KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

PRIMAL-DUAL KERNEL MACHINES

Promotor: Proefschrift voorgedragen tot

Prof. dr. ir. J. Suykens het behalen van het doctoraat

Prof. dr. ir. B. De Moor in de ingenieurswetenschappen
door

Kristiaan PELCKMANS

May 2005






KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

PRIMAL-DUAL KERNEL MACHINES

Jury: Proefschrift voorgedragen tot
Prof. G. De Roeck, voorzitter het behalen van het doctoraat
Prof. J. Suykens, promotor in de ingenieurswetenschappen

Prof. B. De Moor, promotor
Prof. J. Vandewalle

Prof. P. Van Dooren (UCL) Kristiaan PELCKMANS
Prof. J. Schoukens (VUB)

Prof. M. Hubert

Prof. M. Pontil (UC London)

door

U.D.C. 681.3*G12 May 2005



(©Katholieke Universiteit Leuven — Faculteit Ingenieurssretchappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag veigweldigd en/of

openbaar gemaakt worden door middel van druk, fotocopierafilim, elektronisch

of op welke andere wijze ook zonder voorafgaande schijiieetoestemming van de
uitgever.

All rights reserved. No part of the publication may be repetl in any form by
print, photoprint, microfilm or any other means without weit permission from the
publisher.

ISBN 90-5682-610-7
U.D.C. 681.3*126
D/2005/7515/44



Voorwoord

Ruim vier jaar van onderzoek zijn uiteindelijk samengebaltiet huidige werkstuk.
Ik geloof dat ik met tevredenheid terug kan kijken op dezerjaran wetenschappelijke
exploratie en persoonlijke evolutie. Deze periode heefimeentact gebracht met vele
nieuwe gezichten, en heeft academische zowel als indlestiiaarheden en waarden
bijgebracht. Dit is dan ook een uitstekend moment om mijrewsthappelijke wortels
en persoonlijke ankerpunten te bedanken.

Vooreerst wil ik deze gelegenheid aangrijpen om de menséedanken die mij de
kansen gaven dit onderzoek te realizeren. Graag wil ik peafieBart De Moor en
professor Joos Vandewalle bedanken voor de talrijke kadliseze me hebben geboden.
Bedankt Joos om mijn mogelijkheden in een zo vroeg stadiurkennen en me
binnen te loodsen in deze academische wereld varéidee uitvindingen. Bart, ik
wil u graag bedanken voor de nadruk die je bent blijven leggede réle waarde van
toepassingen en werkbaarheid van onderzoek.

Bovenal wil ik professor Johan Suykens bedanken die de enfeseft volbracht om
mijn enthousiasme te stroomlijnen in de vorm van wetensobigke output. Johan,
je toewijding en bezorgdheid voor je onderzoekers zou eerr@oht moeten zijn voor
elke doctoraatsstudent.

De assessoren van het leescongmaitl ik graag danken voor hun constructieve kritiek
voor het verbeteren van de tekst. Professor Johan Schobé&erils erg erkentelijk voor
de wetenschappelijke discussies tijdens de vele IUAP flij@@sten en conferenties.
Verder kan ik zijn hulp betreffende de thesis tekst erg weana en kan ik zeggen dat
zijn opmerkingen zeker mee gedragen hebben tot de “finistoingh” van dit werk.
Professor Paul Van Dooren wil ik graag bedanken voor hetdigonalezen van het
proefschrift.

Onderzoek zit vaak niet vervat in kant en klare antwoordeaamin kruisbestuivingen
tussen experten en andere praatjes aan de koffietafel. Inirdiean ik het belang

van mijn bureaugenoten niet genoeg benadrukken. Luc, kedaor je lakonieke

vriendschap, Jos, voor je geduldige meesterschap, Ivamr, jeorelativerende en
visionaire uitlatingen, Bart, voor je impulsieve idealisnTony, voor je nauwgezette
berekeningen en inleiding in de praktijk van onderzoekeievén, bedankt voor je
stille aanwezigheid en vele suggesties. Marcello, Jaiw Mathalie, thanks for the
cooperations! Maarten, Mustak, Sven, Dries, Oscar, Cantért, Bert Raf en Tom



Vi

wil ik graag bedanken voor hun suggesties en af en toe eee foigbbel. Steven en
anderen, hoed af voor jullie vrijwillige investering in hatdersteunen van de SISTA
frigo’s.

Hoe kan ik eraan beginnen om mijn ouders hun steun en toavenaeen waardige
manier te erkennen? Ik hoop dat ik ooit hetzelfde kan doejulls hebben gedaan.
Simon, Sara, An, Werner, Bertje en Wardje, beda@kt h

Graag wil ik deze thesis opdragen aan mijn vriendin: Bokeapkrecieer van harte
je geduld en bezorgdheid. Dit proefschrift moet gewoon geid zijn door je frisse
alternatieve kijk op de zaken!

Kristiaan Pelckmans
31 mei 2005



Abstract

This text presents a structured overview of recent advainddg research on machine
learning and kernel machines. The general objective isdhadlation and study of
a broad methodology assisting the user in making decisiodgpeedictions based on
collections of observations in a number of complex taskse fésearch issues are
directly motivated by a number of questions of direct conderthe user. The proposed
approaches are mainly studied in the context of convex dgdion.

The two main messages of the dissertation can be summarizéal@avs. At first
the structure of the text reflects the observation that tbelpm of designing a good
machine learning problem is intertwined with the questibregularization and kernel
design. Those three different issues cannot be considadspéndently, and their
relation can be studied consistently using tools of optatian theory. Furthermore,
the problem of automatic model selection fused with modahing is approached
from an optimization point of view. It is argued that the jogimoblem can be written as
an hierarchical programming problem which contrasts witiepapproaches of multi-
objective programming problems. This viewpoint results inumber of formulations
where one performs model training and model selection asdhge time by solving a
(convex) programming problem. We refer to such formulatias to fusion of training
and model selection. Its relation to the use of approprie¢gilarization schemes is
disccussed extensively.

Secondly, the thesis argues that the use of the primal-dgah®ent which originates
from the theory on convex optimization constitutes a pouletfuilding block for
designing appropriate kernel machines. This statemerdrggely motivated by the
elaboration of new leaning machines incorporating prioovidege known from the
problem under study. Structure as additive models, senairpeteric models, model
symmetries and noise coloring schemes turn out to be retddsdly to the design of
the kernel. Prior knowledge in the form of pointwise inedfied, occurence of known
censoring mechanisms and a known noise level can be in@igazbinto an appriate
learning machine easily using the primal-dual arguments &pproach is related and
contrasted to other commonly encountered techniques astsimg splines, Guassian
processes, wavelet methods and others. A related impatEmis the definition and
study of the relevance of the measure of maximal variatioickvban be used to obtain
an efficient way for detecting structure in the data and hiagahissing values.
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The text is glued together to a consistent story by the amddf new results, including
the formulation of new learning machines (e.g. the Suppext®f Tube), study of
new advanced regularization schemes (e.g. alternatit &spuares), investigation
of the relation of the kernel design with model formulaticarsd results in signal-
processing and system identification (e.g. the relationeshdéls with Fourier and
wavelet decompositions). This results in a data-driven teagesign an appropriate
kernel for the learning machine based on the correlatiorsored in the data.



Korte Inhoud

Dit proefschrift presenteert een breed overzicht van neebijdragen in het onderzoek
naar automatische leeralgoritmen. Het algemeen opzet iforeulering en de

studie van een methodologie voor het assisteren van deteixpléet maken van

gefundeerde beslissingen of voorspellingen. Hoewel derzesgeneriek van aard is
en er academische problemen zullen bestudeerd worden, jsaélésche relevantie
van de gebruikte methode eerder aangetoond op verschejgea#enstudies. De
kritische problemen die ervaren werden in dergelijke gsidnotiveerden de keuze
van de onderzoeksonderwerpen. De aanpak is essentiedttglelvo een context van

convexe optimalisatie.

Het proefschrift bestudeert en motiveert in hoofdzaak tstelingen. Ten eerste wordt
er geargumenteerd dat het probleem van het opstellen vagoeehleeralgoritme, de

vraag naar een goede maat van modelcomplexiteit en het gntae een goede maat
van similariteit in de vorm van een zogenaamde kernfundgekgyerelateerd zijn.

De invalshoek van optimalisatie vormt een krachtig hupraidim de onderliggende
relaties te bestuderen en constructief te gebruiken. Yesoedt het probleem van

modelselectie dieper bestudeerd, eveneens vanuit eanadisitieperspectief. Het
modelselectieprobleem wordtigéerpreteerd als eendrarchisch programmeerprob-
leem. Dit laatste vormt een techniek voor het oplossen vdimafisatieproblemen

waar meerdere kostfuncties moeten in rekening gebrachtlemor Verschillende

modelselectieproblemen worden dan geformuleerd als eemaljsatieprobleem en

efficiente manieren worden onderzocht om de taak van modelsahattiimodelselec-

tie tegelijkertijd op te lossen met betrekking tot verdeinitie deeltaken.

Ten tweede wordt er geargumenteerd dat het primair-duamwerk zoals bek-
end vanuit convexe optimalisatieproblemen een kracht@genblok vormt voor het
formuleren van nieuwe leeralgoritmen. Deze bewering waektaafd door het
uitwerken van verschillende leermachines voor complekerta Het inbrengen van
voorkennis met betrekking tot structuur en globale paramein het leeralgoritme
is in het bijzonder een sterkte van de methode. We bestudevernamelijk
enerzijds de structuur van additieve modellen, gedejilteéirametrische kernfunctie
methoden, het opleggen van modelsymmeétrieen anderzijds de relatie van deze
drie met het ontwerp van een goede kernfunctie. Andere thestde vormen
van opgelegde voorkennis omvatten puntsgewijze ongelijkh, toegepaste vormen
van censureringsmechanismen, het behandelen van origellebbservaties en het
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inbrengen van voorkennis met betrekking tot het ruisniv&iticentrale primair-duale

argument wordt gerelateerd en gecontrasteerd met andkeede methoden uit de
literatuur. Verder werd een belangrijke stap gezet voodeé&tcteren van structuur uit
de observaties door het uitwerken en bestuderen van de maahaximale variatie

van een functie.

Het verhaal is samengebracht tot een consistent geheel ldgotoevoegen van
een scala van nieuwe resultaten zoals het uitwerken varnweideeralgoritmen,
bijvoorbeeld voor het schatten van onzekerheden (Supgatb¥ Tubes), de studie van
nieuwe mechanismen voor complexiteitscontrole of reggadie (zoals bijvoorbeeld
de formulering van het alternatieve kleinste kwadratemla®m), en de verdere studie
van de relatie tussen modelcomplexiteit, het ontwerp vakedefunctie en resultaten
vanuit de theorie van systeemidentificatie. In het bijzonderdt er een methode
voorgesteld voor het schatten van een goede kernfunctaewbservaties gebaseerd
op de berekende correlatie geschat op de gegeven dataset.



Primair-duale Kernfunctie
Methoden

\ele problemen kunnen herleid worden tot het zoeken vanhidsc
mathematische modellen op basis van een verzameling aiesren het
maken van voorspellingen op basis van deze modellen. Ditedidee
vormt een belangrijk ingrednt van verschillende wetenschappelijke deel-
gebieden zoals statistiek, systeemidentificatie en aéiédntelligentie,
en vindt een directe toepassing in een breed spectrum véamisofae
problemen gaande van medische overlevingsanalyse toegeken van
complexe chemische processen. In het kielzog van de zogeteaa
Support Vector Machines (SVMs) (Cortes and Vapnik, 1995pnig
1998) is een nieuwe sterke impuls gegeven aan het wetensihiap
onderzoek naar algoritmen voor het automatisch leren metlpevan
leermachines (“Machine Learning”). Deze nederlandstasigmenvatting
van het proefschrift bevat twee delen. Het eerste bespdeekigemene
methodologie van SVMs en kernfunctie methoden op een iafeld
niveau. Het tweede deel geeft hierop gesteund een ovenzérhtde
bijdrage van het proefschrift.

Dit onderzoek richt zich vooral op het ontwerp en de analyase leersystemen voor
de automatische classificatie en het benaderen van fuetgioerbanden gegeven
een eindige verzameling observaties. Deze klasse vanegonenl werd bekeken
vanuit een nieuwe theoretische invalshoek bekend als dari¢ghean statistische
leeralgoritmen (Vapnik, 1998; Bousquedtal., 2004). Door de recente beschikbaarheid
van mogelijkheden om grote berekeningen op een automatisemier uit te voeren
en door de formulering van effisnte numerieke algoritmen mag men spreken van
een doorbraak van de kernel methoden zowel op theoretisghals in de praktijk.

De huidige tendens is om de klasse van kernelmethoden alsodenardige aan-
vulling te zien op de klassieke statistische methodolotfastieet al, 2001). De
onderzoeksgroep SCD-SISTA en ondergetekende richtténdacvoorbije jaren op
het bestuderen en toepassen van een variant, de kleinstiedterma SVMs (LS-SVMS)
(Suykenset al, 200b). Dit onderzoek onderscheidt zich voornamelijk van andere
kernelgebaseerde methoden door het uitbuiten van exglieégbanden met de theorie
van convexe optimalisatie (Boyd en Vandenberge, 2004)arRgljke elementen van
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de LS-SVMs zijn de resulterende algoritmen die eenvoudagpesneller zijn dan de
doorsnee SVM methoden, en de expliciete verbanden met dethals neurale en
regularizatie netwerken, wavelets en splines (voor detaate b.v. (Wahba, 1990)).
De praktische werkbaarheid van de algoritmen was de vaojign bewezen onder
meer in het veld van medische signaalverwerking, bioinfdica, econometrie en
regeltoepassingen, zie (Suykegisl., 200D).

A. Introductie tot Machine Leeralgoritmen en Kern-
functies

A.1 Machine Leeralgoritmen

Het onderzoeksgebied van machine leeralgoritmen bevabhétrzoek naar hoe
programma’s te ontwerpen die verbeteren met de gegeverme dipdoen (Mitchell,
1997). Zodoende is men peresseerd in een automatisch formalisme of algoritme
Alg dat gegevens? - bijvoorbeeld in de vorm van observaties van een bepaald
fenomeen - en voorkennis van het probleem (bijvoorbeeld in de vorm van
assumpties over het bestudeerde fenomeen) omzetten ixgensysteem in de vorm
van wiskundige vergelijkingen. In het algemeen behoortiegbmen expert systeem
tot een voorgedefinieerde klasge van potentle beschrijvingen die gedetermineerd
zijn op enkele onbekende parameters na. Een leeralgorismealdus formeel
beschreven worden als een optimale afbeelding als

Alg: D x of — .

Men refereert naar deze mapping ook aiferentie schatter (in een statistische
context),leeralgoritme(in een context van artifiéle intelligentie). Hier beperken we
ons tot de taak waarbij de observaties uiteenvallen in thasskn, namelijk de bekende
invoer variabeleren de overeenkomdgtvoer onbekendenf uitvoer etiketten Het
doel van het geleerde resultaat is dan om voorspellingeroésm ddan de uitvoer
overeenkomende met nieuwe observaties van de invoer. gedi kan de klass&

van potenttle beschrijvingerf nauwkeuriger beschreven worden in termen van een
aantal onbekende parametérs © als volgt

y:{f:RD—nD‘ f(x,e):y},

waarx € RP een mogelijke invoer epe D een mogelijke uitvoer representeert. Details
van de mappindAlg bepalen in grote mate de specificaties van het leeralgoiitme
kwestie:

Afbeelding: Alg Door een leeralgoritme te beschrijven als een welgedefieee
afbeelding van een set van observaties en een verzamelimgaraas op een
klasse van mogelijke modellen wordt impliciet aangenoman ekt resultaat
uniek is en worden globale optimalisatiemethoden (zodtwifls gebruikt in
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artificiele neurale netwerken) uitgesloten. Deze definitie maakimugelijk
om begrippen als gevoeligheid van het algoritme aan kleareupbaties op de
observaties formeel te deféren.

Optimaliteit: Het begrip optimaliteit staat centraal in deze definitiekeejegeven
dataset en verzameling veronderstellingen impliceertresultaat dat het beste
is onder alle mogelijke hypothesen. De gebruikte vorm vatinggiteit is
in belangrijke mate bepaald door het uiteindelijke doel tath leeralgoritme
(e.g. verklaring en inzicht, voorspelling, de observatesdoen van ruis,...).
Optimaliteit wordt uitgedrukt in wiskundige symboliek diggen is aan de exacte
context van het leerprobleem (klassiek statistisch, Hages, deterministische
benadering,...).

Gegevens 7: De observaties worden vaak verschaft in de volgende vorm

P ={(%,¥1) 1Ly, (0.1)

metx; € DP de input observaties e € D de overeenkomstige uitvoer obser-
vaties. De exacte vorm van het dom&iivan de variabelen bepaalt in grote mate
de probleemstelling. Men maakt vaak een onderscheid tiseiR (continue
onbekenden)D = {—1,1} (binaire observaties), nominale variabelen (Bv—=
{Jazzpopclassig) of ordinale variabelen (bv.D = {slecht goed supet).
Bovendien kunnen observaties ontbreken (“missen”) of ot omwille van
verscheidene redenen.

Aannames .«7: Veronderstellingen komen voor in verschillende vormen:alitatief
(bijvoorbeeld het functioneel verband is strict stijgenidyantitatief (bijvoor-
beeld er is een signaal-ruis verhouding), een a-priori bekerobabilistisch
model (bv. de ruis is normaal verdeeld) of in de vorm van fed®nnis. In
de laatste zitten alle eigenschappen en resultaten bevabatrekking tot de
probleemstelling zelf.

Klasse.7: Een belangrijke vorm van voorkennis met betrekking tot debjgem-
stelling wordt verwerkt in de preciese klasse van modelgwdorbeeld welke
gemeten variabelen zijn relevant voor het model). Bovendkgt de klasse
van hypothesen dikwijls een inherente structuur op hepteees. Men maakt
bijvoorbeeld een onderscheid tussen oorzakelijke mauéiteet een inherente
tijdscomponent), of beslissingsbomen met edrdrichische structuur. Verder
is de klasse# van modellen vaak bepaald door de specifieke vorm van de
uitvoervariabelen (bijvoorbeeld regressie voor continiteoer en classificatie
voor binaire uitkomsten).

Analyse: Een uiteindelijke analyse van de resulterende modellemgaleeralgoritme
zoekt een antwoord op de vraag of het geleerde verband maerdruikbaar
is. Hiervoor bestaan verschillende mogelijkheden. Intedrstantie kan men
de veralgemeningsperformantie (“generalisatie perfotieg van de schatting
evalueren met een toepasselijk model selectie criterivem. Borbeeld hiervan
is om het geleerde model te gebruiken voor het voorspellardeauitvoer van
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nieuwe observaties in een validatiefase. Een meer theohetiaanpak kan
gebasseerd worden op een mate van gevoeligheid van helgta@rae aan
kleine perturbaties in de data of de aannames.

A.2 Support Vector Machines en Kernfuncties

We beschouwen op dit ogenblik het specifieke geval waar dmnit een binaire
waarde €1 of 1) aanneemt. Dit geval van classificatie wordt dikwijissbhouwd
als een van de minst complexe maar meest generieke takendéendge zodoende een
groot deel van de interesse in het wetenschappelijk ondknzan leertechnieken.

Probleemstelling

De methode van Support Vector Machines (SVMs) stamt uit meteczoek naar
het induceren van een goede binaire classificatie regeleniteéndige verzameling
observaties. Concreet zoekt men een regelR® — {—1,1} die het verwachte
etiket behorende bij toekomstige datapunten voorspelat Ha observaties samples
Zijn van de random variabel¥ enY overeenkomstig de in- en uitvoer variabelen.
Gegeven een vaste maar onbekende distritigjeover de random variabel¢ enY,

de optimale classificatie regelmet minimaal risico op verkeerde voorspellingen kan
geformaliseerd worden als

¢= argmin /I(y;«éc(X))dFkY(Xy),
CRD—{-11}

waar de indicator functié(x # y) gelijk is aan 1 alx # y en aan nul in het andere
geval.

Support Vector Machines

We beschouwen classificatieregels van de volgende vorm
sign[w ¢ (x) +b] .

Hierbij is ¢ : R® — RP¢ een afbeelding van de gegevens met dimeBsieN naar
een kenmerkruimt®y met mogelijk oneindige dimensi®f = +o), w € RP¢ is een
parameter vector dnc R een constante. Anders gesteld, men voorspelt een poditief o
een negatief etiket bij een nieuwe invoerc RP afhankelijk aan welke kant dit punt
zich bevindt ten opzichte van het hyperviak Hp gegeven dtgt vo

Hp(w,b) = {xo € R® | W' ¢(x0) + b= 0} .

Het is een klassiek resultaat dat de afstand van eenxptuithet hypervlak Hpw, b)
begrensd wordt als volgt

_ W00 +b] i (W' (x) +b)
o wlw = wlw

d , Yi=1,...,N.
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Resultaten in het domein van statistische machine learaigen geven dan garanties
dat het hypervlak Hp goede resultaten levert indien de @hses op maximale afstand
liggen van het hypervlak. Het optimale hypervlak wordt gegeals de oplossing van
het volgende optimalisatieprobleem

yi (W' (x)+b

maxd s.t. )zd, vi=1,...,N.

wb.d wlhw

Dit probleem kan herschreven worden ddde vervangen door /v" w wat altijd kan
gedaan worden (de locatie van het hypervlak is niet afhgkkein zijn norm)

mibn/(w):wTw st yi(Wo(x)+b)>1, Vi=1...,N.
W,

Dit probleem is convex en heeft zodoende sled#s globaal minimum. Indien
de afbeeldingp bekend is kan bovenstaand optimalisatieprobleem éfficopgelost
worden.

We bekijken nu het geval dat de afbeeldingiet bekend is maar enkel de overeenkom-
stige kernfunctie gedefinieerd als

K(xi, %) = ¢06)To(x) x,x € R".

Het Mercer theorema stelt dan dat onder bepaalde voorwaami€ (K is een positief
definiete functie) er een unieke overeenkomstige afbeglflibestaat. Vaak kan het
schattingsprobleem herschreven worden in functie van deekeodat de afbeelding
impliciet kan blijven in de berekening. Dit biedt concreteovdelen indien enkel iets
geweten is over het globale verloop van de functie (bijveetth “de functie is traag
varierend”) en men niet zozeer de expliciete parametrische ¥ammeerschrijven.

Een mogelijk pad om dergelijke problemen te herschrijvdniatie van de kernfunctie
K is gegeven door resultaten in de theorie van convexe opsati@ (Boyd en Van-
denberge, 2004). Beschouw de zadelpuntbeschrijving veprbbleem die bekomen
wordt door het opstellen van de Lagrangiaan met Lagrangees@igvuldigersa; voor
i=1,....N

maxmin.Z(w,b; a) = w'w— iai (i (who(x))—1),

a wb

met beperking dat; > 0 voor allei = 1,...,N. Het minimum met betrekking tot de
zogenoemde primaire variabelerenb wordt gegeven door de volgende voorwaarden:

%

S =0 w=3N ayid(x)
0¥

=5 =0~ YiLaaiyi =0

Laat de vectol € RN gedefinieerd zijn als volgt = (y17...,yN)T en laat de matrix
Qy € RN*N voldaan zijn aamy;j = yiyjK(x,xj) voor allei,j = 1,...,N. Laat I
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Figure 0.1: Voorbeeld van een classificatieprobleem en het model bekaioer
toepassing van een SVM. Positieve (“+”) en negatieve (“objservaties zijn
gegroepeerd in twee verschillende klassen. De SupporoMBtdachine genereert een
model (voorgesteld als het hellende vlak) dat de beslissagkt of een nieuw datapunt
meest waarschijnlijk een voorbeeld is van de klasse vartipesi(boven het viak) of
negatieve samples (onder het viak).

gedefinieerd zijn als de vectoi 1= (1,...,1)" € RN. Gebruik makende van deze
voorwaarden om dan de primaire variabelen te elimineredeutadelpuntformulering
resulteert in het volgende duale probleem

YTa=0

-1
Dy T T
me/ (a) 3 a' Qua+1ya st {ai>0 Vi=1,...,N,

dat uitgedrukt wordt in termen van de duale vermenigvuldige= (as,...,an)" €
RN. Door een verdere technische ingreep (het uitbuiten varodermamde compli-
mentariteitsvoorwaarden in de Karush-Kuhn-Tucker caeslivoor optimaliteit) kan
uit het beschreven duale probleem niet alleen de vextgeschat worden, maar ook
de impliciet overeenkomstige schatting varkan gevonden worden. Eens zowel
alsb berekend is, kan het impliciet geschatte modévgdéueerd worden in een nieuw
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datapuni, € RP als volgt

N
sign [Z&iyiK(xi,x*) +bl.

Afgeleide resultaten relaxeren dan de maximale marge do®rté laten dat de
gevonden marge geschonden wordt door enkele observatieslerd uitbreidingen
bestuderen gelijkaardige formuleringen waar de uitvoatinae of ordinale waarden
kan aannemen.

Uitbreidingen

Deze aanpak heeft zijn kracht bewezen zowel op theoretlsaparaktisch viak (see
e.g. (Scllkopf and Smola, 2002)). Er resteren echter nog een velzag@jnpunten
waaronder de volgende: “Welke afweging tussen fit en modgbbexiteit moet er
gemaakt worden?”, “Wat is de specifieke vorm en tunings patanvan de kernfunctie
die optimaal is voor de taak?”, of “Hoe kan men uit de obsérgaafleiden welke
invoervariabelen relevant zijn voor de taak?”. Deze vragignallen een specifieke
vorm van het probleem van modelselectie. Op deze vraagstukél een antwoord
worden geformuleerd in het tweede en derde deel van hetqutoét.

Een uitgebreid deel van het onderzoek naar kernfunctiesgelde leeralgoritmen richt
zich op het formuleren van leermethodes voor het autonimbisawen van modellen

voor complexere taken. Niet alleen classificatie, maar agkshhatten van continue
functionele verbanden uit de gegevens is een belangrigdevtaor leeralgoritmen. In

geval de data expliciete tijdsafhankelijkheden vertoarsehuift de focus meer naar
het onderzoeksgebied van systeemidentificatie. Dit kdight vruchtbaar gebied te zijn
voor het gebruik van leermachines die structurele vemeikteanen incalculeren. In

het algemeen is het inbrengen van extra voorkennis in hetlitgeitme zelf niet alleen

een belangrijk desideratum, maar worden ook verkeerddtstden vermeden op die
manier.

Andere vragen gerelateerd aan de formulering van SVMs emgriduale kernfunctie
methoden hebben betrekking tot hoe men éffitte optimale oplossing kan berekenen
bijvoorbeeld voor grote datasets. Een andere tak van harpoek naar kernfunctie
gebaseerde leeralgoritmen richt de focus op het iteraijiwktken van het geschatte
model overeenkomend met nieuwe observaties die men tgekijen veelbelovend
onderzoek richt zich dan op het ontwikkelen van snelle hardvimplementaties van
het schattingsprobleem.

B. Bijdragen van het Doctoraatswerk

Het huidige doctoraatswerk beschrijft een verzamelinguwe resultaten in het
onderzoek naar automatische leeralgoritmen en kernfunoithoden. Dit biedt een
uniforme kijk op het onderzoek door volgende regels cehtesstellen:
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Convexe Optimalisatie: Dit onderzoek in het verlengde van de methode van SVMs
vertoont enkele grote verschillen met het klassiekere mogdk naar artifiéle
neurale netwerken. Naast de stevige theoretische furemningt vooral
de eigenschap van globale optimaliteit in het oog. De edes dat de
optimale schattingen uniek is heeft als resultaat dat fiedhaan een ex-
periment gegarandeerd tot dezelfde oplossing zal leident re3ulteert in
de mogelijkheid om stevige theoretische analyzes te birmdende optimale
schattingen. De uitdaging om nieuwe formuleringen vanimetaire technieken
te herformuleren als een standaard convex programmeriiglsem vormt een
rode draad doorheen het onderzoek.

Opleggen van voorkennis: In vele toepassingen bezit men niet alleen observaties
om een model te bouwen maar heeft men ook voorkennis betdefféet
bestudeerde fenomeen ter beschikking. Een goed leetatgamoet zo mogelijk
rekening houden met die voorkennis zodat het resulteerbitetien die voldoen
aan die voorkennis. Een belangrijke vorm om voorkennis dpggen aan het
leeralgoritme is om een specifieke model structuur voorpeiéen.

Modelselectie: Dikwijls is het resultaat van het leeralgoritme bepaald oixete
ontwerpparameters na. Een veel voorkomende parametertikeeart het
ruisniveau van de observaties. Indien de exacte waardeemmahtwerpparam-
eter niet expliciet bekend is, kan men specifieke methoderugeen om deze
waarden te leren uit de observaties. Ondanks het uitgebmiderzoek naar
mogelijke criteria die de kwaliteit bepalen van een spddafientwerpparameter,
is de automatisatie van dit metaprobleem in vele gevallenopen probleem.
Deze thesis bestudeert een dergelijk formalisme voor hehaatisch uitvoeren
van modelselectietaken door het formuleren va@ahthische programmer-
ingsproblemen.

Dit overzicht volgt in grote trekken de structuur van de tekslegt de kernpunten van
de vier delen bloot.

Hoofdstuk 1: Problemen en Doelstellingen

Dit hoofdstuk legt op een formele manier de achtergrond veinomderzoek vast
zoals gegeven in Hoofdstuk A.1. Verder wordt de techniek 8Ms en LS-
SVMs gerelateerd aan klassieke methoden als bekend vamtigtisk en andere
wetenschappelijke domeinen. Een groot deel van het eeosfieldtuk is gewijd aan
een overzicht van de verschillende onderzoeksdiscipl@sen het onderzoek van
automatische leeralgoritmen en kernfunctie modellen.

Hoofdstuk 2: Overzicht van de Theorie van Convexe Optimalisae

Zoals reeds geargumenteerd wordt de theorie en praktijkceamexe optimalisatie
centraal gesteld in dit onderzoek: het primair-duale agpundat de hoeksteen vormt
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van vele uitgewerkte resultaten heeft een duidelijke afitoim optimalisatietheorie.
Daartoe is er ruime aandacht besteed om een overzicht te gewvedeze theorie
voor zover relevant voor dit onderzoek. Een convex progranmgsprobleem heeft
de volgende vorm.

Definition 0.1. [Convex Programmeringsprobleem]Laat mp € N en laat h € R
voor allei=1,... m,...,m+ p. Een wiskundig optimalisatieprobleem heeft in het
algemeen de volgende vorm

p* = min fo(x) s.t.
x€RD

{fi(X)Sbi vi=1,...,m (0.2)

fix)=b; Vji=m+1,...,m+p,

waar f : RP — R functies voorstellen voor allek 0,...,m+ p. Men refereert naar

fo als de objectieffunctie die geminimaliseerd dient te woydevoor allei=1,...,m

en fj voor alle j=m+1,...,m+ p stellen dan de functies van de ongelijkheids- en de
gelijkheidsbeperkingen voor. De vectdn, ... ,bm,.. .,bm+p)T € R™P representeert

de begrenzingen van de beperkingen. Een optimalisatitggobisconvexindien de
punten die voldoen aan de beperkingen convex zijn (i.e.liekaire interpolatie van
twee oplossingen is opnieuw een oplossing) en de objecta# convex is (i.e. elke
lineaire interpollatie van twee punten behorende tot deofigffunctie is groter dan of
gelijk aan het overeenkomstige punt op de objectieffunctie

Optimalisatieproblemen met verschillende kostenfusatierden traditioneel aangepakt
door de verschillende objectieffuncties om te vormenéot enkele globale kosten-
functie en deze dan te optimaliseren. In verschillende Iggvas een dergelijke
aanpak niet direct toepasbaar, bijvoorbeeld omdat de Wleswle objectieffuncties
op een verschillend niveau staan. Dit proefschrift bestttdesen andere techniek om
dergelijke problemen te beschrijven viatghisch programmeren.

Definition 0.2. [Hiérarchische ProgrammeringsproblemenBeschouw twee objecti-
effuncties § en f en bijbehorende beperkingep én f allen gedefinieerd op dezelfde
onbekende van gelijke dimensig®). Indien c RP de globale oplossingsruimte is
van het eerste probleeng £n f! op enkele parameters na waarvan de waarden vast
gehouden worden (ontwerpparameters), dan bekomt men éeardfiische aanpak
indien men op een tweede niveau het tweede probl%mnffj2 beperkt tot de
oplossingsruimté .

Dit wordt schematisch gisstreerd in Figuur 0.2.

Deela

Dit hoofdstuk is in grote mate gewijd aan de afleiding van deltaten die reeds in het
kort beschreven zijn in Subsectie A.2. In aanvulling hienteordt het primair-duale
argument gebruikt om gelijkaardige leermachines te foemau. Vooreerst wordt een
eenvoudig geval bestudeerd. Stel dat de data de vorm aanr@rae{(x;, i)}, met
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Level 1:

T(62) = 6] = argmiry, f5(61 | 62)
s.t. fil(el | 62) =h;

P o

Cost fé‘(el, 92)

Level 2:

6;.6; = argminy, g, f2(61,6,)

st T2(61,02) =bj, 6,="T(6)

Figure 0.2:Schematische voorstelling van eeéiairchisch programmeringsprobleem.
Laat fg, f en f§, 7 de twee objectieffuncties met bijbehorende beperkinggm zi
Beiden werken op een parameterruimteRifi met parameter§; € R en 6, € R.

Op het eerste niveau wor@ vast gehouden en geoptimaliseerd ogrd.m.v. de
functiesfo1 enfl. Voor elke waardé, bestaat er dan een unieke oplossing indien het
probleem convex is, voorgesteld dddif,) = 8;. Op een tweede niveau wordt er dan
geoptimaliseerd over deze parameter-ruifiits, 6,) | ' (62) = 61} met behulp van de
kostenfunctief§ en eventuele beperkingdf.

x € RP eny; € R continu, en stel dat het model kan geschreven wordef(a}s= w' x
met onbekende parameter vector= RP. Laat de matrixX € RN*P en de vector
Y € RN gedefinieerd zijn alX = (x1,...,xn)" enY = (y1,...,yn)'. De klassieke
methode van kleinste kwadraten om dan de onbekende paranetmeken gegeven
de observatie¥ is dan om de volgende kostenfunctie te minimaliseren:

N
~ . y T 2
W=argmin Z(w) =-S5 (W x —V)".
gmin.7 (W) =33 (W~ )
De oplossing kan analytisch berekend worden door oplossinghet stelsel lineaire
vergelijkingen

(XTX) w=XTY.

Deze tekst beschouwt complexere vormen van zulke fornmgeri die de model
formulering uitbreidt naar niet-lineaire impliciete vatellingen door het gebruik van
het primair-duale argument zoals gebruikt in Sectie A.

Een reeks primair-duale kernfunctie machines wordt afdekdk met een verschil-
lende kostenfunctie. De volgende afleidingen worden gegeeer het geval van
regressie:
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[SVM] De standaard SVM voor regressie wordt bekomen dooraaginemen
van een kostenfunktie van de volgende vorm

le(e) = max(0,|e| —¢€).

e [LS-SVM] Door het beschouwen van een kleinste kwadratertekdsnctie
bekomt men een variant van de SVM die efiai kan berekend worden door het
oplossen van een verzameling lineaire vergelijkingen. &mfer voordeel van
deze formulering is zijn sterke relatie met de theorie vdimep en Gaussiaanse
processen en de interpretatie van de oplossing als eenlatew@n de ruis met
de gegeven kernfunctie.

e [hSVM] Integratie van de Huber-kostenfunctie resultearteen formulering
die het midden houdt tussen de twee voorgaande formulerinDe klassieke
motivatie van de Huber-kostenfunctie als een methode vebbekomen van
schattingen ongevoelig (“robust”) voor a-tyische obstegvormt een surplus.

e [SVT] De Support Vector Tube (SVT) is geformuleerd vanuiinesndere
doelstelling. Deze associeert met elke gegeven invoergditse een interval
van de réle getallen waarin het gross van de mogelijke overeenkgenst
uivoerobservaties mag verwacht worden. De SVT construgamt minimaal
complexe begrenzing (“tube”) waar alle observaties in @ass

e [V-SVT] Deze kernfunctie machine is een uitbreiding van de SwMdarin
uitzonderingen worden toegelaten: in uitzonderlijke ¢emakunnen gegeven
observaties buiten de tube toegelaten worden. De parameieeft dan een
indicatie hoeveel uitzonderingen toegelaten worden.

In het geval van classifictie worden de standaard SVM en L$tSVassificator
besproken.

In vele gevallen is het mogelijk voorkennis in de vorm vaneagede structuur uit te
buiten in het leeralgoritme. De volgende gevallen zijn eitgrkt:

e [Semi-parametrische structuur] Het geschatte model kagelijo een vermeng-
ing zijn van een lineair deel met overeenkomstige pararmeter een niet-
parametrisch deel gesteund op kernfuncties. Laat elkenadigeex bestaan uit
een deek” € RY gebruikt voor het parameterisch model (met param¢@er®?)
en een deet® e RP voor het niet-parametrisch stufk als volgt

f(x) = fi (X) +BTX".

De schatting van dit soort modellen kan effict gebeuren gebruik makende van
het primair-duale argument.

e [Additive Models] Het gebruik van additieve modellen levesak een praktisch
evenwicht tussen een interpreteerbaar resultaat en edreflexnodelstructuur.
Laat elke observatix bestaan uit verschillende componentéR met p =
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1,...,P. In vele gevallen geven modellen van de volgende vorm eeuraiec
benadering van het bestudeerde fenomeen:

f(x) = pilfp (xP) +b,

met f, een serie van deelfuncties telkens gebaseerd op de oversende
componenten. Een additioneel voordeel van deze modeltstnudés dat
theoretische resultaten aantonen dat schatting van dedeller nauwkeuriger
(in welbepaalde zin, zie later) kan gebeuren.

e [Puntsgewijze ongelijkheden] Vaak zijn er kwalitatievgyeks in de vorm van
ongelijkheden voorhanden waaraan de geschatte modell&atemaoldoen.
Indien deze ongelijkheden geformuleerd kunnen worden iméa van een
aantal concrete punten, kan het primair-duale argumemtigelbvorden om een
overeenkomstig leeralgoritme te bouwen.

e [Gecensureerde observaties] In bepaalde gevallen zijnbdereaties gecen-
sureerd. Bijvoorbeeld een meter kan maar tot een bepaaldelevaitgelezen
worden door technische beperkingen. De kostenfunctie kaneenkomstig
hiermee aangepast worden wat leidt tot een nieuwe kernéumethode.

Het laatste hoofdstuk van dit deel beschrijft dan het vedbaan de beschreven
methodologie met de klassieke resultaten splines in deegkbwan ruizige observaties,
Gaussiaanse processen en Bayesiaanse technieken, wsjavelerse problemen,
vealgemeende kleinste kwadraten methoden en andere reathod

Deely

Het tweede deel focust zich op de computationele aspectemeagebruikte vorm
van complexiteitscontrole of regularisatie. In eerstdanse worden verschillende
vormen van complexiteitscontrole beschreven. We makenoeelerscheid tussen
parametrische modellen waar complexiteit uitgedrukt kamden in termen van de
norm van de parameters, en niet-parameterische kernéumetihoden waar een maat
van complexiteit bijvoorbeeld kan uitgedrukt worden in daximale variatie die een
functie vertoont op de gegeven dataset. In het eerste gelmbligt men meestal
de 2-norm van de parameter vector (“ridge regression”). ud&ende voorbeeld is
klassiek. Beschouw opnieuw de lineaire model strucfifey = w'x. We bestuderen
de kostenfunctie

A . 1 T yN T 2
W=argmin ,(W) = —w' w+ - Sy (W' X —Vi)",
gr Syw) =3 Zi;( X —Yi)

waar de ontwerpparametgr> 0 de afweging bepaalt tussen de complexiteitsterm
w'w en de empirische kot ; (W'x —yi)z. De optimale schatting kan analytisch
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berekend worden door oplossing van het stelsel lineaigeligdingen
T 1 T
(X X+;ID) w=X"Y,

waarlp € RP*P de eenheidsmatrix voorstelt. Een analyse in de vorm van dletéy
van de bias (verwachtte afwijking van de echte functie) etaméie (onzekerheid op
de geschatte functie) in functie van de ontwerpparametgigegeven in de literatuur
voor deze lineaire schatter. Deze tekst geeft een geliigarafleiding voor de
LS-SVM schatter in de vorm van bias en variantie. Verder igelatie van deze
ontwerpparameter met de signaal-ruis verhouding uitgevekror het bestuderen van
gerelateerde regularisatieschemas genaamd Ivanov erzMoregularisatie.

Huidige aandacht gaat meer en meer naar het gebruik van demidamar deze re-
sulteert in oplossingen waar vele waarden nul zijn (spa&édsran de parameters). Dit
voorkomen van nullen in de oplossingsvector in het linegéneal wordt génterpreteerd
als een vorm van selectie van invoervariabelen. In het gemlniet-parametrische
kernfunctie methoden voor additieve modellen stellen weghbruik van de maat van
maximale variatie voor. De componenten met een bijbeh@emakimale variatie van
nul duiden aan dat deze componenten niet wezenlijk bijaragtehet geleerde model.
Zodoende is er een niet-parametrische vorm van structteatike bekomen. Verdere
toepassingen van het principe van maximale variatie isfinekoin de context van het
behandelen van missende waarden in de observaties.

Hoofdstukken 7 en 8 beschouwen het probleem van selectieeraaoptimale ontwerp-
parameter die een afweging maakt tussen complexiteit errisofe performantie
(typisch genoteerd door een Griekg Hiervoor worden modelselectiecriteria
beschouwd als validatie, kruis-validatie en anderen. Basw bijvoorbeeld opnieuw

het lineaire probleem zoals in vorige paragraaf, optireadis van de ontwerpparameter
n

y met betrekking tot de performantie op een validatiedat@8et { (x‘j’,y‘j’) } - (met
J:

Xj € RP enyj € R) resulteert in het volgende probleem
min 7V(w) = - n W2 st (X4 tip ) weXTy
wv/<)_§,;( —Y)" st +lp ) w=X7Y.

Om complexere vormen van dit soort problemen formeel neesckeijven, wordt
het mechanisme vandrarchisch programmeren gebruikt waarbij oween y wordt
geoptimaliseerd met betrekking tot meerdere niveaus (zig deel). Hiervoor worden
de Karush-Kuhn-Tucker condities voor optimaliteit edge aan het optimalisatie
probleem. Hoewel dit soort problemen vaak niet meer cons€xoals in dit geval),
kunnen er effi@nte benaderingen van dit probleem gezocht worden zoadetmnd
in het proefschrift.

Een andere aanpak van dit probleem is gevonden door de ingoean een her-
parametrisering van de afweging tussen het belang van esitgit en empirische
kost. Laat de vectoc = (cy, ... 7CN)T e RN de rol spelen van de ontwerpparameter
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yin de ridge-regressie formulering gegeven als

" . 1+ y N T 2
w=argmin W)= _-W W+ — W' X —VYi—C) .

De optimale schatting/ is analytische gegeven voor elke vastas volgt
(XTX+1p) w=XT(Y—c),

zodat voor elke mogelijke er exactéén globaal optimale oplossing bestaat. De
voorgestelde herparametrisering leidt in het algemeenctoivexe modelselectie
problemen. Dit pad is gevolgd voor het bouwen van nieuweflkegtie gebaseerde
leeralgoritmen waar het primair-duale argument niet dikeo worden toegepast. Een
belangrijke toepassing van het beschreven mechanismé&asnes als een algoritme
dat constructief in een maximaal stabiele oplossing resttlt

Deelo

Het laatste deel behandelt de vraag wat een goede kerrduketi zijn voor een
welbepaalde taak. Vooreerst worden de relaties tussenggewegularisatieschema'’s,
gewogen kleinste kwadraten en opgelegde lineaire struetuerzijds, en het ontwerp
van kernfuncties anderzijds beschreven. Daarna wordtwijd hoe het mechanisme
van structuurdetectie gebruik makende van de maat van naéxivariatie zich leent
tot het selecteren van een relevante kernfunctie gegeveveeeameling alternatieven.

Als laatste wordt het verband bestudeerd tussen het gebamkisotropische kern-
functies (op basis van de wederzijdse afstand) en oorfekéiliers. Dit resulteert in
een convexe aanpak voor het leren van de kernfuncties ulvgag op basis van het
realizeren van de geschatte tweede orde karakteristiekedesobservaties.

Conclusies

Dit proefschrift verdedigt hoofdzakelijk twee standpunia het onderzoek naar het
ontwerp van goede leeralgoritmen. Ten eerste is er geargesrel dat de taken van het
ontwerp van een leermachine, de gebruikte maat van contgitesth het bepalen van
de ontwerpparameters in het algemeen, op vele manierelagena zijn. Het blijkt
dat de studie van de interactie tussen genoemde onderweffi@ént en consistent
kan uitgevoerd worden door een invalshoek van optimadis@tinemen. Concreet
werd de taak van automatische modelselectie van ontwexpyders bekeken als een
hiérarchisch programmeringsprobleem.

Ten tweede tonen we aan dat het primair-duale argument @oedpronkelijk gebruikt
in de formulering van SVMs een sterk formalisme verschafirvoet bouwen van
nieuwe leeralgoritmen. Dit is aangetoond door het uitwerka bestuderen van
verschillende formuleringen voor het leren van nieuwe dewgtaken, en het relateren
en contrasteren van de methode met bestaande methdghlégin belangrijk resultaat
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is dat er aangetoond is dat structuur en voorkennis gemgkkah ingebracht worden
in het leeralgoritme door het gebruik van het primair-daument.

Appendices

Appendix A bespreekt de taak van het schatten van het reiguiin de data zonder dat
er expliciet gesteund wordt op een geschat model. Hiervawdwr een voorstelling
van de data uitgewerkt op basis van de paarsgewijze vdesthililssen in- en
uitvoerobservaties respectievelijk. Daar deze vooistellan een differogram nadruk
legt op de lokale eigenschappen van de data kunnen er eegvegdnschappen zoal
het ruisniveau worden afgeleid.

