomfort or pain during menstrual
bleeding), dyspareunia (pain during sexual intercourse) and/or chronical pain
in the lower abdomen and in about 50% of women with subfertility. This
disease can be diagnosed through laparoscopic surgery, which is an invasive
procedure that can visualise the involvement of the internal genitalia. The
lesions can be minimal but can also consist of large endometriosis cysts and
extensive adhesions that can distort the organs involved and deform the
anatomy of the small pelvis. Therefore endometriosis is classified in four
stages: minimal, mild, moderate and severe. This disease cannot be cured
completely. Surgery can improve the symptoms like pain and infertility but
relapse is frequent (50%), certainly in severe forms. Hormonal treatment can
inhibit the lesions but has important side effects and the disease recurs when
the treatment is interrupted.
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In this research we (in cooperation with Prof. T. D’Hooghe,
coordinator Leuven University Fertility Center) aim to analyse
transcriptomic patterns (measured with microarrays), proteomic patterns and
possibly clinical data related to the study of endometriosis. The
transcriptomic and proteomic patterns will be obtained from normal eutopic
(from the uterus itself) endometrium from women with and without
endometriosis. The tissue samples were or will be acquired through an
endometrial biopsy taken during general anaesthesia for surgery (with
hysteroscopy and laparascopy, planned for pain or subfertility) or taken
during consolation (Pipelle de Cornier) on an outpatient basis. Due to the
possible effect of the menstrual cycle on the state of the endometrium, we
will only analyse samples obtained during the luteal phase and preferably
samples histologically dated on day 19-21 of the menstrual cycle. These
samples will be specifically selected from a tissue bank constructed for this
study.

We plan to perform 100 microarray experiments: 25 using
endometrium from women with a normal pelvis, 25 using endometrium from
women with minimal-mild endometriosis (of which minimally 10 are treated
for pain and minimally 10 are treated for subfertility), 25 using endometrium
from women with moderate-severe endometriosis without relapse within 2
years after surgery, and 25 from women with moderate-severe endometriosis
with relapse within 2 years after surgery. Moreover, endometrial biopsies
originating from the same patients will be analysed by the technology
described in Section 1.2. to measure proteomic patterns.

Since we will study eutopic endometrium of patients with and
without endometriosis and since women with (moderate-severe)
endometriosis will be subdivided in a group with and a group without
relapse after surgery, two binary classification problems can be defined
using these transcriptomic and/or proteomic patterns: prediction of absence
or presence of endometriosis and prediction of absence or presence of
relapse after surgery. These models might help the clinician in detecting
endometriosis and in assessing its prognosis using only eutopic
endometrium. In a first phase, we aim to construct models (and compare
their performances) that are based on microarray data or on proteomic data
alone. In a next phase, we will investigate if it is possible to further optimise
the predictions by combining microarray and proteomic data, potentially
complemented with clinical data. The results of this combined approach will
be compared to the results of the analysis of proteomic, transcriptomic or
clinical data alone. This comparison will possibly allow assessing the
complementarity of the different data sources with respect to clinical
predictions.

Moreover, it might be possible to compare the microarray data set
with the corresponding proteomic data set using an approach introduced by
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Alter et al. (2003). They describe a method based on Generalized Singular
Value Decomposition (GSVD) to compare two microarray datasets of
different origin. Simplified, the goal is to identify fundamental gene
expression profiles that are present in one or in both datasets, and that
represent biological processes exclusive for one dataset or common between
both. The main condition for this method to be useful is that experiments in
both datasets need to be paired to each other (for any experiment in one of the
data sets, there is a corresponding experiment in the other). This makes the
setup in the work of Alter et al. methodologically equivalent with the setup as
proposed in our project (here microarray and proteomic data are paired, since
they originate from the same patients). In our setting, this method makes it
possible to detect fundamental patterns that are present in the microarray data
and not in the proteomic data or vice versa, or to detect patterns that appear in
both data sets. This again can provide information concerning the
complementarity of microarray and proteomic data and can provide
information concerning the correspondence and differences between processes
that take place at the level of the transcriptome or proteome.

Finally, another important goal of this project again concerns the
identification of genes that show a different RNA expression between the
classes under study and, on the other hand, the identification of mass/charge
values corresponding to peak amplitudes (and the corresponding proteins)
that differ between the classes (univariate analysis — identification of
biomarkers). Moreover, multivariate feature extraction methods (e.g., PCA)
might be able to identify combinations of gene expression levels (microarray
data) and peak amplitudes (proteomic data) that might result in more optimal
separation between the classes.

Cervical and endometrial cancer: proteomics

In this research project (submitted by Prof. Vergote - we were asked
to collaborate for data analysis) proteomic patterns in serum and tissue
samples of patients with endometrial and cervical cancer will be obtained
and analysed. Again, in this study we wish to develop mathematical models
that can provide prognostic information (e.g., prediction of the presence of
subclinical metastases, prediction of response to chemo- or radiotherapy)
and we aim to discover new biomarkers with different behaviour between
patients with a different prognosis. The study of proteomic patterns in serum
might lead to markers that can be easily determined by a simple blood
sample (while this might not be the case for biomarkers identified through
tissue sampling since these proteins might not be secreted and therefore
could only be determined through a more invasive procedure or biopsy).
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7.2.2 General research prospects

When we wrote our article in ‘Tijdschrift voor Geneeskunde’ (De
Smet et al., 2001) we predicted how genome-wide analysis technologies like
microarrays could be used in guiding clinical management in oncology. We
described, for example, how microarrays might be used to distinguish
between tumours with and without metastatic phenotype, to predict therapy
response or to provide prognostic information that is impossible to derive
from clinical parameters only. At the moment of writing, these examples
were of a rather hypothetical nature and not yet supported by concrete cases
in literature. At this moment however, several publications have appeared
that confirm the potential clinical applicability of microarrays we
hypothesized earlier (e.g., van ‘t Veer et al.,2002; Ramaswamy et al., 2003;
Chang et al., 2003).

