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Voorwoord

Na het schrijven van mijn licentiaatsthesis, had ik haast gezworen om er nooit
nog een te schrijven. Maar de interessante materie waar ik toen een glimp
van mocht opvangen, kon me niet weerhouden. Er werd me immers de kans
geboden om haast naadloos verder te werken op een onderwerp dat me altijd
interesseerde, hetgeen ik me geen twee keer liet zeggen.

Ik kwam dan ook in een reeds vertrouwde omgeving terecht; ik kon blijven
rekenen op Prof. Joos Vandewalle — mijn promotor van indertijd —, aangevuld
met de inspirerende en motiverende kracht van Prof. Bart De Moor. Graag zou
ik mijn beide promotoren willen bedanken voor de kansen die ze me geboden
hebben en het vertrouwen dat ze in me stelden. Zonder enige aarzeling namen
ze me aan, hoewel ik uit een volledig ander nest kwam en bitterweing wist over
typische ingenieurszaken.

Ook mijn assessoren en leden van de jury zou ik willen bedanken voor de tijd
en moeite die ze gëınvesteerd hebben in het lezen van dit werk en hun kritisch
oordeel hierover. Ik het bijzonder wil ik Yves Moreau bedanken omdat hij de
dagelijkse begeleiding op zich heeft genomen en zich zweet noch moeite heeft
gespaard om me te helpen met het maken van deze tekst tot wat hij is. Indertijd
heeft hij me uit de brand geholpen tijdens mijn licentiaatsthesis, en nu was zijn
hulp eveneens van onschatbare waarde.

Further, the research that is described in this thesis would not have been
possible without the valuable help of my friend and colleague Peter Antal, with
who I worked on a daily basis. I will never forget the endless nights at ESAT
debugging code and performing distributed computations manually on all the
computers of Data4s at once. Peter, thanks a lot.

Ook Prof. Timmerman van het Departement Gynaecologie en Verloskunde
van de Katholieke Universiteit Leuven ben ik veel dank verschuldigd. Niet alleen
was hij bereid om zijn dataset met waardevolle gegevens uit handen te geven, hij
verschafte mij en Peter ook het nodige inzicht in het ovariale tumor probleem en
vulde ellenlange lijsten met vragen in over bepaalde kansen aangaande ovariale
tumoren. Het was vooral een plezier om mee samen te werken.

Ook mijn collega’s en vrienden verdienen een plaats in dit voorwoord. Op
hen kon ik steeds rekenen zowel op wetenschappelijk als niet wetenschappelijk
vlak. Ondanks het regelmatig gebrek aan tijd langs mijnentwege en de soms
hectische toestanden, zijn zij diegenen die er altijd waren en met hen heb ik
goede tijden beleefd.
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Zij waaraan ik het meeste te danken heb, zijn ongetwijfeld mijn ouders.
Doorheen de jaren hebben ze me steeds de beste kansen en mogelijkheden
gegeven en zijn ze in mij blijven geloven. Ik vondt het dan ook niets min-
ders dan mein pligt om hen een aantal uuren bezich te houden met het vindten
van tallose spelingzvauten om mijn dank uit te drucken.

Tenslotte zou ik Annemie wel twintig keer willen bedanken. Zij was mijn
grootste steun tijdens dit doctoraat-zonder-einde, terwijl ze haar geduld op won-
derlijke wijze steeds wist te bewaren. Louter en alleen dankzij haar vond ik
de tijd en rust om aan mijn onderzoek te werken, afgewisseld met de nodige
ontspanning.



Abstract

The research we described in this thesis deals with learning probabilistic mod-
els based on heterogeneous information. We focused on classification systems
and used the problem of pre-operational classification of ovarian tumours as a
real-world application. Different types of information are available concerning
this problem, such as statistical data, expert knowledge, and electronic text
documents discussing the medical domain.

We will describe the a priori knowledge using a donor probabilistic model.
Unfortunately, this model is usually not suitable to learn from data. We would
like to perform this learning from data using an acceptor model. This model
features good learning characteristics from data, but has often limited options
to incorporate prior knowledge. We would like to combine the good properties
of each model to reach an efficient learning behaviour based on data while still
being able to incorporate the prior knowledge.

We developed a method to transform the information that is contained in
the donor model to the acceptor model using virtual data sets. We present this
method in the Bayesian framework, which is ideally suited to describe knowledge
about a certain system and specifies how we have to update this knowledge when
new information is observed.

To deal with the ovarian tumour classification problem, we chose a Bayesian
network as donor and a multilayer perceptron as acceptor model. The Bayesian
network enables us to describe the expert knowledge or incorporate informa-
tion concerning the connection between variables that we can find by analyzing
textual documents. On the down side, this model uses discrete variables and
contains many parameters, which hinders the learning. The multilayer percep-
tron on the other hand contains less parameters, treats continuous variables in
a natural way and shows a better learning behaviour based on data. This comes
at the expense of the ability to incorporate prior knowledge fluently.

The results we describe in this thesis indicate that a successful transfor-
mation of information from a Bayesian network to a multilayer perceptron is
possible. A considerable amount of the work consisted in implementing the
necessary models and algorithms to perform and validate this transformation.
These models and algorithms are described, together with some implementa-
tional considerations.
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Samenvatting

Het onderzoek in deze thesis beschrijft hoe machines kunnen leren met behulp
van probabilistische modellen op basis van heterogene informatie. We hebben
ons geconcentreerd op het leren van classificatiesystemen, met als praktische
toepassing het preoperationele classificeren van ovariale tumoren. Verschillende
soorten informatie zijn voorhanden omtrent dit probleem waaronder statisti-
sche data, expertinformatie en relevante documenten uit elektronische gegevens-
banken.

Deze laatste twee, ook wel a priori kennis genoemd, kunnen we beschrijven
met behulp van een probabilistisch donormodel. Doorgaans zal zulk een model
echter niet vlot leren van data. Leren van data zouden we daarom graag doen
met behulp van een acceptormodel. Een dergelijk model leert wel goed van data
maar kan moeilijk a priori kennis in rekening nemen. Graag zouden we de goede
eigenschappen van elk model willen combineren, om te komen tot een efficiënt
leergedrag op basis van de data terwijl we ook de a priori kennis mee in rekening
nemen.

We ontwikkelden een methode om de informatie van het donormodel te trans-
formeren naar deze van het acceptormodel met behulp van virtuele datasets.
Deze methode situeert zich in het Bayesiaanse denkkader hetgeen bij uitstek
geschikt is om de kennis omtrent een systeem te specificeren en aangeeft hoe we
deze kennis moeten aanpassen als er nieuwe informatie wordt ingeworven.

Om het classificatieprobleem van ovariale tumoren aan te vatten, kozen we
een Bayesiaans netwerk als donormodel, terwijl een meerlaags perceptron dienst
deed als acceptormodel. Het Bayesiaanse netwerk laat ons toe om zowel de
expertkennis te beschrijven als verbanden tussen variabelen te gebruiken die
we kunnen vinden door de tekstdocumenten te analyseren. Dit model maakt
echter gebruik van discrete variabelen en bevat veel parameters, wat het leren
van de parameters op basis van data bemoeilijkt. Het meerlaags perceptron
daarentegen bevat veel minder parameters, kan op een natuurlijke manier over-
weg met continue variabelen en leert beter van data. Dit is echter ten koste van
de mogelijkheid om achtergrondinformatie vlot te verrekenen.

De resultaten in deze thesis tonen aan dat een succesvolle transformatie van
informatie van een Bayesiaans netwerk naar een meerlaags perceptron mogelijk
is. Een aanzienlijk deel van het werk bestond uit het implementeren van de
benodigde modellen en technieken om deze transformatie uit te voeren en te
valideren.
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Nederlandse samenvatting

Bayesiaans leren op basis van expertkennis: transfor-
matie van informatieve verdelingen tussen Bayesiaanse
netwerken en meerlaagse perceptrons

Inleiding

Zodra de mens zich realiseerde dat hij kon leren, heeft dit leren op zich hem
gëıntrigeerd. Het is dan ook ons sterk ontwikkeld leer- en denkvermogen dat
ons van de andere diersoorten onderscheidt.

Er werd in het verleden al veel tijd en moeite gëınvesteerd in onderzoek naar
leren en denken en hoe dit gesimuleerd kon worden. Rond 1769 kon Wolfgang
von Kempelen iedereen nog om de tuin leiden door een schakende machine te
presenteren met het uitzicht van een houten Turk. Jammer genoeg berustte
dit op puur boerenbedrog want er zat een dwerg verborgen in de machine.
Toch duidt dit aan dat men toen een mechanische, schakende machine niet als
volstrekt onmogelijk achtte.

Het is pas vanaf 1949, met de ontwikkeling van de computer door John
von Neumann, dat de deur richting schaakspelende computers werd opengezet;
tegenwoordig gelooft niemand nog dat een volledig mechanische schaakspelende
machine gebouwd kan worden. De computer wordt algemeen wél aanzien als
een beloftevol toestel om leergedrag te simuleren. De duidelijkste indicatie hier-
van werd waarschijnlijk gegeven toen Deep Blue in 1997 Garry Kasparov, de
toenmalige wereldkampioen schaken, versloeg.

Tegenwoordig noemt men “leren met behulp van de computer” machine
learning of artificiële intelligentie. Het leerprobleem wordt vanuit verschillende
uitgangspunten benaderd. In kansrekening wordt leren beschouwd als het pro-
ces om gekende informatie van een systeem in een model te omschrijven en te
updaten. In functieapproximatie ligt de nadruk meer op het benaderen van een
zekere meerdimensionale functie op basis van een aantal voorbeeldafbeeldingen.
Andere methoden, zoals genetische algoritmen of neurale netwerken, proberen
dan weer gekende biologische processen zoals de genetische hercombinatie (cross-
over en mutatie) of de cellulaire communicatie die optreedt in de hersenen te
imiteren, en dit met een variërend gevoel voor realiteit.
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De meeste van deze methoden zijn echter toegespitst op het verwerken van
één specifiek type informatie, zoals numerieke representaties van karakteraf-
beeldingen voor geschriftsherkenning of geluidsbestanden voor spraakherken-
ning. Hoe we verschillende types informatie kunnen combineren in één model is
nog steeds een vrij open probleem, en vormt het centrale thema van deze thesis.

Om het contact met de realiteit niet te verliezen, selecteerden we een medisch
classificatieprobleem waarbij we trachten preoperatief de kwaadaardigheid van
een ovariale tumor te voorspellen. In dit probleem onderscheiden we drie ver-
schillende informatiebronnen die we wensen te combineren. Zo is er een statis-
tische dataset met patiëntgegevens voorhanden, de kennis en ervaring van een
arts en de relevante medische literatuur.

Dit medisch probleem wordt kort toegelicht in de volgende sectie, tezamen
met de informatiebronnen die voor handen zijn. Verder wordt er een techniek
gëıntroduceerd die zowel de expertkennis als de data aan kan. Deze techniek
is gebaseerd op twee verschillende modellen waarbij het kennisgebaseerde mo-
del (een Bayesiaans netwerk) verantwoordelijk is voor het omschrijven van de
expertkennis. Het tweede model (een meerlaags perceptron, ook wel neuraal
netwerk genoemd) is meer data georiënteerd en zal verantwoordelijk zijn voor
het leren op basis van de numerieke dataset.

We hebben een techniek ontwikkeld waarbij de informatie van het Bayesi-
aanse netwerk getransformeerd naar het meerlaagse perceptron in de vorm van
een informatieve a priori verdeling. Deze wordt dan op haar beurt getrans-
formeerd wordt naar de a posteriori verdeling op basis van de dataset. De
voorgestelde techniek is gebaseerd op virtuele datasets om de informatie over te
dragen.

Classificatie van ovariale tumoren

Hieronder vindt u een korte toelichting van het classificatieprobleem van ovariale
tumoren en een introductie van de informatie die hieromtrent voorhanden is.

Ovariale tumoren

De ovaria, ook wel eierstokken genoemd, zijn twee amandelvormig organen die
zich aan weerszijde van de baarmoeder bevinden (zie Figuur 2.1). Deze kleine
organen produceren de menselijke eicellen. Jammer genoeg zijn zij ook vrij
vatbaar voor het ontwikkelen van gezwellen en tumoren. Deze ovariale tumoren
worden onderverdeeld in drie grote categorieën die elk overeenstemmen met de
drie types van cellen die we aantreffen in een ovarium: epitheliale tumoren,
kiemceltumoren en stromale tumoren.

Hetgeen echter van groter belang is voor de patiënt, is het gedrag van de
tumor. We onderscheiden ruwweg twee soorten: goedaardige en kwaadaardige.
Figuur 2.3 toont zowel een goedaardige (links) als een kwaadaardige tumor
(rechts). De tumoren uit de eerste categorie kunnen tamelijk groot worden en
hierdoor pijnlijk zijn, maar tasten nooit het omliggend weefsel aan en brengen
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geen uitzaaiingen met zich mee. Men kan ze in veel gevallen doen krimpen
door het toedienen van bepaalde hormonen of andere medicatie, of ze kunnen
verwijderd worden met behulp van een doorsnee chirurgische ingreep.

Kwaadaardige tumoren, ook wel kankers genoemd, hebben wél de neiging om
uit te zaaien eens ze groot genoeg zijn en zijn daardoor vaak levensbedreigend.
Deze tumoren vragen om een drastische en ingrijpende behandeling door een
gynaecologische oncoloog.

Het grote verschil tussen het gedrag van beide types tumoren en hun re-
spectievelijke behandeling, vereist om preoperatief te bepalen of een tumor al
dan niet kwaadaardig is. Het ontwikkelen van een classificatiesysteem dat de
gynaecologische expert hierin adviseert, staat centraal in deze thesis.

Dit onderzoek plaatst zich in het kader van het Internationale Consortium
voor Ovariale Tumoranalyse (IOTA), een groep van meerdere centra die mee-
werken aan het ontwikkelen van machine learning modellen voor de preoper-
atieve classificatie van ovariale tumoren (https://www.iota-group.org/). Dit
project werd in 1998 opgestart door Prof. Dr. Dirk Timmerman, een arts van
het departement gynaecologie en verloskunde aan het Universitaire Ziekenhuis
te Leuven. Partners in dit project zijn het Departement Electrotechniek van de
K.U.Leuven (ESAT/SCD) en verscheidene ziekenhuizen over de wereld.

Informatiebronnen

We hebben drie verschillende soorten informatie ter onzer beschikking om een
classificatiesysteem te construeren.

Klinische data

De eerste en meest belangrijke informatiebron is een klinische dataset met
patiëntgegevens. Op het moment van dit onderzoek bevat deze databank gegevens
van 1 152 personen en 1 346 tumoren.1 Elke tumor wordt omschreven met be-
hulp van 68 parameters. Met behulp van input selectie procedures en de kennis
van Prof. Timmerman werden de 35 meest relevante parameters geselecteerd
waarop onze experimenten gebaseerd zullen zijn.

Hiertussen vinden we Pathology, de binaire variabele die aangeeft of de tu-
mor goedaardig of kwaadaardig is. Verder wordt een tumor beschreven door
variabelen die de vorm en de doorbloeding van de tumor aangeven, het ge-
neeskundige verleden van de patiënt en de meting van het serum CA125 in het
bloed.

Deze dataset bevat zowel discrete als continue variabelen. De univariate
statistieken van deze variabelen zijn weergegeven in de Tabellen 2.4, 2.5 en 2.6.
Een meer diepgaande bespreking van de variabelen kan gevonden worden in
Appendix A.

1Alhoewel dit niet de uiteindelijke IOTA dataset zal zijn, werd deze dataset met
patiëntgegevens onderworpen aan een kwaliteitscontrole en werden inconsistente waarden
gecorrigeerd door Andrea Valek.
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Expertkennis

Aanvullend op deze numerieke informatie, konden we eveneens beroep doen op
de kennis en ervaring van Prof. Timmerman, een toonaangevend expert op het
gebied van ultrasonore technieken voor ovariale tumoren en de oprichter van het
IOTA project. Het gros van de patiëntgegevens werd door hem verzameld.

Prof. Timmerman heeft zijn kennis over ovariale tumoren gespecificeerd
met behulp van een Bayesiaans netwerk gebaseerd op 11 variabelen. Zowel de
structuur van dit netwerk (zie Figuur 2.7) als de bijhorende parameters werden
gegeven.

Verder kon hij ook de paarsgewijze verbanden tussen alle variabelen karak-
teriseren (zie Figuur 2.8). In Sectie 5.5.1 wordt aangegeven hoe deze informatie
kan gebruikt worden om een verdeling over de ruimte van Bayesiaanse netwerk-
structuren te definiëren.

Tekstdocumenten

Tot slot bezorgde Prof. Timmerman ons een verzameling karakteristieke kern-
woorden per variabele, een tekstuele omschrijving van deze variabelen en een
selectie van relevante medische literatuur. Met behulp van deze aanwijzingen
waren we in staat om ook de tekstuele informatie mee in rekening te nemen,
eveneens in de vorm van een verdeling over de ruimte van Bayesiaanse netwerk-
structuren.

Het Bayesiaanse denkkader

We wensen de heterogene informatie die in de vorige sectie gëıntroduceerd werd,
te combineren om tot een zo goed mogelijk classificatiemodel te komen. Om dit
te verwezelijken, behandelen we het leerprobleem in het Bayesiaanse denkkader.
Dit denkkader is uitermate geschikt om kennis over een bepaald systeem te speci-
ficeren en om deze kennis aan te passen als er nieuwe observaties binnenkomen.

De regel van Bayes

In het Bayesiaanse denkkader duidt een kans de gradatie van geloof aan over de
waarheid van een bepaald statement. Dit geloof is altijd afhankelijk van de infor-
matie waarover men kan beschikken en deze interpretatie kan zonder problemen
toegepast worden op bepaalde dingen die niet intrinsiek random zijn; sommige
dingen kunnen met zekerheid voorspeld worden, maar wanneer de benodigde
informatie ontbreekt of de berekening te ingewikkeld is, moeten we onze toe-
vlucht nemen tot plausibele redeneringen. Zo kunnen we bij een vogelpikspel
perfect berekenen onder of iemand de roos zal raken, maar enkel als de initiële
snelheids- en plaatsvectoren gekend zijn.

Richard Cox [20] toonde aan dat elk systeem dat gebruikt kan worden om
consistent te leren en te redeneren onder een aantal basisvoorwaarden, steeds
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getransformeerd kan worden naar het gekende systeem van kansrekenen met als
basisregels de som- en productregel:

∑

a

P( a = a | ξ ) = 1 met P( a = a | ξ ) ≥ 0

P( a = a, b = b | ξ ) = P( a = a | b = b, ξ ) P( b = b | ξ ).

De eerste basisvoorwaarde zegt dat de kans dat een bepaalde statement
waar is, ons onmiddellijk leert wat de kans is dat dit statement niet waar is.
De tweede voorwaarde legt op dat door het specificeren van de kans dat een
bepaald statement waar is samen met het specificeren van de kans dat een tweede
statement waar is gegeven dat ons eerste statement correct is, we de kans kennen
dat beide statements correct zijn. Tenslotte bedoelen we met consistent leren
dat het gebruik van dezelfde informatie op verschillende wijzen tot eenzelfde
resultaat moet leiden. Met het symbool ξ noteren we alle achtergrondinformatie
die voorhanden is.

Een van de meest gebruikte regels binnen de kansrekening, is de regel van
Bayes:

P( a = a | b = b ) =
P( b = b | a = a ) P(a = a)

P(b = b)
(1)

p(ω |D, ξ ) =
p( D |ω, ξ ) p(ω | ξ )

p( D | ξ )
(2)

∝ p( D |ω ) p(ω).

Hierboven is de regel van Bayes twee keer vermeld. Vergelijking 1 is de
abstracte vorm en zegt niet veel over het gebruik van deze regel. Vergelijking 2
daarentegen duidt met symbolen aan waar deze regel veelal zijn toepassing
vindt. Hier stelt ω de parametervector van een bepaalde verdeling p( · |ω ) voor,
D duidt de dataset aan en ξ bevat de achtergrondinformatie die voorhanden is.

Meestal zijn we gëınteresseerd hoe ons geloof in de verschillende modelpa-
rameters ω (voorgesteld door de verdeling p(ω | ξ )) bëınvloed wordt door het
observeren van een dataset D. De regel van Bayes leert ons dat de a posteri-
ori verdeling p(ω |D, ξ ) (ná het observeren van de data) berekend kan worden
door de data likelihood L(ω |D ) = p( D |ω ) van de modelparameters te ver-
menigvuldigen met de a priori verdeling p(ω | ξ ) (onze kennis over de parame-
ters vóór het observeren van de data). De noemer p( D | ξ ) is onafhankelijk van
de modelparameters ω en wordt daarom vaak weggelaten.

De geschiedenis van het Bayesiaanse denkkader

De interpretatie van kansrekenen en haar toepasbaarheid was stof tot veel dis-
cussie in het verleden. Jacob Bernoulli (1654–1705) was een van de eerste die
zich afvroeg hoe inductief redeneren verwezelijkt kon worden met behulp van
deductief redeneren. Deze deductieve redeneerprocessen hebben tot doel om,
vertrekkende van een bepaald begingegeven, verschillende mogelijk uitkomsten
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af te leiden. De meest voor de hand liggende voorbeelden vinden we in de
exacte wiskunde waar men, uitgaande van een aantal axioma’s, een bepaalde
stelling probeert te bewijzen. De meeste kansspelen zijn een andere groep voor-
beelden. Hier probeert men om, vertrekkende van een aantal goed gedefinieerde
— maar moeilijk te vinden — voorwerpen zoals eerlijke dobbelstenen, kansen
toe te kennen aan bepaalde observaties.

Het inductieve redeneren beoogt het tegenovergestelde van deductief re-
deneren en probeert op basis van een aantal observaties of uitkomsten de begin-
oorzaken te achterhalen, zoals het wel of niet eerlijk zijn van een dobbelsteen.
Elke dag worden we met zulke vraagstukken geconfronteerd. Hoewel de mens
hier intüıtief en gemakkelijk mee omgaat, zijn deze problemen minder eenvoudig
om op te lossen met behulp van een computer.

Thomas Bayes (1702–1762) [8] vond het antwoord op Bernoulli’s probleem
en zijn resultaten werden verder uitgewerkt en toegepast door Pierre-Simon
Laplace (1749–1827) [57]. Volgens Bayes en Laplace stelde een kans een bepaalde
gradatie van geloof of plausibiliteit voor dat een bepaald statement waar is.

Voor veel wetenschappers was dit filosofische concept van kans veel te vaag
en te subjectief. John Venn (1834–1923) stelde daarom een nieuwe definitie voor
op basis van de relatieve frequentie van een bepaalde gebeurtenis bij veelvuldige
herhaling, in een poging om de definitie objectiever te maken. Dit wordt ook
wel de frequentistische kijk op kansrekenen genoemd. Dit concept kan echter
moeilijk toegepast worden op dingen die intrinsiek niet random zijn, zoals bij-
voorbeeld de massa van een planeet. Om het toch mogelijk te maken iets te
kunnen zeggen over de massa van een planeet op basis van astronomische meet-
gegevens wordt de massa van de planeet gerelateerd aan de meetgegevens met
behulp van een statistiek. De massa is een constante, maar op de data zit wel
meetruis, waardoor de waarde van de statistiek wél een random variabele wordt
waarop men de frequentistische kansrekening van John Venn kan toepassen.
Eén van de belangrijkste mensen op het vlak van de statistiek was ongetwi-
jfeld sir Ronald Fisher (1890–1962). Hij ontwikkelde onder meer de maximum
likelihoodtechniek, de analyse van de variantie (ANOVA) en concepten als suf-
ficiëntie.

Door het werk van sir Harold Jeffreys (1891–1989) [48] is het nu weer natu-
urlijker om een kans te interpreteren als het gebrek aan kennis over een bepaalde
systeem om een uitspraak met zekerheid te doen. Dit “gebrek aan kennis” con-
cept is equivalent aan de plausibiliteitsdefinitie van Bayes en Laplace. Richard
Cox (1898–1991) [20] kon tenslotte aantonen dat, vertrekkende van de plausi-
biliteitsdefinitie, kans theorie het enige systeem is dat hiervoor gebruikt kan wor-
den. Deze resultaten werden recentelijk verder uitgewerkt door Edwin Jaynes
(1922–1998) [47].

De a priori verdeling

De a priori verdeling p(ω | ξ ) heeft tot doel onze kennis over de parameters van
een bepaald model p( · |ω ) weer te geven. Vaak wordt deze a priori verdeling
uit een speciale familie van verdelingen gekozen met het oog op het berekenen
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van de a posteriori verdeling. Uit Vergelijking 2 blijkt immers dat deze a pos-
teriori verdeling in essentie het product is van de a priori verdeling en de data
likelihood.

Indien dit product resulteert in een verdeling van dezelfde familie als de a
priori verdeling spreken we van een verdeling die toegevoegd is aan de data ver-
deling. Eén van de meest frequente voorbeelden is de Dirichlet verdeling, welke
toegevoegd is aan de tabelverdeling (zie Sectie 5.3.1). De keuze van deze verde-
ling is niet enkel gemotiveerd vanuit praktische overwegingen; Heckerman [41]
toont aan dat dit de enige redelijke keuze.

Eens we de familie voor onze a priori verdeling gekozen hebben, moeten we
nog een bepaalde verdeling uit deze familie kiezen door de hyperparameters te
specificeren. Deze hyperparameters zijn de parameters van de a priori verde-
ling. Hier onderscheiden we twee mogelijke keuzes: als eerste kunnen we een
regulerende a priori verdeling kiezen. Deze verdelingen worden voornamelijk
gebruikt wanneer een parametervector ω met een grote norm een meer complex
model voorstelt. Als onze a priori verdeling de norm van de parametervector
restricteert, bekomen we een regulerend effect. Deze verdelingen bevatten door-
gaans geen specifieke informatie over het probleem dat we wensen te modelleren
en presteren daardoor even slecht als een random model wanneer nog geen data
geobserveerd is. Deze verdelingen worden niet-informatieve complexiteitsge-
baseerde verdelingen genoemd.

Een tweede type verdelingen bevat wel specifieke informatie over het te mod-
elleren probleem en worden daardoor informatieve verdelingen genoemd.

Classificatie

Eens we de a priori verdeling gespecificeerd hebben geeft de regel van Bayes ons
de a posteriori verdeling. Deze a posteriori verdeling drukt ons vertrouwen uit
in de verschillende mogelijke parametrisaties ω, nadat we zowel de achtergrond-
kennis ξ als de dataset D kennen. Toegepast op een binair classificatieprobleem,
bekomen we de volgende formule:

P( t = CP |x,D, ξ ) =

∫

Ω

P( t = CP |x,ω ) p(ω |D, ξ ) dω.

Hierbij is t het binaire classificatielabel van een record met observaties x dat
we wensen te classificeren als CN of CP (een negatieve of positieve classificatie).
Verder stelt D een dataset voor met gekende klasselabels.

Met behulp van bovenstaande kans en een classificatiedrempelwaarde λ kun-
nen we een beslissing nemen:

t =

{
CP als P( t = CP |x,D, ξ ) ≥ λ,
CN anders.

De ROC performantiemaat

In deze thesis gaan we verschillende classificatiesystemen ontwikkelen voor het
tumorprobleem. Om deze verschillende modellen met elkaar te kunnen vergeli-
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jken, hebben we een performantie maat nodig. Alle resultaten die we in deze
thesis presenteren, zijn gebaseerd op de receiver operating characteristics curve
(ROC) [38]. Deze curve wordt aangemaakt door de sensitiviteit uit te zetten
in functie van 1-specificiteit voor een variërende classificatiedrempelwaarde en
bevindt zich in het eenheidsvierkant [0, 1] × [0, 1]. Figuur 3.8 toont twee voor-
beelden van ROC curven.

De oppervlakte onder deze curve is een veelgebruikte performantiemaat die
onafhankelijk is van de classificatiedrempelwaarde λ. Verder is deze oppervlakte
gerelateerd aan de Wilcoxon statistiek en kan gëınterpreteerd worden als de kans
dat P( t = CP |xN ) kleiner is dan P( t = CP |xP ), waarbij xN een willekeurige
negatieve en xP een willekeurige positieve observatie is:

AUC = P( P( t = CP |xN ) < P( t = CP |xP ) |xN ∈ CN en xP ∈ CP ).

Transformatie van informatie representatie

Soms kunnen we niet alle informatie in”en model combineren. Het onderzoek
in deze thesis laat toe om de a priori kennis te beschrijven met een geschikt
model. Vervolgens wordt deze informatie getransformeerd naar een ander model,
geschikt om verder te leren op basis van de data.

Donor- en acceptormodel

Het eerste model dat we nodig hebben, het donormodel, beschrijft een geza-
melijke kansverdeling p( · | θ ). We specificeren dit model met behulp van de
achtergrondinformatie door de verdeling p( θ | ξ ) over de modelparameters te
definiëren. We gaan ervan uit dat we de achtergrondinformatie vlot in rekening
kunnen nemen. Meestal heeft deze eis tot gevolg dat de leercapaciteiten van
deze modelklasse op basis van de data is eerder beperkt.

Daarom wensen we deze informatie te transformeren naar een acceptormod-
elklasse p( · |ω ), welke wél goede leercapaciteiten op basis van data bezit. Het
acceptormodel heeft dan weer beperkte mogelijkheden om rechtstreek a priori
kennis in rekening te nemen.

Transformatie tussen donor- en acceptormodel

We proberen de positieve kanten van beide modellen te combineren door middel
van virtuele datasets: we zijn gëınteresseerd in de a priori verdeling voor de
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parameters ω van het acceptormodel, gegeven de achtergrondinformatie:

p(ω | ξ ) =
∑

Dk

p(ω |Dk, ξ ) p( Dk | ξ )

=
∑

Dk

p(ω |Dk, ξ )

∫

θ

p( Dk | θ, ξ ) p( θ | ξ ) dθ

≈
∑

Dk

p(ω |Dk, ξc )

∫

θ

p( Dk | θ, ξ ) p( θ | ξ ) dθ. (3)

We stellen met het symbool θ de parametrisatie van het donormodel voor,
terwijl ω de parametrisatie van het acceptormodel is.

We sommeren over alle mogelijke datasets met k records. Deze datasets zijn
afkomstig van de gezamelijke verdeling van het donormodel. In Vergelijking 3
gaan we ervan uit dat we de achtergrondinformatie ξ mogen vervangen door het
complexiteitsgebaseerde gedeelte ξc, eens de dataset Dk gekend is.

Vergelijking 3 kunnen we rechtstreeks vertalen naar een algoritme om pa-
rametervectoren volgens p(ω | ξ ) te genereren:

1. Genereer een donorparametrisatie θ volgens de informatieve a priori ver-
deling p( θ | ξ ).

2. Genereer een virtuele dataset Dk volgens de gezamelijke verdeling gedefi-
nieerd door het donormodel p( · | θ ) met als parameters θ.

3. Genereer een parametervector ω volgens de a posteriori verdeling gebaseerd
op de virtuele dataset p(ω |Dk, ξc ).

Het kiezen van het aantal records in elke dataset vergt enige voorzichtigheid.
Deze parameter moet groot genoeg zijn zodat we geen al te grote fout maken
door ξ te vervangen door ξc. Hoe groter we k kiezen, hoe accurater de trans-
formatie zal verlopen. Toch mogen we k ook niet te groot nemen. Immers,
hoe groter k wordt, hoe gepiekter de verdelingen p(ω |Dk ) er zullen uitzien.
Als nu geen enkele van de virtuele datasets Dk eruit ziet als de echte dataset
D omdat ons donormodel bijvoorbeeld niet alle karakteristieken van D kan
omschrijven, zal geen enkele a posteriori verdeling p(ω |Dk ) de optimale accep-
torparametrisatie in zijn drager hebben. Dit zou betekenen dat de bovenstaande
informatieve a priori verdeling p(ω | ξ ) eveneens de optimale parametrisatie niet
zal bevatten, hetgeen uiteraard een ongewenst gedrag is.

Bayesiaanse netwerken

De vorige sectie maakte gebruik van twee verschillende modelklassen en definieerde
een overgang tussen beide. Deze sectie introduceert het donormodel, hetgeen
we wensen te gebruiken om de achtergrondinformatie voor te stellen. Hiervoor
opteerden we voor het Bayesiaans netwerk, een model dat de laatste jaren nogal
wat aan populariteit heeft ingewonnen. Dit model laat toe om op een gefun-
deerde wijze achtergrondinformatie in rekening te nemen.
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Structuur en parameters

In essentie is een Bayesiaans netwerk een methode om een gezamelijke verde-
ling op een spaarse wijze neer te schrijven. Deze is gebaseerd op de gekende
kettingregel uit de kansrekening:

p(x1, . . . , xv) = p(x1) p(x2 |x1 ) · · · p(xv |x1, . . . , xv−1 )

=

v∏

i=1

p(xi |x1, . . . , xi−1 ). (4)

Hierbij zijn x1, . . . , xv stochastische veranderlijken en is de factorisatie af-
hankelijk van de volgorde van de veranderlijken. Vertrekkende van Vergelijking 4
vereenvoudigen we elke factor afzonderlijk, afhankelijk van de verdeling die we
modelleren. Zo kan het bijvoorbeeld zijn dat x3 conditioneel onafhankelijk is
van x1 gegeven x2. Hiermee bedoelen we dat de extra informatie in x1 ons
niets nieuws leert over x3 als x2 al gekend is. We noteren deze eigenschap door
(x3 ⊥ x1 |x2 ). Dit laat ons toe om de derde factor te vervangen door een
eenvoudigere factor

p(x3 |x1, x2 ) = p(x3 |x2 ).

Als we deze vereenvoudigingen voor elke factor bepalen, bekomen we

p(x1, . . . , xv) =
v∏

i=1

p(xi |π(xi) ) (5)

π(xi) ⊂ {x1, . . . , xi−1},
waarbij we de verzameling π(xi) de ouders van de variabele xi noemen.

Uit bovenstaande formulering kunnen we rechtstreeks de tweeledige natuur
van een Bayesiaans netwerk afleiden: de conditionele onafhankelijkheden geven
ons informatie over welke variabelen afhankelijk zijn van welke andere. Hoe
deze afhankelijkheden er in de praktijk uitzien, wordt bepaald door de lokale
afhankelijkheidsmodellen p(xi |π(xi) ).

Het eerste type informatie kan voorgesteld worden met behulp van een
gerichte, niet-cyclische graf. Hierdoor worden Bayesiaanse netwerken tot de
klasse van grafische modellen gerekend. Deze netwerkvoorstelling wordt ook
wel de structuur van het Bayesiaans netwerkmodel genoemd. Doorgaans komen
we tot deze voorstelling door elke variabele met een knoop voor te stellen. De
ouders worden verbonden met het kind door middel van een pijl die naar het
kind wijst. Zo toont Figuur 5.1 de structuur van een model met vijf variabelen.
Voor het linkse model waren geen vereenvoudigingen mogelijk terwijl het rechtse
model correspondeert met de gezamelijke verdeling

p(a, b, c, d, e) = p(a) p( b | a ) p( c | a, b ) p( d | a, b, c ) p( e | a, b, c, d )

= p(a) p(b) p(c) p( d | a, b ) p( e | c, d ).

Het tweede type informatie, de lokale afhankelijkheidsmodellen, worden ook
wel de parameters van het netwerk genoemd en bepalen hoe de effectieve afhanke-
lijkheden eruit zien.
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Van zodra we de structuur van ons model bepaald hebben, samen met de
parameters van de lokale afhankelijkheidsmodellen, hebben we de gezamelijke
kansverdeling volledig gespecificeerd. De volgende stap bestaat er dan meestal
in om bepaalde vragen te stellen aan deze verdeling. Deze vragen kunnen
meestal geformuleerd worden in de vorm van een bepaalde marginale of con-
ditionele verdeling. Zo zijn we in een classificatiesetup meestal geı̈nteresseerd
in de kansverdeling van de klassevariabele t, gegeven een aantal metingen of
symptomen (niet noodzakelijk allemaal)

p( t | a = a, c = c ).

Vooraleer we hier aan toe zijn, moeten we de structuur en de parameters
van ons model bepalen.

Het leren van de structuur

De structuur kan men manueel specificeren of aanleren met behulp van een
dataset. Deze laatste methode zoekt naar een netwerkstructuur Sbn met een
hoge a posteriori kans p(Sbn |D, ξ ). Als we ervan uit gaan dat we a priori geen
voorkeur hebben voor een bepaalde structuur, dan kunnen we p(Sbn |D, ξ ) op
volgende wijze uitwerken:

p(Sbn |D, ξ ) =
p( D | Sbn ) p(Sbn | ξ )

p(D)

∝ p( D | Sbn )

=

∫

Θ

p( D | Sbn,θ ) p(θ) dθ

=

∫

Θ

n∏

i=1

p(xi | Sbn,θ ) p(θ) dθ

=

∫

Θ

n∏

i=1

v∏

j=1

p(xij |π(xij),Sbn,θ ) p(θ) dθ

=

∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θ) dθ.

We hebben de constante factoren p(D) en p(Sbn) weggelaten en gaan ervan
uit dat we de parameters θ kunnen verdelen over de lokale afhankelijkheidsmo-
dellen;

p(xj |π(xj),θ ) = p(xj |π(xj),θj ).

Als we verder nog aannemen dat deze verschillende parametergroepen a
priori onafhankelijk zijn

p(θ) =
v∏

j=1

p(θj),
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dan kunnen we onze afleiding verder zetten:

p(Sbn |D ) ∝
∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj )
v∏

k=1

p(θk) dθ

=

∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθ

=
v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθj

=
v∏

j=1

L( j |πj ).

Deze laatste vergelijking duidt aan dat de verdeling over de netwerkstruc-
turen ontbonden kan worden, waarbij elke factor L( j |πj ) de kans van een lokale
substructuur xj met ouders πj voorstelt. Dit laat ons toe om het maximum a
posteriori netwerk te zoeken door voor elke variabele afzonderlijk de optimale
ouders te zoeken. Deze lokale zoektocht naar een goede set van ouders kan op
een exhaustatieve manier gebeuren of met behulp van een gulzige heuristiek.
Deze laatste methode test niet alle mogelijke oudercombinaties uit, maar zoekt
een ouderverzameling door telkens d́ıe knoop toe te voegen die de kans van de
lokale substructuur het meeste doet toenemen.

Deze structuurleermethoden vertrekken van een vaste volgorde van de vari-
abelen waarop de kettingregel van de kansrekening wordt toegepast. Indien deze
volgorde niet gekend is, wat vaak voorkomt, wordt het bovenstaande structuur-
leeralgoritme verschillende malen toegepast op willekeurige permutaties van de
variabelen. We hebben dit uitgebreid naar een techniek om een structuur te
leren in combinatie met een volgorde voor de variabelen, zoals gëıntroduceerd
op het einde van in Sectie 5.2.1.

Het leren van de parameters

Eens de structuur van ons Bayesiaanse netwerk gekend is, kunnen we overgaan
tot het leren van de parameters. We zullen deze parameters behandelen in
het Bayesiaanse denkkader, waar we de informatie die over deze parameters
gekend is, voorstellen met behulp van een verdeling. Deze verdeling kan eveneens
gefactoriseerd worden per lokale substructuur:

p(θ | Sbn,D ) =
p( D |θ,Sbn ) p(θ | Sbn )

p( D | Sbn )

∝
v∏

j=1

(
n∏

i=1

p(xij |π(xij),θj ,Sbn ) p(θj | Sbn )

)
.

Hierdoor kunnen deze parameters ook op een lokale wijze geleerd en gebruikt
worden.
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Hoe deze verdeling er in de praktijk uitziet, hangt af van de conditionele
verdeling die men kiest. Een veel voorkomende keuze is de tabelverdeling. Hier
gebruiken we een verschillende tabelverdeling voor elke variabele en oudercom-
binatie. We noteren met θj de parameters van de verdeling van xj geconditi-
oneerd op zijn ouders π. Dit is de verzameling van tabelparameters θj,πk voor
elke verschillende ouderconfiguratie π(xj ) = πk:

p(xj = m |π(xj) = πk,θj ) = θmj,πk .

Een belangrijke eigenschap van deze tabelverdeling is dat de parameters van
deze verdeling kansen zijn. Aan deze parameters kunnen we dus een duidelijke
en intüıtieve betekenis hechten wat ons zal toelaten om achtergrondinformatie in
rekening te nemen. Ook is het belangrijk op te merken dat we veel parameters
introduceren door een aparte tabelverdeling te nemen voor elke verschillende
ouderconfiguratie. Deze overvloed aan parameters zal het leren op basis van
een dataset bemoeilijken.

We plaatsen deze tabelverdeling in het Bayesiaanse denkkader, en kiezen als
hyperverdeling een Dirichlet verdeling vanuit theoretische overwegingen [41]:

p(θj,πk |m1, . . . ,md ) =
Γ(
∑
lml)∏

l Γ(ml)

∏

l

(θlj,πk)ml−1 met

∑

l

θlj,πk = 1,

E[θj,πk ] =

(
m1∑
lml

,
m2∑
lml

, . . . ,
md∑
lml

)
,

V[θlj,πk ] =
ml(1−ml/

∑
rmr)

(
∑
rmr + 1)

∑
rmr

.

De parameters (m1, . . . ,md) worden ook wel pseudocounts genoemd vanwege
de directe interpretatie als aantal datarecords dat deze prior waard is. Verder
is deze verdeling toegevoegd aan de tabelverdeling en daarom ook handig om
mee te werken. Dit laat ons bijvoorbeeld toe om zowel de kans van een lokale
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substructuur als de a posteriori parameterverdeling exact neer te schrijven:

p(Sbn |D ) ∝
v∏

j=1

L( j |πj )

=
v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθj

=
v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj )

qj∏

k=1

p(θj,πk) dθj

=
v∏

j=1

∫

Θj

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

d∏

l=1

(θlj,πk)njkl+mjkl−1dθj

=
v∏

j=1

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

∏
l Γ(njkl +mjkl)

Γ(
∑
l njkl +

∑
lmjkl)

.

Hierbij is njkl het aantal datarecords dat we observeren in de dataset D
waarbij xj = l en de ouders van xj de ouderconfiguratie πk aannemen. Met qj
duiden we het aantal verschillende oudercombinaties voor xj aan.

Dit geeft ons de volgende formule voor de kans van een lokale substructuur:

L( j |πj ) =

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

∏
l Γ(njkl +mjkl)

Γ(
∑
l njkl +

∑
lmjkl)

.

In bovenstaande formule kunnen we de factor

Γ(
∑
lmjkl)∏

l Γ(mjkl)

weglaten als we de pseudocounts mjkl onafhankelijk van de ouders of het aantal
ouders kiezen.