Appendix B geeft een korte bespreking van het software prdj§-SVMlab dat de
bestaande methodologie met betrekking tot LS-SVMs implaeest. In het kort
worden de belangrijke bouwblokken van deze software vool M¥B/C besproken.
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List of Symbols

The following notation is used througout the text

Operators

&
==

argmin, 7
argmay,_¢
Prob:Sc RP — [0, 1]
P:RP -0, 1]
p:RP - R+
Alg: 9 — F
Modsel : .7 — R
Z.P—-R

F . F—F

Variables

By definition

Generalized Inequalities

Argumentx minimizing the cost-function?
Argumentx maximizing the cost-function?
Probability

Cumulative Distribution Function (cdf)
Probability Density Function (pdf)
Algorithm mapping a dataset to an estimated function
Model selection criterion

Risk of an estimate given a distribution
Fourier transform of a function

X,Y,Z,e Random variables

Uu,SQ Matrices

Y, X Vectors of observations

X Vector of a single input observation

y Single input observation

Y,A, T, U Hyper-parameters

D Dimension of input vector

P Number of parameters

N Number of observations in training set

n Number of observations in validation set
Deff Effective number of freedom

M Maximal variation

XXVil
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Sets
R Real numbers
Rd Vector of real numbers

RI*"  Matrix of real numbers

Set of positive integers

Set of time-instances

Affine set

Convex set

Cone

Dataset{(x;, i)},

Dataset used for training purposes
Dataset used for validation purposes
Set of functionsf

Hilbert space of functions

A set of indices

P; Set of missing values of thi¢h datapoint
Z,p) Class of Componentwise SVM models
Fy Class of SVM models

FoT Class of SVT models

F¢p  Class of SVM models including parametric terms

2NN G R K2

F Class of linear parametric models
& Set of error terms
o Set of assumptions

Distributions

Standard distribution
Uniform distribution
Chi-squared distribution
Laplace distribution
Wishart distribution

§&g><m§§



Abbrevitions
v-SVT Nu (v) Support Vector Tube
ALS Least Squares estimator based on Alternatives
Areg Additive Regularization trade-off Scheme
cSVM Componentwise Support Vector Machine
cLS-SVM Componentwise Least Squares Support Vector Machin
CDF Cumulative Distribution Function
hSVM Huber-loss based Support Vector Machine
KKT Karush-Kuhn-Tucker conditions for optimality
LASSO Least Absolute Shrinkage Selection Operator
LS-SVM  Least Squares Support Vector Machine
oLS Ordinary Least Squares estimator
PDF Probability Density Function
pLS Plausible Least Squares estimator
pSVM Support Vector Machine with a parametric component
RR Ridge Regression
SVM Support Vector Machine
SVT Support Vector Tube
TMSE Total Mean Square Error
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Chapter 1

Problems and Purposes

A broad overview is presented of a number of principles hamghe
core of the process of induction of mathematical models feoifinite
set of observational data. Together with this general e&tlim, recent
advances in the area of kernel machines relevant to theniegseesearch
are sketched. Section 1.1 discusses the general settimgmirlg from
data by induction, while Section 1.2 surveys the various@gghes which
give a sound foundation for doing so. Section 1.3 synthes&®rief
overview of various directions of the current research irchiae learning
using kernel methods. Section 1.4 then discusses the matribzdions
of the conducted research.

1.1 Learning

The science of learning plays a key role in the fields of dtefisdata mining and
artificial intelligence, intersecting with areas of engiriag and other disciplines. The
functional approach as e.g. used in (Bousquet and Eliss2@d®; Bousqueet al,
2004) is employed to sketch a cross-section of this inteedifields. Though this
point of view is not exclusive, its strength may be found miitherent relationship
with convex optimization as showed next, its use in the mabdf model analysis and
model selection and its formal language.

Learning algorithms

A learning algorithm can be described as a mappkig from a set of given
observationsZ and a collection of prior knowledge and assumptions repteseas
2/, to an optimal estimate belonging to the clags

Alg: I x of — 7. (1.1)

1
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Let this mapping act as a definition of the processindérence(in this text). In
statistical literature, this mapping is also known as emtimation functionor an
estimator This formalization of a learning algorithm is denoted aitgively as a
learning machine The details of doing inference are explained in some detdhe
case of supervised learning where the given set of trairangpges contains inputs as
well as observed responses. The other cases (unsupenvaestjuctive learning and
experimental or interactive data) are only marginally ed&xed in the text.

Mapping Alg: As the learning algorithm is considered to be a uniquely é€fin
mapping, some important assumptions (or restrictionsjrap®sed inherently.
The most important is that there is exactly one estimateesponding with
a given dataset and a set of assumptions. Although quiteictast with
respect to methods employing global optimization techeéqas e.g. multi-layer
perceptrons), this limitation will enable proper definitiof a number of concepts
as (global) sensitivity and stability. In this setup, thesfion can be formulated
whether the mapping can be defined uniquely for any set ofreasens and
assumptions. This general question is approached in thik lyothe extension
of the primal-dual methodology to define learning algorithfar a variety of
assumptions, as e.g. in terms of the noise conditions or tthetsre to be
imposed on the algorithm.

Optimality: Somewhat central in the description of the learning alparitas a
mapping is the issue of optimality: the training datasettaedet of assumptions
is mapped onto one and only one estimate which is the best@aitarnatives.
The major concern is the purpose of the algorithm. One ctiyréistinguishes
between the often overlapping and sometimes conflictinggabbes of (i)
Prediction(what is the expected response of new observationsgxXjp)anation
(what can be said about the generating mechanism undethgngbservations),
(iif) Denoisingor smoothing (which part of the observations is due to exern
and unknown influences). Apart from these aims, an adequeftpittbn of
optimality is founded in a theory of inference (inductiomhe following section
will elaborate on this issue. Inherently connected to thegple at hand is a
set of rules to conduct calculations. Consider for exammpectassical practice
of inference where one employs the notion of (relative) diestries to translate
the notion of likelihood. A complete different set of mattetinal operations
is used in e.g. Bayesian inference methods where compuosatiee performed
on (families of) distribution functions. Often, the thetical foundation of the
inductive technique translates into a measure of likeineBrom a practical
perspective, a mathematical norm is to be optimized to fincg#timate which is
most consistent with the data or which captures optimakydiance regularity
in the observations. More on this matter of norms in Subgedti2.7.

Data 2: Consider a set dfl given observations
2 ={(%.y) ', 1.2)

of the input values € DP in the D dimensional domaiDP and the cor-
responding output valueg € D. Alternative denominators are respectively
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explanatory or independent variables, covariates, regresor features, and
outcome, response or dependent variable. One typicalgrdiftiates between
various types of domains of the observed values. Considerutiivariate
case. An observation (sa) may be acontinuousvariable (e.g. x € R),
binary variable (e.g.x € {—1,1}), categoricalvariable which may either be
anominal (e.g. x € {Jazz, Pop, Classical, othj¢r or anorderedvariable (e.g.
x € {Bad, Good, Superb, Exquis}tg or asequenceAs a prototype of the latter,
consider the seriels }er WhereT denotes a set of time instances.

Furthermore, an observation may be missing (we will onlysider here the
case thatx is missing completely at random and no (external or conuttip
knowledge can be exploited for predicting the unknown vadee (Rubin, 1976).
Alternatively, the data observation may be known only pattie to a censoring
mechanism. Consider the example of a clinical test on thiahiéty of a
transplantation. An observation may be censored due to arpected car
accident of the patient under study.

Assumptions «7: Assumptions (inexact) and prior knowledge (exact) comeiffierd
ent flavors:

e prior knowledge may bejualitatively (e.g. “the underlying function is
strictly monotonically increasing”)

e somequantitativeproperties may be known (e.g. “the noise has a standard
deviation of 3.1415")

e prior distributionsmay be employed to express knowledge on the problem
at hand (e.g. “the parameters are distributed &g aistribution with a
certain degrees of freedom”)

e what is calledatent knowledgembodies the set of results, theorems and
(future) advances which may be of relevance to the problehaad (e.g.
“the arithmic mean is in the limit Gaussian distributed undéd regularity
conditions and has bounded deviation for finite samplesalttoeffding’s
concentration inequality”).

Estimation Class.%: A particularly important case of prior knowledge is the epr
sentation of the members of the estimation class (denotetbdsls, estimated
mappings or estimates). One distinguishes between paiansid non-
parametric estimators as explained in the following sutisecApart from this
issue, the representation of the final estimate may be usechbed the known
structure of the problem at hand. One can for example pdstalaausal auto-
regressive model representation in the case of sequeatil Another example
is encountered when working with a (discrete) decisiondregith a real valued
decision rule.

The distinction in output type has led to a naming conventmrihe learning
task and the estimation class. Major classes in this resipetide the
class of regressorsf{: DP — R), of classifiers {; : D° — {-1,1}), of
multi-class classifiers (e.g.f : DP — {Jazz, Pop, Classical, otigrand the



4 CHAPTER 1. PROBLEMS AND PURPOSES

class of ordinal regressors (e.d, : D° — {Bad, Good, Superb, Exquisie
This text will mainly focus on the first two choices, but latenapters will
repeatedly touch upon the other cases. Apart from mentioharhcterizations,
one also distinguishes between linear versus nonlineamparametric versus
nonparametric models.

Analysis. The analysis of the result of the learning algorithm and th&pping
(1.1) itself is a major source of active research. A large afehotions
have been defined over time in order to quantify differenteatp Important
topics include the notions afonsistencydoes the estimate converge to the
true quantity whenN — +), bias/variance(what can be expected of the
distribution of the estimates based on finite and noisy sasnfsthean/variance)

) or sensitivity/stability(how is the estimate perturbed when modifying the
dataset). These notions are formalized lateron.

This manuscript is organized around a set of principal dunde which are re-
occurring in the text at various places and under differésguses

Tools from convex optimization theory and linear algebra. This research mainly
differs from the classical methodology of multi-layer pgptrons and artificial
neural networks by putting the first property of convexity tbe resulting
optimization problems. Together with tools from linearebdga, a language is
provided which enables the proper formulation and anabyfsisrious nonlinear
algorithms.

Model representations and residuals. Once the parameters of the problem, or
the predictor in the non-parametric case are known, theacteristics of the
(stochastic model of the) residuals are known. Althoughnemg rather obvious
at first sight, this issue has some profound implications assvated throughout
the text.

Prior knowledge as constraints. This issue stresses the importance of prior
knowledge (either qualitative or quantitative) to achibetter performance of
the models. The primal-dual characterization is seen tadtdyhapropriate for
supporting this guideline.

1.1.1 Probability, dependencies and correlations

Dependencies and correlations make up the heart of clagsadaability theory and
statistical practice (Spanos, 1999). A brief overview @& basic machinery is given.
Probability theory is often considered in a purely mathécahtsetting of measure
theory as proposed in the seminal work (Kolmogorov, 1933t S be a the sample
space. LetZ be a collection of subsets &frepresenting the events of interest, @ét
be ao-field). Consider a function Prob%Z — [0, 1] which satisfies the fundamental
axioms
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e Proh(§) =1,
e ProfA) >0 forallsetsAC S

e Prol(JA)) = 5 Prol(A)) if the sequence of subsefé;} is a finite or countable
set containing pairwise disjoint elements#f

This interpretation, abbreviated as the statistical sp&c#, P), reduces mathematical
probability theory to the study of sets and measure theoojniidgorov, 1933). As a
prototype, consider the spa@®, %, P) where the events of interest are described as
Pr = {Bx=[—,x] CR | x€ R}. Anintuitive explanation of the functioR becomes
then P(x) = Prok(x € By) = Prob(xX’ < X). In general, any spac(s, %,P) can be
mapped ontdR, Zg, P«) using a functionX : S— R. This function (or its image) is
referred to as a random variable. Let the cumulative digtidin function (cdf) of the
random variable be defined & : R — [0,1] such thatP«(x) = Prolh({s: X < x}).
The subscripk of the functionPx is omitted with some abuse of notation in the cases
in which the context makes it clear which random variable®ived. The derivative
p(x) = dP(x)/0x, if it exist, is referred to as the probability density fuioct (pdf). The
expected value operatér: X — R is defined as

E[X] = /de(x) = /xp(x)dx (1.3)

Example 1.1 gives a simple example of one family of distitiufunctions and two
empirical estimators used to recover respectively the cdfthe pdf.

One proceeds by defining the notions of dependency and itk vag&nt correlation.
Let X, X; and X, be univariate random variables with (cumulative) distiitos
functionsP(X), P.(X1) andP,(X;) respectively. Let the joint distribution denoted as
Pi12(X1,X2) be defined analogously. The random variatdgs<; are independent if the
following relation holds

P(X1,X2) = P(X1)P(Xz). (1.4)

This motivates the definition o independently and identically distributed (i.i.d.)
random variableXi, Xo, ..., Xn

N
P(X1,...,Xn) = UP(X.—). (1.5)

An equivalent definition of independency is given as follpvicr any well-defined
functionsg: R — Randh: R — R

E[f(X1),9(%2)] = E[f(X1)]E [N(X2)]. (1.6)

Consider the special case whegeand h are the functionsf(x) = x — E[X;] and
g(x) = x— E[Xz] one obtains the covariation coefficient (or covarianc@dy, Xp) =
E[(X1— E[X1])(X2— E[X2])]. The correlation coefficient corresponds to the normalized
covariation as follows

C(Xl,XZ)

\/CO(;]_7 Xj_)C(Xz, Xz) ’

P(X1,%2) £ (1.7)
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It follows that a zero covariance or zero correlation cogffitis a necessary (but not a
sufficient) condition for independence. Ifial correlation coefficient is obtained, the
relationship betweeK; andX; is strictly linear. Finally, let the conditional probaltli
P(X1 | X2) be defined as
& PO X2)
P(X2)

This elaboration provides sufficient information to mosdtetical concepts which are
used throughout the text.

P(X1 | X2) (1.8)

1.1.2 Parametric vs. non-parametric

Classical statistical inference starts with the modelgiesi postulating explicitly and

a priori a statistical model purporting to describe the lséstic mechanism underlying
the observed data. Parametric model inference is concevitledhe inference of the

(limited) set of unknown parameters in the postulated sttaéil model. The class of
parametric linear models is then defined as

Fo = {f:RD—AR f(x):wa,yi:f(xi)+a}, e ~ F(8), (1.9

whereF (0) denotes a distribution function determined up to a few patans6. This
paradigm was the main subject of interest of the statistitaiature and has had a
profound impact on related domains as system identification

In contrast non-parametric (also called distributiorejreechniques do not postulate a
parameterized family of statistical models underlyingdbserved data, but do instead
define the class of estimators implicitly by imposing propestrictions. Consider for
example (and in contrast t&,,) the non-parametric class of continuous functions with
bounded higher order Lipschitz derivatives defined as

89f (x)
axd

Q’L:{f:RDHR | <Ld7VX€RD}. (1.10)
This definition commonly acts as a mathematical translatbrthe denominator
sufficiently smooth The non-parametric approach often has a specific goal (as
prediction) but avoids to characterize the underlying gatiregy mechanisms explicitly.

This terminology originates from statistical inferencedehsity functions (Silverman,
1986) (see Example 1.1), but is used deliberately throughmany fields as e.g. in
function approximation (e.g. to differentiate betweengpaetric linear models versus
non-parametric smoothing splines). The use of an implicidfined broad class as in
non-parametric estimators is often regarded as a safe@gaidst misspecification.
However, the question which approach will obtain the higtetatistical adequacy
cannot be answered straightforwardly.

It is well-known that the early literature on robustnessaoig gross-errors, see Sub-
section 1.3.2, was motivated by the undue reliance of dakgarametric inference on
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— ccdf
b == standard normal

ecdf

-0.2 -0.2
‘4 , , ,

Figure 1.1:Descriptions of the the cumulative distribution functiaadlf) of a sample
based on the parametric and non-parametric paradigm tésgec (a) The normal
cdf model for different values of the mean and the variancer. Typically, one
uses the maximum likelihood method to estimate the meantendariance from the
sample. (b) The empirical cdf function is a theoretical sound methodumsarize
all information regarding the distribution from the finitarsple. The disadvantage of
this method are discontinuities which prohibit the properition of an empirical
probability density counterpart.

the assumption of normality. Although a vague differencistgkobustness considers
deviations from parametric models, non-parametric methamhsider implicit model
definitions), modern literature on robustness is in greatsp@® distinguish itself from
non-parametric methods (Hamped al, 1986; Spanos, 1999). To side-step these
issues, this text will take the convention to distinguistwizeen (non-) parametric model
(representations) and (non-) parametric noise modelsener latter corresponds to
the robustness approach. This convention makes it pogeibfgeak of non-parametric
models with contaminated parametric models that requisasbmethods.

Example 1.1 [Representations of distributions] The difference between the parametric and
the non-parametric paradigm is illustrated readily by the following exampleeifighd of
density estimation. Let be a univariate random variable with sampﬂyﬁi'\‘zl. Consider
on the one hand the parametric approach where a family of densitiesh@sdyormal
distribution) is postulated.

v 2
If(y;u,oz):m;ﬁexp< O;JZH) ) (1.11)

The task of inference amounts to finding the optimal parameters (the meand the
variancec?) from the observations. Employing the technique of maximum likelihood,
one arrives at the arithmic mean and the sample variance as the pkefestimate, see
also Example 1.2.
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One has at least two non-parametric approaches: the empirical diveusstribution
(ecdf) estimator and the histogram, see e.g. (Rao, 1983; Silverfa@6; $cott, 1992)
for a broad account of the issue. For a given realization of the samplentipirical cdf
(ecdf) is defined as (Billingsley, 1986)

'E(Y)=% Iy <yk), for —oo<y<w, (1.12)

where the indicator functioh(y < yx) equals 1 ify <y, and 0 otherwise. This estimator
has the following properties: (i) it is uniquely defined; (ii) its ranggQsl]; (iii) it is
non-decreasing and continuous on the right; (iv) it is piecewise cansitmjumps at
the observed points, i.e. it enjoys all properties of its theoretical cquanterthe cdf.
Furthermore, SLMF(y) —If(y)| — 0 with probability one as stated in the Glivenko-
Cantelli Theorem (see e.g. (Billingsley, 1986)). While the ecdf is a thieatesound
tool, its practical applicability is obstructed as the corresponding estimafechpdot
be computed straightforwardly (the ecdf is not differentiable) and itsnside to the
multivariate case is more involved.

The Parzen kernel approach represents any unknown but sutfficEmooth density
function as the sum of density kernels (Parzen, 1970).

F(y;h) = N—lhiKh (?’) (1.13)

whereh € R} denotes the bandwidth aid: R x R — R is the so-called Parzen kernel
function. An univariate example of the latter is

_(v—v:)2
Kn(y.yi) = h\/lﬁexp( (y2h2y.) ) (1.14)

Figure 1.1 and 1.2 illustrate the different approaches of the paranteiempirical cdf,
the histogram and the Parzen window.

1.2 Generalization and Inference

Somewhat central in the discussion of induction from olettomal data lies at
the concept of generalization. A model which is generajjzimell will provide
good predicted responses corresponding with new datalsam@eneralization acts
as a bridge between properties of the estimate based on #evakions and the
expected global optimality principle. The intention ofghéxt is not to advocate one
principle over any other but rather to place the discourstsihistorical and scientific
context. Inference was motivated from different points iefwthroughout history. As
summarized by (Vapnik, 1998)

“Although the arms consisted mostly of mathematical syrslible discus-
sion is essentially philosophical in nature”.
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Figure 1.2: lllustration of the difference between the histogram and Farzen
window estimator for the assessment of the probability derestimation (pdf) of

a sample of size 100 i.i.d. sampled from the standard nornsdtitiition. (a)
The histogram method using 10 equidistant b(b3, The Parzen window with three
different bandwidth&. Whenh is too small, the estimate exhibits too much variability
(under-smoothing). In the caseis too big, too little detail of the distribution is
recovered (over-smoothing).

1.2.1 Summary and descriptive statistics

The early history of statistics mainly focused on the degion of data-samples by
the use of so-called summary statistics (Pearson, 1902deNostatistics criticized
this approach (Fisher, 1922) for its lack of mathematicgbriand its ill-defined
foundations. As was put by J. Williams, see also (Rice, 198nos, 1999)

“We must be careful not to confuse data with the abstractiomsise to
analyze them”, J. Williams, 1842-1910.

This type of reasoning on the raw data gained renewed int@nesa better justification
with the advent of exploratory data analysis (EDA) (Tuke971). The research on
EDA deals with methods of describing and summarizing dega dhe in the form of

a set of samples or batches. These procedures are usefukaling the structure of
the observed data. In the absence of a stochastic model, déttods are useful for
purely descriptive purposes. Important tools here are tingirécal cdf, the histogram
and related methods (see example 1.1), the arithmic meahamand quantiles readily
summarized in a boxplot and the QQ-plot (Tukey, 1977). Tttelds a very useful tool

for the comparison and advice of distribution functionsenging the data. Common
goals of EDA are to inspect the data on atypical observagmasto get an initial idea
on the class of stochastic models governing the relatipsshithe observed dataset.
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The difference between descriptive statistics and noafpatric or even parametric
statistics is in many cases very subtle and even artificiansiZler e.g. the case of
the mean statistic as in example 1.2 which cannot be assigmedely to the class
of descriptive or model based approaches. Moreover, Viatan techniques and
summary statistics do often exploit (hidden) assumptioh&hvimpose an implicit

model on the data. For example the simpiplot of the data over the indices
do suggest a certain ordering or explanation on the obsengat Those issues
convert the distinction between descriptive and (nongpeatric models into a purely
philosophical discussion.

1.2.2 Function approximation

Many complex functions that occur in mathematics cannosleel dlirectly in computer
simulations. This starting point motivated the elaboratda subfield of mathematics
concerned with the approximation of functions using singaleemes as polynomials.
The study of the theory and the application of this type obpgms is embodied in the
literature on function approximation, see e.g. (PowelB1)9 The cornerstones of this
research were set out by the work of Chebychev two centugiessee e.g. (Chebyshev,
1859). Typical for this approach is the lack of any referetuca probabilistic setting
and the use of worst-case analysis often translated in thefienL., norm. Although
approximation algorithms are used throughout the scieacdsn many industrial and
commercial fields, the theory has become highly speciabzetabstract.

Important results where described in various directiomgluding the study and
construction of (orthogonal) basis functions and theirespntational power. This
lead to the study of fractional functions which have had aeseumpact on the
literature on system identification due to (Wiener, 1949 tonstruction of the
non-parametric splines models as described e.g. in (Sdterqm#981) which are
discussed in the context of observational data includimgreerms in (Craven and
Wahba, 1979; Wahba, 1990) and revised in Section 5.1. Th&tremtion of localized
basis functions gained renewed interest through the thieakrand practical application
of wavelets, see e.g. (Daubechies, 1988) for a completauatco

1.2.3 Maximum likelihood

A more stochastic setting was proposed under the framewidvlagimum Likelihood
(ML) for the purpose of fitting probability laws to the dataelaborated mainly due
to sir R.A. Fisher (Fisher, 1922). The main intuition goeda®ws. One starts by
postulating a class of statistical generating models gorgrthe chance regularities
underlying the data. The different elements of this family @numerated using a finite
set of parameters which ought to be recovered by the obsearadles.

The maximum of the likelihoog(X|6) of a parametef characterizing an element
from a finite dimensional class of probabilistic laws, givarset of observations
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generically denoted as is denoted as

N
6m = argmaxp(X|0) = arg minzilog p(X|0). (1.15)
6 6 i=

The application of the ML in the context of fitting a Gaussiastribution with
unknown mean to the observed data is discussed in the folipastample.

Example 1.2 [Estimating location parameters, I] The estimation of location parameters of
a density from a set of i.i.d. samples is central in the field of statistics. dlf@nving
derivation shows the similarity between the mean location estimator and thedeases
method.

Let {y;}N; be sampled i.i.d. from a random variabtewith pdf py = .4 (i, 02%) =
G\}ﬁ exp(—(yi — u)z/az). The maximum likelihood estimator of the location parameter

U becomes

N1 —(yi —p)?
= argmaxo ex
: g“ giDCf\/ZTI p< 02 )
N

= argminy (yi — )
2,0

& g =1y, (1.16)

whereY = (y1,...,yn)T € RN. The last equation follows from the normal equations
of the least squares estimate. From this it follows that the arithmic meaegsessthe
properties of the maximum likelihood estimator in the case a Normal distribotaynbe
assumed. (Fisher, 1922), see e.g. (Rice, 1988; Spanos, B¥®also Example 3.3 for a

similar argument in the case of the Median.

An important issue in the theory of statistical inferencedrees how the estimator
behaves on average. This is often approached by the develamhapproximations
to the sampling distribution of estimates by using limitarguments as the sample size
increases. Then there are a number of important conceptsatifygthe properties of
the estimator, including

Consistency An estimate 8 is called consistent in probability if for ang > 0
arbitrarily small

Jim P (|6 — 60| > £) — 0, (1.17)
where 6y is the true parameter of the underlying parametric profstigilrule.
Under reasonable conditions, the ML estim8igis consistent (Cramer, 1946).

Fisher Information Matrix The (Fisher) information matrix of an estimatk is
defined as

1(6)=E [alogp(xe)r_ —E [02'09'30(“0)}, (1.18)

0o B 062

under appropriate smoothness conditions. The large sadigtigbution of a
maximum likelihood estimate is approximatively norng| ~ .4 (90, %I (90)).
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Bias A concept which will play an important role in the sequel is ttecomposition of
the expected Mean Squared Error (MSE) in bias and variartoer@ach of this
definitions were extended to the case of finite data samplbs.bias-variance
decomposition follows from the following equality

MSE(8 — 6p) = E[6 — 602 = E [6—E[8]]*+ (E[6] — 60)2,  (1.19)

where the terms of the right hand side are referred to asvéinence and
the bias of the estimate respectively. In the case of ML, the estimélq
is asymptotically unbiased following the previous item weeer the true
probabilistic law is contained in the parametric class sfrithutions. Bias and
variance of the estimator constitute a principal tool fa &malysis of estimators
in the case of a finite number of observations.

Efficiency The efficiency of an estimat@ with respect to an alternativ@ is defined
as

60) _ E[6—E[0])° + (E[D] - )2

6) E[6—E[8]°+ (E[6] - 60)2

which reduces to the fraction of the variances when lfbtnd 6 are unbiased
estimates. A classical result is that in the case of i.i.da-damples a lower-
bound holds. Le{X;}N ; be an i.i.d sample and Iétbe any unbiased estimate

MSE(

eff(6,0) = MSE(

b_
5 (1.20)

1

E[6 - 602>

2 ST (1.21)

which is known as the Cramer-Rao inequality (Cramer, 1948)e inequality
holds asymptotically exactly in the case of ML estimafigsunder appropriate
regularity conditions. An important caveat arises in theecaf a finite number
of samples where biased estimators exists which do improveebound even
in the prototypical case of estimating location paramegtsin, 1956).

Sufficiency An estimated is called sufficient if it contains all information in the
sample abou@y. Formally

P(6y| 2)=P(0 | 2) < 3Ps,P, st. P(Z|6)=Ps(8,0)Py(2), (1.22)

where the righthandside provides a convenient way for itjémg sufficient
estimators. The Rao-Blackwell theorem states the follgwiequality: let6s
be a sufficient estimate and Ietbe any estimate, the[6s — 6p)? < E[0 — 6o)?
under regularity conditions, see e.g. (Rao, 1965).

1.2.4 Bayesian inference

Bayesian inference is concerned with the calculus of @istion functions representing
degrees of belief in the phenomena under study. This is @gpiwsthe classical view
of probability and distributions as the limit of relativeefjluencies. One can think
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of the former methodology as a formalization of a purelyaadil judge, while the
latter originates more from the analysis of rules of chartlee Bayesian method is
constructed around the following equality referred to agé3arule:

P(B|A)p(A)
p(B) '

where the terms are respectively calledplosterior(p(A|B)), thelikelihood(p(B|A)),
the prior (p(A)) and theevidence(p(B)) which normalizes the right hand side.
Mathematical, philosphical as well as practical issueshef Bayesian methodology
were covered in detail in (Jaynes, 2003).

p(AIB) = (1.23)

This general law may be applied readily to the parametrianegion problem of

a model with parameter € ©. Let A be replaced by the parameter spa@e

and substituteB by the observations” and the assumptions/. Then one can

readily express the posterior of the parameters given tteeatal an appropriate prior
distribution on the possible parameté&s Maximizing this posterior results in the
MAP (maximum a posterior) estimate

5 p(216,)p(6]<)
6 =argmaxp(6|2,«) = .
IRROIZ ) = "0 )

Although a decade or more older than the first glimpses of mami likelihood (see
Laplace), Bayesian inference has not overruled the clegtaiistical methodology
sofar, mainly due to practical problems as slow samplingsets (Gibbs and Markov
Chain Monte Carlo), see e.g. (O’Hagen, 1988), oversimglifims or the enduring
guestion of the optimal prior. Current research on thosiesdpwever narrows swiftly
the gaps, see e.g. (Rasmussen, 1996; MacKay, 1998).

(1.24)

1.2.5 Statistical learning theory

The goal of statistical learning theory is to study and tarfalize, in a statistical
framework, the property of learning algorithndg (Bousquetet al, 2004). In
particular, most results take the form of so-called erramuts which amount to a worst
case analysis. Although existing for over 40 years, thertheb statistical learning
only gained the status of a major player in the field of infeeefrom observational
data since a decade or so. This is mainly due to the intraaluctinalysis and practical
significance of the Support Vector Machine the kernel mesi{®dpnik, 1998).

In statistical learning theory, one investigates undercWhionditions empirical risk
minimization results into consistent estimates mininggzine theoretical risk. The key
idea for creating effective methods of inference from sreathple-sizes is formulated
in the following main principle due to (Vapnik, 1998):

“If you possess a restricted amount of information for swjvisome
problem, try to solve the problem directly and never solve arem
general problem as an intermediate step. It is possiblethleaavailable
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information is sufficient for a direct solution but is insafént for solving
a more general intermediate problem.”

Although intuitive at first sight, it is somewhat in contragith the paradigm of
classical statistics where one tries to recover the prdibibirules governing the
data generation. The classical results from (Vapnik, 1988y also be considered
as a generalization to the Glivenko-Cantelli theorem towdmite numbers of data-
samples stating that relative frequencies will converg@éounderlying probability.

A crucial principle then is to consider a class of hypothesgitis a restricted capacity.
As was put by (Bousquet al., 2004),

“Surprisingly as it may seem, there is no universal way of sueag
simplicity (or complexity) and the choice of a specific measaherently
depends on the problem at hand. It is actually in this choi t
the designer of the learning algorithm introduces knowdedbout the
specific phenomenon under study. This lack of universal bketce
can actually be formalized in what is called tNe free lunchtheorem.
[...] If there is a priori no restriction on the possible pberena that
are expected, generalization would be impossible and aggriim
would be beaten by another on some phenomenon. [..] The core
assumption enabling generalization in this framework & thoth given
training dataset and future sample points are independdigtributed
using identical distributions (i.i.d.).”

The main theory describes the case of binary functionsgiieations). LetX € RP
be a random variable with fixed but unknown &f and letY € {—1,1} be a binary
random variable with fixed but and unknown df. and let the theoretical ris® of
any mappingf : RP — [0, 1] be defined as follows

Z(f,Pey) /| (X)y < 0)dRxy, (1.25)

wherel (x < 0) equals one ifx < 0) and zero otherwise. The Bayes classifier X —
Y becomes

f*(x) =sign(E[Y|X =X]). (1.26)
The classifierf* is proven to achieve the minimal risk over all mappirfgsin this
setting, one typically possesses a finite number of datgiesnof the random variable

denoted a®Z = {(x,y1)}N; € RP x [-1,1]. The empirical risk based on this data
sample becomes

ZI x)yi <0). (1.27)

Now, statistical learning theory considers the questiodearwhich conditions the
empirical riskZ will converge to the true risk? in general, formally

sup|z(f)— 2 (f)| ZX0, (1.28)
f
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More specifically, the convergence of the estimate miningzihe empirical risk to
the Bayes classifier is discussed. Extensions to varioasectinduction tasks in the
occurence of a finite number of data-samples are discusgedire.(Vapnik, 1998;

Bousquett al, 2004).

Necessary and sufficient conditions for convergence weareesged relying on various
measures of capacity, including

Growth Function The growth functionSz (N) is the maximum number of different
ways into whichN points can be divided into two classes withfag .7 .

VC-dimension The VC-dimension is the size of the largest number of sanplésh
can be divided arbitrarily (shattered) in different classsing functions of the
class.#. Formally, the VC-dimension of a clasg is the largestN such that
Sz(N) = 2N,

Covering Number A measure which is computable more easily is the covering
number. This number corresponds to the size (capacity)efuthction class
% as measured by the Hamming distance based on the trainiagedat

Rademacher Complexity The Rademacher complexity denotes the expected worst-
case risk over the class dfe .# when assigning random labels to the dataset,
or formally Zc(.F7) = Esuprcz 3 31 11 (f(x)0i < 0), where{g;}!\ ; sampled
at random from{—1,1}N with p_; = pp = 0. > 5. The advantage of this
measure over the others is that an empirical approximationbe computed
straightforwardly.

This measures are used to construct bounds on the devidtitire @mpirical and
theoretical risk minimizer, see e.g. (Vapnik, 1998; Shaaglor and Cristianini,
2004). See also Theorem 3.2 and 3.4.

1.2.6 Hypothesis testing

To complete this overview, a brief description is given oeaf the most important
but also one of the most confusing parts of statistical ariee. The difficultness of
the theory and practice of hypothesis testing is mainly duthé phenomena that (a)
numerous new concepts are needed before one is able to defipoblem adequately,
and (b) there is no single method available for construagiogd tests under different
circumstances which is comparable to the maximum likeléhestimator in estimation.
While an historical account (as e.g. given in (Spanos, 19889)at least the advantage
of a strict ordering, the subject is here only touched from ¥iewpoint of model
testing.

Somewhat central in the theory and practice of hypothestntg is a problem
dependent definition of a null-hypothesig. The procedure of testing proceeds with
the derivation of the corresponding distribution of theireate based on the finite
number of (noisy) data samples in case the null-hypothesie walid. If expressed
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without explicit reference to the unknown parameters edbp null-hypothesis
(pivotal function) by a proper normalization, a test stati$ : 2 x Hp — R is obtained.

This test statistic expresses how much a sample realizafitre null-hypothesis can
deviate from the expected outcome. The final test decideshwhéhe estimate from
the observations is unlikely to be sampled from the testssitat Applying the test

statistic on the observed data results in the so-cqdtedlue, defined as

PEP(co>T(Z) | Ho) (1.29)

wherecy denotes the distribution of the test statistic for any sameélization of the
null-hypothesis. Ifp is small enough, the test would advocate rejection of thé nul
hypothesis. Opposed to this original formulation due td&rsik. Fisher was the relative
procedure of hypothesis testing as proposed by Neyman aacdPe(Neyman and
Pearson, 1928). The key to their approach was the intraztucti the notion of an
alternative hypothesisl; to supplement the notion of the null-hypothesis and thus
transform testing into a choice amongst different hypateesThe design of a test
amounts then to the derivation of a proper normalized iridicaunctionT : ¥ = R
which separates the null and the alternative hypothesjsplp LetZ, C R be defined
such that for a pre-specified significance lewet R/ the following relation holds:

{ P(T(2) & %o
P(T(2) € %o

Ho):a

H) e, (1.30)

wheree € R{ is as small as possible.

Example 1.3 [Hypothesis tests for input selection] The following classical result is widely
known as the z-test, see e.g. (Rice, 1988). Given an i.i.d. samplerifariate Gaussian
distribution{x }I\ ;. Consider the problem to decide whether a location parameter is zero
(u = 0). Assume the second moment (variangd)is given. Consider the following test

statistic A
z= M ~ ¥(0,2) (1.31)

wherefl = % zi’\‘:l. Then itsp-value is defined as
z=P(cp>T(2) | co~.#(0,1)) (1.32)

expressing an absolute likelihood of the null-hypothesis. Alternativelyelative
likelihood based test can be constructed. Consider the alternative bgdth that

U #0. Againt (T =t) is derived as a good indicator function separating the two
hypotheses. The threshotg of the test statistid for a specified significance level
does not depend on any unknown parameter and is e.g. tabulatedonsvextbooks.
Given this specifications, the final test is summarized as follows

T(2)>cq = P(Hy) =1-a, P(Hy) =a. (1.33)
1.2.7 Towards an optimization perspective

While the formulation of appropriate optimality principlgsing sound foundations to
the conducted inference often differ from a theoretical el as practical perspective,
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the construction of the corresponding learning algorithftero coincides in large
extents. We stress the fact that those apparent correspogsielo not streamline
the interpretation of the results. This issue motivatesftinther coexistence of the
various approaches. A similar point of view was adopted i ook (Boyd and
Vandenberghe, 2004).

The discrepancy between two objects can be expressed uffieigict norms, each
with its own characteristics and properties. The follow&mymeration is restricted to
the norms of vectors.

Li: The one-norm oil; started history due to Laplace some decades before the

classical work by Gauss. Although obscured in scientifitonysin favour of the

L, norm and_4, it regained recently interest due to efficient ways to dakeLthe
corresponding minimizer. This norm played a crucial role tluits relation to

the median location estimator (Andrewsal., 1972), in the recent formulation

of SVMs (Vapnik, 1998) and kernel machines (8ikopf and Smola, 2002), its
theoretical properties for density estimation (Devroyd &@yorfi, 1985), and

the property that its minimizer typically presents zerothie solution parameter
(“sparseness”) as exploited in e.g. LASSO (Tibshirani,6)99

L2: This measure gained a central role in all different appreadowards the task
of inference from data since the semimal work of Gauss twduciEs ago. Its
importance was confirmed by the works of (Fisher, 1922) aacténtral place
of the corresponding central distribution, see e.g. (Jsy2@03) for a complete
account. Its central role triggered the formulation of L$M& (Suykenset
al., 200d) as a general methodology based on SVMs extending its reach f
classification to regression and unsupervised learning.

L»: The L, norm came forth of the worst-case analysis in function-apipnation
problems as formulated in the classical works of Chebyctiénebyshev, 1859).
In theoretical and practical statistics its importance iielg in results as the
central Glivenko-Cantelli therorem, see e.g. (Vapnik, &9%nd in the test-
statistics as Kolmogorov-Smirnoff (Conover, 1999). In temtext of primal-
dual kernel machines this measure lies at the basis of Suppotor Tubes
(SVT) in Section 3.5 and the measure of maximal variatioa,3ection 6.4.

Lp: The previous norms were generalized in the formulation®sthcalled Minkowski
norms. This was exploited towards the modeling in the cdntdxhigh
dimensional and functional data, see e.g. (Verleysen,)2003

Lo: Itis argued that the use of theg is most appropriate for obtaining sparseness and
doing input selection (Westoet al., 2003). However, it results in non-convex
and even NP hard combinatorial optimization problems intrnases.

Ly: An optimal trade-off between robustness and efficiency avipiteserving the
convexity property was found in the formulation od the Hulmss-function
(Huber, 1964; Andrewst al., 1972).
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ON: The issue that the use &fi norms andLg norms leads to sparseness in the
solution vector triggered a research to how the resultirayssmess is related
to the structure of the true solution. Following (Donoho dotinstone, 1994),
an oracle estimator which is defined as the minimizer of @racle Norm
(ON) equals the estimator containing the true sparseness mimimizing the
theorethical, risk. A number of different norms were proposed (Donoho and
Johnstone, 1994; Fan, 1997; Antoniadis and Fan, 2001) vathesponding
inequalities bounding the deviation from the oracle estimaNorms as the
Smoothly Clipped Absolute Deviation (SCAD) were incorperhin kernel
machines in (Pelckmares al., 2004,In pres3.

KL: There exist a whole range of criteria measuring the discrgphetween objects
of theoretical nature as well as originating from a pradtiweed, In general,
those need not to be norms in the strict sense (not satisthimgriangularity
constraint). An important example of such a measure in arétieal proba-
bilistic context is the Kullback-Leibler divergence (Cameno, 1999) measuring
the discrepancy between distributions. Recent advancgsstem identification
result in a norm between different dynamical systems basethe cepstrum
(De Cocket al, 2003). Other examples include dedicated measures usextin t
processing, see e.g. (Joachims, 2002).

Minimax: Somewhat related to this discussion is the frequent occaerefiminimax
methods. Those quantify the relationship between objattseims of a
discrepancy measure and a similarity measure similarlgs&lypically occur in
a setting of unsupervised learning as in PCA (Jollife, 198&)orst case analysis
(El Ghaoui and Lebret, 1997; Goldfarb and IYengar, 2003)iaradtransductive
setting, see e.g. (Lanckriet al,, 2004)

1.3 Research in Machine Learning

Apart from the central issue of inference and generalinatiterature in the machine
learning domain focuses on many different issues. Whilenoftetivated from
practical concerns, those directions make up the field reand lead to a globally
complete set of tools for handling a wide spectrum of prolslefrhis section is by no
means exhaustive and only a selection of representatideptibns are cited.

1.3.1 Modeling and estimation

While the generic theory and research on learning, inferenestimation has become
fairly standard, an increasing demand for algorithms lgjanodels in highly specific
settings is noted. Differences in applications of the miodebaradigm can be
attributed to the presence of different assortments of griowledge typically studied
from a Bayesian perspective, see e.g. (Jaynes, 2003) fanplete account. However,
prior knowledge often comes under the disguise of knownenaigdels or known
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model structures which can also be incorporated using @thproaches as shown in
this text. Those forms often originate from the assumptiba specific generating

model, see e.g. (Shawe-Taylor and Cristianini, 2004) tating these issues in the
methodology of kernel machines. Consider e.g. the casdseddrialysis of survival

rates in observed data, see e.g. (Kleiral, 1997), and the handling of longitudinal
data, see e.g. (Molenbergésal., 1997).

1.3.2 Robust inference

Somewhat at the outset of theory of inference is a body ofareleinvolved with
estimation problems in the context of contaminated obsiens This motivated the
research of a methodology which is highly robust towardsdbeurrence of such
outliers in the observations as instantiated by (Huber4)96ee e.g. (Andrewst
al., 1972). Important tools include different measures of erfice and their empirical
counterparts (Tukey, 1977). New contributions in this figldards the description of
robust model selection criteria were described in (De Bngdyat al, 20023). Section
3.6 discusses some extensions of kernel machines towasdsotitext.

1.3.3 Model selection and analysis

Analysis of the result of one individual estimator is a calidask in the process of
building a good model from observations. Given a batteryesuits from different
estimators, the issue of model selection deals with thetimuneshich estimate is to be
favorized.

Somewhat similar to the case of the mapping (1.1), one camdime the model
selection criterion as a mapping from the assumptions, ldarithm and the given
observations to an estimate of the generalization perfoceaNote that the assump-
tions.«7 and the algorithni\lg are frequently parameterized by a ved®e (01,0,).
Model selection is typically used to decide which value ®rleads to the best
performing models. Consider for example the assumptionttieanoise level equals
02 which correspond with a fixed regularization parameter. @peally optimizes
the model selection criterion over this valag to let the corresponding model obtain
the best possible performance:

PModsel - &/ (©1) x Alg(©2) x 7 — R. (1.34)
The task of model selection typically amounts to the follagvoptimization problem

6= argmin_Zyviodsel (01, 02) (1.35)
(©1,02)

The determination of regularization constants and othpehparameters as the kernel
parameters is important in order to achieve good genetiaiizperformance with the
trained model and is an important problem in statistics {idas al, 2001) and learning
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theory (Vapnik, 1998; Suykenst al, 2003). Several methods have been proposed
including validation (Val) and cross-validation (CV) (8& 1974; Burman, 1989),
generalized cross validation (Golebal, 1979), Akaike information criteria (Akaike,
1973), MallowsC, (Mallows, 1973), minimum description length (Rissanen78)?9
bias-variance trade-off (Hoerl and Kennard, 1970), L-eumethods (Hansen, 1992)
and many others. For classification problems in patterngmition, the Receiver
Operating Characteristic (ROC) curve has been proposetddel selection (Hanley
and McNeil, 1982). In the context of non-Gaussian noise risoaled outliers, robust
counterparts have been presented in (De Brabasttad, 2002; De Brabanteret
al., 2002s; De Brabantekt al,, 2003). Translation of a priori knowledge (e.g. norm
of the solution, norm of the residuals or the noise variarin&) an appropriate
regularization constant has been described respectisahyessecular equation (Golub
and van Loan, 1989), in Morozov's discrepancy principle (bimv, 1984) and
(Pelckmanst al, 2004). In the specific context of kernel machines amongst others
(Chapelleet al, 2002) proposed criteria with bounds on the generalizaéoor
based on geometrical concepts (VC bounds, optimal margirsapport vector span
(Scholkopf and Smola, 2002)) to determine the regularizationstant. A bound
based on the leave-one-out cross-validation error wasdnted in (Kearns, 1997).
Bounds on the generalization error with analysis of the @xpration and sample
error were investigated in (Cucker and Smale, 2002). Efftaieethods for calculating
the leave-one-out cross-validation criterion for somenkealgorithms based on the
matrix inversion lemma were described e.g. by (Van Gestell, 2002; Cawley and
Talbot, 2003). In general, the optimization of criteria fi@termination of unknown
regularization constants often leads to non-convex optition (or even non-smooth)
and computationally intensive schemes (depending on théehselection scheme).
In (Chapelleet al,, 2002) the determination of the tuning parameter is detezthivia
solving alternating convex problems. Related researchbeafound in the literature
about learning the kernel, see e.g. (Herrmann and Bousg068; Lanckrietet
al., 2004).

One of the most tempting and active research tracks in thistgtal science and in
machine learning is concerned with the question which spudy/should or can be
used in order to explain or predict optimally the observepetelent variable. Let

| € RP*P be a diagonal indicator matrix= diag(s,...,p) with 14 € {0,1} for all
d=1...,D. Let/(f,2) denote generically a suitable measure for the performance
of a functionf on a datase with N observationgx;,y;). Then the input selection
problem may be formalized as the problem of selecting angjate matrixl such

that the corresponding estimate

N
ﬂ:argminz\ﬁ(f(lxi)—yi) st. feZ, (1.36)
f &

optimizes a suitable model selection problem. The methoénaflysis Of Variance

(ANOVA) constitutes a body of research on this topic in theidated case of linear
parametric models satisfying the Gauss-Markov equatiblypothesis tests make up
the primary tools of the ANOVA practitioner, see e.g. (Neateal, 1974). The research
on input selection for non-parametric models more shiftedards the regularization
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paradigm (Girosiet al., 1995), especially since the advent of sparse regulasizati
criteria in the form of LASSO (Tibshirani, 1996), SURE (Ddmoand Johnstone, 1994)
and basis pursuit (Friedman and Tukey, 1974; Friedmann aretz, 1981; Chent
al., 2001), see Subsection 6.1.2.

1.3.4 Structured data and applications

Although the initial theory was restricted to one of the meshple problems of
binary classification of numerical vectors, extension cé thethodology and the
analysis towards other data structures constitute nowl &daly of literature. These
investigations were largely driven by specific case studies

OCR Initial research on SVMs was driven by the problem of Opti€ddaracter
Recognition (OCR) which triggered the research on fastr@pmative) imple-
mentations and on the incorporation of invariances (adiootsare translations
of the image) in the learning machine (Decoste andadpf, 2002).

Text This type of application driven research was somewhat gicteby the literature
on text mining using SVMs and kernel methods. Results arfdrdifit applica-
tions are surveyed in (Herbrich, 2001; Joachims, 2002)s Bhdy of literature
relies heavily on the formulation of appropriate distanceasures defined on
strings, graphs and trees. Typical tasks include the autorassification of
web adresses (URLS) and the identification of unsoliciteded-(spam).

Generative Models It is often the case that one has some kind of prior knowledge o
the process generating the observations. For example Dbjldesees have been
generated through evolution in a series of modificationsifamcestor sequences.
This information in the form of invariances, features ottaliges that we expect
it to contain may be used to tune the learning algorithm togpbecific task.
The discussion on this topic mainly concentrates on theydesfian appropriate
kernel, amongst which the probabilistic models leadindnéodo-callep-kernel
and the Fisher kernel, see e.g. (Shawe-Taylor and Crigtja®004) for an
overview. A noteworthy contribution in this context is (Beand Jordan, 2004),
applying this mechanism towards the characterizatiomodéiseries.

While previous methods rely on the derivation and constoactdf appropriate
distance measures and equivalent kernels, many applisatguire a more elaborate
modification to the learning machine itself.

Identification of Nonlinear Systems The case where the observations are a sequence
sampled over time is generally coined as system identificaiinitial examples
of the application of kernel methods to system identificatasks and nonlinear
time series analysis were given by (Mukherjet al, 1997; Mattera and
Haykin, 2001; Miller et al, 1999). A first approach towards the problem of
non-linear control using kernel methods was coined in (Suoglet al, 2001).
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New results on the fitting of nonlinear time time-series weiscussed in
(Fan and Yao, 2003; Dodd and Harris, 2002). Further invastigs on the
topic concentrated more via the closely related GaussiaceBses, see e.g.
(Kocijan et al,, 2003). The identification task of black-box models fromutp
and output data was investigated by the author and other&daethalset
al., 200%; Goethalset al., 200%; Goethalset al., 2004&), combining linear
subspace identification techniques (Vanoverschee and Dar,M®96) with
kernel based LS-SVMs, see also (Suykehal., 2002).