While these publications clearly prove that microarrays could be an
invaluable clinical tool, a considerable amount of work and research needs to
be done before widespread use of expression patterns in real clinical practice
is feasible. Several issues or problems need to be addressed in this context.
First of all, most of the models have been developed and tested using a
limited number of patients. Before reliable statistical conclusions can be
drawn, microarray data sets need to contain a sufficient amount of technical
and biological replicates (e.g., in order to account for technical variation,
inter-individual variation (which can be considerable in humans), variation
in the composition of the tissues analysed (tissue heterogeneity)). Moreover,
mathematical models need to be validated in prospective clinical trials where
larger patient groups are studied. Furthermore, there is the issue of
standardization (Tumor Analysis Best Practices Working Group, 2004).
Since the experimental procedure (e.g., surgical procedures, tissue
processing, RNA extraction, labelling, data preprocessing, and so on) can
vary extensively from place to place and can have a significant impact on the
data, clinical models reported by one group are not directly applicable in
other centers. Moreover, the use of a uniquely constructed reference pool in
cDNA-microarrays makes extended use of the derived models impossible.
Before widespread implementation into clinical practice of algorithms based
on expression patterns is possible, detailed experimental guidelines and
standards have to be agreed upon.

As previously mentioned, microarrays do not capture all relevant
phenomena in a cell on a molecular level and by studying the proteome it is
possible to obtain more information about the phenotype of a (tumour) cell.
Moreover, since microarrays measure intracellular RNA levels, tissue
samples are always needed, which can be difficult or impossible (e.g., if
macroscopic tumour residues are not longer present in a patient) in some
situations. Since tumour cells can exhibit aberrant secretion of several
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proteins, the study of proteomic patterns in serum (see the study of cervical
and endometrial cancer in the previous section) could be helpful in these
cases. The use of proteomic patterns could therefore be the next step in the
integration of high throughput technologies into the clinical decision making
process. Moreover, microarray, proteomic and possibly clinical data might
be, at least partially, complementary and a combined analysis might improve
the clinical performance of the resulting methods (also see the study of
endometriosis in the previous section).

From a mathematical point of view, some techniques applied to high
dimensional biological data might merit further investigation in the future.
These include: classifiers that combine different data types (microarray,
proteome and clinical data - e.g., committee networks), independent
component analysis (ICA), the combination of model selection techniques
with other methods for feature extraction, the use of different distance
measures and kernel-based algorithms in clustering, the use of GSVD or
canonical correlation analysis (CCA) to compare microarray and/or
proteome data sets and the use of meta-analysis techniques to analyse data
from different sources.

In conclusion, the use and development of the techniques mentioned
in this thesis for the analysis of patient specific transcriptomic and proteomic
patterns and the implementation of the results into clinical practice will be
and remain the main focus of our research.
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Methods

In this appendix we will give some technical details about some of
the methods that have been applied or referred to on multiple occasions
throughout this thesis. The following methods will be discussed: hypothesis
testing and Bonferroni correction, receiver operating characteristic curves,
logistic regression and model selection, least squares support vector
machines, K-means clustering, and hierarchical clustering.

A.1 Hypothesis testing and Bonferroni correction

Hypothesis testing examines the belief in a certain property of a
population parameter (or populations parameters) based on the data in a
statistical sample (Dawson-Saunders and Trapp, 1994). Suppose, for
example, we want to examine if the true or population mean g, of a certain
variable x (e.g., the mean cholesterol level in all patients with cardiovascular
disease) is equal to a given value (e.g., 190 mg/dl) based on the
measurements of this variable in a certain sample (e.g., the measurement of
the total cholesterol levels in N=100 patients). The sample mean and
standard deviation are noted as m, and s,, respectively (e.g., the mean and
standard deviation of the total cholesterol levels in our sample of 100
patients). Hypothesis testing involves the following steps:

1. Definition of the null and alternative hypothesis: the null
hypothesis H, states that there is no difference between the
population parameter and its hypothesized value. In our example
the null hypothesis states that =190 mg/dl. The alternative
hypothesis H, states the opposite: 1190 mg/dl.

2. Definition of a test statistic that reflects in one way or another
how the sample at hand deviates from the null hypothesis and for
which the distribution is assumed to be know if the null
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hypothesis is true. In our example we can define the following
test statistic and calculate its value for our sample of 100 patients:

_m,—190

L =—.
! Sx/\/N

Under the null hypothesis and if x is normally distributed, this test
statistic follows a ¢-distribution with N-1 degrees of freedom.