De a posteriori parameterverdeling blijft, net als de a priori parameter-
verdeling, een product van Dirichlet verdelingen. Enkel de parameters van deze
verdelingen worden aangepast op basis van de statistieken njkl van de dataset:

p(θ |D,Sbn ) ∝ L(θ |D ) p(θ)

=
v∏

j=1

n∏

i=1

θ
xij
j,π(xij)

p(θj)

=
v∏

j=1

qj∏

k=1

d∏

l=1

(θlj,πk)njklp(θlj,πk)

=

v∏

j=1

qj∏

k=1

d∏

l=1

(θlj,πk)njkl+mjkl−1.
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Overige algoritmen

Eens we een Bayesiaans netwerk gespecificeerd hebben met een structuur en
parameters, kunnen we het gaan gebruiken om voorspellingen mee te doen. Het
berekenen van de benodigde conditionele en marginale verdelingen kan gedaan
worden met behulp van het “probability propagation in tree of cliques” algo-
ritme [45].

Om het Bayesiaans netwerk te gebruiken in de transformatiesetup uit de
vorige sectie, willen we ook efficiënt random vectoren genereren volgens de geza-
melijke verdeling dat ons netwerk voorstelt. Een Bayesiaans netwerk is echter
gebaseerd op de kettingregel voor kansen. Hierdoor kunnen we rechtstreeks
random vectoren aanmaken door in de vorlgorde van de variabelen een waarde
voor elke veranderlijke te genereren op basis van d́ıe conditionele verdeling die
overeenkomt met de reeds gegenereerde waarden.

Het verzamelen van achtergrondinformatie

Om efficiënt gebruik te maken van Bayesiaanse netwerken om achtergrondin-
formatie te verzamelen, moeten we deze informatie hiermee op een eenvoudige
wijze kunnen voorstellen. De opsplitsing van een Bayesiaans netwerk in een
structuur en bijhorende parameters en het gebruik van de tabelverdeling, biedt
ons een aantal mogelijkheden.

Expertkennis

Voor het tumorprobleem kon Prof. Timmerman zijn kennis en ervaring neer-
schrijven met behulp van een Bayesiaans netwerk met een vaste structuur en
parameters. Dit was echter enkel mogelijk door het aantal variabelen te re-
stricteren tot 11. De structuur van dit model is weergegeven in Figuur 7.1.
Deze structuur werd gradueel opgebouwd en Prof. Timmerman specificeerde de
parameters van dit model door een vragenlijst van 29 bladzijden in te vullen,
met vragen als:

Beschouw een patiënt met een kwaadaardige tumor, de aanwezigheid
van ascites en premenopausaal. Wat is de kans dat CA125 < 35?

Omdat het rechtstreeks specificeren van getallen niet eenvoudig is, gaven
we de mogelijkheid om op een grafische wijze antwoord te geven door een aan-
duiding te maken op een schaal van 0 tot 1. Deze schaal bevatte aanduidingen
als onmogelijk, onwaarschijnlijk, onzeker, fifty-fifty, verwacht, waarschijnlijk en
zeker.

Bij het specificeren en interpreteren van netwerkstructuren is het belangrijk
om deze structuren op een overzichtelijke wijze voor te stellen. Dit houdt de
visualisatie in van het netwerk in twee dimensies waarbij de knopen zo uni-
form mogelijk verspreid zijn terwijl onderling verbonden knopen toch zo dicht
mogelijk bij elkaar liggen. Deze eis deed ons denken aan het “self organizing
map”-algoritme (SOM) ontwikkeld door Kohonen [53]. Dit algoritme heeft tot
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doel een hoogdimensionale dataset te visualiseren in een lagere dimensie. Ty-
pisch wordt een tweedimensionale gridstructuur van neuronen gebruikt waarbij
het algoritme de dataverdeling probeert te benaderen door neuronen te plaatsen
in die gebieden waar veel datapunten voorkomen, onder de beperking van de
grid netwerkstructuur die verbonden neuronen dicht bij elkaar houdt.

We pasten dit algoritme “omgekeerd” toe door een tweedimensionale uniform
verdeelde dataset aan te maken en het SOM-algoritme toe te passen met de te
visualiseren netwerkstructuur. Dit SOM-algoritme probeert nu de dataverdeling
te benaderen door het plaatsen van de knopen waarbij het verbonden knopen
toch dicht bij elkaar wil houden. We krijgen dus de gewenste uniforme sprei-
ding van de knopen waarbij verbonden knopen toch dicht bij elkaar liggen. Bij
wijze van voorbeeld toont Figuur 5.5 een netwerk waarbij de plaatsing van de
knopen random gebeurde, terwijl ditzelfde netwerk na toepassing van het SOM-
algoritme getoond wordt in Figuur 5.6.

Similariteitsinformatie

Verder kon Prof. Timmerman ons extra informatie verschaffen over de on-
derlinge samenhang van alle variabelen. Deze informatie bestaat uit een nu-
merieke waarde die de sterkte van de paarsgewijze verbanden tussen de variabe-
len aangeeft. Deze paarsgewijze verbanden V xy kunnen we transformeren naar
een a priori verdeling over de ruimte van Bayesiaanse netwerken, uitgaande van
de assumptie dat de a priori kans van een netwerkstructuur gefactoriseerd kan
worden in afzonderlijke pijlkansen:

p(Sbn) =
∏

x

p(π(x)→ x)

p(π(x)→ x) =
∏

y∈π(x)

p(y → x)
∏

y/∈π(x)

(1− p(y → x)).

We definiëren de kans om een pijl van y naar x te observeren als

p(y → x) = V ζ
xy,

hetgeen ons onmiddellijk ook de kans geeft om geen pijl te observeren.
Hierbij biedt ζ ons controle over het verwachte aantal ouders per variabele,

zoals aangegeven in Sectie 5.5.1.

Tekstuele informatie

Als laatste onderzochten we een techniek om eveneens een verdeling over de
netwerkstructuren te definiëren, ditmaal gebaseerd op de medische literatuur.
We wensen dit op een geautomatiseerde wijze te doen omdat het effectief lezen
van al deze documenten een onmogelijke taak is.

Veel wetenschappelijke documenten zijn immers gepubliceerd over het domein
van ovariale tumoren en we gaan ervan uit dat de meeste documenten op een
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positieve manier verbanden bespreken; wanneer verschillende variabelen bespro-
ken worden in een document wil men meestal aantonen dat er een verband is
tussen deze, in plaats van aantonen dat ze net geen verband met elkaar houden.

Onze techniek bepaalt het verband tussen x en y aan de hand van het aantal
documenten dat tezamen handelt over x en y. Hiertoe converteren we eerst elk
document D naar een vectorrepresentatie T (D); elke component van deze vector
geeft het gewicht aan van een bepaald woord in dat document. Het gewicht van
een woord ~ binnen het document D bepalen we met behulp van de woord-
frequentie inverse-document-frequentie (tf-idf):

ω(~ | D) = −#~ ∈ D
#D log

(
#C

#C|~

)
.

In deze formule stelt #~∈D
#D de frequentie van het woord ~ in het docu-

ment D voor terwijl de factor − log
(

#C
#C|~

)
de logaritme van de frequentie van

documenten die ~ bevatten, voorstelt. Deze laatste factor elimineert frequente
woorden zoals “the”, “for” of “a”.

Verder gaan we ervan uit dat elke variabele geannoteerd is. Voor het ova-
riale tumorprobleem bestaat deze annotatie uit definities uit medische woor-
denboeken, de omschrijvingen van deze variabelen in het IOTA protocol, de
omschrijving uit de doctoraatsthesis van Prof. Timmerman [81] en relevante
medische artikels.

De annotatie van elk van deze variabelen converteren we naar de vector-
representatie met behulp van bovenstaande techniek. Deze kunnen we op twee
manieren gebruiken: als eerste kunnen we met deze vectorrepresentaties recht-
streeks een similariteitsmaat tussen de variabelen definiëren. Een veelgebruikte
maat is de cosinus van de hoek tussen deze twee vectoren:

V xy = V yx = sim(D(x),D(y)) =
< T (D(x)), T (D(y)) >

‖T (D(x))‖‖T (D(y))‖ .

Een tweede mogelijkheid definieert het verband tussen twee variabelen op
basis van hun gezamelijk voorkomen in een corpus C van documenten:

V xy = V yx = P(x ∈ D en y ∈ D |x ∈ D of y ∈ D,D ∈ C ).

De notatie x ∈ D duidt aan dat document D handelt over de variabele
x, hetgeen we detecteren als de vectorsimilariteit sim(T (x), T (D)) boven een
bepaalde drempelwaarde uitkomt.

Merk op dat in de praktijk een aantal preprocessing stappen nodig zijn
zoals het converteren van elk woord naar zijn stamvorm of het afhandelen van
domeinspecifieke woorden, phrasen of synoniemen.

Meerlaagse perceptrons

Na het donormodel introduceren we het acceptormodel waarmee we wensen te
classificeren en te leren van de statistische dataset. Verder zullen we voor dit
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acceptormodel ook een informatieve a priori verdeling definiëren met behulp van
de transformatie methode en het donormodel.

We kozen voor het meerlaagse perceptron vanwege zijn goede leereigenschap-
pen en omdat het natuurlijk omspringt met continue data. Verder modelleert
het specifiek een invoer-uitvoer functie in plaats van een gezamelijke verdeling
zoals het geval was bij Bayesiaanse netwerken. De mogelijkheden om achter-
grondinformatie mee in rekening te nemen zijn echter beperkt, hetgeen we willen
oplossen met behulp van de transformatie methode die hierboven besproken
werd.

Voorwaardelijke verdelingen

Een meerlaags perceptron is een geparametriseerde functie van Rd naar R. Deze
functie is opgebouwd uit kleine modulen — perceptrons of neuronen genaamd
— die laag per laag met elkaar zijn verbonden (zie Figuur 6.1). Deze kleine
modulen zijn gëınspireerd op de neuronen uit de hersenen wat ook hun naam
verklaart. Elk perceptron berekent de gewogen som van de uitvoeren van de
perceptrons van de vorige laag en telt hier een bias bij op, stuurt vervolgens
deze waarde door een doorlaatfunctie φ(·) en geeft deze waarde tenslotte door
aan de volgende laag:

mlp(x |ω ) = φ(. . . φ(
∑

j

φ(
∑

i

xiω
1
ji + ω1

jb)ω
2
kj + ω2

kb) . . . ).

In deze thesis zullen we enkel gebruik maken van de tangent hyperbolicus
doorlaatfunctie (zie Figuur 6.2) of de lineaire doorlaatfunctie.

Regressie

We kunnen dit meerlaagse preceptron gebruiken in de regressiecontext. Dit
houdt in dat we de uitvoer van het neurale netwerk gebruiken als een model
voor het gemiddelde van y, geconditioneerd op de invoer x:

E[y | x] = mlp(x |ω ).

Met behulp van dit voorwaardelijke gemiddelde en een verdeling hierrond
definiëren we een voorwaardelijke verdeling. Een veelgebruikte keuze is een
Gaussiaanse verdeling met een constante variantie σ2 onafhankelijk van x:

p( y |x,ω ) =
1√
2πσ

e−
1

2σ2 (y−mlp(x |ω ))2

.

Logistieke regressie

Een andere mogelijkheid, vooral toegepast bij classificatie, bestaat erin de uitvoer
van het netwerk te interpreteren als de kans dat een bepaald record met obser-
vaties x tot de klasse CP behoort:

P( y = CP |x,ω ) =
1 + mlp(x |ω )

2
.
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Hierbij transformeren we het bereik ]− 1, 1[ van het neurale netwerk op een
lineaire wijze tot ]0, 1[ zodat we de uitvoer onmiddellijk kunnen interpreteren
als een kans. Wegens symmetrieredenen maken we liever geen gebruik van de
sigmöıdale doorlaatfunctie die wel het bereik ]0, 1[ heeft.

Het gebruik van de tangent hyperbolicus doorlaatfunctie is gemotiveerd van-
uit het logistieke regressie oogpunt. Hier modelleert men de logaritme van de
kansverhouding van P(y = 1)/(1− P(y = 1)) met een lineair model

log

(
P(y = 1)

1− P(y = 1)

)
= β0 + β1x1 + · · ·+ βvxv

= µ,

waaruit men haalt dat

P(y = 1) =
eµ

1 + eµ

=
1

1 + e−µ

= sigmoid(µ)

=
1 + tanh(µ)

2
.

Het logistieke regressiemodel is analoog aan een eenvoudig neuraal netwerk
dat bestaat uit slechts één perceptron met een tangent hyperbolicus doorlaat-
functie. Op gelijkaardige wijze wordt een lineair regressiemodel voorgesteld
door een neuraal netwerk met één neuron, een lineaire doorlaatfunctie en een
Gaussiaanse verdeling rond dit voorwaardelijke gemiddelde. Door extra lagen
van neuronen toe te voegen aan dit neurale netwerk, kunnen we gradueel de
complexiteit van dit voorwaardelijke gemiddelde verhogen en niet-lineaire voor-
waardelijke gemiddelden of beslissingsgrenzen implementeren.

Elke continue functie kan immers willekeurig goed benaderd worden met
een meerlaags perceptron als we voldoende neuronen nemen [42]. Verder leert
de praktijk ons dat een redelijke benadering in de meeste gevallen al met een
beperkt aantal neuronen bereikt wordt, hetgeen het aantal parameters beperkt
en de leereigenschappen ten goede komt.

A posteriori verdeling

Nu we weten hoe we een verdeling voorstellen met behulp van een meerlaags
perceptron, gaan we hiermee leren. Hoewel het gros van de literatuur over het
leren van neurale netwerken gebaseerd is op het minimaliseren van kostfuncties
met eventueel bijgevoegde complexiteitstermen, formuleren we het probleem in
het kader van de kansrekening. Dit is volledig analoog is aan het klassieke
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kostfunctiekader:

p(ω |D ) =
p( D |ω ) p(ω)

p(D)

∝ L(ω |D ) p(ω)

=
n∏

i=1

p( yi |xi,ω ) p(xi |ω ) p(ω)

∝
n∏

i=1

p( yi |xi,ω ) p(ω)

Error∗(ω |D ) = − log(p(ω |D ))

= Error(ω |D )− log(p(ω)) + Cte.

= Error(ω |D ) +
1

2σ2
wd

∑

i

ω2
i + Cte.

Meestal kiest men een Gaussiaanse a priori verdeling p(ω) ∼ N (0, σ2
wd) om

de norm van de parameters beperkt te houden, hetgeen overeenstemt met de
extra som van gekwadrateerde gewichten in de laatste formule. Deze term wordt
ook wel een weight decay regularizatieterm genoemd.

Verder behandelen we meerlaagse perceptrons ook op een Bayesiaanse wijze
waarbij we uitmiddelen over de a posteriori verdeling in plaats van de maximum
a posteriori parametrisatie te zoeken:

P( y = CP |x,D, ξ ) =

∫

Ω

P( y = CP |x,ω ) p(ω |D, ξ ) dω

≈ 1

N

N∑

i=1

P( y = CP |x,ωi ) met ωi ∼ p(ω |D, ξ )

6= P( y = CP |x,ω∗ ) met ω∗ = argmaxω(p(ω |D, ξ )).

We benaderen de integraal met behulp van een Monte Carlo som gebaseerd
op de a posteriori parameterverdeling p(ω |D, ξ ). De nodige toevalsvectoren
volgens deze a posteriori verdeling genereren we met behulp van de hybride
Monte Carlo Markov keten methode. Deze implementeert een Markov keten
waarbij nieuwe toestanden gegenereerd worden door het volgen van de verge-
lijkingen van Hamilton van een imaginair fysisch systeem met als Boltzman-
nverdeling de gewenste a posteriori verdeling p(ω |D, ξ ) (zie Sectie 6.7.2 voor
de details).

Informatieve a priori verdeling

Nu we neurale netwerken kunnen gebruiken in het Bayesiaanse kader onder-
zoeken we de mogelijkheden om a priori kennis mee in rekening te nemen. Om
dit te verwezenlijken moeten we een a priori parameterverdeling specificeren die
de achtergrondinformatie bevat. Dit gaat echter niet rechtoe rechtaan omdat
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we geen duidelijke betekenis kunnen hechten aan de parameters van een neuraal
netwerk, terwijl dit voor een Bayesiaans netwerk gebaseerd op de tabelverdeling
wel het geval was. Daar waren de parameters immers kansen.

Zoals reeds eerder aangeduid zullen we de achtergrondinformatie omschrij-
ven met behulp van een Bayesiaans netwerk. Deze verdeling transformeren we
vervolgens naar de gewichtsruimte van het meerlaagse perceptron door middel
van virtuele datasets.

Hiertoe genereren we verschillende parametervectoren volgens de informatieve
a priori verdeling p(ω | ξ ) met behulp van het algoritme dat in de transfor-
matiesectie beschreven staat. Vervolgens gebruiken we deze verzameling van
parametervectoren {ω1, . . .ωd} om de verdeling p(ω | ξ ) te schatten met be-
hulp van een parametrische verdeling p(ω |ν ), zoals een multivariate Gaussi-
aanse verdeling.

Verdelingen in de gewichtsruimte en symmetrieën

Het schatten van deze verdeling wordt echter bemoeilijkt door de aanwezigheid
van symmetrieën in de gewichtsruimte van een neuraal netwerk; er bestaan
verschillende parametrisaties ω1 6= ω2 die resulteren in exact dezelfde invoer-
uitvoer mapping

mlp(x |ω1 ) = mlp(x |ω2 ), ∀ x,
en dus in dezelfde voorwaardelijke verdeling.

Er zijn twee verschillende symmetrieën die optreden: een eerste type wordt
veroorzaakt door het permuteren van neuronen in een verborgen laag. Hierdoor
zullen de parametrisatievectoren op gelijkaardige wijze gepermuteerd worden,
maar de netwerkfunctie wordt niet gewijzigd.

Een tweede type van symmetrie wordt veroorzaakt door het gebruik van
oneven functies; door alle gewichten die een bepaald neuron in- en uitkomen
van teken te wisselen, blijft de globale netwerkfunctie behouden, maar krijgen
we een andere parametrisatie. Omdat enkel het teken wijzigt, blijft de norm
ongewijzigd; deze verschillende symmetrische voorstellingen van dezelfde func-
tie zullen op dezelfde wijze gepenalizeerd worden door een weight decay term
of de equivalente Gaussiaanse a priori verdeling. Het gebruik van de sigmoı̈dale
doorlaatfunctie resulteert ook in een symmetrie die echter de norm wel wijzigt,
en dus ook de a priori kans volgens zo’n complexiteitsgebaseerde verdeling. Dit
is onze voornaamste reden om de tangent hyperbolicus doorlaatfunctie te pre-
fereren boven de sigmöıdale doorlaatfunctie.

De verdeling p(ω |D, ξ ) zal eveneens deze symmetrieën vertonen. We wensen
echter maar één van deze modes te schatten door elke gegenereerde parametrisatie
ωi te transformeren naar een bepaald quadrant door een transformatie Ti(·).
Deze transformatie is de combinatie van een permutatie van de knopen in elke
verborgen laag en het eventueel omwisselen van de tekens per knoop. Dit leert
ons dat het aantal symmetrieën gelijk is aan

#Symmetrieën =
∏

k

2NkNk!,
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waarbij k over de verborgen knopen loopt en Nk het aantal neuronen in de kde

laag voorstelt.
We wensen nu d́ıe transformaties {Ti}di=1 te vinden zodat we {T (ωi)}di=1 zo

goed mogelijk kunnen schatten:

{Ti(·)}di=1 = argmaxTi(max
ν

p( {Ti(ωi)}di=1 |ν ))

= argmaxTi(max
ν
L(ν | {Ti(ωi)}di=1 )).

Deze transformaties op een exhaustatieve wijze berekenen is onmogelijk, ver-
mits dit #Symmetrieënd optimizaties van de likelihood vergt. Om het schatten
van deze verdeling toch mogelijk te maken, ontwikkelden we een techniek die de
exponent d omvormt naar een multiplicatieve factor d door toepassing van het
EM algoritme op een tegen-intüıtieve wijze (zie Sectie 6.9.2 voor de details)

#Symmetrieënd → d#Symmetrieën

In plaats van alle transformaties tezamen te zoeken, kunnen we nu de trans-
formatie voor elke parametervector afzonderlijk zoeken.

Verder ontwikkelden we een bijkomende heuristiek om het zoeken naar één
transformatie sneller te maken. Deze heuristiek postuleert per verborgen laag
een volgorde voor de knopen, gebaseerd op hun belangrijkheid. Deze belangri-
jkheid wordt gemeten aan de hand van de L2 norm van de vector van gewichten
verbonden aan elke knoop. Deze volgorde wordt gebruikt als uitgangspositie en
wordt aangepast op basis van de volledige informatie van de gewichten, zoals
uitgelegd in meer detail in Sectie 6.9.2.

Een voorbeeld

Het gedrag van deze heuristiek wordt gëıllustreerd op een artificieel voorbeeld.
Een sinusdataset met ruis definieert een a posteriori verdeling. Met behulp van
het hybride Monte Carlo Markov keten algoritme, genereerden we 100 netwerk-
parametrisaties volgens deze a posteriori verdeling. De data, samen met deze 100
gegenereerde netwerkfuncties, wordt getoond in Figuur 6.15. De gegenereerde
netwerkparametrisaties worden getoond in Figuur 6.16. Hier stelt elke kolom één
parametrisatie voor en geeft de grijswaarde een indicatie van de waarde van elk
gewicht aan. Gelijkaardige gewichten over de verschillende parametrisaties —
de rijen — nemen sterk verschillende waarden aan hetgeen hun schatting sterk
bemoeilijkt. Figuur 6.18 toont dezelfde parametrisatievectoren nadat we met
bovenstaande methode de gepaste transformaties hebben gezocht. De variatie
per rij is drastisch verminderd, en we verwachten dan ook dat we deze verdeling
beter zullen kunnen schatten.

We schatten de parameters van een multivariate Gaussiaanse verdeling op
zowel de originele netwerkparametrisaties als die na onze transformatie. De
netwerkfuncties gedefinieerd door de respectievelijke gemiddeldenvector van deze
verdelingen worden getoond in Figuur 6.20. De gestreepte lijn is afkomstig van
de schatting op basis van de originele vectoren. Deze is de nulfunctie, het-
geen we verwachten; de originele parametervectoren liggen immers random maar
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evenwichtig verdeeld rond de oorsprong door de symmetrieën. De individuele
netwerkfuncties volgen de sinustrend mooi maar de geschatte gemiddeldenvector
is ongeveer de nulvector, wat resulteert in de nul netwerkfunctie.

De volle lijn in de figuur is de netwerkfunctie afkomstig van het gemid-
delde nadat we de gepaste transformaties hebben gezocht die onze netwerk-
parametrisaties mooi bijeenbrengt. Deze functie volgt wél mooi de sinustrend
wat aantoont dat we één mode hebben geschat. De stippellijn is afkomstig van
een meer primitieve methode en werkt slechts half, zoals uitgelegd in Sectie 6.9.2.

Nu we onze informatieve a priori verdeling kunnen schatten, die gedefinieerd
is op basis van een Bayesiaans netwerk en virtuele datasets, updaten we deze
analytische a priori verdeling naar de a posteriori verdeling op basis van de echte
dataset met behulp van het hybride Monte Carlo Markov keten algoritme. Met
deze Markov keten kunnen we tenslotte de kans bepalen dat een bepaalde tumor
kwaadaardig is, op basis van de observatievector x.

Classificatie van ovariale tumoren

Nu alle technieken gëıntroduceerd zijn passen we ze toe ovariale tumorprobleem
dat een aantal secties geleden besproken werd. We brengen even ter herinner-
ing dat we preoperatief de kans willen bepalen dat een bepaalde tumor met
observatievector x kwaadaardig is. We zullen het leergedrag van een uiteen-
lopende reeks modellen onderling vergelijken en uitzetten tegenover vorige stud-
ies omtrent dit probleem.

Informatiebronnen

Vooraleer we van start gaan, nemen we de dataset onder de loep. Voor de
Bayesiaanse netwerken discretiseren we de continue variabelen met behulp van
discretisatie-intervallen die Prof. Timmerman specificeerde. Deze staan be-
schreven in Appendix A. Voor de neurale netwerken transformeerden we som-
mige variabelen, introduceerden we een aantal design variabelen en normaliseer-
den we de variabelen zodat het neurale netwerk grootheden binnenkrijgt van
grosso modo dezelfde grootte orde. De details zijn terug te vinden in Sectie 7.2.1.

Vervolgens vergeleken we de a priori verdelingen over de ruimte van Ba-
yesiaanse netwerkstructuren gedefinieerd op basis van de expertinformatie, de
tekstuele informatie volgens de directe annotatiesimilariteit of gebaseerde op
een groot aantal domein documenten, als op de dataset als referentie. We vi-
sualiseerden deze paarsgewijze verbanden respectievelijk in de Figuren 7.2, 7.5,
7.6 en 7.7, waar we de sterkte van een verband aangeven door middel van de
grijswaarde en de dikte van de pijlen. We zien dat deze verbanden grosso modo
overeen komen met die gevonden in de dataset, dit toont aan dat we op een
succesvolle wijze deze similariteitsinformatie hebben verzameld.
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De leercurven

We zijn nu klaar om het leergedrag van een uiteenlopende reeks modellen te
vergelijken. Zoals eerder aangegeven, zullen we de oppervlakte onder de ROC
curve gebruiken als performantiemaat. Op basis van deze maat gaan we een
leercurve berekenen welke het leergedrag van een bepaald model zal visualiseren.
Zo’n leercurve zet de gemiddelde oppervlakte onder de ROC curve uit in functie
van het percentage datarecords dat we gebruiken om de a posteriori verdeling
mee te berekenen. Op de x as zetten we dit percentage trainingrecords uit,
terwijl we op de y as het gemiddelde uitzetten van de oppervlakte onder de
ROC curve, berekend op basis van 1000 tweevoudige crossvalidatiesessies met
een overeenstemmend percentage trainingrecords. De trainingrecords worden
gebruikt om de a posteriori verdeling te specificeren terwijl we de overige records
gebruiken om de ROC performantie te berekenen.

Eenvoudige modellen

Als eerste presenteren we de performantie van een aantal eenvoudige modellen
die ons ook de variabelen beter zullen leren kennen. Zo toont Tabel 7.9 de per-
formantie van een aantal univariate modellen. Hier wordt elke variabele afzon-
derlijk gebruikt als classificator, hetgeen ons een ondergrens voor de verwachtte
performantie geeft (0.8323409) en aantoont welke variabelen goed gebruikt kun-
nen worden om de kwaadaardigheid van een ovariale tumor te voorspellen.

Een veelgebruikte vuistregel in de praktijk om een tumor te classificeren is
de Risk of malignancy index (RMI). Deze regel combineert ultrasonore infor-
matie met de menopausale status en het CA125 niveau gemeten in het bloed.
De performantie van dit model is 0.8891462. Vermits dit model, evenals de
bovenstaande univariate modellen, geen parameters bevat, is het zinloos een
leercurve hiervoor te berekenen vermits deze modellen niet kunnen bijleren.

Bayesiaanse netwerken

Figuur 7.12 toont de leercurve voor het Bayesiaanse netwerkmodel zonder ge-
bruik te maken van enige achtergrondinformatie. Dit houdt in dat de a pos-
teriori structuurverdeling van dit model voor elke crossvalidatiesessie opnieuw
berekend wordt zonder gebruik te maken van één van de informatieve struc-
tuurverdelingen. Ook de parameter a priori verdeling is niet-informatief. Dit
model heeft een performantie rond 0.5 als geen datarecords gebruikt worden om
te leren, terwijl deze performantie gaandeweg groeit tot 0.9414.

We zien duidelijk dat het model leert naarmate we meer informatie gebruiken
om te leren. Toch willen we dit leergedrag verbeteren op een aantal vlakken.
Zo willen we een model ontwikkelen dat sneller leert, reeds een redelijke per-
formantie heeft zelfs als er nog geen datarecords zijn geobserveerd zijn en een
hogere performantie bereikt na het observeren van de data.

De eerste eis proberen we te bereiken met behulp van een informatieve
structuurverdeling. Dit zorgt ervoor dat de a posteriori structuurverdeling
op een meer uitgesproken manier goede netwerkstructuren naar voor schuift.
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Figuur 7.14 toont de leercurven voor de Bayesiaanse netwerkmodellen met de
expertstructuurverdeling en deze gebaseerd op de tekstuele informatie. De
modellen met een informatieve structuurverdeling leren sneller dan het niet-
informatieve model. De expertstructuurverdeling presteert hiervan het beste.

Een redelijke performantie nog vooraleer er data geobserveerd is kunnen
we bereiken door een informatieve a priori verdeling te definiëren. Hiertoe ge-
bruiken we het vaste structuur netwerk met informatieve parameterverdeling
dat Prof. Timmerman gespecificeerd heeft. De leercurve van dit model wordt
getoond in Figuur 7.15 door een volle lijn. Dit model heeft inderdaad al een
goede performantie zonder dat er data geobserveerd werd. Naarmate we meer
data gebruiken verhoogt de performantie nog wel hoewel de uiteindelijke per-
formantie minder goed is dan de vorige Bayesiaanse netwerkmodellen. Dit is te
wijten aan het beperkte aantal variabelen en de vaste structuur van het netwerk.

Logistieke regressie

We gaan de derde eis proberen in te willigen door gebruik te maken van een
andere modelklasse. We beginnen met het bespreken van het logistieke re-
gressiemodel, hetgeen een speciaal geval is van een meerlaags perceptron. Op
Figuur 7.16 zien we de leercurve van dit model met een niet-informatieve a priori
verdeling. Dit model heeft, zoals verwacht, een performantie rond 0.5 wanneer
geen datarecords geobserveerd zijn. De leercurve steigt echter sneller dan de
Bayesiaanse netwerkmodellen, met of zonder informatieve structuurverdeling.
Dit toont aan dat het Bayesiaanse netwerkmodel inderdaad geen al te goede
leereigenschappen heeft.

Vervolgens passen we de ontwikkelde transformatietechniek toe om de in-
formatie van het expertnetwerk met vaste structuur te gebruiken om een infor-
matieve a priori verdeling te schatten voor het logistieke regressiemodel. We
maakten gebruik van virtuele datasets met elk 1000 records en genereerde infor-
matieve logistieke regressieparametrisaties op basis van deze virtuele datasets
met behulp van het hybride Monte Carlo Markov keten algoritme. Deze ver-
deling werd geschat met een multivariate Gaussiaanse verdeling. Eens we deze
informatieve a priori verdeling hebben, berekenen we de leercurve. Hierbij ge-
nereren we parametrisaties volgens de a posteriori verdeling met behulp van het
hybride Monte Carlo Markov keten algoritme.

Deze leercurve wordt getoond in Figuur 7.17 met een volle lijn, terwijl
het Bayesiaanse netwerk met de informatieve parameterverdeling en het niet-
informatieve logistieke regressiemodel eveneens getoond worden ter vergelij-
king. Blijkbaar heeft de transformatie een positief effect gehad; het logistieke
regressiemodel met informatieve a priori heeft een betere performantie dan
het Bayesiaanse netwerk, beide voordat we data geobserveerd hebben. Dit is
een toevalligheid en geen algemene eigenschap van de transformatietechniek.
Verder zien we dat dit logistieke regressiemodel eveneens bijleert wanneer data
beobserveerd wordt en een gelijkaardige performantie vertoond dan het niet-
informatieve logistieke regressiemodel wanneer het gros van de data gebruikt
wordt om te leren.
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Meerlaagse perceptrons

Een laatste model dat we gaan gebruiken is een neuraal netwerk met één ver-
borgen laag en twee neuronen in deze laag. We berekenen de leercurve van
dit model op basis van een niet-informatieve a priori verdeling, en vergelijken
de performantie met die van het niet-informatieve logistieke regressiemodel in
Figuur 7.18. Beide modellen vertonen hetzelfde leergedrag, terwijl het neurale
netwerk een hogere performantie bereikt. Dit is te danken aan zijn flexibelere
structuur.

Als laatste passen we de transformatietechniek ook toe voor dit meerlaagse
perceptron op dezelfde wijze als voor het logistieke regressiemodel, waarbij we
enkel rekening houden met de symmetrieën in de gewichtsruimte. De per-
formantie van dit informatieve meerlaagse perceptronmodel wordt getoond in
Figuur 7.19, samen met het informatieve logistieke regressiemodel en het ex-
pert Bayesiaans netwerk met vaste structuur en informatieve parameterprior.
Hoewel de performantie van het neurale netwerkmodel initieel het minste is van
de drie, heeft het toch nog een redelijke performantie. Verder wordt dit al na
het observeren van 5% van de data het best presterende model, gevolgd door
het logistieke regressiemodel en het Bayesiaanse netwerk.

Implementatie

De bovenstaande modellen en technieken zijn tamelijk computerintensief en een
groot aantal verschillende algoritmen moet gecombineerd worden. De imple-
mentatie hiervan kon niet op één nacht afgehandeld worden.

Alhoewel er verschillende softwarepakketten bestaan die bepaalde gebruikte
algoritmen implementeren, zijn deze vaak te restrictief of ongeschikt voor onze
doeleinden. Na stevig wat nadenkwerk besloten we om al de algoritmen en
modellen volledig “from scratch” te implementeren. Hoewel dit op het eerste
gezicht een vreemde keuze lijkt, garandeert dit het volledige verstaan en onder
de knie hebben van alles wat er gebeurt, een volledige onafhankelijkheid van
andere code, een maximum aan flexibiliteit en een optimale performantie, zowel
op computationeel als geheugengerelateerd vlak.

Met het oog op deze performantie en flexibiliteit kozen we voor de pro-
grammeertaal C++, vanwege zijn snelheid en rijke objectgeoriënteerde eigen-
schappen. Verder kozen we voor het GNU/Linux ontwikkelingssysteem vanwege
zijn stabiliteit, veiligheid, snelheid en open source karakter. We gebruikten de
gcc-3.2.3 compiler, in combinatie met autoconf en automake. De code werd
geschreven met behulp van emacs en bestaat uit 83 319 lijnen code (2 450 647
bytes) en 148 klassen verspreidt over 222 files.

Een aantal van de belangrijkste klassen zijn kort toegelicht in Hoofdstuk 8.
Dit gaat van een random generator over Bayesiaanse en neurale netwerken tot
een gedistribueerd systeem om bepaalde berekeningen op een cluster uit te reke-
nen. Gëınteresseerden in de code nemen best contact op met de auteur of het
Departement Electrotechniek ESAT/SCD aan de Katholieke Universiteit Leu-
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ven.

Conclusies

Het centrale thema in deze thesis was hoe we verschillende soorten informatie
kunnen samenbrengen in één model. Twee fundamenteel verschillende modellen
werden naar voor geschoven; het ene type, Bayesiaanse netwerken, laat op een
eenvoudige wijze het gebruik van achtergrondinformatie toe maar heeft beperkte
leereigenschappen op basis van data. Het andere type, neurale netwerken, leert
goed op basis van numerieke data maar is dan weer minder geschikt om achter-
grondinformatie mee in rekening te nemen. We zouden graag de goede eigen-
schappen van beide modellen combineren.

Hiertoe plaatsten we beide modellen in het Bayesiaanse denkkader wat ideaal
geschikt is om leerproblemen te specificeren. We ontwikkelden een methode
waarbij de achtergrondinformatie omschreven wordt met behulp van een Bayesi-
aans netwerk. Vervolgens wordt deze informatie getransformeerd naar een infor-
matieve a priori verdeling over de gewichtsruimte van een neuraal netwerk met
behulp van virtuele datasets. Tenslotte wordt deze a priori verdeling geüpdatet
naar de a posteriori verdeling op basis van de data.

Hierbij werd aandacht besteed aan het specificeren van de a priori informatie,
het omvormen van discrete waarden naar continue en het behandelen van zowel
de Bayesiaanse als de neurale netwerken in het Bayesiaanse kader. We ont-
wikkelden een techniek om verdelingen in de neurale netwerk gewichtsruimte te
schatten, rekening houdende met de symmetrieën die hier optreden. Tenslotte
werd de voorgestelde techniek toegepast op een medisch classificatieprobleem
waarbij we preoperatief de kwaadaardigheid van ovariale tumoren wensen te
voorspellen.

Met behulp van leercurven gebaseerd op de oppervlakte onder de ROC curve,
werd het leergedrag van een uiteenlopend aantal modellen gevisualiseerd. De re-
sultaten van de experimenten die we deden, geven duidelijk aan dat het neurale
netwerk met een informatieve a priori verdeling gebaseerd op de transformati-
etechniek globaal gezien de beste classificatieperformantie heeft. Deze resultaten
geven aan dat we op een succesvolle wijzen de informatie representatie van een
Bayesiaans netwerk naar een multilayer perceptron kunnen transformeren.

We wijzen erop dat dit onderzoek op verschillende wijzen verfijnd en uitge-
breid kan worden. Zo kunnen we met andere modellen de achtergrondinformatie
omschrijven of leren op basis van de data. Ook het schatten van de informatieve
a priori verdeling in de neurale netwerk gewichtsruimte kan verbeterd worden.
Misschien bestaan er ook meer analytische methoden om de transformatie van
informatie door te voeren dan onze virtuele datasetgebaseerde methode.

Op het vlak van het ovariale tumorprobleem zijn er ook nog verschillende
onderzoeksthema’s voorhanden. Momenteel worden andere classificatiemetho-
den getest waaronder support vector machines. Ook het IOTA project is verre
van afgerond en nieuwe, interessante informatie is op komst. Zo werd een deel
van de tumoren na de operatie bewaard en worden deze momenteel onderzocht
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met behulp van een micro-array. Deze technologie vormt ons een beeld van de
geactiveerde genen binnen deze tumoren. Hopelijk leidt dit tot een algemeen
beter inzicht in het domein van de ovariale tumoren en zet dit de deur open
naar nieuwe genees- of preventiemethoden.
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Chapter 1

Introduction

1.1 Learning from many sources of information

Starting from the time when people realized they could learn, the concept itself
intrigued almost everybody. Our relatively strong developed ability to learn and
think is what sets us apart from other species. It is therefore not surprising that
much effort went into trying to understand how learning and thinking works or
how it could be simulated.

Marvellous machines have been built to accomplish the latter goal; in 1769,
Baron Wolfgang von Kempelen built the “Mechanical Turk”, what von Kem-
pelen claimed was a chess playing machine for the amusement of Queen Maria
Theresa of Austria. It was said to be a purely mechanical device. Alas, it turned
out to be a chess master dressed up as a wooden robot in the shape of a Turk.

As is usual in science, one tries to understand the easiest problem before
proceeding with something more complicated. Understanding and implementing
learning behaviour is generally thought of as being easier than thinking. The
implementation of such learning behaviour has seen an explosion of interest
around 1949 thanks to the work of John von Neumann, which eventually resulted
into the computer we know today. Most people believe the computer is the most
promising machine available today for implementing learning behaviour. The
clearest example is probably the chess victory of Deep Blue over Garry Kasparov
in 1997.

Vast amounts of literature are devoted to the subject of learning using a
computer and numerous terms were introduced to denote it, ranging from ma-
chine learning to artificial intelligence. The problem is approached in different
ways. From a probabilistic point of view, learning is regarded as the process
of updating our knowledge about a certain system when new information ar-
rives [25, 12, 86]. In a function approximation context, the emphasis is on learn-
ing a certain multi-dimensional mapping based on a set of example mappings.
Other approaches try to mimic biological processes like genetic recombination
(crossover and mutation) or the cellular communication occurring in the brain,

1



2 Chapter 1. Introduction

both with a varying degree of realism.
Most of the available approaches today learn from information of one specific

type. Examples are numerical representations of character images for character
recognition, sound files for speech recognition, a numerical data set to perform
regression, and so on. How to combine different types of information into a
hybrid system or modelling heterogeneous types of prior knowledge to be used
together with data is still much of an open problem, and will be the focus of
this thesis.

1.2 Deliverables and accomplishments

There are lots of domains that could benefit from a technique, capable of com-
bining the different bits and pieces of information that are present. Two major
application domains we see, are the field of micro-biology, and medicine.

In the first, people try to gain insight in the working of micro-biological pro-
cesses. These include the functions of a cell, the transcription mechanisms of
the genes, or the functions of the proteins. Vast amounts of information have al-
ready been collected in this field. As such, the Human Genome Project mapped
the complete human genome, which contain 3 billion base pairs and approxi-
mately 30 000 genes. Other techniques like micro-arrays produce similarly large
chunks of information, this time concerning gene-expression levels in a certain
sample. Finally, databases containing textual descriptions of genes or informa-
tion related to their function, are available. Although people previously used
one specific type of information, there has grown an interest for mathematical
models and tools to combine different types of data.

In the medical world, huge advances have similarly been made and a lot of
insight has already been gained in almost every domain. Still, medical doctors
are often faced with complex problems, leading to situations where it is impos-
sible to state a diagnosis with certainty or to specify the optimal treatment. We
believe that computer-based predictive models can assist a medical expert in
perfroming some of these tasks.

Further, the knowledge and information that is present, is often scattered in
different formats. A medical expert acquires a lot of knowledge and experience
over the years. Some of this is then written down in one of the many medical
journals. And sometimes numerical data about patients is collected systemat-
ically. Unfortunately, these data sets are often expensive to collect or contain
not as many patient records as we would like. One also has to be careful to
ensure that the data has a good quality. As a consequence, we cannot build our
models only based on the available numerical data sets but have to combine the
available information.

When designing hybrid learning systems, the pragmatic side of matters is
equally important as the theoretical side. Therefore, we looked for a central ap-
plication where different types of information were present and different machine
learning techniques could be tested upon.

We selected the medical problem where the goal is the pre-operative classi-
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fication of ovarian tumours as benign or malignant tumours. This classification
problem is introduced in detail in Chapter 2, together with the three main types
of information that are present: statistical data, expert information (a medical
doctor), and a large collection of electronic literature that describes the medical
field of ovarian tumours.

Although the techniques that are developed in this thesis are not exclusively
applicable to ovarian tumours, this medical field had a substantial influence on
them. As such, it determined our focus on classification. Since both expert
information and measurement data had to be combined, we had to design a
learning approach that was capable of dealing with both. We chose for a hy-
brid approach, where one model is responsible for dealing with the expert and
gathering its knowledge. This clearly has to be a knowledge-based model, such
as a Bayesian network (see Chapter 5). The numerical data will be dealt with
using a second model, which will have better learning capabilities, such as a
neural network (see Chapter 6). How to combine these two models is described
in Chapter 4.

The largest contribution of this work is the development of the transfor-
mation technique introduced in Chapter 4. This allows us to combine different
models, and hereby combine different types of information. To realize this trans-
formation technique, we solved the technical problem of estimating distributions
in neural network weightspace and developed a technique to deal with the sym-
metries that occur. Other contributions consist of finding a node ordering to
develop a Bayesian network, a novel technique to display a Bayesian network
structure, or improvements for the nonlinear Gaussian Bayesian network model.
A lot of work was invested in combining different methods and techniques to
perform the necessary calculations.