Bio-informatics The field of kernel methods found a successful applicatiea @m
the field of bio-informatics. This research is concernechviite integration
of mathematical, statistical, and computer methods toyaeabiological, bio-
chemical, and biophysical data. The field of Bio-informgtievhich is the
merging of molecular biology with computer science, is atiaéto the use of
genomic information in understanding human diseases attteiidentification
of new molecular targets for drug discovery. Investigatidypically concern
the processing of data from micro-array experiments reptasy the gene
expression coefficients corresponding to the abundanceRdAnin a sample.
A collection of results sampling the ongoing research ontelpé& using kernel
machines can be found in (Sikopf et al, 2004). Recent advances using LS-
SVM based approaches are published in (De Smet, 2004; Peicalet2004).

Other applications where described in various survey wargkiding (Scldlkopf et
al., 2001; Suykenst al., 2002; Shawe-Taylor and Cristianini, 2004) and others.

1.3.5 Large datasets and online estimation

With the advent of fast computers and cheap measuremertdede\dan ever growing
collection of data is available. Mining for knowledge in ghilood is not only a
theoretical quest but also requires adapted numerical adstho get informative
results in a reasonable time interval. Létbe the size of the training set. Large
scale algorithms may be categorized in one of the followilagses, where the size
constraints are only indicative. This small overview falthe survey (Hamers, 2004).

Numerical (2,000< N < 20,000) In case the size of the dataset to be analyzed is
not overwhelming, one often can formulate computationaslgtable algorithms
to compute the exact estimate. Consider e.g. the case wkependencies
have a strictly local character. In case one does not needlitie global
model description but only a number of predictions on givataepoints, fast
counterparts may be formulated. This idea was applied infrdm@ework of
localized wavelets (Daubechies, 1988) and later explaitethe context of
kernels (Genton, 2001; Hamers, 2004). For an overview dfiefft numerical
algorithms for large scale applications, see e.g. (Golub\am Loan, 1989)
and (Van Dooren, 2004). lIterative approaches as the Krylibsgaces often
lead to a less memory intensive approach and applied in €sgh al., 2002,
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Hamers, 2004). Methods for the trading the accuracy of theisa for speed

are generally based on low-rank approximations. A claks&sult there is
the Sherman-Morisson-Woodbury formula described in thie fié Fredholm

equations, see e.g. (Pregsl, 1988), and the Mstrom low rank approximation,
see e.g (Suykeret al,, 2002) for its application on LS-SVMs.

Decomposition techniques(10,000 < N < 50,000) In case the dataset is even too
large to process in batch, a recursive approach may be aédocélere the
assumption is that the model provides an effective reptaen of the optimal
solution thus far and a relatively simple updating rule isikble to update
the optimal model with respect to a new chunk of data. Thisr@ggh is
quite popular in the case of SVMs, denoted as chunking (Va@898) and
in the case of one-sample chunks as sequential minimal matiion (SMO)
(Platt, 1999). Another noteworthy approach goes under éimeenof Successive
Over-relaxation (SOR) (Mangasarian and Musicant, 1999).

Sampling (N > 20,000) When an overwhelming amount of data is available which
would saturates the memory of the computer as well as the pubzes the
cpu far too long, one may still obtain sensitive results bingisn appropriate
sampling mechanism. While statistical literature has a toagjtion in sampling
schemes (Rubinstein, 1981), the application towards kerethods is still
premature. A notable effort was described using a Renyiopptibased
sampling mechanism (Girolami, 2002) and combined wiffstkom low rank
approximation to highly workable and efficient algorithmden the name of
fixed size LS-SVM, see (Suykers al., 2002; Espinozeet al., 2004).

Ensembles (N > 20,000) Another class of practical algorithms in the case ajdar
scale estimation constitute of committees of submodelk &ased on a sub-
sample of the data. These go under the name of fancy namesggmda
(Breiman, 1996), boosting @sch, 2001) and others, see e.g. (Bishop, 1995).

Recursive Estimation Recursive extensions to the LS-SVM formulation and the
closely related kernel PCA based on tracking the dominaggnsipace of a
kernel matrix growing simultaneously in the number of rowsl ahe number
of columns are proposed and benchmarked in (Hoegaerts).2005

Hardware (N > 20,000) The last decade witnessed an emergence of the research o
analog implementations of data processing techniques @wslneetworks and
associative memories, see e.g. the special issue of IEEESdctons on Neural
Networks, vol 4, number 3, may 1993. In line with this fieldoefs were made
to port the formulation of SVMs (Anguitat al., 2003) and LS-SVMs (Anguita
et al, 2004) to hardware implementations often enabling thegestessing of
huge datasets.

Database When the size of the collection of observations grows unbedlyl the
problem how to organize and memorize the samples becomesasiogly
important. This problem forms a major concern in the compstéence part of
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Figure 1.3:This research on machine learning and kernel machines/srdly stimuli
from convex optimization theory, various application araad the issues raised during
development of LS-SVMlab and results in the area of classtedistics.

the research in machine learning and artificial intelligerfeor a general starting
point, see e.g. (Bertinet al,, 2001).

1.4 Contributions

The Ph.D. research of the author can be summarized fromugperspectives. In
order to overview the main advances, we divide into fouredéht categories (1)
published contributions which are surveyed in the presissedtation, (2) new research
results which complete the dissertation and enhance tkarstine of the text, (3)
published research results which are not described ettplicithe present text as they
do not fitinto the main pressented story, (4) other forms otriloutions of the research
of the author as the development and support of the toolbegV/Bllab.

The synthesis of the Ph.D. research assimilated in therthsiom is twofold:

a-y-o The main structure of the text reflects the hypothesis that ghestions
concerning the optimal learning algorithmo(®), the best regularization trade-
off (* y") and the characteristics of the smoothing kernei"}j“are interrelated in
many possible ways (see Figure 1.4) and should be addrexgetti¢r.

Primal-Dual Argument The second hypothesis which is motivated throughout the
thesis argues that the primal-dual argument based on capterization theory
is not an ad hoc methodology, but can be centralized as a mestrful tool
for the design of new kernel machines. Moreover the methquesented as a
valuable alternative to the parametric modeling stratéggure 1.5 illustrates
both methodologies).



1.4. CONTRIBUTIONS 25

()

Kernel Design
Chapter 9

Y
Regularization

Chapter 6
Chapter 7
Chapter 8

Figure 1.4:The main theme of the text manifests itself in three intatesl ways. Part
a studies the design of primal-dual kernel machines and dstegsults towards the
incorporation of extra structure in the modeling processlit Party then discusses the
issue of regularization and its relation to imposing stiet An important advance in
that context is made in the formulation of a methodology tmaate model selection
and tuning the regularization trade-off. Partfinally discusses the relationship
between regularization and the design of kernels and pespas approach assisting
the user in the choice of an appropriate kernel.

This work mainly builds on tools and results in (Suykesis al, 2002; Boyd
and Vandenberghe, 2004; Vapnik, 1998; Wahba, 1990) ands takeentially an
optimization perspective towards the construction of neaviiing algorithms.

1.4.1 Contributions: published and in the dissertation

The text is built around a set of original results obtainedhgyauthor during the Ph.D.
work. Only a subset of the published results are discusssdrite detail to preserve a
consistent story.

Hierarchical programming problems Multi-objective optimization problems are typ-
ically approached using a Pareto or scalarization approddte hierarchical
programming approach takes a different approach by notrepfor the joint
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(@) (b)

Figure 1.5: The research of primal-dual kernel machines inherits idigrds of the
(a) parametric modeling paradigm (represented by the cubeditg the clock watch)
and the non-parametric paradigm constituting of a seriesdwidual tools. (b) The
primal-dual framework (represented as the cube on the)rigltd coherent approach
towards many modeling tasks. While the inner mechanism leratomplex, the use
of the method is rather intuitive (as e.g. the wheel). Morecéfrally, a primal-
dual model has simultaneously a primal (parametric) and & ¢hon-parametric)
representation.

multiple objectives, but they do consider instead the diffé cost-functions
at a different level. A typical occurrence of such a problenfaund in the
task of automatic model selection. This view was introdutedPelckmans
et al, 2003) and further elaborated in (Pelckmaetsal,, 2004; Pelckmanset

al., 2004£; Pelckmant al., 200%; Pelckmant al., 2005).

Primal-dual Kernel Machines Many new learning machines based on kernels make

use of results in convex optimization theory. This motigatiee definition of

a very broad class of machines where the primal-dual arguimgyut central.
Important instances are then found as the SVMs and the LS<SVIMis view
follows directly from the work (Suykenst al,, 2002). This perspective was
taken as the main tool for designing new kernel machines ist pablications

of the author. Figure 1.6 gives a schematic overview of tlesgmted research
on primal-dual kernel machines.

Structured Primal-Dual Kernel Machines The primal-dual argument is elaborated
as a strong tool for incorporating prior knowledge in therméag task. We
studied prior knowledge in the form of modelstructure asnesting additive
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Figure 1.6:Contributions on primal-dual kernel machines as preseintéfus text can
be organized as illustrated. The different issues of theysti optimality in different
tasks, the exploitation of structure in the learning precazd the study of the role of
the kernel correspond roughly with the different parts amajpters.

models (Goethalst al,, 2005; Goethalset al,, 2004; Pelckmanst al., 2004,
In press Pelckmanset al, 200%; Pelckmanset al, 200%; Pelckmanset
al., 200%), semi-parametric models, learning in the context of ginemualities
(Pelckmangt al,, 2004) and others.

Advances in regularization or complexity control Somewhat central into the theory
and practice of primal-dual kernel machines as well as SVA/heé issue of
complexity control or regularization. Two new regularinatschemes and their
relation with the classical Tikhonov regularization wetaedsed (Pelckmanst
al., 2004d). A main result is the formulation of the one-to-one relatimetween
noise level and the regularization constant in LS-SVMs.

Differogram and estimators for the noise level A different approach towards the task
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of model selection and determining the regularization eraff was initiated

in (Pelckmanset al, 20033). Here, the noise level was put forward as a
single parameter controlling the necessary amount of smgpto be applied
on the data. In order to estimate this parameter from obSensg a data
representation constituting of all mutual differencesa@sin observations was
proposed. This so-called differogram cloud contains imi@tiion on the second-
order moments and the variance present in the data. Theatdjfeen method
and various applications towards the task of model selegtire further studied

in (Pelckmanst al, 2004), together with extensions to robust estimators and
spatio-temporal data.

Maximal Variation and structure detection New advances for structure detection

for componentwise kernel machines were based on similacipies as the
LASSO estimator in the linear parametric case. Here an g@pjate regular-
ization scheme is designed to detect components in the fiadigtor which do
not contribute actively. The main difference is that stowetdetection does not
follow from the sparseness of the parameters itself, bum fitee total amount a
specific component variates over the training set, i.e.rdmries to the model on
the given dataset. Hereto, a measure of total variatiorckRelnset al., 2004,
In presg and maximal variation (Pelckmaes al, 200%) was used (Pelckmans
et al, 200%).

Kernel machines for handling missing data A recent result was achieved for han-

dling missing values amongst the data observations. Thdlingnof partially
missing observations is approached by using additive nsodél worst-case
approach was taken in (Pelckmagisl 200%x) based on the measure of maximal
variation. This research was elaborated in (Pelcknedred 200%) where the
worst-case approach was contrasted to a method based onifeethechpirical
risk functional.

Fusion and automatic model selectionThe problem of model selection gained a

crucial status into the theory and especially in the practit applicability of
linear and nonlinear learning algorithms. Past researdhefiuthor focussed
especially on the optimization aspect: given a model seleariterion, how
to optimize this criterion on the dataset. Though such alprmolare in many
cases computationally hard, appropriate relaxations eatelised (Pelckmans
et al, 2003d; Pelckmangt al,, 2004).

Additive Regularization Trade-off and LS-SVM substrates An efficient approach

to the problem of automatic model selection was studied lc{Pnanset

al., 2003) by using an appropriate re-parameterization of the hpaeameter
under study. This paper considered regularization trdfiexoing with respect
to validation and cross-validation.

Hierarchical kernel machines and stable learning machinedt was argued in

(Pelckmanset al, 2004; Pelckmanset al, 200%) that the formulation of
additive regularization trade-off could be used to emutat use of slightly
different optimality criteria while inheriting the main eahtages of LS-SVM
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Figure 1.7: lllustration of the idea behind hierarchical kernel maeisin On the

conceptual level, different hierarchical levels are folated, each with their own
optimality principles and free variables. Computatiopadll corresponding conditions
for optimality are fused into one constrained optimizatiwablem.

formulations. This led to the concept of hierarchical kérmmachines. A
special instance was described where algorithmic stabilihs maximized
during learning itself (Pelckmaret al, 2004). Figure 1.4.1 gives a schematical
representation of such a hierarchical kernel machine. &ickanset al,
200%), the use of a representation similar as theurve was elaborated,
displaying information on the trade-off between empirip&irformance and
stability.

1.4.2 Contributions: new results in the dissertation

A variety of new results were added to bridge the gaps andue tjle main results
together. We emphasize the following results.

Positive OR constraints A first new contribution is the formulation of a specific
kind of quadratic constraints, denoted as positive OR caimgtstating that at
most one of two positive variables may be non-zero. This tyfpeonstraints
often occur in hierarchical programming problems. It iswhdhat this kind
of constraints may often be embedded in a quadratical pnagiag problem
without losing the global property of convexity.

Sensitivity interpretation The perspective of convex optimization theory towards the
construction of learning machines reveals a strong relabietween the dual
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model representation and the sensitivity of the estimatgvien observations.

Support Vector Tubes andv-Support Vector Tubes In addition to the standard ker-
nel machines, we studied a new formulation built for the talpredicting
intervals for given covariates. This leads to a non-paremgeneralization of
guantile interval estimators. A robust version turns outdorespond largely to
av-SVM and is called the/-SVT.

Efficient iterative algorithm for semi-parametric LS-SVMs and robust SVMs In ad-
dition to the sound formulation of the structured and robestnel machine
given in Section 4.1 and Subsection 3.6.1, an efficient dlyaris elaborated
for calculating the estimate in the case of large datasets.

Kernel machines for handling censored dataThe mentioned results were employed
to design a primal-dual kernel machine capable of handlbggovations which
are censored. Censoring can occur due to sensor limitationther physical
phenomena as an unexpected failure of the data sample.

Relation semi-parametric LS-SVMs and generalized Least Saares regressionin
addition to the relations of the LS-SVM with other well knowgcthniques as
regularization networks, smoothing splines and otheesrahationship with the
standard generalized least squares estimator is noted.

Alternative Least Squares A new result is stated in the context of linear parametric
models advancing the popular practice of LASSO estimatdise alternative
least squares method results in an estimator making usdyboa single input
variable among the proposed alternatives.

Bias-variance trade-off for LS-SVMs The classical study of the impact of regular-
ization in bias and variance in the context of linear ridggression is migrated
to a context of nonlinear kernel models. The main differeiscéhat bias and
variance are not expressed in terms of the parameters tha prediction itself.

Fusion of ridge-regression and stepwise regression with lidation The task of au-
tomatic model selection using the hierarchical prograngnaipproach is applied
to the task of learning the regularization trade-off anduingelection in ridge-
regression and least squares respectively. Appropriaieeg@pproximations to
the problem are described resulting in a practical and efft@pproach of model
selection in those cases.

Plausible Least SquaresThe formulation of plausible least squares illustrates how
one can use the fusion argument beyond the context of céssarlel selection.
Instead the use of a significance test is embedded into anat&in problem.
Given the sample distribution of the parameter estimatisingia resampling
procedure, plausible least squares estimates the leagpi@oparameter vector
(in L1 sense) which cannot be rejected given the samples.

Fusion of LS-SVMs and SVMs with validation Similar formulations are derived for
selection of the regularization trade-off in SVMs and LSMB/ A relaxation
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to the former is elaborated resulting in fast and reliabléneges of the
regularization trade-off solving a convex problem.

A modified loss function approach to additive regularization The additive regular-
ization trade-off is seen to provide an efficient and convegreach towards
the task of model selection in ridge regression and LS-SVMsdifferent
perspective towards this scheme is given where the trafdexpfesses local
modifications to the loss function.

Relation weighting schemes and model structure with kernetiesign This disserta-
tion reports new advances in the study of good kernel desifesstate results
relating specific weighting schemes of errors and regwtidm, and model
structures with the form of the kernel. Those results aregmaising tools from
optimization theory.

Kernel decompositions and structure detectionA practical method for detecting
appropriate kernel designs given a finite set of alternatisdormulated related
to the method of structure detection using the measure ofmadariation.

Realization approach to kernel designThe relation of smoothing kernels with smooth-
ing filters is used to design a technique to derive the fornmefdernel from the
data observations itself. The implicitly used criteriom gelecting the kernel
is based on the sample covariance in the data. In correspoade classical
stochastical realization theory, the technique is buildaanatrix decomposition
of the sample covariance matrix.

Various new examples give a theoretical or practical suppbrthe concerning
elaboration. We especially spent some effort to illustthteusability of the studied
results.

A x? density estimator Given the formulation of second order cone programming
problems, a probability density estimator is formulatediclhbuilds on the
classical result of histosplines but uses a more appregymeasure instead.

Learning machine based on Fourier feature space magn order to make the con-
cept of the feature space map less mysterious, a concretgimgaig studied
where data samples are mapped onto the corresponding Fouagéicients.
Furthermore, it is shown that the application of a low-pdssrfon the estimate
corresponds with the use of the classical RBF kernel. Thaabling heavily
on published results, the context of this example in pricha kernel machines
and the employed techniques are original.

Learning machine based on Wavelet feature space magquivalently, an explicit fea-
ture space mapping is based on the wavelet decompositiowjrglp that results
on wavelets can easily be migrated to a context of kernel mastand SVMs.

A robust location estimator based on the modified loss funatin approach The mod-
ified loss function interpretation to additive regularieattrade-off is used to
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design a robust location estimator. The modifications tocthssical empirical
mean based on a least squares estimator are determinedhssiteghnique of
the quantile-quantile plot. We exploit the classical rethat a linear relation of
the theoretical and empirical quantiles implicates a Gangdistribution.

Kernel machine for handling colored noise schemedost results rely (at least in
theory) on the property of i.i.d. of the data-samples. Thianaple shows
however that one can design kernel machines with the noikeving a known
coloring scheme by using the primal-dual argument.

Modeling discontinuities It is illustrated how one can incorporate a finite set of
known discontinuities in the estimates using semi-paramgtimal-dual kernel
machines. This example is extended to the task of learniregevéin infinite set
of discontinuities can be modeled by building a partiallpleit feature space

mapping.

Relation RBF-kernel and AR(1) representation A classical result concerning au-
toregressive models of first order and the convolution witleponential func-
tion is interpreted into a kernel context. This examplesiltates the equivalence
between prediction with smoothing filters and modeling withoothing kernels.

1.4.3 Contributions: Ph.D. research

During the doctoral research active contributions wereartadvarious related fields.
The following contributions are only marginally touchedtlire dissertation as they do
not fit straightforwardly into the presented story.

Robust Model Selection criteria Robust inference is concerned with the task of
estimation and prediction in the context of atypical oba#ons or outliers.
Contributions to the literature in this field were made bynfatating robust
model selection criteria together with a theoretical as aspractical assessment
of their performance. Robust cross-validation measuras wescribed in (De
Brabanteret al, 2002) and extensions of different information criteria as
Akaike’s were described in (De Brabangtral., 2003). The report (De Brabanter
et al, 2002) discusses the robust model selection criteria in moreildéithe
extension of the robust kernel based methodology towaresegtimation of
nonlinear ARX models in the context of outliers was discdsagDe Brabanter
et al, 2004). Here, various new tools as nonlinear influence fanstand
empirical assessment of the robustness of nonlinear methvede proposed.
More details may be found in the dissertation (De Brabagd4).

Identification of nonlinear systems A fruitful field for research on learning in the
context of known structure was found in the literature on-hioear system
identification. The high potential of this cross-fertiliman was shown in
(Espinozeet al., 2004) where a generic primal-dual kernel method was shown
to perform very well on a benchmark dataset denoted asStlverbox Data
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consisting of a real-life nonlinear system (Schoukehsal, 2003). Further
advances for the identification of general problems wheponted in (De
Brabanteret al, 2003; De Brabanteet al., 2004) where robustness issues are
studied with respect to model selection of nonlinear ARXbtemns and of the
identification task itself using LS-SVMs respectively.

Identification of Hammerstein and Hammerstein-Wiener sysems A further con-
tribution was made in this direction by the construction ately of learning
algorithms for the identification of Hammerstein modelssisting of a sequence
of a non-linear static model and a linear dynamical systerne publications
(Goethalst al., 2005) and (Goethalst al,, 2004) study this task by combining
a primal-dual formulation succeeded by a linear Auto-Regjve model with
eXogenous variables (ARX). While the method ressembles lt®sical over-
parameterization technique, new elements were introducethe form of
model complexity control or regularization (Pelckmagtsal, 2005) and a
primal-dual argument enabling a very broad and flexible esgntation of
the nonlinear model. In (Goethakt al, 2004), extension are studied to
the classical N4SID subspace identification method towtlrdsidentification
of Hammerstein models where the nonlinearity is again wpred as a
kernel machine. The subspace intersection method was getptowards the
identification of Hammerstein-Wiener systems consistih@ sequence of a
static nonlinearity, a linear dynamic model and again aineal static function,
see (Goethalst al,, 2004&) and (Goethalgt al, 200%). A thorough discussion
of the subject may be found in the Ph.D. dissertation (GdetR805).

1.4.4 Contributions: other output
LS-SVMlab

During the start of the research, we concentrated on a M@&tlmplementation of the
algorithms related to LS-SVMs. The methodology was emhbifieo a toolbox called
LS-SVMlab which can be found at

http://www.esat.kuleuven.ac.be/sista/lssvmlab/

including a full tutorial (Pelckmanst al., 2002). A demonstration was presented at
NIPS 2002 (Pelckmanst al, 2002). The toolbox includes extensions to multi-class
classification tasks, Bayesian interpretation, adequaggerpcessing, model selection
and model tuning, handling of large scale algorithms, uastiped learning tasks and
other. More details on the update are given in Section B.gur€i 1.8.b reports some
measures of the impact of this toolbox. The goal of this towllvas the practical
support of the (Suykeret al., 2002). The toolbox was used e.g. in the project SOFT4s
regarding software simulators for replacing expensivessen(De Mooret al., 2002)
and in various publications as (Espina#aal, 2004; Pochegtt al,, 2004) and others.
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Figure 1.8:(a) Main theme of the LS-SVMlab websitéb) Number of visits of the
website. The number of downloads of the toolbox in the 27 im®of existence equals
11581 This may be compared with the approxim&0.000 hits of the classical
websitehttp://www.kernel-machines.omnd the approximat27.000 visits of the LS-
SVMilab site.

Industrial Projects

During the Ph.D, the author collaborated in two industrialjgcts:

Soft4dS In the context of the chemical process industry, the mainigoof the details of
a process can be expensive due to very expensive sensoksoedl for time-
consuming manual investigation of chemical samples. Thedithe Softds
project is to develop a simulator of such a sensors based enies of less-
expensive measuring sensors. The main contribution ofuttfeain this project
was the application of the software LS-SVMlab for this go@ther advances
were reported including the application of Bayesian ingliéstion, handling of
huge datasets and modeling of dynamic behaviour of the psogeder study,
see (De Mookt al, 2002) for more details.

ELIA The other project concerns the forecast of expected etéggtiGonsumption
on various locations. An important application of LS-SVMasafound in the
modeling on the dependence of load on the daily temperaffun¢her concerns
were the occurence of periodical variations, nonstatitirarand clustering of
different stations.
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1.4.5 Chapter-by-chapter overview

The main theme of the text manifests in many interrelatedsveaach discussed in the
four chapters. Figure 1.4 highlights the global setup ofdissertation.

Introduction Part | discusses the general setting of the research amdlirtes a set
of definitions useful in the remainder of the text.

a Part Il studies the formulation and properties of prima&ldiernel machines
in some detail. The character refers to the common symbol of the dual
representation of the modeling technique.

y Part 1l examines the impact of the concept of complexitytoalror regularization in
the construction of algorithms. The Greek sympotfers to the typical trade-off
between complexity and empirical performance by the regaton constant in
the studied modeling strategies.

o Part IV discusses the impact of the shape and the propeftire employed kernel
and proposes various methods to assist the user in the abfoégeappropriate
kernel. The symbot refers to the typical parameter also called the bandwidth
determining the amount of smoothness of the final estimatéhe kernel.

Finally, a number of conclusive remarks and directions towafuture work are
described.

Part I, chapter 1. Problems and Purposes

The first chapter presents an overview of a number of priasipling at the core of the
process of induction of mathematical models from a finitea$eibservational data.
Section 1.1 discusses the general setting of learning frata dr induction, while
Section 1.2 survey the various approaches which give a stmumdiation for doing
so. Section 1.3 synthesizes a brief overview of the varidtections of the current
research in machine learning using kernel methods.

Part I, chapter 2: Techniques from Convex Optimization Theay

As motivated in the previous chapter, the following textIvéksentially take an
optimization point of view. Moreover, convex optimizatitimeory gives rise to the
primal-dual argument explored in this work. The followingapter reviews some
important results from the theory and discusses the renemtedest for convex
optimization.

The first Section surveys a number of definitions which areessary for a clear
exposition of the subject. More specifically, the reach of theory of convex
optimization problems is properly defined. Section 2.2 th@news the machinery
of dual problems in the sense of Lagrange. Section 2.3 dissuthe problem from
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a more practical point of view, while in Section 2.4 a numbguseful extensions
are reported. Subsection 2.4.4 specifically introduces the problem of hierarchical
programming.

Part 11, chapter 3: Primal-Dual Kernel Machines

This chapter presents an overview of the application of tivagd-dual optimization
framework to the inference of regression functions andsifiaation rules from
a finite set of observed data-samples. The aim of the chapt¢o iprovide a
sound and general basis towards the design of algorithrgsgebn the theory of
constrained optimization. While historical breakthroughainly focussed on the case
of classification, this chapter mainly considers the regjogscase.

Section 3.2 discusses general parametric and classioatlkeased methods, while
Section 3.3 studies one of the most straightforward fortrana leading to the standard
Least Squares Support Vector Machine (LS-SVM). This foatiah is studied in some
detail as it will play a prototypical role in the remainderecion 3.4 then proceeds
with the derivation of the Support Vector Machine (SVM) fegression. Section 3.5
gives a variation on the theme by proposing a primal-duaiélemachine for interval
estimation, coined as the Support Vector Tube (SVT). Se@&i6 considers a number
of extensions of the previous methods to the context ofenstliand Section 3.7 reports
a number of results in the context of classification.

Part I, chapter 4: Structured Primal-Dual Kernel Machines

It is common intuition that the incorporation of prior knasge into the problem’s
formulation will lead to improvements of the final estimaté&hwrespect to naive
applications of an off-the-shelf method. The following ptex shows the flexibility
of the primal-dual optimization framework for incorporadi this knowledge into the
estimation problem.

While extensive discussions and analysis are far beyonddbgesof this text, the
relevance of this chapter is found in the fact that the redeziof the treatise and some
commonly formulated commentaries on the method frequéntigh on these subjects.

Various types of structural information are consideredluding semi-parametric
model structures (Section 4.1), additive models (Sectid), 4oointwise structure
(Section 4.1) in the form of inequalities and its extensionards handling censored
observations (Section 4.1).

Part Il, chapter 5: Relations with other Modeling Methods

This chapter takes the opportunity to frame the precedisgudision into a broader
context and to review various related approaches. Whilemiffces were mainly
conceived in the conjectured assumptions and the way ofidgrthe results, the
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final formulations frequently present many correspondgncéiowever, different
interpretations of the results seem to support the coedsteof the individual
approaches.

Methods close to the formulation of LS-SVMs include diffetrgariational approaches
as smoothing splines (Section 5.1), the approach of Gaupsiesses (Section 5.2)
and Kriging methods in the context of spatial analysis (®acb.3). Relationships

with other methods methods as system-identification, veasethe theory of inverse
problems and the weighted least squares approach arelgbsoriSection 5.4.

Part lll, chapter 6: Regularization Schemes

Capacity control or regularization amounts to the artifistarinkage of the solution-
space in order to obtain increased generalization. Thig ti@g@occurs under many
disguises and in many domains. The purpose of this chaptestisto motivate, to
analyze and to include regularization schemes in the psawfasiodel estimation.

Section 6.1 surveys results in the context of linear paramatodels. Section 6.2
extends the results on the bias-variance result for LS-S¥é¥egression. Section 6.3
extends the classical regularization scheme in primal&iermel machines to various
other classical schemes. The measure of maximal variaticwomponentwise models
was introduced in Section 6.4 and various applicationsisfittea are presented.

Part Ill, chapter 7: Fusion of Training with Strong Measures

The amount of regularization is often determined by a seostants which should

be set by the user a priori. The (meta-) problem of settingahs often classified as a
problem of model selection and considered as being solvedieMer, a procedure for
the automatic optimization of these hyper-parametersngimedel selection criterion

and model training procedure is highly desirable, at leagtractice. This chapter
unfolds a framework for this purpose based on optimizati@oty.

Section 7.1 introduces the problem and the proposed solitwards it. Various

applications of this issue towards model selection problegntinear parametric models
are given. Section 7.2 studies the problem of model seleatithe case of LS-SVMs
and SVMs.

Part Ill, chapter 8: Additive Regularization Trade-off Sch eme

This chapter elaborates on the results of the previous ehaptit rather takes a
different approach towards the problem of fusion. Instebdamsidering existing

training procedures, a flexible formulation employing aditide regularization trade-
off scheme is taken as the basis for fusion. The resultingtsatie is found much easier
to proceed with whenever more complex model selectionr@itee involved.
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The basic ingredients are introduced in Section 8.1 andwarielations are discussed.
Section 8.2 then proceeds with the study of the fusion argtimnethe context of an
LS-SVM regressor with additive regularization trade-offurthermore, the concept
of an hierarchical kernel machine is introduced, leadintheoconstruction of kernel
machines maximizing their own stability (Section 8.3).

Part IV, chapter 9: Kernel Parameterizations and Decompodions

The generalization performance of kernel machines in g¢iofien depends crucially
on the choice of the (shape of the) kernel and its parameTérs.following chapter
shows the relationship between the issue of regularizatiaithe choice of the kernel.
Furthermore, the idea of kernel decompositions is propesegproach the problem
of the choice of the kernel. Finally, relations with techrég from the field of
system identification are elaborated. Given observed mtsnt#re task of stochastic
realization amounts to finding those internal (kernel) dtites effectively realizing
this empirical characterization. This results in a tool ethcan assist the user in the
decision for a good (shape of the) kernel.

Section 9.1 and Section 9.1.3 introduce a formal arguméatimg the regularization
scheme and a weighting term in the loss function respegtiwith the form of the
kernel using a primal-dual argument. Then Section 9.2 mdeavith the elaboration
of a method for searching compact kernel decompositionedbas the method of
maximal variation. Section 9.4 then discusses a methodefmvering the shape of
the kernel from the observed second order moments in thewuaig case and is also
extended to the multivariate case.

Appendix A: Differogram

This appendix reviews the result of the differogram for resting the noise level
without relying exlicitly on an estimated model. The diffgram cloud constitutes of
a representation of the data in terms of the mutual distaantesmgst input- and output
samples respectively. The behaviour of this represemtatiwards the origin is then
proven to be closely related with the noise level. The useprametric differogram

model is used to estimate the noise level accurately. The difierence with existing

methods is that there is no need for an extra hyperparamétgever.

Appendix B: LS-SVMlab

While the presented research is rather methodological ir@atnuch effort was spent
on the practical abilities of the methods and on increasimg userfrinedliness of
the tools by elaborating a MATLAB/C toolbox called LS-SVMlaThe content and
implementation details of the Matlab/C toolbox are disedsgualitatively and some
details are given about the interface.



Chapter 2

Convex Optimization Theory: A
Survey

As motivated in the previous chapter, the thesis will esabynttake
an optimization point of view as primal-dual optimizatiospects lie
somewhat at the core of the approach. This chapter reviewse so
important results from optimization theory and discusses renewed
interest for convex optimization. The first section survaysumber of
definitions which are necessary for a clear exposition obtitgect. More
specifically, the scope of the theory of convex optimizatwablems is
properly defined. Section 2.2 then reviews the machineryaf problems
in the sense of Lagrange. Section 2.3 discusses the proltam &
more practical point of view, while in Section 2.4 a numberus&ful
extensions are reported. Subsection 2.4.4 then introdbeaghe problem
of hierarchical programming.

2.1 Convex Optimization

While the mathematics of convex optimization has been stuftieabout a century,
several recent developments have stimulated new intemetitei topic (Boyd and
Vandenberghe, 2004). The first is the recognition that imtgroint methods -
developed in the 1980s to solve linear programming probleoan be used to solve
general convex optimization problems as well (Nesterovdachirovski, 1994). The
second development is the discovery that convex optinoizgiroblems beyond least
squares and linear programming are more prevalent in peatitian was previously
thought. Furthermore there are great practical as well esrétical advantages to
recognizing or formulating a problem as a convex optimaatproblem. Moreover
practical reliable and highly automated implementatiomsstefor solving those

39
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problems efficiently. This motivation is readily summadzea the following quote
due to (Rockafellar, 1993)

“In fact the great watershed in optimization isn’t betweiee&rity and
non-linearity, but convexity and non-convexity.”

The remainder of the text primarily focuses on convex proigle A crash course is
synthesized based on (Boyd and Vandenberghe, 2004) andgfetar, 1970).

2.1.1 Convex sets and functions

Convex analysis, the mathematics of convex sets, funcéindptimization problems
is a well-developed subfield of mathematics, see e.g. (Reltkg 1970). Led € N be

a positive integer denoting the dimensionality of the Jalga of a problem. Consider
the following definitions of subsets &¢:

Fa={X]|x=Px1+(1-B)X, X1, %2 € S, B € R}
Fe={X| x=0x1+ (1—0)x2,x1,% € ¥, 0 €[0, 1] CR} (2.1)
E = {X|x=0x1, X1 € Gk, 0< 0 R},

respectively denoted as an affine set, a convex set and aTadast is used to define
the generalized inequality as follows (Luenberger, 1969),

Xk Ze X—2Z2€ Gk (2.2)

Consider the congZ;t = R%*, then the generalized inequality’ corresponds with
the inequality >’. Another well-known example is the semi-positive cone ated
as%pa, herefor letA, B € R9*9 pe any symmetric matrices\( = A, BT = B) and the
following ordering is defined

ArzgyBeA-Bzg,0A-B positive semi-definite (2.3)
see e.g. (Alizadeh and Goldfarb, 2003; Boyd and Vandenkeefl04).
A function f : RY — R is called convex if it satisfies the following property
Vxg, % € RAVO< 0 <1, f(Oxi+ (1—0)x2) < Of(x1)+ (1—6)f (%), (2.4)

also referred to as Jensen’s inequality. et RY — R denote the first derivative of
f overx. From the previous inequality, it follows thdt{x) > f(xo) + f/(x0) (X — Xo)
for all x,x € RP and that a global minimum is attainedxhc RY if f/(x*) = 0. This
result shows that from local information on a convex funttione can derive global
properties of it.
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2.1.2 Convex optimization problems

Definition 2.1. [Convex Optimization Problem] Let m p € N be positive integers
andh e Rforalli=1,....,m,...,m+ p. Consider a well-defined generalized ordering
associated with a coné, represented as3y’. A mathematical optimization problem
has the form

p* = min fo(x) s.t.
xeRD

{fi(x) b Vi=1,....m 25)

fix)=bj Vj=m+1,.. m+p.

where f:RP — R for all k =0,...,m+ p. The function § is referred to as
the objective function, the functions for all i = 1,...,m and § for all j = m+
1,...,m+ p denote the inequality and the equality functions respebti The vector
(b1,...,bm,...,bmip)T € R™P represent the bounds. An optimization problem is
convex if it can be written in the form (2.5) with donvex functions for all
0,1,...,m,....m+ p as the domain satisfying the constraints then is convex.

The convention is adopted to omit the dom&® from the formulation as any
restriction onx is explicified in the proper set of constraints. A conjugataction
can be associated to a convex problem as follows:

Definition 2.2. [Conjugate Function]Let f: RP — R be a function. The conjugate
function f : RP — R then is defined as

f*(y) = sup (y'x— f(x)). (2.6)

xeRD

Consider e.g. the functiofip(x) = %XTQX with Q = Q" = 0 symmetric and strictly
positive definite. The maximum of x — %XTQX follows from taking the derivative
towardsy, resulting in the dual functiofy; = fo-1 : R — R defined asf = 3y"Qly.

2.1.3 Standard convex programming problems

A number of classes of convex programming problems occauietly and received
the following naming convention. L\, Ny,N: € N be positive integers, leh €
RNaxd B ¢ RMo*d gandC e RNexd pe matrices, lea € RNe, b e R™ andc € RN
denote vectors, lg) € RNexNe e a symmetric positive definite matrix and ¢g& RN
be a given vector.

LS An unconstrainedleast Squaref_S) problem can be written in the form
min||Ax all3 = (Ax—a)T Q(Ax—a). (2.7)

If Q were the identity matrixy € RNa<Na, the ordinary least squares problem is
obtained. Taking the first order conditions for optimaliggult in the equations

(ATQA)X=ATQa, (2.8)
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which result in the unique global optimuri € RY of (2.7) if ATQAis of full
rank. This set of equations can be solved with highly stathd@ard reliable
numerical methods, see e.g. (Golub and van Loan, 1989).

LP A Linear ProgrammingLP) problem then can be written as

iX < D i=1,...
mina’x st 4 0% b V|. LMo (2.9)
X CJ'XZC], Vi=1...,Nc.

This class of problems was studied intensively in the Itt@e on operations
research (Dantzig, 1963; Bellman and Kalaba, 1965). Sed®dd, 2002) for
an historic account.

QP A Quadratic Programming(QP) problem can be written in the following
standard form

Bix<by Vi=1...,Ny

) (2.10)
Cix=cj, Vj=1,...,Ng,

1T T
mxméx Qx+qg X s.t. {
which is convex if and only ifQ is positive definite and there exist a feasible

solution x satisfying the constraints. Research on this type of problavas
stimulated by e.g. the Markovitz portfolio problem (Markitey 1956).

SDP A Semi-definite Programming problgi®DP) takes the following form. Let €
R9*d be a matrix of unknowns.

tr(BiX)=b Vvi=1,....,Np

2.11
CX >0, ( )

n;(in tr(AX) s.t. {

where the last constraint is referred to as a Linear Matreqtrality (LMI). This
formulation has found a rich variety of applications in epgoblems of Model
Predictive Control (MPC), see e.g. (Bogtial, 1994) and as illustrated by the
popularity of the LMI lab toolbox in this community.

SOCP A problem takes the form of &econd Order Cone Programmin(OCP)
problem if it can be written as follows
. Ax—all3 <Bx—b Vi=1,...,N
ming’x s.t. [Ax=all2 < Bix—bi =%t (2.12)
X Cjx=c;j, Vi=1...,N¢

The constraintiAx— al|3 < Bx—bis called a second order cone constraint since
it is the same as requiring théx— a,Bx— b) lies in the second order cone
F=1{(xt) | ¥ <t,xeRYteR}. Seee.g. (Lobet al,, 1998).

Various other classes exist as the Quadratical constranediratical Programming

(QCQP) problems (Lobet al.,, 1998) or geometric programming problems (Boyd and
Vandenberghe, 2004).
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Figure 2.1:lllustrative example relating three different methodsdaivariate density
estimation qualitatively. The classical histogram meti®ogrone to non-continuous
artifacts by construction. The Parzen window estimataulte$n smooth estimates but
is based on an ad hag optimality criterion. The proposexf approach makes a trade-
off between both approaches as it is based on a clear otyrpaiiciple and enforces
continuity on the knots.(a) shows a detail of the estimates of the three methods,
while (b) illustrates the global difference of tix& approach with respect to the Parzen
window. From the figure and the optimality principle (2.1t35iimmediately clear that
the x? estimator is more flexible towards modeling data concentiat(peaks).

Example 2.1 [a x? density estimator] An example of the application of this class of
optimization methods towards the task of density estimation is given followingettug
of Example 1.1. Let{y; iN:1 be i.i.d. sampled from a random variabfec RP with
smooth density functiopy : R® — [0,1]. Assume a disjoint but complete partitioning
of the support of the random variable with contiguous sgis.#%,...,.%s such that
Ui, = supportY). Let f;i denote the number of samples in the s§tsuch that
N =737, fi. Acommon method in the case of grouped data is the mining&rastimator
(Rao, 1983; Presst al, 1988). Under the assumption th@a¢ can be described by the
element of a parameteric famifypg |6 € ©} with a set© of finite dimension, then the
chi-squared estimator takes the following form

" |[fi— Nfa(.%, po)ll3

6 = min st. fa(Z,pg) =1, 2.13
l i; N A7 Po) A%, pe) (2.13)

where the functiorfa is defined ada(-7, p) = [y P(Y)dy.

Consider the univariate case wherec R. Let the sets be described §S;;)|S;) =
by, biy1)), by <Byiy1) - The minimumby gy and maximunb,, 1) describe the extrema
of the support of the distribution. Instead of a parametric family of derfaitgtions,
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consider the (non-parametric) piecewise linear models

()’* b(i)) (C(m) - C(i))

byit1) — b

Pe(y) =iy + where b <y<bi,y), ¢j) =0 (2.14)
T T

Let c = (0(1)1 .. ~7C(r)7c(r+l)> e R*! andb = <b(1), .. 7b(r)7b(r+1)) € R be

vectors. In this case, the functidg can then be written as follows

fa (Zi)ﬁ(i)@(m)) = % (b(m) _b(i)> ( (i+1) +Ci ) Aic
st Ai:%{oi_l <b<i+1>—b(i)> (b(iﬂ)—b(i)) or,i] (2.15)

Let b be given andt be unknowns to the problem arfd= (f,..., fr)T € R". Then the
chi-squared estimator with respect to the non-parametric model clabg giecewise
linear models may be formulated as

o [fi—NAd3
¢=min ;W st. f>0, ¢>0,1, 1JAC=1, (2.16)

i
where A = (Aq,...,A;) € R™"1 This problem can be written as a convex SOCP
: .12
problem as follows. Let; > W which can be rewritten (see e.g. (Loled
{Z(fi fNA;c)} 2
t

al., 1998)) ag; - NAc >
) asi +NA “ae ||,

. The optimization problem becomes

<t+NAc, f>0, ¢>0r1,1 Ac=1.

. —NAc)
é=m th, s.t. H{ i — NAC }
(2.17)

This problem can be solved efficiently as a SOCP problem using e.g. tti@lMaolbox
SeDuMi as described in (Sturm, 1999).

This approach differs from more classical methods as a (finite sanopiénality
principle is postulated. Figure 2.1 illustrates the qualitative difference ofestisnator
and the classical histogram technique and the Parzen window estimatde$hribed
method is closely related to the method of histosplines, but ugéseeasure instead of
the constraint that the bin-area should equal the empirical frequeacyly (Rao, 1983).

2.1.4 Multi-criterion optimization

The following discussion of optimization with more than angective is surveyed as
in (Luenberger, 1969) and (Boyd and Vandenberghe, 2004).

Definition 2.3 (Multi-criterion optimization problems). A multi-criterion or vector
optimization problem is defined as a programming problem

p* = min fp(x) s.t.

xeRDP

{fi(x) <kb Vi=1,....m (2.18)

fi(x)=bj Vj=m+1,... .m+p.
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Figure 2.2: Schematical illustration of the problem of multicriterioptimization for

D = 2. (a) Feasible solutions (fill) with optimal solution with the mueality (X3, x5) <
(X1,X%2) if X3 < x1 andx; < xo. (b) Feasible solutions without an optimal point, but with
a collection of Pareto optimal points (thick line) which alesolutions to a scalarized
problem with scalarization ternis

where §:RP — RQ where Q> 1. and {:R°P - R forallk=1,....m+p. The
functions fforalli =1,...,mand f forall j = m+1,...,m+ p denote the inequality
and the equality functions respectively. The vec(tm_r,...7bm7...,bm+p)T € R™P
represent the bounds.

The optima to multi-criterion problems are defined as folow

Definition 2.4. [Optimal and Pareto Optimal] The meaning of an optimal point ¥
RP satisfying the constraints can be translated as follows.afio € RP which satisfy
the constraints, the inequality]fx*) < fg(x) holds for all g=1,...,Q. For a Pareto
optimal point x € RP satisfying the constraints, one has for att RP which is feasible
that if f5(x*) < fg(x) forallg=1,...,Q, then §(x*) = f;(x) forallg=1,...,Q.

Note that not every multi-criterion problem has an optimaheent, but if it exists, it is
unique. Pareto optimal points always exist, but are ofténinigue, see also Figure 2.2.
In the case the problem (2.18) consists of convex functigrier all k=0,....,m+ p,
for every Pareto-optimal point € RP, there consist a parameterc RY9 with A > 0
such that it is the unique minimizer to

p'=minATfo(x) s.t.
xcRD

{fi(x) =kb Vi=1,....m (2.19)

fix)=b; Vj=m+1,....m+p,
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which is a one-dimensional (scalar) optimization problehiclr can be solved using
standard techniques. The set of Pareto optifnanay be found by exploring all such
scalarization vectora. This scalarization technigue is hevily used in the remaind
e.g. in the discussion of regularization schemes (see adagpter 6).

2.2 The Lagrange Dual

Th following definition follows the exposition in (Boyd andadenberghe, 2004). Let
a=(01,...,0m,...,0mp)| € R™P be a vector of Lagrange multipliers associated
with theminequalities and th@ equalities where; > 0 for alli = 1,...,m. Then the
Lagrangian? : RP x R™ x RP — R of the optimization problem (2.5) is defined as
follows.

m m+p
Z6a) =0+ 3 alfi()-b)+ 3 a(fi-b). (220
i= j=rm1
The Lagrange dual function is defined as the infimum ayer
m m-p
g(a) = inf (fo(x)+ Zai(fi(x)_bi)+ aj(fj(x)_bi)>- (2.21)
i= j=m1

which can be proven to be concave even if the problem (2.5piscanvex. Fur-
thermore, the inequalitg(a) < p* < fp(x) holds for anya > 0,3 and feasiblex
(satisfying the constraints). In the case the (in)eqeaitian be written in matrix form
(Bx < b,Cx= c) as previously (consider e.g. the QP), then the dual can htewin
function of the conjugate functiofy : R™P — R of fo as defined in (2.6). Let the
vectora be subdivided in two disjunct parts as follow8 = (ay,...,ay,)" € RN+
anda® = (Ony+1, .- -, Ong )| € RN,

g(a) = inf (fo(X) +a" (Bx— b)+a°T(Cx—c))
= —a"b-ac- fi(—a®" B—aTC). (2.22)
In the case of an LP as in (2.9), this simplifies to
T
(

gla) = ir;](f(aTX-‘er Bx—b)+aCT(Cx—c)>

= fabbeOICTcHr;(f(aT —a*"B—a"C) x (2.23)

(2.24)

T .
—a" b—aTc if a=BTaP+CTac
—00 elsewhere.