(A.1)

3. Calculation of the p-value: the p-value equals the probability that,
under the null hypothesis, the test statistic will have a value that is
as extreme as or more extreme than the test statistic for the
sample at hand. This can be easily calculated since the
distribution of the test statistic under the null hypothesis is
known. In our example, the p-value is given by the probability
that the test statistic is larger or equal than |¢,| plus the probability
that the test statistic is smaller or equal than -|t,|, which in this
case can be computed by calculating the appropriate areas under
the t-distribution.

4. Drawing the final conclusion: if the calculated p-value is smaller
than a predefined rejection level « (usually set at 5%), it is
unlikely that the sample at hand was generated under the null
hypothesis. In this case the null hypothesis is rejected in favor of
the alternative hypothesis. One can state that the test result is
significant, i.e., according to the evidence presented by the
sample, one can conclude that the population parameter is
different from its hypothesized value. In our example this would
mean that we conclude that the mean cholesterol level in patients
with cardiovascular disease is different from 190 mg/dl.

If, on the other hand, the p-value is larger than the rejection level
o, the null hypothesis is not rejected and there is not sufficient
evidence to accept a real difference between the population
parameter and its hypothesized value.

It should be noted that if there is no real difference between the
population parameter and its hypothesized value, it is still possible that the
null hypothesis will be (erroneously) rejected. The probability of falsely
rejecting the null hypothesis is called a Type I error and its probability is
given by the rejection level that is applied. If multiple tests are performed
simultaneously, the probability that at least one test is declared significant
due to chance increases. A common method to protect against this is to apply
a Bonferroni correction (Keselman et al, 2002). In this procedure the
rejection level that is applied for every individual test is set equal to the
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original rejection level « divided by the number of tests performed
simultaneously (e.g., 0.05/n,, where n, is the number of tests performed at
the same time). It can be proven that a Bonferroni correction guarantees that
the probability of committing at least on Type I error (also called the family-
wise error (FWE)) will not be larger than o

A.2 Receiver Operating Characteristic curves

A.2.1 Definition, use and interpretation

Suppose we have a set of objects (e.g., patients, genes, microarray
experiments) that belong to one of two classes. Suppose that objects that do
not and do exhibit a certain property belong to class 1 and class 2,
respectively (e.g., patients without and with a certain disease, genes without
and with differential expression - in some situations it is appropriate to call
the objects of class 1 normal and the objects of class 2 abnormal). Also
suppose that each object i is associated with a single value or variable '
(e.g., the output of a model, a p-value, a measurement - i=1,...,N) that is
generated to predict the class membership of this object.

Now consider a certain threshold or cut-off level 7. If y' > T, the test
result for object i is declared positive (i.e., object i is predicted to belong to
class 2). If ) < T, the test result for object i is declared to be negative (i.e.,
object i is predicted to belong to class 1). If we compare the test results with
the actual class memberships of the objects, four categories emerge: true and
false positive and true and false negative objects. These categories are
defined in Table A.1. Subsequently, the number of objects in each of these
categories can be used to define the sensitivity (TP/TP+FN = TP/N,) and
specificity (TN/TN+FP = TN/Ny), which summarize the correlation between
the test results and the actual class memberships for the set of objects under
consideration.

The sensitivity and specificity are dependent on the choice for the
threshold T and can be recalculated for other values of 7. In this context,
there is a trade-off between sensitivity and specificity because each change
in the threshold that results in a higher sensitivity will also result in a lower
specificity and vice versa. The plot of the sensitivity versus 1 - specificity
(1 - specificity is also called the false positive rate) for varying values of 7 is
called a Receiver Operating Characteristic (ROC) curve (Dawson-Saunders
and Trapp, 1994; Swets, 1996) for the set or sample of objects under
consideration. For an example, see Figure A.1. An ROC curve therefore,
summarizes the trade-off between sensitivity and specificity for all possible
values of the threshold 7' in one single plot and can therefore be used to
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Table A.1: Definition of True and False Positive objects (7P and FP) and of True
and False Negative objects (TN and FN) for a certain choice of the threshold T.
Ny =number of objects belonging to class 1; N, = number of objects belonging to
class 2.

Class membership
Class 1 Class 2
(Normal) (Abnormal)
ge
- Z N FP TP
E £
e
2| te
gV TN FN
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N N NA
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0 I I 1 I 1 I 1 I 1
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1 - Specificity

Figure A.1: Example of an ROC curve. A small circle indicates the point on the
ROC curve that maximizes the sum of the sensitivity and specificity and that has a
tangent line with slope 1.
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select an optimal (according to a certain criterion) threshold or cut-off point
T, In this thesis we consistently use the point that maximizes the sum of
the sensitivity and specificity and for which it can be proven that the
associated point on the ROC curve has a tangent line with slope 1 (see
Figure A.1).

The area under the ROC curve (AUC) has a special meaning
(Hanley and McNeil, 1982). It is a measure for the ability of the variable
under consideration to discriminate between objects from class 1 and class 2.
If this variable represents the output of a certain model for example, the
AUC quantifies the discriminatory power or accuracy of the associated
model. Suppose we randomly select an object from class 1 with associated
value yy and that we randomly select an object from class 2 with associated
value y,. Then, it can be proven that the AUC equals the probability that
v4>yn. Said otherwise, the AUC equals the probability that an object
randomly selected from class 1 and an object randomly selected from class 2
are ranked correctly. It reflects the degree of overlap of y; for objects from
class 1 and class 2. The AUC does not depend on the choice of the threshold
T. Two extreme situations are possible. If the variable under consideration
has no discriminatory power whatsoever, the AUC will equal 0.5. If, on the
other hand, the variable under consideration can result in a perfect
classification of the objects, the AUC will equal 1.