On the practical side, we developed and compared different models to per-
form the ovarian tumour classification. Time was invested, in cooperation with
Prof. Timmerman, in the development of both a structure and a parameter
prior for a Bayesian network model and the preprocessing of the data.

We worked in close cooperation with Peter Antal, a Hungarian Phd stu-
dent who worked at the Department of Electrical Engineering of the Katholieke
Universiteit Leuven. We developed the basics of the transformation technique
together and did a lot of combined research on the ovarian tumour problem, like
the derivation of the expert priors. He is also the man behind the textmining
part of the ovarian tumour domain.

The approach that will be introduced in this dissertation relies on different
algorithms and techniques. The author invested a lot of time in the development
of a software package that implements and combines the necessary techniques
and is capable of performing these computations within a reasonable time frame.
This resulted in an object-oriented software package capable of distributed com-
putations for optimal performance.
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Figure 1.1: A schematic representation of the components of this thesis.

1.3 Chapter by chapter overview

A picture of the main structure of this thesis is given in Figure 1.1. It includes
the major concepts and models that will be used. This figure will be repeated
at the beginning of each chapter as a quick overview, while the topics discussed
in that specific chapter will be indicated in bold.

Chapter 2. Classification of ovarian tumours

We start this thesis with an introduction of a medical classification problem that
will serve as a test case throughout the thesis. Some general background infor-
mation is presented, together with the importance of developing classification
systems. Next, the variables present in this domain are introduced, together
with the patient data set. The additional information that is present for this
problem consists of the experience and knowledge of a medical doctor and a
large collection of written medical documents from the field of gynaecological
tumours.

Chapter 3. The Bayesian framework

We tried to place everything in a sound theoretical context by working in the
Bayesian framework. This conceptual framework for learning is founded on
probability theory and makes an extensive use of Bayes’ rule, as will be described
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in Chapter 3. Both the history of the Bayesian framework and its difference with
the frequentist approach is presented. The extended decision support offered
by working in the Bayesian framework is also discussed. Since our focus is on
classification, we end this chapter with the discussion of several performance
measures that will be used to compare different classification systems.

Chapter 4. Transformation of information representation

This chapter is the core of the thesis, explaining how we can combine prior
knowledge and statistical data. The technique relies on a donor model to cap-
ture the prior domain knowledge, which in our case is the expert information
and the electronic documents. To obtain better learning characteristics based on
statistical data, the information representation from the donor model is trans-
formed into an informative a priori distribution for an acceptor model by means
of virtual data sets. Technical issues like handling discrete and continuous vari-
ables are also discussed.

Chapter 5. Bayesian networks

The abstract technique introduced in Chapter 4 will be demonstrated on the
ovarian tumour problem. We begin by introducing our donor model class of
choice, Bayesian networks. A Bayesian network can be viewed as a graphical
method to represent a joint distribution over a set of variables. Different aspects
of this model are introduced: learning the structure and parameters of such a
Bayesian network, generating samples from the joint distribution it represents,
performing inference, and its potential for incorporating prior knowledge. This
latter capability is our main motivation for selecting a Bayesian network as our
donor model.

Chapter 6. Multilayer perceptrons

The counterpart of the donor model is the acceptor model. This model should
have good learning capabilities from data, possibly sacrificing insight into the
model parameters and thus loosing a possibility to incorporate prior knowledge.
We selected multilayer perceptrons as acceptor models. This class includes lo-
gistic regression but is also capable of producing nonlinear classification bound-
aries. Handling these models in the Bayesian framework is discussed in detail,
together with the connection between classical cost functions and the Bayesian
a posteriori distribution and how we can generate parametrizations from the
a posteriori distribution using the hybrid Monte Carlo Markov chain. Finally,
estimating distributions in neural network parameter space and the problems
that arise are discussed.

Chapter 7. Ovarian tumour classification

When the necessary models are introduced, we can apply the techniques dis-
cussed in Chapter 4 to ovarian classification. The different types of information
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are: the available data set, the expert information, and textual information.
The construction of the informative a priori distribution for the Bayesian net-
work model is discussed in detail, together with the data pre-processing steps
necessary for the multilayer perceptron and the transformation itself between
the two models.

We start the results section of this chapter with a discussion of previously
applied techniques and the performance of univariate models. Next, the concept
of learning curves is introduced, which serves as our main tool to visualize the
learning behaviour of certain models. Using this learning curve, the learning
characteristics of different models is discussed.

Chapter 8. Implementation

This chapter discusses the implementation details and design of the software
package that was developed to perform the necessary computations.

Chapter 9. Conclusions

Finally, Chapter 9 draws some conclusions about this work, describes the ac-
complishments we achieved and presents an outline of a few directions that may
be followed in future research.
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Before we dive into the theory and algorithms, we will introduce a real-world
medical classification task related to cancer, together with the three main sources
of information that are available. The main goal of this task consists in classi-
fying ovarian tumours as benign or malignant, based on certain medical observa-
tions. This task will serve as the central problem in this thesis to illustrate the
developed techniques.

7
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2.1 Ovarian tumours

The ovaries are two small, almond-shaped organs located on either side of the
uterus (see Figure 2.1), which is found in the lower part of a woman’s belly.
These small organs are responsible for the production of human eggs. An ovarian
tumour is a growth that begins in the cells that constitute the ovaries. The
three main types of cells found in an ovary are the epithelial cells or surface
cells, the germ cells that are the heart of the reproductive system and produce
the eggs, and the stroma cells that form the connective tissue found in the ovary
and produce hormones (see Figure 2.2). Each of these cells can give rise to a
specific type of tumour: epithelial tumours, which account for up to 90% of all
ovarian tumours, germ cell tumours, and stromal tumours. Tumour cells that
metastasize from other organ sites to the ovaries are not considered ovarian
tumours. Unlike a fluid-filled cyst, an ovarian tumour is solid.

Figure 2.1: A schematic representation of the uterus and ovaries from
http://www.pdrhealth.com/.

More important for the patient is the behaviour of the tumour. Both be-
nign and malignant ovarian tumours exist. Benign (i.e., not cancerous) ovarian
tumours occur most frequently (70% of all ovarian tumours are benign). They
only rarely tend to invade tissues and never spread to other parts of the body. If
untreated, however, they may grow very large and become painful. Often, these
tumours will shrink with the use of birth control pills. The left part of Figure 2.3
shows a benign epithelial ovarian tumour. Malignant tumours, also called can-
cers, do tend to spread to other parts of the body when they grow large enough
and are therefore often life-threatening. The right part of Figure 2.3 shows a
malignant epithelial ovarian tumour.

According to the American Cancer Society, ovarian cancer accounts for 4
percent of all cancers among women and ranks fifth as a cause of their deaths
from cancer. Unfortunately, more than two thirds of the patients are diagnosed
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Figure 2.2: A schematic representation of an ovary and the three different types of
cells from http://www.taxol.com/.

only at an advanced stage and therefore have poor prognosis. Therefore, early
detection is of primary importance for the survival of the patient.

Ovarian tumours are fairly common. Before ultrasound techniques were
routinely available, finding such a tumour was considered to be an indication
for surgery. The large number of ovarian tumours now being discovered and
their relatively low risk of malignancy indicates that they should not all be
managed surgically. Ovarian malignancies therefore represent one of the greatest
challenges among gynaecological tumours.

A reliable test to discriminate benign from malignant tumours without per-
forming surgery would be of considerable help to clinicians to triage woman
into different categories; it would help them to recognise patients for whom
treatment with minimally invasive surgery or conservative management suffices
versus patients who need to be referred to a gynaecological oncologist for more
aggressive treatment. Developing such a test will be the main application goal
of this thesis.

This research is situated in the framework of the International Ovarian Tu-
mour Analysis Consortium (IOTA), which is a multi-centre group to study
the pre-operative characterization of ovarian tumours based on artificial in-
telligence models [83] (https://www.iota-group.org/), in collaboration with
the Department of Electrical Engineering at the Katholieke Universiteit Leu-
ven (ESAT/SISTA) and various hospitals around the world. The IOTA was
founded by Prof. Dr. Dirk Timmerman from the Department of Obstetrics
and Gynaecology, University Hospitals Leuven in 1998. Under the name of the
IOTA project, Prof. Timmerman proceeded with the prospective collection of
patient data, which he already initiated in 1994. At the moment of this writing,
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Figure 2.3: Left is a benign epithelial ovarian tumour. Right is a malignant epithelial
tumour.

the database contains information from 1 346 masses and 1 152 patients which
is the largest number of stage I ovarian tumours pre-operatively examined with
transvaginal ultrasonography.1

2.2 Sources of information

There are three different types of information at our disposal to construct a
predictive model for the problem described.

2.2.1 Clinical data

At first, there is a clinical data set with patient data that has been collected
prospectively in the IOTA framework. This study includes the multi-centre col-
lection of patient data and the corresponding data collection protocols. Patients
with at least one adnexal mass were recruited and studied within one month
before investigative surgery. The data collection protocol excludes other causes
with similar symptoms, such as infection or ectopic pregnancy, and ensures
that patients with a persistent extra-uterine pelvic mass undergo surgery. This
procedure eliminates the possibility of false negatives. Both medical and fam-
ily histories were recorded. Transvaginal ultrasonography with colour Doppler
imaging was used to derive indices of tumour form and blood flow. The blood
flow is characterized by a number of variables. A sample of peripheral venous
blood was taken for the analyses of serum CA125. Several informative images
of all the adnexal masses were made and collected digitally for quality con-
trol. Findings at surgery and the histological classification of excised tissues as
malignant or benign (and by cell type) are used as outcome measures. Both
techniques enhanced the quality of this study and provided us with reliable
pathology values that can serve as a gold standard [83, 81].

1Although this is not the final IOTA data set, it underwent a quality control and inconsis-
tent records were corrected by Andrea Valek.
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For each tumour and patient in this data set, a total of 68 variables were
collected. Based on results from previous studies [82] and with the help of
our medical expert Prof. Timmerman, we selected a total of 35 variables from
these 68 variables that are the most relevant ones to the domain. These include
variables such as the malignancy of the tumour (Pathology), parity (number
of deliveries), drug treatment for infertility, use of oral contraceptives, family
history of breast and ovarian tumour, age, bilaterality of the tumour, pain,
descriptions of the morphology, echogenicity, vascularization of the mass, or
the level of CA125 tumour marker. The pathology variable indicates if the
tumour was found to be benign or malignant after surgery. For symmetric
records (patients with a tumour on both left and right side) only the dominant
tumour was kept. Records with missing values for one of these 35 variables were
removed, except when the Pill Use variable was missing, for which we used an
imputation model to complete the variable; we learned a linear regression model
for Pill Use based on the samples where this variable is observed, and used this
model to fill in a value for the unobserved cases.

Some variables only make sense depending on other variables. As such, the
variable CycleDay, which represents the menstrual cycle, makes only sense for
women who are pre-menopausal. In the same category, we have the PMenoAge
and PostMenoY variables which only make sense for patients in the menopause.
A second group deals with solid papillary projections. When these structures are
present, the shape and possible flow is indicated using the variables PapSmooth
and PapFlow. The last group of conditional variables deals with blood flow
indices which are measured using colour Doppler imaging. This has the effect
that the variables RI, PI, PSV and TAMXV are only valid when actual blood
flow is present (Colour Score 6= 1).

The data set contains both continuous and discrete variables. Table 2.4
enumerates the continuous variables, their physical units, and their univariate
statistics for benign and malignant tumours. For these variables, the mean and
standard deviation are reported. For conditional variables, as explained in the
previous paragraph, we present the statistics only for those records where the
variable actually makes sense.

Table 2.5 enumerates the binary variables. For the binary variables, we com-
puted the percentage of records that have a value of 1. In our case, depending
on the variable, a 1 means yes or present, as indicated in the table.

Table 2.6 introduces the discrete variables, their possible values, and the cor-
responding percentages for these values that are observed in the data set. These
percentages are again presented for the subgroups of benign and malignant tu-
mours. Colour Score is an ordered variable, while the others are nominal.

A more in depth description for each variable can be found in Appendix A.

2.2.2 Expert information

In addition to this numerical information, we could rely on the knowledge and
experience of Prof. Timmerman, a leading expert in the ultrasonography of
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Variable name Unit Benign (70.5%) Malignant (29.5%)
Age year 46.07 (15.26) 55.54 (14.59)
CA125 U/ml 37.84 (91.97) 840.9 (2493)
Fluid mm 2.527 (6.825) 15.4 (19.54)
PI (Colour Score 6= 1) 1.101 (0.656) 0.819 (0.387)
PSV (Colour Score 6= 1) cm/sec 15.36 (15.75) 31.26 (22.53)
Parity 1.223 (1.322) 1.613 (1.387)
Pill Use year 3.234 (4.828) 2.822 (4.888)
RI (Colour Score 6= 1) 0.604 (0.141) 0.517 (0.153)
Septum mm 1.336 (2.148) 2.842 (3.852)
TAMXV (Colour Score 6= 1) cm/sec 9.502 (11.11) 21.55 (16.38)
Volume ml 302.9 (777.5) 683 (1160)

Figure 2.4: The univariate statistics of the IOTA data set for the continuous vari-
ables. For these variables, the sample mean is presented, together with the standard
deviation and their physical units. These statistics are presented for the subgroup of
benign tumours (the left column) and the subgroup of malignant tumours (the right
column).

ovarian tumours and the founder of the IOTA project. Working at the University
Hospitals Leuven, he has collected the main part of the IOTA data set.

He helped selecting the relevant variables for our experiments and their
corresponding discretization bins. In addition to this, he was able to construct
a model describing the relations between the medical variables in the form of
a Bayesian network structure for a subset of 11 variables and presented us
with the parametrization for this network structure by answering a questionary
consisting of 29 pages, as described in Section 5.5.3. Figure 2.7 displays this
expert network structure.

Besides this parametrized prior Bayesian network, he was also able to specify
the pairwise relationships between all the variables, which was transformed to a
prior distribution over the network structure space using the technique explained
in Section 5.5.3. This results in a matrix V where element V ij is an indication
of the strength of the relation between the variables xi and xj . In Section 5.5.1,
we will use this as the a priori probability to see an edge from variable xj to
variable xi in a Bayesian network. This matrix is displayed in Figure 2.8, where
the grey-scale and the thickness of an edge between xi and xj corresponds to
the value V ij from the matrix.

Finally, our expert provided us with keywords and full text descriptions
of the domain variables and a selection of relevant journals for the domain.
Using these directions, we could use the electronic literature as an additional
information source.
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Variable name Benign (70.5%) Malignant (29.5%)
Ascites = present 3.3% 45.2%
Bilateral = yes 15.2% 31.7%
FamHistOCCa = yes 2.2% 10.3%
FamHistBrCa = yes 5.6% 13.5%
HormTherapy = yes 24.5% 17.8%
IncomplSeptum = yes 10.1% 3.9%
Pain = present 26.6% 17.8%
PapFlow (Pap = yes) = yes 27.8% 84.8%
PapSmooth (Pap = yes) = yes 48.1% 86.7%
Papillation = yes 19.6% 45.7%
PersHistBrCa = yes 2.4% 5.7%
Shadows = present 11.1% 1.3%
Solid = yes 41.1% 93.5%

Figure 2.5: The univariate statistics of the IOTA data set for the binary variables.
For these variables, the percentage of records with a value of 1 is given. This 1 means
yes or present. These statistics are presented for the subgroup of benign tumours (the
left column) and the subgroup of malignant tumours (the right column).

2.2.3 Textual information

A last and quite extensive source of information is contained in textual doc-
uments that report about the domain. With domain, we mean the specific
application field we are considering. In this thesis, this is the field of ovarian
tumours.

We will use this literature information to discover relationships between
domain variables. The rationale in the medical context is that a significant body
of medical research is devoted to the discovery of informational relationships
between domain variables. Mainly dependencies are reported in the literature
and independencies are largely ignored. The usage of text-mining methods for
relationship extraction has already proved useful in providing insight for the
domain expert and data analyst in many domains [80, 14, 50, 49]. We will take
this one step further and use the results of these methods automatically in the
statistical learning of quantitative models.

Instead of following a linguistic approach, which ambitiously tries to struc-
turally analyse [67] and extract high level logical statements from free text [73,
70, 21], unstructured statistical approaches have similarly shown good perfor-
mance in extracting entity relationships.

The whole corpus of available documents can be divided into two main
groups. The first group contains documents that describe one specific domain
variable. Included are the name of the variable, synonyms, keywords, the IOTA
protocols for that variable, medical dictionary definitions (Merck Manual, Can-
cerNet and On-line Medical dictionary), the definitions from our medical ex-
pert [81], and references to other electronic literature.
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Variable name Benign (70.5%) Malignant (29.5%)
Colour Score

None 39.6% 6.5%
Minimal 27.3% 12.6%
Moderate 27.1% 41.7%
Very strong 6.0% 39.2%

Locularity
Unilocular 36.3% 0.4%
Unilocular solid 12.1% 16.6%
Multilocular 22.7% 6.1%
Multilocular solid 21.7% 45.2%
Solid 7.2% 31.7%

Meno
Pre 60.9% 33.5%
Hysterectomy 7.6% 11.3%
Post 31.5% 55.2%

WallRegularity
Regular 64.1% 16.5%
Irregular 33.2% 83.1%
Wall not visible 2.7% 0.4%

Figure 2.6: The univariate statistics of the IOTA data set for the discrete variables.
The different values each variable can take are indicated, together with the percentages
of that specific value for both subclasses of benign and malignant tumours.

The second group consists of documents that are not bound to one specific
domain variable, but describe the relation between several variables. This group
comprises entries from the MEDLINE collection of abstracts of the US National
Library of Medicine. We asked our medical expert to select three sets of jour-
nals, ranging from very relevant to less relevant. The corresponding document
corpora are denoted with C1, C2, and C3, and contain respectively 5 367, 71 845
and 378 082 abstracts dated between January 1982 and November 2000.

2.3 To conclude

In this chapter, we briefly discussed the ovarian tumour domain in general and
motivated the importance of a pre-operative classification of these tumours. We
pointed out three different types of information we plan to integrate, namely
the statistical data set collected in the IOTA framework, the knowledge and
experience of the medical expert Prof. Timmerman, and a large set of electronic
documents that discuss part of the domain.
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Figure 2.7: The network structure for the ovarian tumour problem containing 11
variables, constructed by Prof. Timmerman.
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When knowledge has to be extracted from a certain set of observations, we
are faced with a learning task, e.g. the central problem of classifying ovarian
tumours that was introduced in the previous chapter. We will deal with this in
Bayesian framework, which is a conceptual framework for learning derived from
Bayes’ rule of probability. We are indeed allowed to apply probability theory
to perform inference and plausible reasoning instead of restricting its use to
calculating frequencies of random variables [20, 47]. This means that we can use
probabilities to describe our current knowledge, and use the rules of probability
theory to update this knowledge when additional information is acquired.

17
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3.1 General overview

In the Bayesian framework, a probability is a degree of belief that some statement
is true. This belief always depends on the given knowledge ξ and can even
be applied on quantities that are not intrinsically random; some things can
be predicted with certainty, but when the necessary information to do this is
missing, we have to resort to plausible reasoning. In a game of darts, it is
possible to compute if someone will hit the bull’s eye, but only if the initial
speed and location vectors are known.

Richard Cox wondered what kind of systems could be used for learning
and reasoning and started from two basic axioms, a consistency requirement
and the implicit assumption to represent probabilities with real numbers. His
first axiom states that if we specify our belief that some statement is true, we
must have stated implicitly our belief that the statement is false. If you know
the probability that someone will hit the bull’s eye, you immediately know the
probability that he or she will not hit the bull’s eye.

The second axiom says that if we state our belief that a first statement is
true, together with our belief that a second statement is true given that the first
is true, that we must have stated implicitly our belief that both statements are
true. If you know the probability that someone will hit the bull’s eye together
with the probability that this person will win the game if he hits the bull’s eye,
you should know the probability that he will both hit the bull’s eye and win the
game.

Finally, the consistency constraint ensures that if we have different ways to
use the same information, we finally should end up with the same result.

As Richard Cox proved in 1946 [20], each system that is conform with these
axioms can always be transformed to the system of probability theory with the
basic sum and product rule:

∑

a

P( a = a | ξ ) = 1 with P( a = a | ξ ) ≥ 0

P( a = a, b = b | ξ ) = P( a = a | b = b, ξ ) P( b = b | ξ ).

The summation in the sum rule goes over a mutually exclusive and exhaus-
tive set of values for the random variable a. We denote with a a random variable,
which can be a logical proposition or a set function defined on a σ-field in the
Kolmogorov spirit [56]. We denote with ξ the background knowledge that is
present, the set of all information given when the statements are made.

We stated the sum and product rules in a discrete setting. When dealing
with continuous variables, we are working with probability density functions and
have to exchange the summation with an integral. Probability density functions
will be denoted with the symbol p, while discrete probabilities are denoted with
the symbol P.

Using these basic sum and product rules, a lot of useful results can be derived.
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The most useful equations for this thesis are

P( a = a | b = b ) =
P( b = b | a = a ) P(a = a)

P(b = b)
(3.1)

p(ω |D, ξ ) =
p( D |ω, ξ ) p(ω | ξ )

p( D | ξ )
(3.2)

∝ p( D |ω ) p(ω)

and
P( a = a | ξ ) =

∑

b

P( a = a, b = b | ξ ). (3.3)

The first equality — Equation 3.1 — is due to Thomas Bayes [8] and is the
core of the Bayesian framework. Equation 3.2 states exactly the same as Equa-
tion 3.1, but with meaningful symbols in place; we assume some probability
distribution p( · |ω ) with parameter vector ω that describes the distribution of
the individual data records, a data set D, and background knowledge ξ.

Often, we are interested in how our belief (the probability distribution) in
the model parameters ω changes when a certain data set is observed. Before
we observe this data set, our model parameter distribution is given by the a
priori distribution p(ω | ξ ). Bayes’ rule now states that we should update this
prior distribution to the a posteriori distribution by multiplying with the data
likelihood p( D |ω, ξ ) = L(ω |D ) and normalizing with p( D | ξ ). This proce-
dure is depicted schematically in Figure 3.1. Almost always we can drop the ξ
information from the likelihood since the model parameters are the only infor-
mation we need to calculate the data distribution. The normalization constant
can also often be dropped, since it is independent of the model parameters ω.
We indicate with the symbol ∝ whenever we neglect a constant multiplicative
factor.

The second formula — Equation 3.3 — is called marginalization and will be
often used to introduce new variables or cancel variables out. The summation is
over a mutually exclusive and exhaustive set of possibilities. When the random
variable b is continuous, it will have a probability density and we have to replace
the summation with an integral.

3.1.1 Intuitive example

To demonstrate Bayes’ rule, we start with a easy medical example. Suppose
there exists a certain disease in combination with a test to check if some person
has the disease. The fact that someone has the disease or not is indicated
with the binary random variable d, where we denote with d = 1 that someone
has the disease. The outcome of the test will similarly be represented with a
random variable, called t this time. Similarly, t = 1 corresponds to the event
that the test indicates that a person has the disease (the test can be wrong
of course). Suppose that one out of one thousand people has the disease and
that the test makes a mistake one time out of one hundred, no matter if the
person has the disease or not. In symbols, this means that P(d = 1) = 1/1000
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Data likelihood

Posterior distribution

Prior distribution

Figure 3.1: From a prior distribution to a posterior distribution: we have to multiply
the prior distribution with the data likelihood to obtain the posterior distribution, up
to the normalization factor p( D | ξ ).

and P( t = 1 | d = 1 ) = P( t = 0 | d = 0 ) = 99/100. Next, we apply the test
to a random person and find out that the test is positive (t = 1). Should our
unfortunate person start to despair?

To answer this question, we are interested in the probability P( d = 1 | t = 1 )
that the person has the disease, given that the test resulted positive. We can
compute this probability by applying Bayes’ rule and marginalization:

P( d = 1 | t = 1 ) =
P( t = 1 | d = 1 ) P(d = 1)

P(t = 1)

=
P( t = 1 | d = 1 ) P(d = 1)

P( t = 1 | d = 0 ) P(d = 0) + P( t = 1 | d = 1 ) P(d = 1)

=
99
100

1
1000

1
100

999
1000 + 99

100
1

1000

≈ 0.0902 = 9.02%.

Although the test is fairly accurate, it is not able to update our prior belief
of 0.1% that a random person has the disease (P(d = 1) = 1/1000) much higher
than 9%. Our prior belief in the disease is simply too small. If this prior belief
was higher, such that one out of only one hundred persons had the disease
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(P(d = 1) = 1/100), our posterior belief in the disease after a positive test
would rise to 50%. Adjusting the prior belief could for instance be done by
looking only at a special subset of persons with a higher risk for the disease.

This example demonstrates one of the possible uses of Bayes’ rule and in-
dicates how prior knowledge should put observations in the right context. The
prior knowledge in this example is the probability P(d = 1) that a random
person has the disease, while the observation is the outcome of the test. Even
though the test is fairly accurate, a random person should see its outcome in the
right perspective, namely that the disease is very uncommon. If a person with
an already elevated risk of having the disease, observes the same test result,
things change drastically.

3.1.2 History

The Bayesian view on probabilities was subject to a lot of debate and defi-
nitely has had a turbulent past. We will briefly summarise its history before we
continue with more elaborate applications and properties.

When serious reasoning with uncertainty originated some 300 year ago, Ja-
cob Bernoulli (1654–1705) was among the first to wonder how deductive logic
could be used to perform inductive logic. Deductive logic is that type of reason-
ing that deduces the possible outcomes or observations starting from a certain
cause. Most reasoning done in the field of pure mathematics, where one starts
from a few axioms (the causes) and uses these axioms to deduce and prove
certain theorems (the observations), is an example of deductive logic where no
uncertainty is involved. Most chance games serve as another example, with
uncertainty involved this time. Starting from well defined — but hard to find
— objects like fair coins and dice, independent repetitions and the absence of
relevant prior information (the causes), we can assign probabilities to various
statements (the observations).

Inductive logic on the other hand, tries to accomplish the inverse of deductive
logic by predicting the possible causes when certain observations are made.
Most real-world problems and every day challenges are of this type, and less
straightforward to solve. Both types of logic are depicted in Figure 3.2. The top
diagram illustrates deductive logic where one reasons from cause to observation.
The bottom diagram illustrates the nature of inductive logic, where we are
interested in deriving information about the possible causes that could have
given rise to the observations.

It was reverend Thomas Bayes (1702–1762) who provided the answer to
Bernoulli’s problem, although only after his death through a paper sent to the
Royal Society by Richard Price, a friend of Bayes’, and published in 1763 [8].
These results where accepted by Pierre-Simon Laplace (1749-1827) in a 1781
memoir, and even rediscovered by Condorcet. Laplace presented them in greater
clarity than Thomas Bayes did and in the form of Equation 3.1 in his book
Théorie Analytique des Probabilités, together with applications in celestial me-
chanics, life expectancy and the length of marriages, and even jurisdiction [57].
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Figure 3.2: The diagram on the top illustrates deductive logic, while the bottom
illustrates the nature of inductive logic.

For Bayes and Laplace, a probability represented a degree of belief or plausi-
bility that a certain statement is true. Despite the practical successes of Laplace
with the theory, their definition of the concept of probability was found too
vague and too subjective for most scientists to accept since the belief of one
person could be different from that of another. Therefore, a new definition of
the concept of probability was introduced by John Venn (1834–1923) [87] in
1866 as the long-run relative frequency of a certain event in an effort to make
the concept more objective. Note that the problem lies within the concept of
probability and not with Bayes’ rule of probability.

This new definition indeed feels more objective, but it can be very superficial
to apply and limits the usage of probability theory. To point this out, we briefly
discuss one of the practical applications discussed by Laplace, namely how to
estimate the mass of Saturn, based on orbital data. Laplace realized that he was
basically interested in the posterior density of this mass given the observed data
together with the knowledge of classical mechanics. With the help of Bayes’
rule, he was able to compute this probability density function. Figure 3.3 gives
a schematic representation of this probability density that Laplace obtained.
Using this density, he was able to compute the probability that the mass was
between a and b, by integrating over this interval.

If the mass of our planet is viewed as a constant instead of a random vari-
able, we cannot use probability theory in the frequentist framework though since
there is no frequency distribution for this mass. We can introduce a frequency
distribution, but then we have to interpret Figure 3.3 as the empirical distri-
bution of the mass for many repetitions of our universe where the same orbital
observations are made.

As the latter is quite unpractical to work with, the route of statistics is



3.1. General overview 23

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

a b

Figure 3.3: A schematic representation of the posterior probability density of the
mass of Saturn that Laplace was able to compute using orbital data and knowledge
about classical mechanics. The probability that the mass lies between a and b can be
obtained by integrating the density over the interval [a, b]

followed: the mass of the planet is related to the orbital data in some way
through a statistic, a function of the observed data. Since the data is subject to
random noise, our statistic will become a random variable to which frequentist
probability theory can be applied. Unfortunately, clear and natural rules to
choose this statistic are lacking. One of the most prominent defenders of the
frequentist framework was sir Ronald Fisher.

Due to the work of sir Harold Jeffreys (1891–1989) [48], it seems more nat-
ural again that randomness represents our lack of knowledge about a system,
which results in our inability to predict with certainty. A nice example is a
pseudo-random number generator. The internal working of such a generator is
completely deterministic, but without the knowledge of the algorithm and the
seeds we cannot predict it.

This lack of knowledge concept is conform to the plausibility definition of a
probability proposed by Bayes and Laplace. The subjectivity is more a confu-
sion between subjectivity and the difficult question of how probabilities should
be assigned. Objectivity demands only that two people who have the same
information at their disposal should end up with the same probabilities [47].

Finally, in 1946, Richard Cox (1898–1991) started from plausible reasoning
and a few general assumptions and could prove that probability theory is the
only set of rules that can be used for this [20]. This extends the usability of
probability theory from frequencies to the basic calculus for logical and consis-
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tent plausible reasoning. Edwins Jaynes (1922–1998) built on these results in
his last book “Probability theory, the logic of science” [47].

3.1.3 Tour through the theory

Let us assume we have a possibly biased die d and want to model this object in
the Bayesian framework. We start with choosing the model class we will restrict
us to. This model class is a family of distributions that we consider to be pos-
sible. Often, this model class corresponds to a set of distributions of a certain
mathematical type, like the set of Gaussian distributions or the set of exponen-
tial distributions etc. We assume that we can parametrize our model class; each
element of the model class can then be represented with a certain parametriza-
tion ω. Working in the Bayesian framework means that we create a model from
our model class by specifying our belief in each individual parametrization. A
model in the Bayesian framework is thus a set of distributions (the model class)
and a distribution p(ω | ξ ) specifying our degree of belief for each element of
the model class.

We assume that our die is time independent and can therefore represent it
with a table distribution with six possible outcomes. Such a table distribution is
a discrete distribution over a finite set of possible outcomes. The model contains
the probabilities for each different possible outcome. The model class is thus
the set of all possible table distributions, while the parameters of this table
distribution are the probabilities of the different outcomes of the die

p( d = i |ω ) = ωi with i ∈ {1, . . . , 6} and
∑

i

ωi = 1

where ωi simply represents the probability to throw an i.
How should we select our prior distribution for these different probabilities?

This distribution should represent all our knowledge about the die before we
start using it. This depends on the prior knowledge we have and could for
instance depend on the fact that the die comes from a louche casino or a game
of monopoly, whether one side is more worn than another, etc. If no information
at all is available, we could select a uniform distribution for the probabilities,
subject to the fact that they should sum up to unity.

A common choice for this prior distribution is the Dirichlet distribution
(see Section 5.3.1 for more information on this distribution)

p(ω | ξ ) =

{
Cst
∏
i ω

mi−1
i

∑
i ωi = 1, ωi ≥ 0

0 else.

Note that the density is non-zero only for ω satisfying the constraints. The
constant Cst is set up to ensure that the integral of the density over the param-
eter space is equal to one:

Cst =
Γ(
∑
imi)∏

i Γ(mi)
= 1/

∫∫
P
i ωi=1

∏

i

ωmi−1
i dωi.
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We call the parameters mi the prior counts. Figure 3.4 shows the marginal
distribution of a two-dimensional Dirichlet with different prior count settings.
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Figure 3.4: The marginal distribution of the first element of a two-dimensional Dirich-
let random vector for different prior count settings. The top left has prior count settings
(0.5,0.5), while the top right has settings (1.0,1.0). The bottom figures correspond to
prior count settings (3.0,6.0) and (10.0,20.0).

If we set all the prior counts to 1.0, we end up with the uniform distribution
over the space of positive numbers that sum up to 1. It will be explained
in Section 5.5.3 how these prior counts have to be chosen to express other prior
beliefs in the parameters.

We can now express our posterior belief in the model parameters when a
certain data set is observed

p(ω |D, ξ ) =
p( D |ω ) p(ω | ξ )

p( D | ξ )

∝
∏

j

p( d = dj |ω ) p(ω | ξ )

=
∏

i

ωnii
∏

i

ωmi−1
i

=
∏

i

ωni+mi−1
i

=
∏

i

ω#i−1
i .

Note that the product over j iterates over the data elements, namely the
actual die rolls dj , while i goes over the six possible outcomes of the die. The
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number of times the we see a die roll with outcome d = i in our data set is
indicated with ni: ni = |{j | dj = i}|. We denote with #i the sum of the data
count ni and the prior count mi, which can be interpreted as the total number
of times we saw a die roll with result i, either as prior knowledge or during the
experiments. As a final remark, we observe that the likelihood of the data has
the form of a multinomial distribution.

This posterior distribution over the model parameters tells everything about
our updated belief in the different possible parametrizations of our die, and can
be used to compute certain things of interest, like the probability that the next
throw will be one:

P( d = 1 |D, ξ ) =

∫
P( d = 1 |D, ξ,ω ) p(ω |D, ξ ) dω

=
Γ(
∑
i #i)∏

i Γ(#i)

∫
ω#1

1

6∏

i=2

ω#i−1
i dω

=
Γ(
∑
i #i)∏

i Γ(#i)

Γ(#1 + 1)
∏6
i=2 Γ(#i)

Γ(
∑
i #i + 1)

=
#1∑
i #i

. (3.4)

If we assume absence of any prior knowledge in the previous example, we
have to set the prior counts mi all to one. This results in the following formula
for the probability to throw a one:

P( d = 1 |D, ξ ) =
n1 + 1∑
i ni + 6

.

The following example performs these computations for two different dice.
The first die, d1, is generated from a uniform Dirichlet distribution (all pseudo-
counts are set equal to 1.0). The second die, d2, is generated from a Dirichlet
distribution with all pseudo-counts equal to 50.0. This will, in general, result
in a die that is more honest than d1. The two generated dice are characterized
by their probabilities for each of the six possible outcomes. These probabilities
can be read from the following table:

Outcome 1 2 3 4 5 6
p(d1) 0.0736 0.2029 0.4513 0.1892 0.0156 0.0671
p(d2) 0.1376 0.1754 0.1892 0.1630 0.1887 0.1459

Next, we threw 100 times with each dice, storing the outcomes of die di in
the data set Di. The outcomes of these experiments are given here under:
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Outcomes
D1 3, 2, 3, 3, 3, 4, 1, 4, 3, 2, 3, 3, 3, 3, 2, 3, 4, 2, 3, 2, 1, 2, 2, 3, 1,

3, 2, 3, 2, 3, 3, 3, 2, 4, 4, 3, 3, 2, 1, 4, 2, 3, 4, 3, 5, 4, 2, 2, 5, 3,
2, 2, 4, 3, 3, 3, 2, 4, 3, 3, 2, 4, 1, 2, 5, 3, 3, 3, 3, 4, 4, 3, 4, 4, 3,
3, 3, 3, 6, 3, 4, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 2, 3, 3, 3, 4, 4, 3, 3

D2 3, 4, 1, 4, 4, 4, 4, 5, 3, 1, 3, 6, 5, 2, 4, 2, 3, 3, 6, 3, 6, 1, 6, 5, 3,
5, 2, 2, 3, 1, 1, 3, 1, 5, 5, 2, 1, 5, 2, 2, 3, 6, 5, 5, 4, 6, 4, 2, 1, 3,
6, 5, 1, 5, 5, 5, 5, 2, 2, 3, 4, 4, 5, 6, 3, 1, 2, 1, 5, 1, 4, 5, 3, 2, 2,
2, 6, 1, 4, 5, 4, 4, 5, 5, 2, 3, 5, 1, 6, 4, 5, 5, 3, 3, 5, 1, 1, 1, 6, 6

Finally, we estimate for each data set the probability that the next throw
will be a one. The data counts for observing a one (n1) are five for the first die
and 17 for the second die (indicated in bold). The prior counts depend on which
prior we use. The prior counts mi for the uniform prior are all 1.0, while those
for the honest prior are all equal to 50.0. We compute the probability to throw
a one with Equation 3.4 using both the uniform prior and the honest prior for
each data set. Remember that #i was the sum of the prior count mi and the
data count ni.

Uniform prior Honest prior True probability
D1 0.0566 0.1375 0.0736
D2 0.1698 0.1675 0.1376

We see that using the prior that was used to generate that actual die, gives
the best probability estimate. The value that was closest to the true probabil-
ity is indicated in bold. The uniform prior is very flexible and can learn any
probability quite fast, but is therefore strongly dependent on the actual data.
The honest prior performs good for learning probabilities that are honest (prob-
abilities which lie in this case around 1/6). It depends less on the actual data
which hinders the learning of probabilities that are substantially different from
1/6 (0.1666).

Conjugate prior

The mathematical details of the previous die example are easy to solve because
we can compute the posterior distribution in closed form and use this to compute
various quantities of interest, also in closed form. If we look more carefully, we
see that our table data distribution and the Dirichlet prior play nicely together
so that the posterior distribution is again a Dirichlet distribution. If we observe
the data records one by one and update each time our current knowledge about
the model parameters through Bayes’ rule, we can keep storing our parameter
knowledge in a single Dirichlet distribution. The form of the distribution stays
the same, only the parameters of the distribution have to be updated. For the
Dirichlet case, we have to update the count parameters. If the prior and data
distribution are compatible in such a manner, we say that the prior is conjugate
to the data model.

In addition to the table-Dirichlet conjugate pair, we will also use the Gaus-
sian data model in combination with the Gaussian-Wishart prior. In this case,
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our data model is a multivariate Gaussian distribution. The parameters of this
distribution are the mean vector and the covariance matrix. If we give the in-
verse covariance matrix (also called the precision matrix) a Wishart prior and
the mean vector a multivariate Gaussian prior, we can again express the poste-
rior distribution as a Gaussian-Wishart distribution with updated parameters.
This will be used in Section 5.3.2 where we deal with linear-Gaussian Bayesian
networks.

Informative and complexity-based priors

Until now we have just talked about prior distributions in general. For this thesis
and more specifically for Chapter 4, it will be important to make a distinction
between uniform and improper priors, complexity-based priors and informative
priors.

Uniform and improper priors are those priors that take the same value or
density for any model parametrization. Therefore, we can most of the time drop
them from Bayes’ rule since they are only a constant multiplication factor. The
posterior distribution becomes the likelihood function, up to some multiplicative
factor. This type of prior is a uniform distribution. If the parameters are
continuous, we can only define such a prior if the parameters are known to lie
within a bounded region. In the other case, we call it an improper prior because
we cannot define a uniform distribution over such a space with a finite integral.

When working with parameter spaces with an infinite diameter, it is often
useful not to use a improper prior, but some complexity-based prior. Such a
prior does not contain any information about the problem at hand but is in
general useful if this specific type of model class is used. A frequently used
complexity-based prior tries to restrict the parameters from growing too large,
but this is of course dependent on the actual data model. An example that
will be discussed in detail in Chapter 6 are the multilayer perceptron mod-
els. Restricting their parameters makes sense from a theoretical point of view;
multilayer perceptrons become more complex if their parameters grow. Such
a complexity-based prior will prevent multilayer perceptrons from learning the
data set by heart and therefore has a beneficial effect on the resulting models.

If on the other hand, our prior does contain useful information about the
actual problem at hand, and is not useful for other applications of the same
model class, we will call it an informative prior.

3.2 Classification

The main application of this thesis, introduced in Chapter 2, is a medical clas-
sification problem. Depending on the specific problem, there are a few different
classes that observations can belong to. Although most practical problems are
binary classification problems, dealing with more than two classes is not much
different than handling the binary case. Because our problem is a binary classi-
fication problem, we will not clutter our notation and leave the multi-class case
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to the reader. We denote the two possible classes either with {0, 1}, or with
{CN, CP}, where CN represents the negative classification and CP the positive
classification.

We assume the existence of a supervised data set

D = {xk, tk}nk=1, (xk, tk) ∈ Rv × {0, 1}.

Here, xk is a vector of measurements for the kth data entry, while tk represents
the corresponding class label. Once a model has been learned (its posterior
distribution has been determined) using the prior knowledge and the data set,
we can start using it.

3.2.1 Three levels of decision support

When we are presented with a classification problem, the primary goal is to
predict the class label for each new observation. This can be done with the use
of a binary decision function

g( · |ω ) : Rv 7−→ {CN, CP}
x −→ g(x |ω ).

This decision function will only make a prediction for the class label. Often,
more information is desired to make an actual decision. A higher level of decision
support can be achieved with a model that predicts the CP class membership
probability

f( · |ω ) : Rv 7−→ [0, 1] (3.5)

x −→ f(x |ω ) = P( t = CP |x,ω ).

This higher level of decision support can also be reached by using a bi-
nary decision function in the Bayesian framework. Instead of using one fixed
parametrization, we use now the posterior parameter distribution. Our binary
decision function now becomes a random variable itself with a different Bernoulli
distribution for each different input pattern x. From this Bernoulli distribution,
we can compute the required class membership probability.

We can reach an even higher level of decision support by using the class
membership probability function described in Equation 3.5 in the Bayesian
framework. Now, the class membership probability itself becomes a random
variable. Instead of asking the model what its prediction is for the probability
that a certain record belongs to class CP, we get the complete uncertainty pic-
ture in the form of a probability density function for the Bernoulli parameter
θ = P( t = CP |x,ω ), for each record x. Figure 3.5 shows these three levels of
decision support for a binary classification problem.

3.2.2 Making a decision

We can step back from this highest level of decision support by marginalizing out
the model parameters using that parameter distribution p(ω) that denotes our
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Figure 3.5: Three levels of decision support. The most basic decision support per-
forms only a binary classification. A higher level of support indicates a point estimate
of the probability that the subject x belongs to class 1. The highest level of decision
support consists of the distribution of the different point estimates.

current knowledge of the problem. This will be most of the time the posterior
distribution p(ω |D, ξ )

P( t = CP |x,D, ξ ) =

∫

Ω

P( t = CP |x,ω ) p(ω |D, ξ ) dω

=

∫

[0,1]

θ p( θ |D, ξ ) dθ

= E[ P( t = CP |x,ω ) |D, ξ ]

= E[ θ |D, ξ ].