The best lower-bound using the Lagrangian on the cost giyefa (%) for x a feasible
function is then obtained as

d* = m‘;';\xg(a) st. a; >0, Vi=1,... Ny, (2.25)
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referred to as the Lagrange dual problem. Strong dualityaid ® hold when the
duality gapp* —d* is zero. Convex problems have the property of strong duatitier
mild regularity conditions (Slater’s condition). Also tfalowing result holds (see e.g.
von Neumann, (Rockafellar, 1970)).

Lemma 2.1. [Saddlepoint Interpretation, e.g. (Rockafella 1970)] If a vector
(x*;a*) € RY x RM x RNe forms a saddlepoint of the Lagrangian such that

(X*;a%) = arg rT‘}aaninf(x; a)=arg n;(inmaax.,iﬁ(x; o)
st. ap>0Vi=1,...,Ny, (2.26)

then X is the optimum of the primal problem (2.%)7 gives the optimum to (2.25) and
strong duality holds.

This Lemma will form the basis to the framework of primal-tikernel machines.

2.2.1 Conditions for optimality

In the case of a convex problem (2.5) with differential oljec function and
constraint function satisfying Slaters condition, thecatled Karush-Kuhn-Tucker
(KKT) conditions are both necessary and sufficient condgifor a vector(x*; a*)
to be a global optimum to the primal problem (2.5) and to thal guoblem (2.25):

9LXa) | g vi—1. . d (a)
X X=x;
KKT =< fi(x*) <bj Vi=1,...,m (b) (2.27)
fi(x*) =b; Vi=m+1,....m+p (c)
a>0 Vi=1,....m (d)
of (fi(x")—hbj)=0. Vi=1,....m (e

In case the optimization problem is not convex, these cammitare only necessary.

Remark2.1 Note that in the case no inequalities occur in the convexraragiing
problem, the first order conditions are both necessary dffidisat (Luenberger, 1969;
Nocedal and Wright, 1999; Boyd and Vandenberghe, 2004).

2.2.2 Sensitivity interpretation

When strong duality holds, the optimal dual variables cantisieful information about
the sensitivity of the optimum with respect to perturbasiai the constraints. Let
€= (sl,...,sm,...,smp)T € R™P pe a vector containing small perturbation terms
and let the functiorp : R™P — RY be defined as follows

fix) <b+g Vi=1..m

_ (2.28)
fi(x) =bj+¢&j. Vi=m+1,... .m+p.

p(e) =minfo(x) s.t. {
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This perturbed problem preserves convexity of the origimablem (2.5). Leta™, 8*)
be the optimal to the dual unperturbed problem. Then thevatlg inequality holds

m
p(e)>d — Zlal & — z ajej. (2.29)
i= i=m+1
By strong duality, it follows that the derivative
d}:;g(.s):_ai. Vi=1,....m....m+p (2.30)
(|

see e.g. (Rockafellar, 1970).

2.2.3 Dual standard programming problems

The dual of the standard programming problems itemized ibs&ction 2.1.3 are
reviewed. Let @ = (0,...,0)T € RP be a vector of zeros of length € N. Let
Q e RIxd A e RNaxd B ¢ RMoxd C ¢ RNexd he matrices andj € RY,a e RNa.b e
RN, ¢ € RNe be vectors as in Subsection 2.1.3.

LP* Following equation (2.22), the dual function to the problgh®) is given as

gla) = —a’'b- aCTc+ir)1(f(a+ BTaP+CTa®)"x
~ [-a®"b-0aTe (a+BTaP+CTac) =04 (2.31)
—o0 otherwise '
such that the dual problem can be written as
T Tob_ AT qcC
a'=-B'a’-C'a
max— (abTbJr GCTC) s.t. b (2.32)
a a® > Oy,

Moreover, strong duality holds.
QP* The dual function to the problem (2.10) is given as
d" =maxg(a) = (BTa’+CTa®+q)TQ1(BTa’+CTa®+q)—bTaP—cTa®
st. a’P>0,vi=1,....N, (2.33)
More detailed derivation of this problem will re-occur inagiter 4.
SOCP* Consider the primal SOCP problems that can be rewrittendridtiowing form

Xk 0

2.34
Cx=c, ( )

p* =mina'x s.t. {
X
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with >y associated with the proper (pointed) second order conedBEmd
Vandenberghe, 2004). The dual problem to the problem (2sldlyen as

Cla®+a=aqaP

2.35
ab = 0. (235)

d* =max—c'a® s.t. {
a

where -y is the generalized inequality corresponding with the dumaded*
which equals the original coré = % in the case of the quadratic cone.

SDP* Let G,F4,...,Fy be a set of matrices such thatF, ... ,Fqy € RP*P for D € N.
Consider the primal SDP problem without equality constsin

p* :mxinaTx st xiF 4+ +xgFg +G =< 0. (2.36)
The dual problem can then be written as

tr(RMN) =g Vvi=1,...,d

2.37
>0, ( )

d* :mrax—tr(GF) s.t. {

wherel” € RP*P is a matrix containing the Lagrange multipliers.

Duality has a profound basis (Luenberger, 1969; Rockafel@70) and has lead to a
number of interesting results both theoretically (feditjbstudy) as practically (e.g. in
learning theory, see later chapters), (Boyd and Vandehlee04).

2.3 Algorithms and Applications

2.3.1 Algorithms

A short summary of the main numerical algorithms for solvaamvex optimization
problems is given. While initial research following in theestmline of the seminal
work of (Dantzig, 1963) mainly focussed on simplex methadthe area of operations
research (Bellman and Kalaba, 1965), later investigattonsentrate more on efficient
barrier methods as the interior point methods.

Since the seminal work of (Karmarkar, 1984) there has beamaentrated effort to
develop efficient interior-point methods for linear pragraing (LP). More recently,
researchers have begun to appreciate important propeftiesse interior-point meth-
ods beyond their efficiency for LP (Nesterov and Nemirovs8B4). Major advantages
include the fact that they extend gracefully to nonlineanex optimization problems.
New interior-point algorithms for problem classes such B®&or second-order cone
programming (SOCPs) (Nesterov and Todd, 1997) are now aphitog the extreme
efficiency of modern linear programming codes proving theable efforts SDPack,
see e.g. (Alizadeh and Goldfarb, 2003) for pointers, anduB&D(Sturm, 1999).
Another class of methods relies on the exploitation of thearand the dual problem



50 CHAPTER 2. CONVEX OPTIMIZATION THEORY: A SURVEY

formulation. In general primal-dual optimization algbrits try to find the global
optimum by minimizing the gap between the optimum of the ptimnd the dual.
Most state-of-the art implementations use ingredientsott interior point as well as
from primal-dual methods (Sturm, 1999). Recent advancssrite methods to highly
increase the efficiency of the methods by exploiting stngcto the matrices at hand.

2.3.2 Applications and the design of algorithms

Renewed interest for the theory of convex optimization wesidated amongst others
by the reformulation of a number of estimation problems asm@/ex optimization
problem. While the initial literature mainly focussed on tohproblems as surveyed
in (Boydet al, 1993; Boydet al, 1998), a fruitful field of application is found into the
practice of estimation and identification and more spedifiéa the design of kernel
machines wich are explicitly based on an optimality prifeigs initiated by (Boser
et al, 1992; Cortes and Vapnik, 1995; Vapnik, 1998), see the nedeaiof the text.
More theoretical and mathematical applications were fdaed in the form of convex
relaxations to hard combinatorial constraints, see e.godt@@helet al,, 1988; Boyd
and Vandenberghe, 2004).

A significant obstacle to the widespread use of the methggatemains: the high level
of experience in both convex optimization and numericakbifg required to use it.
Recent advances in the theory aim at lowering the barriesioigithe methods for the
unexperienced. Disciplined Convex Programming (DCP) egges this problem by
proposing a formal ruleset and conventions in order to dgsioper convex programs
from the problem at hand (Grant, 2004).

The present text may be seen from a similar perspective dsstrates the use of
the primal-dual optimization framework for the constroatiof various non-trivial
estimation tasks.

2.4 Extensions

This section describes a number of examples of optimizatioblems which can be
cast as convex problems. As those results will re-occur énréimainder of the text
under various disguises, they are treated here somewheaticgty.

2.4.1 Robust and stochastic programming

Let 0.5 < n < 1 be a fixed confidence level. Latc RP andB € R™M*P pe a vector
and a matrix respectively . Ld&; be samples of a random variable with Gaussian
distribution with meanB; and variancez; such thatBj ~ .4 (A, ). Consider the
following stochastic programming problem.

min ATx+a st ProffBix<b)>n Vi=1,...,Np. (2.38)
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Consider for a moment th&h constraint and let = Bix, U = Bijx and o2 de-
note vatu) = var(Bix). Let @(x) denote the cdf of the standard normglz) =
\/%Tffw exp(—t?/2)dt. Theith constraint (2.38) can be normalized to the standard
distribution as follows.

u—-u bi—-u bi—T 1
- <1 ") > 2 > .
Prob( e >_n & 5 > (n) (2.39)

& Bx+o in)|=V%|2<bi,  (2.40)

and as¢~%(n) > 0 asn > 0.5, this inequality has the form of a second order cone
constraint:

minAx+a s.t. o 1(n)|=Y?x||], < b —B;, Vi=1,...,N. (2.41)

Application of this kind of formulations is found e.g. in steastic Markovitz portfolio
problem (Goldfarb and lIYengar, 2003). Recent advances ichina learning cast
robust counterparts of SVMs as SOCPs using similar restiiefdlis and Alwazzi,
2003).

2.4.2 Quadratical constraints

Consider the following quadratical form
X"Hx+ fTx (2.42)

with H € RP*P andf € RP. This kind of constraints is hard to cast as constraints into
an efficient optimization algorithm. A classical relaxatimethod for such quadratic
forms is based on semidefinite programmingdiSchelet al,, 1988). letHs denote the
matrix

H 0.5f]
H¢ = {osz o | EREHXEH, (2.43)
One can rewrite the cost function of (2.42) as follows
X, [x
s = 1] w3 (2.44)

Consider the reparameterization of the problem (2.42)dasghe new set of variables
Z € RO+Dx(D+1) related withx as follows (Nesterov, 1998)

x| [x]" X7 [x D+1
|:1:| |:1:| =7 & |:1:| Hs¢ |:1] =<H¢,Z >:i]Z:1Hf’ijZij' (2.45)

From this overparameterization, it is clear that the ma#ishould be symmetric
positive definite and rank one. The common relaxation thamsists of omitting

the rank one constraint which is hard to impose. The formeitipe semi-definite
constraint is denoted &= 0. Such a relaxations can be cast as a convex semi-definite
programming problem, see e.g. (Zhang, 2000).
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Figure 2.3: A four-dimensional examplg = (xl,xz,m,x4)T € R* is studied where
H € R*4 is strictly positive definite and and the positive OR corigtsax;xz = 0
andxoxs = 0 are to be satisfied(a) displaying the Hessiah"H and its augmented
counterpartd TH + yN) (b) the evolution of the estimates when ranginfjom 0.5 to
50. From the figure it becomes apparent that the positive ORtiont are satisfied
wheny > 30 (solid vertical line). The dashed vertical line indicatée talue ofy
where the problem becomes non-convex.

2.4.3 Positive OR-constraints

A special class of quadratical constraints is considered.

Definition 2.5. [Positive OR Constraint] A positive OR-constraint between scalars
X1,% € R is defined as follows

X1 X =0, X1,%X >0. (2.46)

Let x denote the vectojxy,x;]T € R?. The quadratic constraint (2.46) is equivalent
0 1
1 o
not describe a convex set, one can approach such consteffictently if they are
embedded in a quadratical programming problem. Consigdiottowing prototypical
problem:

to xX"Nx = 0 whereN = Although this class of constraints does clearly

In(X) =x"Hx+fTx sit. xX"Nx=0, x>0 (2.47)

whereH = |1 M2| o gawzjg positive definite and = [f;  f,]' € R2.
hiz hg

Example 2.2 [Augmented Hessian Relaxation]A technique based on augmenting the
Hessian is considered. Lgt> 0 be a positive constant, the following modified problem
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to (2.47) is studied
Iny(¥) = (xTHx—i— fo) + y(xTNx) s.t. X' Nx<0, x>0, (2.48)

which may be seen as a bi-criterion optimization problem with trade-offtaahg This
problem is convex whenever the following condition is satisfied

HTH+yN =0, (2.49)

see e.g. (Boyd and Vandenberghe, 2004). The tefiMx is bounded below by 0

by construction, such that the problem (2.48) reduces to the probleiii) (@hen the
optimumx”Nx= 0 is attained. This ensures the property that the modified cost-function
acts as an upper-bound to the cost of the original problem.

Formally, the modified problem (2.48) shares its first order conditiensoptimality
as given by the KKT conditions with the necessary conditions for optimalityhef
non-convex problem (2.47). This can be seen by relating the protted8)(with the
Lagrangian of the QP problem (2.47) given as

L (X) =X"Hx+ fTx+A(X"Nx) — aTx (2.50)

with multipliersa € RS"D andA € Rar. Figure 2.3 illustrates this issue.

A four-dimensional example = (x1,X2,X3,Xs)" € R* is studied whereH € R4*4 is
strictly positive definite and and the positive OR constraxaig = 0 andxoX4 = 0 are to
be satisfied(a) displaying the Hessiahl TH and its augmented counterpatf H + yN
(b) the evolution of the estimates when rangipdgrom 0.5 to 50. From the figure it
becomes apparent that the positive OR constraints are satisfied\#h@d (solid vertical
line). The dashed vertical line indicates the valug/@fhere the problem becomes non-
convex.

2.4.4 Hierarchical programming problems

An hierarchical programming (HP) problem amounts to theuameous optimization
of different objectives defined on a common set of varialitese every level considers
the optimization of all variables constrained to the inteten of the solution spaces
corresponding to the previous levels, with respect to ita owost-function (Pelckmans
et al, 200d; Pelckmanst al,, 200%). This approach is to be opposed to the more
standard approach as the scalarization technique to iafetd’optima (see Subsection
2.1.4).

Consider for instance a two-level HP problem. Let both dibjes _# (1) and_# (@ act

on the variableg and8. Let the level one cost-functioyél) (x) describe an optimum
X* corresponding to a certath which is provided by the user. Let the level two cost-

function _#(2)(6,x) act onx and@ wherex* is to be a solution tdél) for the optimal
6*. Formally,

Level 1: (x*| 6) =argmin, /é”(x) (2.51)
Level 2:  (xg,0%) =argming 72 (x,0) s.t. xg= (x| ). '
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The following example illustrates how one can formulate awive hierarchical
programming problems using results from convex optimarati

Consider on afirst level an LP of dimensibre Ng with N € Ng inequality constraints
and no equality constraints. LBtc RN*P be a given matrix and = (uy, ..., un) be a
fixed but unknown vector.

First Level: x* =argmin_#p = a'x st Bx<uy Vi= 1,...,N. (2.52)

xeRD

The Karush-Kuhn-Tucker conditions provide necessary aiffitent conditions forx
to be a solution to (2.52). Let = (ay,...,an) € R™N be a vector of positive Lagrange
multipliers:

a=-BTa (a)
.y ) u—Bx>0 Vi=1,...,N (b)

KKT (x,u;a) = ai >0 Vi—1...N (c (2.53)
oi(uy—Bix)=0. Vi=1...,.N (d)

Let F € R™P be a given matrix witm € Ng rows andf = (fy,..., f,)T € R" be a
given vector. On a second level, consider the problem ofsingol such thak satisfies
Fx— f optimally in anL, sense. Leb = (vq, ..., uN)T € RN be a variable vector, then
the problem on the second level can be written as follows:

Second Level: (§,%) = argmin_#? = |[Fx— f|3
X,0eR

s.t. xsolves (2.52) witu=uv. (2.54)

Using the KKT conditions, the problem equals

Second Level: (0,%, &) = arg min/F(z) = ||Fx—f||3 s.t. KKT(x,u;a). (2.55)

x,u,a €RP

One refers to this approach assionof a first level problem with a second level. In
general this amounts to multi-criterion optimization whinlauilds a construction based
on the explicit description of the solution-space of pregidevels, hence the name
Hierarchical programming problemThis method can be contrasted with the Pareto
(Pareto, 1971) multi-criterion approach.

The hierarchical programming problem (2.55) is convex ugh® complementary
slackness conditions (2.53.d) which belong to the classosftipe OR constraints
as discussed in the previous subsection. Hierarchicaimtion problems have a
natural application in the task of model selection as disedsn Chapters 7 and 8.

Remark2.2 Note that this programming paradigm is already employedairious
derivations. As a first example, consider the saddlepoiptageh for constructing
the dual problem as surveyed in Section (2.2) and (2.26) dosttucting the dual
problem. The saddlepoint is computed as the solution torthiglgm maxy min, where
the may is taken over the solution-space of the optimum to the miidra Another
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manifestation of the hierarchical programming approadbusd in the analysis of the
least squares estimator (see Subsection 3.2 and 6.1) asyadph the derivation of
the hat matrix and smoother matrix (Lemma 3.2 and 3.4) wheesolution-space of
the least squares estimator is made explicit for the purpbseatistical analysis (see
e.g. (Rao, 1965)) as well as from a numerical point of vieve (g. (Golub and van
Loan, 1989)).

Example 2.3 [Hierarchical programming with a QP] The following example is prototypi-
cal. LetQ,q e RN be given vectorsx € R the unknown parameter and ket R act as
a fixed but unknown hyper-parameter. Consider the following QP opditniz problem

jc(n on the first level
Level 1: min_ 7Y (x) = }HQxf 2 st x< 2.56
-omi c =5 qlz st x<c (2.56)
The Lagrangian then becomes
1
Ze(xa) = 5(Qx—q) " (Qx—0) +a(x—c), (2.57)

where a € RT is a single positive Lagrange multiplier. Necessary and sufficient
conditions for the optimal solutiox’ to (2.56) are given as follows

Q'Qx-QTg+a =0 (a)
KKT (256 (X a1, C) );;COS 0 E:)) (2.58)
a(c—x)=0 (d)

Let F,f € R" be vectors. On the second level, one can e.g. consider the following
hierarchical programming problem:

Level 2: min /<2>(x;c):%HFx—f\|§ st KKT(z56 (% 0,0). (2.59)

The necessary conditions for optimality become

ad;'f =0— F'Fx—fTF=1a+Q"Qr—s

%zoﬂ l(c—x)=r—+t

oL =0— ea=s

Jdc

KKT (x,a,c;r,st,1) QTQx-QTq+a =0 (2.60)

X—c<0
a>0

comp. slackn. la(x—c) <0 (9)

comp. slackn. s(c—x) =0

comp. slackn. ta =0,

wherer € R andl,s,t € RT are the associated multipliers of the Lagrangian
Zxa,crstl) = _72(xc)-r(Q"Qx—Q'g+a)+s(x—c) —ta +I(a(x—c)).
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To overcome the non-convex complementary slackness constrd&iBtq}®, the following
relaxation is proposed. Let> 0 be a constant such that

{FTF €

o] =0, (2.61)

such that the problem remanins convex, then the following relax@ﬁdﬁ'> is convex
and the solutiorfX, &, €) does satisfy the conditions (2.58).

1 Q'Qx-QTg+a=0 (a)
)[_rgré/(z/)(w):zHFx—fH%—i—s(c—x)a st {x—c<0 (b) (2.62)

o a>0. (c)
After constructing the Lagrangia®’’ (x,a,c;r,s,t) of problem (2.62) with multipliers

r € R corresponding with (2.62.a) and<0s,t € R" corresponding with the inequalities
(2.62.bs), the following conditions for optimality holds:

cp!
d;f =0— F'Fx—fTF=ea+Q"Qr—s
!
aa"f =0— glc—x)=r+t
/
% =0— e€a=s (c)
KKT 262 (%, 0, C;1,S,t) QTOx-QTq+a =0 (2.63)
Xx—c<0
a>0
comp. slackn. s(c—x) =0
comp. slackn. ta =0.

By comparing conditions (2.60) and (2.63), the only difference betwthe original
problem and the relaxation is the role of the unknawfLagrange multiplier) in the
former ande (hyper-parameter) in the latter, together with the occurence of the equality
I(a(x—c))in (2.63.g). However, from condition (2.63.c) it follows that condit{@60.9)

is always satisfied fog # 0, and thus the optimum to (2.62) satisfies the KKT conditions
(2.58). As the solution to the KKT conditions of (2.63) is identical for aajue ofe, the
relaxation provides necessary and sufficient conditions for the pro{#es9).

This example may be seen as an application of the augmentssiddeapproach
discussed in the previous subsection.
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Chapter 3

Primal-Dual Kernel Machines

This chapter presents an overview of the application of thieagdl-
dual optimization framework to the inference of regresdigmctions and
classification rules from a finite set of observed data-segiprhe aim of
the chapter is to provide a sound and general basis towagd¥eign of
algorithms relying on the theory of convex optimization. Wetistorical
breakthroughs mainly focussed on the case of classificatiis chapter
mainly considers the regression case. Section 3.2 dissugseeral
parametric and classical kernel-based methods, whiléd®e813 studies
one of the most straightforward formulations leading todtaadard Least
Squares Support Vector Machine (LS-SVM). This formulati®studied
in some detail as it will play a prototypical role in the remdgr. Section
3.4 then proceeds with the derivation of the Support Vectachine
(SVM) for regression. Section 3.5 gives a variation on thenth by
proposing a primal-dual kernel machine for interval estiorg coined
as the Support Vector Tube (SVT). Section 3.6 considers abeuraf
extensions of the previous methods to the context of ogthed Section
3.7 reports a number of results in the context of classificati

3.1 Some Notation

Before going into the subject, some notation is introdudexd X € RP andY € R be
random variables as described in Subsection 1.1.121:et{(x;, Vi) iN:l cRPxRbea
collection of observed i.i.d. data-samples as in Subsedtib. Let there be a mapping
f :RP — R such thaE[Y|X = x| = f(x) and vafY|X =x] < e foralli=1,...,N. In
most cases, the vect@x;,y;) is sampled from the random vectof, Y ), but one often
makes the assumption that ¢4 < var(Y) such that the samplescan be considered
to be deterministic.

59
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Letxid denote thealth variable of theth sample with X d < D. One can organize these
values into a matrix a¥ = (xg,...,xn)" € RN*P. Let a superscript denote the column
or the variable and let a subscript denote a sample index Xhe x; andX9 contains
the samples of theth variable. LetY = (y1,...,yn)" € RN ande= (ey,...,en)" € RN

be vectors.

3.2 Parametric and Non-parametric Regression

3.2.1 Regression as conditional mean

The regression estimate which is optimal in the expectesfjrated square error sense
corresponds with the conditional mean, see e.g. (Hasté, 2001) and references

109 =EY[X =X = [ypx(ydy= [ ypprx((XX’)y)dy. (3.1)

This result is somewhat similar to the optimal Bayes class(fi.26), see e.g. (Hastie
et al,, 2001) for a survey.

3.2.2 Parametric regression estimates

It is instructive to relate the general formulation (3.1)tt® linear least squares
problem. The following stochastic model underlying the rd® regularities is
postulated classically.

Lemma 3.1. [Gauss-Markov Conditions] Let{xi}i'\‘:l be samples from the random
variableX such that EX?] < E[Y?]. Letw € RP be fixed (deterministic) but unknown.
A linear model is postulated(X) = w"x to underly the observationg such that the
relation

Yi=w'Xx+e (32)
holds where the noise sequen@} ; sampled from the random variabéesatisfies
the Gauss-Markov conditions, see e.g. (Rao, 1965; Nstal, 1974):

(i.i.d.) Let the sequencéa}i'\‘:1 be a sequence of i.i.d. samples from the random
variablee

(zero mean) E[e|X = x| = E[g] = O for all x € RP

(uncorrelated) Let0 < 02 < «, then Heej] = &;02 whered; = 1if i = j and zero
elsewhere.

The parameter vectap € RP can be estimated in least squares sense

N
W=arg mianl(WTxi —vi)?, (3.3)

w =
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which also equals the maximum (log) likelihood (ML) estimdbllowing from the
assumption thatpossesses a Gaussian distribution andyhws 4 (w" x;, a2) (Fisher,
1922), see e.g. (Rice, 1988). The global solution is charaed by its first order
conditions of optimality

(XTX)w=XTY, (3.4)

which are referred to as the normal equations. Due to the Sslaskov theorem,
the estimatow solving (3.4) possesses the BLUE property (Best Linear asdid
Estimator) under the given assumptions (Nettal, 1974; Rice, 1988). The least
squares estimator has the following interpretation vishigtematrix.

Lemma 3.2. [Hat matrix] Assume the function underlying the observatiorskes
the form of (3.2) and the errors are satisfy the Gauss-Markmnditions. The least
squares smoother can be written as a linear operator H asal

Y =HY with H=X(XTX)"1XT. (3.5)

where He RN*N s referred to as the hat matrix. The following propertiescho

1. His symmetric positive semi-definite (denoted as 6)
2. Therank of H provides a measure of the (effective) diressif the fitted model

3. Hisidempotenti.e. H= H2.

The proofs can be found in any statistical work concerningdr regression, see e.g.
(Rao, 1965; Neteet al., 1974).

Example 3.1 [Loss functions and noise distributions]An illustrative example is given of the
parameter estimation task in the context of different noise models ang esiimators
employing different norms. Four different estimators are consitlesing the convex
cost-functions defined as follows

jlgwg =3 1\WT(X. vil ) E ;

H(W) =3 (WX — y

J2(w) —ZN 1(wa, V)2 (o) (3.6)
Folw) = matly wix—y| (d)

where the Huber loss functiofy is defined later-on in (3.59) and the constarin the
Huber loss function is as commonly fixed @s- 1.34502 (Huber, 1964). Consider the
linear model (3.2) wittD =5, N = 100, X4 taken random and independently from the
interval[—1,1]N foralld = 1,..., D andw chosen uniformly froni—5,5]P. Four different
noise models were added (i) a Laplacian noise medel-Z (0, 1.5), (ii) a Gaussian noise
modelg ~ .4(0,1) and (iii) a contaminated noise model with a Gaussian nominal model
and 5% outliers with variance 10, (iv) a uniform noise moget % ([-1.5,1.5]). The
performance is expressed in the mean squared error of the estirragggmin, 7 (w)

to the true parametep. The boxplots! of Figure 3.1 show the results of a Monte Carlo
study with 1000 iterations.

1A boxplot is a compact representation of a distribution, tase a number of order statistics as the
median. From top to bottom, a boxplot displays respectivadyugbper outliers, upper-quartile plus 1.5 inter-
quartile range, the upper-quartile , the median, lowertijeafower-quartile minus 1.5 times inter-quartile
range, and all lower outliers.
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Figure 3.1:Numerical results of a Monte Carlo study relating the avensigE of the
estimate and the true parameter corresponding with a spacie model and chosen
norm. This simulation results emphasize the importancehobsing an appropriate
norm corresponding to the underlying noise model.

This numerical example illustrates the fact that the choice of the moseeffiossfunc-
tion depends on the underlying distribution of the perturbations. Moreifggcthis
figure supports the theoretical results of maximum likelihood relating the aptost-
function (»,L1,Le,Ly) to the corresponding noise model (respectively (i), (i), (i) and

(iv)).

3.2.3 Non-Parametric regression estimates

Consider the Parzen window estimator (Parzen, 1962) forpavametric density
estimation (see example 1-1, 1.13 and 1.14). The NadartaeWWanon-parametric
kernel regression estimator then follows immediately f(@x3.):

e [Py (6Y) o SR KXW
o0 = [y av= SN KOox) @7

whereK : R x R — R denotes a nonnegative weight function centered aroundwgro
bandwidthh as defined in example 1.1, see e.g. (Watson, 1964). Thisastirhas
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various optimality properties as described e.g. in (Ra831@nd often acts as a tool
for exploratory data analysis and for testing procedures.

3.3 Ly Kernel Machines: LS-SVMs

Consider the following class of models linear in the parareet
Fo={f(x)=wdp(Xx) | weR?}, (3.8)

where the mapping : RP — RP4 is fixed but unknown and can be infinite dimen-
sional. LetZ = {(x;,yi)}\\, satisfy the relatiory; = f(x) +& wheref : RP — R

is fixed andg is i.i.d. sampled from a random varialdewith a fixed but unknown
distribution satisfyingz[e]X = x] = 0 andE[€?] = g2 < +o0. Extensions of this model
towards additional parametric terms (as the so-calleddaf# term) are discussed
extensively in the following chapter. This description bétmodel is referred to as
the primal modelbeing related to the to the following primal optimizatioroplem.
Consider the regularized least squares loss function wipeparametey > O:

R . 1. yXN
W,€) = argmin_Z,(w,e) = —wW' W+ —
(&) = argmin 7y(w e) = Sw'w+3 5 &
st wo(x)+e=y, Vi=1,...,N, (3.9)
which is also referred to as ridge regression in featureepsee also (Saundees
al., 1998). The Lagrangian of this constrained optimizatiarbpgm becomes
N

Zywea)=_7ywe)— Zai (W' (x)+e—Vi). (3.10)

The first order (necessary and sufficient) conditions foimoglity are given as

04
gy 07 o Thady (@)
KKT(wea)q b =0— ya=a vi—1.,N (b))  (311)
9
T'?:OH Wio(x)+e=y Vi=1...,N. (¢
|

Eliminating the possibly infinite dimensional parameterand the residuals, one
obtains an equivalent dual system expressed in the Lagranggliers using matrix
formulations as

(Q+%/IN> a=Yy, (3.12)

wherea = (ay,...,an)" € RN is a vector)y € RN*N denotes the identity matrix and
Q < RN*N represents the kernel matrix defined as follows. @gtdenote the mapped
training data pointsPy = (¢ (x1),...,9(xn))T € RN*Ps | then one defines the kernel



64

CHAPTER 3. PRIMAL-DUAL KERNEL MACHINES

matrix asQ = ®JPy. Let a Mercer kernel functioi : RP x RP — R be defined as

an

inner product
P)TO(x) 2 K(X,%) VXX € 2. (3.13)

The following subsection elaborates on the duality betvikerkernel function and the
mappingg.

The final estimatéw, &) = argmin, . _#,(w,e) can be evaluated in a new pointc RP
in terms of the multipliers and the inner prodiaixi, x.) = ¢ ()" ¢ (x.) as follows

f(x,) = iaiKoq,x*) =Qgy(x,)7a, (3.14)

whered; solve (3.12) for ali = 1...,N. Here, the mappin@4 : RP x 2 — RN is
defined a4 (x,) = (K(x,X,),...,K(xn,%))" € RN.

Lemma 3.3. The dual problem to (3.9) becomes

maax/yD(a) = %aT (Q+ %|N> a-Y'a, (3.15)

from which not only the training solutions (3.12) follow,tkalso the Hessiaw# =
<Q+ %,IN) can be derived readily.

A detailed derivation on the variance of the estimator cafobed in subsection 6.2.
Similar to the Hat matrix described in Lemma 3.2, one canrmeftate the LS-SVM

as

a linear operator as follows

Lemma 3.4. [Smoother Matrix] The estimated valué of the given training data-
points Y using the model class (3.8) and regularized leasaiss cost-function (3.9)
follow from the linear operator e RN*N which is defined as follows

-1
Y=SY where $Q(Q+%/IN> . (3.16)

The following properties hold:

1. § is symmetric positive semi-definitg S S@ = 0 (Boyd and Vandenberghe,
2004).

2. The smoother matrix has a shrinking nature, meaning that S, or § — Sy is
negative definite. Note the difference with the Hat matee (semma 3.2) which
is idempotent.

3. The rank of the smoother matifiXS,) < N is an indication of theaumber of
degrees of freedowr theeffective number of parameteas argued in (Mallows,
1973). This motivated the following definition

N )\i
Dett = tr(S)) = ;W’ (3.17)
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where/A = (A1,...,An)T € RN denotes the eigenvalues of the kernel mairix
RNXN.

Note that the smoother matrix is also positive definite, aodsists as such of the
elements of a positive definite function which is sometimeferred to as the dual
kernel (Hardle, 1990; Giroset al, 1995). The smoother matrix has an important
role into various model selection criteria as the PRESSstita{Allen, 1974) and the
generalized cross-validation measure (Gathbl, 1979).

3.3.1 Mercer theorem and kernel trick

The Mercer theorem (Mercer, 1909; Aronszajn, 1950) was titeited as follows

Theorem 3.1. [Mercer Theorem] Let K: RP x RP — R be in L?(C) where C
denotes a compact subsefRi. To guarantee that the function KR® x R® — R has
an expansion of the form

0

K(xy) = Zaj o) @y) VxyeRP, (3.18)
J:

with positive coefficients;a> 0, a set of mappinggg; : R® — RP¢}¥ ; and Dy €
{Np, 0}, it is necessary and sufficient that

| [Key)goadxdyz=o. (3.19)
cJC

be valid for any function gRP — R in L?(C).

This means that any kernel functidd corresponds with an inner product in a
corresponding feature space

3 ¢:RP -RP? st K(xy)=¢Xd(y) ¥xyeC, (3.20)

as long as the functioK is positive semi-definite. This classical result was introet

in the literature by (Aizermaet al, 1964). The consequence is that if one fixes a
kernel functionK, one works explicitly with a feature space which is inducgdtis
kernel. As such, there is no need for the mapphng be defined explicitly as long as
the model can be expressed completely in terms of inneryotsdetween (mapped)
data-points. This principle is often referred to as kiesenel trick (Vapnik, 1998), see
e.g. (Schlkopf and Smola, 2002).

3.3.2 Primal-dual interpretation

One can now properly define the concept of a primal-dual kenaehine.
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Definition 3.1. [Primal-dual Kernel Machines] A primal-dual kernel machine
consists of a model formulation which possesses a primalaaddal representation
in the sense of (Lagrangian) optimization theory. The ptirapresentation is used to
formulate the optimality principle underlying the modelaasonstrained optimization
problem based on the training-set and all available priootedge, while the dual
representation refers to the characterization of the peobin the Lagrange multipliers
enabling the application of the kernel trick.

Note the difference with the primal-dual optimization mmlk in the context of
algorithms for (generic) convex optimization problem asafibed in Section 2.3. Itis
instructive to discuss the conditions for optimality (3.frldetail as those will re-occur
in most derivations of primal-dual kernel machines.

1. Condition (3.11.a) relates the parameter®f the fitted model to the finite
set of Lagrange multipliers. This condition goes along thme lines as the
Representer theorem (Craven and Wahba, 1979), see SedtioNde that this
relation holds as long as the norm of the parametersv{ w) is considered. It
will be crucial in all primal-dual kernel machine formulartis.

2. Condition (3.11.b) states that tite Lagrange multiplier is proportional to the
ith residualg with a factory. This property is specific to the use of thgloss
function. It will be important in the realization approadr fearning the kernel
as elaborated in Chapter 9.2.2.

3. Condition (3.11.c) repeats the original constraints.

Advantages of the use of primal-dual derivations of kernelchines include the
properties following from the derived KKT conditions for tapality (as the box
constraints in the case of SVM) and the sensitivity inteigiien related to the Lagrange
multipliers (as elaborated next) following from the theafyconvex optimization At
this stage, one can state the duality between the estimatathptew and the residuals
& more clearly. Eliminating the Lagrange multipliexrsfrom condition (3.11.a) using
condition (3.11.b) results into the equation

N
W=yy &) (3.21)

stating that the model (parameters) and the noise termsadrenty related via the
model definition, but also in a more direct way.

Example 3.2 [Learning Machine based on Fourier Decompositions] Consider the case of
afinite mapping of the observed data into a feature space using the Fero@enposition.
Let {x}N, be equidistantly sampled on the intery@l 2r1 such thatg = 2m'gt for
alli=1,...,N. Define the mapping to feature spage [0,2r1] — R2N*1 as follows
(Vapnik, 1998)

mapping: ¢(x) = (\/iéﬁin(x), ...,sin(Nx),cogXx),... 7cos(Nx)> , (3.22)
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such that the feature space has a dimensionaliBgo 2N + 1. The corresponding inner
product becomes

1

>+ (sin(kx) sin(kx;) + cos(kx ) cog(k;)) - (3.23)
K

Mz

kernel: K(x,xj) =
1

Let w = (W, W1, ..., WN, WN41, ..., Won) € RPNFL be the parameter vector. The primal
linear model then becomes

N N
. Wo .
function: f(x)=w'¢(x) = — + S wesin(kx) + § wy.kcogkx). (3.24)
V2 k; k;
Consider the ridge regression loss function
Ly Ve T
cost: /7 (W) = SW W+ 3 Zlelz st Wo(x)+a=y. (3.25)
i=
The dual solution follows from solving (3.15) and the optimum takes thma for
~ N
Dual estimate: f(x) = ZaiK(xi,x), (3.26)
i=

whereq; foralli = 1,...,N are the Lagrange multipliers characterizing the dual solution.
The estimated moddl has Fourier coefficients
. N
Primal estimate: (Zf) (k) = Zai (sin(kx) + cogkx)). (3.27)

Example 9.1 further studies this setting towards the context of more ael@b@gulariza-
tion schemes and infinite feature space mappings.

A similar primal-dual derivation formed the basis towardsaninterpretations of
unsupervised learning problems for kernel PCA followingh@kopf and Smola,
2002) in (Suykenst al, 200d), see also (Suykenst al., 2002) for extra results
on Kernel Canonical Correlation Analysis (KCCA) and KerRalrtial Least Squares
(KPLS).

3.3.3 Sensitivity interpretation

This subsection studies the relationship of the dual regmtasion and the sensitivity
of the solution to small perturbations in the observatiofise following definition is
taken from Hampel (Hampel, 1974; Hampeelal,, 1986).

Definition 3.2. [Influence Function] Let A denote a statistical functional mapping a
random vector(X,Y), and a distribution P orR. The influence function of A with
the (theoretical) nominal model (R,Y) underlying a datasetZ and a pointmass
distributionA is then defined as

IF(A P A) — lim ACY), (A= )P, V) + €4, 7) ~ AlX,Y), P).

3.28
€l0 & ( )




68 CHAPTER 3. PRIMAL-DUAL KERNEL MACHINES

The most important empirical versions are the sensitivitye (Tukey, 1977), and the
Jackknife (Tukey, 1958), based on addition and replacenespectively. The latter is
considered. LeZ ' denote the dataset without tite sample.

lim Alg(-@aﬂ) _Alg ({97i7(xi7Yi +G)}7£{)
0—0 o) ’
This statistical concept is closely related to the pertiobaand sensitivity inter-

pretation of the Lagrange multipliers as reviewed in sutisec2.2.2. LetAlg" :
2 x o/ x R — RP be defined as follows

IF(Alg, 2,8) = (3.29)

N
Alg"(2,,8) _argmmJy(we 3)= %WT wtsy
=1

<

(3.30)

Wl (xj)+e =yj Vj#i
wio(x)+e+d =y,

returning the optimum when varying tlidn constraint by adding a perturbatidnon
theith constraint.

Lemma 3.5. [Sensitivity of LS-SVMs] The sensitivity of the estimaig on the ith
data-sample is given as follows

ONg(7..8)| iy NE(Z.A0)—NE(Z.A0) _ g (33y)

Je ‘5:0 50 o)

The sensitivity of the estimafieand the predictiorf(x*) with x, € RP is thus given as

{gg 69 (%)

d(q ) aiK(Xi,X*).

(3.32)

From this, the estimated model (3.14) can be interpretetieasum of the empirical
influences of the given data-samples.

3.3.4 Bounding theL; risk

This formulation was also coined also as kernel ridge regpagSaunderst al., 1998),
under which name it received considerable attention frotatis§ical learning point of
view (Shawe-Taylor and Cristianini, 2004). Hence the folltg theorem

Theorem 3.2. [Bounding thel, Risk] Let0< € < N be a constant. Let fR® — R
be contained in the clasg (3.8) with bounded norm B R* such that|w||3 < B. Let
9D = {(xi,yi)}i'\‘=1 be sampled i.i.d. from a fixed but unknown distributiiy PLet the
L, risk of a function f be defined as

Zol1,Per) = [ (10 ) dPBey () (3.39
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Its empirical counterpart may be defined as follows
- 1N 2
%2(W7 .@) = N Z(W ¢(Xi) —yi) . (3.34)
i=

If the mapped data-pointsp (x;) }i—1 are contained in a ball with radius R and origin
zero, one can bound the risk as follows

Prob( | %2 (W, Py ) — Zo(W, Z) |

<25 (BVAT@)+ V1) +12(RB? %)”“* 53

where Q = ®\®], denotes the kernel matrix as before and Y denote the vector
containing the N observed outputs.

From this result, it follows that the estimator (3.9) alsoimiizes the theoretical risk
if N — o andB < . Traditional statistics often prefers the analysis of #emator
from the point of view of bias-variance trade-off as elaledan Chapter 6.

3.4 Liand é&-loss Kernel Machines: SVMs

Instead of the commoh,-based approach, am norm based norm is sometimes
preferred, although it is both practically as theoretictdss covenient. Use of tHg
norm can be motivated as an appropriate noise scheme (g@lgcian distribution, see
e.g. example 3.1) can be assumed or the method should be ohoist to outliers than
a least squares estimator. The derivations are summarizbd following Lemma.

Lemma 3.6. [SVMs for regression] Consider the model clas% of (3.8). Let the
e-loss function be defined dsl; = max(0, |e| — €) (Vapnik, 1998). The regularized
e-loss estimate follows from solving the optimization pewbl

A . 1 N
(W,8) = argmin fc ¢ (W,6) = ~w'w+C Zl\a le
we 2 =

st. Wo(x)i+e=y; Vi=1,...,N. (3.36)
This is equivalent to the dual optimization problem
1
max —>(a” — a)'Qa —a")+YT(a” —at)—elf(a” +a™)
at,a-

wherea™ = (a;,...,ay)" eRNat =(af,...,ay)" € RN are the positive Lagrange
multipliers. The resulting functiof can be evaluated at a new point® RP as

f(x.)=Qu(x.)T (@™ —a™). (3.38)
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Figure 3.2: lllustration of the principle behind bounding the empitiec&sk. (a)
Statistical learning theory provides bounds on the worsé@eviation of the risk of
a function in terms of the empirical risk and the capacityhaf functions.(b) Using
the upper bound (3.35), the empirical risk minimizer wilheerge to the theoretical
risk minimizers whem — oo andB < . If minimal empirical risk is attained (dashed
vertical line in), the minimizer of the true risk must sagsfithe interval indicated by
the black arrows with high probability.
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Proof. One can reformulate the-loss max0, |g — €|) by using the slack variables
& = max0,|g —¢|) € RN as follows

& st —(&G+e)<wox)-yi<(e+&), &§>0. (3.39)
Employing this change of variables in the cost function§3.&e Lagrangian becomes
+ oo 1.7 c S T
ZLegWé,at,am,pB) = oW W+C.Z|Ei+‘zai [(W'o(x)—yi)—(&i+e)]
Jrzl W d06) Vi) — EHrf ZBIEH (3.40)

with positive multipliersa®™ = (af",...,a{)T € R™N, a= = (a;,...,ay)T € RN
andB = (B1,...,Bn)" € R*N. The necessary and sufficient conditions for optimality
are given as

5;?;(\31,520% w=3N (a7 — o) (x) (a)
a;iC.’E:OH C:ai7+ai++ﬁi V|:1,,N (b)

| at,a B =0 Vi=1..N (0

KKT —(&+e)<wox)-yi<(&+e) Vi=1..,N (d)
>0 Vi=1...,N (e

o (W) —yi)—(&+e)]=0 Vi=1...N (f)

ar [~WTe(x)—y)— (&+€)] =0 Vi=1.. N (g)

Bi& =0. Vi=1,...,N (h)

(3.41)

Alternatively, one can reformulate the optimization pevhl (3.36) as a saddle-point
problem min, s max,+ o- g or in its dual form as in (3.37) after elimination of the
primal unknownsw, & and the dual multiplier§. The obtained estimatov’ §(-) can
be evaluated in a new point using only the dual variables &3.88). O

This formulation was coined as the Support Vector regre&éM regressor) (Vapnik,
1998). Note the correspondence between the dual représartéithe solution to the
L, (3.14) and thd.; kernel machine (3.38). The representer theorem stateshtisat
correspondence is not a coincidence. In the language of $vdhon-sparse Lagrange
multipliers a; are denoted as support values and the corresponding vectoescalled
support vectors. Note that sparseness here results frooms#hef the 1-norm and the
inequalities. Following the complementary slackness tm (3.41.fg), the support
vectors are located outside or on the maximal margin boynfiag) + &.

Example 3.3 [Estimating location parameters, 1] As an application of this result,
reconsider the setting of Example 1.2 of a sam[glg * , sampled from an univariate
random variableY. Let the pdf of Y be a Laplacian such thaiy (y) = Z(u,0) =
5 exp(—|y—p|/0). This distribution occurs e.g. as the distribution of the mutual
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&l ai

10

(b)

Figure 3.3:The solid lines indicate the, (a) and theL, (b) loss function used for the
estimation of location. The dashed line(&) represents the values of the tefay” —

a;") in theL, estimator corresponding with the residual tegm The dashed line in

(b) represents the Lagrange multipl@grof the dual of the., estimator corresponding
with the residual terme,, see Example 1.2. Note the correspondence of the dashed line
with the theoretical influence function of the mean and théiare
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differences between two independent variates with identical exponeisiaibutions
(Abramowitz and Stegun, 1972).

The maximum likelihood estimator of the location parametéhen becomes

- i — K|
i arg maxog exp(
| ! o

= argminy |y —p|
i
N
= argminZa st. —e<yi—pu<e, (3.42)
ue =

which can be cast as an LP problem, see also Chapter 2. The Lagradvegames
Zpeat.a )=zl a +z% (H-vi—a)+ 3o (—Htyi—a) with positive
multlpllersor+ (aj,...,ay) e]Ri+ anda~ = (ap,...,ay)" € R*N Necessary
and sufficient condltlons are given by the Karush-Kuhn- Tuckedmzmns.

0.

Je =0— 1l=a'+a vi=1,...,N (a)
+ oo %:OH st =300 Vi=1...,N (b
KT eat,a) = —e<y-p<g Vi=1...N (¢
a o >0 Vi=1,...,N (d)
o (H-yi—&)=0 Vi=1..,N (e
o (H—yi+e)=0. Vi=1.. N (f)
(3.43)

From the complementary slackness constraints (3.43.ef), it followsfhanda;” can
only be non-zero simultaneously whar=y;. Furthermore, the relatiamﬁ (1-a7)=0
holds elsewhere. In case all sampjgsvere different, the equality; = ¢ can only be
attained for a singlg;, sayy. In summary,

T=lH-yi>0), o =l(p-yi<0) if yi#p
a=a; =05 if yi=u (3.44)

SN (=Y >0)=3N I(u—yi <0),

where the indicator functiorl(x > 0) equals one ifx > 0 and zero else. IN
were odd, condition (3.43.b) ensures tiisit— 1) /2 number of data-points are strictly
lower thanpu and (N —1)/2 are strictly larger such that = yn.1)/2) If N were
even,N/2 data-points are strictly lower thgm and N/2 are strictly larger, andi =

(y((N 1)/2) T YN+1)/2) ) /2. As such the median would correspond with maximum
likelihood estimate whenever a Laplacian distribution may be postulated.

Figure 3.3.a illustrates the connection between the loss fungipand the value of the
corresponding Lagrange multiplie(tari+ —a~). Following Subsection 3.3.3, one sees
the connection betweefu;” — a~) and the sensitivity of the values in the median
estimator. Figure 3.3.b shows the case of thdocation estimator and the Lagrange
multipliers a; corresponding witlg, again suggesting the sensitivity interpretation. For a
complete account of robust location estimators and influence functiea®.g. (Andrews
et al, 1972) and the survey in (De Brabanter, 2004).
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3.5 L Kernel Machines: Support Vector Tubes

A slightly different setting is considered. Example 3.4 siders the most basic case
(without covariates) in some detail.