In the next sections we will discuss how the AUC can be derived
from a finite sample and how different AUCs can be compared. All the
methods are available in the form of own MATLAB scripts. Worth
mentioning is that some of these scripts were integrated in LS-SVMlab (see
http://www.esat.kuleuven.ac.be/sista/lssvmlab/ and Suykens et al. (2002)).

A.2.2 Estimation of the AUC from a finite sample

Suppose we have a finite sample S consisting of a subset Sy with Ny
normal objects and a subset S, with N, abnormal objects. Suppose we want
to estimate the true AUC (i.e., the AUC for an infinite sample), denoted as
Aroc, using this finite sample. This estimate of the AUC, denoted as Azoc,
can be obtained by calculating the Wilcoxon statistic ¥ given by (Hanley
and McNeil, 1982):

1 .
S (V,v)=A4,,-, A2
N,N, l;j; L5y ROC (A2)

W =

where S, is a scoring function given by:
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1 if y' >y’
S (y,y)y=41/2 if y' =y’ (A3)
0 if y' <y’

The estimate Azoc is a stochastical variable (it depends on the specific finite
sample S) with mean Agoc (the true are AUC) and standard error s given by:

2

o = |Aroc(= Agoe) + (N, =@ = Ao ) + Ny =1)(Q, ~ o)
‘ NANN
(A4)

where Q; is the probability that two randomly chosen abnormal objects will
both be ranked with greater suspicion than a randomly chosen normal object
and where O, is the probability that one randomly chosen abnormal object
will be ranked with greater suspicion than two randomly chosen normal
objects. O; and Q> can be estimated from the finite sample but can also be
approximated by the following equations:

Q — AROC
1 2- AROC
N (A.5)
A 2AR0C
2 A
1+ Az

Replacing Q;, O and Aroc by their estimates (obtained in Equation A.5 and
A.2) in Equation A.4 results in an estimate S, for the standard error of Agpc.

A.2.3 Comparison of the AUC

Suppose that we have two variables y; and y, (e.g., given by the
output of two different models) that have been generated to distinguish
between objects from class 1 and 2. In this section we want to examine
whether the discriminatory potential of these two variables is different, i.e.,
whether there is a difference in the respective true AUCs: Agoc; and Agocs.
Since, in practice, we can only estimate these AUCs (A}OCI and ARocg) and
their standard errors ($,; and $,,) from a finite sample, we have to investigate
whether there is a significant difference between these estimates. In this
context, two designs are possible: unpaired and paired (Hanley and McNeil,
1983).
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Unpaired design

In an unpaired design, the AUCs for the two variables y; and y, are
estimated from two different finite samples S; and S,, respectively, that do
not contain the same objects. In this case it is assumed that under the null
hypothesis (that states that the true AUCs are equal), the following statistic
follows a standard normal distribution:

S A

A -4
z = ROCI2 IZOCZ , (A6)
VSel +S92

which can be used to calculate the probability or p-value that an equally
large or larger value for z (or |z| if a two-sided test is used) will be obtained if
the null hypothesis is true. If this p-value is smaller than a certain rejection
level (e.g., 5%), the null hypothesis is rejected and the estimates of the
AUC:s are declared significantly different.

Paired design

In a paired design, the AUCs for the two variables y; and y, are
estimated from the same finite sample S, i.e., the values for variables y; and
y, are both available for the objects belonging to S. This situation, for
example, is often encountered when the discriminatory performance of
different mathematical models is being compared because usually the
models can be evaluated using all available objects. In general and if
possible, a paired design is preferred in comparison with an unpaired design,
since a paired design results in an increase in statistical power (i.e., a true
difference between the AUCs will be detected with a higher probability - i.e.,
the Type II error is lower).

In a paired design the estimates Aroc; and Arocy are no longer
independent but are positively correlated and an adapted z-statistic can be
applied:

~ s

A —A
7=— ROCZI ROC2 ’ (A7)
\/se1 +8,—=2rS8,S8,,

where 7 is a quantity that represents the correlation between Arocr and Arocs,
caused by using the same sample of objects to estimate both AUCs. This
quantity can be found in tabular form (Hanley and McNeil, 1983).
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A.3 Logistic regression and model selection

A.3.1 Definition

Logistic regression (Hosmer and Lemeshow, 1989) describes the
relationship between one or several independent or explanatory variables (or
data point x = (x;,x>,...,x,) ) and a binary (i.e., can only take on two possible
values: 0 or 1) outcome variable Y. This outcome variable Y has a binomial
distribution where the probability P(Y = 1|x) (conditional probability of ¥ =1
given the explanatory variables) is represented by y(x). In a standard logistic
regression model, y(x) is written or modelled in a specific form:

eg(x)
Yo =T (A8)
where g(x) is called the logit and is given by:
g(x) =By + Bix, + Box, +...+ B,x,, (A.9)

where S = (5,0,....3,) are the parameters or coefficients of the logistic
regression model.