In the second step, we changed the integration variable ω to θ = P( t =
CP |x,ω ). Since this new parameter lies within the interval [0, 1], we have to
change the integration region from Ω to [0, 1], as is indicated in the formula.
The symbol Ω was the integration region of the model parameters ω.

Once we reach the class membership probability level, we have to use a
threshold λ to reach an actual decision

gλ(x |D, ξ ) =

{
1 if E[ f(x |ω ) |D, ξ ] ≥ λ,
0 else.

Choosing this threshold depends on the cost of making a wrong prediction
and is therefore problem dependent. Based on a ROC curve, a sensible threshold
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value can often be found (see Section 3.3.2 for the introduction of the ROC
curve).

A logistic regression example

We will demonstrate the three levels of decision support on an artificial classifi-
cation problem to illustrate the difference between them and the difference with
a maximum posterior model.

A data set was created that contains two variables and a binary class label
(crosses and squares). The two covariates are generated from a Gaussian model
where the mean depends on the class label. This data set is shown in Figure 3.6.
We are interested in developing a model that is able to predict the probability
that a certain observation (x1, x2) belongs to the square class.

-1.0 0.0 1.0

-1.0

0.0

1.0

2.0

Figure 3.6: A two-dimensional artificial data set. The data set contains two classes
which are indicated with crosses and squares respectively. The distribution within
each class is Gaussian.

We choose a logistic regression model

f(x |ω ) = logit(ω0 + ω1x1 + ω2x2) (3.6)

as our class of membership probability models. The parameters of this model
class are the coefficients ω0, ω1 and ω2. A logistic regression model is an
extension of the well-known linear regression model; the linear combination of
the covariates is transformed using the logit(·) function

logit(y) =
1

1 + e−y
.
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The range of this function is the interval ]0, 1[, which allows us to interpret the
output of a logistic regression model as a probability. In our case, we interpret
it as the probability that observation x belongs to the class corresponding to
the squares. Because the logistic regression model is basically a transformed
linear regression model, it decision boundary will still be linear. This means
that the model can only separate classes using a linear hyper-plane. In our
two-dimensional example, this will be a line. A more detailed explanation and
motivation of the logistic regression model is presented in Section 6.2.3.

Now that we have met the data and chose the model class, we only have
to specify our prior knowledge as a probability distribution over the model
parameters ω0, ω1 and ω2. Since we have no idea how we have to choose
these parameters before we observe the data set, we chose a non-informative
complexity-based prior. This prior is a three-dimensional Gaussian distribution
with independent components, zero mean and a standard deviation of 5.0:

p(ωi | ξ ) ∼ N (0.0, 5.0).

Using Bayes’ rule, we can compute the a posteriori distribution for our model
parameters

p(ω |D, ξ ) ∝ L(ω |D ) p(ω | ξ ).

Using this a posteriori distribution, we can compute the maximum a pos-
teriori model. This is that logistic regression model that is specified with the
maximum a posteriori model parameters ω∗,

ω∗ = argmaxω(p(ω |D, ξ )).

With this parametrized model, we can make a prediction that a new obser-
vation (y1, y2) belong to the square class:

P( (y1, y2) ∈ � |ω∗ ) = logit(ω∗0 + ω∗1y1 + ω∗2y2).

An actual classification can be made with the use of a threshold λ, as ex-
plained in Section 3.2.1. Depending on the loss associated with misclassifying a
cross or a square, we may adjust this threshold.

When working in the Bayesian framework, we are not looking for one “opti-
mal” parametrization, as we did for the maximum a posteriori model, but use
the a posteriori distribution instead. As such, we compute the probability that
(y1, y2) belong to the square class as

P( (y1, y2) ∈ � |D, ξ ) =

∫
P( (y1, y2) |ω ) p(ω |D, ξ ) dω.

We have plotted both the maximum a posteriori and the Bayesian logistic
regression model on Figure 3.7. The maximum a posteriori model is represented
with the three dotted straight lines. The middle dotted line indicates the 50%
decision boundary, while the other two lines indicate the 10% and 90% clas-
sification boundaries. Such a 10% or 90% classification boundary is the set
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of input vectors (y1, y2) that result is a classification P((y1, y2) ∈ �) = 0.1 or
P((y1, y2) ∈ �) = 0.9. We plotted the same decision boundaries for the Bayesian
model using dashed lines.

We see that these regions of equal class membership probabilities are straight
lines for the maximum a posteriori logistic regression model, because of the
linear part of Equation 3.6. The Bayesian model on the other hand has only a
straight 50% boundary, which is as expected from two multivariate Gaussians
that only differ by their means. The 10% and 90% boundaries are not straight
anymore. The Bayesian model will be more conservative in its prediction when
it has to make a prediction for input patterns further away from the gross of the
data records. For records in the centre of the input pattern cloud, the Bayesian
model can make bolder predictions. This is illustrated on Figure 3.7 with the
black and white dot. In the case of the maximum a posteriori model, both
these input patterns would get assigned a probability of 90% to belong to the
cross-class. The Bayesian model will classify the black dot similarly with 90%
probability to the cross-class, while its probability assignment for the white dot
is lower than 90%. This behaviour is in line with our intuitive feeling.

The background of Figure 3.7 indicates the full Bayesian information level,
where we used the variance of the predictions as uncertainty measure. The
higher the variance, the darker the background will be. We see also that the
uncertainty for the white dot prediction is higher than that for the black dot.
Even on the 90% boundary of the Bayesian model, the uncertainty for input
patterns further away from the pattern core will increase.

3.3 Performance measures

We will develop different models in this dissertation. To be able to compare all
these models, some sort of performance measure is needed that reflects the use-
fulness of a model [38]. Although the Bayesian framework provides us with the
model likelihood that can be used as performance measure [47], we do not find it
suitable in the situation where completely different models with different types
of priors have to be compared. When n different model classes M1, . . . ,Mn

have to be considered, we can compute P(Mi |D, ξ ) for each model class to
know its probability. P(Mi |D, ξ ) is called the model likelihood of the model
classMi. To compute this term, we can directly apply Bayes’ rule and condition
on the model parameters ωi using the prior distribution

P(Mi |D, ξ ) =
p( D |Mi, ξ ) p(Mi | ξ )

p( D | ξ )

∝
∫

p( D |Mi, ξ,ωi ) p(ωi |Mi, ξ ) dωi. (3.7)

We dropped the constant factor p( D | ξ ) from Equation 3.7. As we will
see in Section 6.7, the integral from Equation 3.7 can be approximated using
a Monte Carlo sum. Unfortunately, this integral will be hard to approximate
because it is based on the prior distribution (see Section 6.7.1 for a detailed
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explanation). In essence, the support of the prior distribution is too large with
respect to the support of p( D |Mi, ξ,ωi ), which results in a very slow conver-
gence.

Besides this, we would like to compare the performance also against previous
studies and want to have some natural feeling with the measure. Therefore
we will look at a few performance measures specifically designed to evaluate
classification models.

3.3.1 Misclassification rate

A first performance measure that pops up, is the mean misclassification rate be-
cause it has an intuitive interpretation. We assume that we have some kind of
test (T ( · |ω ), λ), where T ( · |ω ) is a real-valued function for the possible input
patterns, ω are the parameters for this test function and λ ∈ R is a threshold.
We denote the two possible classifications CP and CN, which represents respec-
tively the positive and the negative classification. We use our test to classify a
patient with observations x as

T (x |ω ) < λ =⇒ Classify as CN

T (x |ω ) ≥ λ =⇒ Classify as CP.

This classification depends on the threshold λ. How to choose this threshold
is not always obvious. The models that will be developed in this thesis, will all
be probabilistic models, which means that they attempt to model the probability
that a patient with certain observations will belong to class CP. If we use this
class probability as our test function

T (x |ω ) = P( t = CP |x,ω ),

we have more insight in how to specify the threshold λ. If the loss of misclassi-
fying a negative or a positive datum is the same, choosing λ = 0.5 will give us
the optimal prediction. For making real predictions, we might want to take into
account the different costs of making a false positive or false negative prediction.
This means classifying a positive record as negative and vice versa.

But still, the misclassification rate has some unwanted behaviour; if the data
set for which we compute this rate, contains only few samples, the misclassi-
fication rate can only take a few possible values. If, in addition to this, the
prior distribution for the individual classes is unbalanced (as is the case for the
ovarian tumour problem), the misclassification rate can take even fewer values.
Another and more severe restriction that makes the usage of the misclassifi-
cation rate less appropriate, is that it does not take into account the relative
severity of different misclassifications. A misclassified object x where T (x |ω )
lies just on the wrong side of the threshold λ has the same weight as an ob-
ject that is classified in a completely wrong way. Finally, the misclassification
rate depends on the actual threshold chosen, which makes is hard to compare
different classification systems.



3.3. Performance measures 35

3.3.2 Area under the ROC curve

To deal with the problems of the misclassification rate, we will use the area under
the receiver operating characteristics curve (ROC) [38], a performance measure
that is often used to evaluate medical classification systems. To construct this
curve, we need a few counts, all dependent on the threshold value λ:

True Positives (TP(λ)) Number of positive observations that are correctly
classified as CP by the test.

False Positives (FP(λ)) Number of negative observations that are wrongly
classified as CP by the test.

True Negatives (TN(λ)) Number of negative observations that are correctly
classified as CN by the test.

False Negatives (FN(λ)) Number of positive observations that are wrongly
classified as CN by the test.

Using these counts, we define the True Positive Rate, also called sensitivity,
and the False Positive Rate, also called 1-specificity, as

TPR(λ) =
TP(λ)

TP(λ) + FN(λ)

FPR(λ) =
FP(λ)

FP(λ) + TN(λ)
.

If we let the threshold vary from −∞ to ∞ and plot the points (FPR(λ),
TPR(λ)), we get the receiver operating characteristics curve. This curve lies
within the unit square [0, 1]2, starts from the upper right corner and ends in
the lower left corner. We use the area under this curve as our performance
measure. This area has a nice interpretation in terms of probabilities, related to
the Wilcoxon statistic. The area is the probability that a negative record will
be scored lower than a positive record according to the test function:

AUC = P( T (xN |ω ) < T (xP |ω ) |xN ∈ CN and xP ∈ CP ).

Figure 3.8 shows two typical ROC curves that correspond to a good test (the
curve with the largest area) and a less good test (the curve with the smallest
area). We see that if we choose our threshold in such a way that there is 85%
chance to classify a positive patient as positive, that the test corresponding to
the curve with the largest area (93.6) will perform better. This test will only
classify 12.5% of the negative patients as positive, while the other test (area
under the curve is 86.0) wrongly classifies 34.5% of the negative patients as
positive.
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3.4 To conclude

In this chapter, we introduced the principles of the Bayesian framework together
with a short description of its history. We focussed on dealing with classification
problems, which will be the main application of this dissertation. Different
levels of decision support were indicated and different performance measures
were introduced, allowing us to compare classification systems. We will use
these performance measures to compare a whole range of classification models
in Chapter 7.
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Figure 3.7: The Bayesian classification (dashed lines) and the maximum a posteriori
classification (dotted lines). The lines indicate the 10%, 50% and 90% probability re-
gions. The background indicates the full Bayesian information level measured with the
variance. The darker the background, the higher the variance of the class membership
probability.
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Figure 3.8: Two receiver operating characteristics curves representing the perfor-
mance of two classification systems. The x axis represents the False Positive Rate,
while the y axis indicates the True Positive Rate The larger the area under these
curves, the better their corresponding tests will perform. The test corresponding to
the large area (93.6) will classify 12.5% of the negative patients as positive while the
other test corresponding to the smaller area (86.0) will classify 34.5% of the negative
patients as positive when a sensitivity of 85% is required.
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Often, we have some information about a problem, but this information can-
not directly be included in the probabilistic model from where the actual obser-
vations are coming. This chapter will provide an outline how this information
can still be used. At first, we choose a suitable model that can describe this
information. Using a transformation technique based on virtual data sets, we will
be able to transform the information to a model class that is suitable to describe
the actual observations also.

39
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4.1 An example

We will try to make things clear with a small example. Suppose we know that the
diameter of the tomatoes produced by some plant have a uniform distribution
between 8 and 10 centimetres. We represent this knowledge with the symbol
ξ and will use this symbol from now on to indicate all the knowledge that is
known besides the statistical data. This knowledge tells us something about the
distribution of the diameter and can be written in symbols as

p( diameter | ξ ) =

{
1
2 if diameter ∈ [8, 10] cm
0 else.

Since the tomato market is more oriented towards the weight of a tomato
instead of its diameter, we would like to transform our knowledge ξ about the
diameter to a distribution describing the same knowledge in a model for the
weight of our tomatoes. In such an easy case as this, we can compute the
resulting distribution directly using the change of variables formula

p(ω | ξ ) = p( θ(ω) | ξ )× | det(
∂ω

∂θ
)|−1. (4.1)

This formula allows us to change the variable θ (the diameter) to the new
variable ω (the weight) if the transformation ω(θ) is known, differentiable and bi-
jective. The function θ(ω) represents the inverse function of ω(θ) and | det( ∂ω∂θ )|
is called the Jacobian of the transformation.

We assume that the weight of a tomato can be computed as its volume times
a constant factor Cst representing the weight per volume of tomatoes

weight = Cst × volume

= Cst × π

6
diameter3

diameter =

(
6 weight

Cstπ

)1/3

∂weight

∂diameter
=

Cstπ

2
diameter2

=
2

(Cstπ)1/3(6 weight)2/3
.

This results into the transformed distribution

p( weight | ξ ) =
1

Cstπ1/3(6 weight)2/3
, if weight ∈

[
256

Cstπ

3
, 500

Cstπ

3

]
.

If we now weigh a series of tomatoes, we can then easily update our prior
knowledge p( weight | ξ ) with measurements of these tomatoes. The resulting
posterior distribution represents now our belief about the distribution of the
weight.

Such an ideal case as above will not occur often in practice; the transforma-
tion of our knowledge ξ can most of the time not be computed exactly. We will
have to find others means for transforming our information representation.
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4.2 Donor models

The first type of model, which will be called a donor model, will describe a
joint distribution and has the capability to incorporate prior information. For
instance, experience and knowledge of a domain expert could be expressed into
this model via the usage of a prior distribution p( θ | ξ ). Here, θ represents the
parameters of the donor model class that the expert found suitable to express his
knowledge ξ. Other valuable information that we will encounter is information
in some specific format (e.g., textual information) that could be used to specify
this model. We represent this knowledge with the symbol ξ.

In addition to the advantageous property of handling background informa-
tion well, we assume that this model is not very suitable to update this infor-
mative prior distribution p( θ | ξ ) to its posterior p( θ |D, ξ ) by using the data
D. If this was the case, it would be optimal to combine the data directly into
this donor model, instead of using a different model class and transforming the
information representation to there.

In our case, our donor model will be a Bayesian network, as explained
in Chapter 5. The parameters of this model have a clear probabilistic inter-
pretation, providing a domain expert with a tool to express his knowledge. In
addition to this, we will be able to derive a prior for its structure based on vast
quantities of electronic literature. On the other side, a Bayesian network that is
defined by an expert has several drawbacks. Its structure is often too restricted
to model the real data: usually it is discrete in nature, suffers from a huge num-
ber of parameters that have to be determined from the data and models a joint
distribution of the whole domain instead of the conditional distribution we are
interested in to perform classification. Although it does not harm to model the
whole domain using a joint distribution, we would like the model to concentrate
specifically on modelling the distribution of the class labels.

4.3 Acceptor models

The opposite of a donor model, which we will call an acceptor model, is a
model that has generally poor capabilities to incorporate prior knowledge. In
fact, most of the time, no sensible prior or only a complexity-based prior p(ω)
can be defined directly. We assume that it is not possible to compute a direct
transformation by using the change of variables formula Equation 4.1. If you can
compute this direct transformation, as was the case for our tomato example, you
are lucky and there is no need to go through the procedures that are described
next. Note also that it will not be necessary that this model describes a joint
distribution.

As acceptor model class, we select that model class that has to tackle our
problem, and we require that it has good learning capabilities from data. It
should have the necessary power and flexibility to describe the data and its
parametrization must be continuous. This last property means that a small
change in the model parameters should result in a small change of the resulting
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joint or conditional distribution. This allows us to even use a slightly wrong
prior.

We will use a multilayer perceptron model as an acceptor model, and will
introduce this model in Chapter 6. Its parameters have no clear interpreta-
tion, leaving it virtually impossible to specify prior knowledge directly into a
prior distribution other than complexity-related information. It will model a
continuous conditional distribution, specifically suitable for classification, our
problem at hand. In addition to this, multilayer perceptrons are known to have
good learning capabilities from data because of their relatively small number of
parameters that are needed to express a wide range of different distributions.

We use the donor/acceptor terminology that was developed by Radford
Neal [64]. Note however that the same procedure as Neal describes was de-
veloped and published by the author [5] beforehand.

4.4 Transformation of representation

Both models have their own strong points, which are more or less complemen-
tary, as indicated in Figure 4.1. The donor model is suitable to describe the
prior information, but fails to model the problem at hand very well. The accep-
tor model on the other hand is not suitable to use as a tool for gathering prior
information, but has good learning performance or is the specific tool we need
for solving our task.

Donor Acceptor

Powerful modelling

prior is possible
Modelling

Collecting prior information

e.g., Bayesian networks e.g., multilayer perceptrons

Only complexity−based

Figure 4.1: The donor model (left) is used to collect the prior knowledge. Because
the donor model class is not suitable to learn from data, the collected prior knowledge
is transformed to an acceptor model. This acceptor model will be able to update the
transformed prior knowledge to a posterior distribution with the use of the data. The
acceptor model is not suitable to directly specify the prior knowledge, so we have to
go through the whole process.

It is therefore natural to seek the combination of both. Stated in the
Bayesian framework, we are looking for a prior distribution for the parame-
ters ω of the acceptor model that contains the information that was captured
using the donor model.
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We can write out this informative prior distribution p(ω | ξ ) by conditioning
on all possible data sets Dk containing k records and the donor model parame-
ters θ:

p(ω | ξ ) =
∑

Dk

p(ω |Dk, ξ ) p( Dk | ξ )

=
∑

Dk

p(ω |Dk, ξ )

∫

θ

p( Dk | θ, ξ ) p( θ | ξ ) dθ

≈
∑

Dk

p(ω |Dk, ξc )

∫

θ

p( Dk | θ, ξ ) p( θ | ξ ) dθ (4.2)

The only approximation we make in Equation 4.2 is that we assume the data
set Dk to be large enough to contain sufficient information so we can drop
the informative knowledge ξ from the term p(ω |Dk, ξ ). We exchange this
knowledge term ξ with only the complexity-based knowledge ξc. Therefore, this
formula still contains the non-informative prior p(ω) that we were able to define
for the acceptor model and updates this to an informative prior.

Although this formula does not give us an easy analytic form to work with,
it can be read directly into a procedure to draw parametrizations from p(ω | ξ ):

1. Generate a donor parametrization θ from the informative prior p( θ | ξ ).

2. Generate a data set Dk from the joint distribution defined by the donor
model with parameters θ.

3. Generate a parametrization ω from the a posteriori distribution p(ω |Dk, ξc ).

If an analytic form is necessary, we can draw several parametrizations from
p(ω | ξ ) and estimate this distribution using some general class of probability
distributions.

4.4.1 Choosing the data set size

An important parameter in this transformation is the size k of the virtual data
sets Dk. The size should be large enough to allow us to exchange ξ from
the term p(ω |Dk, ξ ) with the complexity-based knowledge ξc. The larger we
choose k, the more accurate the transformation will be, although it can be
dangerous to set it too large; the larger k gets, the more peaked p(ω |Dk ) will
get. If none of the data sets Dk are like the real data set, none of the posterior
distributions p(ω |Dk ) will have the optimal acceptor model parametrization
in their support, resulting in a prior p(ω | ξ ) that does not even contain the
optimal parametrization. By choosing k not too large, p(ω | ξ ) will be the
weighted sum of not-too-peaked posterior distributions, resulting in a usable
prior even if p( θ | ξ ) is somehow wrong.
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4.4.2 Discrete and continuous variables

It is often easier to think and reason about discrete distributions instead of
probability density functions. Especially in medicine there is a habit to discretize
variables in a few bins and define distributions only using these bins. By doing
so, some information is lost, but insight in the problem can be gained.

In our test case, things are not different. It was much more natural for
our expert to specify the relation between the variables in a discrete setting
instead of using some class of continuous distributions. Because our neural
network model works most naturally with continuous variables and some domain
variables are continuous, it would be artificial to enforce the network to use only
the discretized version of the data.

This requirement results in an extended formulation for p(ω | ξ ), where
p( Dc |Dd ) indicates how we have to generate a continuous data set Dc from a
discrete one Dd

p(ω | ξ ) =

∫

Dc

p(ω |Dc, ξ ) p( Dc | ξ ) dDc

≈
∫

Dc

p(ω |Dc, ξc ) p( Dc | ξ ) dDc

=

∫

Dc

p(ω |Dc, ξc )
∑

Dd

p( Dc |Dd, ξ ) p( Dd | ξ ) dDc

=

∫

Dc

p(ω |Dc, ξc )
∑

Dd

p( Dc |Dd, ξ )

∫

θ

p( Dd | θ, ξ ) p( θ | ξ ) dθ dDc

=

∫

Dc

p(ω |Dc, ξc )
∑

Dd

p( Dc |Dd )

∫

θ

p( Dd | θ ) p( θ | ξ ) dθ dDc.

The only thing that changed with respect to the previous formula, is the
conditioning on the discrete data sets and the generation of these discrete data
sets with the donor model. The approximation is due to the exchange of ξ with
ξc, as explained above.

The procedure to generate ω from p(ω | ξ ) is the same as previously defined,
except that we have to generate a continuous data set from the discrete one.
We treat the continuous records and variables as being independent given the
discrete values

p( Dc |Dd ) =
n∏

i=1

v∏

j=1

p(xijc |xijd ),

where xij is the value of the jth variable in the ith data record.
Several strategies can be adopted for defining p(xc |xd ) using the original

discretization bins. The discretization of a variable is a set of disjunct intervals
{[ai, bi[}di=1 that have been used to discretize the data in the first place. The

random variable x should lie within the union
⋃d
i=1[ai, bi[.

Figure 4.2 displays a discrete distribution over five bins where the probability
of each bin is indicated by the length of the lines with the circles under the x
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axis. The indications above the x axis represent the different possibilities to
construct a continuous distribution from our discrete one.

Middle of a bin

For this method, we define p(xc |xd = i ) ≡ δ(ai+bi)/2(xc), which sets xc fixed

to the middle of the ith bin [ai, bi[. We denote with δy(x) the Dirac distribution
around y: ∫

f(x) δy(x) dx = f(y).

The discrete nature of this method will result in bad generalization power as
xc will take only d values. This distribution is indicated with the vertical lines
with the squares on Figure 4.2. The height of such a line represent the volume
of the Dirac peak.

Uniform over a bin

To deal with the above problem, we could choose xc uniform from its corre-
sponding bin. This will solve half the problem: the probability density function
of xc is now a stepwise function with discontinuities at the borders of the bins.
These discontinuities result in large network parametrizations for the same rea-
son as explained in Section 6.3.1. Note that this density function is not the
same as the discrete distribution, because the width of a bin is now taken into
account.

Some overlap between bins

We can get rid of the discontinuities by using a continuous distribution for each
bin. A Gaussian distribution centred around the middle of the bin with a cer-
tain percentage overlap with the next bin is a suitable choice. These separate
weighted Gaussian distributions are represented by the dotted curves in Fig-
ure 4.2, while their sum, the resulting density function, is indicated by the full
line. The percentage of overlap here was 15%, meaning that 0.15 of the probabil-
ity mass of one such Gaussian falls beyond the boundaries of the corresponding
bin. This is achieved by choosing the standard deviation of each Gaussian as
0.347 times the width of the corresponding bin.

4.5 Other approaches

Many other approaches to combine prior domain knowledge and data build
on learning theories [25, 12, 86] that made it possible to formalize how the
incorporation of domain knowledge reduces the statistical complexity of learning
for inductive techniques, both in the classical statistical context [36, 39] or in
the Bayesian context [40].

On the practical side, Abu-Mostafa [1] and Niyogi et al. [66] reported meth-
ods for exploiting certain regularities and symmetries of the input space that
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Figure 4.2: A discrete distribution and some possible methods to convert it to a
continuous distribution. The discrete distribution is indicated under the x axis by
the lengths of the lines and the circles. Above the x axis is a sum of Dirac distribu-
tions, indicated by the vertical lines and the squares, a stepwise density and a sum of
Gaussians. The dotted lines denote the Gaussian distributions for each discretization
bin.

are known a priori to enlarge the data set. Another approach — the knowledge-
based artificial neural network — uses the prior knowledge for selecting an
appropriate multilayer perceptron architecture [85]. Other methods focussed
on incorporating prior knowledge into neural networks include the work of
Sowmya Ramachandran [71] who basically suggests to build Bayesian networks
with knowledge- and neural network based local models.

We will discuss one intuitive approach in more detail; suppose that our prior
information ξ is a data set Dp. In this case, its seems easy to specify the
posterior parameter distribution for the acceptor model

p(ω |D, ξ ) = p(ω |D,Dp );

we simply have to concatenate both data sets, and use this large data set to
compute the posterior distribution.

In practice, this is not always the optimal approach. Often, the prior data
set Dp comes from a slightly different distribution, it can be older, or have
missing fields. Combining the data sets is only valid when they have the same
distribution. Still, this prior data set contains valuable information that we
would like to use.

A possible solution to use this prior data set Dp is to define a prior distri-
bution over the acceptor parameter space, and update this prior to a posterior
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using the real data set D. We still make the mistake of combining informa-
tion from different distributions, but this time the additional step of generat-
ing an a priori distribution gives us extra possibilities: it is unlikely that the
parametrization ω∗ that generated D will be the maximum a priori parametriza-
tion argmaxω(p(ω |Dp )), but it is reasonable to expect that ω∗ will still have a
reasonable probability if the parametrizations of the acceptor model are contin-
uous. With this last property, we mean that two models with slightly different
parameters will result in probability distributions that are only slightly differ-
ent. If we suspect that the prior data does not follow the same distribution as
the real data set, we can estimate the informative a priori distribution using
some parametric distribution p(ω |ν ):

p(ω |ν ) ≈ p(ω |Dp ),

and make it wider by increasing its variance. This way, we will use the in-
formation from the prior data set, but do not believe it that strictly. This is
something we cannot do by directly combining the two data sets.

We will illustrate the above with an extreme example. Suppose that we want
to perform a regression task where we know that the expected mean of y given
x is based on the sine function:

E[ y |x ] = ω1 sin(ω2 x+ ω3).

Both the real data set D and the prior data set Dp are generated from
such a model, but with slightly different parameter setting. Both data sets are
shown on Figure 4.3, the real data set is indicated using crosses, while the prior
data set is indicated using circles. A first model is trained using the posterior
distribution based on concatenating both data sets together. Its conditional
mean is indicated using a dashed line. Another model was trained by first
estimating the prior distribution given Dp. This a priori distribution was then
converted to an a posteriori distribution using the real data D. The conditional
mean of this model is represented using a full line.

Figure 4.3 clearly indicates that estimating the prior distribution has a ben-
eficial effect over simply combining both data sets in this case. Although the
difference depends on the problem and the acceptor model, we will choose the
approach where the prior information is used to estimate a prior distribution in
the acceptor model parameter space.

Note that we can extend the above discussion to a more general case; instead
of assuming that our prior information consists of one data set Dp, we can
assume that our prior information ξ is given as a distribution over the model
parameters θ of a certain donor model, as was the case in Section 4.4. Computing
the posterior directly corresponds to the above procedure where the two data
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sets are combined directly:

p(ω |D, ξ ) =
∑

Dk

p(ω |D,Dk, ξ ) p( Dk |D, ξ )

=
∑

Dk

p(ω |D,Dk, ξ )

∫

θ

p( Dk | θ, ξ ) p( θ |D, ξ ) dθ

≈
∑

Dk

p(ω |D,Dk, ξc )

∫

θ

p( Dk | θ ) p( θ |D, ξ ) dθ.

The same reasoning as above suggests that a direct combination of D and
Dk can result in suboptimal performance.

-1.0 0.0 1.0x 101

-1.0

0.0

1.0

Figure 4.3: The real data set is indicated using crosses while the prior data set is
indicated using circles. A first model is shown where the posterior distribution is
computed by concatenating both data sets (dashed line). The full line indicates the
conditional mean of another model where the posterior distribution was computed
by first estimating the prior distribution given the prior data set Dp. This prior
distribution was then updated to a posterior distribution using the real data set.

4.6 To conclude

We introduced a technique to transform the information representation from
one model to another by using virtual data sets. This technique was developed
by the author in close cooperation with Peter Antal [5, 3, 4]. Although this



4.6. To conclude 49

method is introduced here in a general way, it was developed with a specific
purpose in mind; the application specific goal is to combine the different types
of information available for the ovarian tumour problem introduced in Section 2.
This will be accomplished using the above transformation technique in combi-
nation with Bayesian networks and multilayer perceptrons. These two models
will be introduced in the following two chapters.
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In the previous chapter, we discussed a technique for transforming the in-
formation representation from one model to another. A donor model was used
to gather the prior knowledge in the form of an informative prior distribution.
Once this prior was specified, this information was transformed to a so-called
acceptor model via the use of virtual data sets.

This chapter will introduce and discuss the donor model class that we will use
for the ovarian classification problem introduced in Chapter 2. We selected the
donor model class as the class of Bayesian networks, also called belief networks,
for various reasons. These models belong to the class of graphical models because
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they can be represented by a graph where each node represents a domain variable.
We will describe the model, its usage, and some of the more important algo-

rithms that exist to learn and use this model.

5.1 Description

A Bayesian network is a probabilistic model that describes a joint distribution
over a set of random variables, also called the domain variables [78, 15, 52, 9, 35].
If we suppose we have v domain variables (x1, . . . , xv), we can always apply the
chain rule of probability:

p(x1, . . . , xv) = p(x1) p(x2 |x1 ) · · · p(xv |x1, . . . , xv−1 )

=
v∏

i=1

p(xi |x1, . . . , xi−1 ). (5.1)

This decomposition of the joint distribution into v factors is dependent on
the order of the variables for which we apply the chain rule of probability and
hereby will have an impact on the construction of Bayesian networks.

Starting from Equation 5.1, we try to simplify the factors one by one, de-
pending on the problem — the joint distribution — we want to model; suppose
that x3 is conditionally independent of x1 given x2. In other words, the addi-
tional knowledge of x1 does not learn us anything new about x3 if we already
knew x2. We denote this property with (x3 ⊥ x1 |x2 ). This means that we can
simplify the third factor to

p(x3 |x1, x2 ) = p(x3 |x2 ).

If we make these simplifications for each node xi, we get

p(x1, . . . , xv) =
v∏

i=1

p(xi |π(xi) ) (5.2)

π(xi) ⊂ {x1, . . . , xi−1},

where we call the set π(xi) the parents of node xi.
This formulation of the joint probability distribution contains the bilateral

nature of a Bayesian network: at first, we simplify the joint probability dis-
tribution by acting on each factor of Equation 5.1 separately, ending up with
a sparse representation. Next, we have to specify the univariate conditional
distributions p(xi |π(xi) ) that are left. The former is called the structure of
the Bayesian network, while the distributions in the latter are called the local
dependency models.

5.1.1 Structure and conditional independency

By carrying out the simplifications in Equation 5.2, we construct an easier rep-
resentation of our joint probability distribution. This can be represented by
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using a directed acyclic graph where the nodes correspond to the domain vari-
ables and all the incoming edges of a node come from the parents. This directed
acyclic graph represents the structure of the Bayesian network. Figure 5.1 dis-
plays two such structures for a five variable domain. The fully connected graph
(indicated with SC

bn) corresponds to a domain where no simplifications can be
made, while the other graph corresponds to the simplifications ( b ⊥ a |φ ),
( c ⊥ a, b |φ ), ( d ⊥ c | a, b ) and ( e ⊥ a, b | c, d ). The symbol φ denotes the
empty set; ( b ⊥ a |φ ) therefore indicates that a is independent of b. The joint
distribution in this case can thus be simplified as

p(a, b, c, d, e) = p(a) p( b | a ) p( c | a, b ) p( d | a, b, c ) p( e | a, b, c, d )

= p(a) p(b) p(c) p( d | a, b ) p( e | c, d ).

a b

dc

e

a b

c d

e
Figure 5.1: Two Bayesian network structures. The left side shows the structure
for a domain where no simplification could be made, and thus has a fully connected
structure. The graph on the right shows the structure where the following conditional
independencies hold: ( b ⊥ a |φ ), ( c ⊥ a, b |φ ), ( d ⊥ c | a, b ) and ( e ⊥ a, b | c, d ).
This gives rise to the following simplification of the joint distribution: p(a, b, c, d, e) =
p(a) p(b) p(c) p( d | a, b ) p( e | c, d ).

One can choose only those simplifications that are consistent with the initial
node ordering that has been chosen while applying the chain rule of probability.
Conditional independence statements that are not consistent with this ordering
cannot be expressed using a Bayesian network with that specific node ordering.
As such, it is not possible to express the conditional independence statement
( b ⊥ c | d, e ) if the node ordering a, b, c, d and e is used. By using the node
ordering c, d, e, b, a, the conditional independence statement at hand can be
expressed.
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Given an arbitrary set of conditional independence conditions, it is some-
times not possible to find a node ordering such that each conditional indepen-
dence statement with a single variable on the left hand side, can be used for
simplifying the factors. Conditional independencies with two or more variables
on the left-hand side can similarly not always be represented.

Despite all this, a Bayesian network can still express a lot of different con-
ditional independence statements, and the above restrictions are often not a
problem in practice. Once a Bayesian network structure is given, this structure
can be used to check if some conditional independence statement holds for that
network structure. This can be computed using a graphical algorithm called
d-separation [68].

The above states that not all conditional independence statements can be
captured by a Bayesian network. On the other side, two different Bayesian
network structures can sometimes express exactly the same conditional indepen-
dence statements, making them equivalent. As a consequence, there is no differ-
ence between two equivalent Bayesian network structures from the probability
distribution point of view; they can both represent the same set of distributions.
It turns out that equivalent Bayesian network structures have the same skele-
ton, i.e., the same undirected structure. The difference between two equivalent
network structures lies thus in the directionality of the edges. Chickering [17]
derives a practical method to find out which arcs can be reversed without alter-
ing the conditional independence statements of a network structure. Figure 5.2
shows the general structure when an arc can be reversed. The nodes a and b in
the middle must have the same parents if the arc between these two nodes has
to be reversed without altering the conditional independence statements. We
will not care too much about equivalent Bayesian network structures, as they
will not matter to us.

Although most people who construct a Bayesian network structure by hand,
like to think in terms of causal dependencies, it is not necessary to do so. It
is convenient to draw an arc from x1 to x2 if x1 causes x2, but the two-node
model with the reverse arc can express exactly the same distributions. If a
Bayesian network structure is learned from a statistical data set, the resulting
structure will not per se reflect the causal dependencies. The structure will be a
reflection of the conditional independence statements that can be stated without
compromising much of the capability of the network to model the data. In
reality this will reflect only more or less the causal relations between the domain
variables. The directionality of an arc can always be wrong and confounding
factors prevent causal relationship inference in general observational studies like
the ovarian tumour study introduced in Chapter 2.

A common, but simplistic network structure that is often used, is the naive
Bayes structure (see Figure 5.3), and corresponds to the joint probability fac-
torization

p(a, b, c, d) = p(d) p( a | d ) p( b | d ) p( c | d ). (5.3)

This network structure is especially suitable for diagnosis problems. The vari-
able d represents the diagnosis, while a . . . c are the symptoms. Specifying this
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a

b

Figure 5.2: The general structure when an arc in a Bayesian network structure
can be reversed. The nodes a and b in the middle must have to same parents if
the arc between these two nodes has to be reversed without altering the conditional
independence statements.

model is fairly easy: one only has to give the distribution of the diagnosis with-
out any observation of the symptoms (neither the observation that a symptom
is present nor absent), and the distribution of the symptoms if the diagnosis is
known. Predicting the diagnosis when some of the symptoms are observed, is
basically applying Bayes’ rule; for example,

p( d | a, b, c ) =
p( a, b, c | d ) p(d)

p(a, b, c)

=
p( a | d ) p( b | d ) p( c | d ) p(d)∑

d p( a | d = d ) p( b | d = d ) p( c | d = d ) p(d = d)
.

Making predictions for a general network structure will not be so straightfor-
ward, as is discussed in Section 5.2.4. This simplicity makes the naive Bayes
network structure an often used structure. On the other hand, this model makes
pretty strong assumptions on the domain to be applicable; it is assumed that
the distributions of the symptoms — the child nodes — are independent if the
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d

a b c
Figure 5.3: The naive Bayes network structure.

diagnosis d is observed.

p( a, b, c | d ) =
p(a, b, c, d)

p(d)

=
p(d) p( a | d ) p( b | d ) p( c | d )

p(d)
(5.4)

= p( a | d ) p( b | d ) p( c | d ).

We used the factorization of the naive Bayes model (Equation 5.3) in Equa-
tion 5.4. If the diagnosis is not known, the symptoms are dependent on each
other through the unknown d.

For the opposite structure, displayed on Figure 5.4 and corresponding to the
factorization

p(a, b, c, d) = p(a) p(b) p(c) p( d | a, b, c ), (5.5)

a, b and c are independent if d is not known:

p(a, b, c) =
∑

d

p(a, b, c, d = d)

=
∑

d

p(a) p(b) p(c) p( d = d | a, b, c ) (5.6)

= p(a) p(b) p(c)
∑

d

p( d = d | a, b, c )

= p(a) p(b) p(c).

Again, we used the factorization of the joint distribution (Equation 5.5)
in Equation 5.6. Observing d makes them dependent on each other.
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Specifying such a reversed naive Bayes model in the discrete case is much
harder, as one has to specify the distribution p( d | a, b, c ) of the node d for each
different possible value configuration of the parents. This results in specifying
O(dk) parameters (the number of different value combinations for the parents)
instead of O(k · d) in the naive Bayes’ case (for each of the d possible values
of d, we have to specify the distribution of the k child nodes). The number of
parents (or children in the naive Bayes’ case) is k and d represents the number
of possible values for these nodes. The naive Bayes structure from Figure 5.3
therefore needs only 3d(d − 1) parameters to specify the distribution of the
children, while the reversed network structure from Figure 5.4 will need d3(d−1)
parameters to specify the distribution of the child d. Note that both models also
need a few parameters to specify the distribution of the parents. For each parent,
there are d− 1 parameters needed when table distributions are used. The total
number of parameters for the naive Bayes model is therefore 3d(d− 1) + d− 1,
while for the reversed naive Bayes model increases to d3(d− 1) + 3(d− 1).

d

a b c
Figure 5.4: The reversed naive Bayes structure.

5.1.2 Local parameters and conditional dependency mod-
els

Besides the network structure, we also have to specify the local dependency
models p(xi |π(xi) ). They specify how the parents of a node influence the dis-
tribution of the child variable. We are free to choose any conditional distribution
we like, but a few considerations should be made; if it is the purpose to perform
inference with the model, the form of these conditional distributions is of crucial
importance for the algorithms that need to be designed.

For modelling discrete distributions, it is common and practical to use a
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different table distribution for each variable and each different parental configu-
ration. The computations for these conditional distributions can be carried out
exactly, but the number of parameters involved grows exponentially with the
number of parents.

For modelling continuous distributions, a regression-like distribution is often
chosen; some function of the parental values specifies the mean of the conditional
distribution. The distribution around this mean is often, but not necessarily, a
Gaussian with fixed variance. When the model for the mean is a linear function
for each variable, we are actually modelling a multivariate Gaussian distribution
with a sparse inverse covariance matrix.

5.2 Algorithms

To specify a Bayesian network, one has to give the network structure and the
conditional probability distributions that express the dependencies of the par-
ents on its child. We denote the structure of a Bayesian network with Sbn, while
the parameters are represented with θ ∈ Θ. Depending on the domain at hand
and the available information, we have to design the network structure and/or
local dependency models by hand or infer them from a statistical data set. The
bilateral structure of a Bayesian network is maintained in the learning process:
we will first learn the structure and then learn its parameters.

Once a Bayesian network is specified, we are ready to use it. The usage
can vary from generating random samples from the modelled distribution over
computing specific marginal conditional distributions to sensitivity analysis, ex-
plaining why it takes certain decisions, or finding out which variable should be
observed next to reduce most of the uncertainty of some conditional distribution.

5.2.1 Structure learning

There are several procedures to learn the structure of a Bayesian network or
perform inference on the structure [30], all based on a different principle. Among
these, we have maximum likelihood, Bayesian learning, minimum description
length, Akaike information criterion, entropy-based learning, and so on. We
will discuss Bayesian learning because it has a clear probabilistic interpretation.
At first, we concentrate on the general setup and will discuss the details for
some specific local dependency models in Section 5.3.

The purpose is to find that network structure that maximizes p(Sbn |D, ξ ).
Let us first look into this posterior probability of a network structure Sbn given
a data set, where each network structure has the same prior probability and the
samples from the data set are independent once the model (both the structure
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and parameters) is known

p(Sbn |D, ξ ) =
p( D | Sbn ) p(Sbn | ξ )

p(D)

∝ p( D | Sbn )

=

∫

Θ

p( D | Sbn,θ ) p(θ) dθ

=

∫

Θ

n∏

i=1

p(xi | Sbn,θ ) p(θ) dθ

=

∫

Θ

n∏

i=1

v∏

j=1

p(xij |π(xij),Sbn,θ ) p(θ) dθ

=

∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θ) dθ.

We treat the probability of the data p(D) as a constant and assume that we
have no a priori knowledge about the structure. Therefore, p(D) and p(Sbn)
are nothing more than constant multiplication factors, which we drop to make
the essence more clear. The integration domain is indicated with Θ, which is
the set of all possible parametrizations.

We made the assumption that we can divide the parameters θ into disjunct
subsets θj , where θj is sufficient to describe the distribution of xj given its
parents:

p(xj |π(xj),θ ) = p(xj |π(xj),θj ). (5.7)

Our next and related assumption is called global parameter independence,
and means that we can treat these parameters θj corresponding to different
local dependency models as being independent before we observe any data

p(θ) =

v∏

j=1

p(θj). (5.8)

This allows us to continue to work out our expression for the a posteriori
probability of the network structure given the data

p(Sbn |D ) ∝
∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj )
v∏

k=1

p(θk) dθ

=

∫

Θ

v∏

j=1

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθ

=

v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθj (5.9)

=
v∏

j=1

L( j |πj ).
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This last equation indicates that the structure posterior decomposes into a
product of factors where each factor contains information about only one child
node xj and its parents. We denote such a factor with L( j |πj ). This important
observation suggests that we can find the maximum a posteriori network struc-
ture by searching for an optimal parental set for each variable independently
and combine these local optimizations into one structure. This procedure is
correct if the order of the variables when applying the chain rule of probability
is known.