Example 3.4 [Tolerance bounds] Let 27 denote a se{a}i’\‘:1 C R sampled i.i.d from a
random variabl& with cdf P;. Given an interval—t,t] C R, one can give a bound on the
probability that future samples € Z sampled from the same distribution will lie inside
the interval. Lefl : R™ — . C R be elements of the following class

Fr={T:R" -7 | T(t) = [t, },0<teR}. (3.45)
Let the true risk and its empirical counterpart be defined respectigely a
{%%(lt,PZ) = /1(|Z > t)dFz(2)

B, P7) = { 3N k(7] > 1),

(3.46)

whereli(|z| > t) equals one iz ¢ [-t, t] and zero otherwise. Ifis chosen with zero
empirical risk %% (t,2z) = 0), and after constructing the cdf and the empirical cdf (ecdf)
of the datase|z| = {|z|}N.;. Then the application of classical results (Vapnik, 1998)
gives the following results

e Due to the Glivenko-Cantelli theorem, the ecdfinf will converge to the true cdf
whenN — oo such that

lim sup|Pz(2) — Bz (2)| = 0. (3.47)

N—oo 20

e Application of the law of the iterated logarithm gives

Prob(llim sup# (I, Py) < '”'”N> -1 (3.48)

—eo N 2N
e From the Kolmogorov-Smirnoff bound, the following inequality can beweer
Prob(%%(lt, ) > £> < 2exp(—2¢2N), (3.49)

which hold for finite sample sets with sipé
e A related result originates from the theory of random variables and stdgstics
known as the formulation of tolerance intervals:
Prob(%’%(lt,Pz) > s) <NeN-1 - (N—1)eN, (3.50)

where 0< a < 1 is the confidence level, see e.g. (Rice, 1988), Chapter 3, Example
E.

Given a set of sample® from a random vectofX, Y) with joint distributionPxy . let
Z be a random variable defined As=Y — f(X) with f : R® — R a fixed function.
The transformed dataset then becoraes= {(xi,zi)}i'\':l wherez =vy; — f(x). The
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Figure 3.4: (a) lllustration of the intuition behind the interpretation afterval
estimation in a univariate sample as explained in Example @) In the setting of
regression, the conditional distributi®(Y |X = x) may be estimated by the empirical
cdf estimator based on the residuals=y; — f(x) of the data observations (black
crosses), resulting in an uncertainty region as indicagethé gray zones. The solid
black line indicates the expected conditional den$ity) = E[Y|X = x|. The black
arrow indicates the height of the region with zero empiriisH.

marginal probability of the random vect¢K,Z) over X becomes PralZ <z X €
RY) = Prob(Z < z) = P;(2). The results of Example 3.4 may be used to derive bounds
on the marginal risk and the marginal empirical risk of tHeetaefined as follows

{%T(lt,F’xY) = [I(yZT(x)dRx(yx) = [t (|z] > t)dP:(2)
Ar(Wt,2) =AM 1y € T(%)),

whereli(y € T(x)) equals one ify ¢ W' ¢(x) —t, w'¢(x) +t] and zero otherwise.
Subsection 3.6.2 gives a more detailed derivation whicbrimarates the complexity
of the tube. Consider the task of approximating the unknowppert of Bcy. As in
practice one typically distinguishes between the unknaegponse variablé and the
inputs X which happen to be given, a support may be expressed as #funttthe
given dependent variabk = x. To simplify matters further, the following family of
support functions is considered

(3.51)

For={TWt)=w'¢(x)+t|weRP* tc RT}. (3.52)

In a practical setting, those result may be used as followsT [w;t) be an element of
Fy 1 With empirical risk zero.Let {(xj,yj)}}L; C RP x R be drawn i.i.d. according
to the same distribution® underlyingZ. In this case the output sampleswill on

average lie inside the interval(k;) with high probability. This result shifts the focus
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of the point estimatoff to the interval estimato[rf—f, f+ﬂ denoted as the support
tube. As such, the proposed support vector tube is closklieceto results in novelty
detection algorithms (Tax and Duin, 1999). Figure 3.5 thates the principle behind
the Support Vector Tube on a one-dimensional example. Tiheapdual derivation is
summarized in the following Lemma.

Lemma 3.7. [Support Vector Tubes] Consider the class of support tubegg, 1
defined in (3.52). Leu > 0 be a hyper-parameter. The smallest tube of minimal
complexity is found as the solution to the following optatian problem
(W,f) = argmin_g, (wt) = %WTW-‘r ut
wit

st —t<wio(x)—yi <t, Vi=1,...,N. (3.53)

The dual problem becomes

(a+,at) = aor{%r?ax;(a‘ —a)TQ(@ —a")+(a”—a")TY
st. (a +a)Tdy=pu, a’, a” >0n. (3.54)
The resulting tube can be evaluated in a new pojnt RP as follows
T(x)=Qu(x.) (& —a")£f, (3.55)
where @™ and G~ solve (3.54) and can be recovered from the KKT conditions
(3.57.fg).

Proof. The Lagrangian becomes

N
Zuwtia®,a”) = %WTW+ utt 3 o (w9 4) )~

+ Z —-vi)—t], (3.56)
with positive multipliersa™ = (a;",...,a{)T e R*™N, a= = (ay,...,ay)" € RN
The necessary and sufficient conditions for optimality avergas

0.4 _
w =0~ w=3ili(a —a)e(x) ()
%ZOH p=3yN,(a +a) Vi=1...,N (b)
ot
KKT al 7a| > O (C)
—t<wlhg(x)i—y <t Vi=1,....N (d)
a [(whe(x)— yi) tj=0 Vi=1...,N (f)
a [—(WTe(x) —~t]=0. Vi=1...,N (g)
(3.57)

The saddle-point interpretation leads to the dual problg/®4). The parametércan
be recovered from the complementary slackness condit@b3.fg) by the equality
w' ¢ (x) —yi =t which hold whena;" > 0. O
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Figure 3.5:lllustration of the Support Vector Tubéa) Let & be a sample of a joint
distributionPxy with bounded support(b) Consider the transformed dafa=Y —
f(X). The solid line shows an absolute uppés- respectively lower-bound; of the
support ofZ such thatP(uz < Z < Uz) = 1. The dashed line shows the empirical
counterpatrt.
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3.6 Robust Inference of Primal-Dual Kernel Machines

3.6.1 Huber’s loss function

Definition 3.3. [Contaminated Noise Model, (Huber, 1964)] The general gross-
error model orp-contamination noise model is defined as the union of the mami
noise model §rand an arbitrary continuous distribution G. L&t< p <« 1 be the first
parameter of contamination:

7 (Fo,p) = {FIF(X) = (1-p)Fo(X) +pG(¥) }. (3.58)

This contamination scheme describes the case where the atatars with large
probability (1 — p) according to the (ideal) nominal model. Outliers occur twit
probability p according to the distribution G.

A robust way to handle this family of noise models in paraimetrodels is the use of
the so-called Huber loss function which is a combinationroEanorm for obtaining
efficiency and_; for the sake of robustness. The loss function is defined s\l

&

& g <c

he=132 = el < (3.59)
cle-% el >c,

wherec is a constant depending on the noise lemelA good initial estimate foc was
proposed as = 1.483 MAD(Z) where MAD(2) is the Median Absolute Deviation
of the estimated residuals MA®?) = median({e =yi — f(x)}N ). Robust statistics
for non-parametric techniques were studied in (Hettmanggpeand McKean, 1994).
Analogously, one can consider this family of noise modetsfin-parametric primal-
dual kernel machines as proposed in (Vapnik, 1998). Thegittual derivations are
summarized in the following lemma.

Lemma 3.8. [Primal-Dual Kernel Machine with Huber-loss (Vapnik, 1998)]
Consider the class of model%,. Let qv € Rp be positive constants and =
(rl,...,rN)T e RN be slack-variables modeling the outliers. Then the kerradhime
based on the Huber loss function is equivalent to the foligvaptimization problem

o . 1 - N 1 N
W, & fij) = argmin wer)=-ww+ylcyri+—
( i) V%EJ Hey ) > V( i; [ 2Cizle'2>

st. —ri<w X +a-y<ri. (3.60)
The dual problem becomes

(G+,a7)=arg maxf%(a‘ —af)T (Q+ %/IN) (@ —a")+Y(a —a')

at,a-

(af+a7)=yc, o ,a7 >0, Vi=1,...,N. (3.61)

and the estimate of a new data point can be writteri@s) = Q(x,) (" — &) where
a+,a~ solves (3.61).
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Proof. The Lagrangian of the cost-function becomes

1 N 1N
ZLeywer;ata”) = EWTW+ y<czlri + 2—C_Zlq2>
+Zla+ W T (x)+8a—Yi) *r Jrzl —(Wp(x)+e— Y|)*r]a (3.62)

with positive Lagrange multipliera*,a~ € R™N. The Karush-Kuhn-Tucker condi-
tions for optimality become

K =0— w=3y (a7 —a)d(x) (@)
dacy 0— ya=c(a —a) Vi=1,...,N (b)
KKT %—OH yc=o;"+a, Vi=1,...,N (c
I at,a” >0 (d)
—r|<WT¢( i)+e—Yi <ri Vi=1...,N (¢
at [(WTe(x)+e—y)—r]=0 Vi=1..,N (f)
of [—W'e(x)+e—y)—r]=0 Vi=1..N (g)

(3.63)

Substituting the conditions (3.63.abc) and maximizingrdtie Lagrange multipliers

a*t, o~ results in the dual problem (3.61). O

The following algorithm can be used in practice to speedetimputations.

Algorithm 3.1. [lteratively Re-weighted Robust LS-SVM]  An iteratively re-
weighted algorithm based on the weighted LS-SVM regressprdposed to solve
the optimization problem (3.60) efficiently. The algoritas first proposed as a
standalone formulation of a robust LS-SVM for regressianyk®nset al, 2002). It
is based on following reformulation of the regularized lesguares cost-function (3.9)
using the adaptive weighting terfis= (T'1,...,I'y)T € RN:

1 1N
W,8) = argmin Z/-(w,e) = =w'w+= S T
( ) 9v,e /C,r( ) 2 2|; qu

W' (x)+e =y (a)
st. {Ti&=tu(e)=% lef<c (b) (3.64)
re=rtue)=cle—-% |g>c (0

By alternating over the constraints (3.64.a) and (3.64.lm)e obtains an iterative
algorithm for solving the problem as follows:

¢ Ifthe weighting” were known, one can obtain the solution to (3.64) by solving a
linear system following the primal-dual derivation of th84SVR as described in
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Figure 3.6:Empirical assessment of the influence of outliers on the Hbased SVM
regressor, the standard SVM regressor and the LS-SVM sgrgs) Effect of the
global performance of the estimators when ranging the erron theith output from

0 to 5. (b) Influence on théth Lagrange multiplien; of the estimators when ranging
the errorg on theith output from0 to 5.
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Subsection 3.3 (see (Suykesil, 2002)). Let Dr = diag(T'y,..., ) € RN*N
be a diagonal matrix, then the weighted LS-SVR results from

(Q+Dp)a =Y. (3.65)

From the necessary and sufficient conditions for optimétlityllows thatl"i& =
G whered = (@q,...,an)" € RN solve (3.65). The estimated functibrean be
evaluated in any pointxc RP as f(x,) = Q4 (x.)a@ (Suykengt al, 2002).

e Given the estimate®= (&;,...,éy)" € RN, the weighting$ can be recomputed
by solving the equations

g
riqzzm(a):{z % alsC viciN, (3.66)
cel-% lal>c
for I';. From this equality, it follows that;| < ycforalli=1,... N.
e The algorithm then goes as follows:

1. Initiater ® = y1y fort =0
. Computexr®) from (3.65) and™(®)
. Recompute the parametérsby using equation (3.66)

AW DN

. Let0 < p <« 1 be a factor to decrease the speed of convergence and to
avoid instabilities. Theff 1) = pr® 4 (1—p)r+

5. Lett=t+1 and iterate steps 2-5 until the algorithm converges.
A further convergence analysis of this algorithm is extehtefuture work.

It turns out that only a very few iterations are needed infica¢Suyken®t al.,, 20023)
and the solution follows much faster than from the QP forroeimplemented by a
general purpose solver.

Example 3.5 [Comparison of Robust inference Machines] A simple example is given
to illustrate the effective robustness of the different approaches.t#@sefais generated
as followsy; = sindx;) + & wherex; is taken from the interval-3, 3], N = 100 and
g is taken from a contaminated Gaussian distribution. Consider the stan8a&y¥/M
regressor (Section 3.3), SVM for regression (Section 3.4), Hbhsed SVM regressor
(subsection 3.6.1) and respectively. In the first examplejttherror termeg is grown
from zero to 10 and the corresponding prediction efrmingx) — f(x)|dxis computed
for the four estimators. Figure 3.6.a reports the evolution of the glo&ddpnance of
the different estimators while the errarbecomes more outlying. Figure 3.6.b gives the
corresponding evolution of thiéh Lagrange multiplier.

Let g be distributed as follows ~ (1—p) .47(0,0.1)+p % ([-10,10) with0< p < 1

the factor of contamination. Figure 3.7.a gives the empirical influenoetion when

the factor of contaminatiop grows. Figure 3.7.b reports the performance in the case
p = 0, showing that the robustness of the hSVR and the SVR comes at theoprice
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efficiency and performance in the uncontaminated case with respeetlit&{8VR. While
the qualitative behavior is typical for the estimators, the quantitative piiepeislope,
breakdown point etc.) depend on the chosen hyper-parameteeshyfpler-parameters
where tuned using 10-fold cross-validation on the uncontaminated caseere fixed
throughout the experiment for clarity of illustration.

3.6.2 v- Support Vector Tubes

A relaxation of the finite support assumption is consideraskll on the contaminated
noise model (3.58). The primal-dual derivations are sunmedrin the following
lemma.

Lemma 3.9. [v-Support Vector Tubes] Consider the tube Tx) = w' ¢ (x) =t where
wand t are to be estimated. Letu € R} be constants.

N
(W,,fi) = argmin_2, ,(w,t,r) = %WTW—F v (Ziri + ut)
=

wit,r

t_r < T _vy < . i=1...
ot t—ri <w' ¢(X) —Vyi <t+r; V! 1...,N, (3.67)
>0 Vi=1,...,N.
The dual problem becomes
(@+,a") :argmax—}(oﬁ—a*)TQ(oﬁ—a*)Jr(a*—a*)TY
at,a~ 2
On<at,a~
st S (o +07)<v Vi=1,...,N (3.68)

(o +a7 ) v = v,
and the estimate of a new datapoint can be writterf @s) = Q(x,)(& " — &) where

&~ anda™ solve (3.68).

Proof. The Lagrangian of the cost-function becomes

1 N N
Hutwrtia®,a) = Swwsy (;ri +ut> -3 6
i= =
N

N
i;“ﬁ (W' (x)—yi)—t—ri] —_Z‘GF [—(WT (%) —yi)—t—ri], (3.69)

with Lagrange multipliersx™, a—, 8 € RN. The Karush-Kuhn-Tucker conditions for
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optimality become

0.4 _
S =0~ w=3li(a —a)¢(x) ()
0.4
#zoa vp=3N (a" +a7) Vi=1,...,N (b)
KKT | a0, >0 (d)
—ri—t§WT¢(xi)—yi§t+ri vi=1,....N (e
ri>0 vi=1,....N (f)
o [(Whe(x)— y.Hfr]:o Vi=1....N (g
a [—W'o(x)—yi)—t—ri|=0 Vi=1,...,N (h)
Biri =0. vi=1,...,N (I)
(3.70)
Substituting the conditions (3.70.abc) and maximizingrdtie Lagrange multipliers
a*t, o~ results in the dual problem (3.68). O

The naming conventiom-SVT follows from the fact that the primal problem and the
dual derivation goes along the same lines avt8/M (Sctblkopf and Smola, 2002),
although the setting is different. This observation triggie following result, which
follows from the Karush-Kuhn-Tucker conditions.

Lemma 3.10. [Sparseness in-SVTs] The hyper-parameteu is a lower-bound to the
number of nonzero Lagrange multipliers and serves as anrdppend to the number
of outliers ¢ outside the tube.

Proof. This follows from the observation that for k= 1,...,N, the values ofy," and

a;~ cannot be nonzero simultaneously when 0. Furthermore, conditions (3.70.cd)

guarantee that;" anda;" lie in the interval[0, v] (also referred to as box constraints).

The second statement follows from the complementary sksicondition (3.70.i).
O

An analysis of the finite sample behavior of the robust SVTofes along the
same lines as that of the Support Vector Machine for regyasg&hawe-Taylor and
Cristianini, 2004).

Theorem 3.3. [Risk ofv-SVTs, (Shawe-Taylor and Cristianini, 2004)]Let Be R,
and0 < & < 1 be fixed. Consider the clas8, 1 with bounded normiw||3 < B. Let
9 = {(xi,yi)}i'\‘:l drawn i.i.d. from a fixed but unknown distributiop\P Let the risk
7 (W,t,Pcy) and its empirical counterpant?T (w,t, 2) be defined as in (3.51). Then
the following inequality holds for every element of the sl&% + with bounded norm
|w]|2 < B simultaneously:

Zr(W,t,2) _ 4By/tr(Q In(2/¢)
Tg_r ’ NGE—D) +3\/ o >>(1—s), (3.71)

P (‘%T(Wa TaB(Y) -

wheret € RT is such that t< 7.
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This result corresponds entirely with Theorem 7.49 in (Sidaylor and Cristianini,
2004). This provides an upper-bound to the theoretical thisik a new point drawn
according toPxy will lie outside the Support Vector Tube with empirical rigls
obtained (3.60).

3.7 Primal-Dual Kernel Machines for Classification

While the previous elaboration mainly focused on the caseegfession, the past
literature on kernel machines mainly considered the casksesification for a number
of reasons which are properly summarized in the followingtgtion

“(...) However, it was extremely lucky that at the first ance th
most important stage of developing the theory - when the roaintepts
of the entire theory had to be defined - simple sets of funstiwere
considered. Generalizing these results obtained for atitm indicator
functions (pattern recognition) to the problem of estimgtreal-valued
functions (regressions, densities, etc.) was a purelynieahachieve-
ment.” (Vapnik, 1998).

Though a multitude of formulations and derivations exiatydwo cases are elaborated
in some detail.

3.7.1 Standard Support Vector Machines

Let 2 = {(x.,Yi)}}.; be samples from the random vec{dt, Y) such that; € RP and
yi € {—1,1}. Let us consider the hyperplane described as

Hp(w) = {xeRd‘?’ () =w§(x) :0}7 (3.72)

where againp : RP — RP¢ is a fixed but unknown mapping. Lefnp = {Hp(w), w e
RP¢} be the class of hyperplanes which is considered in this Gaseplacement of a
new pointx, with respect to the hyperplane Hp) can be determined as follows

9. = sign[f (x,)] = sign[w' ¢ (x.)] . (3.73)

The distance of any poini(x.) to the hyperplane Hw) € %, is given as

s (T
d(¢(x.), Hp(w)) = ”|ff,((::))||2 > y.(wW;valx*)). (3.74)

Now consider the problem of finding the hyperplane with maatimargin:

(W,rn) =argmaxm s.t. d(¢(x),Hp(w)) >m. (3.75)

w,m
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Without loss of generality one can change variables sudviher = 1/m. As such,
one rewrite equation (3.75)

W = arg min%wTw stoyi(Whe(x)>1vi=1,...,N. (3.76)
w

Moreover, it follows that the resulting margin equais= 1/w"w. A proper relaxation

was formulated to the case where the data of the differersisefais not strictly

separable by an hyperplane from the clg&sg,. After introducing the slack variables
& =(&,&,...,&n)T, one can write

s 1 N
(W, &) = arg mlnEWTW—FC &
w.é i=

st.oyi(wWex)>1-§ vi=1...,N. (3.77)

The first notions of this strategy appeared in (Vapnik, 1988)s formulation of SVMs
appeared first in literature in (Bosetral, 1992) and was elaborated in (Vapnik, 1995).

Statistical learning theory provides lower-bounds on thieggalization performance of
such a maximal margin classifier. A central result is sumpeakin the following result
due to (Vapnik, 1998).

Theorem 3.4. [Bounding the risk]Let0 < & < 1 be fixed. LeZ = {(x;,yi)}N, C
RD x {-1, 1}N be sampled i.i.d. from the fixed but unknown distributign.FLet the
theoretical risk of a classifier be defined as

A(1.Per) = [ 1109 < 0)dRev, (3.78)

where I(f (x)y < 0) is one if f(x)y < 0 and zero otherwise. Its empirical counterpart is
defined asz(w, 2) = %ZiN:l lyiw" ¢ (x;)||. The following bound holds simultaneously
for all hyperplanes with given VC-dimension ¢

P (%(fm) < W)+ \/ cn(ejes I =ne/ 4)) S(1-g).  (379)

Extensions to so-called ramp-functions (squared claasific loss) were studied e.g.
in (Cristianini and Shawe-Taylor, 2000). Alternative bdarwere constructed using
complexity measures as the (empirical) Rademacher coiityplghawe-Taylor and

Cristianini, 2004). A modified version of the primal-dualigation (as can be found
e.g. in (Vapnik, 1998; Cristianini and Shawe-Taylor, 2008)given in Subsection

6.4.3.

3.7.2 LS-SVMs for classification

Consider the parametric assumption that both claSses= {(xi, Vi) }y—+1 andC_1 =
{(%,¥i) }y;=—1 are drawn from two different multivariate Gaussian disttibns with
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equal variances, sa¥,1 ~ .4 (W;1,1¢0?) andC_1 ~ .4 (w_1,140?). Some algebra
shows (see e.g. (Friedman, 1989; Hastieal, 2001)) that Hw) = %(W+1+w_1)
describes the unique line such that Hp(w) < P(y=+1|X =x) = P(Y = —1]X =Xx).
Given a finite sample, the penalized maximum likelihoodresate results from the
following optimization problem

1 N

(W,8) — argmin=w'w+ Y Zlqz st.oyi(wx) =1-8. (3.80)
we 2 2i:

Employing the primal-dual optimization framework, it isadily seen (Suykens and

Vandewalle, 1999; Suykeret al, 2002; Van Gestekt al,, 2002) that the solution is

characterized by the following linear system

(QM?N) o =1y, (3.81)

whereQY € RN*N is the modified kernel matrix defined @] = K(x;,Xj)yiy; for all
i,j =1,...,N denotes the pointwise matrix product. The decision of a newt, is
then made as follows

N

9signlzl&iyiK(Xa,x*)], (3.82)

i=
whered = (G1,...,an)" € RN solve (3.81). This primal-dual derivation including bias
term was coined as Least Squares SVM classifier (Suykens andewWalle, 1999).
The dual solution is strongly related as kernel Fisher @igoant analysis (Baudat and

Anouar, 2000), proximal SVM (Fung and Mangasarian, 2004) Regularized Least
Squares Classification (Rifkin, 2002).

Other kernel based approaches towards the task of clasisificaclude amongst others
Parzen based classifiers as the naive Bayes classifiergsdélastieet al,, 2001) and
kernel logistic regression (Jaakkola and Haussler, 1988hust minimax extensions
were studied in (Lanckriegt al, 2002; Trafalis and Alwazzi, 2003).
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Chapter 4

Structured Primal-Dual Kernel
Machines

It is @ common intuition that the incorporation of prior knlewge
into the problem’s formulation will lead to improvements ibie final
estimate with respect to naive applications of an off-theilsmethod. The
following chapter shows the flexibility of the primal-duabtimization
framework for decoding this knowledge into the estimatiaohbtem.
Various types of structural information are consideredjuding semi-
parametric model structures (Section 4.1), additive no@eéction 4.1),
imposing pointwise structure (Section 4.3) in the form @&quoalities and
its extension towards handling censored observationgi(®et.4).

4.1 Semi-Parametric Regression and Classification

4.1.1 Semi-parametric LS-SVMs for regression

Suppose the underlying function generating the data cantbeaaily well approxi-
mated by a model contained in the following class

ﬂ¢7p:{f "RP xRPr R ‘
fxxP) =wldp(x)+BTx°, weR¥ Bc RDP} , (4.1)
wherex represents the non-parametric dependent variablRB® andxP < RPr denote
the parametric dependent variable of dimensign This setting reduces to the
commonly considered case of the intercept (bias) term vegrane chooseBp, = 1

andxP = (1,...,1)T € RN. Let X, € RN*Pr denote the matrix wittDp columns
where eaclith column contains thil samples of théh parametric component for all

89
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i=1,...,Dp. Applications can be found in e.g. (Engieal., 1986) for the modeling
of electricity demand.

As an example, consider again the regularized least sqoasefunction

wB.e 2 2

st wo)+xXPB+e=y,vi=1...,N, (42)

wheree = (e1,...,ex)" € RN is a vector. Let g, denote the vector of zeros
(0,...,0)T € RPr. The dual problem to this problem becomes similar as in {3.15

Op0p | Xp | [ A ]_[ 00 (4.3)
Xo | Q-+ a Y | '

wherea € RN are the Lagrange multipliers astle RN*N denotes the kernel matrix as
previously. Eliminating the Lagrange multipliers from theear system (4.3), results
in the following set of linear equations

1\ 1\
XJ(Q+;/IN> Xp B—XJ(Q+¥/IN> Y. (4.4)

Note the correspondence with the generalized and weigktet squares regression
where the errors obey a pre-specified correlation functidiardia et al, 1979;
Wetherill, 1986).

From the conditions of optimality, it follows that the opt@nmodel can be evaluated
in a new point(x.,x?) € RP x RPr as follows

Y=0u(x)Ta+BTxP, (4.5)

where Q4 (x,) = (K(X1,X),...,K(x,x.))T € RN and @ and B solve (4.3). Fur-
thermore, the conditions for optimality result into the peday ye = a; and the
orthogonality constraintXTa = Op, in case the parametric components are not
regularizedyz = 0. The following modification to the conjugate gradient aitjon
provides an efficient implementation for the solution of¢leeof linear equations (4.3):

Algorithm 4.1. [Semi-parametric Models] Given the set of linear equations (4.3),
the conjugate gradient algorithm (CG) can be modified forisg this positive semi-
definite linear system. First consider the positive defini@rix Ac RN*N and the
vector be RN, Then the set of linear equations A% can be solved for x using CG as
described in e.g. (Golub and van Loan, 1989; Nocedal and k¥riP99). Having fixed
this algorithm, one can cast the positive semi-definite lgmb(4.3) as two different,
less complex and strictly definite sets of equations asvisliorhe convergence speed
and the use of possible preconditioners (Nocedal and Wri#®9) was investigated
in the context of LS-SVMs (Hamers, 2004).
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1. solve for A= RN in the linear system
1
<Q+¥/IN>AY. (4.6)
2. solve for B RN*Pr in the linear system
1
<Q+;IN) B=Xp. (4.7)

3. Let Se RPr*Pp pe defined as follows

S=X;B. (4.8)

4. The parameterf then result from
B=B'Y. (4.9)

Note that this problem may be ill-conditioned as the condithumber of S is
large.

5. The Lagrange multipliers solving (4.3) can be recovered a

a=A-B'B. (4.10)

This algorithm corresponds with the derivation as in (Sunget al, 1999; Suykenst
al,, 200d).

This algorithm can be verified easily by eliminating the shteB andA and comparing
the result with (4.4) and (4.3).

4.1.2 Semi-parameteric classification with SVMs

All machines described in the previous section can be ergtnwith parameteric
components which are not to be regularized explicitly. @grsthe case of classi-
fication with SVMs as described in Subsection 3.7.1. Let aseokation consist of

a parametric termx” = (x(l),...,x(P>> € RP? and a term used for non-parametric
modelingx € RP. Consider the semi-parametric description of the hyperpla

Hp(w, B) = {xe R% [ £(x) =w' ¢ (x) + BT xp = o}, (4.11)

with parameter@ < RPr. Then the modified distance measure of a point consisting of
a parametric ter? € RPP andx, € RP is adopted

M)l YT e(x) +BTXD)
EESIE wiw

d(¢(x.),Hp(w, B))

(4.12)

which is invariant to the parameteric terxis The resulting semiparameteric SVM is
summarized in the following Lemma.
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Lemma 4.1 (Semi-parameteric SVMs). Consider the maximal margin classifier
using a hyperpplane described in (4.11) and the modifiecudést function (4.12):

N

A A 1
(W,B,E):argmlnéwTw+C &
w,é,B i=
. T : T _p >1-—§& | —
st WNWO)FBIG) 21-8 Mi=1..N 0
& >0 Vi=1,...,N
The dual problem becomes
G — agmax—~aTQva + a st 20X =0 Yp=1...P (4.14)
= angmaxo oty T lo<a<C  Vi=1..N,

wherea = (ai,...,an)" € RN are the Lagrange multipliers corresponding to the
constraints in (4.13) an@y € RN*N is defined adyj; = K(x;,xj)yiy; for all i, j =
1 N.

yeeey

The proof is omitted as it goes along the same lines as deskrilihe previous chapter.

Remark4.1 This result triggers the following observation. Let thegraeteric terms

consist of two variables which are (close to) collinear.sltiear that the solution to
the primal problem (4.13) is numerical ill-conditioned asform of regularization on

the parameters is present. The dual problem (4.14) is ntgrig this problem as

the influence of the parameteric terms does only occur in¢barence of the equality
constraints. The ill-conditioning however will reoccuroifie is interested in the value
of the estimated parameters by exploiting the complemgstackness conditions.

4.2 Estimating Additive Models with Componentwise
Kernel Machines

Direct estimation of high dimensional nonlinear functiamsing a non-parametric
technique without imposing restrictions faces the probtdrthe curse of dimension-
ality (Bellman and Kalaba, 1965). One way to quantify theseuof dimensionality
is the optimal minimax rate of convergende2/(2+D) for the estimation of arn
times differentiable regression function which converggegero slowly ifD is large
compared td (Stone, 1982). Several attempts were made to overcomelibtaaie,
including projection pursuit regression (Friedman andepiKLl974; Friedmann and
Stuetzle, 1981) and kernel methods for dimensionality cédno (KDR) (Fukumizuet
al., 2004).

Another possibility to overcome the curse of dimensiogabtto impose additional
structure on the regression function. Additive models arg useful for approximating
high dimensional nonlinear functions (Stone, 1985; Haatid Tibshirani, 1990).
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These methods and their extensions have become one of theywided non-
parametric techniques as they offer a compromise betweaesdimewhat conflicting
requirements of flexibility, dimensionality and intergability. Traditionally, splines
(Wahba, 1990) are commonly used in the context of additiveletsoas e.g. in
MARS (see e.g. (Hastiet al, 2001)) or in combination with ANOVA (Neteet
al., 1974). Additive models were brought further to the atmmtof the machine
learning community by e.g. (Vapnik, 1998; Gunn and Kand2(#)?2).

The following approach was described in (Pelckmetred., 2004,In presy. Some extra
notation is introduced. Let consist ofP different components = (x<1>,...,x(P)>

where each component is definedké® € RP"” andD® € Nfor p=1,...,P. Inthe
simplest case, &8 =D, D(P) =1 andx(P) = xP forall p=1,...,D.

Definition 4.1. [Additive Model] An additive model consists of a sum of (possibly
nonlinear) functions each based on one (or a set of) indepetdariable(s). Let x

RP represent a set of d componer(bé”, ...,x(P>)
fx)= S fP (x<P>) , (4.15)

where P : RP"” _, R are smooth functions.

The optimal rate of convergence for estimators based onntlaidel is N—2/(2+d)
whered = max, (D(P) ) which is independent oD (Stone, 1985), antlc R* is a

measure of the smoothness of the underlying function. Matg-®f-the-art estimation
techniques for additive models can be divided into two appines (Hastiet al., 2001):

e Iterative approachesise an iteration where in each step part of the unknown
components are fixed while optimizing the remaining compése This is

motivated as:
for (X(km) ) h— 6 ; fr2 (Xlgpz>) , (4.16)
P27 P1

forallk=1,...,Nandd; = 1,...,D. Once theN — 1 components of the second
term are known, it becomes easy to estimate the lefthandBiglea large class
of linear smoothers, such so-called backfitting algorittares equivalent to a
Gauss-Seidel algorithm for solving a largeld x ND) set of linear equations
(Hastieet al,, 2001). The backfitting algorithm (Hastie and Tibshira®9Q) is
theoretically and practically well motivated.

e Two-stages marginalization approachesnstruct in the first stage a general
black-box pilot estimator (as e.g. a Nadaraya-Watson kersgmator) and
finally estimate the additive components by marginalizimgegrating out) for
each component the variation of the remaining componeetsds. (Linton and
Nielsen, 1995)).
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Although consistency of both is shown under certain coods#j important practical
problems (number of iteration steps in the former) and mioeeretical problems (the
pilot estimator needed for the latter procedure is a too igdigeposed problem) are
still left.

The framework of the primal-dual kernel machines does pi@a one-stage alterna-
tive. For completeness, consider the case of the LS-SVM,dernel machine. The
derivation however is extendable to any chosen loss fumdto fitting an additive
model which includes a (parametric) bias term. The consetfiatodel class becomes

%,m):{ XWp ¢p( )+b | wp e ROV beR} (4.17)

wheregp, : RO™ _, RDEﬁp) is a fixed but unknown mapping to a space of dimenﬁ)@[ﬂ
(possibly infinite dimensional). Consider the modified degaation term

(Vp, b,8) = argmin_#¢(wp,b,e)

wp,b.e

I\)Il—‘

P y N
Z Wpﬂ‘EIZlQZ
zwpcpp( )+b+a yi, Vi=1,...,N. (4.18)

Constructing the Lagrangian gives

Zy(wp,b,ga) = ; <£ p¢p( >+b+3—Yi>7 (4.19)

with multipliers a = (ai,...,an)" € RN, Taking the first order conditions for
optimality gives

0%y

5Wp:0H WP:ZiI\‘:lai(pp(Xi(p)) vVp=1,...,P
agc
L -0~ ya=aq Vi=1,...,N
KKTY 52 . (4.20)
db =0— 3iZ;0i=0
9.2¢
y _ P T (p) . -
da 07 ZP:le(pp(Xi )+b+a_y., Vi=1,...,N.

By eliminating the primal variables/, ande, one obtains the following dual linear
system

b
o

o| 1
[ In ’ QP"F%,'N

= { 3 ] (4.21)

T
whereQp = 35 _; Q(P) ¢ RNN andejp) =Kp (x,( X ) ¢p( ) bp (xg‘”) is
the inner product of the feature maps of fith component evaluated on the poinﬁ@
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andxgp). LetQ(@p) = (Kp (xgp),xﬁp)> v, Kp (xf\,p),xip))) € RN, then thepth estimated

model fP can be evaluated in a new point= (xf), .. ,x@) as follows

. N T
fox,) =S @Ky (XP,xP) = olP (xP) " a&. (4.22)
3 aiko (477) =2 (")
The total function can be evaluated in a poings follows
- N . P T N
fx)=75 fp(X?)+b= QP (XP) &+b. (4.23)
5 6 (<) +5- 5 (<)

Observe the fact that the unknowdsare constant over the different components. This
is unlike any parametric approach or a backfitting approalcarereach component is
characterized by its own set of unknowns.

The set of linear equations (4.21) corresponds with a dak&iS-SVM regressor
where a modified kernel is used given as

K (X X;) Z Kp (%7 ") (4.24)

Figure 4.1 shows the modified kernel in case a one dimensiRedial Basis Function
(RBF) kernel is used for aD (in the exampleD = 2) components. This observation
implies that componentwise LS-SVMs inherit results okedifor classical LS-SVMs
and kernel methods in general. From a practical point of Miegprevious kernels (and
a fortiori componentwise kernel models) result in simillyoaithms as considered in
the ANOVA kernel decompositions as in (Vapnik, 1998; Gund Kandola, 2002).

K (X, Xj) ded xk ,xJ ; Kdld2 dl (dZ)) (xﬁdl),xgdZ)))—k..., (4.25)

where the componentwise LS-SVMs only consider the first farthis expansion. The
formal proof of the underlying theorem that the kernel of timéon of two orthogonal
subspaces equals the sum of the individual kernels comelgpg with each subspace
may be found in (Aronszajn, 1950). The derivation as suctigaes the gap between
the estimation of additive models and the use of ANOVA kesnel

4.3 Imposing Pointwise Inequalities

Consider the case where prior knowledge in the form of knoimpedualities are

known to hold on a finite set of locations. This kind of diserstructure can be
easily imposed during the learning process by adoptingringgb-dual argument. This
case was studied in some detail in (Pelckmeinal., 2004y) and contrasted to various
existing two-stages approaches as described in (Boor ansleBiz, 1977; Gaylord and
Ramirez, 1991). The following example gives a further aggilon of this research.
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Figure 4.1: lllustrations of the mechanism of componentwise LS-SVMs fittiing
additive models.(a) Estimation of an additive model with a componentwise kernel
machine and a RBF kernel corresponds with the use of a mdibificaf the RBF
kernel as displayedb) A simple example of the two components of a componentwise
LS-SVM (solid lines) fitted 50 noisy data-samples with urtgleg additive model as
illustrated by the dashed-dotted lines. The contributiohthe two variables can be
visualized explicitly due to the additive structure. It bates that this example depends
in a clear way on the first variable but not on the second one.
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Figure 4.2: lllustration of the use of monotone kernel machines in egtiing the
cumulative distribution functior(a) As the ecdf is discontinuous at the sample points,
the estimated cdf should lie between the upp¥f) (and lower-curve (?) where
possible while being smooth(b) Application of the smooth estimate of the ecdf
on the artificial example of Subsection 4.(c) Boxplots of the results of a Monte
Carlo simulation for estimating the cdf based on respelgtitiee Parzen window,
ecdf, the monotone LS-SVM smoother and the monotone Chelnarnel regressor.
(d) Comparison of the smooth monotone Chebychev kernel machideits sparse
representation (using only 5 support vectors) and a stdnd@SVM which is not
guaranteed to be monotone in general.
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Figure 4.3: (a) Density estimation of the suicide data using the derivativghe
monotone Chebychev kernel regressor and the monotone IMs{8bhnique. Both
estimates reflect the trimodal structure as well as the ipesgupport. A well-
known drawback of the Parzen window estimator in this caseés in that no single
bandwidth parameter of the Parzen window results in bothietlgtpositive density
(one has to under-smootfb)) and a smooth trimodal structure (one has to over-
smooth/c)).

Example 4.1 [Empirical distribution estimate] In Example 1.1 and Example 2.1 different
approaches were given to the task of univariate density estimation. |[€mm@ptary to
these examples, the techniques introduced in this section can be exploitksigning
an estimator of a kernel based cdf estimator in the case of univariatsalajales. Then
the empirical cdf estimator is defined as

. 1 N
P(X) = N .Z‘l(Xj<X)' (426)

Now assume that the generating cdf is smooth. The best smoother lariegdL; sense
which takes the structure of the cdf into account (at least at the samipls)po
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A primal-dual kernel machine can be derivation using the standarchitpeds, see
(Pelckmant al., 2004y) where the equivalent univariate case is studied in some detail.

The technique based on the norm and thd., norm was applied to generate a density
estimate of the suicide data (see e.g. (Silverman, 1986)) by taking therivafrderivative
of the smooth estimate. In this case the support of the data was knowna@haxact
lower bound at O which can be nicely incorporated in this framework esistn Figure
4.3.b. A main advantage of this technique over the use of the Parzeal lestimator
becomes apparent in this study. As well known in literature, this strictly pedititaset
manifests a tri-modal structure (Silverman, 1986). As shown in Figi8d4nd 4.3.c
one cannot find a single bandwidth of the Parzen window estimator whgikit e
a plausible density satisfying both constraints, while the monotone Cheb¥ehneel
machine manages to do so in Figure 4.3. Remark that for convenidreaensity
function is displayed although no guarantees are given that the degigdtihe estimated
cdf is optimal.

4.4 Censored Primal-Dual Kernel Regression

The case of incomplete or censored output observationsnsidered here. Let a
data observation consist of a triple;,y;,y;") € RP x R x R where the unknown
(noisy) output observation is only known to be containechimintervaly; € [y, y;].
For notational convenience, this notation differs somevittan the one used in the
literature on survival regression as employed e.g. in (A®,2), where an extra
indicator variable is used to indicate wether the obsewwais censored or not. This
follows here from the fact is the range of the interigl,y,"] equals zero or not.
Let then Zc = {(x,y; .,y )}, € R°P x R x R. Let the data be generated from
yi = f(x)+&a with y; € [y,y] andg i.i.d. sampled from a fixed but unknown
distribution. Lety* = (y],....y};))T e RN andY~ = (y,...,yy)" € RN. The primal-
dual derivation of a modified least squares cost-functisaiemarized in the following
Lemma.

Lemma 4.2. [Censored Primal-Dual Kernel Machines]Let the class of estimators
be contained in%y described in (3.8). Consider the modified regularized aasttion

56— argmin 7 (b= S ¥
(W, b, &) = argmin_7,(w.b) = Zw'w- Zi;e,z

w,b,e

sty <wo(x)+b+re<y", Vi=1... N (4.28)

The dual problem becomes
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Figure 4.4: A simple example of a censored primal-dual kernel machinézerGa
dataset based on thenc-function including noise terms where observations of the
output abovey = 0.6 are censored and only known to be contained in the interval
[0.6,0]. The lower bounds of the observations are denoted as &stesjswhile the
intervals of the censored observations are given as datted. | The underlyinginc
function is given as a dashed-dotted lif&) The application of the standard LS-SVM
discussed in Section 3.3. The solid line gives the estimdtietwfollow the lower-
bound of the intervals.(b) The application of the modified LS-SVM for censored
observations. The circles indicate the sparse suppormngeaf the estimate. The main
advantage of the latter is seen in the fact that one doesyntat fit the censoring bound

aty = 0.6.
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(G+,a")=arg max—%(a* —af)T (Q+ %/IN) (at—a”)

at.a-

T LT at,a” >0y
+Y 'a -Y 'af st 4.29
{1{,(0{—0{*):0. (4.29)

The estimate can be evaluated in a new datapaitRP as f(x,) = Qg (8~ —a+)+

Bwhereéﬁ, 0~ solve (4.29) and may be recovered from the complementary slackness
conditions.

Proof. The Lagrangian of the modified cost-function becomes

- 1 T 4
C . —
%(W,b,e,a ,a )— W' W+ IEQZ

N N
~ 3 A (~WT900 tbre) ) - 5 i (W90 +bra)-y ). (430

The Karush-Kuhn-Tucker conditions become
dfyc

@_’ WZEiNzl(ai a" ) (x) (a)

a(zgtﬂ)ycﬂ iN:l(al —a)=0 (b)

KKT = aeV—> ye = (a7 —ah) Vi=1,...,N (¢
at,a” >0 Vi=1,...,N (d)

Y <wWio(x)+b+e <y’ Vi=1...,N (¢

a (—W'o(x)+b+e)—y")=0 Vi=1..N (f)

a” (WTo(x)+b+e)+y ) =0 Vi=1...,N (g)

(4.31)

Elimination of the primal variables, b ande using the conditions (4.31.abc) leads to
the dual formulation (4.29). Ié;* were nonzero, the equality” ¢ (x;) +b-+eg = —y"
(4.31.1) or the equivalent in (4.31.g) can be used to rectheetermb implicit encoded

in the dual formulation (4.29). O

The case of right censoring of tiith datapoint (denoted 38 = o) follows along the
lines, but the multiplier;” equals zero and the optimization problem simplifies. The
case of left censoring of thi¢h datapoint (denoted g5 = —) is analogous. Note
that other loss functions (as e.g. theloss) can be treated along the same lines.

Lemma 4.3. [Sparseness in Censored Learning Machine§]nly censored observa-
tions where y <y;” may lead to sparse support vectors.

Proof. This follows readily from inspecting the complementarycglgess conditions
(4.31.fg). O

Figure 4.4 illustrates the difference on a simple examp$etan the sinc function.
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Chapter 5

Relations with other Modeling
Methods

This chapter takes the opportunity to situate the previassugsion
within a broader context and to review various related apgmes. While
differences were mainly conceived in the conjectured agdoms and the
way of deriving the results, the final formulations frequgptesent many
correspondences. However, different interpretationshefresults seem
to support the coexistence of the individual approachesthdis close
to the formulation of LS-SVMs include different variatidrepproaches
as smoothing splines (Section 5.1), the approach of Gaugs@esses
(Section 5.2) and Kriging methods in the context of spatiadlgsis
(Section 5.3). Relationships with other methods in sysigemtification,
wavelets, the theory of inverse problems and the weightast lequares
approach are described in Section 5.4.

5.1 Variational Approaches and Smoothing Splines

Spline methods have a long tradition concerning theotdedeavell as practical aspects
(Schoenberg, 1946), and extended their reach from a pusalstibn approximation
setting towards a nonlinear smoothing task. The lattenvigweed briefly in accordance
with the exposition of (Wahba, 1990) in order to relate sutioathing splines to the
proposed methodology. All of the splines discussed in ttezlavork may be obtained
as solutions to variational problems, which makes the nulogy at first sight
different from the discrete optimization approach of thienal-dual kernel machines.
The route followed by the work of G. Wahba differs from the miaddy of literature on
spline methods as it adopts the Reproducing Kernel Hilljgait& framework as studied
in (Aronszajn, 1950). For convenience, only the one dim@radicase is considered,

103
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though extensions are made to two and three-dimensionailtiing problems, see e.g.
(Dierckx, 1993).

Somewhat central is the following definition:

Definition 5.1. [Mercer theorem and Reproducing Kernel Hilbet Space (rkhs),
(Mercer, 1909; Aronszajn, 1950)]A real Reproducing Kernel Hilbert Spac# (rkhs)

is a Hilbert space (complete under an inner prodsct, - > and satisfying everywhere
the triangular inequality) of real valued functions: R — R with the property that
for each xe R there exist a functional R R — R (by the Riesz representer theorem)
such that< Ry, f >= f(x) are bounded linear functionals. Furthermore, a unique
reproducing kernel KR x R — R can be attached to a specific rkhs defined as

K(x,y) =< R¢,Ry >, (5.1)
which is a positive definite function (see also the Merceroféma 3.1). The converse

also holds (a reproducing kernel constructs a unique rkhs).

At the core of the derivation of smoothing splines lies theatiption of an rkhs#
endowed with an inner product (and hence a norm) involviniydeves as summarized
as follows

Lemma 5.1. [Rkhs of Smooth Functions, (Wahba, 1990)The following Sobolev
space is a rkhs

0 = {f :[0,1] =R | " absolutely continuous
forallr =0,...,m—1,fM ¢ LZ(R)} . 5.2)
Proof. The proof is sketched as follows (Wahba, 1990). Considentheorder Taylor

series approximation

m— 1Xr

f(x)= ) (2)dz2 fim_1(X) + fm(X), (5.3)

where(z), = zif z> 0 and zero otherwise. Le¥’" be decomposed in two subspaces
corresponding with the two terms in the right hand side ofagign (5.3) such that
AT = %f + /. Consider the Sobolev function space

= {f :[0,1] =R | ") absolutely continuous,

f0(0)=0 forallr=0,...,m—1,fM ¢ LZ(R)}. (5.4)

It follows that any functionf %,J. can be written as

F(x) = /O ' E’r‘n‘_“l); £ (u)du
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1
é/ Gm(x,U) ™ (U)du=< Gm(x,-), f™ > (5.5)
0
whereGp(x,u) is the Green function for the probleB™f = g with D™ denoting the

linear operator corresponding with theh derivative, (Wahba, 1990). It then can be
shown that the reproducing kernel corresponding wit becomes

1
Km(X,y) = /0 Gim(,U) Grn(W,y)dus (5.6)

Let {@#}™4 be a set of functions spanning the null-space%f. The rkhs
corresponding to the function spagg& and the corresponding kernel becomes

1£1, = s™ 2 E00)2+ 2 £M(u)2du+3mm o
K(Y) = 30 @09 @(¥)r + Jo Gm(X, U)Gm(u,y)du= Gn(X,Y). '
O

The representer theorem then states that the functian.#" minimizing the
regularized cost-function can be represented as follows.