If some of the independent variables are discrete, nominal scaled
variables (e.g., colour), these variables cannot be included in the logistic
regression model as such. This situation requires the definition of design
variables. In general, if the nominal scaled variable has k possible values,
then k-1 design variables are needed. For example, suppose one considers a
variable that represents a colour and that can take on three values: ‘black’,
‘white’ and ‘grey’. In this case two design variables have to be introduced in
the logistic regression model: D; and D,. One possible coding strategy is
then as follows: if the value for the nominal scaled variable is ‘white’, D;
and D, are set equal to zero. If this value is ‘black’, D, is set to one and D is
set to zero. If this value is ‘grey’, D; is set to zero and D; is set to one.

A.3.2 Model fitting: maximum likelihood

Suppose we have a sample of N independent observation (training
set) of the pair {xi(in,xgi,...,xpi),Y"},-:L,_,?N and we want to estimate the
parameters or coefficients S= (5,0.....3,) of a logistic regression model
that agrees most closely with the data. This is done by maximizing the
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likelihood function /(f), which equals the probability of finding the observed
data given the model parameters. This is given by:

()= flly(x")y" -yeh] ™ (A.10)

Mathematically it is easier (but equivalent) to maximize the logarithm of the
likelihood function In[/(f)]. This is called the log likelihood L(/):

L(B) = Z{Y" In[y(x) ]+ A=) Il -y |} (A1)

The values for the parameters that maximize this (log) likelihood function
are called the maximum likelihood estimates of these parameters. To find
these maximum likelihood estimates we have to differentiate L(f) with
respect to = (8, 5....3,). However the resulting equations are non-linear in
the parameters and therefore numerical and iterative methods built into
logistic regression software have to be used.

The coefficients in a logistic regression model can be interpreted as
the log of the odds ratio of the outcome for a unit increase of the associated
variable.

A.3.3 Significance of an individual coefficient

Several hypothesis tests are available to test whether the maximum
likelihood estimate of an individual coefficient differs significantly from
zero (i.e., to test whether the true value of this coefficient is zero or whether
the associated variable is significantly related to the outcome). We will
mention two of these tests here: the likelihood ratio test and the Wald test.

Likelihood ratio test

Suppose we want to test whether the true value of a coefficient 4 is
zero. Under the null hypothesis that £ is zero, the statistic G given by

likelihood of fitted model without x ;
G=-2In| —— - L, (A.12)
likelihood of fitted model with x ;

will follow a chi-square distribution with one degree of freedom. The
likelihood of a fitted model can be found by evaluating Equation A.10 using
the maximum likelihood estimates of the coefficients of the model at hand.
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A specific sample of observations will result in a specific value for G and
using the chi-square distribution, the probability can be calculated that an
equally large or larger value for G will be obtained under the null
hypothesis. If this probability or p-value is smaller than a certain rejection
level (e.g., 5%), the null hypothesis is rejected and the true value of S is
declared to be different from zero.

Wald test

In the Wald test it is assumed that under the null hypothesis, the
ratio of the maximum estimate of the coefficient of a certain variable and its
standard error will follow a standard normal distribution (or equivalently, it
is assumed that the square of this ratio follows a chi-square distribution with
one degree of freedom). Again, this can be used to calculate a p-value for a
specific value for the maximum likelihood estimate of a certain coefficient.

A.3.4 Model selection

As described in Chapter 1, Section 1.3.3, in model selection we aim
to select the most parsimonious set of variables from a group of considered
variables that, when combined in a model, adequately explains the data. In
this context, the model in which the variables are combined is a logistic
regression model. In this section we will explain three possible strategies to
perform model selection in logistic regression: forward, backward and
stepwise selection.

Forward selection

In forward selection, the following procedure is applied based on a
sample of observations and a group of variables that is considered for
inclusion in the model:

5. Begin with a logistic regression model with only the intercept
(constant term) and that does not include any variables.

6. Choose a significance level p,. for entry into the model (e.g., p, =
0.15 - not too stringent).

7. For each variable that has not been included into the model:
analyse a separate logistic regression model using this variable
and the variables that already have been included in the model.
Calculate the significance level or p-value (e.g., with the
likelihood ratio or Wald test) for the coefficient of the variable in
this model.
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8. Select the variable associated with the smallest p-value. If this p-
value is smaller than p,: include the variable in the model and, if
there remain variables that have not been included, return to step
3. Stop if this p-value is equal or larger than p. or if all variables
have been included.

Backward selection
In backward selection, the following procedure is applied:

1. Begin with a fitted logistic regression model where all the
variables that are considered for inclusion are effectively included
and calculate the significance level of the coefficient of each
variable.

2. Choose a significance level p, for removal out of the model (e.g.,
Pr = 0.20 - again, not too stringent).

3. Select the variable associated with the largest p-value. If this p-
value is larger than p,: remove the variable from the model. Stop
if this p-value is equal or smaller than p,.

4. Fit a logistic regression model with the variables that remain
included in the model and calculate the significance level of the
coefficient of each variable. Return to step 3. Stop if no variables
remain included.

Stepwise selection

Stepwise selection is a combination of forward and backward
selection. The basic scheme is the same as for forward selection with the
following modification: after each inclusion of a variable, a logistic
regression model is fitted using all the variables presently included, the
significance level of the coefficient of each variable is calculated and the
variable associated with the largest p-value is removed if this p-value is
larger than p,. This means that each forward selection step can be followed
by a backward selection step. The algorithm stops if no variables can be
included or removed.