Unfortunately, it is most of the time unclear how to choose the initial node
ordering. It is then a common strategy to start with generating a set of ran-
dom node orderings. For each of these node orderings, we will learn a network
structure, and keep thát structure that had the highest probability among all
the learned structures.

Within a given node ordering, we have to find the optimal parents for each
node. When searching the parents for node xj , we can choose only nodes from
the set {x1, . . . , xj−1} as potential parents to ensure that the result will be a
directed acyclic graph. Only for very small values of j, we can evaluate L( j |πj )
for each possible set of parents, as the total number of possible subsets increases
very fast with the number of possible elements we can choose from. Although
we could restrict us to look only for that set of parents consisting only of a
few nodes, this would restrict the Bayesian network space we are considering
seriously. Therefore we will extend this exhaustive search with a greedy-based
search. Instead of looking at all the possible sets, we try to extend the current
parent set with only one variable at a time. We add thát node — if any —
that increases L( j |πj ) maximally and try to add another node in the following
iteration:

1. StructureProbability ← 0.

2. CurrentDAG ← ∅.

3. Repeat for the number of node permutations that should be tried:

(a) Choose a random node permutation (x̃1, . . . , x̃v) such that
{x̃1, . . . , x̃v} = {x1, . . . , xv}.

(b) For j = 1 to v do

i. Find πj of size M or smaller that maximizes L( j |πj ) using an
exhaustive search method.

ii. For each x∗ ∈ {x̃1, . . . , x̃j−1} \ πj , evaluate L( j |πj ∪ x∗ ).

iii. If maxx∗ L( j |πj∪x∗ ) > L( j |πj ), set πj ← πj ∪ argmaxx∗(L( j |πj∪
x∗ )) and go to (ii).

(c) If StructureProbability <
∏
j L( j |πj ), set StructureProbability ←∏

j L( j |πj ) and CurrentDAG ← (j ← πj)
v
j=1.

4. Return CurrentDAG.
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In the above algorithm, CurrentDAG represents the current optimal di-
rected acyclic graph we have already found and is represented with the set of
edges connecting each node with its parents. This is written down using the
notation (j ← πj)

v
j=1.

Instead of learning the structure for a large number of initial node permu-
tations, we developed an algorithm that searches for a good node ordering. We
denote with A the set of nodes that are already ordered satisfactorily and with
B the set of nodes that are not ordered yet. The following procedure will gradu-
ally fill A and hereby generating a usable ordering and constructing the optimal
network structure with respect to this given ordering:

1. Set A← ∅ and B ← {x1, . . . , xv}.

2. Choose x∗ such that
∏
y∈B\x∗ maxπy⊂A∪x∗ L( y |πy ) is maximal.

3. Learn the optimal parents for x∗ with step (b) from the above greedy hill
climbing procedure where we can choose parents from A.

4. Set A← A ∪ x∗ and goto 1 if B 6= ∅.

Step 2 in the above procedure selects that node from B that helps predicting
the other variables in B the most with the additional help of (some) variables
from A.

No matter which of the two procedures is used, the local substructure prob-
ability L( j |πj ) is the basic element and has to be computed very often. As
usual, it is more convenient to compute the logarithm of this probability, trans-
forming the products into summations. It also pays off to cache these individual
values to avoid repeatedly computing the same local substructure probabilities.

We discussed a procedure that tries to approximate the maximum a pos-
teriori network structure. We work in the Bayesian framework by integrating
over the parameters θ. This anticipates the overtraining that occurs when the
maximum likelihood procedure

Sbn = argmaxθ,Sbn
(p( D |θ,Sbn ))

∣∣
Sbn

is applied. In the above formula,
∣∣
Sbn

indicates the restriction of the result

(θ∗,S∗bn) from the argmax procedure to only the network structure S∗bn.

Although we should sum over all network structures and weight each term
with the corresponding structure probability to perform pure Bayesian inference,
we will be satisfied and continue with only our (approximation of the) maximum
a posteriori network structure.

Procedures that learn the structure of a Bayesian network in the presence
of missing values or hidden variables do exist and can be found in [28]. Such
procedures use a Gibbs sampling or EM approach to find the solution in an
iterative manner.
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5.2.2 Parameter learning

Once the structure is fixed, we can start learning the parameters of the condi-
tional probability distributions that describe the local dependency models. By
learning, we can mean finding the maximum likelihood parametrizations, the
maximum a posteriori parametrizations or the full Bayesian posterior parameter
distribution.

Finding the maximum likelihood parameters decomposes into finding the pa-
rameters for each local dependency model under the assumption stated in Equa-
tion 5.7

L(θ |D ) = p( D |θ,Sbn )

=

n∏

i=1

p(xi |θ,Sbn )

=
n∏

i=1

v∏

j=1

p(xij |π(xij),θj ,Sbn )

=

v∏

j=1

(
n∏

i=1

p(xij |π(xij),θj ,Sbn )

)
.

This maximum likelihood setup has only a good behaviour when many sam-
ples are present. For the table distribution case, as discussed in Section 5.3.1,
this imposes strong assumptions on the data set and even then this procedure
results in unreasonable parameter settings when only a small number of samples
are present. Therefore, we look for the maximum a posteriori parametrization.
Using the decomposable prior assumption (Equation 5.8), finding the optimal
parameters decomposes into finding the parameters for each local substructure
separately

p(θ | Sbn,D ) =
p( D |θ,Sbn ) p(θ | Sbn )

p( D | Sbn )

∝
v∏

j=1

(
n∏

i=1

p(xij |π(xij),θj ,Sbn ) p(θj | Sbn )

)
.

In some cases, we can even derive an analytic formulation for this poste-
rior parameter distribution, so there is then no reason to work with only the
maximum a posteriori parametrization. Dasgupta [22] describes the sample
complexity of learning the parameters of a Bayesian network.

5.2.3 Generating random vectors

As indicated before, a Bayesian network is nothing more than a sparse repre-
sentation of a joint distribution. Once both the structure and the parameters
are learned, the chain rule formulation of this joint distribution — Equation 5.1
— can be immediately used to generate random vectors efficiently from this
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joint distribution if we can generate samples from the individual conditional
distributions:

Make sure that π(xi) ⊂ {x1, . . . , xi−1}, ∀i.
1. Generate x1 according to p(x1).

2. Generate x2 according to p(x2 |π(x2) ).

3. . . .

v. Generate xv according to p(xv |π(xv) ).

Return (x1, x2, . . . , xv).

Vectors generated with the above procedure will be independent of each other.

5.2.4 Inference

In addition to generating samples from the joint distribution, we can also use
our Bayesian network to answer questions. With a question, we simply mean
that we want to compute some specific conditional distribution, something we
are interested in. For the ovarian tumour case, this could be

What is the probability that a tumour is malignant when the patient
is 66 years old and has 3 children?

This distribution can then be used to make a prediction or classification.
Computing a general univariate conditional distribution can be done with

the probability propagation in tree of cliques algorithm [45]. This is a quite
complicated algorithm that involves some graphical steps (moralizing and tri-
angulating the graph to obtain a tree of cliques) that are followed by inserting
and propagating the evidence (the condition) into the tree of cliques. The result
of this procedure is a conditional distribution over the nodes contained in each
clique, conditioned on the evidence. From this joint distribution over the clique
variables, the desired univariate conditional distribution can be computed using
marginalization.

For this procedure to work, it is necessary that such a joint distribution
over a set of variables can be stored and that a conditional distribution can be
multiplied into this. For table or linear-Gaussian dependency models, this is
the case. If other distributions are used, one can try to approximate it using
the techniques explained in [55].

Unfortunately, the probability propagation in tree of cliques procedure is
proven to be NP hard [18], which means that computing conditional distribu-
tions from a large densely connected network becomes intractable. Variational
approximations exist which approximate the inference in the intractable network
with inference performed in a tractable network with minimal Kullback-Leibler
divergence [51, 88].

Computing the distribution of more than one variable is computed by ap-
plying the chain rule of probability and using the above technique several times.
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5.2.5 Graph layout

A last operation on Bayesian networks that we will discuss is about interpreta-
tion and human interface, instead of the modelling or usage of the model itself.
Even for only a few nodes, looking at and interpreting a graph is influenced for
a large portion by its 2D graphical layout. An optimal layout would be one
where the nodes are spread out uniformly and a minimal number of edge cross-
ings occur. Finding this optimal layout can be difficult, but good approximate
techniques exist, for instance based on simulating a physical system where each
edge is replaced by a spring.

Instead of implementing and using one of these algorithms, we tried and
tested a novel approach based on a self-organizing map. Our demands are not
that severe, so we do not need maximal performance, and it seemed a nice idea
to test.

The self-organising map concept [53, 54] was originally developed by Koho-
nen to create a two-dimensional map of a higher dimensional data set. Usually,
a two-dimensional regular lattice structure is used to approximate the higher
dimensional data set. This approximation means that the algorithm will try to
learn the data distribution by placing the nodes of the self-organizing map in
the vicinity of the data points. Because the nodes of the map are connected
through the lattice structure, moving one node in a certain direction, will also
move those nodes that are connected via a direct link by some amount, the
nodes that are connected with two edges a smaller amount etc. The net effect
is that the nodes of the map will try to approximate the data distribution with
the constraint of the network structure.

Our approach is to create the data set ourselves, namely a two-dimensional
uniformly distributed data set in some window. Instead of using a regular lattice
map, we use the network we want to lay out. The self-organising map algorithm
will now try to approximate the data distribution under the constraints of the
network structure. This means that the algorithm will try to spread the network
nodes as uniformly as possible, under the constraint of the network structure.
This is exactly the behaviour we expect from a graph layout algorithm and the
performance was more than suitable. An example of this procedure is presented
in Figure 5.5 and Figure 5.6. The first network has random node coordinates,
while the latter has coordinates computed with our self-organising map tech-
nique.

5.3 Different types of networks

The type of the conditional distributions that is chosen to describe the local
dependency models, is of crucial importance. Depending on the variable types
(discrete, continuous, or mixed), other distributions will be considered. In ad-
dition to these local dependencies, it is important to select a distribution and
its corresponding parameters to result in efficient computations. For struc-
ture learning, we should be able to compute the local substructure probabilities
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Figure 5.5: A network with a random layout.

L( j |πj ) efficiently. Parameter learning is also influenced by the choice of the
distribution and the prior. Finally, performing inference has other specific de-
mands that can influence the choice of the distributions.

We discuss a few commonly used alternatives.

5.3.1 Table distributed variables

A widely used type of dependency model is based on the table distribution
(see Section 3.1.3) and is applicable only for discrete variables. This choice
results in nice closed form expressions for the local substructure probabilities
and the posterior parameter distribution together with exact procedures for per-
forming inference. The table distribution can describe any discrete distribution
On the downside, there is a lot of parameters involved, which can result in slow
learning and computational problems.

Conditional distribution

To describe the local dependency models, we use a separate table distribution
for each variable and parental configuration [19, 41]. We denote the parameters
describing the conditional table distribution for variable xj with θj , which is a
collection of the table parameters θj,πk for each different parental configuration
πk:

p(xj = m |π(xj) = πk,θj ) = θmj,πk .
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Figure 5.6: The same network from Figure 5.5, with a layout computed using the
self-organising map approach.

This conditional distribution can represent any conditional discrete distri-
bution. The number of parameters involved increases exponentially with the
number of parents. If all the nodes can have only two possible values, we still
need 2#πj parameters to store this distribution, where #πj is the number of
parents for node j. Even if storing these parameters is no problem, estimating
them often requires many data records. This problem can be dealt with by
using techniques explained in [31].

Prior for the parameters

Heckerman [41] mentions that the only sensible choice for the parameter prior
is based on the Dirichlet distribution:

p(θj,πk |m1, . . . ,md ) =
Γ(
∑
lml)∏

l Γ(ml)

∏

l

(θlj,πk)ml−1 with

∑

l

θlj,πk = 1

E[θj,πk ] =

(
m1∑
lml

,
m2∑
lml

, . . . ,
md∑
lml

)

V[θlj,πk ] =
ml(1−ml/

∑
rmr)

(
∑
rmr + 1)

∑
rmr

.

The hyper-parameters (m1, . . . ,md) are also called pseudo-counts, as they
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have the direct interpretation of the equivalent number of samples that the
prior is worth. This makes it possible to specify an informative prior simply
by giving an estimate of the number of times a certain combination of the
random variables has been observed a priori. Note that, if we choose the hyper-
parameters to be 1, we have the uniform distribution on the set of positive
numbers that sum to 1, which corresponds to saying that we saw each possible
child-parent combination one time.

The Dirichlet distribution suits very well to describe the distribution of the
table parameters corresponding to the distribution of a certain variable xj given
a fixed parental configuration π(xj) = πk. Since we chose a different table
distribution for each different parental configuration, it is natural to choose a
product of independent Dirichlet distributions to describe the prior distribution
of all the parameters concerning a certain variable xj . This assumption is called
local parameters independence:

p(θj) =

qj∏

k=1

p(θj,πk |m1, . . . ,md ) with (5.10)

p(θj,πk |m1, . . . ,md ) Dirichlet and

θj = (θj,π1
, . . . ,θj,πqj ).

We denote the total number of different parental configurations for xj with qj .

Posterior for the parameters

For the discrete table variable case without missing values, finding the maximum
likelihood parametrization for θlj,πk is a simple matter of counting the frequency
that xj = l within the subset of data vectors that are compatible with the
parental configuration πk. If we denote with qj the number of different parental
configurations for node j, the expression for the likelihood becomes

p( D |θ,Sbn ) =
n∏

i=1

v∏

j=1

p(xij |π(xij),θ,Sbn )

=

v∏

j=1

n∏

i=1

θ
xij
j,π(xij)

=
v∏

j=1

qj∏

k=1

d∏

l=1

(θlj,πk)njkl with

d∑

l=1

θlj,πk = 1 and θlj,πk ≥ 0.

This expression has its maximum for the expected counting frequency

θlj,πk =
njkl∑d
r=1 njkr

,
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where njkl is the number of samples in the data set where xj = l while its
parents are in the kth parental configuration π(xj) = πk.

Finding the maximum a posteriori parametrization is very similar:

p(θ |D,Sbn ) ∝ L(θ |D ) p(θ)

=
v∏

j=1

n∏

i=1

θ
xij
j,π(xij)

p(θj)

=

v∏

j=1

qj∏

k=1

d∏

l=1

(θlj,πk)njklp(θlj,πk)

=
v∏

j=1

qj∏

k=1

d∏

l=1

(θlj,πk)njkl+mjkl−1, (5.11)

where mjkl denotes the Dirichlet hyper-parameter that corresponds to the event
that xj = l while the parents of node j are π(xj) = πk.

Equation 5.11 tells us that the local parameter independence is also valid
for the a posteriori distribution if it was valid for the a priori distribution, as
denoted by Equation 5.10.

By a completely similar reasoning as for the likelihood case, we come to the
following formulation for the maximum a posteriori parametrization:

θlj,πk =
njkl +mjkl − 1

∑d
r=1 njkr +

∑d
r=1mjkr − d

.

We have a closed form formula for the maximum a posteriori parametrization
and Equation 5.11 even tells us that we can specify the posterior distribution
exactly; this posterior stays a Dirichlet distribution, we only have to update the
prior hyper-parameters mjkl with the data counts njkl by a simple addition.

Probability of local substructure

We can write out the posterior structure probability like

p(Sbn |D ) ∝
v∏

j=1

L( j |πj )

=
v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj ) p(θj) dθj

=
v∏

j=1

∫

Θj

n∏

i=1

p(xij |π(xij),Sbn,θj )

qj∏

k=1

p(θj,πk) dθj (5.12)

=

v∏

j=1

∫

Θj

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

d∏

l=1

(θlj,πk)njkl+mjkl−1dθj

=
v∏

j=1

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

∏
l Γ(njkl +mjkl)

Γ(
∑
l njkl +

∑
lmjkl)

.
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In Equation 5.12, we used the local parameter independence assumption
of Equation 5.10 and used the same reasoning as in Equation 5.11 to continue.

This gives us a closed form formula for L( j |πj ):

L( j |πj ) =

qj∏

k=1

Γ(
∑
lmjkl)∏

l Γ(mjkl)

∏
l Γ(njkl +mjkl)

Γ(
∑
l njkl +

∑
lmjkl)

.

If we choose the prior counts independent from the parents or the number
of parents, we can drop the term

Γ(
∑
lmjkl)∏

l Γ(mjkl)

from the above expression.

5.3.2 Linear-Gaussian distributed variables

Another widely used class of conditional dependency models, this time exclu-
sively for continuous variables, are the linear-Gaussian conditional distributions.
These types of networks are nothing more or less than a multivariate Gaussian
distribution. The network structure will result in a sparse inverse of the covari-
ance matrix.

Conditional distribution

In a linear-Gaussian dependency model, the child node xj has a Gaussian dis-
tribution with a fixed conditional variance σ2

j and a mean that depends in a
linear way on the values πji of the parents

p(xj |πj ) ∼ N (α0 + α1πj1 + · · ·+ αpπjp, σ
2
j )

∼ N (µ(πj), σ
2
j )

∼ N (β0 +

p∑

i=1

αi(πji − µπi), σ2
j ). (5.13)

We can either express the conditional mean using the parent values directly,
or use their deviation from their mean.

The joint distribution described by such a Bayesian network is a multivariate
Gaussian distribution. The opposite also holds, which means that each multi-
variate Gaussian distribution can be written down as a Bayesian network with
linear-Gaussian dependency models. We will show this for only one variable x
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and its parents π(x):

p(π(x), x) ∼ N (µ,Σ)

=
1

2π(p+1)/2|Σ|1/2 e
− 1

2 ((π(x),x)−(µπ,µx))Σ−1((π(x),x)−(µπ,µx))T

=
1

2πp/2|Σππ|
e−

1
2 (π(x)−µπ)Σ−1

ππ(π(x)−µπ) ×

1√
2π|S−1

xx |
e−

1
2 (x−µx+S−1

xx Sxπ(π(x)−µπ))Sxx(x−µx+S−1
xx Sxπ(π(x)−µπ))

= N (µπ,Σππ)N (µx − S−1
xx Sxπ(π(x)− µπ), S−1

xx )

= p(π(x)) p(x |π(x) ),

with

µ =

(
µπ
µx

)
, Σ =

(
Σππ Σπx

Σxπ Σxx

)
and S = Σ−1 =

(
Sππ Sπx
Sxπ Sxx

)
.

This results in the following expressions for the conditional variance and the
coefficients in Equation 5.13: σ2

x = S−1
xx , β0 = µx and (α1, . . . , αp) = −σ2

xSxπ.
We can repeat the same procedure for the remaining multivariate distribution
p(π(x)) iteratively to produce the Bayesian network factorization. Note that
the non-zero elements in Sxπ correspond to the parents of node x. Only the
parents for node x can be read in this way directly from S = Σ−1. To go to the
next level, we have to look at Σ−1

ππ , which is not the same as Sππ in general.

Prior for the parameters

The parameters for this type of local dependency models, are the coefficients
β0 and (α1, . . . , αp) and the conditional variances σ2. As seen in the previous
section, we can equally well use the multivariate Gaussian parameters µ and
Σ. It is common to work with the precision matrix S = Σ−1. We will use a
Gaussian-Wishart prior for these parameters [23]:

p(S) = Cst |S|(f0−v−1)/2 e−
1
2 tr(T 0S)

p(µ |S ) ∼ N (µ0, (γ0S)−1).

The precision matrix S has a Wishart distribution with f0 > v − 1 degrees
of freedom and a precision matrix T 0 which has to be positive definite. The
operator tr(X) is the trace of a matrix, the sum of its eigenvalues. The mean
has a Gaussian distribution with prior mean µ0 and precision matrix γ0S.

Posterior for the parameters

This Gaussian-Wishart prior distribution is conjugate for Gaussian sampling.
This means that the a posteriori distribution for µ and S after observing a data
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set D with n records is again a Gaussian-Wishart distribution with updated
parameters

fn = f0 + n

T n = T 0 + Σ̂n +
γ0n

γ0 + n
(µ0 − µ̂n)(µ0 − µ̂n)T

γn = γ0 + n

µn =
γ0µ0 + nµ̂n
γ0 + n

.

The symbols µ̂n and Σ̂n are the corresponding sample mean and sample
covariance matrix of D. The degrees of freedom γ0 and f0 can be thought of as
equivalent sample sizes.

Probability of local substructure

Using the results from [33], we can write out L(x |π ) as

L(x |π ) =
p( Dxπ | SC

bn )

p( Dπ | SC
bn )

.

Dxπ is the restriction of the data set D to only the fields x and π, while SC
bn

denotes the completely connected network structure. If some data set D comes
from a model with a Gaussian-Wishart hyper-distribution, Dxπ will come from
a model with hyper-parameters restricted in the same way. This allows us to
write out L(x |π ) as

L(x |π ) = π−n/2
√

γ0

γ0 + n

Γ( f0+n+#π+1
2 )

Γ( f0−#π−1
2 )

( |T 0
xπ|

|T 0
π|

)f0/2( |T nxπ|
|T nπ|

)−(f0+n)/2

.

Unfortunately, the notation π to indicate parents is conflicting with the fa-
mous mathematical constant describing the half of the circumference of the
unit circle. In the above formula, only the factor π−n/2 has nothing to do with
parents.

5.3.3 Nonlinear-Gaussian distributed variables

Although nice results can be obtained using linear-Gaussian variables, we are
restricted to the multivariate Gaussian distribution.

Conditional distribution

If this limitation is too severe, we can use more flexible models to describe the
conditional mean, instead of a linear one. Here, we will deal with the case where
the conditional mean is given by some function E[x |π(x) ] = f(π(x) |ν ) of the
parents with parameters ν

p(x |π(x) ) ∼ N (f(π(x) |ν ), σ2
x).
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Instead of using the expression of Equation 5.9 where we integrate using the
prior parameter distribution, we follow another path: this integration is only
possible with a few special distributions, like the table or the linear-Gaussian
distribution. We denote withDi the first i−1 data records: Di = {x1, . . . ,xi−1}.
We can decompose the probability of a certain network structure Sbn given a
data set D by applying the chain rule of probability on the data records:

p(Sbn |D ) =
p( D | Sbn ) p(Sbn)

p(D)

∝
n∏

i=1

p(xi | Di,Sbn )

=
n∏

i=1

v∏

j=1

p(xij |πij ,Di,Sbn )

=
v∏

j=1

n∏

i=1

p(xij |πij ,Di,Sbn )

=

v∏

j=1

L(xj |πj ).

The predictions for sample i can be approximated with the maximum a
posteriori parametrization for the data subset Di

p(xij |πij ,Di ) ≈ p(xij |πij ,ν∗ ) with ν∗ = argmaxν(p(ν | Di )).

Computing L(x |π ) in this way is computationally expensive because it needs
n optimizations. This computational cost can be reduced with a factor t by
searching a new maximum a posteriori parametrization only every t times, and
using this to make the next t predictions [62].

Another method to compute the local substructure probabilities is based on
the Monte Carlo method, the posterior distribution, and Equation 5.9:

L(x |π ) =

∫ n∏

i=1

p(xi |πi,ν ) p(ν) dν (5.14)

=

∫ n∏

i=1

p(xi |πi,ν ) p(ν)
p(ν |Dxπ )

p(ν |Dxπ )
dν

≈ 1

N

N∑

j=1

n∏

i=1

p(xi |πi,νj )
p(νj)

p(νj |Dxπ )
with νj ∼ p(ν |Dxπ ).

Generating parametrizations from the posterior distribution can be done
with a Markov chain method, as explained in Section 6.7. We could equally well
have based our Monte Carlo summation on the prior distribution p(ν), and thus
have started from Equation 5.14. Unfortunately,

∏
i p(xi |πi,ν ) will be almost

always zero for parameters ν drawn from the prior distribution. The prior
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distribution is simply too broad and does not contain any information about
the problem. Expanding the integral with a Monte Carlo summation based on
the posterior distribution will help, but complicates the sampling procedures
often.

5.3.4 Missing values and hidden variables

Until now, we always assumed completely observed data. In practice, this is not
very often the case as some values may be missing from the data set or even
worse, each value for a certain variable may be missing. The first type is called
missing values, while the latter involves a data set with hidden variables [71].

Missing values can be dealt with using the Gibbs sampling procedure [76]. If
we denote with DO the observed part of the data set, and with DM the missing
part, we can repeat the following steps in an iterative manner:

1. p( DM
i+1 | Sbni,νi,D

O ) = p( DM | Sbni,νi )

2. p(Sbni+1 |DO,DM
i+1 )

3. p(νi+1 |DO,DM
i+1 ).

The initial network structure and parameters can be learned using only the
complete records. Since there are no hidden variables, there are always some
samples that are completely observed, we can obtain a sensible start point for
our procedure using these completely observed samples. This Gibbs sampling
method will eventually generate samples according to the joint distribution

p( DM,ν,Sbn |DO ).

More interesting is dealing with hidden variables because such models have
a wide application. A model with one hidden node that is the parent of all
the other nodes, represents a clustered distribution: depending on the value of
this hidden node, and possibly other nodes, a different distribution for the child
nodes can be used. By learning the structure of such a model where the hidden
node can, but not necessarily is, connected to the other nodes, biclustering will
be performed.

To learn the parameters for a given structure and a partially observed data
set, a good choice is to use variational learning [51, 27]. These techniques
basically try to perform inference for the missing values or hidden variables xM,
given the network structure Sbn and parameters ν. This inference is nothing
more than trying to find the distribution of xM given the observed data xO, the
network structure, and it corresponding parameters:

p(xM |xO,Sbn,ν ).

This distribution can be found using the variational bound [65]:

F (q(·),Sbn,ν) = Eq[log(p(xM,xO | Sbn,ν ))]− Eq[log(q(xM))]

≤ log(p(xO)). (5.15)
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The bound F (q(·),Sbn,ν) depends on a distribution q(·) over the missing
variables xM, the network structure and corresponding parameters, and ap-
pears to be bounded by the right hand side of the above expression. The
average Eq[log(p(xM,xO | Sbn,ν ))] is over the missing values xM, using the
distribution q(·). F (·) consists of two parts: the first term measures how well
the values drawn from q(·) fit within the joint distribution p(x | Sbn,ν ). The
second term is the entropy of the distribution q(·) and tries to keep is as broad
and uninformative as possible.

If the multivariate distribution q(·) is unconstrained, this bound is maximized
for q(xM) = p(xM |xO,Sbn,ν ):

p(xM |xO,Sbn,ν ) = argmaxq(·)(F (q(·),Sbn,ν)).

For this special q(·), Equation 5.15 becomes an equality. Maximizing this
bound is the same as performing inference.

The variational technique consists of restricting the q(·) to a certain family
of distributions. Optimizing the bound under this restriction will perform only
approximate inference, but removes the impossible task of optimizing over all
possible distributions. Although Frey et al. [27] use independent Gaussians to
approximate q(·), we will choose independent univariate Laplace distributions
as the family of distributions:

q(xM) =
∏

i

q(xM
i )

=
∏

i

1√
2σi

e
− 1√

2σi
|xM
i −µi|.

If we use these distributions in combination with the nonlinear Laplace trans-
fer function

φ(x) = 2

∫ x

0

1√
2
e
− 1√

2
|y|
dy = sign(x)(1− e−

√
2|x|),

we can use the techniques described in [27] more efficiently because we can
compute the needed output variance exactly.

The above described technique can perform (approximate) inference using
a fixed network structure and a data set with hidden variables. The results of
this inference (the distribution q(·)) can then be used to generate values for
the missing part of the data set. Once the data set is completed, a complete-
data structure learning method can be used to update the structure, and new
inference can be performed and the whole procedure can be repeated. A similar
technique called structural EM is described by Friedman [28].

5.4 Different types of prior information avail-
able

Now that we have introduced the concept of Bayesian networks together with
some algorithms to learn and use them, we can place them in the transformation
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framework we discussed in Chapter 4. As indicated before, these models consist
of two components: the network structure and the local dependency models.
The structure has a clear interpretation in terms of conditional independency
statements. Depending on the choice of the local dependency models, these
conditional probability models can have a clear interpretation too. If this is the
case, the model is called a white box model because we can reason about and
interpret its components.

To discuss a few possible sources of prior information, we will assume discrete
domain variables and table distributed dependency models. We will use the
medical example introduced in Chapter 2 to illustrate and motivate the methods.

5.4.1 Expert information

At first, we look at the information that is contained in a domain expert. This
domain expert is someone who is familiar with the domain and has experience
with the variables and their dependencies.

For our task of pre-operative classification of ovarian tumours, our expert is
Prof. Dr. Dirk Timmerman, a medical doctor specialized in this domain. He
has examined many patients and has a clear understanding of the relationships
between the domain variables that are involved, and how these relationships
look like.

5.4.2 Textual information

Another source of information that is frequently available are written docu-
ments. These can be documents describing one specific domain variable, or
general documents describing some part of the domain.

For our problem, documents of the first kind consist of the IOTA protocols,
a description for each variable from a thesis [81], and definitions from the Merck
Manual. In addition, we added specific documents from the On-line Medical
Dictionary, the CancerNet Dictionary and the MEDLINE collection of abstracts
of the US National Library of Medicine to these descriptions. We selected three
gradually increasing subsets of the MEDLINE abstracts as documents describing
part of the domain. These subsets contain respectively 5 367, 71 845 and 378 082
documents respectively and date from the period January 1982 until November
2000.

5.5 Prior information representation

Now that we know what kind of information we have access to, we have to
convert it to a format that is suitable to perform calculations. We will introduce
these formats to make clear what kind of information will be necessary.
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5.5.1 Prior for the structure

We start with a prior distribution over the space of network structures. There
are basically two approaches to define such a prior distribution. The first ap-
proach makes use of a certain fixed network structure S∗bn and defines the prob-
ability of another structure Sbn based on the distance between the two struc-
tures. This distance in network space is based on counting the number of arc
removals, additions, and reversals that are necessary to modify Sbn to S∗bn. The
other possibility basically assumes that the probability of a network structure
can be decomposed in a series of independent edge probabilities:

p(Sbn) =
∏

x

p(π(x)→ x)

p(π(x)→ x) =
∏

y∈π(x)

p(y → x)
∏

y/∈π(x)

(1− p(y → x)).

The notation p(π(x)→ x) indicates the probability of the local substructure
where variable x has parents π(x).

The parameters for this last type of distribution are the individual arc prob-
abilities, which can be represented in a matrix. In Section 5.5.3, we will be able
to more or less derive a matrix V from the expert or the literature informa-
tion where the elements represent the connectedness between variables. Rather
than using these values immediately as arc probabilities, we will introduce an
extra parameter ν which controls the density of the networks that will be gen-
erated from the distribution; we will transform all the matrix elements with
an exponent ζ such that the average of the mean number of parents per local
substructure is ν:

p(y → x) = V ζ
xy

ν =
1

v

∑

x

E[#π(x)]

=
1

v

∑

x

∑

y

p(y → x)

=
1

v

∑

x

∑

y

V ζ
xy.

Finding the exponent ζ that gives rise to the correct mean number of parents
can be done with any single variable optimization algorithm. With this mean
number of parents, we can control the complexity of the networks that will be
learned. Note that the distribution we define, is over the set of directed graphs.
For Bayesian network applications, we will restrict this distribution to the set
of directed acyclic graphs.

If necessary, both distributions can be combined to one. Both of these priors
decompose into a product of factors where each factor describes the probability
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of one variable and its parents

p(Sbn) =
∏

x

p(π(x)→ x),

which makes it possible to use the structure learning procedures described
in Section 5.2.1 by introducing a new local substructure score L∗(x |π(x) ):

p(Sbn |D ) ∝ p(Sbn)L( D | Sbn )

=
∏

x

p(π(x)→ x)
∏

x

L(x |π(x) )

=
∏

x

p(π(x)→ x)L(x |π(x) )

=
∏

x

L∗(x |π(x) ).

5.5.2 Prior for the parameters

Once the prior over the model structures is specified, we would like to have a pa-
rameter prior for each of these structures. In the discrete case, this corresponds
to specifying the Dirichlet hyper-parameters mjkl for each network structure.
Heckerman [34] suggests to specify the Bayesian network parameters θ∗ only
for the fully connected network SC

bn, in combination with an equivalent sample
size M :

mjkl = M · p(xj = l |π(xj) = πk,θ
∗,SC

bn ).

The Bayesian network model (θ∗,SC
bn) is a point estimate of how the values

of the different variables depend on each other. The equivalent sample size
expresses the value of this point estimate in terms of number of samples. The
hyper-parameters mjkl that result from this procedure are the same as the
posterior Dirichlet parameters njkl that would result from a data set with M
samples and empirical probabilities equal to p(xj = l |π(xj) = πk,θ

∗,SC
bn ).

Because specifying the parameters for a fully connected network is a daunt-
ing task, we will ask our expert to construct a network S∗bn that faithfully
represents the structure of the domain but for which it is feasible to generate a
parametrization also. Doing so, any necessary Dirichlet hyper-parametrization
can be computed with an inference method for the Bayesian network model
(θ∗,S∗bn):

mjkl = M · p(xj = l |π(xj) = πk,θ
∗,S∗bn ).

5.5.3 Harvesting the information sources

We discuss briefly how the necessary information can be gathered from one of
our information sources.
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Prior network structure and parametrization from expert

We can ask our expert to construct a network structure S∗bn with corresponding
parameters θ∗ and an equivalent sample size M . To aid this process, it helps to
initially group the variables in semantic classes and order the variables accord-
ing to their importance. Initially, a small network can be constructed within
each group, between groups or between the more important variables. Causal
reasoning is similarly a helpful tool to specify a network structure.

Once the structure is completed, its parameters should be specified. These
parameters have a direct interpretation in terms of probabilities and can be
translated to written questions like:

Consider a patient with π(x)1 = y1 and π(x)2 = y2. How likely is it
that x = x?

The notation π(x)i denotes the ith parent of variable x.
Although it is possible to directly ask for numbers, we found it helpful to

present our expert with a graphical scale from 0 to 1 where the probability
can be indicated upon. This scale includes indications like almost impossible,
improbable, uncertain, fifty-fifty, expected, probable, and almost certain.

Similarity matrix from expert

To construct the similarity matrix from expert information, we asked to select
for each domain variable those other variables that are in relation with each
other. We divided these selected variables in three groups: very important,
important, and slightly connected. Then, where it was possible, we tried to
refine this division and make the symmetric links consistent.

Similarity matrix from textual information

Instead of asking our expert to generate the similarity matrix, we tried to gen-
erate this also from the available textual information. We assume we have a
textual descriptionD(x) for each domain variable x and a large document corpus
C with documents about the domain at hand.

To work with a document D, we first convert it to a vector representation
T (D) where each component represents the weight of a corresponding word,
neglecting the grammatical structure of the text. This weight is computed
using the popular term-frequency inverse-document-frequency (tf-idf) weighting
scheme [7]

ω(~ | D ) = −#~ ∈ D
#D log

(
#C

#C|~

)
.

In this formula, ω(~ | D ) represents the tf-idf weight of the word ~ in the
document D, #D is the total number of words in document D, #C is the total
number of documents and #C|~ is the number of documents in C that contain
the word ~. The first fraction is the frequency of the word in the document.
The higher this frequency is, the more representative it is for our document.
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Unfortunately, some very common words like “the”, “for”, or “and” have a high
frequency in each document, which makes them useless to discriminate between
documents. The second fraction with the logarithm together with the minus, is
the inverse document frequency, which weights down these frequent words.

Using the vector representations T (D1) and T (D2) of two documents D1

and D2, we can define a similarity measure between them. The most common
method is based on the cosine of the angle between the vector representations
of these two documents

sim(D1,D2) =
< T (D1), T (D2) >

‖T (D1)‖‖T (D2)‖ .

Using this similarity measure, we can either directly define the similarity
between domain variables as the similarity between their corresponding anno-
tations

V xy = V yx = sim(D(x),D(y))).

Although the previous method works nicely, we only use our corpus of docu-
ments to filter out the frequent words. We can use this corpus more extensively
using the following technique: suppose that the annotation D(x) for each vari-
able consists only of a few keywords. We define the connectedness between two
variables x and y as the probability that a document in our corpus C discusses
both variables given that the document discusses one of them

V xy = V yx = P(x ∈ D and y ∈ D |x ∈ D or y ∈ D,D ∈ C ).

The notation x ∈ D means that the keywords of the annotation D(x) are
found in D. This method can be extended using the tf-idf vector representation
instead of the keywords describing the variables.

Note that in practice there are some important pre-processing steps that are
necessary. As such, we have to convert each word to its canonical form using
a stemmer. Domain specific words, phrases, and synonyms also need special
treatment.

5.6 To conclude

The concept of representing joint distributions using Bayesian networks dates
from the eighties [68, 58, 44]. These types of networks became popular in artifi-
cial intelligence and machine learning communities, resulting in a nice collection
of algorithms and procedures to perform various tasks with them. The most
important of them were introduced in this chapter. The practical application of
Bayesian networks lagged a bit behind initially [29], but now they have become
a popular tool to model various types of problems in genetics, medicine, and
many more application areas.

We contributed to the applicability of Bayesian networks by defining a prob-
ability distribution over the space of Bayesian network structures, both based
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on expert information or text documents. To facilitate this process, we devel-
oped or extended a few tools, like finding a good ancestral node ordering, the
visual layout generation of Bayesian networks based on self-organising maps, or
the extension of the variational inference technique using Laplace distributions.
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In the previous chapter, we introduced the Bayesian network model class,
which will serve as the donor model class for the transformation technique pre-
sented in Chapter 4. In this chapter, we will introduce the acceptor model class.
Once this last model class is introduced, we are ready to perform actual experi-
ments.

The model class we will introduce now, is the class of multilayer perceptrons.
These models are called black box models as there is no or little insight in their
parameter or structure setting in the general case. Despite this drawback, they
have good learning capabilities from data, which makes them popular models.

81
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In contrast with a Bayesian network that models a joint distribution, a multi-
layer perceptron will only model a conditional distribution by providing its condi-
tional mean in the regression case, or by providing a model for class membership
probability in the classification case. Multilayer perceptrons can indeed be seen
as an extension to linear logistic regression models, where the conditional class
probability is now provided by the input-output mapping described by the mul-
tilayer perceptron. Since our main application is focused on classification, we
will most often use multilayer perceptrons in the logistic regression context.

6.1 Description

A multilayer perceptron is a parametrized function from Rd to R. It can be
represented graphically by a layered, feed-forward network of neurons, as shown
in Figure 6.1.
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Figure 6.1: A multilayer perceptron structure with one hidden layer. The weights
are the arcs from the inputs to the first layer and from the first layer to the second
layer. The biases are the weights from the inputs equal to 1.

Each neuron computes the weighted sum of the outputs of the previous layer,
adds a bias term to it, performs a nonlinear squashing function φ(.) on this sum,
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and passes the value again to the next layer:

mlp(x |ω ) = φ(. . . φ(
∑

j

φ(
∑

i

xiω
1
ji + ω1

jb)ω
2
kj + ω2

kb) . . . ).

The inputs of this multilayer perceptron are indicated by x = (x1, . . . , xd).
The parameters of this mapping are denoted with the symbol ω, and are the
weights of the weighted sums that are at the heart of the multilayer perceptron.
These parameters are often split into two groups, the weights that make the
connection with the inputs or nodes from the previous layer (e.g., ω1

ji or ω2
kj),

and the additive weights like ω1
jb or ω2

kb, which are indicated with the name bias.
The bias is seen as the weight of a constant input equal to one, and is always
included if we speak about the weights, unless mentioned otherwise. The bias
term allows a translation before the transfer function is applied. The weights
are the function parameters and determine the shape of the mapping.

The nonlinear squashing function, or transfer function, can be anything.
Popular choices are the hyperbolic tangent, the sigmoidal function, or the sign
function. For symmetry reasons, as well as its connection to logistic regression
(see Section 6.2.3), we will always use the hyperbolic tangent transfer function

φ(x) ≡ ex − e−x
ex + e−x

=
2

1 + e−2x
− 1.

Its domain is R, its range is ]− 1, 1[ and its graph can be seen on Figure 6.2.
The derivative of φ(.) can be expressed in terms of φ(.) itself:

φ′(x) = (1 + φ(x)) (1− φ(x)).

This differential equation could equally well be used as the very definition
of the hyperbolic tangent function.

6.2 Conditional probability models and cost func-
tions

Using multilayer perceptrons as a class of functions that has the universal ap-
proximation property (see Section 6.3), we will define conditional probability
models. The goal is to describe the distribution of the response variable y (also
called the dependent variable) conditioned on a set of covariates (also called
the independent variables). Note that the name independent variables is con-
fusing since it does not mean they are statistically independent. Two common
methods are based on either using a multilayer perceptron as a model for the
conditional mean or using the output of the network directly as the probabil-
ity that the dependent variable belongs to some class in a classification setup.
Such a conditional distribution is directly related to a cost or error function, a
performance measure that is often used to optimize the weights of a network.
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Figure 6.2: The hyperbolic tangent transfer function φ(x) = ex−e−x
ex+e−x .

6.2.1 Regression

In the regression framework, the output of a neural network is used as a model
for the mean of y conditioned on x:

E[ y |x ] = mlp(x |ω ).

Depending on the distribution that has to be modelled, the distribution
around this mean has to be chosen. A common choice is a Gaussian distribution
with a fixed variance σ2 independent of x:

p( y |x,ω ) =
1√
2πσ

e−
1

2σ2 (y−mlp(x |ω ))2

.

If we observe some data set D, we can define a cost or error function based
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on the likelihood of the network parameters ω given the data:

Error(ω |D ) = − log(L(ω |D ))

= − log(p( D |ω ))

= − log(
n∏

i=1

p(xi, yi |ω ))

= −
n∑

i=1

log(p( yi |ω,xi ) p(xi |ω ))

= −
n∑

i=1

log

(
1√
2πσ

)
+

n∑

i=1

1

2σ2
(yi −mlp(xi |ω ))2

−
n∑

i=1

log(p(xi |ω ))

=
n∑

i=1

1

2σ2
(yi −mlp(xi |ω ))2 + Cst.

The term −∑n
i=1 log( 1√

2πσ
) is independent of the network parameters ω.

Although less obvious, the term −∑n
i=1 log(p(xi |ω )) is also independent of

ω: the multilayer perceptron models only the conditional distribution p( y |x )
and says nothing about about the distribution of the inputs x, which allows us
to write p(xi |ω ) = p(xi). Because these terms are independent, they can be
dropped if the purpose is to optimize the error function.

This error function is called the sum-of-squares error for obvious reasons.
Minimizing this function results in the least squares solution ω∗, which has
the appealing property that the corresponding network function will equal the
conditional mean

mlp(x |ω∗ ) = E[ y |x ],

regardless of the distribution of y. This statement holds true if the correspond-
ing network structure is flexible enough, sufficient data is present, and the min-
imization routine is able to find the global minimum ω∗ [11].