Theorem 5.1. [Representer Theorem, (Craven and Wahba, 19)|19Suppose we are
given a nonempty set”  RP, a positive definite real-valued kernel functiop K2~ x
2" — R being the reproducing kernel of a Hilbert spaﬁérf of functionals f. 2" — R.
Let the nuII-space%”of of ji”n}( spanned by a set of basis functiofg : 2" — R}Ezl,
let.2#’" denote the sum of the orthogonal spaggd = %f +%ni, let 2 be a training
set{(x,yi)}N , i.i.d. sampled from2" x R, let g: R* — R be a strictly monotonically
increasing real-valued functiort,: R — R an arbitrary loss-function and a class of
functions

D o
tg\:{fe‘%f ‘ f(x):;Wd%(X!)—’_ZlBIK(XHX)?Xlef%awdngl6R7||f|‘f%”<°° )
=1 =

(5.8)
where|| - H;f denotes the squared norm induced by the Hilbert spﬂaﬁeof functionals
f becoming|f(|%Z = Yij=1BiBjKm(xi,yj). Consider a regularized loss function

N
miﬂ/(f)=g(IIfIILf)JrV_Z\E(f(Xi)—yi), (5.9)

fesz

where g is a monotone function. Then any f minimizing thelaeged loss function
admits the representation of the form

N D
fox) = ZaaK(Xa,X*HdZ Wa @ (X), (5.10)
i= =1

where a= (ay,...,an)" € RN and w= (wy,...,wp)" € RP be vectors of unknowns.
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This theorem has a long tradition in functional analysis aadational methods and
formed the basis of many methods as e.g. smoothing splinakl{gy 1990) and was
tuned towards kernel machines (8ttopf et al,, 2001).

Let {(Qj}g“ol be an orthogonal set of basis functions spanning the subsp@fcsuch
thatgy(x) = 4 d, Consider the cost-function

N

min, Fopwed 1)= 3 (%~ +)\/ £ (1)2du (5.11)

Let X € RN*™ pe a matrix containing the evaluations of these functioimatee data
d—1

points such thaky = h foralld=1,.... mandi=1,...,N. In the case of the

decomposition (5.3), the kernig}, of %nf becomes

1(v__ m-1
Kniy) = [ OOy, (5.12)
0 ((m—l).)
and the solution of the optimization problem (5.11) folldinam the solution to the set
of linear equations
Omxm X w|  |Om
5 ol 8- [F) 613

WhereQmAe RN*N s the kernel matrix with element3mjj = Km(X,xj). The estimated
function f can then be evaluated in a new pointe [0, 1] as follows

N m-1
:lziéiKm(Xiyx*)Jr Z)qu’r(x*)a (5.14)

wherea'= (&y,...,ay)" € RN andw= (Wp,...,Wm_1)T € R™ solve (5.13). This rkhs
derivation places the smoothing splines derivation ineodbntext of kernel machines
endowed with the specific kernel (5.12) which may be rewnritte (Vapnik, 1998)

m cd .
K (%, X)) :dz ——__min(x, %)™ 4L — x|, (5.15)
Ly 2m—d+1

whereCY is the number of combinations dfelements takem at a time.

The regularization terrﬁ)1 f(m) (u)2dumay be expressed alternatively using the Fourier
expansion off denoted as* f as follows

1 FE(A)?
(m) 2 _
/ fM(x)°dx = e Fa0h) dA (5.16)

whereZf(A) = l fo (X)exp(—ixA)dxand.Zg: R — RT is a positive symmetric
function that tends to zero whea| — o, see (Giroskt al, 1995). Different choices

for the low-pass filteig may be considered. The case of thin-plate splines of order
mis equivalent to the choic&g(A) = 1/A2™ (Duchon, 1977; Schumaker, 1981). In
this case the null-spac#j is the vector space space of polynomials of degree at most
m— 1. It is interesting to contrast this derivation to Examplg, Example 9.1 and
Lemma 9.1.
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5.2 Gaussian Processes and Bayesian Inference

A stochastic process is defined as follows, see e.g. (Dod&R)19

Definition 5.2. [Gaussian Process, (Doob, 19538 onsider a family of random
variablesZt = {Z}tcr over an index sefl with covariance function EZ;Zs) =
p(t,s). If p(t,t+u) = p(u), the proces< is called stationary. The procegsy is
a Gaussian process when any finite subset of variables ibntiescribed by its first
two moments.

Classically, the index séf represents a series of time instants (Wiener, 1949). A
representation theory due to (Loeve, 1955) shows that tkere intimate connection
between Gaussian processes (time series of second ordemeproducing kernel
Hilbert spaces:

Theorem 5.2. [Covariance vs. Reproducing Kernel, (Loeve,9b5)] A positive
definite covariance function of a time seripsgenerates a unique Hilbert space of
which K= p is the reproducing kernel.

This is discussed in (Loeve, 1955; Parzen, 1961; GrenanaeiRasenblatt, 1957).
This result relates the Gaussian processes approach tdthapproach as summarized
in the previous subsection, see also (Weinert, 1982) whigkesextensive use of this
result in the context of signal processing.

More recent work (O’Hagen, 1978; Neal, 1994) also approagteblems of static
regression and classification using this machinery, butiyadiffer by taking a
Bayesian approach (Wahba, 1990; MacKay, 1998), see alsestiin 1.2.4. Let the
index set here be denoted HsC RP consisting of the deterministic inpugsq}lY ;
which are possibly higher dimensional and non-equidistasggmpled. One typically
proceeds under the assumption of zero ntefatx|X = x = m(x) = 0. Bayes’ law then
relates the posterior probability of the Gaussian proBégs |7, .«7) to the likelihood
P(2|Zx, <), the priorP(Zx|</) and the evidencB(2|«/) as follows

DNZx, o )P(Zx| <)
P(2|<) 7

P(Zx|2,4) = P( (5.17)
see also Subsection 1.2.4. bet= xy.1 be the input data point to be evaluated,
Y. = Yni+1 the response to be found and lgt be defined as the extended dataset
{2,(Xn+1,YN+1) - LetZ e RN*1 be a realization of the Gaussian procBgsevaluated

in the observed data points. Assume flie- 1 observations; are versions o¥;
perturbed by i.i.d. noise such that= 27+ ¢ foralli=1,...,N+ 1. The problem of
prediction using Gaussian processes then boils down tafirttlie realizatiorZ € Zx
with maximal posterior probability.

To formalize the problem, the likelihood function and an rmpiate prior of any
realizationZ is to be defined. The evidence is assumed to remain constahein
setup. Consider the prototypical case tR&7|Z, «7) O NN exp(—(|1Z — ill/v1)
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andP(Z|.«7) O exp(—Z"3Z/y,) with = € RN+XN+1 g positive definite matrix. The
maximum a posteriori (MAP) Gaussian process realizaZidéollows then from

1 N+1 A
maxlogP(Z|2, «7) = argmin— Z—vyi||+=2"22, 5.18
faxlog (Z| ) gmin, i; 1Z —yill " (5.18)

where y1,y» and A are appropriate hyper-parameters. After taking the firdeor
optimality conditions and by application of the matrix insien Lemma (Golub and
van Loan, 1989), the solution of the predictoxpfs seen to equal the results (3.12) and
(3.14), see (O’Hagen, 1978). Note that the described pgmadésembles a parametric
approach where the goal is to recover the generating modebnitrast to e.g. the
structural risk minimization based algorithms where oneatyetries to predict with
minimal risk (see also Subsection 1.1.2). D) € RN+1xN+1 he the squared linear

mth order differential operator. £ — D™ ' DM the derivation is equivalent to the
(primal) cost-function at the basis of LS-SVMs for regresgjsee Section 3.3) and the
cost-function (5.11) of smoothing splines.

A major advantage of the Gaussian process formulation ialthigy of doing inference

of uncertainties of the model (Wahba, 1990) and to optimiz model’'s hyper-
parameters. The latter leads to the hierarchical eviderasadwork as introduced

in (MacKay, 1992) and elaborated in the case of LS-SVMs inn(\&estelet al,
2002; Suykengt al., 200). A thorough empirical assessment of the performance of
Gaussian processes may be found in (Rasmussen, 1996) ahpésian techniques
applied on LS-SVMs in (Van Gestet al, 2002).

5.3 Kriging Methods

Spatial statistics is concerned with the analysis of olz&ms scattered over the (geo-
graphical) space (Cressie, 1993). Recent advances casbthlem as a generalization
to the Wiener-Kolmogorov theory of prediction in time-s=i(Wiener, 1949) and
provide a flexible framework for smoothing and interpolataf spatial surfaces. Let
againX c RP denote a spatial index set adg be a Gaussian process over this set.
For notational convenience, [E{(x) denote the random variablg; given the fact that

X = x. The random variabl&(x) has a mean functiom: RP — R and covariance
functionp : RP x RP — R such that one can write

{E[Z(X)} =m(x) (5.19)

COMZ(X)Z(x))) = E | (Z(x) = m(x)) (Z(x)) = m(x))| = plx = x).

Let the mean functiom(x) be parameterized linearly as(x) = S5 _; Baqu(x). Let
Z=(z,...,2q)" € RN contain the observed samples at the spatial pdiig' ;. Let
X € RN*D be a matrix withidth entryXiq = @(x) foralli=1,...,Nandd=1,...,D,
and letac RN be a vector of unknowns. Then the minimum mean square erbiased
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predictorZ(x,) is given as

L-IXB=L"1Z
Ka=(Z—XB) (5.20)

Z(x.) =k(x.)Ta+xB,

whereK € RN*N is the covariance matrix wittjth entryKij; = p(x;,x;) andk : RP —
RN a function such that(x,) = (p(x1,X,),...,p(Xn, X)) . LetL then be the Cholesky
decomposition (Golub and van Loan, 1989) of the malkix This is a numerically
reliable form (Ripley, 1988) of universal Kriging (Cressi®93). The variance of the
estimate is given as follows

var(Z(x.) = 2(x.)) = p(x.,x.) — el +]lgl3
Le=Kk(x.) (5.21)
L=IXg=XB— (L7 X)Te,

whereg, e € RN are vectors (Ripley, 1988).

Remark5.1 We emphasize the close relationship with the derivationhef $emi-

parametric LS-SVM formulation (see Section 4.1). The maiffieknce is the

interpretation where in the case of Kriging the kernel pltesrole of the covariance
of the stochastic terms while in the case of SVMs and LS-SVMs, kernel are
deterministic in nature. As such, Kriging methods are malated in nature to
Gaussian processes (see Section 5.2).

5.4 And also

5.4.1 Wavelets

Wavelets are a family of orthogonal bases that can effdgtivempress signals with
possible irregularities. Although wavelets constitutei@é body of literature mainly
situated in function approximation problems (Daubechi€88), the main ideas can
also be recovered in a smoothing context as eg. (Donoho dntstime, 1994). An
approach is sketched based on (Daubechies, 1992) and akdb@ar.g. in (Yuet al,
1998). What makes the wavelet expansion unlike the Fouaestorm or RBF based
expansion is that the wavelet functions (mother functians)(i) localized in frequency
andspace (compactly supported), (ii) will allow for varyingsmdution parameters (iii)
will favor sparse expansions and (iv) are orthonormal. Aghe method is typically
applied to functions with respect to the time-index, but dbimpose a causal ordering
and the extension to one-dimensional spatial indicesaggstiforward. For a thorough
elaboration of the subject and its extensions to multitagases we refer the reader to
(Daubechies, 1992).

The analysis starts from an appropriate definition of a dled¢another-functiond :
R — R which is localized in space as well as in frequency such #hasuch that
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0(x) =0if [x| > L and3L¢ such that#z (&) | Oif || > L;. Different classical results
as the Paley-Wiener theorem (Daubechies, 1992) stateuhetidns cannot be both
band- (finite support of# f) and time-limited (finite support of) at the same time.
Much of the literature on wavelets is then concerned withdigvation and analysis
of an appropriate basis making an optimal trade-off betwsserd- and time-limiting.
Consider then the dilated (laye R) and translated (by a vectbre R) basis function.

an(X) = fé(ax b) (5.22)

A set of mathematical operations were proposed (Daubechi@d?) to infer an
orthonormal set of basis functiol®ap : R — R}ap from the fatherdyp. In this
case, one also refers to the method as multi-resolutiorysisalDaubechies, 1992).
Traditional choices for the mother functioms, with dilation a and translatiorb
are (i) the Haar functions (Haar, 1910) (emphasizing laedibns in space) and
(i) symmlets (Daubechies, 1992) emphasizing the bandtigproperty. Letx be
sampled equidistantly in the intervf0, 1], then the mother function and the scaled
basis functions become respectively

P"R(x) = 1oy () (—I (x < 0.5))

pggar(x) _ 270.5aphaar(27ax _ b),

(5.23)

See also Figure 5.1.a. The relationship of this method ighdiscussed primal-dual
kernel machines is illustrated in the following example.

Example 5.1 [Learning Machine based on Wavelet Decomposition]Consider the function
space based on the orthonormal Haar wavelet bases:

S S-1
ys—{f:R_nR | f(x) = zozowakpgigfa } (5.24)

where w contains the coefficients of the function for the different dilatiansnd
translationk2=S. A parametric approach as described in Lemma 6.1, is traditionally
employed for the construction of the approximation.

The mechanism of primal-dual kernel machines comes into play e.gn wnfinite bases
expansions are considered or when one considers more compldariegtion schemes
which can be written a&" G~ 1w as elaborated in Theorem 9.1. Consider the first case.
The kernel corresponding with the infinite basis expansion becomes

K(xi,xj) = ZO z Pgigra () PQiSEa(XJ) (5.25)

which can be simplified considerably by exploiting the localized structure eob#sis
functions. An illustrative example was devised. |2t= {(xi,yi)}{\‘:l containN = 25
univariate input samples randomly chosen in the intej@dl]. Lety; then satisfyy;, =
I(xi < 0.5)+ & with g i.i.d. sampled from47(0,0.2). The fit of the LS-SVM regressor on
this dataset employing the kernel (5.25) is displayed in figure 5.1.&rlglshowing the
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Figure 5.1: lllustration of the Haar wavelet base&) A sample of the set of Haar
wavelet bases for the scales respectivly .,4 and different translations(b) An
example of the fitted (solid line) indicator function (dagtdotted line) sampled by
N = 25 noisy observations (dots) using an LS-SVM regressor enipgoy kernel based
on the infinite Haar basis expansion.
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ability to recover the discontinuity in the data. A disadvantage of the use ofpiadfie
wavelet kernel is that the solution is non-smooth in other locations.

The issue of wavelet kernels in smoothing tasks is discussed in moreid€tarhato et
al., 2004) and the abilities to recover discontinuities using wavelets expansi@amorted
in (Antoniadis and Gijbels, 2002). An alternative approach which do abednentioned
disadvantage is elaborated in Example 9.3. This example shows the daiatititowards
integration of wavelet based methods and the primal-dual kernel lmastrtbdology as
described in the present work.

5.4.2 Inverse problems

Most linear inverse problems can be formulated as folloesf bndg be elements of
a function (Hilbert) space(s¥ and¥. Given a linear operatdr : % — ¢. Consider
the equatiorg = Lf. The forward problem then amounts to solving agiven f. The
inverse problem amounts to solving the equationffgiveng. Consider as a typical
example the integral operator which amounts to the problem

b
909 = [ Kxy)f(y)dy (5.26)

referred to as the Fredholm equation of the first kind, see égesset al, 1988)
for an introduction. Inverse and ill-posed problems areyviemportant in several
domains of applied science such as medical diagnosis,grsiin vision, atmospheric
remote sensing etc., see e.g. (Berteral, 1988). The relevance of these problems
has stimulated the development of theoretical and prdatieséhods for determining
approximative and numericallt reliable solutions (Han<£98).

Fredholm equations of the first kind are often extremelcdfiditioned as may be
understood as follows. Convolving the functidnusing the functiorK amounts in
general to a smoothing operation which actually loosesin&tion. As such there is no
direct way to recover all information by an inverse opemagod one needs additional
(external) knowledge on the solution in order to get a unispietion to the inverse
problem (Pres®t al, 1988). This concept is often referred to as regularization
capacity control and is treated extensively in the follayviPart, see e.g. (Backus and
Gilbert, 1970; Tikhonov and Arsenin, 1977; Morozov, 1984 uxhaier, 1998).

5.4.3 Generalized least squares

As already noted in Section 4.1, a direct correspondencedeaet the modeling of
the parameters in a semi-parametric LS-SVM regressor andl#éissical Generalized
Least Squares estimator (Mardital,, 1979) can be observed. The GLS estimator is
well-described in statistical literature (e.g. see e.gettWrill, 1986) and references).
The estimator e.g. possesses the important BLUE (Best tidehiased Estimator)
property and appropriate efficient statistical tests wergighed (Sen and Srivastava,
1990).
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Chapter 6

Regularization Schemes

Model complexity and regularization amounts to the artfishrink-
age of the solution-space in order to obtain increased gération. The
purpose of this chapter is both to motivate, to analyze ardistcuss dif-
ferent regularization schemes in the process of model astm Section
6.1 surveys results in the context of linear parametric risodgection 6.2
gives results on the bias-variance trade-off for regressging LS-SVMSs.
Section 6.3 extends the well-known Tikhonov regularizati@heme in
primal-dual kernel machines to various other classicabsws. The
measure of maximal variation for componentwise models tioduced
in Section 6.4 and various applications of this idea areqmies!.

6.1 Regularized Parametric Linear Regression

Consider the class of linear models

Fo={fo(X) =w'x| weR°,beR}. (6.1)
Let the datase® = {(x,yi)}\; satisfyy; = w"x +b+e where{e}\ , is a sequence
of uncorrelated i.i.d. samples with zero mean and boundédneeE|[e?] = 02 < o.

For notational convenience, we do not include an intercat in the derivations but
assume a proper normalization of the data.

This section elaborates the discussion in Section 3.2.

6.1.1 Ridge regression

The use of an 2-norm based regularization scheme resultsriachanism which is
convenient to analyze and to apply. Given the model clag$, (®dge regression (Hoerl

115
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et al,, 1975) amounts to minimizing the following regularized tdomction
N . Y2 1 N T 2
W= argmin,#y(wb) = Jwi3+5 3 (Whx —y)", (6.2)
1=

The modified normal equations become
(XTX +ylp) w=XTY, (6.3)

following from the first order conditions for optimality. This seen as an application
of the Tikhonov regularization scheme for function appnexiion (Tikhonov and
Arsenin, 1977; Hansen, 1998).

6.1.2 LASSO

While Tikhonov regularization schemes based|n|3 are commonly used in order
to improve estimates (statistically as well as numerigallyterest in L;-based
regularization schemes has emerged recently as seen inrthalétion and study of
LASSO (Least Absolute Shrinkage and Selection Operatdinators (Tibshirani,
1996), SURE (Stein Unbiased Risk Estimator) (Donoho andskoime, 1994) and
basis pursuit (Friedmann and Stuetzle, 1981; Gétead., 2001) algorithms. Here one
typically considers estimators of the form

N
z\(wai—yi)2 sit. w1 <a, (6.4)

W=argmin_ 74 (W) =
w i=

wherea € R™ is a hyper-parameter. The primal-dual optimization framewnay be
used to derive properties on the estimator regarding thaired sparseness and the
variance of the estimate (Osboretal., 2000).

The optimization problem (6.2) and (6.4) simplify consalay when the inputs are
orthonormal:

Lemma 6.1. [Orthonormal Inputs, (Tibshirani, 1996)] If the input matrix Xe RN*P
is such that XX = Ip, the solutions to the ridge regression estimate (6.2) ard th
LASSO estimator (6.4) can be written as

Ty
Wy = JaY vd=1,....D
wy (6.5)

WESsso= sign(XJY)[XJY —Als, vd=1,...,D

respectively. Hera is the Lagrange multiplier corresponding to the constrdjwt|; <
a.

This result was extended towards more general regulasizatdst-functions as the
hard- and soft- thresholding rule in (Donoho and Johnstb®@4). A similar argument
was used to compute efficiently the solution path of the LA®Stdnator and the SVM
classifier over all constants > 0 as e.g. in (Hastiet al,, 2004).
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6.1.3 Least squares amongst alternatives

A stronger formulation regarding sparseness is conside@den a set of observed
input/output data-sample® = {(x,yi)}N; € RP x R. Let one be interested in the
linear model D > 1) with minimal empirical risk only using one single inputriable.
This problem can be written as follows

N
_Z(wai —¥i)? st wowg =0, Yg#d, (6.6)

from which it follows that at most one element of the paramegetor may be nonzero.
The following result leads to a practical approach to thibpem.

W= argmin_Zs(w) =
w

Lemma 6.2. [Embedding Least Squares amongst AlternativesJhe task of esti-
mating the optimal predictor based on a single variable agsimgiven alternatives is
considered. Formally, one searches the optimal model patars w such that

wiw; =0, Vi,j=1,...,D, i #]. (6.7)
This quadratical constraints can be embedded in a leastregusstimator as follows
tT Ipxpt < wiw

—t <w; <fj Vi=1,...,D,
(6.8)

(W,f) = argminJ(w) = 1 Wi — i Hg s.t. {
w 2

wherelpyp € RP*P contains all ones.

Proof. Let X = (xq,...,xn)" € RN*P andY = (y1,...,yn)" € RN be vectors. The
Lagrangian of the constrained optimization problem (6&3)dmes

1
X(V\Lt;)\aa+va7) = i ”XW_YH%
D

D
+_Za((—ti —W) +_Zai+(—ti +w) +% (t" loxpt—w'w), (6.9)

wherea™,a~ € R*P andA € R are positive multipliers. Letgd € RP denote the
vector containing ones. The first order (necessary) camtitior optimality are given
by the Karush-Kuhn-Tucker conditions (KKT), see e.g. (Bayl Vandenberghe,
2004):

(XTX=Alp)w—XTY=a"—a™ (a)
1 <w; <t{j vi=1,....D (c)
a|+,a|_20 Vi:17...,D (d)
a (t+w)=0 Vi=1,....D (e (6.10)
ot (t—w) =0 Vi=1,...,.D (f)
tT Ip.pt <w'w (9)
A >0, A(tT 1D><Dt—WTW) =0, (h)
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where the equalities (6.10.efh) are referred to as the camghtary slackness con-
straints. By combining conditions (6.10.ef) and (6.10itpllows thatt; = |w;| for all
i=1,...,D. From condition (6.10.9) it then follows that

t" Ip.pt<w'w=t"t = t" (Ipxp —Ip)t <O. (6.12)

As the vectort and the matrix(1pxp — Ip) contains all positive numbers, only
t7 (1pxp —Ip)t = 0 is to be considered. As such, conditions (6.7) are satigfied
(any) optimum to (6.8). This concludes the proof. O

This task is elaborated in some detail here as it is closdfta® to the formulation
and handling of positive OR-constraints (see Subsectidr8Pwhich play often an
important role in hierarchical programming problems (se iChapter).

The relationship with the least squares estimator when d¢hevant variable were
known beforehand is given in the following lemma.

Lemma 6.3. [Relation to Univariate Least SquaresjAssume a* exist such that
(XTX — A*Ip) = 0 and that the constrainft™ 1p.pt) < w'w is satisfied, then the
prediction corresponds with the least squares predictosdanon the variable with
nonzero parameter only.

Proof. Assume the single variate predictor uses finally one vegidbhoted aX;) €

RN for prediction. Let therX o, € RN*(P=1 pe a vector denoting all other candidate

variables. Condition (6.10.a) can then be rewritten as

(x( )x() A) >q0 [Wl} x(TrlY
XT X( 1) (X X( 0) — )‘ID’XD’) W(0>

©) (©) 0 70

EE ai] (6.12)

where the parameters;;) € R andwqg) € RP-1 correspond toX(1) and Xq) respec-
tively. In the case the parameteng are zero andv(y) is nonzero, the following
property holds

T T
(X<1) X<l>) Wy =Xy)Y, (6.13)

asa(+1) 0y = Aw(z) from application of (6.10.bef) and the property thag, | = 1Tt
in the solution to (6.10). Then note that (6.13) correspamitls the normal equations
of the least squares problem miX 1wy 7Y||§. If also w(;) were zero and thus
1"t = 0, the Lemma also holds a5 + a~ = Op. O

This result is strongly related to the derivations of ordnkeqgualities as in (Donoho
and Johnstone, 1994; Antoniadis and Fan, 2001).

Remark 6.1 Note that this result leads to an alternative practical aggn to
the problem (6.6). One can as well compute the least squang@sizer based
on every individual individual variable and then pick therighle obtaining the
best performance. This approach however becomes infeasién more sets of
alternatives are considered. Consider e.g. the task ahattig a model based on
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10 variables where each individual variable belongs to puuic$ set of 2 candidates.
Then the described combinatorial method should comptite=21024 candidate least
squares regressions, while the problem (6.8) would giveehelt by solving one QP.

Sofar, we did not discuss the uniqueness of the solution§.8) 6r (6.10) nor the
choice of the Lagrange paramefessatisfying (6.10.9). However, it turns out that the
global optimum can be computed efficiently in many casesrderto derive necessary
conditions for uniqueness of local solutions to (6.8), edasthe following modified
formulation with fixed hyper-parametgrc R+

- ) 1
() = arg mindy(w) = 5 [Xw— Y3+ %’ (t™ 1w t—wWw)
wit

st. —t<w <t Vvi=1,...D, (6.14)

which is a convex problem as long 87X — ylp) is positive semi-definite (Boyd
and Vandenberghe, 2004). The KKT conditions charactegithie global solution then
corresponds to (6.10.a-f) with substituted by the givep. Furthermore, ify > A
whereA solves (6.10) an@X™ X — Alp) is positive semi-definite, it is easily seen that
a solution to the original problem (6.8) follows uniquely fas increased values the
cost of the ternmt?’ (1pxp — Ip) t > 0 corresponding ty is to be smaller than the
cost corresponding td which is zero already. This results in a practical algorithm
approach to estimate the solution to the original proble®) (@it is unique.

Algorithm 6.1. [Least Squares amongst Alternatives]Hereto, leto~ denote the
smallest eigenvalue of the sample covariance matfiXXThen it is easily seen that
y = o is the largest value for which the problem (6.8) is convexitiermore, if the
conditionswiWw; = 0 of the solution vectow corresponding toy = o~ are satisfied
foralli # j=1,...,N the problem is solved asAf were found exactly. If not so, the
problem (6.8) is not convex and one can use local optiminatimategies to search the
global solution.

A Monte Carlo simulation study was conducted. In each itenata datasety =
{(%,yi)}N.; was generated witN = 50 andD = 20. The outputs were generated as
Y= wlxi(l) +e with g ~ .47(0,0.5) andw; chosen in the interval-5, 5]. The LASSO
estimator was tuned using the validation performance orsjartit part of the data,
while the final performances of the estimate resulting froenttined LASSO estimator
and from the proposed method respectively were quantifi¢gkeasiean squared error
between the estimate and the true parameter vegter(wi,0...,0)T € R?. Figure
6.1.a shows the evolution diagram of the LASSO estimator single iteration step
by ranging the hyper-parameter from which the structure of the true parameter
vector may be recovered. Panel 6.1.b then reports the sestithe Monte Carlo
study with 1000 iterations comparing the tuned Ridge RajwaegRR) estimator, the
tuned LASSO estimator and the proposed Alternative Least®s method (ALS)
of Algorithm 6.1. In addition to this results, the proposedaxation succeeded in
recovering the structure of the true parameter itB9% of the iterations, while the
LASSO recovered on the average.3%% of the underlying structure. This example
shows the benefits of the proposed formulation in this specifse.
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Figure 6.1: lllustration of the Alternative Least Squares (ALS) as irgéiithm 6.1.
Panela) shows the evolution diagram of the LASSO estimator in a siftgtation step
by ranging the hyper-parameterfrom which the structure of the true parameter vector
may be recovered. Pan@) reports the results of the Monte Carlo study wil00
iterations comparing the tuned Ridge Regression (RR) astimthe tuned LASSO
estimator and the proposed ALS method. In addition to thssilte, the proposed
relaxation succeeded in recovering the structure of the parameter i97.34% of

the iterations, while the LASSO recovered on the ave@g23% of the underlying
structure.
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6.1.4 Bridge regression

The use of other norms for the regularization term from RiBggression to general
Minkowski norms has been discussed under the name of bratgession (Frank and
Friedman, 1993; Fu, 1998; Antoniadis and Fan, 2001). ThemgéMinkowski norm

is defined as
N
Iwllp = < Wp> 7 (6.15)
PAL

which is convex (satisfying the triangular inequality) wegerp > 1. The bridge
regression estimator then becomes

R N
(W,b) = arg Lnin(/j,’(w, b) = ||w||p+ % Z (WTxi + b_yi>27 (6.16)

which is a convex problem whenevpr> 1. It is mostly solved using an iteratively
re-weighted algorithm where one uses the following refdation

D N
W,b;g) = argmin_ZJ(w,b) = dwz—s-ﬂ wix +b—y)?
(%.b;g) =argmin /§(wb) = 5 gywi+5 5 (Wi +b-y)
st ghwi=wj, vd=1,...,D, (6.17)
which is solved forw andb. The hyper-parameteg, = (g%,...,0%)" € RN € RP
are consequently adjusted correspondingly, see e.g. @8)1 This procedure
corresponds with a particular instance of the Gauss-Seldelithm, see e.g. (Hastie

and Tibshirani, 1990). The use pfnorms different that, or L1 may be usefull in
problems involving higher dimensional data, see e.g. (Feard Friedman, 1993).

6.1.5 Shrinkage estimators for parametric large margin clasifiers

Similar estimators were introduced recently in order tmeatically select features
in parametric large margin classifiers (Westdral, 2003; Bhattacharya, 2004). The
following estimator was proposed.

N
(W, b) = arg min fo(w.b) = [wls+C 3 [1-yiw'x +b)], . (6.18)

whereC € R acts as a hyper-parameter.

6.2 The Bias-Variance Trade-off

A classical tool to analyze the generalization performandlee form of the total Mean
Squared Error (MSE) of the estimate with respect to the tradehwas found in the
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bias-variance trade-off (Hoeet al., 1975; Hastieet al, 2001). Recently, this analysis
was introduced for the SVM classifier (Valentini and Diettey 2004). The discussion
is extended to the LS-SVM regressor as follows.

Let the observed dat@ satisfy the relatiory; = f*(x) + g wheref* : RY ~Risa
smooth function and the errofg } ; satisfy the Gauss-Markov conditions described
in Definition 3.1. The vecto* = (f*(x1),..., f*(xy))T € RN denotes the true
function f* : R® — R evaluated in the training points which is typically unknoimn
practice. LetY = (f(x1),..., f(xy))T € RN denote the estimatdfr resulting from the
LS-SVM estimatef evaluated on the training data. The total MSE can be decoedpos
as

MSE(Y,Y*) =E [Y —Y*]* =E [Y —E[V]]*+ [E[V] - Y*]?,
where the two last terms are denoted as the variance andathegispectively. The bias,
covariance and the total mean squared error are then déoivtte LS-SVM smoother
similar to the derivation in (Hoerl and Kennard, 1970; Haarél,, 1975).

Let E[Y] denote the expected predicted smoothed data given the us#el definition
using any realization of the noise terges} , in the data. The bias can then be written
as

Bias(Y,Y*) =Y*—E[Y] = Y'—Q[Q+Iny Y E[Y]

Y —Q[Q+Iny Y

= Y'—[Q+Iny T = Iny HQ+Iny Y

Y =Y 4y Qo Iy Yy

y Q-+ Iny 1ty (6.19)

Let the singular value decomposition @fc RN*N pbe denoted a® = UTSU where
UTU = Iy andS= diag(ay, . ..,on) € RN*N denote the eigenvalues Of

The trace of the squared bias becomes

tr[Biag(¥,Y*)Bias(Y,Y*)T] = y*ztr{(Q+|Ny*1)*1Y*Y*T(Q+|Ny*1)*1
— ysz*T(Q_i_lNyfl)sz*
2 s p?
- y2y P 6.20
Y i; (gi+y1)? (6.20)

wherep; = Y*TU; andU; € RN denotes théth column ofU. The covariance of the
estimate can be written as follows

Cov(Y,Y) =ENYT|=QQ+Iny HEYYT(Q+Iny D) TQT. (6.21)
The total variance can be written then as follows

tr(Cov(Y,Y)) = a2tr[Q(Q+Iny 1) 72Q]

2 k a?
= o? ;ﬁiﬂfl)z. (6.22)
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The total mean squared error can be computed as

TMSE(Y,Y*) = tr[Cov(Y, \?)} +tr [Bias(\? Y*) Bias(\? Y97
N
_ 2 —2
- % zl (ai +T Y Zl (01 +r
cot + i
- i; XCE: »[1>2p (629

From this expressions, it is possible to make the bias-veeidrade-off explicit when
the true functionf* or Y* were known. The bias-variance decomposition for the LS-
SVM smoother is illustrated in figure 6.2.

Lemma 6.4. [Optimality of Regularization in LS-SVMs] Let the bias and variance
be formulated as in (6.20) and (6.22). There exisjs<ac (or y~* > 0) resulting in a
lower TMSE with respect tp= co.

Proof. The proof follows from the following inequality

dtr(biag¥,Y*) biagY,Y*)T) atr(Cov(Y,Y))
oy 1 ly10 < Tyt 120 (6.24)
wheny~1 = 0. This result shows that there exists a nonzero amount afaggation
leading to a minimal TMSE. O

In practice, regularization is more important for this noear setting as for the linear
parametric ridge regression case.

6.3 Tikhonov, Morozov and Ivanov Regularization

6.3.1 Regularization schemes

The Tikhonov scheme (Tikhonov and Arsenin, 1977), Morogascrepancy principle
(Morozov, 1984) and Ivanov Regularization scheme (lvark®76) are discussed
simultaneously to stress the correspondences and theediffes. The cost functions
are given respectively as

e Tikhonov, see Chapter 3 and Section 4.1:;

; _ 1.7 Y o Ty v Mi—

min_77(w,€) = Sw w+§i;q2 st.wo(x)+e=y, Vi=1,.,N. (6.25)

e Morozov’'s discrepancy principle (Morozov, 1984), where thinimal 2-norm
of w realizing a fixed noise leved? is to be found:

wWox)+e=y, Vi=1,...N

1
min_Zy(w) = ~w'w s.t. { (6.26)
e 2 NI e =0g.
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Figure 6.2: lllustration of the bias-variance trade-offa) A dataset based on the
relationy; = sindx ) + & with  ~ .4#°(0,0.1) was generated. Different values fpr
in the applied LS-SVM smoother leads to over-smoothinghddsdotted line), under-
smoothing (dashed line) and an optimal trade-off betweagsidmd variance (solid line).
(b) Theoretical values for the bias (solid line), the variarda&sfed line) and the total
MSE (dashed dotted line) of an LS-SVM smoother.
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Figure 6.3:lllustration of a typical behavior of the Morozov seculauatjon (6.35.a).
(a) If & is positive, the secular equation is monotonically dedngadf & is negative,
the function grows unbounded (poles) wiea —1/(2a;). (b) As the secular equation
is monotonically decreasing fér> 0, a positive intervals will be mapped uniquely
to an interval 2.
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e Ivanov (lvanov, 1976) regularization amounts at solvingtfee best fit with a
2-norm onw smaller tharv:

min 7 (e) = -e'e s.t. (6.27)
we 2 whw < 1.
This formulation is also referred to as the trust-regionmablem (Rockafellar,

1993; Nocedal and Wright, 1999) employed in the context ofnaigation
theory.

The Lagrangians become respectively

Zrwea)  =zww+ iy e -y ai(w o(x)+e—yi)
Lawea,g) =zwwtE(3 & —No?)— 3 ai(w é(x)+e—yi)
Lwea, &) =zeletEWw—1) -3 ai(W (x)+e—w)
(6.28)
The conditions for optimality are
Condition Tikhonov Morozov Ivanov
0¥
S =0 | WEERiaio() | w=3Eiaid(x) | W= 5 aid(x)
0%
0_:0 Y& = Qj 2le =0 6 = Q;
a; (6.29)
g =0 [ W0 Fa =y, W) e =¥, | Wk)+a=y
|
- SN, € =No? wiw < 1
- §>0 §>0
for all i =1,...,N. After elimination of the parameter vectav, the Tikhonov

conditions result in the following set of linear equatiosscéassical, see Chapter 3,
Tikhonov : (Q + %/IN> a=Y. (6.30)

Re-organizing the sets of constraints of the lvanov schesidts in the following sets
of linear equations where an extra nonlinear constraiateslthe Lagrange multiplier
& with the hyper-parameter? as follows

1
Morozov : (Q+ ElN) a=Y st a'a<Nog? &>0. (6.31)

Similarly, the Morozov scheme has a dual problem which carebeitten as follows.
Letd = %a, then

lvanov : <Q+ %m) G=Y st a'Qa<m, £>0, (6.32)
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and the dual representation may be evaluated at a new pofiikas= Qn(x, )T d.

One now can rephrase the optimization problem (6.26) inseshihe Singular Value
Decomposition (SVD) of2 (Golub and van Loan, 1989). For notational convenience,
the bias ternb is omitted from the following derivations. The SVD ©fis given as

Q=USU™ s.t. UTU =1y, (6.33)
whereU € RN*N is orthonormal an®= diag 0y, ..., on) with g3 > --- > oy. Using
the orthonormality property of the SVD, the conditions (§.8an be rewritten as

1 -1 1 T 2

a=U (S+3IN) p s.t 320 a <No-, &>0

1 (6.34)
&—=U (S+%IN) p st aTQa<m, &>0

where p = UTY € RN, Eliminating of the dual variablesr ¢ RN and @ € RN
respectively leads to the equalities

N2
ala=3 (%) <No? (a)

-2

2

(6.35)

One refers to the equations in (6.35) as the secular eqgaf®olub and van Loan,
1989; Neumaier, 1998). Now the largest valueaofsmallest fitting term) satisfying
this relation can be searched using e.g. a bisection aigoriPreset al, 1988). As
can be seen from the expressions (6.35) and Figure 6.3, liteorebetweens?(m)
and& > 0 is strictly monotone and there is exactly cheorresponding with a given
noise levela? (or ).

6.3.2 Differogram

In (Pelckmanset al, 2003; Pelckmanset al, 2004), a model free noise variance
estimator denoted as a differogram method was elaboratpderflix A gives details
on this estimator and relates it to a series of other estirmafthe following example
shows a direct use of this method towards the estimatioreafgpularization trade-off.

Example 6.1 The Morozov regularization scheme (6.26) has various practical iatjuits
including the following. Given prior information or a reliable estimate of thsadevel,
one can transform this knowledge into an appropriate regularizatiompéee > 0. Let
Oe: 2 — R be an estimator of the noise variance in the datasstich thatoe(2) = 692
with varianceo?. Leta € R™ be a fixed constant determining the relative width of the
interval. Given the intervdlde = a 62], one may determine the corresponding interval of
regularization terms dg = [é*,f*] and one can marginalize over this region. See also

Figure 6.3.b. Let; be a finite subset df;, then

fx,) = /EGIE fe (x.)dP:
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where f; parameterized witlir; solves the LS-SVM cost-function (3.9) corresponding
with a regularization parametgr= 2¢ and ps > 0 are weighting terms corresponding
with the distribution orl¢ such that/e ;. pgd& = 1. A similar result is also derived in
Algorithm 8.1.

A distribution free approach towards the estimation of the noise variancewtithe
explicit construction of a model was discussed in (Pelcknetral., 2004) called the
differogram. The key idea is to infer properties of the observed datthercloud of
mutual differences of the data-points defined\ag = ||x — X; |2 andAyij = lyi — Yjll2.
instead of on the data itself. Figure 6.4.a illustrates the effect of the chmése level on
the validation set of an artificial regression example. Figure 6.4.b sliwsvdifferogram
cloud of the higher dimensional data of the Boston housing dataset aneksiikimg
variance estimate. Section 9.4.3 discusses the differogram methodréndetail in a
slightly different context.

6.4 Regularization Based on Maximal Variation

6.4.1 Maximal variation

Consider again the setting as in Section 4.2 of componeatwisdels where a
datapoint is reorganized as a setfbtomponents such that= (x<1>7...,x<P)). In
(Pelckmangt al, 2004,In pres$ the use of the following criterion is proposed:

Definition 6.1. [Maximal Variation] Let >ép) be samples of the random variable
X(P) ¢ RPr with a finite range such thaiL{ with —L{ < X(P < L. The maximal
variation of a function § : RPr — R is defined as

o (X<p>)

for all x(P) sampled from the same distribution underlying the datasebelonging to
the domain of §. The empirical maximal variation can be defined as

AMp= sup

x(P) cRPp

, (6.37)

//Zp:@z; ‘fp (x™)] (6.38)

with % belonging to the training-sev.

The setting of statistical learning theory may be employeddrive a bound on the
deviation of the true maximal variation to the empirical imaal deviation, see also
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Figure 6.4: Example of the use of the Morozov discrepancy princidl&) Training
error (solid line) and validation error (dashed-dottea)ifor the LS-SVM regressor
with the Morozov scheme as a function of the noise leve(the dotted lines indicate
error-bars by randomizing the experiment). The (dashezb)idenote the true noise
level. One can see that imposing small noise levels resalteverfitting. (b)
Differogram cloud of the Boston Housing Dataset displayafigdifferences between
two inputs {x = ||x — Xj||2) and two corresponding output8y(= ||y; — yj||2). The
location of the curve passing the Y-axis giverEdAy|Ax = 0] results in an estimate of
the noise variance.
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example 3.4 in Section 3.5. A main advantage is that this oreas not directly
expressed in terms of the parameter vector (which can batefirmensional in the
case of kernel machines). Moreover, the regularizatioersehbecomes independent
of the normalization and dimensionality of the individuaheponents.

As an example, consider again the linear model (6.1). Fourtbee, letl € R such that
—L < xg < L with L = max(|x"|). The following relation holds,

1 .
|wd|1:[||_wd|1:¢, vd—1,...,D. (6.39)
One then can rewrite (6.38) as follows
R P N
(W,b) = argmin 737 (Wb,.) = 5 Mo+ A Z(WTXi +b—y)2 (6.40)
w,b p=1 i=

By replacing the maximal variationg/y by its empirical counterpart, it can be solved
efficiently as

. D N

(W, b,f) = argmin_z; (w,b,t) = dz tg -+ A Z(WTXi +b—y)?
=1 i=

w,bt
st —tg<wgpd <tg, Vd=1,...,D, Vi=1,....N, (6.41)

which can be casted as a quadratic programming problem With 2 unknowns and
2D inequalities.

Though this formulation corresponds to a large extents thiehmethods as LASSO
and the SURE formulation, the extension to the kernel varaiod the way to cope
with the missing values will crucially depend on this measof maximal variation.

As the measure of maximal variation depends only on the giedloutputs and not on
the parameterized mapping, one may refer to the mechanisnaxiimal variation as

non-parametric regularization principle.

6.4.2 Structure detection in kernel machines

This mechanism is extended towards the setting of primal-kernel machines. The
formulation of componentwise LS-SVMs suggests the use eflicdted regularization
scheme which is often very useful in practice. In the case&tie nonlinear function
consists of a sum of components, one may ask oneself whiclp@oents have no
contribution (fp(-) = 0) for prediction. Sparseness amongst the componentses oft
referred to as structure detection. The described metheddsely related to the kernel
ANOVA decomposition (Vapnik, 1998; Stitsaat al., 1999) and the structure detection
method of (Gunn and Kandola, 2002). However, the followingtiod as originally
described in (Pelckmaret al., 2004, In press Pelckmanset al, 200%) starts from

a clear optimality principle, and extends hence the LASStinesor to a nonlinear
kernel setting.
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Lemma 6.5. [Primal-Dual Kernel Machine for Structure Detection] Consider the
class of models7y, see (3.8). The following primal estimator is considered:

(W,b,f,):argmlnjw\wb,t,e uth+ ZWWp+ZZq2

wbt.e
P wigy(xXP)4+breg=y, ¥i=1,...,N
st 2Pt )g(p) L (6.42)
—ty <wpo (xP) <t, Vi=1,...N,vp=1,...,P.

Leta = (atr,....an)"T €RY, pf = (05 ..., o80T €RTNandpy = (05 .- ... 050)"
RN be the Lagrange multipliers associated with the correspapaonstraints in
(6.42). The dual problem is then given as

(6,55 .Pp) =arg_max _#y(a.p",p")

a.pg,Pp
.
! S - P c (oF o 1 Tyt
3 (Pp —Pp) | Q[ a+ S (pp —pp) —datyYa
D:l p=1
H= 3 () +Pip) Vp=1,...,P
st. ¢ sNai=0 (6.43)
Pip:Pip >0, Vi=1,...N,vp=1,...,P

whereQf = 55 1 Kp (xi(p)7x§p)> foralli,j=1,...,N. The estimated predictor can

then be evaluated on a new data poiptexRP = (xil), ... ,xip)) as follows

P N

f(x.)= p;i; (&i +hh - [)fp> Kp (>q<p),x§p)) +b, (6.44)

whereb may be recovered from the complementary slackness comgliissociated
with the primal-dual derivation.

The proof follows the formulation of the primal-dual kermebchines as in Chapter
3. The main drawback of this approach is the huge number ofdrag multipliers
(N(2P+ 1)) which occur in the dual optimization problem. Note thasthumber can
be reduced readily by only including those constraints afimal variation belonging

to different input valuesq(p) #* xgp). This is especially useful in the case a number
of components consist of categorical or binary values. &ctitn 8.4.1 describes a
computational shortcut.

Itis known that the use of 1-norms may lead to a sparse salutioch is unnecessarily
biased (Fan, 1997). To overcome this drawback, one has gedphe use of norms
as the Smoothly Clipped Absolute Deviation (SCAD) penaltgdtion as suggested
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Figure 6.5:Results from a benchmark study on the dataset as discusEadrinple 6.2
with N = 100andD = 25. The four first sub-plots show the contributions of the #rst
components, with the dashed line indicating the empiricatimal variation. The last
two panels illustrate two components with zero empiricaximmzl variation.

by (Fan, 1997) and which have been implemented in a kernehimad (Pelckmans
et al, 2004, In pres3. This text will not pursue this issue as it leads to non-esnv
optimization problems in general. Instead, the use of tmeria is studied in order
to detect structure, while the final predictions can be madeth on a standard model
using only the selected components (compare to basis pussei e.g. (Chest al,
2001)).

Example 6.2 [Numerical Example of Structure Detection] An artificial example is taken
from (Vapnik, 1998). Figure 6.5.a and 6.5.b shows results obtainexoh artificial dataset
consisting ofN = 100 samples and dimensidh = 25, uniformly sampled from the
interval [0, 1)2°. The underlying function takes the following form:

f(x) = 10 sinX!) +20 (X? - 0.5)> + 10 X3 +-5 X*, (6.45)

such that; = f(x) +& with g ~ .47(0,1) foralli=1,...,100.