From the previous it follows that a stepwise logistic regression
procedure requires the specification of a value for py and pz. As mentioned,
0.15 and 0.20, respectively, are reasonable choices, which are not too
stringent and prevent that important variables would not be included in the
model. The stepwise logistic regression therefore results in a logistic
regression model that includes or contains variables that are important
relative to the criteria pg and pg. If pr and px do not correspond to our belief
for statistical significance (usually fixed at a lower level of 5%), these may
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not be the variables reported in the final model and further selection is
necessary. The methodology that may be used to achieve this will not be
discussed further here.

A.4 Least Squares Support Vector Machines

Least Squares Support Vector Machine (LS-SVM) classifiers are a
modified version of Support Vector Machines that can be used for binary
classification  (Suykens et al., 2002). Given a training
set {xi(in,xgi,...,xpi),yi} ~1,..v With input data x' and corresponding class labels
y' € {-1,+1}. The LS-SVM classifier takes the following (primal) form:

y(x) = sign [WT(D(x) + bl, (A.13)

where the input data (that is said to belong to the input space) is mapped to a
high dimensional feature space (which can be infinite dimensional) by a
mapping function ¢(x) (that does not have to be specified — see further). This
means that, conceptually, the classification is done in a high dimensional
feature space where w is an element.

To determine the parameters of this model, the following
optimisation problem has to be solved:

R 1& v
min| —w w+ y— e R A.14
W[Z 72;( )} (A14)
subject to:
yile(p(xi)+bJ=l—ei,i:1,...,N. (A.15)

The first term in Equation A.14 is called the regularization term and is
representative of the model complexity and the second term in Equation
A.14 is representative for the training set error. The optimisation problem
therefore seeks a balance between minimizing model complexity and
minimizing training set error. The process of limiting model complexity is
called regularization and is necessary to prevent overfitting and enhance the
generalization performance of this model. Note that v is a hyperparameter of
the model, which is called the regularization parameter. Also note that y
determines the degree of balance that has to be reached between model
complexity and training set error. If y is chosen to be infinite, no
regularization is performed and only the training set error is minimized.
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The optimisation problem is dealt with by solving the Lagrangian,
which results in:

N
w=20{’y’(o(x’) (A.16)
i=l

and the following dual problem to be solved in ¢z and b:

0 ' b 0
= , (A.17)
y Q+Il/y| o 1,

y=lyrv ],
1, =[11..1]", (A.18)

where

a= [alaz...aN ]T,
and where the elements of the matrix €2 are given by:
Q, =y"y'e(x") p(x). (A.19)

As said previously, the mapping function ¢(x) does not have to be
constructed explicitly. We only have to specify the inner product in the
feature space. This is represented by a (symmetric) kernel function that
satisfies the Mercer condition:

K(r,s)=o(r)" o(s), (A.20)

where r and s belong to the input space. In this thesis we consider two
possible kernel functions: a linear kernel given by:

K(r,s)=r's, (A21)

and a Radial Basis Function (RBF) kernel given by:

2 (A.22)
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where o again is a hyperparameter. Applying this kernel trick to Equation
A.19 results in

Q, =y y' K", xh. (A.23)

After applying Equation A.21 or A.22 to Equation A.23, all the coefficients
of the set of equations given in Equation A.17 are known.

Finally, substitution of Equation A.16 in Equation A.13 results in the
LS-SVM classifier in the dual form:

y(x) Sign{z a'y'o(x"e(x) + b}

i=1

! (A24)
= sign{z a'y' K(x,x')+ b}.

i=1

In the dual form, the model parameters are o and b that have been
determined in Equation A.17. Equation A.17 is a set of N+1 linear equations
in N+1 unknowns (¢, &,...,0" and b). Its size is therefore not determined by
the number of dimensions in the input space but by the number of objects in
the training set. Also not that using a linear kernel results in a linear
classifier and using an RBF kernel results in a non-linear classifier.

Finally and in order to optimise model performance, the
hyperparameter(s) ¥ (and possibly ¢ if an RBF kernel is chosen) have to be
determined by a procedure that optimises the leave-one-out cross-validation
performance on the training set.

A.5 K-means clustering

K-means (Tou and Gonzalez, 1979 - also see Table A.2 for the basic
steps of this algorithm) is a cluster algorithm in which the user has to define
in advance the number of clusters K that the algorithm will retrieve. The
clusters at random (or pseudo-random like in Table A.2). Iteratively, the
center (which corresponds to the average vector) of each cluster is
calculated, followed by a re-assignment of the data points to the cluster with
the closest (according to the Euclidean distance - the use of other distance
measures is also possible but not discussed here) cluster center. Convergence
is reached when the clusters do not further change. The result of the
algorithm is dependent on K and the initial assignment of the data points to
the K clusters. A form of (unsupervised) feature extraction has to be
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performed in advance if one wants to cluster high dimensional data (i.e.,
microarray experiments) using the K-means algorithm.

Table A.2: K-means algorithm.