If the network structure consists of only one neuron using a linear trans-
fer function, it implements the well-known linear regression model, as will be
explained in Section 6.2.3.

6.2.2 Classification

When the response variable is dichotomous, a more appropriate model is re-
quired to describe the conditional distribution. Suppose that y can be either -1
or 1. We could model the distribution of y by interpreting the network output
as the probability that y = 1:

P( y = 1 |x,ω ) = mlp(x |ω )

P( y = y |x,ω ) = mlp(x |ω )
y+1

2 (1−mlp(x |ω ))
1−y

2 .
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This requires the network output to be in the interval [0,1]. This is often
achieved by using the sigmoidal transfer function of Equation 6.3, which has the
desired domain and other appealing properties, as explained in the following
section. For symmetry reasons we will explain in Section 6.3.3, we will use the
hyperbolic tangent function instead. Although its domain is [-1,1], this is easily
transformed to [0,1], which allows us to interpret the output as a probability
anyway:

P( y = 1 |x,ω ) =
1 + mlp(x |ω )

2

P( y = y |x,ω ) =

(
1 + mlp(x |ω )

2

) y+1
2
(

1−mlp(x |ω )

2

) 1−y
2

=
1

2
(1 + mlp(x |ω ))

y+1
2 (1−mlp(x |ω ))

1−y
2 . (6.1)

The corresponding error function is defined in exactly the same way as for
the regression case:

Error(ω |D ) = − log(L(ω |D ))

= − log

(
n∏

i=1

p( yi |xi,ω )p(xi |ω )

)

= −
n∑

i=1

log(1 + sign(yi) mlp(xi |ω )) + Cst.

We again define the error function based on the negative logarithm of the
likelihood function. The likelihood function can be rewritten as a product over
the different data records, and for each data record {yi,xi}, we can apply Equa-
tion 6.1.

6.2.3 Logistic regression

The sigmoidal function originates from the logistic regression model [43]. As
opposed to linear regression where a linear model of the covariates (x1, . . . , xd)
tries to predict the conditional mean of the response variable y, a logistic regres-
sion model tries to predict the logarithm of the odds of the response variable
with a linear combination of the covariates. The response variable y is assumed
to be binary and the odds of this variable is defined as P(y = 1)/(1−P(y = 1)).
This results in the model

log

(
P(y = 1)

1− P(y = 1)

)
= β0 + β1x1 + · · ·+ βvxv (6.2)

= µ.
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To find P(y = 1), we have to apply the sigmoidal function to Equation 6.2:

P(y = 1) =
eµ

1 + eµ

=
1

1 + e−µ
(6.3)

= sigmoid(µ).

This function can be transformed to the hyperbolic tangent function using
the linear transformation

φ(x) = 2 sigmoid(2x)− 1.

This property makes the logistic regression model class a subclass of the
multilayer perceptron class with hyperbolic tangent transfer functions, as long
as we encode the output variable with {-1,1} instead of {0,1}.

Most of the theory of linear regression applies also to logistic regression. We
will in particular make use of input selection techniques where one wants to
know which covariates should be included and which should be removed from
the model [72].

6.3 Approximation and overtraining

Multilayer perceptrons, even with only one hidden layer, are powerful models
for approximating continuous functions if we are free to choose the number of
hidden neurons of the network. Hornik [42] proved that for each continuous
function f : [0, 1]d → R and for each error level ε > 0, there exists a multilayer
perceptron with parameters ω with only one hidden hyperbolic tangent layer in
its structure Smlp, such that:

supx∈[0,1]d |f(x)−mlp(x | Smlp,ω )| < ε.

The number of hidden nodes in the hidden layer depends on the function we
want to approximate. The above property is called the universal approximation
property and has both positive as negative implications. On the one hand, this
allows us to learn and model various complicated distributions. On the other
hand we have to be careful with this power not to overtrain our network and
hereby loosing all the generalizing power.

6.3.1 Overtraining

We speak of overtraining when a network memorizes the data set by perfectly
approximating the target variable for only those input combinations that are
found in the data set. This, most of the time, introduces large weights and bad
predictions for input combinations other than those found in the data set, as
will be explained below.
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Figure 6.3 shows the graph of two multilayer perceptrons trained on a data
set where x is uniform between -5 and 5 and y ∼ N (sin(x), 0.04). Both networks
had the same structure: two hidden layers with each five nodes and the hyper-
bolic tangent transfer function. The output node used a linear transfer function.
One neural network has been trained by optimizing only the sum-of-squares cost
function (the full line), using the scaled conjugate gradient algorithm (see Sec-
tion 6.6.2). The parameter vector for this network had an L2-norm of 22.3. The
other has been trained using an additional Gaussian prior distribution with a
standard deviation of 0.5 for each weight. This is the same as using a weight
decay regularization term to restrict the parameters from becoming too large
(the dashed line). This network had an L2-norm of only 3.62.

Possible causes of overtraining are an inproper network structure, not enough
data points, or an inadequate or absent prior distribution for the network pa-
rameters.
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Figure 6.3: The overtrained function (full line) comes from an overtrained multilayer
perceptron (22.3 L2-norm of the weight vector), the dashed function has been learned
using a weight decay prior (3.62 L2-norm of the weight vector).

A network that tries to memorize each input-output pattern, needs the flex-
ibility to change its output considerably based on only a small change of the
input pattern. Suppose two input patterns x1 and x2 are close to each other
while their corresponding output values y1 and y2 are quite different because
of the inherent variability of the data. The relatively small derivative of the
transfer function is insufficient to produce the output difference based on the
difference between x1 and x2 if the incoming and outgoing weights of the neu-
ron have a magnitude around one. By multiplying all these weights with a
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large factor λ, we are in fact using the same unit range weights as before, in
combination with a transfer function fλ(x) = φ(λx). fλ(.) converges pointwise
to the sign function, gradually giving the neuron the power to approximate y1

and y2 based on the small input difference. The previous reasoning is visualized
in Figure 6.4. The gradient of the transfer function φ(5.4x) is large enough to
model the output difference between y1 and y2 based on the small difference
between x1 and x2.
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Figure 6.4: Two data points are presented with input patterns x1 and x2 close to each
other. The transfer function φ(x) does not have the power to model the outputs, while
the transfer function φ(5.4x) has a derivative which is large enough to approximate
y1 and y2 exactly. Multilayer perceptrons with large weights will therefore indicate
overtraining.

This is responsible for the network picking up large weights when it tries
to approximate the input patterns exactly. Because of these large weights, the
network function becomes very “bumpy” and hereby makes bad predictions
for unseen input patterns. We can prevent this behaviour basically using two
techniques. One method is based on restricting the network structure so that it
does not have enough flexibility (number of neurons) to learn each input pattern
exactly. The network will be forced to make compromises, hopefully resulting
in a network function with generalization capabilities. The other method tries
to find a suitable mapping by restricting the weights from becoming too large.
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6.3.2 Early stopping

A first strategy to prevent the network weights from becoming too large is based
on dividing the data set into a training and a test set. The network parame-
ters are initialized near the origin and iteratively updated using some stepwise
optimization routine. This optimization routine tries to find the minimum of
the error function using only the samples in the training set by taking small
steps in the weight space (e.g., steepest descent). The multilayer perceptron
will typically need more flexibility than is present close to the origin, and will
start wandering towards larger weights. While the optimization process pro-
gresses, the norm of the weight vector will grow. The error on the training set
will gradually diminish until all the input patterns are approximated exactly.
The error on the test set will initially also decrease, indicating that the network
function can be generalized to patterns other than in the training set. When
the optimization process starts to overtrain the network, the error on the test
set will start to grow, indicating a worse performance on samples other than the
training samples.

The early stopping technique will stop the optimization process when the
test error starts to increase. This method is known to work [77], but has the
disadvantage that not all data samples can be used for learning in combination
with a restriction on the optimization procedures that can be used: only those
procedures that update the weight vector with small steps can be used, prevent-
ing the usage of more elaborate methods than gradient descent based methods.
This procedure is also hard to interpret from probabilistic point of view in terms
of prior and posterior distributions for the network parameters.

6.3.3 Weight decay and a prior distribution

A second strategy uses a penalization or regularization term to penalize the
network for using large weights. A common method to achieve this is called
weight decay and consists in adding the sum of squared weights to the error
function

Error∗(ω |D ) = Error(ω |D ) +
1

2σ2
wd

∑

i

ω2
i . (6.4)

We indicate with Error∗(ω |D ) the error term Error(ω |D ), adjusted with
the regularization term.

Where the error function was defined based on the logarithm of the like-
lihood, this altered error function is based on the logarithm of the posterior
distribution of the weights, given the data set D

p(ω |D ) =
p( D |ω ) p(ω)

p(D)

∝ L(ω |D ) p(ω)

Error∗(ω |D ) = − log(p(ω |D ))

= Error(ω |D )− log(p(ω)) + Cst.
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Since the term coming from p(D) is independent of the network parameters,
it can be dropped. p(ω) is called the prior distribution for the network param-
eters. The assumption that each weight ωi has a Gaussian prior distribution
with zero mean and σ2

wd variance results in the sum of squared weights regular-
ization term in Equation 6.4. The σwd parameter controls the freedom that is
given to the network to use large weights.

Our decision to use only odd transfer functions like the hyperbolic tangent
(φ(−x) = −φ(x)) is related to this Gaussian prior. As will be explained in Sec-
tion 6.9.1, a network can have different parametrizations resulting in exactly
the same input-output mapping: if the signs of all the weights connected to a
neuron in a hidden layer are reversed, the overall neural network function will
stay the same

. . .ωj φ(
∑

i

ωi yi + b) . . . = . . . (−ωj)φ(
∑

i

(−ωi) yi − b) . . .

The sigmoidal transfer function gives rise to a similar symmetry through the
property sigmoid(x) = 1− sigmoid(−x)

. . . bj + ωj sigmoid(
∑

i

ωi yi + b) . . .

= . . . bj + ωj (1− sigmoid(
∑

i

(−ωi) yi − b)) . . .

= . . . (bj + ωj) + (−ωj) sigmoid(
∑

i

(−ωi) yi − b)) . . .

Although the network mapping stays the same under this transformation,
the bias bj has changed ωj in magnitude. This will change the value of the sum
of squared weights, resulting in two equivalent network parametrizations getting
different probabilities from the posterior distribution p(ω |D ). This undesired
behaviour is our main motivation for using only odd transfer functions like the
hyperbolic tangent function.

6.4 Posterior distribution

We will choose for the Bayesian view on regularization, which consists of defin-
ing a complexity-based prior distribution which is updated to a posterior dis-
tribution with the usage of the data likelihood, based on its nice probabilistic
interpretation and its connection with penalization terms in the classical setting:

p(ω |D ) =
L(ω |D ) p(ω)

p(D)

∝ L(ω |D ) p(ω)

Error∗(ω |D ) = − log(p(ω |D ))

= Error(ω |D ) +
1

2σ2
wd

∑

i

ω2
i + Cst.
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This posterior distribution is, depending on the actual data set, very complex
with many local maxima or near local maxima. Figure 6.5 shows this landscape
for an artificial data set. We cannot visualize a multi-dimensional distribution
with more than two dimensions. Therefore, we kept all the neural network
weights constant and modified only one weight connecting the input to a hidden
node, and one weight connecting that same hidden node to the output node.
Even this two dimensional slice of the higher dimensional distribution contains
two maxima and a saddle point.
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Figure 6.5: The posterior distribution is very complex. We visualized a two-
dimensional slice of a higher dimensional distribution by keeping all the weights con-
stant, except one weight connecting the input node to a hidden node and another
weight connecting that same hidden node to the output node.

Formulas for the maximum a posteriori parametrization cannot be given in
closed form, neither can we give a straightforward procedure to sample from
this distribution. This problem will be discussed in Section 6.6 and 6.7.

6.5 Pre-processing

As with most probabilistic models, we have to pre-process our data before we
can start to learn its underlying distribution. This consists of transforming the
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variables and constructing features which facilitate the learning of the network.
How these features are constructed depend strongly on the type of problem
we are trying to solve and can range from simple input selection over princi-
pal component analysis to highly problem specific pre-processing. Because we
are working with medical measurements, we will restrict the feature extraction
phase to selecting the relevant medical variables.

6.5.1 Continuous variables

A multilayer perceptron works most naturally with continuous variables that
take values in R. Although the weights from the inputs to the first layer are
specifically meant for rescaling the variables, we will standardize each continuous
variable to zero mean and unit variance. If we skip this step, two variables
equal up to a scaling factor will not be treated the same way; the variable
with larger variance will be preferred by our regularization prior because it
needs smaller weights to achieve the same effect. Before we standardize our
variable, we will check its distribution and its relation with the output variable
to decide on a possible transformation that has to be applied: if the output
variable were continuous, it would have been natural to look at the scatter plot.
Unfortunately, our output variable Pathology is discrete, which makes scatter
plots less interesting. Therefore we follow the logistic regression approach where
a linear combination of the covariates predicts the logarithm of the odds of the
response variable. We will estimate these log-odds and use them instead of the
class labels to create the so-called logit plots.

The odds of a probability p is defined as p
1−p . The symbol p indicates the

probability of CP and can be estimated by dividing a variable into a few number
of bins and using the empirical estimate of p for these bins. These logit plots
can suggest a nonlinear transformation of the covariate.

Figure 6.6 shows such a logit plot of a variable before the logarithmic trans-
formation was applied, while Figure 6.7 shows the logit plot after the logarithmic
transformation. The logarithm clearly makes the relation between the variable
and the log-odds linear, which was our goal.

6.5.2 Ordinal and nominal discrete variables

The second type of variables are discrete variables. They can take only a finite
number of different values which are typically in N or Z. If there is a meaningful
order between the values of such a variable, we call them ordinal variables and
can represent them with only one input node. Instead of normalizing these
variables, we will transform them in a linear way so that their values are equally
distributed between -1 and 1. An example of such a variable is the age of a
person.

If such an ordering is absent, we call them nominal variables. Although we
represent their values also with natural numbers, these values have no numerical
meaning or significance, there is no particular reason why to prefer one possible
representation above another. An example of such a variable could be the
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brand of car that a person drives. Suppose that this variable x can take d
possible values {x1, . . . , xd}. The standard way to represent such a variable,
is by introducing d design or indicator variables Ixi , each of which takes the
value 1 if x = xi and 0 otherwise. Although such a variable in a linear or
logistic regression problem is often represented with d−1 variables by connecting
the event “x = xd” to “all indicator variables equal to zero”, we will only do
so for binary variables. If we use d design variables to represent x, we can
permutate the meaning of the values of x and still the resulting equivalent
network parametrization will have the same weight decay value. If we use a
d− 1 coding scheme, this will in general not be the case anymore.

Some variables are the combination of a continuous variable and one or more
design variables. In the ovarian tumour problem, we have variables like PSV
which make only sense if there is blood flow through the tumour (Colour Score
6= 1). For a patient with blood flow in the tumour, this variable will indicate
the peak systolic velocity of this blood flow. If there is no such blood flow, PSV
is not relevant and will be set to zero. We will introduce a design variable to
indicate if a certain variable is relevant or not. Figures 6.6 and 6.7 show such
a variable. The special value “not relevant” is represented with a square.
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Figure 6.6: The log odds scatter plot for the PSV variable, before a logarithmic
transformation. The special value “not relevant” is dealt with by introducing a design
variable and is indicated by the square. The crosses indicate the log odds of the bins
with equal number of samples inside.
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Figure 6.7: The log odds scatter plot for the PSV variable, after a logarithmic
transformation and standardization. The special value “not relevant” is dealt with by
introducing a design variable and is indicated by the square. The crosses indicate the
log odds of the bins with equal number of samples inside.

6.5.3 Input selection

As indicated previously, we will select a subset of the variables as inputs for the
multilayer perceptron. Ideal would be to divide the data set in a training and
test set and compare the performance of models with different input variables
by learning them using the training set and computing their performance based
on the test set. The computational complexity arising from this setup easily
becomes too much because of the combinatorial number of different input sets
that have to be checked, requiring an optimization in each step. A possible
strategy to ease the computational needs is to select an input set based on a
linear or logistic regression model and use this for the neural network model.
Additional stepwise input selection procedures can refine this initial set.

6.6 Optimization

Once we have pre-processed our data set and selected the relevant variables,
we can start learning our neural network model. In the classical framework, as
opposed to the Bayesian framework, we are looking for one optimal parametriza-
tion ω∗, the weight vector which has the highest posterior density. Using ω∗, we
can make a prediction for a new data sample x with the neural network func-
tion mlp(x |ω∗ ). As explained in Section 6.2, this function represents either a
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regression mean or a class membership probability.

Because the logarithmic function is strictly monotone, finding the maxi-
mum a posteriori parametrization is equivalent to the minimum error weight
vector ω∗ = argminω(Error∗(ω |D )). Note that the regularization term in
Error∗(ω |D ) makes sure that there exists at least one global minimum of the
error function. To mark the difference with the Bayesian framework, we will
speak about error functions in the classical framework instead of posterior dis-
tributions.

Since this error landscape is complex and no closed form solution exists,
we have to resort to minimization procedures to find ω∗. These minimization
procedures come in different flavours, requirements and capabilities.

6.6.1 Steepest descent

A first method is called steepest descent. This procedure starts at some random
weight vector ω0 and takes small steps in the negative direction of the gradient:

ωt+1 = ωt − η∇Error∗(ωt |D ).

We are simulating a particle in weight space where the speed at each step is
given by −∇Error∗(ω |D ).

This method has been well studied and is usable, but has some serious
drawbacks. First of all, the step size η has to be chosen carefully. If it is too
small, only very small steps will be taken resulting in a huge number of steps
that have to be taken before convergence is reached. If it is too large, we can
overshoot a minimum or end up in oscillatory behaviour. This procedure is
sensitive to local minima and cannot get out of such a minimum if it enters one.

In reaction to these drawbacks, several improvements have been proposed.
They include taking into account a momentum term during the optimization

ωt+1 = ωt − η∇Error∗(ωt |D ) + µωt.

We are now simulating a mass that moves through weight space. The inertia
of this mass is responsible for accumulating speed or spending this accumulated
speed to escape a local minimum.

Another procedure, called resilient learning, respectively increases or de-
creases the step size for each weight separately based on whether the sign of the
corresponding last two gradient values was the same or not.
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6.6.2 Scaled conjugate gradient

Another class of function minimizers approximate the error function with a
quadratic Taylor series

Error(ω + s) = Error(ω) +
∑

i

∂Error

∂ωi
si +

1

2

∑

i,j

∂2Error

∂ωi∂ωj
sisj + . . .

≈ a+ bTs+
1

2
sTHs

= Error∼ω(s),

where

a = Error(ω) b = ∇Error(ω) H i,j =
∂2Error

∂ωi∂ωj
(ω).

Using this approximation of our error function, we take that step s∗ where
Error∼ω(·) has its minimum

∇Error∼ω(s∗) = Hs∗ + b = 0.

Finding s∗ involves solving a linear system of equations specified by the
Hessian matrix H and the gradient vector ∇Error(ω). One option is to solve
this system using the singular value decomposition of H . This requires that we
know H and can store it.

Another strategy is based on finding conjugate directions qi and finding
the minimum of Error∼ω(·) along those directions. Suppose that p1 = α1q1

minimizes Error∼ω(·) along the direction q1. This means that the projection of
the gradient in p1 on q1 is zero:

qT1∇Error∼ω(p1) = qT1 b+ α1q
T
1Hq1 = 0.

Next, we minimize Error∼ω(·) along another direction q2. This requires our
gradient in p2 = α2q2 to be again perpendicular to q2. But we are also careful
not to destroy the partial minimum we found in p1; we require the gradient in
p2 to be similarly perpendicular to q1:

qT1∇Error∼ω(p1 + p2) = qT1 b+ α1q
T
1Hq1 + α2q

T
1Hq2

= α2q
T
1Hq2

= 0.

This requires our directions qi to be conjugate with respect to the Hessian
matrix:

qTi Hqj = 0, i 6= j.

We can find these conjugate directions — without having to compute H
— by minimizing Error∼ω(·) along some directions with a one-dimensional mini-
mization routine, also known as a line search. Although this works nicely, such a
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line search generally takes twelve function evaluations or gradient computations
to find the appropriate αi along a direction qi.

Another approach [61] uses second order information along the direction q i to
directly find the minimum. This second derivative can be computed numerically
with only two gradient computations, which is most of the time faster than
performing a line search. No entire Hessian matrix has to be stored, leaving the
memory complexity unaffected.

These procedures generally work very bad: far from the global minimum, our
approximation will have an indefinite Hessian matrix, and thus no minimum.
This problem is solved by making the Hessian matrix positive definite using a
Levenberg-Marquardt approach, and modifying the steps that will be taken.

If the Hessian had to be adjusted a lot to become positive definite, smaller
steps will be taken, shifting the effective behaviour of the algorithm towards
steepest descent.

6.7 Bayesian simulation

Instead of finding one optimal parametrization ω∗ — the maximum a posteriori
parametrization — to make a prediction for a new subject x, the Bayesian
approach uses the posterior distribution over the neural network weights to
make this prediction.

To make things clear, let us assume that we want to perform a classification
task and thus want to predict the class label t of a certain subject based on
the input vector x. We have also access to a supervised data set D, which
contains a number of records with known classification labels, some background
information ξ, and assume that we can model the classification problem with a
multilayer perceptron. We can write out the classification probability as

P( t = CP |x,D, ξ ) =

∫

Ω

P( t = CP |x,D ) p(ω |D, ξ ) dω

=

∫

Ω

mlp(x |ω ) p(ω |D, ξ ) dω (6.5)

From the above formula, we see that the Bayesian framework uses all multi-
layer perceptron parametrizations, and weights each parametrization according
to the posterior distribution p(ω |D, ξ ).

If we can compute this integral, we know the probability that the subject
belongs to class CP given the observation vector x and the data set D. Unfortu-
nately, it will not be straightforward to compute this integral. Since we cannot
compute this integral analytically, we will approximate it using a Monte Carlo
summation, as will be explained hereunder.

In Section 5.3.1 we will take a closer look at p(ω |D, ξ ) ∝ L(ω |D ) p(ω | ξ ).
The likelihood part is fixed, but we have several options to specify the prior
distribution p(ω | ξ ), depending on what background knowledge ξ we have. This
can be either a complexity-based prior or an informative prior, which could be
defined using the transformation technique introduced in Section 4. Because
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this transformation technique provides us only with a procedure to sample from
the informative prior p(ω | ξ ), we will estimate this distribution using some
parametric distribution. In Section 6.8, we introduce a range of distributions
with an increasing expressive power that could be used for this.

Section 6.9 finally discusses the technical details when estimating a distri-
bution in neural network weightspace successfully, dealing with the symmetries
that may occur.

Let us first concentrate on Equation 6.5. It is not possible to compute this
integral exactly, leaving us with approximation techniques. A Monte Carlo sum-
mation [37] approximates an integral over the support S of a density function
p(·):

∫

S
f(x) p(x) dx ≈ 1

N

N∑

i=1

f(xi) where xi ∼ p(x)

= MC∼N (f(·))
The name “Monte Carlo” comes from the gambling place Monte Carlo, re-

ferring to the laws of chance that are involved and finds unfortunately its first
application in building better atomic bombs by Ulam and von Neumann.

The variance of this Monte Carlo estimator, when the vectors ωi are inde-
pendent, is

V[MC∼N (f(·))] =
1

N
V[f(ω)] =

1

N

∫

Ω

(f(ω)− E[f(ω)])2p(ω) dω,

which means that the standard deviation has a rather slow convergence rate of
1/
√
N . Because there is not much we can do to improve this rate, we should

try to make the second factor
∫
Ω

(f(ω)−E[f(ω)])2p(ω) dω as small as possible.
This term measures the variance of the function f(·) under the distribution p(·).
A common approach is to rewrite the integrand f(ω) p(ω) as f ∗(ω) p∗(ω) in
such a way that f∗(·) becomes as constant as possible while we can still generate
random numbers from p∗(·) in an efficient way.

In our case, we can determine immediately two possible distributions we can
use to create a Monte Carlo summation

f(ω)p(ω |D ) = f(ω)
L(ω |D )

p(D)
p(ω)

= f∗(ω) p(ω).

We can either use the posterior or the prior distribution in the Monte Carlo
summation.

6.7.1 Weighted prior samples and rejection sampling

The most straightforward method uses the a priori distribution based Monte
Carlo expansion

∫

Ω

f(ω)
L(ω |D )

p(D)
p(ω) dω ≈ 1

N

N∑

i=1

f(ωi)
L(ωi |D )

p(D)
with ωi ∼ p(ω).
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This procedure has the benefit that independent parametrizations ωi can
be generated in an efficient manner from the prior distribution and results in a
summation where the values f(ωi) of the function in question are reweighted
with the likelihood of that weight vector given the data. It is this likelihood
factor that results in a high variance for the new function of interest f ∗(ω) =
f(ω)L(ω |D )/p(D) under the prior distribution p(·). It can take a long time
before we, by accident, draw a parametrization ωi from p(ω) that has a non-
zero likelihood value. This renders the prior Monte Carlo method virtually
impossible to use. To make things even worse, we have to estimate the factor

p(D) =

∫

Ω

p( D |ω ) p(ω) dω

in a similar manner.
The solution is to use the expansion with respect to the posterior distribution

∫

Ω

f(ω) p(ω |D ) dω ≈ 1

N

N∑

i=1

f(ωi) with ωi ∼ p(ω |D ).

It is reasonable to expect the function of interest, f(·), to have small vari-
ance with respect to the posterior distribution, which will result in an acceptable
variance for our Monte Carlo estimator. On the other hand, it is much harder
this time to generate random vectors from the posterior distribution. An ana-
lytic form of this distribution is not given, which leaves the direct generation of
random vectors impossible.

A possible strategy to generate from p(ω |D ) ∝ L(ω |D ) p(ω), is to use
rejection sampling [74] using the prior distribution:

Initialization: Determine maxω L(ω |D ) or an upper bound.

1. Generate ω according to p(·).

2. Accept ω with probability L(ω |D )
maxω L(ω |D ) , else return to Step 1.

This procedure samples from a distribution

prejection(ω) ∝ p(ω)
L(ω |D )

maxω L(ω |D )
,

which has to be equal to the posterior distribution since each distribution inte-
grates to one.

Although rejection sampling is a nice method, its application here is equally
naive as the prior expansion. The problem is again the term L(ω |D ), which
is responsible for the huge difference between p(ω) and p(ω) maxω L(ω |D ).

To demonstrate the ineffectiveness of this rejection sampling method, we
created a small artificial data set containing only 4 data points, and generated
five network parametrizations from the posterior distribution (see Figure 6.8).
To get these five weight vectors accepted, it took 4 399 397 rejected vectors.
The inefficiency of this method even grows as the number of parameters or the
number of data points increases.
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Figure 6.8: Five network functions, together with their Monte Carlo sum, drawn
from the a posteriori distribution using the rejection sampling method.

6.7.2 Markov chain methods

When direct sampling from some distribution via rejection sampling or some
similar method fails, we can look into Markov chain methods. A Markov chain
can be thought of as a machine that jumps from one state to another in discrete
time according to specific rules. We represent with ϑt the state of our Markov
chain at time t. To describe a Markov chain, we need the probability distribution
p(ϑt+1 |ϑt ) to arrive in state ϑt+1 at time t + 1 if we were at ϑt at time t. A
Markov chain assumes that this distribution is time invariant. Another central
assumption called the Markov property is that a Markov chain forgets. With
forgetting, we mean that the knowledge of the state of the chain at time t is the
only thing we need to predict its state at time t+ 1. The additional knowledge
of states ϑt−1, ϑt−2, . . . does not give any new information:

p(ϑt+1 |ϑt, ϑt−1, ϑt−2, . . . ) = p(ϑt+1 |ϑt ).

If we run a Markov chain for a long time, the distribution of its state will
become independent of the initial state. Many Markov chain applications will
choose the transition probabilities carefully such that this long run distribution
will have special properties.

The methods described here are based on constructing a Markov chain for
the weight vector of a neural network. By carefully defining the transition
probabilities to end up in ωt+1 from state ωt, we can determine the equilibrium
distribution of our Markov chain, the distribution of the samples if we run the
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chain long enough. We denote this transition distribution from ωt to ωt+1 with
T (ωt+1 |ωt ).

An equilibrium distribution q(ω) of a Markov chain with transition distri-
bution T (ω′ |ω ) has the property that, if ωt has distribution q(ω), all the
following parametrizations ωt+i, i > 0 are also distributed according to q(ω).
This property translates to

q(ω′) =

∫

Ω

T (ω′ |ω ) q(ω) dω

and is certainly matched if

T (ω′ |ω ) q(ω) = T (ω |ω′ ) q(ω′) ∀ω,ω′ ∈ Ω. (6.6)

A Markov chain is called irreducible if every state can be reached from every
other state in a finite number of steps. If a Markov chain has an equilibrium
distribution q(·) and is irreducible, its equilibrium distribution will be unique
and converges to this distribution from every start vector ω1.

Metropolis Markov Chain

An often used Markov chain is called the Metropolis Markov chain [16]. We
want to generate samples from the posterior distribution p(ω |D ) and define
a distribution S(ω∗ |ωt ) that we will use to generate candidate states. The
algorithm to generate ωt+1 from ωt is represented in Figure 6.9 and goes as
follows:

1. Generate a candidate state ω∗ from S(ω∗ |ωt ).

2. If p(ω∗ |D ) ≥ p(ωt |D ), accept candidate ω∗, else accept candidate ω∗

with probability p(ω∗ |D )/p(ωt |D ).

3. If ω∗ is accepted, return ωt+1 = ω∗, else return ωt+1 = ωt.

The transition distribution can thus be written as

T (ω′ |ω ) = S(ω′ |ω ) min

(
1,

p(ω′ |D )

p(ω |D )

)
.

If we choose S(ω′ |ω ) symmetric (S(ω′ |ω ) = S(ω |ω′ )), we can prove
that p(ω |D ) is the equilibrium distribution:

T (ω′ |ω ) p(ω |D ) = S(ω′ |ω ) min

(
1,

p(ω′ |D )

p(ω |D )

)
p(ω |D )

= S(ω′ |ω ) min(p(ω |D ), p(ω′ |D ))

= S(ω |ω′ ) min(p(ω′ |D ), p(ω |D ))

= S(ω |ω′ ) min

(
1,

p(ω |D )

p(ω′ |D )

)
p(ω′ |D )

= T (ω |ω′ ) p(ω′ |D ),
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and thus Equation 6.6 is fulfilled.
Figure 6.9 presents a schematic representation of the algorithm that is used

to generate new states of the Markov chain. If the value of the posterior dis-
tribution at ω∗ is higher than in the previous state, we always accept this new
state. This behaviour alone would result in an optimization routine. By accept-
ing also states with a lower density, we can escape local minima, something we
expect from a Markov chain.

Crucial for this Markov chain is the choice of the candidate generating dis-
tribution S(ω∗ |ω ). We are free to choose S(ω∗ |ω ) as long as it is symmetric.
A common choice is a multivariate Gaussian distribution with mean ω

S(ω∗ |ω ) = N (ω, αI).

With α, we can control how far away we will look for a candidate parametriza-
tion. For some regions of the weight space, we can set this quite large to achieve
a reasonable acceptance rate, while for other regions we are practically in a val-
ley and need a small α. Unfortunately, we cannot modify α during the Markov
chain as this would destroy the symmetry of S(ω∗ |ω ). By observing this, we
have to set α relatively small, which will result in small steps and thus a slow
walk through the weight space. And even this slow walk is far from optimal
since S(ω∗ |ω ) does not use any information from the posterior to generate
new candidates. This can be a benefit for solving problems where only the pos-
terior distribution can be computed, and for instance no gradient, but here it
will render the Markov chain unusable for generating samples from the posterior
distribution, especially if a lot of parameters are involved.

Hybrid Monte Carlo Markov Chain

To deal with the problems of the Metropolis method to generate new states for
our Markov chain, we will use the hybrid Monte Carlo Markov chain method [63].
This method will use higher-order derivatives of the density and use this to speed
up the travel through weight space.

The algorithm requires that we write down the distribution we want to
sample from in terms of energy. The reason is that it originates from physics,
where we want to sample according to the Boltzmann distribution of a system.
Such a system has some potential energy E(q), where q is a vector of space
coordinates. The Boltzmann distribution (also called the canonical distribution)
for the variables q is

pBoltzmann(q) ∝ e−E(q).

Nothing stops us to define a virtual physical system where we define q as ω
and the potential energy as

E(ω) = − log(p(ω |D )) + Cst.

The Boltzmann distribution where the algorithm will sample from is now
our wanted posterior distribution.
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Figure 6.9: A schematic representation of the Metropolis algorithm.

In addition to this potential distribution, we also have to create a vector
containing momentum terms pi for each parameter qi. This momentum vector
will determine the kinetic energy of the system as is usually done in physics

K(p) =
∑

i

pi
2mi

,

where mi is the mass of particle i. Because we have no real physical system, we
set the masses of the particles to 1. Note that the mass has nothing to do with
the name weight that is frequently used to indicate the parameters of a neural
network. The total energy of the system is now given by the Hamiltonian

H(ω,p) = E(ω) +K(p),

and the canonical distribution for both ω and p becomes

p(ω,p) ∝ e−H(ω,p)

= e−E(ω)e−K(p)

= p(ω |D ) e−K(p).
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The variables ω and p are clearly independent and we want to sample from
the marginal distribution for ω. The idea is to construct a Markov chain that
converges to the Boltzmann distribution for both ω and p, and only retain the
values for ω. To create the Markov chain, we will make use of the Hamiltonian
dynamics

dωi
dτ

= +
∂H

∂pi
=

pi
mi

dpi
dτ

= − ∂H
∂ωi

= − ∂E
∂ωi

.

These equations have some important properties:

1. If we follow the equations for some time, the Hamiltonian does not change
(dHdτ = 0).

2. They are invertible: suppose we take a certain (ω,p) combination as start
position and we follow the equations for some time ∆t and end up at
(ω′,p′). If we now start from (ω′,−p′), we will end up in (ω,−p).

3. A certain volume will stay the same under the transformation, because
the divergence is zero.

We will generate new states in the chain by first generating a momentum vec-
tor p according to p(p) ∝ e−K(p); the components of p simply have a standard
normal distribution N (0,I). Using these p-values together with our network
parametrization ω, we will follow the Hamiltonian equations for some time ∆t.
The place where we end up will be our next state (ω′,p′) in the Markov chain,
from which we will retain only ω′. We denote this procedure to generate ω′

from ω with a (deterministic) distribution as T∆t(ω
′ |ω ).

We can prove that this Markov chain has the desired equilibrium distribution
p(ω |D ) by proving Equation 6.6:

T∆t(ω
′ |ω )p(ω |D ) =

∫

p′
T∆t(ω

′,p′ |ω ) dp′e−E(ω)

=

∫

p′

∫

p

T∆t(ω
′,p′ |ω,p ) e−K(p)e−E(ω)dp dp′

=

∫

p′

∫

p

T∆t(ω,−p |ω′,−p′ ) e−H(ω,p)dp dp′

=

∫

p′

∫

p

T∆t(ω,−p |ω′,−p′ ) e−H(ω′,−p′)dp dp′

= T∆t(ω |ω′ ) p(ω′ |D ).

We used the reversibility of the Hamiltonian dynamics, and the fact that the
Hamiltonian does not change while following these dynamics and thus has the
same value in (ω,p) as in (ω′,p′).
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If we follow the dynamics for a time equal to zero, we can interpret T0(x,y |ω,p )
as a two-dimensional Dirac distribution, the probability that we are in (ω,p) if
we follow the dynamics for a time equal to zero and started in (ω,p):

∫

Ω

∫

Rn
f(x,y)T0(x,y |ω,p ) dx dy = f(ω,p).

Because the volume stays the same under the dynamics, T∆t(x,y |ω,p )
stays a Dirac distribution, but now around the endpoints (ω ′,p′) of our dynam-
ics: ∫

Ω

∫

Rn
f(x,y)T∆t(x,y |ω,p ) dx dy = f(ω′,p′).

To apply this method, we have to follow the dynamics for a fixed period of
time. In general, this is only possible using a numerical approximation, which
will introduce errors. As such, the Hamiltonian will change slightly during the
process. We can deal with this problem by combining the hybrid Monte Carlo
method with the Metropolis algorithm: we will generate new candidate states
for the Metropolis algorithm by following the Hamiltonian dynamics and accept
each new state from the numerical approximation of the Hamiltonian dynamics
as a valid state using the Metropolis method. If H(ω,p) decreases or stays the
same, the new state will always be accepted. If it increases, we can still accept
the new state with a probability equal to the ratio of the Boltzmann densities.

The nice thing is that we should not care about making approximation errors,
the Metropolis part will take care of this. The only thing we have to take care
of, is that we follow the equations in symmetric manner: we have to be able
to reverse the numerical trajectory. If we make some numerical errors in one
direction, we have to make the same numerical errors if we go in the other
direction. To achieve this, we will not make use of some widely applied Runge-
Kutta method, but discretize the equations by using leapfrog steps:

p̂i(τ +
ε

2
) = p̂i(τ)− ε

2

∂E

∂ωi
(ω̂(τ))

ω̂i(τ + ε) = ω̂i(τ) + ε
p̂i(τ + ε

2 )

mi

p̂i(τ + ε) = p̂i(τ +
ε

2
)− ε

2

∂E

∂ωi
(ω̂(τ + ε)).

Such leapfrog steps exist of a half step for pi, a full step for ωi and again
a half step for pi. To follow these equations during a period ∆t, we try to
choose the step size ε as large as possible while keeping the approximation error
reasonable and thus keeping the Metropolis acceptance rate reasonable. The
above equations are then applied L = ∆t/ε times. From these equations, it is
apparent that we can combine the half steps for pi except for the first and the
last step.

Additionally, we try to set ∆t as large as possible such that (ω,p) and
(ω′,p′) are far from each other and we walk through the parameter space with
a high speed.



6.8. Prior for parameters 107

To estimate how large we can set ε and ∆t, we run the Markov chain while
optimizing these parameters to get a suitable acceptance rate. Once they are
fixed, we can start using our Markov chain to generate samples from the poste-
rior.

6.8 Prior for parameters

Before we can use all our machinery to sample from the posterior distribution,
we should define the prior distribution. This distribution contains our belief in
the density of the weight vector ω, before we observe any data. It is hard to
give a clear interpretation to these weights in general, which has hindered so
far the specification of the prior. We will discuss a range of priors and how to
specify them.

6.8.1 Complexity-based prior

The first and most basic prior has the purpose to restrict the network parameters
from becoming too large, for reasons explained in Section 6.3.1. We choose for
a multivariate Gaussian distribution p(ω | ξ ) = N (0, σp

2I) for its nice prop-
erties and interpretation as a weight decay regularization term, as explained
in Section 6.3.3. The standard deviation σp controls the freedom of the network
weights and hereby controls the complexity of the network functions that can
be reached. As an example, Figure 6.10 displays network functions drawn from
Gaussian distributions with σp

2 ranging from 0.1 to 100. The network structure
is the same for each prior and contains one hidden layer with 10 nodes. The
hidden neurons use the hyperbolic tangent transfer function, while the output
node uses the linear transfer function.

For networks drawn from a prior with increasing variance, the complexity
increases accordingly from the zero function to a step function with a step for
each hidden neuron.

Most of the time it is not clear how to set σp. A solution is to move everything
one level up by defining a hyper-distribution for σp

2. A common choice is a
Gamma prior for u = σp

−2 with mean m and shape parameter s

p(u | s,m ) =
(s/(2m))s/2

Γ(s/2)
us/2−1e−us/(2m).

A small value for s will result in a vague prior for σp
−2, which is often

desirable.
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Figure 6.10: Network functions drawn from prior distributions with variance σp
2

ranging from 0.1 (left upper corner) to 100 (right bottom). The structure is four times
the same, one hidden layer with 10 nodes.

The marginal of ω can be computed exactly:

p(ω | s,m ) =

∫ ∞

0

p(ω |σp−2 = u ) p(u | s,m ) du

=

∫ ∞

0

un/2√
2π

n e
−uPi ω

2
i/2

(s/2m)s/2

Γ(s/2)
us/2−1e−us/2mdu

=
(s/2m)s/2√
2π

n
Γ(s/2)

∫ ∞

0

un/2+s/2−1e−u(
P
i ω

2
i/2+s/2m)du

=
(s/2m)s/2 Γ(n/2 + s/2)√

2π
n
Γ(s/2)(

∑
i ω

2
i /2 + s/2m)n/2+s/2

=
Γ(n/2 + s/2)√
πs/m

n
Γ(s/2)

(∑
i ω

2
i

s/m
+ 1

)−(n/2+s/2)

,

which is a multivariate t-distribution and can equally well be used in the hybrid
Markov Chain Monte Carlo method.

Other approaches use an improper prior for σp
−2 and approximates p(σp

−2 |D )
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with a Dirac function around its peak σp
−2
∗ :

E[ f(·) |D ] =

∫

Ω

f(ω) p(ω |D ) dω

=

∫

Ω

∫

σp−2

f(ω) p(ω |D, σp−2 ) p(σp
−2 |D ) dσp

−2dω

≈
∫

Ω

f(ω)
L(ω |D )p(ω |σp−2

∗ )

p( D |σp−2
∗ )

dω.

The evidence framework [60] describes a subtle approach to how to derive this
value in terms of the effective number of parameters. A cruder approximation
of σp

−2
∗ can be found by maximizing p(ω, σp

−2 |D ) both in ω and σp, and
retaining only the value for σp

−2:

σp∗ = argmaxσp(p(σp
−2 |D ))

= argmaxσp(

∫

Ω

p(ω, σp
−2 |D ))

≈ argmaxω,σp(p(ω, σp
−2 |D ))

∣∣
σp
.

6.8.2 Informative prior

If we have more prior information than only the complexity of our network, we
would like to use a distribution that is capable of expressing this information.
Suppose that we somehow know in advance where the network parameters more
or less have to be, we would at least need a distribution where we can specify
the mean µ. If we have no clue about the correlations between the weights, we
can simply use an independent Gaussian distribution p(ω) ∼ N (µ, σI) for each
weight, possibly with the same variance σ2 for each weight.

If more flexibility is necessary, we can specify correlations between the indi-
vidual weights using a multivariate Gaussian distribution with a certain covari-
ance matrix:

p(ω |µ,Σ ) =
1√

(2π)n|Σ|
e−

1
2 (ω−µ)′Σ−1(ω−µ).

As explained in Section 5.3.2, these distributions can be represented with a
continuous Bayesian network with linear-Gaussian variables. The independent
model corresponds to a network without edges, while each multivariate Gaus-
sian can always be represented by a fully connected Bayesian network structure
SC

bn. A sparse network structure corresponds to a model where interaction be-
tween only some of the weights is present. If these linear dependencies are not
adequate, one can always use a nonlinear-Gaussian Bayesian network (see Sec-
tion 5.3.3) to capture the prior.