Figure 6.5.a gives the nontrivial componentg ¥ 0) associated with the LS-SVM
substrate withu optimized in validation sense. Here, the hyper-parametensdA were
tuned using a 10-fold cross validation criterion. Figure 6.5.b preseatsublution of
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Figure 6.6: The evolution of the empirical maximal variation of the difnt
components when ranging from 1 to 10*. The black arrow indicates the parameter
selected by using0-fold cross-validation, resulting iA nontrivial contributions of
X1 X2, X3 andX*.

values oft whenp is increased from 1 to 1000 in a maximal variation evolution diagram
(similarly as used for LASSO, see Subsection 6.1.2).

Note that an equivalent formulation is obtained by considethe Morozov type of
constrained least squares problems. dyee Rt ando, € R* be constants. Then one
can alternatively write (6.42) as

1 P
/G“UAwbt EZ
53 patp < Oy
N2 € <o) 5.46
SLoYsP wlee (XP) +bte=y Vi=1..,N (6.46)
—tp <wpt (X <tp, Vi=1,...,NYp=1,....P

in which case a similar formulation is obtained as in Lemntavéhereu andA act as
multipliers to the two last inequality constraints.
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6.4.3 Kernel machines for handling missing values

Black-box techniques as neural networks and SVMs are quigduliin predictive
settings but are considered less appropriate for handlisgimg data (see e.g. (Hastie
et al, 2001), Table 10.1). One typically has to resort to prepssite) methods as data
imputation, data augmentation (Little and Rubin, 1987)ntraictable EM methods,
see e.g. (Dempstast al, 1977). The optimization based approach of primal-dual
kernel machines however can be employed to approach théeprais proposed in
(Pelckmangt al., 2005%) for the case of classification. The handling of missing galu
gives rise to uncertainty in the model’s prediction. The ofsadditive models however
can recover still some information in this case associatigtdl @@mponents which are
not affected.

The following setting is considered in the case of missirlgesof the input variables
where the missing values are complete at random (MCAR) (Rut8976; Little and
Rubin, 1987).

Definition 6.2. [Integrated Risk] An observed input valueg takes a point distribution
X; at the point x, while a missing observationys only known to follow the marginal
distribution », ~ P(X) with P(X < x) = [N, P(X < x). Then one may employ the
following integrated risk function.

(1, Pxy) (y—F(x)dPey = / /y 0(y—(x) dRyxdR, (6.47)

=/
xy

and the empirical counterpart
N
%(f,%:z/é(yi—f(x))d&- (6.48)
=17y

As such one has to take into account the marginal distribuB0X) only when
the observation is missing. In the case of all observed d&td8) reduces to the
classical risk as in (3.34). The case of building compon&&@8VM classifiers in the
context of missing values is elaborated based on (Pelcketaals 200%). A worst-
case counterpart of the integrated empirical risk is stuavéh the class of models

belonging to the componentwise kernel machiheg = S, W), ¢p (x(l)).

Definition 6.3. [Worst-case Empirical Risk] A worst-case upper-bound to the
empirical integrated risk of (6.48) is given as follows

R N

#,(1,2)= .;ue[rf/?}f Mf(U—yi), (6.49)

which reduces in the case of the Hinge loss function to
N

Qh(ﬂ@):_z [1_% < Wl dp (>q<p))> +y ///p] . (6.50)
1= peEPi i

peP
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This can be encoded in a primal-dual kernel machine as fsllow

Lemma 6.6. [Primal-Dual Kernel Machine for Handling Missing Values]Consider
the model tx) = y5_ W) ¢p (x“’)) +b, where the mapping, (-) : RP» — R™ denote

the potentially infinite dimensional feature map for al=pl,...,P. The following
regularized cost-function is considered:

P
mlnjc (W, &,t) = ZW Wp+CZlf|,

) (zp@i W9 (Xi(p)) +b) —Yperitp 214
st 1&=20 Vi=1...,N (6.51)

~tp<whigp(X”) <t Vi.p|peP

The dual problem becomes then

1 N
-5 Z C{yl yJ Jrzlal

Pup Pip i,j=1
0’3(/,?) = aiYi + P — Pip Vi|pgPi
ayf) = ay Vi|peP
st | Zia¥ai=0 (6.52)
A :Zi\pépi(pi;"_pi;_a)_znpe?i ai Vp=1,...,P
0<ao <C Vi=1,...,N
Pip:Pip >0, Vi=1,... NVpeP,

whereda; € R and pi;g,pi;) € R™ are the corresponding Lagrange muItipIieté-F-’ =
yh-1Kp (xi(p),xgp)) foralli,j=1,...,N and whereKp, (x,( P ﬁ )> =Kp (xf P ¥ Ep))
if xi(p) nor xﬁm are missing and zero otherwise. The resulting nonlineassifeer

evaluated on a new data point x (xil), . ,x@) takes the form

(6.53)

slgnlzz1 ( x(P >)+b

p=1i

p)

Whereai( foralli =1,...,N are solving (6.52).

Proof. The dual problem can be derived in the classical way. Thedragan.#c of
the constrained optimization problem becomes

1 P
Ze(Wp, &, tp; i, Vi, pi5, Pip) =5 Z wp+czig,
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Yi ( Wp¢p(xi(p>)+b> = > =144
pEP;

N
|ZLVIEI peP;
S i) 3 o). 5

ipeP ipeP

Mz

with positive multipliers 0< ahvi,pﬁg,pi[,. The solution is then given as the saddle
point of the Lagrangian resulting in the dual problem (6.52)om the condition for

optimality Wp = ¥ipzp; OiYifp (xi(m), the result (6.53) follows. O

Example 6.3 [Numerical Results on Missing Values]A data set was designed in order
to quantify the improvements and the difference of the proposed (linedrkarnel)
componentwise SVM classificators over standard techniques in the tasssing data
and multiple irrelevant inputs. The Ripley dataset(150,d = 2, binary labels) was
extended with three extra (irrelevant) inputs drawn from a normal disimiv¢ /" (0, 1)).
The component consisting of inpu}; and X, is detected correctly by the hyper-
parameter optimizing the validation performance. In a second expetiraguortion
of the data was marked as missing data. The performance on a disjbd@tiem set
consisting of 100 points was used to tune hyper-parameters, while thelfissifier was
trained on all 250 samples. The performance on a fresh test seedfGd was used to
quantify the generalization performance. For the purpose of conoparilse results of
linear Fisher discriminant analysis were computed which cope with the migalnes by
omitting the corresponding samples, while the other approaches follovethaiions of
Subsection 2.3. Figure 6.7.a shows the estimated generalizationrpanice in function
of the percentage of missing values.

As a second case, one considered the UCI hepatitis dataset80,d = 19) with
approximately 50% of the samples containing at least one missing valug¢anéasd
SVM with RBF kernel and the componentwise SVM considering up to secoder
components were compared. The former replaces the missing vaitlrethes sample
median of the corresponding variable while the latter follows the describmdtw
case approach. The respective hyper-parameters were tungdesie-one-out cross-
validation. Figure 6.7.b displays the receiver operating characterBGC] curve of
both classifiers on a test-set of size 55. As the componentwise only esdpkfynon-
sparse components out of the 380 components up to second Dygsrd), the proposed
method outperformed the SVM both in interpretability as generalization pesioce.
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Figure 6.7:(a) Misclassification rate of the extended Ripley dataset irction of the
percentage of missing values. Notice that the worst-caay sl is not breaking down
when the percentage of missing values is growm{byyROC curves on the test-set of the
UCI hepatitis dataset using an SVM with RBF kernel with ingdian of missing values
and componentwise SVM employing the measure of maximaatian employing the
proposed method for handling missing values. The lattesistgof 25 non-sparse out
of the approximatively 400 components.
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Chapter 7

Fusion of Training with Model
Selection

The amount of regularization is often determined by a seboktants
which should be set by the user. The (meta-) problem of gettiase is
often treated as a problem of model selection and consideseoeing
solved. However, a procedure for the automatic optiminatié these
hyper-parameters given a certain model selection criteand model
training procedure is highly desirable, at least in practid@his chapter
outlines a framework for this purpose based on optimizatiogory.
Section 7.1 introduces the problem and sketches the prdsmation.
Various applications of the approach towards model s@egtioblems in
linear parametric models are given. Section 7.2 studieptbblem of
model selection in the case of LS-SVMs and SVMs.

7.1 Fusion of Parametric Models

In order to make intuition on this topic more accessible,fttgton argument for the
parametric case is considered first. Unless stated otherthis validation performance
function is taken as the generic standard for model setectiet 7" = {(x.,y})}|_; C
RP x R be a collection of data-samples i.i.d. sampled from the sdrsteibunons
as those underlying the training dataget Let XV = (xV,...,x})T € R™P and

= (y{,...,¥}4), then the validation model selection criteribtodsel” : RP x 2V — R
becomes

i W xJ . (7.1)

Extension to the closely relatédfold and leave-one crossvalidation (Stone, 1974) and
to information criteria as Akaikes AIC (Akaike, 1973}, (Mallows, 1973) or GCV

139
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(Golubet al,, 1979) may follow along the same lines.

7.1.1 Fusion of ridge regression and validation

At first, the task of appropriate selection of the ridge patny > 0 in linear
parametric models (see also Section 3.2 and Subsectiah) éslstudied. Consider
the validation model selection criteridviodsel” as in (7.1). Necessary and sufficient
conditions on a parameter vectorto be the global optimum to (6.2) are given by the
normal equations (6.3):

(XTX+ylp) w=XTY. (7.2)

The optimization problem of optimizing the solution-spaser the hyper-parameter
y € R* with object-functionModsel¥ may be formalized as an hierarchical program-
ming problem (see Subsection 2.4.4):

. 1
n;w/"(w) =5 IX'w—YY|3 s.t. (X"X+ylp)w=XTY holds and y > 0.
(7.3)

This may be rewritten as the constrained optimization bl

(XTX) w+wy, =XTY (a

(W, y) = argmin_7"(w) = % IX'W—YY|53 st yw=w, (b)
™ y=0. ()
(7.4)

Note that the collinearity constraint (7.4.b) is non-conveOne may refer to this
formulation asFusion of Ridge regression with model-selection shortly Fridge
regression This typical formulation of fusion of training and validlat can also be
regarded from another perspective.

Definition 7.1 (Solution path). The solution path of an estimator denotes the set of
estimates from the data corresponding to any admissablerhgp design-parameter.

The solution path of ridge regression with respect to thelleggation constany is
shown in Figure 7.1.a. Then the task of fusion of an estimatibra (model selection)
criterion amounts to minimizing this criterion over thegibn path, see Figure 7.1.b.
The solution path of the LASSO estimator and the SVM were rilesd and analysed
in (Efronet al, 2004) and (Hastiet al., 2004) respectively.

7.1.2 Convex relaxation to fusion of ridge regression

It turns out that in some cases the problem (7.4) can be seffietently. Assume that
X is orthonormal such th&™ X = Ip as in Lemma 6.1. Then the first order conditions
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for optimality become
Wy =AXJY. A——t  vd—1...D (7.5)
d - ) - 1+ y7 - V) * .
The fusion problem becomes as such

. 1 w=AXTY
W,A) = argmin ZYwWA) = Z[X'W—YY|? st 7.6
(W,A) g’w (W A) 5l 12 {0</\ o1, (7.6)

which can be solved efficiently as a quadratic programmiglem.

The inputs are in general not orthonormal at all, especialthe cases where regular-
ization in the form of ridge regression is needed. Howeves,dgresented formalism
can be used in order to obtain good initial estimates of thalegization constant and
the parameters by adopting a suitable preprocessing st¢p.3UT denote the SVD of
XTX with S=diag 03, .. .,0p) € RP*P andU € RP*P orthonormal. Then the normal
equations (7.2) can be written as follows

D
U(S—HD/\)UTW:XTY(:)UTW:GZ(Ud +A)" g xTy. (7.7)
=1

This can be approximated when the singular valumg}_, can be clustered in a small
numbers around cente{®; }|_; wherer; denote disjunct sets of subsets of.1,D
such that Jl_; 7t = {1,...,D}. This result in the approximation

|
1
Ulwa~ S A UIXTY where A\; = .
i; md; ‘ T op A

(7.8)

A numerical example is constructed witth = 100 ten-dimensionaD = 10 input
datapoints which are ill-conditioned (rank larger than @QGee Figure 7.2.a for a
typical spectrum of singular values. The output satisfieséhationy; = wx; +& where

w is a random vector angl ~ .4°(0,1) andg ~ .47(0,1). A separate validationset of
sizen = 75 is used for tuning the regularization trade-off. Resofta Monte Carlo
experiment with 1000 iterations are given in Figure 7.2 e Tatter achieves the same
performance as the ridge regression but is computationathriess intensive

7.1.3 A convex relaxation to stepwise selection

Consider the case of input selection for linear models basedodel selection criteria.
Given a vector of indicators= (11,...,1p)" € {0,1}P, the model is given a§(x) =

w] 1) x wherel,) = diag(1) € RP*P. The problem of ordinary least squares of this
model is given as

1N 2
Ji(w) = 5; (WX —vi)°, (7.9)
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estimqtes manually tuned on a validation set and the conpproach to fusion as
described in Subsection 7.1.2. The latter achieves the panfiermance as the ridge
regression but is computationaly much less intensive.
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By use of the upper-bound' € RP such thatw' = [l(yw| where| - | denotes the
absolute value and g = 0 if and only ifig = 0, for alld = 1,...,D, one can write

equivalently
N

A (w) = Z(WTXi*yi)z st —W' <w<W, (7.10)

i=
where the upper-boun@/' can now be chosen a-priori when the relevant inputs
indicated by the vectarare fixed. The Lagrangian becomes

Lvwata7) = %i (W'x —yi)2+oFT(—W—W') ratT(w—W", (7.11)

such that the Lagrange multiplies™,a* € RP are positive. The necessary and
sufficient Karush-Kuhn-Tucker conditions are given ascioh:

XTX)w=XTY =a~ —a™ (a)
ag,o4 >0 vd=1,....D (b)
KKT (710 (W;W', a7, a7) § —wW! <wy <W, vd=1,....D (c)
ag (Wj+wq) =0 vd=1,....,.D (d)
ag (Wy—wg) =0. vd=1,....D (e)
(7.12)

Fusion of training and model selectidfodsel can be formalized as
(WW'a",a )= argmin _#M%(w) s.t. KKT710(WW',a",a”) holds.

wW' at a-
(7.13)
It is clear that the problem of input selection with respextat model selection
criterion will result into a discrete and non-convex optiation problem. This is often
approached with a greedy and somewhat ad hoc stepwise m@ttee.g. (Hastiet
al., 2001)).

Based on the previous reformulation of the input selectiooblem in terms of
the vector of hyper-parametev8' as in (7.10), a convex relaxation method can be
considered. Consider the validation model selection ghaee One can show that the
following modification to (7.13) is convex when> 0 is sufficiently small following
the elaboration of hierarchical programming problemsgiveSubsection 2.4.4:

(W,W',a",a")= argmin _ZY(w;W',a™,a")
wW!hat, o~
= IXW—YY[2+ e (a”(w' —wW)+a (W +w))
XTX)w—2XTY =a~ —a+
st. qag,af >0 vd=1,....D (7.14)
—W < wy < W vd=1,...,D.
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Figure 7.4: A solution space of ridge regression (RR), LASSO and pldesib
least squares (pLS) estimators. The parameter space vétlsahution paths of
respectively the Ridge Regressor (dashed-dotted) andAB&D estimator (solid line)
corresponding with different values of their respectivpéryparameters. The rectangle
indicates the subspace of solutions which cannot be rejedtb aa significance level.

The following subsection gives an alternative approackethasn an entirely different
principle and which yields better performances in practice

7.1.4 Plausible least squares estimates

Another example of fusion of a least squares estimate witleréaio criterion is

formulated. Here, one does not rely on an explicit pararizteon scheme of the
solution-space by an hyper-parameter as the regulanzatbostant, but the set of
solutions which cannot be rejected by a given significaneel s considered instead.

Consider the case of deterministic inpusc R® and stochastic outputg follow-

ing approximatively a Gaussian distributign~ .4 (w"x,de). The least squares
estimate follows from the normal equations (3.4) where the/ stochastic part
occurs asc(X,Y). Example 7.1 derives the distribution of the sample covaea
estimatorcd(@). This can be used to specify a range on the covariance which
is plausible given the finite set of samples in the classicay.wLet ((Z,a) =
(€1(2,a),...,°(2,a))" € RP be thea-quantile of the sample distribution of the
sample covariance. Then the solutiomsatisfying the following inequalities cannot
be rejected with aws significance level

& (97%) < (XTX)W< & (971—%). (7.15)
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The se{fw satisfies eq. (7.15) specifies a convex solution set for see Figure 7.4.

Example 7.1 [Sample Covariance Distribution] Let 2 = {(x,yi)}; wherex € R are
deterministic point&/i = 1,...,N andy; i.i.d. sampled from a random variab¥g with
E[Yi] =0, conditional meart[Yi|x] = wx; and bounded varianceQvar(Y;) < o and
w € R fixed but unknown. Different approaches could be taken to dexpeessions on
the sample distribution af( Z).

Consider the sample covariance estimat@ )= % SN %yi. It follows from the central

limit theorem thaic(2) — A (e, 02) whenN — o where the meapy, and g can be
computed as follows

{/Jv =E[6(2)] = %ZiNzlxiE[YﬂXi] = VNVZ!\‘:NQ'Z

- 5 (7.16)
o2 =var&(2)] = & sN xvar(Yilx) = ¢ yN 1 %.

Wheno? were not knownY; is approximately Gaussian, the sample variance estiéigate
can be used. The sample distribution can then be described accuraaghylizgribution
with N — 1 degrees of freedom (see e.g. (Nedeal, 1974)). When alsX can becomes
arandom variable, the analysis becomes much more cumbersontbe lrahdom vector
Z be defined as followg = (X,Y) € RP*1 and letz € RN*P+1 contain theN samples
(Xiyi). In the case&Z follows approximatively multivariate Gaussi@a~ .4 (0p41,%z),
then the covariance matriz'Z € RP+1<P+1 follows a Wishart distributior” (2, N)
with N degrees of freedom. By definition, the elemedtsf the Wishart distribution are
confined to the positive (semi-) definite coBe- 0. In the cas® = 1 andZ = o2, the
wishart distribution reduces to tte x?(N) (Rao, 1965; Mardiat al., 1979). Details on
this approach and its references to the use of the Wishart distribution enfayibd e.g.
in (Letac and Massam, 2004).

From a more practical point of view, the finite sample distribution wiay be determined
using the bootstrap procedure (Efron, 1979) which results in accsaatple distributions
under mild regularity assumptions. Figure 7.5.a gives the sample digtritin the case
02 =1, 02 =1,N =100 andb; = 3.14 using the bootstrap. Its theoretical counterpart
described in (7.16) is given in Figure 7.5.b.

7.1.5 Plausible least squares and subset selection

We proceed by application of this formulation of the plalesiolutionset of the least
squares estimates towards subset selection. The follayuestion is adressehat is
the sparsest least squares solution which is still plaesidls classicaly, the concept of
plausibility may be encoded as passing a hypothesis testpiéal test for this simple
case is the t-test (see also previous example). Thus one asayilte the plausible
solutionset of the least squares estimate as in equatibB)(7.

A as T A Os
: =)< < - ). .
condz17(W,as) : Cp (@, > ) < (X'X)w<Ep (9,1 > ) (7.17)
The desideratum of sparseness is relaxed by the use bf therm as classicaly. Then
this question may be translated as follows

W=argmin_#y(w) = |[w||1 s.t. congy 17 (W, as) holds, (7.18)
w
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where [6p(2) —a 02, €(Z)+ao?] = Sc RP denotes the confidence interval of
significance level & a < 1 for the covariance (see previous example). This is another
example of the hierarchical programming problem where gi&le model training is
fused with a sparsness criterion.

Algorithm 7.1. (Subset selection using plausible least squares) The itthgorfor
estimating the most sparse least squares estimate whichotde rejected with a
significance levetrs is found as follows.

1. Compute the sample distributions of the covariance ofiripet X with the
observed output Y forall & 1,...,D, using either a bootstrap procedure or the
sample moments (see example 7.1).

2. Given a significance levBl< as < 1, construct the convex set
Fas={w| condy17(w,as) holds }. (7.19)

3. Find the most sparse solution vectrin ./, by solving the fusion problem
(7.18).

A numerical Monte Carlo experiment relating sparsenesgandrmance of Ordinary
Least Squares (OLS), Ridge Regression (RR) (see Subséctidn, LASSO estimate
(see Subsection 6.1.2) Alternative Least Squares (ALS) @ebsection 6.1.3), and
the proposed method (plausible Least Squares or pLS) whereanfidence interval
was constructed using the quantiles from a simple bootgirapedure with 10000
iterations. A dataset was constructed as followsZet {(x;,yi) }}.; with N = 100,

D = 10 and the observations generatedyas w'x g with g ~ A4(0,1) andw =
(@i, wp,0,...,00T € RP wherew,, w, ~ % (—5,5). The regularization constant of the
ridge regression estimate and the LASSO estimate as weleasignificance level
o of the proposed method are tuned with respect to the perforenaf the estimate
on a separate validation set of size- 20. The final performance is measured using
the mean squares error of the estimate on a new testet of e Panel 7.6.a gives
boxplots of the performances, while panel 7.6.b compareabiiity to detect structure.
Those figures shows that the given approach can have adeaméyin performance
as in structure detection in this dedicated example.

7.2 Fusion of LS-SVMs and SVMs

7.2.1 Fusion of LS-SVMs with validation

Fusion of the LS-SVM as described in Section 3.3 and the aadid criterionModsel”
as defined in (7.1) can be written as follows
n Qa+ay,=Y (a)
2
Say) =Yy QO Ta—y)" st Sy ta=a, (b (7.20)
= y =0 (©),
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performance of the estimates.
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whereQy : RP — R is defined an(X) = (K(x1,X),...,K(xn,X))". As can be seen
from this formulation, the constraint set of (7.20) is nameex because of condition
(b) including an unbounded quadratical teym‘a. This renders the problem (7.20)
non-convex even when the model selection critefibsdsel is convex on its own. A
convex approach to the above problem is given in (Pelckretiak, 20040) based on
a matrixA* leading to an appropriate linearization of the problem. &ample below
we show an alternative approach.

Example 7.2 [Convex Approximation of Fusion of LS-SVMs with Validation] Let K be
decomposed d$SUT using a singular value decomposition withe RN*N orthonormal
such that) TU =UUT = Iy andS=diag(a;y), .., o(n)) € RN*N with ordered singular
valueso(yy > -+ > o(y)- Then problem (7.20) can be rewritten as follows

n 2 (S+InUTa=UTY (a)
v — NT @ W
7 (a,y)_j;<QN(xJ) a yJ> s.t. {rlzo, (b) (7.21)
Now we definelm foralli=1,...,N as follows
1
Ay &2 —— 7.22
O o +1/y (7.22)

As the functionf (x) = 1/(x+ 2) is strictly decreasing fox € R™ given any fixed value
of ze R, the following inequalities are obtained:

(7.23)

Now we apply the overparaterization technique by omitting the constraidt.). and
use the linear inequalities (7.23) instead, resulting in the relaxation

(&,A) =argmin_z¥(a) = i (QN(X‘]-’)Ta—y‘J-’>2
aA =1

UTa =35, AqUTY (a)
S.t. )\(1) < )\(2) <... < A(N) (b) (7.24)
0<Ag < % Vi=1...,N (c),
whereA = (A(l), e ,)\<N)>T e RN. Given the estimates, the approximate regularization
constanty can be recovered from the relation

ya =Y —Qa, (7.25)
and by substituting of the estimate

A monte Carlo study was conducted to assess the practical relevance pfofosed
method. Let{(x;,yi)}1% C R x R satisfy the relatiory; = sinc(x) + & with {&}1%9 ~
47(0,0.1). A validation set of sizen = 50 was used to optimize the regularization
constanty via (a) a linesearch (using 40 evaluations), (b) the method presented in
(Pelckmanset al, 2004) using a matrixA* and (c) the presented method. While the
proposed method achieves equivalent performance on a testsai|utierswas found a
factor 20 faster than the first method. The method proposed in (Pehdehal., 2004)

gains even a factor 2 in performance, but the loss in performancenicagnt and the
algorithm requires a good choice of the ma#ix



152 CHAPTER 7. FUSION OF TRAINING WITH MODEL SELECTION

0.16

;
= = =Linesearch
1w Agt

0.14r ——fLS-SVM |]
012} B

Q

o

& 01f |

£

o

=

2 o0.08f |

c

S

g

S 0.06f B

[

>

0.04+ B
0.02f B
LI
0 . . . .
107° 107 10" 10° 10 10° 10°
()
.
-3.4 +
"
-3.6
+
+
+
-3.8
9 N =
o
c |
©
£ |
g + ‘
& 1
g I N
= - +
42 %; i
| |
| |
«“ B3+~ =
! I
_a6l
LS-SVM A fLS-SVM

(b)
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well as the last, the latter is computationally much moreaative.
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7.2.2 Fusion of SVMs with validation
Consider the primal class of classifiers
Fem={f(x) =sign(w" ¢ (x)) | weR}. (7.26)
By employing the cost-function of the SVM (see Subsectioh13.but using instead
the ramp function (Vapnik, 1998; Cristianini and Shawel®gy2000; Shawe-Taylor
and Cristianini, 2004), one may write
1 N
(W, &) = argmin_gc(e) = ~w'w+C Zlqz
we 2 &
sit. ywé(x)]>1—ea, >0, Vi=1,...,.N (7.27)

Necessary and sufficient conditions are provided by the &aiuhn-Tucker condi-
tions with multipliersa, p € RN as in Subsection 3.7.1.

w=3;aiyio(x) (a)
Ca =0a;+p; Vi=1,....,N (b)
yiw o (x)] > 1-e Vi=1,...,N (c)
KKT 727 (Wea,p) =48>0 Vi=1,...,N (d) (7.28)
o >0,0>0 Vi=1,...,N (e
ai (Yiw ¢ (%)) —1+e)=0 Vi=1,...,N (f)
pie =0, Vi=1,...,N (g).

Elimination of the variablev yields the necessary and sufficient conditions for the dual
problem. The set of variablgsv,C, a, p,e) € RPT1+3N satisfying those constraints
is non-convex due the positive OR constraints (7.28.fg).is Bolution space was
characterized as a piecewise linear set in (Hastad., 2004).
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Chapter 8

Additive Regularization
Trade-off Scheme

This chapter is related to the results of the previous chajpie rather
takes a different approach towards the problem of fusionstebd of
considering existing training procedures, a flexible folatian employing
an additive regularization trade-off scheme is taken ap#lsés for fusion.
The resulting substrate is found much easier to proceed wiitnever
more complex model selection criteria are involved. Theédiagredients
are introduced in Section 8.1 and various relations araidgad. Section
8.2 then proceeds with the study of the fusion argument irctimext of
an LS-SVM regressor with additive regularization trade-Btirthermore,
the concept of an hierarchical kernel machine is introdulszdiing to the
construction of kernel machines maximizing their own digb(Section
8.3).

8.1 Tikhonov and the Additive Regularization Trade-
off

8.1.1 The additive regularization trade-off

A reformulation to the LS-SVM formulation was proposed ieigkmanset al., 2003)
leading to convex model selection problems. l%tbe as in Chapter 3. Lat=
(c1,...,cn)" € RN be a fixed vector of hyper-parameters. The central modifinati

155
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is to consider the following class of cost functions

N
(v”v,A)argmin/c(w,e)}WTWJr}zl(aci)2 st wx+e=y.Vi=1..,N.
we 2,£

2
(8.1)

In the papers (Pelckmars al., 2003; Pelckmanst al., 200%) this formulation was
conceived as a modified trade-off parameterization repiptie classical regulariza-
tion constanty in the ridge cost-function (3.9) or (6.2). This is referredas the
Additive regularization trade-off (AReg) scheme. The nfiedi normal equations are
given as

(XTX+1p) w=XT (Y —c). (8.2)

Oncecis fixed, the parameter vectarsodlving (8.2) is the unique global minimizer of
(8.1).

8.1.2 A modified loss-function perspective

The parameterization scheme (8.1) can be interpreted asdifidtblLoss Function
(MLF) scheme. This can be seen most clearly by omitting tlyeilegization term
w'w. Letd = (dy,...,dn)T € RN be a fixed vector of terms.

1N .
/b(w,e):ézl(e—di)z st. wWxi+e=y Vi=1,...,N. (8.3)

The modified normal equations become
(XTX) w=XT(Y—d), (8.4)

Note that the formulations (8.2) and (8.4) result in equaltsansw when the following
condition onc andd is satisfied:

XTc+w=XTd, (8.5)

wheneveiXT X is of full rank. This establishes the close connection betwte AReg
trade-off scheme and the MLF scheme.

Example 8.1 [Imposing Normal Distribution on the Residuals] This context of modified
loss functions may be used for the formulation of robust estimators eamified as
follows. Let{y;}N ; be ani.i.d. sample from a random variablavith fixed but unknown
pdf py. Following Example 1.2, the maximum likelihood location parameter of aitfens
with Gaussian distribution corresponds with the least squares estimate.

Let py instead follow a contaminated distributiofig (.4, %) defined in (3.58). Let
d € RN be fixed such tha¥q = {y; — di}\ ; ~ .+, then the MLF argument leads to the
following estimator

=z

o= arg“min/d(u) =3 (yi—di— p)? < uN =1 (Y —d). (8.6)
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Figure 8.1:lllustration of a use of the MLF mechanism in the case of a saropa
contaminated mode(a) A Quantile-Quantile plot (") of the original samp{eyi}i'\‘: 1
and of the modified samples); — di}i'\‘:1 (’0’) versus the quantiles of the standard
normal distribution. The coefficients of the regressiori@skine) equal the estimated
location and scale parameter of the nominal model. The fiflusgrates the difference
in which outliers (at the tails) and samples form the nommatlel (at the center) are
treated by the MLF mechanismb) Boxplots representing the results of a Monte-
Carlo study comparing the mean, median, trimmed mBana 25%) and the proposed
method based on MLF for estimating the location. The peréorce is expressed as
the mean squared error of the estimate and the true locasimmeterN = 50 and
the contamination factor was set26% While the trimmed mean, the median and
the MLF based method achieve comparable performance,ttbeyéelds additionally
estimates of the scale and quantiles of the nominal model.

Employing the fusion argument, the question which vedtorakes a maximal likelihood
estimatell may be formalized as follows

o _ (i —di) ~ A
JO(p,d)=ld]1 st {uN—l{,(Y—d). (8.7)

The first constraint may be approached by imposing small high®) (noments on the
distribution of %y, see e.g. (Boyd and Vandenberghe, 2004)

An approach may be used using the Quantile-Quantile method comparindjstribu-
tions based on the ordered dataset. Let thergfpy;, 1) foralli=1,....,N—1 denote
the ordered samples. As the order is retained by translating the samples euitistant

N
. By comparison of this ordered samples with E&t= {z(i) } . be an ordered sample
i

from the standard normal/’(0,1) such thatz;) < z;, 1 for ali=1,...N—1. The
deviation of the sampl€/; of the normal distributior’Z, may then be quantified by the
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maximal deviatiord = sup ’ (ym - d<i>> — (u +z<i>)‘ as follows. Letoy € R™ be the
slope of the QQ-plot, see Figure 8.1

(i, 6y,r) =argminr s.t. —r < (y(i) —d(i)) - (;H—ayz(i)) <r. (8.8)

H,0v, 1

Letg=(g1,...,9n)T € RN be a vector of positive slack variables. Using the Pareto
approach to multi-criterion optimization results in the following problem

1 N
. o) o X
u,!f?,lrlli,g f/\ (“70y7r7d7g) - )\r+ N izz gl

Y(i) *d(i) < Y(it1) *d(i+1) vVi=1...,N—-1

st - < (y<|> —di) — <H+Uy2(i>> <r Vi=1,...,N (8.9)
-0 <di <gi Vi=1,...,N
UN =17 (Y —d).

From this problem formulation not only follows an estimate of the locafighut also

of the scale parametéyy of the nominal model behind the sample. Moreover, quantile
intervals of the nominal model follow from the estimate. The non-spdeseents of

d may indicate the outliers in the model, Figure 8.1.a shows an example crdilgel
quantile plot (QQ-plot) of the original samples and of the modified sampawuthe
mechanism as described. Panel 8.1.b reports results of a MorltesBadty comparing
the mean, median, trimmed megh-£ 25%) and the proposed method based on MLF for
estimating the location. The performance is expressed as the meapdeuar of the
estimate and the true location parameliet- 50 and the contamination factor was set to
25%.

8.1.3 LS-SVM substrates

The extension of the AReg scheme to primal-dual kernel nma&shivas studied in
(Pelckmanset al, 2003; Pelckmanset al, 200%). Consider the modified cost-
function to (3.9) with given valuese RN:

/C(W,e):;WTW+;i(a—ci)2 st. Wox)+e=y. vi=1,...,N (8.10)

The dual solution is then uniquely determined by the follmysequations

(Q+Ina+c=Y (a)

e=a+c, (b) (8.11)

KKT g1 (0,€C) = {

wherea € RN are the Lagrange multipliers. The resulting predidtonay be evaluated
in any pointx, € RP asf(x,) = Qn(x.)T & whereQy : RP — RN is defined ag)y (x) =
(K(x1,X),...,K(xn,X))". Note that the vector of residuasis not eliminated as in
Section 3.3 as it will be often needed later-on. We refer t® dual characterization
of the solution space to the AReg cost-function asltBeSVM substrateNote that



8.2. FUSION OF LS-SVM SUBSTRATES 159

the LS-SVM formulation (3.9) is taken as a starting pointlas tead to the simplest
characterization, see also Section 3.3.

Remark that by relating condition (8.11.a) to (3.15.a), oae derive the condition on
c andy for which the solutions equal as follows

—1

(y

which is clearly non-convex if both, c anda are unknown.

~la=c, y1>0 (8.12)

8.2 Fusion of LS-SVM substrates

Fusion of the LS-SVM substrate with a model selection doteModsel(f, Z) with
respect to the regularization constamtss RN may be written as a hierarchical
programming problem

(&a;€) =argmin_Zmodsel (0)  S.1. KKT(g.10) (& a;c) holds (8.13)

eaq;c

A crucial property of (8.11) and (8.13) is that the regulatian vectorc € RN occurs
linearly in the constraints. The price one has to pay foraligantage is the increased
number of regularization constartg RN absorbing the non-convex constraints. The
remainder of this section will mostly be concerned with therapriate restriction of
the effective degree of freedom of the constartsRN by imposing a-priori knowledge
or model selection criteria on the solution space KK, e) for all c € RN.

8.2.1 Fusion of LS-SVM substrates with validation

At first, the case wher#lodsel is the validation performancilodselV on a disjunct
validation datase®" is studied.

n
eModsel(A,€) = 5 (v Ta —y‘j’)2 st (Q+In)a+c=Y. (8.14)
=1

As was shown in (Pelckmaret al, 2003), the size of the validation-se#¥ should

be significantly larger thaiN in order to obtain stable solutions. This may be seen
informally asn samples need to determihkedegrees of freedom parameterized by the
regularization constant.

In order to approach this disadvantage, the solutiqand thusc) was restricted to the
convex hull of the quadratic constraint (8.12). To computeapproximative convex
hull of the constraint (8.12), was constructed using a discset of regularization
constants” = {yl}qul, leading to a convex set

Q
yr:{a: quaquRN ‘ (Q"‘yq_lIN)ayq:Y,
g=1
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Q
9q=>0 Vg, » gg= 0} . (8.15)
g=1

Figure 8.2.a illustrates the solutionset spanned by thhéleomov nodes. Figure 8.2.b
gives the results of a numerical comparison of the evolutibithe generalization
performance in terms of the number of nodes with respectagémeralization ability
of the original solution to problem (7.20) using a naive {search with the same
number of evaluations. This formulation is closely relatedthe marginalization
over the noise constant as described in Example 6.1. As caered from the set
description, the following algorithm may be used:

Algorithm 8.1. [Ensemble Approach to the Fusion of LS-SVMs wih Validation]

Letln = {yq}qQ:1 be a set of possible regularization parametersier Q € N denoting
the vertices of the hull.

1. For eachy,, compute the solutioay, to the LS-SVM regressor (3.12).

2. Letg=(g1...,90)" € R? be a vector. Solve the problem

fo) = ()T Tq1Gq0y, (3)
)

(fg,0) = ar%] min/ofngOdsel(fgyg) s.t. 28:1 9 =1 (b
g-,g gq207 vq:la?Q (C)
(8.16)

which is convex wheklodsel( f) is a convex measure on=f w' ¢.
A new point xc RP may be evaluated af (x.) = qu:l da (An(x)Tay,).

This algorithm is related to the ensemble approach as edmbe.g. in (Perrone and
Cooper, 1993; Bishop, 1995; Breiman, 1996) and surveyedam(ers, 2004).

8.2.2 Fusion of LS-SVM substrates with cross-validation

In order to avoid the non-trivial process of dividing valimldata into a separate
training and validation set, Cross-Validation (CV) (Stph874) has been introduced.
The following is based on thie-fold CV (where Leave-One-Out CV is a special case
with L = N). Let .7 denote the set of indices of the datageand?{ denote the set of
indices of thdth fold. Then the set” is repeatedly divided into a training séf and a
corresponding disjoint validation sé, VI =1,...,Lsuchthat? = ZjU¥ = U{-:17/|
and/N% =9, Vvl #k=1,...,L. Inthe following, N, denotes the number of
training points anch,, the number of validation points of theh fold. Figure 8.3
illustrates this repeated training and validation process

All L training and validation steps can be solved simultanedusiyndependently by
stacking them into a block diagonal linear system. For immtat convenience, the
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Tuned model

_ \
10 14| \

MSE(test set)

T T
AReg (Tikhonov nodes)
= = =LS-SVM linesearch

Nodes Or Evaluations

(b)

Figure 8.2:(a) lllustration of the convex solution-space according t@éhifikhonov
nodes(b) Evolution of the generalization performance when incregie number of
nodea compared to the result of a naive line-search usiggaluations. The proposed
method is seen to outperform the line-search approaah$orall.
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Figure 8.3:Schematical representation of thdold cross-validation procedure.

indicator matrixl s, ) is introduced denoting a sparse matrix w(thj)th entry 1 if
A1(1) = S(j) and 0 otherwise for set$7 and.7>, e.g.:

1 0 0 O

las=]10 1 0 0 where .71 = {a,b,d} and .2 ={a,b,c,d}.

0 0 0 1

(8.17)
As argued in the previous subsection, in each fold the nurobealidation data may
not be smaller than the number of training data. To avoiddkf&ulty in the cross-
validation setting, there is an opportunity to restrict imatural way the degrees of
freedom of the additive regularization constant$ for all | = 1,...,Ng). Asin
classical cross-validation practice, the (additive) tagmation constants should be
held constant over the different folds, i.e.

C<|) = |Eq|”q C, VI = 1, .. .,L. (818)

This reduces the freedom of the regularization constarim f(L — 1)N to N.
Embedding this in a single linear system results in the falg problem. Let
¢¢V: RN _, R be a convex loss function of the training residuglsand the validation
errorselV of theL folds.

(d(”,é,é('),é(')"): argmin éc"(e(”",e('))

al) ,c_’e(U 7e(')‘/

st KKTig (a<'>,c,e<'>,e<'>V)V|=1 L, (8.19)

PRI
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where thelL sets of constraints are the Karush-Kuhn-Tucker condititmrsthe
individual folds (8.11) and

\(7.7) Q@+ 7.700V + 1 5. 71c= 7.7 (@)

KKT g0 (a(”,c,e('),e(')") e aV 41z 7c=el (b)
.7 Q7. aV + eV =1 7)Y, (c)

(8.20)

for all | =1,...,L. This problem formulation hasLA unknowns with 2N —

N different constraints leading to large scale problemsaalyewhenN > 100.
In (Pelckmanset al, 2003), the following choice for the cost-functiof¥ was
considered.

KKT!gz0 (a®.c.e!e)vi=1,....L, (8.21)

A big disadvantage of this approach is the rapid growth ofrilkaber of parameters
whenN > 100.

8.2.3 Afast approach to fusion with CV

In order to reduce the computational complexity of the apphg a slightly different
approach may be formulated leading to a convex problemNofv@riables and\
constraints. Therefor, the level 1 training of the diffarésids is written as a multi-
criterion optimization problem:

T 1 2
%W(1> wd + % Sk s (ei(( ) Ck)

T 2
B TWO 5, (o) - o)

W x) +brel =y vke 7O
st. 4 (8.22)
Wb g (x)+b+e” =y vke 7O,

Although the criteria of (8.22) can be solved individuallyt bvith coupled regulariza-
tion constants (8.18), one can relax the problem by tryinfinid one Pareto-optimal
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solution (Boyd and Vandenberghe, 2004). The scalarizagchnique with weights
Iy = (1,...,1)T € Rt in the objective function is used leading to a much compacter
problem than the original formulation (Pelckmagtsal., 2003).

lilkgh (e,((') B Ck)z - iiligﬂ (q(') . Ci)z - ii <I|ig?|’ ol 1)6i>

st ¢ = z q(')+ z (e,(')—ci)z. (8.23)

licg licg

Eliminating the residualg€!) and the original regularization termy the following
constrained optimization approach to the cross-validabased AReg LS-SVM is
obtained

1L w<'>T OREERL
i g1 1
min = C
W(')ﬁbﬁeK/ 2|Zl (L— zkz &= &)
st i W' § () + b+ e =y, Yk=1,. .N. (8.24)
L— 1I\ke§

The Lagrangian of this constrained optimization problemonees

1N 1L whTw®
(ev) () - — = =
L (Wb, & a) ZkZ(Q( 6)? + ZI; )
S ! oy b 8.25
*kzlak ml > W p(x)+bt+ec—yc|. (8.25)
= ieg
The conditions for optimality w.r.wv(!) | b, e, ay for all i, for the training become:
LW /ga =0 — =&+ (a)
L /ow) =0 — Wl =535 o (%) (b)
(8.26)
L /gb=0 — N, ox=0 (c)
T
LY/ =0 — FeaW) ¢(x)+b+tac=y (d)
From (8.26.b) one can recover
N
S ow=3% Z)aktp X) = z axd (%) + Y ajd(x). (8.27)
lieq liegied k=1 JEN
After elimination of the variables/!) and¢; the dual problem becomes:
0 ‘ 17, b 0 0
+|—|=|— (8.28)
| Q20 || a e v
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with
Q"

Qv — (8.29)

Qn

andQ” € R” 1> is the kernel matrix between elements of the validation &t
[th fold Q = K(x;,xj),Vi,j € 7. From (8.26.b) one can recover an expression for
the |nd|V|duaI models of the different folds such that kite model can be evaluated in
pointxj for j € # as
T N "
y = (v“v(”) d(X) +b+e = %akK(xk7xJV)+b+e‘j’ (8.30)
ke

with residualf) (x i) —Y| denoted as] andd andb solve (8.28). In matrix notation,
conditions (8.28) and (8 30) can be written as

0 3 0 0
. b
KKT g2g(a;be €)= | 1y | Lo+ o | |—|+ e =Y
a
on | o —1o e—e’ On
(8.31)

The fusion of the training equations (8.28) and the valataget of equations (8.30)
results in the following constrained optimization problem

Fusion: (¢,a,b) =arg mmz &+ z 2 s.t. KKTg24(a,b,ee’) holds
cab k=1 —1
(8.32)
The estimated average model can then be evaluated in a netwpais
N
fox) = 5 W)= 3 a(x) +b. (8.33)
1keg k=1

whered andb are the solutions to (8.32).

Example 8.2 [Numerical Comparison of Different Kernel based Fusion SchemdsA
numerical comparisons of the different fusion schemes was reportéPelckmanset
al., 2003). Table 8.1 gives results of numerical experiments on regressiochbeark
datasets with the Tikhonov regularization based LS-SVMs (tuneg fming validation
(Val) and cross-validation (CV)) and the LS-SVMs with additive reguktion trade-
off (AReg) (tuned forA with validation and cross-validation). For the latter, results are
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given based on the full implementation (Subsection 8.2.2) and the fastrnmentation
(Subsection 8.2.3). Results of two artificial datasets (a two-dimenslioealr function
and thesinc function) are given. The size of the training, validation and noise free
test set were 30, 20, 500, respectively. Cross-validation basedytpnicedures were
provided with the joint training-validation dataset. Data generation, trainidgesting
were repeated 1000 times. Performance is measured in averagesmesed error
(Mean(MSE)) and standard deviation (Std(MSE)) of the predictions @itett set which
is fixed a priori in the different randomizations. Additionally, the techngqueere
compared on two benchmark data sets from the UCI Machine LearnipgsRery, the
Abalone datall = 700, n = 500, ntest= 2977 andd = 7) and the Boston housing dataset
(N =220n=120nnest = 166,d = 11). Data division in training and validation set,
tuning, training and testing were repeated respectively 100 and 100Q tirhesresults
show also an increased performance in the case of the first two exgesinnsing the full
implementation of AReg LS-SVM based on 10-fold cross-validation. Agiog to the
Wilcoxon Rank Sum test, the test set performance is even significantly bsttey the
AReg (CV) LS-SVM for the first two toy examples.

8.3 Stable Kernel Machines

Stability analysis in general aims at determining how muclvaaation of the
formulation (data) influences the estimate of an algorithivhis notion is used in
many different domains (numerical, robust statistics,tic@drtheory) under different
denominators (e.g. sensitivity, perturbation, influencec@nditioning). The more
specific definition of stability of a learning algorithm defthin e.g. (Devroyeet
al., 1996; Bousquet and Elisseeff, 2002) is used here. Origjrinlvas proposed for
the estimation of the accuracy of learning algorithmsfitsglrevealing the connection
between stability and generalization error (Devr@feal., 1996). In particular, one
can derive (Bousquet and Elisseeff, 2002) a bound on thergleragion error or risk
functional based on an observed quantitative measure bflista Although many
subtle differences exist between different definitionse(distinguishes amongst others
between (pointwise) hypothesis, error or uniform stapilithis section only works
with the two concepts of uniforra and stability as they are most clearly put within
an optimization point of view. Uniform stability was usedderive exponential bounds
for different algorithms, including techniques for unsopged learning K-nearest
neighbor), classification (soft margin SVMs) and regras¢i®egularized least squares
regression and LS-SVMs). While in previous papers aboutil#yatihe object of
interest was the learning algorithm itself (Bousquet ansigeeff, 2002), the context of
hierarchical programming problems and LS-SVM substrates e used to formulate
a constructive approach.
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Tuned AReg
LS-SVM

Val CcVv Val CVv Fast CV

linear regression(30,20,500)
Mean(MSE): || 0.5887| 0.5931| 0.5887| 0.3796 | 0.5858

Std(MSE): || 0.5108| 0.5125| 0.5108| 0.4069 | 0.5074

sinc (30,20,500)
Mean(MSE): || 0.0289| 0.0269| 0.0286| 0.0174 | 0.0240

Std(MSE): || 0.0217| 0.0185| 0.0210| 0.0086 | 0.0145

Abalone (700,500,2977)
Mean(MSE): || 4.6609| 4.8502| 4.6622| 5.0258 | 4.6216
Std(MSE): || 0.1188| 0.2311| 0.1164| 0.1808 | 0.0952

Computation time (s)j| 67.81 | 126.39|| 10.672| 1401.6 19.28

Boston Housing(220 120, 166)
Mean(MSE): || 0.1815| 0.1883|| 0.1814| 0.1874 | 0.1260

Std(MSE): || 0.0491| 0.0523| 0.0500| 0.0446 | 0.0262

Computation time (s)j| 0.1199| 9.1834 | 0.0732| 10.0728| 1.0195

Table 8.1:Numerical results from the experiment described in Exar8e The mean
and the standard deviation of the test-set performand®0fandomizations of the
respective datasets are given. These results suggeshéhaision argument does not
affect the generalization performance while avoiding tbedifor non-convex and time
consuming line searches.
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8.3.1 Stable regressors

While most stability criteria of learning machines take anfdvased on the difference
in loss between the training and leave-one-out error, a commalaxed version called
a-stability can be taken

‘q-e@‘gay vk=1,...,N. (8.34)

This is considered as a measure for measuring the perfoar@rearning machines
and used to derive bounds on the generalization abilitiese Hve use it as a special
form of regularization. Imposing »-stability on additively regularized (AReg) LS-
SVMs boils down to a quadratic programming problem

1L T
Al e al) abhv) — i il (Hv" glhv
al e e V) = argmin , eV ¢
( ) al) cel) ehv /Ol,y 2L Izl
() _ v

e’ —e

maxmax i i

s.t. ( 1#hiehh
KKT (8.20) (a(”,c,e('),e(')") oVi=1,...,L

<ayg vh=1...,L
(8.35)

Note the huge number of unknowns into the formulation whictuo already whei
has a moderate size. To cure this disadvantage, the fast @ufation may be used
instead

KKTI(SAZO) (a“),c,e('),e(')v) vl=1,...L,

1 L
min  Jg,=— Y eV
all) el ev 7 2'-;1 maxmax‘e(')—e“)"

<ag.
I ien 7

(8.36)

8.3.2 Stability L-curves

One can visualize the trade-off between stability and losa graph by exploring
the solutions for a range of values afr. We shall refer to this graph as the-
curve, analogously to the-curve (Hansen, 1992; Neumaier, 1998; Golub and van
Loan, 1989) displaying the trade-off between bias and naggsee Figure 8.4).