K-means ({x'},=.._x, K)
CIZCZZ...:CKZQ
FORi=1,...N

Ci-k(CEIL@K) - 1) = Ci-K,(CElL(i/K)I» HnY {xl% ©
/* assign x' to C;,x" to Cy, ..., x" to Ck,
XK+] to C], )CK+2 to Cg, ey XZK to C[(, . F

END FOR
REPEAT
FORi=1,..K
Lt =mean(C;)  /* (Re)calculate average cluster vector */
END FOR
C=Cp;Cl7=C s G = C
C=C=.=Ck=0
FORi=1,...N
Co=Cudxy it | —p | <[5 -p|, wizk

/* Re-assign each data point to the cluster with the nearest
average vector */

END FOR

UNTIL C,; = C;"Y AND C, = C,"/ AND ... AND Cg = C¢"/
/* Convergence if clusters have not changed */

OUTPUT Cy, G,,..., Ck

A.6 Hierarchical clustering

Another method to cluster data points is hierarchical clustering. The
results of this method can be visualized in a tree structure. Two approaches
are possible: a top down approach (divisive clustering - see Alon et al.
(1999) for an example) and a bottom-up approach (agglomerative clustering
- see Eisen et al. (1998)). The latter is the most commonly used method and
is discussed and used in this thesis. In the agglomerative approach each data
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point is initially assigned to a single cluster. Iteratively, the distance between
every couple of clusters is determined and the two clusters that are closest
are merged. This approach gives rise to the tree structure where the height of
the branches is proportional to the pairwise distance between the clusters.
Merging stops if only one cluster is left. Finally, clusters are formed by
cutting the tree at a certain level or height. Different types of agglomerative
clustering are possible, dependent on the definition of the distance between

clusters:

1.

Single linkage clustering: in this case the distance between two
clusters is defined as the minimum of all pairwise distances
between two data points (again according to a certain distance
measure; e.g., correlation coefficient, Euclidean distance)
belonging to the different clusters.

Complete linkage clustering: here the distance between two
clusters is defined as the maximum of all pairwise distances
between members of the different clusters.

Average linkage clustering: In this type of hierarchical clustering
the distance between two clusters is defined as the mean of all
pairwise distances between two vectors of the different clusters.

Centroid linkage clustering: in this case the distance between two
clusters is defined as the distance between their centroids (average
of the data points).

Feature reduction methods are not mandatory prior to the analysis of

high-dimensional data with hierarchical clustering.
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Data sets

In this appendix we will list and give an overview of the
characteristics of most data sets that were used in this dissertation.

B.1 Clinical data

B.1.1 Endometrial cancer

This data set, kindly provided to us by Prof. Dr. D. Timmerman
from the department of Obstetrics and Gynaecology (University Hospitals
Leuven), contains patients diagnosed with endometrial cancer and typifies
clinical data. Each patient is associated with a set of variables obtained after
ultrasound and histopathological examination. The patients are divided into
two classes dependent on the degree of invasion (with or without deep
invasion) into the surrounding myometrium, which is an important
prognostic parameter that has to be determined during staging. The training
set contains 97 and the test set 37 patients. For each patient the subjective
assessment of the degree of invasion by our expert ultrasonographer is
available, which can be used as a reference. This data is analysed and
discussed in further detail in Chapter 2 and serves as a typical example of
clinical data analysis there.

B.2 Microarray or expression data

See Table B.1 for an overview of the URLs where the different data
sets can be downloaded, if available.
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B.2.1 Acute leukemia (1)

Golub et al. (1999) studied microarray data obtained from bone
marrow or peripheral blood of 72 patients with acute lymphoblastic (ALL)
or myeloid leukemia (AML) using an Affymetrix chip. Although the
structure of this data set is simple and the separation between the two
conditions is more pronounced than in most other cases, it can still be
considered as a benchmark (paper cited over 1203 times) and serves as an
illustration on several occasions in this text. In the original publication, the
patients are divided into two sets: a fixed training set with 38 patients (27
ALL and 11 AML) and a fixed test set with 34 patients (20 ALL and 14
AML). The expression matrix contains 7129 genes or rows.

B.2.2 Acute leukemia (2)

Armstrong et al. (2002) also produced several microarray
experiments obtained from patients with ALL or AML and from a third class
or condition (called MLL leukemia) containing acute lymphoblastic
leukemias with a chromosomal translocation involving the mixed-lineage
leukemia gene. Armstrong et al. discovered that MLL leukemias have a
distinct expression pattern and can be considered as a separate disease
distinguishable from ALL and AML. It contains expression profiles for
12582 genes measured using Affymetrix technology. In total, 24 ALL
patients, 28 AML patients and 20 MLL patients are available. This resulted
in a data set containing 72 patients.

B.2.3 Breast cancer: degree of differentiation (1)

Perou et al. (2000) analysed surgical specimens of human breast
tumours using cDNA-microarray technology with a common reference
sample. Their study contained, among others, 37 tumours that were
moderately or poorly differentiated (grade 2 or 3 - the degree of
differentiation is assessed by the pathologist and reflects the degree of
anaplasia or the degree of malignancy of the tumour and is an important
prognostic factor). Twenty of these tumours were sampled twice (before and
after a 16-week course of doxorubicin chemotherapy or paired with a lymph
node metastasis) resulting in 57 microarray experiments (21 with grade 2
and 36 with grade 3). The raw data for each experiment (9216 genes) and the
associated grade are available for downloading.
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B.2.4 Breast cancer: degree of differentiation (2) and
prognosis

van ‘t Veer et al. (2002) studied primary breast tumours with cDNA-
microarrays (from sporadic lymph node negative patients and from patients
with BRCAI or BRCA2 germline mutations). In total 117 patients were
analysed (24481 gene expression profiles are present in the data). The data
included 51 patients with sporadic breast cancer (we also included the
patients from the independent set) that did and 46 patients that did not
develop distant metastases within five years. With respect to the degree of
differentiation, 27 patients had a tumour with grade 2 and 78 had a tumour
with grade 3. The data that is available can be downloaded under the form of
log-ratios (and was already appropriately preprocessed, which was not the
case for the data from Perou et al.).