All the previous distributions are unimodal. If this is a restriction to specify
the prior, a mixture of Gaussians could be used, which corresponds to a Bayesian
network with hidden variables. These hidden nodes can be used to divide and
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separately control different weights in a neural network. Figure 6.11 presents
such a Bayesian network structure where each node Hidden* of the Bayesian
network controls the weights coming in and out a hidden neuron of the neural
network.

Variable0

Variable1

Variable2

Variable3

Variable4

Variable5

Variable6

Variable7

Variable8

Variable9

Variable10
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Hidden2

Hidden3

Hidden4
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Figure 6.11: The fixed structure of the nonlinear-Gaussian Bayesian network that
can be used to specify a prior for the neural network shown in Figure 6.12. Each hidden
node controls one hidden neuron (the weights coming in and out of that neuron) of
the multilayer perceptron.

The neural network structure has two inputs, two layers of hidden neurons
with three neurons in each layer and one output, as shown in Figure 6.12.
The Bayesian network node Hidden0 corresponds to the top neuron of the first
hidden layer. Variable0 and Variable1 correspond to the weights that connect
the inputs x1 and x2, while Variable2 corresponds to the bias that connects the
input 1 to this neuron. Variable6, Variable7, and Variable8 corrspond to the
weights that connect this top neuron form the first layer to the neurons of the
second layer.

By modifying the value of a hidden node of this Bayesian network, one
can increase or decrease all the corresponding weights of the neural network,
hereby modifying only the transfer function of that neuron. By dividing the
weights in groups of separately controlled variables, one can modify the network
function only locally. This can be important if a prior can be specified which
has the same characteristics as the data set, but is still different, as explained
in Section 4.5. Optimally, the prior successfully uses the neurons to describe
the required characteristics of the problem. When data is observed, much of
the prior can be kept, only the weights of some neurons will have to increase or
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Figure 6.12: A neural network structure with two layers of hidden neurons. A
possible Bayesian network structure with hidden nodes that can be used to specify a
prior distribution is shown in Figure 6.11.

decrease simultaneously to control how smooth the neuron reacts on the inputs.
How the different inputs of each neuron are combined in the neuron basically
stays the same. The usage of the hidden nodes allows.

To use one of these priors in the hybrid Monte Carlo Markov chain procedure,
we have to be able to compute the derivative of the prior. Although with
increasing computational complexity, we can compute the gradient for each
distribution that has been mentioned here. But before we can compute any of
these gradients, we have to specify them.

6.9 Estimation of prior

As has been mentioned several times, we should not hope to specify an infor-
mative prior distribution directly, because of the difficult interpretation of the
neural network weights. To incorporate the prior information anyway, we will
apply the techniques proposed in Chapter 4. We assume that we can specify
our prior knowledge by defining a Bayesian network structure together with
an informative distribution (the donor model). By generating virtual data sets
Dk and drawing parametrizations from the resulting neural network posterior
distribution, we can generate weight vectors according to the informative prior
distribution p(ω | ξ ). One possibility to perform Bayesian inference using the
posterior p(ω |D, ξ ) is to directly apply the rejection sampling method dis-
cussed in Section 6.7.1, but, although this informative prior is less broad than a
complexity-based prior, this method will in most cases still not work efficiently.
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Another approach is to generate a set of multilayer perceptron parametri-
zations {ωi}di=1 from p(ω | ξ ), and estimate this distribution using the gener-
ated samples with one of the distributions mentioned in the previous section.
Although it is straightforward to estimate one of these models on a statis-
tical data set, we have to take care of some particular properties of neural
network weight space: symmetries. There may exist different network para-
metrizations ω1 and ω2 that result in exactly the same network functions
mlp(x |ω1 ) = mlp(x |ω2 ), ∀x. Those symmetries are no problem when op-
timizing the posterior distribution or sampling from it, but they do become a
problem when we want to estimate a distribution in weight space: two network
parametrizations might be close to each other, while some of their symmetric
representatives might be far from each other. Because we do not know which
symmetric representative has been chosen for each parametrization, we might
end up with poor estimations.

6.9.1 Cause of symmetries

There are two main reasons for these symmetries, as illustrated schematically
in Figure 6.13. At first, if we swap two nodes from a hidden layer, the para-
metrizations will be different but the network function stays the same. The
second type of symmetries is caused by the symmetry in the transfer function.
The hyperbolic tangent transfer function is odd, which means φ(−x) = −φ(x).
If we flip the sign of all the weights that come in and out of a neuron in a hidden
layer, the resulting network function will also stay the same. The total number
of symmetries is

#Symmetries =
∏

k

2NkNk!,

where k goes over the hidden layers and Nk is the number of neurons in layer k.

6.9.2 Symmetry elimination methods

If we try to estimate a distribution in weight space, we are in fact estimating
the superposition of #Symmetries distributions. It should be clear that we do
not want to estimate each distribution separately because they are the same
up to some transformation. Instead, we will try to choose for each network
parametrization ω that was generated from our informative prior, a suitable
transformation T (ω) such that {T (ωi)}di=1 can directly be used to estimate the
distribution in weight space.

Canonical

A first method to define such a transformation, is the canonical transformation.
This transformation will choose for each hidden node thát sign flip that makes



6.9. Estimation of prior 113

Σ φ

Σ φ

Σ φ

Σ φ

φΣ
ω11

ω12

13ω

11ω

ω21

ω31

φΣ
11ω

ω21

ω31

φ(−α)=−φ(α) =

13ω
ω12

ω11

−
−

−

−−

−

Figure 6.13: The two causes for symmetries in neural network weight space: node
switch and transfer function symmetry.

the bias positive. Once all the biases are positive, the canonical transforma-
tion will order the biases from large to small to deal with the node swapping
symmetries.

This transformation has the benefit that it maps each possible representation
to a unique one. Unfortunately, this transformation has some discontinuities;
suppose ω1 and ω2 are almost the same except that ω1 has some bias slightly
positive, while ω2 has that same bias slightly negative. The canonical transfor-
mation will flip the signs of all the weights connected to the same node as that
bias, which results in two very different network parametrizations Tc(ω1) and
Tc(ω2). This will result in suboptimal density estimation.

Exact

To find more suitable transformations, we will first state more precisely what
we are looking for. Suppose we want to estimate our distribution with a para-
metric density model p(ω |ν ), where ν denote the parameters of that model.
This model can be one of the models indicated in Section 6.8.2 or some other
multivariate model where the likelihood function L(ν | {Ti(ωi)}di=1 ) can be eas-
ily optimized with respect to the model parameters. We are now looking for
those transformations {Ti(·)}di=1 that result in a set of transformed network
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parametrizations {Ti(ωi)}di=1 that can be modelled well by our density:

{Ti(·)}di=1 = argmaxTi(max
ν

p( {Ti(ωi)}di=1 |ν ))

= argmaxTi(max
ν
L(ν | {Ti(ωi)}di=1 )).

Computing this in a straightforward manner is infeasible, as this would re-
quire #Symmetriesd optimizations of the likelihood function. The first problem
is the factor d.

Instead of blindly trying every possible combination of possible transforma-
tions for the network parametrizations, we will try a more intelligent approach.
The idea is that we pick a certain parametrization ν and try to find those
transformations that result in network parametrizations with a high probability
according to p( · |ν ). Since we picked one parametrization ν, we can find a
good transformation for each network parametrizations separately, effectively
exchanging the exponent d for a multiplication. Next, we reestimate ν based
on the suitable transformations we just found, and repeat the whole process.
Although a bit technical, the previous idea can be seen as an application of the
Expectation Maximization algorithm [10].

This EM algorithm is an optimization method for the likelihood when miss-
ing or hidden variables are present. If we denote the observed data by X , the
missing or hidden data with Y and θ for the parameters of the joint distribution
p(X ,Y |θ ), this algorithm searches for θ∗ such that

θ∗ = argmaxθ(p(X |θ ))

= argmaxθ(L(θ |X )),

by alternating two steps. In the first step — the Expectation step — we look for
the expected complete-data log-likelihood function Q(θ,θi), using the current
parameters θi and the observed data X

Q(θ,θi) = E[ logL(θ |X ,Y ) |X ,θi ].

In the next step — the Maximization step — we find our next parametriza-
tion, θi+1, by optimizing Q

θi+1 = argmaxθ(Q(θ,θi)).

It is guaranteed that the iterative application of these steps converge to at
least a local maximum of the likelihood function L(θ |X ).

It is tempting to choose our unknown transformations {Ti(·)}di=1 as the hid-
den data Y and θ = ν, but this results in an impractical algorithm. Instead, we
choose Y = ν and θ = {Ti}di=1. The observed data is X , which is in our case
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the set of network parametrizations {ωi}di=1. We can approximate Q as follows:

Q(θ,θi) = E[ log p(X ,Y |θ ) |X ,θi ]

=

∫
log p( {ωk},ν | {Tk} ) p(ν | {ωk}, {T ik} ) dν

≈ log p( {ωk},ν∗ | {Tk} )

= log

(
p( {ωk}, {Tk} |ν∗ ) p(ν∗ | {Tk} )

p({Tk})

)
(6.7)

= log(p( {ωk}, {Tk} |ν∗ )) + Cst

= log(p( {Tk(ωk)} |ν∗ )) + Cst,

where we approximated p(ν | {ωk}, {T ik} ) with a Dirac function

p(ν | {ωk}, {T ik} ) ≈ δν∗(ν)

ν∗ = argmaxν(p(ν | {ωk}, {T ik} )).

In addition to this, we assume that we have no prior knowledge for the trans-
formations. This results in a uniform distribution for p({Tk}). It is also sensible
that the knowledge of these transformations alone without the actual network
parametrizations will not influence the model parameters ν. This results in the
constant factor of Equation 6.7.

Optimizing Q(θ,θi) is now a matter of finding those transformations that
maximize the log-likelihood with model parameters ν∗. Finding these optimal
transformations can be done one by one. In the brute force manner, this re-
quires the evaluation of p(T (ωi) |ν∗ ) for each of the #Symmetries possible
transformations and for each weight vector ωi. This results in a complexity of
d ·#Symmetries, which is already much better than our previous complexity of
#Symmetriesd, but #Symmetries can still be too large in practice. Let us look
into a heuristic to find these transformations.

Heuristic

At first, let us assume that we have only one hidden layer with hyperbolic
tangent transfer functions and l nodes and want to use a distribution that treats
the weights connected to different nodes independently. To make clear what we
mean, we divide the network parameters ω into l+ 1 groups (ω̃1, . . . , ω̃l+1); the
first l groups correspond to the weights belonging to the hidden nodes, while
the last group contains the other parameters. As an example, ω̃1 contains the
weights of the connections from the inputs to the first hidden node, the weight
from the bias to this node and the weights of the connections from this first
hidden node to the output nodes. The last group ω̃l+1 contains in our case only
the weights of the connections from the bias to the output nodes.
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Our assumption for the distribution of the weights becomes

p(ω |ν ) =
l∏

i=1

p( ω̃i |νi ) · p( ω̃l+1 |νl+1 )

log p(ω |ν ) =

l∑

i=1

log p( ω̃i |νi ) + log p( ω̃l+1 |νl+1 ).

The distribution p( ω̃i |νj ) describes the density for the parameters corre-
sponding to the jth hidden node evaluated with ω̃i. If i 6= j, we are effectively
switching nodes i and j.

As indicated in Section 6.9.1, a general transformation consists of a permu-
tation π of the nodes and a sign flip for some nodes. This observation allows us
to write out the maximization over all possible transformations as follows:

max
T

log p(T (ω) |ν ) = max
π

l∑

i=1

max
±

log p(±ω̃π(i) |νi ) + Cst. (6.8)

The permutation π takes care of the node permutations, while max± takes
care of the node flips. The constant factor comes from the parameter set ω̃l+1,
which is unaffected by our transformation.

Rüger and Ossen [75] rewrite Equation 6.8 in terms of a minimization

max
T

log p(T (ω) |ν ) = min
π

l∑

i=1

min
±
− log p(±ω̃π(i) |νi ) + Cst, (6.9)

and state that this is the general travelling salesman problem with cost K(i,j)
to go from city i to j

K (i, j) = min
±
− log p(±ω̃j |νi ).

They continue by using the rich variety of approximate solutions for the
travelling salesman problem to deal with the symmetry problem. Unfortunately,
we fail to see the travelling salesman problem in Equation 6.9. In our opinion
the minimization of Equation 6.9 is much harder because it goes over all possible
permutations, while the travelling salesman goes only over those permutations
that result in a tour.

One can translate the above problem to a travelling salesman problem with
2l cities though. We have two types of cities: {c1, . . . , cl } and {c∗1, . . . , c∗l }. We
define the cost between two cities as:

K (c∗i , cj ) = min
±
− log p(±ω̃j |νi )

K (ci , c
∗
j ) = 0

K (ci , cj ) = ∞
K (c∗i , c

∗
j ) = ∞.



6.9. Estimation of prior 117

Because of the special definition of this cost function, we force that a tour
alternates between cities of the two types. The links of the type c∗i → cj indicate
the node permutation that has to be used. The links ci → c∗j all have the same
cost and are thus unimportant. Unfortunately, a travelling salesman problem
with 2l cities is much harder to solve than one with only l cities.

Therefore, to continue with our optimization of Q(θ,θi), we designed a
greedy search heuristic procedure to find an approximate solution of Equa-
tion 6.8. The basis of this heuristic is the observation that a hidden node
becomes more important for the overall network function if its corresponding
weights become larger. With this in mind, we first reparametrize ν in such a
way that the mean L2 distances for the weights of each hidden node becomes
ordered

E[ ‖ω̃‖ |ν1 ] > E[ ‖ω̃‖ |ν2 ] > · · · > E[ ‖ω̃‖ |νl ]. (6.10)

Doing so, p( · |ν1 ) models the most important hidden node, p( · |ν2 ) will
model the second most important node and so on. To find thát transformation
T for a network parametrization ω that maximizes the probability p(T (ω) |ν ),
we reorder the groups of ω similarly from large to small

‖ω̃1‖ > ‖ω̃2‖ > · · · > ‖ω̃l‖. (6.11)

Starting from this reordered distribution and parameter vector, we search
for a suitable transformation. Because ω̃1 looks like the most important part of
our network, we make sure that this is placed as correctly as possible. We will
try the first K node distributions p( · |ν i ), i ∈ {1, . . . ,K} to fit ±ω̃1 as well
as possible. Next, we try the first K node distributions that are left to fit ±ω̃2

as well as possible, and so on. K is a parameter of the heuristic. If it is set
to 1, only the L2 norm of the node weights is taken into account together with
possible sign flips to find a suitable transformation. The larger it gets, the more
potential node distributions are tested, resulting in a better transformation at
the expense of a higher computational complexity.

Initialization: Reorder ν and ω such that Equation 6.10 and Equation 6.11
hold.

For i over the hidden nodes, from 1 to l do

1. Find that node distribution j and sign ± from the first K still avail-
able distributions that has the maximal probability: max± p(±ω̃i |νj )
is maximal.

2. π−1(i) = j

A comparison of the different methods

We will demonstrate the above techniques to estimate a distribution in neural
network weight space on an artificial problem to indicate the difference between
them. Based on a noisy sinus data set and a complexity-based prior, we can
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obtain the posterior distribution. The network structure we use, has two hid-
den layers with five hyperbolic tangent neurons in each layer and is shown in
Figure 6.14. We will generate 100 random vectors {ωi} from this distribution
using the hybrid Monte Carlo Markov chain method. To make sure that the
network parametrizations are not coming from the same symmetric quadrant,
we use one Markov chain run to generate only one ωi, after which we restart
the chain from a random vector. The noisy sinus data set and the generated
regression networks are shown in Figure 6.15, together with the mean of those
network functions.
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Figure 6.14: The structure of the multilayer perceptron we will use to model the
sinus data set. This neural network consists of two hidden layers with five neurons in
each layer, all using the hyperbolic tangent transfer function.

The original network parameter vectors are shown in Figure 6.16. Each
column of this matrix is a network parametrization. We will try to estimate
the distribution in weight space with a single Gaussian distribution using three
different techniques: at first, we fit the distribution on the original weight vectors
from Figure 6.16. From this figure, we can see that a single Gaussian distribution
will not give a good performance because there are variables (rows) that have
a bimodal behaviour and are either close to 2.6 (black) or -2.6 (white).

Next, we transformed the network parametrizations using the canonical
transformation. The matrix on Figure 6.17 seems already easier to estimate,
but improvements can still be made. This can be achieved by applying the
greedy-based heuristic transformations. The resulting parameter vectors are
shown on Figure 6.18.

From these three methods, the heuristic procedure seems the most suitable
to fit a unimodal distribution on. This can also be seen from Figure 6.19,
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Figure 6.15: The noisy sinus data set and the functions realized by a few networks
drawn from the posterior distribution, together with the mean of those network func-
tions.

which shows a different scatter plot for each method between an input weight
and a weight between the two hidden layers. We choose that weight that was
connected to the most important node(s).

To evaluate the performance of these different methods, we used the esti-
mated means of these three distributions as neural network parameter vectors
and visualized their resulting input-output mappings on Figure 6.20. The mean
of the Gaussian fitted on the original parameter set is almost the zero vector,
which corresponds to the zero network mapping (the dotted line). This is as
expected since it is equally likely for a weight to be positive or negative because
of the sign flips. The canonical procedure is already much better (the dashed
line) although the network function specified by the mean vector is not as it
should be. The heuristic procedure (the full line) is clearly the best and follows
the sinusoidal trend well.

6.10 To conclude

Neural networks have seen an explosion of interest over the last few decades
resulting into many interesting results, both theoretical as practical. Dealing
with neural networks in the Bayesian framework is more recent [63]. In this
chapter, we described the most important properties of neural networks that
we will use and indicated the similarities and differences between working with
cost functions or performing Bayesian inference.
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Figure 6.16: Each column from this matrix represents the weights from one neural
network parametrization without any transformation. The neural network structure
contained two hidden layers containing five hidden nodes each, as shown in Figure 6.14.
The colour of each element from a column corresponds to a certain weight of the neural
network model: the first five rows correspond to the weights connecting the input to
the hidden layer, the following five rows connect the bias to these hidden nodes. Then
come the connections from the first hidden layer to the next and the bias connections
involved. At last, we have five weights connecting the nodes from the second hidden
layer to the output and finally the bias weight.

To support the latter, we developed a method to estimate distributions in
neural network weight space. We proposed a range of parametric distributions
with increasing potential for successful estimation of a distribution and described
the symmetry problem that arises when hidden nodes are present. To deal with
them, we designed a method to divide a combinatorial problem into a set of
smaller problems and developed a heuristic to deal with these smaller problems.
This enabled us to do efficient density estimation in neural network weight space
and will allow us to apply the transformation technique introduced in Chapter 4.

Estimation of these distributions in neural network weight space is necessary
for dealing with the different types of information that are present in the ovarian
tumour problem. We have now introduced the necessary ingredients to perform
this task and will present the results in the following chapter.
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Figure 6.17: Each column from this matrix represents the weights from one neural
network parametrization where we applied the canonical transformation.
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Figure 6.18: Each column from this matrix represents the weights from one neural
network parametrization where we applied our heuristic procedure to find a suitable
transformation.
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Figure 6.19: Three scatter plots indicating the difference between the symmetry
elimination methods. On the x axis is the weight from the input to the most important
node, on the y axis is the weight from the most important node in the first layer to the
most important node in the second layer. Note the difference between the axis scales.
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Figure 6.20: Based on the transformed network parametrizations, a Gaussian distri-
bution is fitted. The three vectors of means resulting from the three different transfor-
mation methods are used as neural network parametrizations. The dashed line is the
network function resulting from the mean estimated on the original parameter vectors.
The dotted line comes from the canonical transformation, while the full line results
from the heuristic procedure to find suitable transformations.
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The previous three chapters were devoted to the description of the Bayesian
network and multilayer perceptron model classes, their individual benefits and a
possible strategy for how to combine these two different types of models.

Now that the techniques and methods are introduced, we will apply them to
the ovarian tumour problem that was briefly introduced in Chapter 2 and compare
them to more traditional methods and previous work on this medical challenge.
Recall that the goal was to predict pre-operatively if a certain ovarian tumour
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126 Chapter 7. Ovarian tumour classification

is benign or malignant, based on medical observations. In this chapter, we will
develop several classification systems and compare their performance.

7.1 Description

This work is done in the framework of the International Ovarian Tumour Analy-
sis Consortium (IOTA), a study on ovarian tumours [83] initiated at the Univer-
sity Hospitals Leuven by Prof. Dr. Dirk Timmerman. When the IOTA project
started, almost together with this research, there were only a few data samples
available, which made it really necessary to try and include all possible other
information that could be found. During the years, IOTA collected a lot of data,
which makes it possible to learn good models based on numerical data alone.
This simplifies somewhat the necessity to combine all possible kinds of informa-
tion, but on the other hand allows us to test and validate the performance of
our models better.

From this point of view, the ovarian tumour problem is not a common med-
ical problem. Usually, only a small data set is available because of the effort
(both time and cost) involved in collecting the data. In such a situation, com-
bining all available kinds of information is a must.

7.2 Sources of information

Before we begin to develop our models, we introduce the data set and the
additional information sources we have access to.

7.2.1 Clinical data

The original IOTA data set contains 68 parameters and 1 346 tumour records
for 1 152 patients.1 With the help of Prof. Timmerman and previous studies, we
selected 35 relevant variables and 782 records. These variables are introduced
and explained in detail in Appendix A.

From these 1 346 tumours we kept only the dominant tumour for patients
with a tumour on both the left and right side. Records with missing values
for any of these 35 variables are also removed from the data set, except for a
missing Pill Use value, for which we used an imputation model to complete the
variable.

Based on this rudimentary data set, we created two different data sets. The
first derived data set is a discrete data set, with the purpose to be used with the
Bayesian network models. The discretization of the continuous parameters is
performed with the help of the discretization intervals that are indicated in Ap-
pendix A. These intervals were designed by our expert and are straightforward

1Although this is not the final IOTA data set, it underwent a quality control and inconsis-
tent records were corrected by Andrea Valek.
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to use: the limits of these intervals indicate what value should be assigned to
the discretized variable.

The second derived data set is a continuous data set, to be used with the
multilayer perceptron models. Because of the nature of these multilayer percep-
trons, things are more complicated here. The reasoning behind the following
steps is given in detail in Section 6.5.

At first, we observe that a multilayer perceptron is an input-output model.
Accordingly, we choose the Pathology variable as the output variable, also called
the response variable. This variable indicates if the tumour was found to be
benign or malignant after surgery. It is a binary variable with possible values 0
or 1, which are transformed to the possible values -1 and 1 for reasons explained
in Section 6.3.3 and Section 6.2.3. A 0 (-1) indicates a benign tumour (class
CN), while a 1 indicates a malignant tumour (class CP). 70.5% of the records
belong to class CN.

Next, we take a look at the input variables, which are the other 34 parameters
from the data set. The first type of variables that are present in the data set,
are binary variables, discrete variables which can have only two possible values.
These are easy to deal with, as we only transform their possible values 0 and 1
to -1 and 1 for symmetry reasons, just as we did with the Pathology variable.

Further, we have discrete variables with more than two possible values.
These can be divided again into two different groups. At first, we have the
ordered variables, variables where a natural order between the values exist. The
values for such a variable are transformed in such a way that they become equally
spreaded between -1 and 1. To clarify what we mean, lets take the Colour Score
variable. This variable has four possible values: 1, 2, 3 and 4, where the nu-
merical value indicates the amount of blood flow through the tumour. We will
transform these values to -1, -1/3, 1/3 and 1.

The other group of discrete variables are the nominal variables; their values
do not have a natural ordering. This makes it hard to represent them with one
variable in a logistic regression or multilayer perceptron setup. Therefore, we
introduce a separate design variable for each different possible value.

The other category of variables, are the continuous variables. These variables
take values in R. Pre-processing these variables starts with possibly applying
some transformations to construct a linear relation between the variable and the
logarithm of the odds. We constructed logit plots for each continuous variable,
as explained in Section 6.5.1 and shown in Appendix A. These logit plots are
used to get insight into the relation between the variable at hand and the Pathol-
ogy variable. If such a transformation was necessary, this was the logarithmic
transformation.

After a possible transformation, we normalized all the continuous variables
for unit variance in a linear way, by subtracting the sample mean and dividing
by the standard deviation.

Finally, special care was taken for variables that contain a “not relevant”
value: some variables are not applicable or not relevant in certain conditions.
As such, the variable CycleDay, which represents the menstrual cycle, makes
only sense for women who are pre-menopausal. In the same category, we have
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the PMenoAge and PostMenoY variables that only make sense for patients after
the menopause. A second group deals with solid papillary projections. When
these structures are present, the shape and possible flow is indicated using the
variables PapSmooth and PapFlow. The last group of conditional variables deals
with blood flow indices which are measured using colour Doppler imaging. This
has the effect that the variables RI, PI, PSV and TAMXV are only valid when
actual blood flow is present (Colour Score 6= 1).

We deal with such cases by setting the variable itself to zero and introducing
an extra design variable which indicates “not relevant”.

7.2.2 Expert information

An entirely different — but equally valuable — source of information came with
the knowledge and experience of Prof. Timmerman, the gynaecological expert
who initiated the IOTA project and collected a large part of the data records
while working at the University Hospitals Leuven.

This information is less straightforward to use in quantitative models, and
a lot of insight we gained in the field thanks to his experience, is hard to write
down. As such, he helped selecting the relevant domain variables from the set
of 68 parameters, described their meaning and relations, checked the models
we learned and much more. We will describe two clearly defined pieces of
information that were the most important ones for our experiments.

At first, Prof. Timmerman was able to express part of his knowledge as
a Bayesian network. He selected 11 of the most important domain variables
and constructed a Bayesian network structure expressing his conjecture regard-
ing the conditional independencies that are valid among these variables. This
structure can be seen in Figure 7.1.

After this structure was constructed, he could also specify a parametrization
for this network, hereby effectively specifying a joint distribution for these 11
domain variables.

The reason that Prof. Timmerman restricted himself to 11 variables, was to
still be able to specify a parametrization for the network. With more variables
added to the network, it was much harder to specify a network structure and
give a sensible parametrization. Some nodes had many parents, resulting in
a huge number of parameters that have to be specified consistently. Even for
this 11 node network, we constructed a question list to extract the different
probabilities, containing 29 pages.

Additional pairwise relations between the set of 35 domain variables, could
be specified using a matrix and the technique explained in Section 5.5.3. We
asked to create a list of related variables for each variable. Once these lists
were finished, an ordering between these connections was gradually constructed.
This ordering was then again refined by attaching numbers to the importance
of each individual relation. This results in a matrix V where element V ij is an
indication of the strength of the relation between the variables xi and xj . We
will use this matrix as the a priori probability that we see an edge from variable
xj to variable xi in a Bayesian network. This matrix is displayed in Figure 7.2,
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Figure 7.1: The network structure for the ovarian tumour problem containing 11
variables, constructed by Prof. Timmerman.

where the grey-scale and the thickness of an edge between xi and xj corresponds
to the value V ij from the matrix.

7.2.3 Textual information

A last and quite extensive source of information is contained in textual docu-
ments that report about the domain. We will use this literature information
for an alternative method to discover pairwise relationships between domain
variables, just as what we obtained from the expert in the form of the matrix
V in the previous section.

We will describe two methods to convert the set of available documents to
a pairwise relation matrix. The first method is based on variable annotations
and derives the pairwise relations directly from these annotations. The second
approach will use a large set of documents reporting about the domain and
tries to find documents that describe two domain variables. The assumption
here is that such documents most often talk about a relationship between these
two variables. The more such documents that can be found, the stronger the
relation between these two variables will be.

Let us start with the annotation-based method. We assume that each do-
main variable x is annotated with a textual description D(x). The textual
descriptions D(·) we used, consist of the concatenation of a set of keywords pro-
vided by the expert, the IOTA protocols, a description for each variable from
a thesis [81] and definitions from the Merck Manual. In addition, we added
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Figure 7.2: A representation of the matrix V where element V ij is an indication of
the strength of the relation between xi and xj , constructed by Prof. Timmerman.

specific documents from the On-line Medical Dictionary, the CancerNet Dictio-
nary and the MEDLINE collection of abstracts of the US National Library of
Medicine to these annotations.

These per variable annotations are converted to a canonical representation
using the Porter stemmer [26], a synonym list, and special phrase handling.
Based on this canonical — but still textual format — a vector representation
T (D(x)) for each annotation is computed using the term-frequency inverse-
document-frequency weighting scheme. The operation to convert a document
into its vector representation is discussed in more detail in Section 5.5.3.

Based on the vector representations of the annotations of two variables xj
and xk, a similarity between them can be computed as the cosine of the angle
between the two vectors:

V xjxk = V xkxj = cos(T (D(xj)), T (D(xk))) =
< T (D(xj)), T (D(xk)) >

‖T (D(xj))‖‖T (D(xk))‖ .

This similarity relation can directly be used to construct a pairwise relation
matrix that can serve as a prior distribution for Bayesian network models. The
general procedure to compute the matrix V is depicted in Figure 7.3.

The second approach is based on building a binary presence matrix P and
deriving the pairwise relations from this matrix. To build this binary presence
matrix, we need a corpus C of documents that talk about the domain. Each
row in our binary presence matrix corresponds to one document, while each
column corresponds to one specific domain variable. The value P ij can be
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Figure 7.3: A schematic overview of the similarity-based approach to extract a re-
lation matrix V from textual variable annotations. These variable annotations D
are converted to their vector representations T (D) using the term-frequency inverse-
document-frequency weighting scheme. The relation between two variables x and y is
measured using the cosine between their respective vector representations.

either 0 or 1 and indicates if document Di mentions domain variable xj . In
our definition, a document Di is said to mention a variable xj if the similarity
between the respective vector representations T (Di) and T (D(xj)) exceeds a
certain threshold λ

P ij =

{
1 if sim(T (Di), T (xj)) ≥ λ
0 else.

This matrix can now be used to define pairwise relationships V xjxk among
the variables:

V xjxk = V xkxj = P(xj ∈ D and xk ∈ D |xj ∈ D or xk ∈ D,D ∈ C )

=

∑
i P ijP ik∑

iP ij +
∑
iP ik −

∑
i P ijP ik

.

The corpus C comprises entries from the MEDLINE collection of abstracts of
the US National Library of Medicine. To experiment with this set of documents,
we asked our medical expert to select three sets of journals, ranging from very
relevant to less relevant. The corresponding document corpora are denoted with
C1 ⊂ C2 ⊂ C3, and contain respectively 5 367, 71 845, and 378 082 abstracts
dated between January 1982 and November 2000. In the results section, the
corpus C3 is used, unless stated otherwise.
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Figure 7.4: A schematic overview of the binary presence approach to extract a
relation matrix V from a corpus of electronic documents. The binary presence matrix
P indicates per document which variables are mentioned in the document. Using this
matrix, we can estimate the probability that a random document mentions both x
and y, given that this document mentions either x or y. We use this probability as a
measure of the relation between the variables x and y.

The pairwise relation matrices obtained by the direct similarity technique
is visualized in Figure 7.5, while the result of the binary presence technique
is shown in Figure 7.6 using C3. Both the grey-scale of the edges and their
thickness indicate the strength of the relation between the connected variables.

To evaluate at first glance the performance of these text-based variable re-
lations and their potential for defining a Bayesian network structure prior, we
compared them with the edge probabilities based on the data set. We compute
the probability of seeing an edge between x and y by computing the probability
of the Bayesian network structure containing only this specific edge. Because
we removed constant multiplication factors in Equation 5.9, we divide the prob-
ability of the single-edge network structure with the probability of the network
structure containing no edges. Doing so, the constant multiplication factors
will be cancelled out. Because these network structures are very much alike,
computing their probabilities involved almost the same computations; the ratio
of the network probabilities can be simplified to the ratio of the probability of
the local substructures x → y and φ → y. We indicate with x → y that y has
node x as parent, while φ → y indicates that y has no parents. We computed
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Figure 7.5: A visualization of the pairwise relationships obtained from the direct
similarity technique. The strength of a relation is indicated by the grey-scale and
thickness of the corresponding edge.

for each pair of variables x and y, the logarithm of this ratio:

V yx = log

(
p(x→ y)

p(φ→ y)

)

= log(L( y |x ))− log(L( y |φ )).

These are simply the local substructure probabilities where only one parent
is present minus the local substructure with no parents. The relatedness ma-
trix that is created in this way is shown in Figure 7.7. The four relatedness
matrices (the expert-based, two text-based, and the data-based) show a good
resemblance, considering their completely different origin.

Figure 7.8 displays a scatter plot for these edge probabilities; since our goal
is the prediction of the Pathology variable, we plotted only the pairwise relations
involving Pathology for the text-based and data-based scores. On the x axis are
the text-based relations using the binary presence method based on C3, while
the y axis displays the data-based relations. Although the relations are not on
a straight diagonal line, they do correspond up to a certain degree. This is an
indication that there at least comes something useful out of our text-mining
techniques.
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Figure 7.6: A visualization of the pairwise relationships obtained from the binary
presence technique using C3. The strength of a relation is indicated by the grey-scale
and thickness of the corresponding edge.

7.3 Learning curves and performance measure

We will describe a whole range of different classification models. To be able to
compare the performance of these models, we will use the area under the re-
ceiver operating characteristics curve as the main performance measure because
it is classification oriented, widely used to denote the performance of medical
classification systems and has a nice and clear interpretation (see Section 3.3.2).

We are not only interested in the performance of our models, but would also
like to visualize the learning behaviour of the different models. We will do this
by generating learning curves for each model based on the ROC performance
measure. Such a learning curve plots the ROC performance of a certain model
computed on a test set with respect to the number of training samples used
to learn the model. For this reason, we choose for a repeated two-fold cross-
validation setup: for a certain percentage of training samples used (indicated
on the x axis), we will divide the data set several times at random in a training
set containing the required percentage of samples. The test set contains the
remaining samples. Based on the training set, the a posteriori distribution for
the model is computed. Finally, this a posteriori distribution is used to compute
the area under the ROC curve for the samples in the test set. The average area
under the ROC curve for these random train/test set divisions is indicated on
the y axis.

Such a learning curve gives us a nice impression of the learning characteristics
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Figure 7.7: A visualization of the pairwise relationships obtained from the data
using the logarithm of the local substructure probabilities. The strength of a relation
is indicated by the grey-scale and thickness of the corresponding edge.

of each model. The further we go on the x axis, the more training samples are
used to learn the a posteriori distribution. Since more samples could be used to
learn the model, its performance should increase similarly.

Although these learning curves look like ROC curves, they are not. A learn-
ing curve is constructed by repeatedly computing the area under the ROC curve
for models using different training sets. The learning curves we will present are
computed for values on the x axis that range from 0 to 0.9. A value of zero in-
dicates that no training samples are used to compute the posterior distribution
and that all the samples are used for computing the area under the ROC curve,
which is plotted on the y axis. A value equal to 0.9 indicates that 90% of the
samples are used to define the a posteriori distribution, leaving only 10% of the
samples to compute the area under the ROC curve. We will not use more than
90% of the samples for training because we want to have at least 10% of the
samples to estimate the performance.

7.4 Results

In this section, we will present an overview of the performance of the differ-
ent models that are discussed in this thesis. We will use the learning curves
introduced in the previous section to compare the learning behaviour of these
different models.
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Figure 7.8: A scatter plot comparing pairwise relation based on textual information
(x axis) and data records (y axis). For the text-based relations, the binary presence
technique was applied using corpus C3. Only relations concerning Pathology are con-
sidered for clarity.

7.4.1 Previous results

The first predictive models used to classify ovarian tumours were based on single
variables, such as CA125 or risk indices such as the risk of malignancy index
(RMI) [46, 84]. This last one is a well studied method to predict the malignancy
of an ovarian mass. It is a multiplicative rule that takes into account ultrasound
information (Ascites, Locularity and Bilaterality) together with the Menopausal
status and the level of CA125.

RMI = Ultrasound×Meno× CA125

Ultrasound = 0 if Morph = 0

Ultrasound = 1 if 0 < Morph ≤ 1

Ultrasound = 3 if 1 < Morph

Morph = Asictes + Unisolid + Multi + 2Multisolid

Solid + Bilateral

The simplicity of this rule, its robustness when tested prospectively, together
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with its reasonable performance with an area under the ROC curve of 0.8891462
makes this a widely used rule of thumb to triage women into different risk
categories.

Table 7.9 shows the area under the ROC curve performance for univariate
models. As such, the first column in this table says that if we use the variable
CA125 as the test function T (x |φ ) to compute the area under the ROC curve,
we get a value of 0.8323409. The empty set symbol φ indicates that there are
no parameters present in the univariate CA125 model, we simply use the cor-
responding CA125 value. Variables that are negatively correlated to Pathology
were reversed so they result also in an area under the ROC curve above 0.5.

Variable Area under ROC
CA125 0.8323409

Locularity 0.8170526
Colour Score 0.7910523

TAMXV 0.7211011
PSV 0.7072227
Solid 0.7482750

Ascites 0.7419108
Fluid 0.7339950

Wall Regularity 0.7261500
Volume 0.6912807

Age 0.6802379
Papillation Flow 0.6739682

PI 0.6727946
Meno 0.6632719

Papillation Smoothness 0.6625000
Septum 0.6607593

Papillation 0.6428875
RI 0.6382168

Bilateral 0.6107672

Figure 7.9: The area under the ROC curve performance of the most important
variables to predict tumour malignancy.

Standard statistical studies indicate that a multi-variate approach — the
combination of several variables — is necessary for the discrimination between
benign and malignant tumours, which is our motivation to apply both Bayesian
networks and neural networks to this classification task.

7.4.2 Bayesian networks

The Bayesian networks that we will use for our experiments all use discrete
variables. This requires that we discretize the continuous variables.
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Discretization

Together with the medical expert, we defined sensible discretization bins for
the continuous variables, as presented in the Appendix A. The second col-
umn contains these intervals. A certain observation will be converted to the
corresponding value of the first column according to the interval it belongs to.
Although the primary usage of these bins is to discretize the continuous variables
to use them for Bayesian network learning, we will also use them to convert the
discrete virtual data sets generated from the prior Bayesian network into con-
tinuous data sets to estimate the informative prior for the multilayer perceptron
model.

When discretizing the continuous variables, some information is inherently
lost. Table 7.10 gives an impression of this loss of information by displaying
the area under the ROC curve performance for univariate models containing
respectively the original and the discretized variables. As can be seen from this
table, the loss of information results often in a worse performance, although
some variables like TAMXV or Parity seem to benefit from the discretization.

Variable Continuous Discretized
CA125 0.8323409 0.7939666

TAMXV 0.7211011 0.7786074
Fluid 0.7339950 0.7077820
Age 0.6802379 0.6685570

Volume 0.6912807 0.6576953
PI 0.6727946 0.6139808

Parity 0.5887917 0.5892328
RI 0.6382168 0.5653119

Pill Use 0.5153355 0.5282530
Septum 0.5167297 0.5275992

Figure 7.10: The area under the ROC curve performance of the continuous variables
and their discretized versions.

Learning with non-informative priors

Once we have discretized the continuous variables, we can perform Bayesian
network learning. Ideally, learning a Bayesian network model in the Bayesian
framework consists of finding the joint posterior distribution over both the net-
work structures and the parameters for this network structure:

p(Sbn,θ |D, ξ ) = p(Sbn |D, ξ ) p(θ | Sbn,D, ξ ).

This posterior distribution can be used to compute the probability of malig-
nancy given the observation x by marginalizing over both the network structures
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and their parameters:

p( CP |x,D, ξ ) =
∑

Sbn

p(Sbn |D, ξ )

∫

Θ

p( CP |x,Sbn,θ ) p(θ | Sbn,D, ξ ) dθ.

The resulting malignancy probabilities for the different records in the test
set are then used to compute the area under the ROC curve performance.

We approximate the summation over the network structures by finding a set
of network structures with a high posterior probability and estimate the integral
with a Monte Carlo summation. Finding the set of network structures involves
structure learning, which is explained in Section 5.2.1. The Monte Carlo sum
can easily be generated because the parameter posterior p(θ | Sbn,D, ξ ) is a
known Dirichlet distribution.

A typical network structure from the posterior structure distribution can be
seen on Figure 7.11. This structure was learned using all the data samples. The
links in this structure make more or less sense from a medical point of view.
Note that the direction of a link between two variables does not necessarily
indicate a causal relation between these variables.
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Figure 7.11: A typical network structure from the posterior structure distribution
for the ovarian tumour problem.

We used these computed class probability predictions to compute a learning
curve based on the area under the ROC curve performance measure (see Sec-
tion 7.3). A set of 200 high probability network structures was searched for
each of the 1000 two-fold cross-validation session. For each network structure,
the Monte Carlo summation was approximated with 200 terms. Figure 7.12
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shows the learning curve; the proportion of training samples used is indicated
on the x axis, while the mean area under the ROC curve performance is indi-
cated on the y axis. The learning curve shows the expected behaviour. When

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

Figure 7.12: The learning curve for the Bayesian network model. Both the structure
and parameter prior are non-informative.

almost no samples are used to learn the model, the performance is the same as
a random classifier, which reflects in an area under the ROC curve performance
around 0.5. When more and more samples are used to compute the posterior,
the model learns and the performance climbs to an area under the ROC curve
of 0.941.

We can improve this learning behaviour in three different areas. At first,
it would be nice if the model could learn faster. This means that we want the
learning curve to climb more steeply in the small sample range (the left part
of the graph). Next, we would like the model to start from a reasonable value,
instead of starting from the same performance as a random classifier. At last, it
would also be nice if our model could achieve a higher performance in the large
sample range (the right part of the graph).

Expert and textual structure prior

We can achieve the first goal, the improved learning characteristics in the small
sample range, by using a structure prior for the Bayesian network model. If this
prior distribution over the network structures is reasonably correct, a correct
structure will be learned using fewer data records. This correct structure will
in its turn enable the model to learn how the actual dependencies look like (the
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parameters of the Bayesian network) using fewer data records.
We have two main sources of Bayesian network structure priors. At first,

we can use the relatedness matrix that was defined by the expert, as explained
in Section 7.2.2, and use it to define a probability distribution over the Bayesian
network structure space using the method introduced in Section 5.5.1. Second,
we can use one of the relatedness matrices that were computed from the domain
literature, as explained in Section 7.2.3.