B.2.5 Breast cancer: sporadic versus hereditary

Hedenfalk et al. (2001) studied sporadic breast tumours (7 patients),
breast tumours carrying a BRCAI mutation (7 patients) and breast tumours
carrying a BRCA2 mutation (7 patients) using a cDNA-microarray. Three
binary classification problems follow from this study (one class versus the
rest). The authors selected 3226 genes for there analyses according to a set
of prespecified criteria.

B.2.6 Colon cancer

Alon et al. (1999) studied 40 tumour and 22 normal colon tissue
samples using an Affymetrix chip. The array contained probes for more than
6500 genes but the data that can be downloaded includes only the 2000
genes with highest minimal intensity across the 62 tissues.

B.2.7 Hepatocellular carcinoma

Using an Affymetrix chip, lizuka et al. (2003) studied hepatocellular
carcinomas with and without early intrahepatic recurrence after surgery for
hepatic resection. Their data contained 60 patients originally divided in a
training set of 33 and a test set of 27. In total, 20 patients had an early
recurrence of their disease. The data contained 7129 gene expression
profiles.
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B.2.8 High-grade gliomas

Nutt et al. (2003) analysed the expression patterns of 50 patients
with high-grade gliomas with an Affymetrix chip (12625 genes). They
compared two histopathological subclasses: glioblastomas (poor prognosis -
28 patients) and anaplastic oligodendrogliomas (more favourable prognosis -
22 patients). The training set contained 21 patients (14 glioblastomas and 7
anaplastic oligodendrogliomas).

B.2.9 Prostate cancer

Singh et al. (2002) studied, among others, expression patterns of
normal and malignant prostate samples using oligonucleotide arrays with
probes for 12600 genes. A training set with 102 patients (52 prostate
tumours and 52 normal samples) and a test set with 34 patients (25 prostate
tumours and 9 normal samples) are available for downloading.

B.2.10 Yeast cell cycle

Cho et al. (1998) studied the yeast cell cycle in a synchronised
culture on an Affymetrix chip (also see Spellman et al. (1998)). This data set
contains expression profiles for 6220 genes over 17 time points taken at 10-
min intervals, covering nearly two full cell cycles. Although, this data does
not originate directly from oncology, it is related because dysregulation of
the cell cycle plays an important role in carcinogenesis. Moreover, we chose
to include this data because it studies microarray experiments taken at
different time points of a biological process rather than microarray
experiments belonging to different classes and is especially suited to
examine cluster analysis of gene expression profiles, a topic that is
investigated thoroughly in this thesis. Moreover in this context it can be
considered as a benchmark (De Smet et al., 2002; Jakt et al., 2001; Yeung et
al., 2001b; Heyer et al., 1999; Tamayo et al., 1999; Tavazoie et al., 1999).

B.2.11 Central nervous system development

Wen et al. (1998) studied gene expression levels of 112 genes on 9
time points during central nervous system development of the rat, using
tissue of the cervical spinal cord using reverse transcription-coupled PCR
(RT-PCR). Unfortunately, the website where the data was downloaded from,
is no longer available.
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B.2.12 Measurement of expression levels in
different tissues

Seven two-channel cDNA microarray-experiments (obtained from
Dr. P. Van Hummelen of the Microarray Facility of the V.I.B. - data not
publicly available) were performed to characterise 4595 expression patterns
in 7 mouse tissues. A common reference pool was used for each of the
experiments (green channel). The red channel corresponds to a RNA pool
obtained from one of 7 tissues:

- Experiment 1: Brain

- Experiment 2: Heart

- Experiment 3: Kidney

- Experiment 4: Liver

- Experiment 5: Lung

- Experiment 6: Skeletal muscle
- Experiment 7: Testis

The intention of this experimental setup was to detect groups of
tissue-specific genes (mostly upregulated genes in one or two tissues). The
data set itself contains 4595 seven-dimensional expression vectors. A
fraction of the expression ratios is missing (approximately 3.5%).

Table B.1: Overview of the URLSs of the different microarray data sets

Authors URL

Golub et al. http://www-genome.wi.mit.edu/cancer/

Armstrong et al. | http://research.dfci.harvard.edu/korsmeyer/MLL.htm

Perou et al. http://genome-www.stanford.edu/molecularportraits/

http://www.rii.com/publications/default.htm (log ratios)

van 't Veer et al. http://www.nature.com (suppl. inform. - degree of diff.)

Alon et al. http://microarray.princeton.edu/oncology/affydata/index.html

http://surgery2.med.yamaguchi-u.ac.jp/research/DNAchip/hcc

lizuka et al. -recurrence/index.html

Nutt et al. http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
Singh et al. http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi
Cho et al. http://cellcycle-www.stanford.edu

http://rsb.info.nih.gov/mol-physiol/PNAS/GEMtable.html
(no longer available)

Wen et al. (1998)
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