Before we compare the learning curves corresponding to these different struc-
ture priors, we have to deal with the single parameter ν that determines how
a structure prior is constructed from a relatedness matrix: in Section 5.5.1, we
introduced this parameter to control the density of the networks that result
from the distribution. Figure 7.13 shows the influence of this parameter ν on
the learning curve, using the expert structure prior. We computed learning
curves for the values ν ∈ {2, 1, 2−1, 2−3, 2−5}. If ν is chosen too small, the
structure prior is restricting the learning a lot and it takes many samples before
the information contained in these samples is able to cancel out the wrongly
specified prior. If we take ν larger, the Bayesian network model learns faster.
From Figure 7.13, we can see that there is no substantial difference anymore
once ν becomes larger than 1. From now on, we fix the parameter ν to a value
of 2, as this gives a nice performance and seems reasonable.
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Figure 7.13: The different learning curves corresponding to the Bayesian network
model using the expert structure prior for different values of ν: the bottom full line uses
ν = 2−5, the dashdotted line uses ν = 2−3, the dashed line corresponds to ν = 2−1,
the dotted line corresponds to ν = 1, and the upper full line finally uses ν = 2.

Figure 7.14 displays the learning curves of four Bayesian network models.
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Each model uses a different structure prior: the expert structure prior or one of
the three text-based structure priors, as described in Section 7.2.3.
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Figure 7.14: The different learning curves correspond to the Bayesian network model
using different structure priors and a density value of ν = 2: the dashed line corre-
sponds to the expert prior, the dotted and the full line correspond respectively to the
binary presence-based prior using the document corpora C1 and C3. The dash-dotted
line corresponds to the direct similarity-based prior. Finally, the second full line with
the worst performance corresponds to a model using no structure prior.

The expert prior results in the best performance, followed by the binary
presence method to extract structural information from the literature. The
direct similarity has a worse performance, but is still better than the model
using no structure prior. The differences between these priors are gradually
cancelled out if more training samples are used. This is the behaviour that we
expected.

Expert Bayesian network

The structure prior used in the previous section successfully incorporates infor-
mation about the domain, but is restricted to which variables interact with each
other. This has an effect on how fast the model learns. To accomplish the sec-
ond requirement described at the end of Section 7.4.2 — creating a model that
performs better than a random one even when no data samples are observed
— we have to incorporate information about how the different domain variables
interact with each other. We tried to achieve this goal by asking our expert to
construct a Bayesian network structure and a corresponding parametrization.
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This network structure is shown on Figure 7.1. We gave this prior Bayesian
network an equivalent sample size of 50 (see Section 5.3.1).

We computed the learning curve for this fixed structure Bayesian network
and displayed it on Figure 7.15 using a full line. To be able to compare this
curve easily with the previous curves, we indicated also the Bayesian network
model using the expert structure prior (dashed line) and no prior information
(dotted line).
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Figure 7.15: The learning curve corresponding to the fixed Bayesian network struc-
ture and parameters specified by Prof. Timmerman (full line). The model using no
prior information is indicated using a dotted line, while the model using the expert
structure prior is given by the dashed line.

The learning curve for the fixed structure Bayesian network indeed starts at
a good performance level of 0.917, even without any data observed, which is a lot
better than the risk of malignancy index or any univariate model. Unfortunately,
the fixed structure of this model and the restricted subset of variables it contains,
limits its performance somewhat on the long run; in the large sample range, its
performance is worse than any of the models that have an unrestricted structure.

The third requirement — achieving a higher performance in the large sample
range — will be dealt with by transforming the information representation to
another model class that has better learning capabilities, as explained in the
following sections.



144 Chapter 7. Ovarian tumour classification

7.4.3 Logistic regression

A first alternative model we will look at, is logistic regression. These mod-
els are an extension of the well-known linear regression, with an eye towards
classification (see Section 6.2.3).

Non-informative prior

We start with the basic logistic regression model, using only a complexity-
based prior. Before we start the computations, we perform the necessary pre-
processing steps, as explained in Section 7.2.1. Based on this pre-processed
data set and a complexity-based prior consisting of a multivariate Gaussian
with zero mean and 0.07 variance, we can specify the a posteriori distribution.
The variance for this prior was chosen so low to anticipate the overtraining that
otherwise occurs when only a few samples are present in the training set. This
small variance did not have any negative effect on the performance when more
samples are used to define the posterior.

Using the hybrid Monte Carlo Markov chain method, we sampled 100 para-
metrizations from this a posteriori distribution, which were used to approxi-
mate the Bayesian malignancy predictions needed to compute the area under
the ROC curve. We used 100 leapfrog steps for the hybrid Monte Carlo Markov
chain method, and estimated the step size using the procedure described in Sec-
tion 6.7.2. We initialized the Markov chain with the maximum a posteriori
parameter vector that we learned using the scaled conjugate gradient algorithm
(see Section 6.6.2). This process was repeated for 1000 two-fold cross-validation
sessions to get an estimate of the mean of the performance of the model.

Figure 7.16 displays the learning curve for this model (full line), together
with the Bayesian network without any prior information (dotted line) and the
Bayesian network using the expert structure prior (dashed line).

The logistic regression model has much better learning characteristics in the
small sample range than the Bayesian network. This has to do with the large
number of parameters that have to be learned in the Bayesian network case and
the information that is lost by discretizing the continuous variables [32]. The
performance of the logistic regression model is also slightly better in the large
sample range.

Informative prior

Just as we required for the Bayesian network, we want our logistic regression
model to start with a reasonable performance, even if no samples are observed.
Unfortunately, it is hard for an expert to specify reasonably good values for the
logistic regression coefficients directly. To deal with this problem, we designed
the transformation procedure that was introduced in Chapter 4: we will use the
expert Bayesian network from Section 7.4.2 and transform this information to
an informative a priori distribution over the logistic regression parameter space.
Using the terms of Chapter 4, the expert Bayesian network is the donor model,
while the logistic regression model is the acceptor model.
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Figure 7.16: The learning curve for the logistic regression model using a complexity-
based prior (full line). The Bayesian network models using the expert structure prior
(dashed line) and no prior information (dotted line) are also indicated for comparison.

We used the procedure described in Section 4.4 to generate a set of lo-
gistic regression parametrizations from this a priori distribution. Using these
parametrizations, we estimated the informative a priori distribution using a
multivariate Gaussian distribution.

The virtual data sets we used to generate sample vectors from the infor-
mative logistic regression parameter distribution contained 1000 records. Each
discrete record generated from the expert Bayesian network was transformed
into a continuous record using the procedure described in Section 4.4.2 and
the discretization intervals that are given in Appendix A. Next, each contin-
uous record has undergone the same pre-processing steps that were applied to
the continuous real data set before it was used to learn the complexity-based
logistic regression from the previous section.

We used the hybrid Monte Carlo Markov chain method to generate a logistic
regression parametrization from the posterior based on the continuous virtual
data set. The settings for the hybrid Monte Carlo Markov chain method were
the same as those used for the complexity-based logistic regression model.

Once the informative logistic regression a priori distribution is estimated, it
can be used to compute a learning curve. Again, the hybrid Monte Carlo Markov
chain method was used to approximate the Bayesian malignancy probability
that is needed to compute the area under the ROC curve. The settings of this
method are again the same as previously.

The learning curve corresponding to this informative logistic regression mo-
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del (full line) is displayed on Figure 7.17, together with the complexity-based
logistic regression model (dashed line) and the expert Bayesian network (dotted
line).
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Figure 7.17: The learning curve of the informative logistic regression model (full
line), together with the expert Bayesian network performance (dotted line) and the
complexity-based logistic regression model (dashed line).

Although some information has been lost during the transformation, the in-
formative logistic regression performs better than the expert Bayesian network
if no samples are used. This is a coincidence and is certainly not a general
behaviour of the transformation technique. We also see that the logistic regres-
sion model still learns, as its performance increases if more samples are used to
specify the a posteriori distribution.

7.4.4 Multilayer perceptrons

The last model class we will use, is the class of multilayer perceptrons. These
models are an extension of logistic regression models and can have nonlinear
classification boundaries and are introduced in Chapter 6.

Non-informative prior

We start with the complexity-based multilayer perceptron model. We chose to
use one hidden layer, containing two hidden neurons as the network structure.
The additional model complexity that is introduced using more hidden neurons
is not necessary for the ovarian tumour problem.
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Similar to the logistic regression case, the complexity-based prior consists of
a multivariate Gaussian with zero mean. We varied the variance depending of
the type of the weight: we used a variance of 0.15 for the weights connecting
the input to the hidden layer and the hidden layer to the output. The variance
of the input bias was set to 5.0 to allow translations of the input variables. The
bias for the output bias was set to 0.5. After pre-processing the data set in
exactly the same way as for the logistic regression case, we also used the hybrid
Monte Carlo Markov chain method to approximate the Bayesian malignancy
probabilities used to compute the area under the ROC curve.

Figure 7.18 shows the learning curve for this model (full line), together with
the complexity-based regression model (dotted line).

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.6

0.7

0.8

0.9

Figure 7.18: The learning curve for the complexity-based multilayer perceptron mo-
del (full line), together with the complexity-based logistic regression model (dotted
line).

The multilayer perceptron model has almost the same learning behaviour as
the logistic regression model. It learns a bit more slowly in the very small sample
range, because it has more parameters. On the other hand, it is a more flexible
model than the logistic regression model, which results in a better performance
once some data samples are observed.

Informative prior

Finally, we transformed the information from the expert Bayesian network to
a prior distribution over the neural network weight space. The steps to gener-
ate sample parametrizations from this informative distribution are exactly the
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same as for the logistic regression case. Only the estimation of the distribution
becomes more complicated because of the symmetries that are present in neural
network weight space when one or more hidden layers are present (see Sec-
tion 6.9). Again, we used the hybrid Monte Carlo Markov chain to approximate
the Bayesian predictions that are necessary to compute the learning curves.

Figure 7.19 displays the learning curve for the informative multilayer per-
ceptron model (full line), together with the informative logistic regression model
(dotted line) and the expert Bayesian network model (dashed line). Please note
that the scale of this figure is substantially different from the previous figures,
because there is no model present that has a performance around 0.5 if no
records are used to specify the a posteriori distribution.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.91

0.92

0.93

0.94

Figure 7.19: The informative multilayer perceptron model (full line), together with
the informative logistic regression model (dotted line) and the expert Bayesian network
(dashed line).

The informative multilayer perceptron model starts with a performance that
is lower than both the expert Bayesian network model and the informative
logistic regression model. But because it is more flexible than these two models,
it achieves the best performance already after observing a few samples.

We have presented a whole range of models and their corresponding learn-
ing curves. This gave a visual impression of the learning characteristics and
performance of the different models. We will end this result section with a
multi-sample t-test to find out if the performance differences between the mod-
els is significant [72]. We will do this test for the 5%-95% train-test division and
for the 70%-30% train-test division. Table 7.20 summarizes the statistics for
the first case, while Table 7.21 summarizes the statistics for the latter. These
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tables present the sample mean, the sample standard deviation and the 95%
confidence interval for the mean based on the pooled standard deviation.

Although the variances of the area under the ROC curve values for the
different cross-validation sessions are not the same for the different models, we
can still use the t-test if the sample sizes are the same [13]. We have control
over the number of cross-validation sessions that we performed and chose them
to be the same for the different models (1000).

Model Average Std 95% CI for mean
BN noninformative 0.8100 5.02e-03 [0.8079, 0.8121]
BN expert structure prior 0.8617 2.65e-03 [0.8596, 0.8638]
expert BN 0.9234 9.49e-06 [0.9213, 0.9255]
LR noninformative 0.9210 1.30e-04 [0.9189, 0.9231]
LR informative 0.9269 1.96e-05 [0.9248, 0.9290]
MLP noninformative 0.9252 1.27e-04 [0.9231, 0.9273]
MLP informative 0.9279 7.04e-05 [0.9258, 0.9300]

Figure 7.20: A summary of the statistics of the performance of the different models
for a 5%-95% train-test division. The first column indicates the model, the second gives
the sample mean of the area under the ROC curve for the different cross-validation
session, the third column gives the sample standard deviation and the last column
presents the 95% confidence interval for the mean, based on the pooled standard
deviation.

Model Average Std 95% CI for mean
BN noninformative 0.9399 2.35e-04 [0.9389, 0.9408]
BN expert structure prior 0.9416 2.12e-04 [0.9407, 0.9425]
expert BN 0.9372 2.04e-04 [0.9363, 0.9381]
LR noninformative 0.9426 2.22e-04 [0.9417, 0.9435]
LR informative 0.9412 2.23e-04 [0.9403, 0.9421]
MLP noninformative 0.9444 2.11e-04 [0.9435, 0.9453]
MLP informative 0.9448 2.08e-04 [0.9439, 0.9457]

Figure 7.21: A summary of the statistics of the performance of the different models
for a 70%-30% train-test division. The first column indicates the model, the sec-
ond gives the sample mean of the area under the ROC curve for the different cross-
validation session, the third column gives the sample standard deviation and the last
column presents the 95% confidence interval for the mean, based on the pooled stan-
dard deviation.

From these summary statistics, we compute that there is convincing evidence
that the multilayer perceptron model with informative prior performs better
than the expert Bayesian network (one sided p-value of 0.0025) the noninfor-
mative multilayer perceptron model (one sided p-value of 0.05) for the 5%-95%
train-test division. There is inconclusive indication that this multilayer percep-



150 Chapter 7. Ovarian tumour classification

tron model with informative prior performs better than the logistic regression
model with informative prior (one sided p-value of 0.25).

In exactly the same way, we can conclude that there is a significant dif-
ference for the 70%-30% train-test division between the multilayer perceptron
model with informative prior and the informative logistic regression model (one
sided p-value smaller than 0.0005) and the Bayesian network model with the
expert structure prior (one sided p-value smaller than 0.0005). This time there
is inconclusive indication that the informative multilayer perceptron model per-
forms better than the complexity based multilayer perceptron model (one sided
p-value of around 0.25).

7.5 To conclude

A lot of research was already performed on the field of ovarian tumours. We gave
a brief overview of the most common classification systems that were applied
in the passed and contributed to this research by designing and implementing a
method to combine both expert and textual information with statistical data.
This included extracting the prior expert information using Bayesian networks
and transforming this information to a multilayer perceptron for efficient learn-
ing from data. This data was pre-processed and investigated using standard
techniques and logit plots. We compared the performance of various models
using the area under the ROC curve and provided insight into their learning
characteristics using learning curves.
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The methods and techniques discussed so far require a great deal of compu-
tation and a large number of different algorithms have to be combined. As a
consequence, implementing these techniques is not a trivial task.

8.1 General setup

Although software packages exist for some of the main building blocks of this
thesis, there are only few and most of them are too restricted to use in practice.
The most important are the “Bayesian Network Toolbox”, developed by Kevin
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Murphy (http://www.ai.mit.edu/∼murphyk/), and the “Open Probabilistic
Network Library” (https://sourceforge.net/projects/openpnl/). Radford
Neal has developed the software package “Software for Flexible Bayesian Mod-
elling” (http://www.cs.toronto.edu/∼radford/fbm.software.html), which
can perform Bayesian computations.

After a lot of consideration and lessons learned from previous implementa-
tions, we decided to implement everything from scratch. Although this seems a
strange choice, this guarantees a complete understanding of what is happening,
a complete independence from other code, a maximum flexibility, and an optimal
efficiency, both computational as memory related. From scratch means: from
pseudo-random number generation and basic data structures over distributed
computations up to inference and graphical output generation.

8.2 Language and development tools

The programming language that was used is C++ [2, 79, 24]. The well-known
benefits of this language are its speed and rich object-oriented features, such as
multiple virtual inheritance and virtual functions. Although its manual mem-
ory management is generally experienced as obstructing the development, it is
crucial if efficient memory usage is necessary. As this is the case for Bayesian
networks and multilayer perceptrons, C++-style memory management was a
benefit for us. Most compilers can compile standard C++ and most libraries
exist for different platforms, making the language more or less platform inde-
pendent if certain programming rules are respected.

As development system, we chose for the GNU/Linux operating system for
its stability, security, speed, open source features, and development friendli-
ness. The compiler of choice was gcc-3.2.3 in combination with autoconf and
automake. The code was written using emacs. Debugging tools that proved
useful are valgrind, a fantastic memory debugger, which is invaluable when
working with complicated memory structures, gdb, a general purpose debugger,
ddd, a graphical debugger and gprof, a profiling tool for optimizing the code.
Although the main focus was to develop an API, a basic user interface was also
built using gtk2.

Initially, Matlab was attractive as an alternative programming language be-
cause of its development speed and usage of matrices as the main building block.
But its poor object-oriented approach and string handling, and its usage of a
license server restricted its usage too much.

The source code contains 83 319 lines of code, 148 classes, 222 source and
header files, and uses 2 450 647 bytes of space.

8.3 Main building blocks

The relations between the different techniques and algorithms are reflected in
the inheritance structure of the software, where each basic procedure or object
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is represented by a class.

8.3.1 Graphical layout of the key classes

The main classes, their relation with each other and inheritance structure is
displayed in Figure 8.1. A full line indicates a class inheritance relation, while
the dotted lines indicate the important class membership relations. Class inher-
itance occurs when one class inherits all the methods and members from another
class, usually to implement a similar but more specific class. As an example,
CPD represents a general conditional probability distribution. Dirichlet inherits
all the methods from CPD but implements a specific type of conditional prob-
ability distribution, a Dirichlet distribution. A membership relation indicates
that a certain class has objects from another class as member variables (e.g., a
DataBlock consists of several Samples). There are a lot of classes not indicated
on this figure, because they are support classes, such as arrays, doubly linked
lists, trees, matrices, network sockets, or graphical objects.

8.3.2 Data

One of the most central classes is the DataBlock class, which is the data structure
that holds a data set.

It is basically an array of Samples together with a field name array. Each
sample holds one data record, which can be either discrete or continuous. The
values for these records can be either observed or missing. Each sample has some
attributes that indicate if it should be used during training, or testing. The array
contained in each sample can be divided into an input and an output part to be
used as the input and target pattern for multilayer perceptron learning. The
discretization bins to convert the continuous samples to discrete samples, are
also stored in the DataBlock class, together with the settings to perform the
reverse operation.

The important member functions include reading and writing from file and
the discretization and continuation of a data set.

8.3.3 Random variables

To build up the probabilistic models discussed in this thesis, a general framework
for dealing with random variables (RV) and conditional probability distributions
(CPD) was developed. Both are abstract classes, meaning that the actual imple-
mentation of their member functions is left for the derived classes. The derived
classes for RV include RVC, RVD, RVectorC, RVectorD and RVMatrix, which
respectively implement continuous and discrete random variables, continuous
and discrete random vectors and a random matrix. The derived classes from
CPD represent the different conditional distributions, among which we have
implemented uniform, linear-Gaussian, table, Dirichlet, Laplace, exponential,
mixture of Gaussian, and Gamma distributions.
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Figure 8.1: The structure of the main classes. A full line indicates class inheritance,
a dotted line indicates class membership. CPD stands for conditional probability
distribution, RV stands for random variable (discrete or continuous), CPT stands for
conditional probability table, MVF stands for multivariate function, MLP stands for
multilayer perceptron, and DAG stands for directed acyclic graph.

Each conditional distribution can have a set of conditions and parameters.
The conditions are the random variables that are behind the condition sign | and
are stored as an array of pointers to RV objects. The parameters of a conditional
distribution is everything else that determines the distribution. Although we
often think of parameters as being fixed, we represent them also with an array
of pointers to RV objects. In this way, our parameters are random variables,
and can have a distribution themselves. This allows us to work in the Bayesian
framework in a natural way.

Each random variable has a pointer to a CPD object. If the pointer is not set,
our random variable has a fixed distribution, otherwise we use the distribution
represented by this object.

By combining these two objects, we can represent all the distributions we
need to represent. As an example, we can represent the local dependency model
of Figure 8.2 by using Table and Dirichlet distributions and binary variables
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as is indicated on Figure 8.3. Par1 up to par4 are the parameters of the Table
distribution, the probabilities for a for the different configurations of the parents
b and c, while hyper1 up to hyper4 are the corresponding hyper-parameters for
the Dirichlet distributions. The conditions for these Dirichlet distributions are
left out as there are no conditions for this distribution.

B

A

C

Figure 8.2: A local dependency structure involving two parents.

A RV-object can be used to generate random samples. This will use the
connected CPD-object to draw a sample. One can specify if the values for
the conditions and parameters should be redrawn beforehand. A CPD-object
has member functions to search for the maximum likelihood or maximum a
posteriori parametrization in combination with some data set.

Once a structure of RV- and CPD-objects is created, it can be stored to disk
and read again. Two files are used for this, one for describing the RV objects,
and one for storing the CPD-objects.

Random number generation

A lot of the algorithms are based on pseudo-random numbers. Therefore,
a good pseudo-random number generator was selected with an eye towards
efficiency. We chose the Wichmann-Hill generator [74], which is based on
three linear congruential generators, lcg(171, 30269, R1), lcg(172, 30307, R2) and
lcg(170, 30323, R3), where lcg(a,M,R) generates a sequence of uniform pseudo-
random numbers Uk as

Rk+1 = (aRk) modM with R0 = R and Uk =
Rk
M
.

Based on these three uniform pseudo-random numbers, a new is calculated

Uk = (U1
k + U2

k + U3
k )mod1.
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This number generator has a period of almost 3.48× 1012, is easy to implement
and gives a fast generator, even on a 16-bit machine, and showed good proper-
ties when the independence between for series of random numbers was tested
experimentally.

Based on this uniform pseudo-random number generator, pseudo-random
numbers with a different distribution can be generated using the inversion
method (e.g., exponentially distributed numbers), the rejection method or the
ratio method (e.g., standard normally distributed numbers).

Optimization and Markov Chains

An abstract multivariate function class (MVF) is designed. This class has mem-
ber functions to compute the input-output mapping and the gradient of this
mapping together with a method to update the inputs in a certain direction
that makes sure that the mapping is still defined for the new input vector.
This is necessary if some inputs should stay positive, like an input representing
a variance parameter. The actual functions are implemented by the derived
classes.

Based on this MVF-object, an Optimization-object is constructed that per-
forms function optimization for real-valued multivariate functions using the
scaled conjugate gradient algorithm [61] or a more basic gradient ascent method.
Derived from this Optimization-object, is the MarkovChain-object. This imple-
ments both the Metropolis algorithm as the hybrid Markov chain Monte Carlo
method for multivariate distributions. It is not necessary to normalize the dis-
tribution. The inherited Optimization is used to find a suitable start vector for
the chain.

The classes derived from MVF are not indicated on Figure 8.1 because this
would make the diagram less clear. Anything that needs an optimization or a
Markov chain method is derived from MVF.

8.3.4 Bayesian networks

The DAG class is a structure that stores a Bayesian network, both the structure
and the parameters.

The nodes of this network are represented with objects from the class DAG-
Node. Each DAGNode can represent either a discrete or continuous node, and
has therefore both a RVD and a RVC member with an appropriate conditional
probability distribution and possibly a hyper-distribution. The parents for each
node are stored in an array, and also within the RV-CPD structure. This way,
we do not have to allocate the memory for the RV-CPD structures each time
the structure of a network is learned.

A Bayesian network can directly be used to generate a data set according
to the joint distribution it represents. To perform inference, we have to convert
the DAG first to a CliqueTree-object. This class is derived from the DAG class
and can perform the inference using the probability propagation in tree of cliques
algorithm [45].
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A DAG can be written to disk, together with all the RV- and CPD-objects.

8.3.5 Multilayer perceptrons

The MLP class represents a multilayer perceptron, the multivariate input-output
mapping described in Chapter 6. Both the structure and the parameters are
stored, together with the prior distribution.

This class implements functions to compute the input-output mapping de-
fined by the network and to compute the gradient of the network parameters
for an input-output pattern using a certain distribution around the regression
mean. In addition to this, MLP is derived from MVF. The inputs for this MVF
are the parameters of the network, not the input of the multilayer perceptron.
The output can vary from the likelihood of the model to the posterior proba-
bility using some prior, both based on the data set received from Model, and
can be set using some attributes. This way, we have a flexible method to find
the maximum likelihood or maximum a posteriori parametrizations, or sample
from this a posteriori parametrization. By including the variances controlling
the non-informative Gaussian prior and the regression distribution in the MVF
inputs, we can easily optimize these parameters too.

8.3.6 Model

The last class, Model, contains a model in the Bayesian framework. This includes
both a DAG and a MLP, which contain a prior distribution themselves, and a
DataBlock. Together, this allows us to specify the a posteriori distribution.

Either the Bayesian network or the multilayer perceptron can be used in a
stand-alone fashion, or the transformation method described in this thesis can
be used. The performance of the models is computed using the area under the
ROC-curve performance measure, as explained in Section 3.3.2.

8.3.7 Distributed computation

To compare the learning behaviour of the different models, we decided to gener-
ate learning curves. Such a curve displays the area under the ROC-performance
when a growing number of training samples is used. The more samples that are
used, the higher the performance should become, and the form of this curve tells
a lot about the learning characteristics of a certain model. For each train/test
proportion, we divide the data set several times, and for each division, we have
to run a Markov chain to compute the Bayesian performance measure.

All this machinery consumes a considerable amount of computation time.
We decided to implement these computations in a distributed manner. Fortu-
nately, the things we have to compute can easily be divided in different jobs that
can be computed by different machines. We distributed the different train/test
proportions and the different data set divisions for a certain train/test pro-
portion over different machines by using a client/server approach. The server
divides the job in several subjobs. The client machines (computation machines)
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connect to the server and ask for a job to compute. In response, the server gives
one of the subjobs to the client. Each time a client has finished his computation,
it sends it back to the server, which is responsible for assembling the final result
from the subjobs.

Although such packages exist, it is not such a hard task to implement, brings
new experience and lots of fun, and guarantees a maximum of flexibility; both
windows and Linux-based machines can be used as computation clients. We
used Berkeley style TCP/IP sockets which we represented with the class Socket.

An abstract class Job was designed to exemplify a job that has to be com-
puted. Member functions for this class include the division of a job into a series
of subjobs (also Job-classes) and the construction of the result of the original
job based on the results of the subjobs.

To send any object through a Socket, we constructed an abstract class
(BaseObject) that is inherited by each class we use. This abstract class has
member functions that write down an object to a bit-string or reconstruct an
object from such a bit-string. This basic functionality is used for serialization
and sending objects through network connections.

8.4 To conclude

A considerable amount of work was invested in the implementation of the tech-
niques that are presented in this dissertation. This chapter gives an overview of
the main components of the developed software package. Although this has no
theoretical value, it gives us an overview of the used algorithms and techniques.
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Figure 8.3: The full Bayesian representation of the dependency model indicated
in Figure 8.2 with a table conditional distribution and a Dirichlet hyper-distribution.
An ellipse indicates an RV-object, while a rectangle indicates a CPD-object.
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Chapter 9

Conclusions and
perspectives

9.1 Conclusions

The central question of this thesis was how different types of information can
be combined into a model. We observed that two types of models could be
distinguished; one type allows us to easily incorporate prior knowledge but has
poor learning capabilities from data (donor model). Its complement also exists,
a model class that learns well from numerical data but is less suitable for prior
knowledge incorporation (acceptor model). A combination of both behaviours
would be nice.

To meet this goal, we worked in the Bayesian framework. This framework
defines probabilities as a state of knowledge about a given system. When new in-
formation is observed, this state of knowledge is updated elegantly using Bayes’
rule. We designed a methodology where the prior information is collected using
a donor model. Once this donor model is specified, it can be transformed to
the acceptor model in the form of an a priori distribution over its parameters.
Finally, this a priori distribution is updated to a posterior distribution using the
statistical data set. We stated this transformation in the Bayesian framework
and derived an algorithm to generate parameter vectors from this a posteriori
distribution.

We chose the Bayesian network model class as donor model class and man-
aged to incorporate prior information into this model using a few different ap-
proaches: we defined a prior distribution over the network structures from a
relatedness matrix derived from expert information or textual information. We
also extracted information concerning the parameters of a Bayesian network
from our medical expert.

Once this donor model was specified, we transformed its information rep-
resentation into an informative a priori distribution for the class of multilayer
perceptrons. A technique was developed to estimate this a priori distribution,
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dealing appropriately with the symmetries that arise in multilayer perceptron
parameter space. A whole range of distributions was introduced, ranging from
mixture of Gaussians to nonlinear continuous Bayesian network models with
hidden nodes.

A lot of effort was put into the development of a software package that
implements all the necessary techniques. This includes a Bayesian network im-
plementation with structure learning, parameter learning, and inference, a mul-
tilayer perceptron implementation with routines to perform optimization and
Markov chain simulation. The transformation itself and the density estimation
is also present, together with various other classes dealing with performance
evaluation, distributed computations, output generation, serialization, and so
on.

Finally, the described technique was applied to a real-world classification
task. Pre-operative classification of an ovarian tumour as a benign or malignant
tumour is of substantial importance, since it largely determines the optimal
treatment that the patient should receive. By working closely together with
the medical expert and participating in a rich project like the IOTA project,
we found a nice application for the developed techniques. The experiments
we conducted show that we are able to combine different types of information
successfully, resulting in a superior classification system. The complementary
properties of both the donor and the acceptor model could be combined.

9.2 Future research directions

The procedure presented in this thesis is only one way to combine different
types of information. Different approaches, such as ensemble methods could
and should be investigated. But our transformation technique can also be ex-
tended or refined in many directions. At first, nothing restricts us from using
only Bayesian networks as donor models or multilayer perceptrons as acceptor
models. Other models can be more suitable or powerful, or result in a more
analytical transformation.

The special case where the donor and the acceptor model are the same seems
especially promising to find a this more analytical transformation. Although this
restricts the capability to combine heterogeneous information, this can still have
interesting application. A major application is the combination of old and new
data; numerous domains exist where similar but different data sets exist. Often,
we cannot combine both data sets directly because the underlying distribution
of the two data sets is different. Still, we would like to combine the information
from both data sets to come to an optimal modelling.

Another keypoint we can refine, has to do with the technical details of the
transformation. As such, the size of the virtual data sets needs extra investiga-
tion. It would be interesting to see the amount of information that is remained
after the transformation, in function of the data set size. Also the sampling itself
with the transformation technique could be optimized, using variance reduction
techniques based on antithetical virtual data sets.
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The different models we presented can also be subject to additional research.
The main reasons we choose Bayesian networks to model the background infor-
mation, apply also to other domains. The bilateral nature of a Bayesian network
with a structure expressing conditional independency relationsships among the
variables makes them interesting models to perform genetic network inference.
In this micro-biological field, we are interested in reconstructing a biological
pathway that describe the cascade of gene-activations. Through the process of
activating genes based on the presence of certain proteins or external factors, a
cell is able to perform numerous different functions. Understanding these path-
ways is a major challenge. In this micro-biological domain we have also access
to heterogeneous types of information. Numerical information about the expres-
sion level of a large amount of genes can be measured using a micro-array, while
numerous databases exist that contain a wealth of other information about each
gene, ranging from their code to their function.

We introduced a technique to find a suitable ancestral node ordering for
the Bayesian network. Although it performed well in our case, its perfromance
and properties should be compared with other techniques to deal with the node
order. It would be nice to know which properties a distribution has to have to
trick the technique into an unwanted behaviour.

A Bayesian network is not only a promising tool to model a distribution,
it can be extended into a complete modelling environment. This allows us to
attach annotations to different objects of a Bayesian network, like the edges,
variable values, variables or groups of variables. This extension can be helpful
to organise the relevant domain information and allows us to derive valuable
information about the structure of the domain [6].

On the multilayer perceptron side we can also proceed. This thesis presented
a method to estimate distributions in neural network weightspace and proposed
a range of increasingly more flexible densities. The effect of this increasing flex-
ibility can be investigated further, especially the usage of the Bayesian network
based density with hidden nodes. Although the symmetry elimination proce-
dure we suggested, based on the EM algorithm and our heuristic, performed well
for the experiments we conducted, their behaviour should be tested on larger
networks.

From the application point of view, we developed useful models for the ovar-
ian tumour problem. Currently, other techniques are being tested [59], and
they should be compared with each other in a valid manner. Our models can
be refined by using other variable discretization techniques, dealing with miss-
ing values or trying to perform a more detailed classification by predicting the
subclass of a tumour, instead of classifying tumours as benign or malignant.

In addition to this, the IOTA project is not finished and exciting new in-
formation is underway; the IOTA project collected several tumours, which are
now analyzed using micro-array technology. This technology gives us informa-
tion about the genes that are expressed in the tumour. How to use this extra
information to build a deeper understanding of the problem poses many ques-
tions and is certainly interesting.

Finally, the software can be a last topic where this research can be continued.
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It forms a nice starting place to develop similar applications, extending it to
large-scale problems, other models, or build a graphical user interface for it.
This could eventually lead to medical doctors using the described models to
assist them in triaging patients pre-operatively.
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Variable descriptions

Age
A discrete-valued, but continuous variable indicating the age of the patient, measured in

years.
Discretization intervals:

Value Interval
< 40 [0, 40[
40-50 [40, 50[
50-60 [50, 60[
60-70 [60, 70[
70 ≤ [70, 120[

Ascites
A binary variable indicating the presence of ascites — fluid outside the pouch of Douglas.

The amount of fluid is indicated with the variable Fluid.
Bilateral

Binary variable that indicates if the patient has a bilateral tumour, a tumour on both
ovaries. Only the dominant tumour is kept in our data set.
CA125

The measurement of the tumour marker CA125, using the CA125 II immunoradiometric
assay. The measurements are in U/ml. This variable is continuous and its logit plot (Fig-
ure A.1) indicates a logarithmic transformation before using this variable in logistic regression
or multilayer perceptron models. Figure A.2 show this logit plot after the logarithmic transfor-
mation. Each odds on this logit plot has been estimated using one tenth of the data samples.
The mean of this bin is indicated on the x axis, while the y axis indicates the logarithm of the
estimated odds.

Discretization intervals:

Value Interval
< 35 [1, 35[
35-65 [35, 65[
65 ≤ [65, 1 000 000[

Colour Score
A subjective semiquantitative assessment of the amount of blood flow (area and colour

scale) within the septa, cyst walls, or solid tumour areas.
The following four gradations are used:

1. No blood flow can be found in the lesion.

2. Only minimal flow can be detected.
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Figure A.1: The logit plot for the original CA125 variable after a linear transformation to
normalize the variable to unit variance. This plot suggests a logarithmic transformation.

3. Moderate flow is present.

4. Adnexal mass appears highly vascular with marked blood flow using colour Doppler.
This colour score refers only to colour Doppler image and not to Doppler shift spectrum.

The blood flow is further characterized with the variables PI, RI, PSV and TAMXV. This
variable is discrete but ordered.
Fluid

The amount of fluid in the pouch of Douglas, measured in a sagittal plane. The largest
anteroposterior diameter is given in millimetres. This variable is continuous in nature. Fig-
ure A.3 shows the logit plot for this variable. Each bin contains the same amount of data
records to estimate the necessary odds, except for the left most bin. This bin corresponds to
those observations with no fluid measured, which contains 560 records.

The discretized version of this variable only indicates if fluid was found:

Value Interval
No [0, 1[
Yes [1, 1000[

Hormone therapy
A binary variable that indicates if a hormone therapy has been applied.

Incomplete septum
An incomplete septum is defined as a thin strand of tissue running across the cyst cavity

from one internal surface to the contralateral side, but which is not complete in some scanning
planes. The presence of an incomplete septum is represented with this binary variable. If the
septum is complete, its thickness is indicated with the variable Septum.
Locularity

A nominal variable describing the morphology of the tumour using five categories:

• Unilocular: a unilocular cyst without septa and without solid parts or papillary struc-
tures

• Unilocular with solid component: unilocular cyst with a measurable solid component
or at least one papillary structure
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Figure A.2: The logit plot for the CA125 variable, after a logarithmic transformation.
This plot shows a linear relation between the CA125 variable and the logarithm of the odds.
CA125 has been normalized to unit variance after the logarithmic transformation.

• Multilocular: a cyst with at least one septum but no measurable solid components or
papillary projections

• Multilocular with solid component: a multilocular cyst with a measurable solid compo-
nent or at least one papillary structure

• Solid: a tumour where the solid components comprise 80% or more of the tumour when
assessed in a two-dimensional section

Menopausal status
A three-valued nominal variable describing the menopausal status. The possible values

are:

• Pre-menopause: Before the period of natural cessation of menstruation

• Hysterectomy: This value indicates that the uterus has been surgically removed

• Post-menopause: After the menopause

Pulsatility index (PI)
One of the parameters describing the blood flow characteristics of the tumour, together

with RI, PSV, and TAMXV. This parameter describes the pulsation of the blood in the
tumour and is recorded with colour Doppler imaging technology. This variable is only valid
if there is actual blood flow present (Colour Score 6= 1).

Discretization intervals:

Value Interval
No blood flow
Low [0, 1[
High [1, 1000[

Peak systolic velocity (PSV)
Another parameters describing the blood flow characteristics of the tumour, together with

PI, RI, and TAMXV. This parameter describes the peak systolic velocity of the blood in the
tumour, measured in centimetres per second, and is recorded with colour Doppler imaging
technology. This variable is only valid if there is actual blood flow present (Colour Score 6= 1).
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Figure A.3: The logit plot for the variable Fluid after a linear transformation to normalize
the variable to unit variance. This plot indicates a linear relation with the odds of the output
variable.

The logit plot Figure A.4 suggests a logarithmic transformation. Figure A.5 show the logit
plot after this transformation.

Discretization intervals:

Value Interval
No blood flow
Low [0, 20[
High [20, 1000[

Pain
A binary variable indicating the presence of pelvic pain during the scan.

Papillation
A binary variable indicating the presence of papillary projections into the cyst cavity.

Papillation flow
This binary variable indicates if flow is present within any of the papillary projections.

This variable is only valid if there are papillary projections present, as indicated by the variable
Papillation.
Papillation smooth

This binary variable describes the shape of the papillary projections. They can be smooth
or irregular. This variable is only valid if there are papillary projections present, as indicated
by the variable Papillation.
Parity

A discrete variable indicating the number of deliveries. No difference is made between
three or more deliveries, resulting in four discretization bins.
Pathology

The binary variable indicating if the tumour was found to be benign or malignant. This is
the variable of interest that provides the class label and that we try to predict. Tumours are
classified according to the criteria recommended by the International Federation of Gynecology
and Obstetrics [69].
Personal history breast cancer

A binary variable indicating the patient’s personal history with respect to breast cancer.
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Figure A.4: The logit plot for the PSV variable, indicating a logarithmic transformation.
On the x axis, the mean of each bin is indicated, while the y axis represents the logarithm of
the odds estimated for the records within each bin. Each bin contains the same number of
data records. The bin indicated with the square contains those tumours where no blood flow
was present, resulting in an irrelevant PSV variable.

Pill Use
The total years of contraceptive use of the pill, measured in years. In the collection

protocol, this was an optional variable, which unfortunately resulted in a lot of missing values.
Discretization intervals:

Value Interval
< halfyear [0.0, 0.5[
0.5-5 year [0.5, 5.1[
5 years < [5.1, 100[

Resistance index (RI)
One of the parameters describing the blood flow characteristics of the tumour, together

with PI, PSV, and TAMXV. This parameter describes the resistance index of the blood in the
tumour and is recorded with colour Doppler imaging technology. This variable is only valid
if there is actual blood flow present (Colour Score 6= 1).

Discretization intervals:

Value Interval
No blood flow
Low [0, 0.5[
High [0.5, 1000[

Septum
A septum is defined as a thin strand of tissue running across the cyst cavity from one

internal surface to the contralateral side. The thickness of the thickest septum is measured in
millimetre where it appears to be at its widest. The logit plot for this variable (Figure A.6),
reveals two things. At first, it shows that the tumours where Septum is 0 do not follow the
general behaviour of the other tumours. Therefore, a special design variable was introduced
for this variable to deal with the case Septum = 0. Second, the logit plot suggests a logarithmic
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Figure A.5: The logit plot for the PSV variable, after the logarithmic transformation. On
the x axis, the mean of each bin is indicated, while the y axis represents the logarithm of the
odds estimated for the records within each bin. Each bin contains the same number of data
records. The bin indicated with the square contains those tumours where no blood flow was
present, resulting in an irrelevant PSV variable.

transformation. Figure A.7 shows the logit plot after this transformation. Note that the case
Septum = 0 is already treated with a design variable.

This variable is discretized by remaining only the presence or absence of a septum.
Shadows

This binary variable indicates the presence of acoustic shadows, defined as loss of acoustic
echo behind a sound-absorbing structure.
Solid

The binary variable Solid means echogenicity suggesting the presence of tissue. Methods
to distinguish between blood clots and the presence of solid tissue are the use of colour Doppler
and to look for internal movement when gently pushing to the structure with the transducer.
Time averaged maximum velocity (TAMXV)

One of the parameters describing the blood flow characteristics of the tumour, together
with PI, RI, and PSV. This parameter describes the time averaged maximum velocity of the
blood in the tumour and is recorded with colour Doppler imaging technology. This variable
is only valid if there is actual blood flow present (Colour Score 6= 1). The logit plot for
this variable (Figure A.8) indicates a logarithmic transformation. The logit plot after this
transformation is shown in Figure A.9. The square indicates the group of tumours where no
blood flow is present, leaving this variable irrelevant.

Discretization intervals:

Value Interval
No blood flow
Low [0, 15[
High [15, 1000[

Volume
This continuous variable describes the volume of the tumour. The logit plot for this

variable indicates a logarithmic transformation (see Figure A.10).
Discretization intervals:
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Figure A.6: The logit plot for the Septum variable, indicating a design variable for the
case (Septum = 0) and a logarithmic transformation. On the x axis, the mean of each bin
is indicated, while the y axis represents the logarithm of the odds estimated for the records
within each bin. Each bin contains the same number of data records. The bin indicated with
the square contains those tumours where no septum was present.

Value Interval
< 50 [0, 50[
50-400 [50, 400[
400 ≤ [400, 100000[

Wall regularity
A three-valued nominal variable describing the structure of the internal wall of the cyst.

This wall can be regular, irregular or not visible.
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Figure A.7: The logit plot for the Septum variable, after the introduction of a design
variable dealing with the special case (Septum = 0) and after a logarithmic transformation.
On the x axis, the mean of each bin is indicated, while the y axis represents the logarithm
of the odds estimated for the records within each bin. Each bin contains the same number
of data records. The bin indicated with the square contains those tumours where no septum
was present.
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Figure A.8: The logit plot for the TAMXV variable, indicating a logarithmic transforma-
tion. On the x axis, the mean of each bin is indicated, while the y axis represents the logarithm
of the odds estimated for the records within each bin. Each bin contains the same number of
data records. The bin indicated with the square contains those tumours where no blood flow
was present, resulting in an irrelevant TAMXV variable.
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Figure A.9: The logit plot for the TAMXV variable, after the logarithmic transformation.
On the x axis, the mean of each bin is indicated, while the y axis represents the logarithm of
the odds estimated for the records within each bin. Each bin contains the same number of
data records. The bin indicated with the square contains those tumours where no blood flow
was present, resulting in an irrelevant TAMXV variable.
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Figure A.10: The logit plot for the Volume variable. On the x axis, the mean of each bin
is indicated, while the y axis represents the logarithm of the odds estimated for the records
within each bin. Each bin contains the same number of data records.
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