Example 8.3 This experiments focus on the choice of the regularization scheme ilkern
based models. For the design of a Monte-Carlo experiment, the choite dernel
and kernel-parameter should not be of critical importance. To rarmothe design of
the underlying functions in the experiment with known kernel-paramgterfollowing
class of functions is considered

f()= KK (X ) (8.37)

where the input pointg, are equidistantly taken between 0 and 5 forka# 1,...,N
with N = 75 anday is an i.i.d. uniformly randomly generated term. The kernel is fixed



8.4. HIERARCHICAL KERNEL MACHINES 169

2
2

)2

11113

llell

Jlel2

whw ag w0 ag

@ (b) (©

Figure 8.4: The toy problem as described in Section 4 was used to gentrate
following figures:(a) Classical L-curve of the regularization parameter (3.12) with
respect to the training erraih) Thel curve visualizing the trade-off between fitting
error||€||3 and thea upper bound of the stability measue) The curve visualizing
a typical relationship between the performance of the keme=out performance and
thea upper bound of the stability measure.

asK (X, Xj) = exp(—|x« — x;||3) for all i,j = 1,...,N. Output data points points were
generated ag = f(x) + e fork=1,...,N whereeg areN i.i.d. samples of a Gaussian
distribution.

Given this method to generate datasets with a prefixed kernel, a Monte<Dadtipwas
conducted to relate the designed algorithms in a practical way as repofagline 8.5.

8.4 Hierarchical Kernel Machines

The idea of hierarchical programming and fusion of trairang model selection levels
was used to formalize an hierarchical modeling strategy.

8.4.1 Alternative training criteria

Sometimes the designers assumptions and optimalityiertlernot allow for straight-
forward primal-dual derivations or do result in a number okomowns (Lagrange
multipliers) which makes the approach less practical. @emse.g. the case of
structure detection as elaborated in Section 6.4.

Sparseness is often regarded as good practice in the maelaiméng community
(Vapnik, 1998; von Luxburgt al,, 2004) as it gives an optimal solution with a minimal
representation (from the viewpoint of VC theory and comgi@s). The primal-
dual framework also provides another motivation for trytegsparsify the support
values based on sensitivity analysis. The optimal Lagrangéipliers & contain
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Figure 8.5:Results from numerical experiments with the data geneyatiechanism as
described in Section 4a) Result of thex -stable 3-stable, 2-norm (8.32) and standard
LS-SVM on a particular realization of the datagd Boxplot of the obtained accuracy
obtained on a testset on a Monte-carlo study of the diffenegthods for randomly
generated functions according to equation (8.37).

Hierarchical Kernel Machine

Convex Optimization problem

Level 3:

Level 2: Sparse LS-SVM
Structure Detection
G
Level 1:
LS-SVM Substrate Fuseq| Levels

Figure 8.6:Schematic representation of an hierarchical kernel mact@onceptually,
one formulates the problem of substrates (level 1), mogeflavel 2) and model
selection (level 3) on different levels. Interaction of thevels is guided by a
proper set of hyper-parameters. Computationally, theeddfit levels are treated as
an hierarchical programming problem employing the KKT dtiods to impose the
conceptual structure.
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information of how much the (dual) optimal solution changd®n the corresponding
constraints are perturbed, see Subsection 3.3.3. In #pect one can design a kernel
machine that minimizes its own sensitivity to model misesfieations or atypical data
observations by minimizing an appropriate horm on the Lageamultipliers. Let
{: R — R be a convex and differentiable loss-function. The 1-norpoissidered

N
min Zé(ei)JrZHalll s.t. KKTgig(a,ec) hold, (8.38)
e,a7b7ci:

where 0< { € R acts as a hyper-parameter. This criterion leads to spasé¥iapnik,
1998) and was studied in (Pelckmagtsal.,, 2004).

As already hinted at in Subsection 6.4.2, the current fraonkevwnay be used to
obtain a much more practical formulation to the problem ofictire detection for
componentwise kernel models using the measure of maximgtien. The kernel
machine for structure detection minimizes the followingesion for a given tuning
constant &< p € R:

i N e)+p it ot KKT g19(a.ec) hold with Q=737 QP
e,tp,a,b,ci; & P ~ton < QPa < 1ntp, Vp=1,...,P
(8.39)

which has a unique minimum and can be solved efficiently whisrconvex.

8.4.2 Finishing it all up: fusion with validation

As argued in Chapter 7, the automatic tuning of the hypeaipaterp in (8.39) or{

in (8.38) of the second level with respect to an appropriaddehselection criterion is
highly desirable, at least in practice. A similar approadthwespect to a validation
criterion using a third level of inference. This three lesethitecture constitutes the
hierarchical kernel machine. The LS-SVM substrate cautstithe first level, while the
sparse LS-SVM and the LS-SVM for structure detection makeshe second level.
The validation performance is used to tune the hyper-paemsé (or p) on a third
level.

A third level is added to the LS-SVM for structure detectinrorder to tune the hyper-
parameted of the second level where one chooggs = €. Figure 8.8 summarizes
the derivation below and points out the hierarchical apgiio&econsider the problem
(8.39) wherep acts as a hyper-parameter. One can elimireatnd ¢ from this
optimization problem leading to

- 1op 2, -
min_7p(a,t) = 5|2 or—y||2+pp;tp st. —tply<QPa <tyly, Vp=1,...,P.

(8.40)
Let P and&~P c R™N for all p=1,...,P be multipliers of the Lagrangian. The
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Conceptually: hierarchical kernel machines for sparse LS-SVMs

Level 3: e =e'l3
(& acEt iae s.t. solution to Level 2 holds

? .

J(ea)=el+laly

Level 2:
(c;a,e)

solution to Level 1 holds

T :
Level 1:

(we)

P Jewe)=ww+3sN (g—c)? st wox)+ea=y
D | (Q+In)a+c=y
a+c=e

Computationally
(Convex Optimization Problem obtained after Fusion)

min  [|Qa—y' |2 +b & (a—a)+bTET (a+a)
&8 aa

st 07 Q% —yTaf = (¢ &)
£E 0
—a<a<a

I=1(& +&Y)

Figure 8.7: Schematical representation of the hierarchical kernelhinacfor sparse

representations. From a conceptual point of view, infeegaaone at different levels
and interaction is guided via a set of hyper-parameters fif$tdevel constitutes of an
LS-SVM substrate. On the second level, inference otthedefined in terms of a cost

function inducing sparseness, whdes optimized on a third level using a validation
criterion.
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Conceptually (Hierarchical kernel machine for Structure Detection)

3(e) = el

s.t. solution to Level 2 holds

% b

Level 3:

(p,€%ct,&P & Pae)

Level 2: )
Jp(et) = [lellz+p|it]|2
(ct;a.e)
S.t. | ~tply < QPar < Aytp, Vp
solution to Level 1 holds
c
Level 1:
(we) P Jwe) =whw+ 5N y(@ —a)? st wid(x)+e =y
D (Q+In) a+c=y
a+c=e

Computationally
(Convex Optimization Problem obtained after Fusion)

. i T T (o)
p{infl[lta|\QF‘Va—yV\\2+z [b;.{’p (tplN—Q(”)a)+ng‘p (tplNJrQLp)cr)}
£t &
s.t PToP ToP_ < —P_g+P
t Q" QPa—yTQP = 5 (6P £°P)
=1

ErEPz0 vp

~tpIy < QPar < Aptp, Vp

p=14( P+E'P), vp

Figure 8.8:Schematical representation of the hierarchical kernehinador structure
detection. On the second level, inference of theis expressed in terms of a
least squares cost function with a minimal amount of maxivaaiation, whilep is
optimized on a third level using a validation criterion.
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corresponding Karush-Kuhn-Tucker conditions then become

QPTQPa —yTQP = 55 (EP—£+P) (@)
p=1L(E P+E&TP) Vp=1,...,P (h)
KKT (@ 166 ) ETPEP>0 vp=1,....,P (¢
~tpln < QP <tply Vp=1,...,P (d)
EPt+QPa)=0, Vi=1,...N Vp=1..P (e
EP(t,—Pa)=0, vi=1,...,.N, Vp=1,...,P (f)

(8.41)
The problem of fusion then becomes

. . 1
Fusion:  min 7V=2[Q™a -y} st KKT,(a,t;ET,&7)  (8.42)
pLaE= &t 2

where Q™ € R™N = 5P, Q¥ and QP = KP (P XP¥) for alli=1,....n

andj =1,...,N. The problem (8.42) is convex up to the complementary skas&n
constraints (8.41.ef) which belong to the class of posi@R constraints, see also
Subsection 2.4.3.

The estimated model can be evaluated at new data paistR? as
R N
f(x') =W g (x*) = Zf’i Z KP (xf'”,xip)), (8.43)
i=1  tpZ0
whereé andf, are solutions to (8.42).

Example 8.4 [Numerical Results of Sparse LS-SVMs]The performance of the proposed
sparse LS-SVM substrate was measured on a number of regresslariassification
datasets, respectively an artificial dataset sinc (generat¥d=asinX) + e with e ~
4(0,0.1) andN = 100,d = 1) and the motorcycle dataset (Eubank, 1998}100,d =
1) for regression (see Figure 8.9), the artificial Ripley datd$et 250,d = 2) (see Figure
8.10) and the PIMA datasel(= 468,d = 8) from UCI at classification problems. The
models resulting from sparse LS-SVM substrates were tested agaissatitard SVMs
and LS-SVMs where the kernel parameters and the other tuning-paantrespectively
C, ¢ for the SVM, y for the LS-SVM andf for sparse LS-SVM substrates) were obtained
from 10-fold cross-validation (see Table 8.2).

Example 8.5 [Numerical Results of Structure Detection]An artificial example is taken from
(Vapnik, 1998) and the Boston housing dataset from the UCI ben¢hrepository was
used for analyzing the practical relevance of the structure detectiohamisen. This
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Figure 8.9: Comparison of the SVM, LS-SVM and sparse LS-SVM substrate of
subsection 8.4.1 on the Motorcycle regression dataset. $8ae the difference in
selected support vectors () a standard SVM an¢b) a sparse hierarchical kernel

machine.
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(b) Ripley dataset: sparse LS-SVM substrate

Figure 8.10: Comparison of the SVM, LS-SVM and sparse LS-SVM substrate of
subsection 8.4.1 on the Ripley classification dataset. @mnesee the difference in
selected support vectors () a standard SVM an¢b) a sparse hierarchical kernel
machine. The support vectors of the former concentratenartie margin while the
sparse hierarchical kernel machine will provide a more glsbpport.
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SVM LS-SVM || Sparse LS-SVM substr.
MSE | Sparse MSE MSE Sparse
Sinc || 0.0052 68% 0.0045 0.0034 9%
Motorcycle || 51641 83% 44464 46993 11%
PCC Sparse PCC PCC Sparse
Ripley || 90.10% | 33.60% || 90.40% | 90.50% 4.80%
Pima || 73.33% | 43% 72.33% 74% 9%

Table 8.2: Performances of SVMs, LS-SVMs and the sparse LS-SVM substiaf
Subsection 8.4.1 expressed in Mean Squared Error (MSE) estasét in the case
of regression or Percentage Correctly Classified (PCC)eénctise of classification.
Sparseness is expressed in percentage of support veatbrsiumber of training data.
The kernel machines were tuned for the kernel parameterfendespective hyper-
parameterE, €; y and { with 10-fold cross-validation. These results indicatet tha
sparse LS-SVM substrates are at least comparable in gaadiai performance with
existing methods, but are often more effective in achiegipgrseness.

subsection considers the formulation from Subsection 8.4.1, wharsespess amongst
the components is obtained by use of the sum of maximal variation. TF&pance on

a validation set was used to tune the paramgtboth via a naive line-search as well as
using the method which is described in Subsection 8.4.2.

Figure 8.11 shows results obtained on an artificial dataset consistir@pafaimples and
dimension 25, uniformly sampled from the inter{lall]25. The underlying function takes
the following form:

f(x) = 10 sinX!) +20 (X2 - 0.5)2+ 10 X3 +5x* (8.44)

such thaty; = f(x) +& with  ~ .#7(0,1) for all i = 1,...,100. Figure 8.11 gives the
nontrivial componentst§ > 0) associated with the LS-SVM substrate witfoptimized
in validation sense. Figure 8.12 presents the evolution of values/bénp is increased
from 1 to 1000 in a maximal variation evolution diagram (similarly as used A8SO
(Hastieet al, 2001)).

The Boston housing dataset was taken from the UCI benchmark reyoditos dataset
concerns the housing values in suburbs of Boston. The dependsiriumus variable
expresses the median value of owner-occupied homes. From I8igjugts, an additive
model was build using the mechanism of maximal variation for detectiorhaffwinput

variables have a non-trivial contribution. 250 data-points were ugeddioing purposes
and 100 were randomly selected for validation. The analysis works witluatdized
data (zero mean and unit variance), while results are expressed imigireabscale.

The structure detection algorithm as proposed in Subsection 8.4.1 eds$aisonstruct
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4 relevant input variables

Maximal Variation
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Figure 8.11:Results of structure detection on an artificial dataset ad s (Vapnik,
1998), consisting of 100 data samples generated by four apemwise non-zero
functions of the first 4 inputs and 21 irrelevant inputs anduyrbed by i.i.d. unit
variance Gaussian noise. This diagram shows the evolufitreanaximal variations
per component when increasing the hyper-parangtom 1 to 10000. The black
arrow indicates a value corresponding with a minimal cross-validation performanc
Note that for the corresponding valuemfthe underlying structure is indeed detected
successtully.

the maximal variation evolution diagram. Figure 8.13 displays the contrifmtd the
individual components. The performance on the validation datasetuseasto tune the
kernel parameter and. The latter was determined both manually (by a line-search) as
automatically by fusion as described in Subsection 8.4.2. For the optanaineteip,

the following inputs have a maximal variation of zero:

1 CRIM: per capita crime rate by town,
2 ZN: proportion of residential land zoned for lots over @30 sq.ft.,
4 CHAS: Charles River dummy variable (= 1 if tract bounds river; Gotlise),
10 TAX: full-value property-tax rate per 1000,
12 B: 100GBk— 0.63)2 where Bk is the proportion of blacks.
Testing was done by retraining a componentwise LS-SVM based on onlsetheted
inputs. The resulting additive model increases in performance esqatés MSE on an

independent test-set with 22%. The improvement is even more signifi@2%) with
respect to a standard nonlinear LS-SVM model with an RBF-kernel.
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Figure 8.12:Results of structure detection on an artificial dataset ad s (Vapnik,
1998), consisting of 100 data samples generated by four epemwise non-zero
functions of the first 4 inputs and 21 irrelevant inputs andysbed by i.i.d. unit
variance Gaussian noise. The resulting nontrivial compt:ng, > 0) associated with
the LS-SVM substrate with optimized in validation sense.
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Figure 8.13: Results of structure detection on the Boston housing datasesisting
of 250 training, 100 validation and 156 randomly selectesting samples. The
contributions of the variables which have a non-zero makiaaation are shown.
The fusion argument as described in Subsection 8.4.2 waktagane the parameter

p.
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Chapter 9

Kernel Representations &
Decompositions

The generalization performance of kernel machines in ggrodten
depends crucially on the choice of the (shape of the) kerndl its
parameters. The following chapter shows the relationskiwéen the
issue of regularization and the choice of the kernel. Funtoge, the
idea of kernel decompositions is proposed to approach titdem of the
choice of the kernel. Finally, relations with techniquesniirthe field of
system identification are elaborated. Given observed seomments,
the task of stochastic realization amounts to finding thokmal (kernel)
structures effectively realizing this empirical charaizi@tion. This results
in a tool which can assist the user in the decision for a gobajgs of the)
kernel. Section 9.1 introduces a formal argument relatiregrégulariza-
tion scheme and a weighting term in the loss function resgdgtwith
the form of the kernel using a primal-dual argument. ThertiGed®.2
proceeds with the elaboration of a method for searching aotniernel
decompositions based on the method of maximal variatiortic3e9.4
then discusses a method for recovering the shape of thelKewnethe
observed second order moments in the univariate case alsd ®dended
to the multivariate case.

9.1 Duality between regularization and kernel design

9.1.1 Duality between kernels and regularization scheme

A classical result in the theory of smoothing splines (WaHhl@90) can be cast in the
more general context of kernels using a primal-dual argamen

183
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Theorem 9.1. [Duality between Regularization and Kernel Dsign] Let ¢ : RP —
RP¢ be afixed mapping wheregDe {N, 40}, Consider the class of models (3.8) given
asZy = {f(x)=w'¢(x) | wcRP}. Letl/:R — R be a convex and differential
loss function and let G RP¢*P¢ be a positive semi-definite matrix. Consider the
class of estimation methods optimizing the followingegularized cost function on
the training datase? = {(x,yi)}N;

(W, &) fargmln/G(we ;zlﬁ +;W Gw
t. Wo(x)+e=y, Vi=1...,N. (9.1)

Let{@ : R° — RR} be a set of functions spanning the null-space ¢f Getp ¢ RN<R
be defined aggr = @ (x) foralli =1,...,N and r=1,...,R be of full rank. Then
Ggy =0foralld =1,...,D. The resulting estimate can be evaluated as follows

N

f(x) = Zlc”xiKG(xi,x)

B (%), (9.2)

uM:u

where Ks(xi,X) = ¢ (x)G' ¢ (x) with G" € RP¢*P¢ the pseudo-inverse to G. Further-
- - N

more the unknowng = (&1,...,6{N)T eRNandp = ([31, ... ,BR) e RR are unique

for the given loss functiohand datasetZ.

Proof. The proof starts with the primal-dual characterizationhaf global optimum to
the constrained optimization problem (9.1), see condif@rof Subsection 3.3.2. Let
a = (ay,...,an) € RN be the Lagrange multipliers in the corresponding Lagrangia
Zs. An invariant condition for optimality independently fdre choice of is

025

S =0 Gw= ola, (9.3)

where®y = (¢(x1),...,9(xn))" € RN*P¢ which holds in the optimum. If the inverse
G!to Gexists such tha6'G! = G TG = Ip,, then the solution takes the form

N

fx)=aTonG o) = Zla‘ Ka (X, X), (9.4)

where the modified kernélg : RP x RP — R is defined a&g(x,X) = ¢ (x) TG 1¢ (x)
and the vectodr contains the unique Lagrange multipliers following frore firoblem
(9.2).

In the case the matrix is not invertible, the proof is a litiemore involved. Les € Ny
denote the rank of the matr®. Let G = USUT be the SVD of the matri such that
UTU =Ip, andS=diag(04),02), - -, 0(s).0,...,0) € RP#*Pé  LetG' be the pseudo-

inverse of G such thatG" = USTUT with SF = diag(a@;,a@;,...,0(5)1,0,...,0) S
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RPs>Ps | et Q € RP4*P¢ be span the null-space, e.@ = Udiag0l,1,...,1)U".
Then condition (9.3) can be rewritten as follows

Gw=dla & w=G'dola+Qw (9.5)

If the rank of the null-space d@ definedR = Dy — sis finite, a finite set of functions
{@ : RP — R}R | can be constructed as follows. Lef ¢ RPs*R contain theR
eigenvectors corresponding with the zero singular values.

@=0x"U°, vr=1,....R (9.6)

then this set is a minimal set. From this it follows that thetnimap € RN*R defined as
@ =a@(x)foralli=1,...,Nandr =1,...,Rmust be full rank. Thus, the solution
to (9.1) can then be written as (9.2) where uniqueness fsllfram the convexity
properties.

Moreover, from condition (9.5) it follows that®]; cannot be contained in the null-
spaceQ¢ or in the span of ¢ }R ; such that the condition

Op, = aPQ < @' a =0r. (9.7)

is necessary and sufficient for uniqueness. O

This result also holds in the case of SVMs (Section 3.4) an@isS\@ection 3.5) which
both employ a related formulation based on slackness Jasab

The semi-parametric primal-dual kernel machines as edbdiin Section 4.1 may be
seen as a direct application of this result. Leg : R® — R}R | be a set of parametric
basis functions such thgte RN*R (whereq, = @ (X)) is of full rank. Letg, be an
extended version of the mappiggsuch that

Po(X) = (@u(X),...,r(X),$)" € RRPs. (9.8)

Let G = diag(0%,15,) € R**P¢ be a diagonal matrix with zero weights to the
parametric components. Then consider the estimator nimithe regularized
squared loss

N
(v‘v,é):argmin/y‘g(w,e):x q2+}wTGw st wo(x)t+e=y, vi=1,...,N.
w,e ' 2i: 2

(9.9)
The pseudo inverse™ andQ have then a particular easy form such that the solution is
characterized by the following set of linear equations

oy B Or
- , (9.10)

® QG+§|N a Y

OrxR

following conditions (9.5) and (9.7) and whe®®; = K(xi,xj) = ¢ (x)TG'¢ (x;). This
set of linear equations is equivalent to equation (4.3).
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9.1.2 Kernels as smoothing filters

Theorem 9.1 not only relates the quest of regularizatioh e research on learning
the kernel but also supports the interpretation of kernedhimes as smoothing filters
as discussed in the following example.

Example 9.1 [Learning Machine based on a Fourier Decomposition, 11]The setting of
example 3.2 is studied in some more detail. Zet= {(x,yi)} ; contain a sample with
univariate inputsg uniformly sampled from a finite interval. Lefr : R — R be a
mapping of a poink to its Fourier coefficients defined as follows

¢F (X)) = expliAx) (9.11)

whereA = —oo, ... o0 acts similarly as an index. the inner product with any: R” is
then defined as

<, PF(X) >= \/%T/_Z wy exp(iAx)dA £ @' ¢k (). (9.12)

which amounts to the classical inverse Fourier transform whepéays the role of the
frequency parameter. Lét# f) : R — R denote the Fourier transform of the functién
The previous elaboration proves that one works with a kernel macHamahvimplicitly
works with a Fourier representation: R — R if the following kernel is used

Ki(4.39) =< 0 (0095 06) >= —= [~ expliAby—x))dh. (019

which equals a generalized function in the form of a Dirac funciidr; — x) which
integrates to one.

Given this Fourier interpretation, a plausible choice is to impose a decgeasighting

term penalizing for higher frequencies leading to less smooth solutioiscditresponds
with a complexity measure corresponding with a high-pass filter on the éstimedel,

see e.g. (Wahba, 1990; Giragtial,, 1995). Let the functioig: R — R be defined as

AZ
g(A) = {exp<_W> A7#0 (9.14)
0, A=0

whereh < c € R is an appropriate constant. Then the regularization term with weighting
matrix can be formalized as

W Gw 2 /j’ g(A) w2(A)dA. (9.15)

Following the previous theorem, this would coincide with the use of a paranmagrcept
term (lying in the null space d&) and the use of the kernel

9 v \2
Ka(Xi,Xj) = %[WQ(A)exp(iA(xi —xj))dA = exp<(x'hxl)> . (9.16)

following from the invariance property of the functidrix) = exp(—x?) with respect to
the Fourier transform such tha# f)(x) = f(x) for all x e R. which results in the classical
RBF kernel with bandwidtln, see e.g. Appendix A in (Girosit al.,, 1995).
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9.1.3 Duality between error weighting schemes and kernel dgegn

A similar argument can be used to explicify the relationdtgpween the a weighted
least squares scheme and the dual representations in tekersels.

Theorem 9.2. [Weighted Least Squares Primal-Dual Kernel Makines] Consider
the same setting as in the previous theorem. Let RN*N be the known positive
definite weighting matrix of the errors.

(W, 8) = argmin_gy (W, e) = lohes Twtw
we 2 2
st. Wo(x)+e=y. Vi=1,....N (9.17)
The global optimum follows from the set of linear equations
(QH +1y) e=Y, (9.18)
The solution then may be evaluated in any pointRP as follows

f(x.)=Qn(x.)THe, (9.19)

whereé= (&,...,8&)" € RN solves (9.18) an@y : RP — RN is defined afy (x) =
(K(XLX)’ cery K(XN7X))T € RN‘

Proof. The proof again starts with the primal-dual derivationsraSéction 3.3. Let
a=(ay,...,an)" € RN be a vector containing Lagrange multipliers. The Lagramgia
becomes

N
L(wea) = %eTHe+ ;wTwziai (W' o(x)+e—yi). (9.20)

Necessary and sufficient first order conditions for optitgahen characterize uniquely
the global optimum as follows

0%
S~ 0 w=ola
0%

=0— He= 9.21
de e=a ( )
0%

=0 w oy +e=Y
0ai - N+ )

where®y € RN is defined asby = (¢(x1),....0(xn))". LetHT denote the pseudo-
inverse toH, then after eliminatingv and a, the dual set of equations becomes as in
(9.18). Remark that this time the result is not expressetienLiagrange multipliers

o but in the vector of residuals as the latter contains more information @& not
restricted to the image &1). O
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Remark9.1 Note that if an inverséd ! to H exists, the solution can be expressed
alternatively as follows
(Q+H ) a=Y, (9.22)

where the relatiowH = @[ a is used.

This result enables the construction of models consistirgdeterministic component
modeled by a primal-dual kernel machine and a stochastigpooent modeled by

a Gaussian process. Lét;}N, be a Gaussian process with a non-parametric
function for the mearf (x) and fixed covariance function: RP x RP — R, then the
probabilistic rules governing the observations may betemitis

{me] =wT¢(x) ¥x € RP 029

cov(Yi,Yj) = E[(Yi— f(x)) (Yj = ()] = p(%.x), Vx,x € RP.

LetC € RN*N pe the covariance matrix such tf@f = p(x,x;) foralli,j=1,...,N
which is strictly positive definite. Define the random valédy as followszZ; = Y; —
f(x), then{Z;}N, is a Gaussian process. The log likelihood of a realizalion
(z1,...,2n)" € RN of this non i.i.d. process is given as

0(2) =log(2'C'z), (9.24)

as in e.g. (Whittle, 1954; Box and Jenkins, 1979; Brockwetl Bxavis, 1987). This
motivates the following penalized likelihood cost-furocti

(W,2) = argmin_#y,p (W, Z) = Y7rc1z+ Lotw
w,Z ’ 2 2
st Wo(x)+z=y, ¥i=1..N, (9.25)

with C~1 the inverse of the covariance matfixsuch thaC~"C =C'C 1 =Iy. The
output value corresponding to a new datapaint RP can be estimated as follows

f(x)=Qan(x,)"a, (9.26)

where @ solve the dual system (9.18). One may referftas the (deterministic)
mean function of the process. Following a similar argumenstandard in Gaussian
Processes based on the matrix inversion Lemma (see alsorsb@), the expected
response at positiox. € RP is given as

EIY. [ X, Yi=y1,...,Yn = W] = (Qn(x.) + pn(x))" &, (9.27)

where the functiorpy : RP — RN is defined ason(x) = (p(X1,X),...,p(xn,X))" €
RN. From this expression and (9.18), it can be seen that thereifte between the
covariance (and the weighting scheme) on the one hand arkkthel on the other
is indistinguishable in the formulations. In the extremase of the same functional
form of the kernel and the covariance function, the diffeeedissolves completely. A
similar result was obtained in the theory of smoothing sdifWahba, 1990).
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Example 9.2 [Colored Noise SchemeJA classical example is considered where the noise
scheme can be modeled by a first order Auto-Regressive (ARggs0C

%,a:{f(x):chp(xL yi = f(x)+(1+aga | we R%}, la <1, (9.28)

whereq denotes the backshift operatpg = ¢_1. Defineqe; = ey whereegyg € R is an
appropriate initial condition, to setup a proper initial condition. This type ofef®was
elaborated by (Englet al,, 1986) in the case of modeling the electricity load as a function
of amongst others the temperature. £6t,y)}{_, be a set of observations recorded at
a finite sequence of equal time intervals corresponding tntfi, ..., T. In this case the
following cost-function may be written

N
(W,8) = argmin_Za, ,(w,e) = }wquL% Zef st. Wox)+(1+aga=y t=2...,T,
w.e t=

2
(9.29)
wherez = (1+ag)e forallt=2,...,T andz = g defines a Gaussian proce{a's}thl
with covariance matri € RT defined as follows

o2 if k=I
Cu =cov(%,z) =4 acg? if |k—I|=1 (9.30)
0 otherwise

After constructing the Lagrangiafa, with multipliers a = (as, . ..,ar)T €RT, one
obtains the following conditions for optimality

0%
av";y:oﬁ w=3{;a0(x)
%:oﬂ ya=(1+aqoy Vt=1,...,T (9.31)
0.2
o =0~ W)+ (ltaga =y, t=1..T
|

Let the matrixT, € RT*T be defined as follows

_1 2a & 0 .. o_
0 1 2a &
Ta=|: . (9.32)
1 a
° o 1

As this matrix has all eigenvalues one (Golub and van Loan, 1989), theblese, andw
may be eliminated from the set of equations (9.31) resulting in the follovghgfdinear
equations

(Q + %/Ta) a=Y, (9.33)
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The resulting mean functiof may be evaluated in a new point € RP as follows
f(x.)=0n(x)"a, (9.34)

whered = (@y,...,87)" € RT solves the system (9.33). In this example, the parameter
awas considered to be known. It becomes apparent (from an optinmzaiot of view)

that the determination of the regularization constant and the auto-riegr@ssameter
amounts to non-convex model selection problems, as also regardes wethin (Engle

et al, 1986).

From the dual system (9.33), it may be concluded that the problem igadept to the
weighted problem as follows. Defirfg 1 = diag((1+ag)~2,...,(1+aqg) 1), then

- . 1
(W,2) = argmin_#,/,(w,Z) = ~w'w-+ V711,27 st wio(x)+z, vt=2,....T,
wz

2 2
(9.35)
where{z}{_, is a non-white process with covariangge

9.1.4 Duality of linear structure and kernel design

This subsection shows how imposed structure in the form afnsgtric functions
reflect in the design of the kernel matrix. Specificly, comsithe task of estimating
even functionsf from data such thaf (x) = f(—x) for all x € R®. Consider the
following model

1
f0=5 (W (x)+w'p(—x)), (9.36)
which should be even by construction. Consider the primathlem:

~ A ; 1 5 Vo
W,€) = argmin_Z,(w,e) = ~w'w+ =
(4,8 = argrin #,(we) = 5wl 1 3 &

s.t. % Wo(x)+wg(—x)+e=y Vi=1...,N (9.37)
Eliminating the latter infinite constraint results in théidaving problem
(W, 8) = argmin_#,(w,e) = %WTW—I— g iqz
we,f =
s.t. %wTdJ(xi) + %WT¢(—xa)+a =y, Vi=1,...,N. (9.38)

Using a primal-dual argument, the corresponding dual proldan be summarized as
follows

(Q<2> + %/m) a=Y, (9.39)

where the modified kernel matrix becom@$? = 1(Q~~+2Q~ +Q) and the
matricesQ,Q -~ € RN*N are defined a®;; = K(x,—xj) andQ;;" = K(—x, —x;)
respectively. The function can be evaluated in a new point as

fx) =02 x,)"a, (9.40)
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where & solve the dual set of equations (9.39) a@hz) :RP — RN is defined as

Q? (x.) = 1 (K(x1,%.) + 2K (—x1,%.) +K(=x1,—x.),...)T € RN,

Remarkd.2 This structural approach should be contrasted with thecampr sketched
in Section 4.3 where structure was imposed pointwise. Thesegnt technique
also guarantees that future prediction on (yet unknownpoésts will satisfy the

constraints. It is however more difficult to apply than thenpeise approach as an
appropriate model definition (9.36) is not easily found e@rgthe case of inequality
(monotonicity) constraints. Note finally that this form dfwtural constraints also
translates into the use of an appropriate kernel.

9.2 Kernel decompositions and Structure Detection

9.2.1 Kernel decompositions

The problem of choosing an appropriate kernel may be appeshin correspondence
with the following principle‘lf nothing were known a priori on the choice of the kernel,
then let the data decidewhich situates this issue closely to a Bayesian interpogta
as in (MacKay, 1992) and was elaborated in the case of LS-S\éhlts in (Van Gestel
et al, 2002). The motivation for the concept of kernel decompasét is summarized
in the following lemma.

Lemma 9.1. [Kernel Decomposition]Let D, = 25:1 Dy, € No be a fixed nonzero
positive integer. Lepp : RP — RPP denote the extended feature space mapping defined
as
T
b () = (92(07,....0p(x)7) € RPP. (9.41)

Let c= (cy,...,cp)" € RTP be a vector of positive constants. Consider the modified
regularized least squares cost-function of the LS-SVMesgpr given as

1 =] 1 N P )
Fe= 5 S ¢ (Wpwp) +5 Zlqz sty wpdp(X)+e=vi, Vi=1...,N, (9.42)
p=1 i= p=1

where the vector € R*P determines the regularization trade-off. léet= (a1, . .., dN)T S
RN denote the unique solution to the dual problem of (9.42).nTthe solution takes

the form
N

f(x) = Z&iK<p) (%, X), (9.43)

i=
where Kp) : R x RP — R is defined as
P
Ky (%i,%)) = 3 cpKp(i,Xj), ¥xi,Xj € RP, (9.44)
p=1

and K; is the kernel corresponding with the pth feature map such kgéx,xj) =
dp(x) " Pp(x)). We refer to the kernel i as a kernel decomposition.
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Figure 9.1:lllustratic example showing the benefits of imposing stnat constraints
on the estimate of a function (dashed-dotted line) with yoisservations (dots)a)
estimate of standard LS-SVM without imposing the structyrd estimate using the
presented method imposing the even structure of the date [dtter has improved
generalization on the left-half plane. This approach iseigly usefull as a modular
approach for semi-parametric tasks (see Section 4.1).
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This result is easily proven by using a primal-dual argunzet is closely related to
Theorem 9.1. A special case is encountered when the vectnstants is taken
constant, sag, = 1/yforall p=1,...,Pin which case the formulation reduces to the
componentwise kernel machines formulation as elaborate&kction 4.2. However,
the present result has a slightly different focus.

9.2.2 Structure detection using kernel decompositions

Let Kp) : RP x RP — R denote a kernel decomposition consisting Pfe Ng
componentsKp (X, Xj) = zf;:l Ko(xi,xj). From the close relationships between
componentwise kernel machines (4.2) and kernel deconipusit(9.1), one can
consider methods for obtaining models that contain sparsleel components, which
would lead to a sparse kernel decomposition. The approacrds structure detection
using the measure of maximal variation as described in Stibge6.4.2 may be
employed to let the data decide on which specific kernel anahpetric terms to use.

Example 9.3 [Modeling discontinuities] An example is elaborated in the case one knows
that the underlying function may contain a number of discontinuitiestbforder. Let
the set{xq € R}qQ:1 denote the set of knots at which place a discontinuity may occur of
thekth derivative. A conveniently broad class of discontinuities is obtainedltis set
correspond with the data samplps} ;. Let {cék> ‘R — R}q denote the set of basis
functions modeling the discontinuities as follows

M (xxq) = /.../I*(x> Xq) A%, (9.45)
wherel*(x > 0) equals+1 if x > 0 and—1 otherwise. Then the primal model takes the
form

K N ®
Model: () =w'¢(x)+ ¥ XLWikCi (%) (9.46)
K=0i=

Using the regularized least squares cost-function (9.42) with the weightsgr/y, the
estimated model takes the form

N

Result: f(x) = Zlai Kipy (%i,%), (9.47)
i=

whereK p) : RP x RP — R is defined as

N K

Kernel:  K*(x,xj) = K(xi,xj) + zi > KE*(x,%)), ¥xi,xj € RP, (9.48)
==l
and the kernek* ¥ is defined as
k
Ke06,5) = 6 (%) 6 (x5 %), ¥, € R. (9.49)

Note that the discontinuities land up into the kernel as regularization is appli#d to
This was necessary in order to avoid ill-posedness due to the largelsasisffunctions
{C(k) ‘R— R}q,k-
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Figure 9.2: lllustration of the technique for the modeling of data withderlying
function containing discontinuities at the observed moin{a) Given a function
including a discontinuity (dashed line) ati= 40 noisy observations (dots)(b)

Example of the basis functiorqé0> andcél) at the knotg = 0.6283
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Figure 9.3:A toy example usingN = 40 datapoints. The contributions of the second
and the third discontinuity tends to zero as the impact ofiaximal variations are
increased in the loss function as indicated by the arrows.

Now the stage is set for application of the structure detection approaetl basnaximal
variation as elaborated in Subsection 6.4.2. This is particular relevemfdrea number
of reasons, including (1) knowing the location and number of discontisugienportant
for understanding and analysis of the result, (2) the measure of mlaxariation is
suited for this type of basis functions as a zero maximal variation does ienghro
weighting of the term, (3) the scale-independence of the measure dmalaxariation
decreases the impact of the scale of the basis functions on the predisitime number
of basis functions grows in the number of datapoints, the hierarchicaéling strategy
is advisable.

Figure 9.3 illustrates this application. The first panel shows basis fusctimdeling
discontinuities of ordek = 0,1,2, while the second panel shows the contributions of a
simple toy example. This example is based on a sét €f40 observations generated as
yi =singX) +1(x > 1.11) + g with g ~ .47(0,0.1). Only first-order discontinuities are
considered, while they only can occur at a finite number of pléx@}q?:l ={-1,0,1}.

The contributions of the basgg® (-;—1) and¢(©)(-;0) will tend to zero by increasing
the impact of the maximal variation term in the cost function indicating thatfecte/e
discontinuity is present in the data on the knets and 0. This example was loosely
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motivated on the research on modeling discontinuities as described IgteAand
Wecker, 1981) and mentioned in (Wahba, 1990).

9.3 One-sided Representations

9.3.1 Time series analysis and signal processing

As was already touched upon in example 3.2 and in Sectiontbete is a close
relation between harmonic analysis and smoothing funst{dapnik, 1998; Giroset
al., 1995). However, there is a conceptual difference betweisrfield with the subject
of signal processing and time series analysis, quoting (&/jer949):

“While the past of a time series is accessible for examinatteriuture is
not. That means that the involved operators (for time saedysis) must
have an inherent certain one-sidedness.”

which is not valid in the case of the mentioned methods. Thixple will constitute
the main difference between Gaussian processes as review8dction 5.2 and
stochastic processes with a time index Bet This difference becomes apparent by
studying the Wiener-Hopf equation for the causal filteringlglem.

Let the two time seriegu; Y ; (input) and{y; }\; (output) be equidistantly sampled
and letU = (ug,...,un)T € RN andY = (y1,...,yn)T € RN, Let Kf € RN*N pe

a lower diagonal matrix such thdﬁi'} =0 if j >i. This will represent the linear
operator filtering the input as to mimic the output signal,idormally KiU ~ Y.
Note that the lower diagonal form of the linear filt&' represents the one-sided
character of the operator, see (Kail&thal., 2000) and also the literature on \olterra
equations of the first kind (Press al., 1988). Under the assumption of stationarity,
the covariance matriceg[UYT] ¢ RN*N andQ = E[YYT] € RN*N are Toeplitz. Let
[Jiower : RN*N — RN*N denote an operation mapping a mattix RN*N to its upper-
diagonal counterpai € RN*N such thatBj; = Ajj if j <iand zero otherwise. Then
the Wiener-Hopf technique for finding the optimal predietiter is summarized as
follows.

nlgifnZ(KifU ~¥i)2 & [EUYT]—KTENY Y]], e = ONxN
I

& Ki=[EUYTILTD Y, Lt (9.50)

lower
where theL DL transformation of the covariance matrix is used such that LDLT
with L € RN*N Jower triangular and € RN*N diagonal (Golub and van Loan, 1989),
see e.g. (Kailatket al, 2000). It is interesting to relate this central derivattorthe
smoothing problem (Kailatlet al, 2000), the LS-SVM modeling approach (Section
3.3) and the realization approach discussed in Chaptet.9.2.
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Figure 9.4:lllustration of a one-sided and non-causative processraoguin nature.
(a) Seismograms measuring the strength of earthquakes hawvbexemnt one-sidedness
as they do present oscillatory behavior caused by the makeq(b) Sand dunes in
the desert do not present an inherent time order but cordiatspatial process as the
hill peaks depend smoothly on the neighboring slopes.

Another crucial assumption for statistical analysis oftiseries is that operators which
come into consideration are not tied down to an origin in spas any statistical
distribution may not be affected by a shift in origin (Wien£849). This assumption
is described readily by the ergodic theorems, see (Birkli®81), which relevance in
the static smoothing problem is yet latent.

9.3.2 One-sided representations

One-sided representations for univariate time-seridadeahe popular Auto-Regressive
(AR) model of ordeK € Ng

K
9t+l = 2 AYt—ks vt = K, s 7T' (951)
k=0

A non-causative counterpart was formulated in the contéxpatial data analysis
named as the Spatial Auto-Regressive (SAR) models (Rif/@§8). Consider the
univariate procesZ sampled at equidistant points enumerated by1,...,N. The
simplified SAR model of ordeK takes the form

K
E[Zi|Zj,i #* Zj] = z ak(Zi,k+Zi+k)7 Vi=k+1,...,N—Kk, (9.52)
k=1

wherea = (ay,... ,aK)T € RX is the vector with parameters. The difference between
the one-sided representation (9.51) and the spatial (8d&2be clearly seen, although
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their theoretical properties coincide to large extente§Sie, 1993).

We define here the phrase “a certain one-sidedness” as inr¢h®ps quote in the
definition of one-sidedness and spatial representation.

Definition 9.1. [One-sided Representationsh model with a one-sided representation
does only describe relationships of the outcome with ptsi@riates. A model with a
spatial representation is violating this constraint.

Note that the literature on time-series and systems thegfipel causality of a model
estimate in a different way, see e.g. (Brockwell and Daw@871 Kailathet al., 2000).

System theory and identification have a slightly differestus as they study the be-
havior and modeling of a one-sided dynamical system fromtiguitput measurements
typically denoted a$(u, yi) }{_; € RPu x RPy. Alinear one-sided input-output relation
is characterized by its so-called impulse respdnse(h, ..., h.)T defined as follows

ElVt | (Ueeo,..., ) | = ZJhTut,r, Vt=—oo,... 00, (9.53)
T—

where one also refers th as the Markov parameters. As this representation
involves a possibly infinite vector of parameténs identification often employs
more parsimonious system representations. Important @eanmare the rational
polynomial representations as the Box-Jenkins class ofefso@dee e.g. (Box and
Jenkins, 1979; Ljung, 1987)), and the state-space modeds.adgainK € Ny be the
order of the system and I&te RK*K B e RK*Pu C € RPv*K andD € RPy*Pu pe the
system matrices. Then a state-space model can be writtefi@ss (Kalman, 1960),
see e.g. (Kailatlet al., 2000)

{le:Ax{Jqu vt=1,....T (©.54)

Vi =Cx%+Duw, Vt=1... T,

where the sequence is called the state of the system at time instants2,..., T
and represent (informally) the memory of the system at a fimstantt. The goal
of one-sided models as (9.51) and (9.54) is prediction, amgilon and control as
well as smoothing. It then comes as no surprise that the isuetermining the
required amount of smoothing in static tasks have inhewdations to the mentioned
approaches as illustrated in the next example.

Example 9.4 [One-sided auto-regressive representation and the convolutip Consider the
sequence{yt}tT:1 which constitutes of a convolution of an unobserved indexed array
{et}thl (the index set denotes typically the time) with a given convolution vetoRT

Tt
Yo=Y heer, Vt=1,...T. (9.55)
=0

Let h be defined as follows

hr:exp<fg>, VI =0,.., (9.56)
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where 0< 0 € R denotes a bandwidth parameter. The task of optimizing this bandwidth
parameter such that two given ser{es} and{y: } are related optimally as (9.55) amounts
to solving

T t
. T
min = t;e? sty = Tzoexp(75> (1), vt = 1,...,T. (9.57)
In order to tackle the problem the following analytical property is used
a __r if laj<1 (9.58)
q= “aq’ ) .

whereqis a linear operator (more specifigis the backshift operataps = x_1). Using
this equation, it follows that

00 . B ) _ 00 B }
TZOa q = rZoexp(rln(a))q Tgoexp( Tin (a)) q
1
= {—ag’ (9.59)

such that (9.57) and (9.59) are equivalent i= 1/In(%). Problem (9.57) can be written
equivalently as

.
min_7(a,e) = 226? st. w=ayg 1+x+ea, -1<a<l, (9.60)
‘ pA

wheree= (ey,...,a)" € RT. This amounts to solving a convex constrained least squares
problem.

A cornerstone of the research on system identification isrglwy realization theory
which establishes the relation between the system matiiwgtthe Markov parameters
parameterizing the impulse response (9.53) of the systetarwsiudy. In the case of
stochastic state-space models without external inputstochastic realization theory
provides a related approach based on the auto-covariahttesmodel (Kung, 1978).

9.4 Stochastic Realization for LS-SVM Regressors

A numerical method is proposed to access the shape of thelvindekernel under the
assumption of stationarityy of the data (the covariancesmeaunderlying the data is
only a function of the displacement between two measureshent
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9.4.1 Univariate and equidistantly sampled data

In order to fix the ideas, let us consider here the case of nateaand equidistantly
sampled data. In this case the kernel matrix takes a paatlgidimple form

ko ki ... kn-o1
ki ko ...
Qr = s.t. ke =K(X,Xi+1) =K(X,%_7), VT=0,...,N—1,
kn-1 ki ko

(9.61)
which is known as a symmetric Toeplitz matrix (Golub and vaam, 1989) and plays
a central role in the research on system identification, sge(&ailathet al,, 2000).
As such, the admissible class of kernel matri@gsmay be described as follows

A1 ={Qr | Qr =0, Qr =Qf, Qr Toeplitz}, (9.62)

which is a proper pointed cone, see e.g. (Alizadeh and Gdld2003; Geniret al,
2003; Boyd and Vandenberghe, 2004).

Definition 9.2. [Admissible LS-SVM models]The set of optimal LS-SVM models for
any admissible kernel and constant regularization term tmagescribed as

T ={f:RP SR, aeRY, yeR{, Qr € #5, ecRY

(QT + %,IN) a=Y (a)

st ve=a 0L (963
f(Xi) = QTJ o (C)
y>0 (d)

The subset of optimal LS-SVM smoothers then can be writtenedimination ofy, a
and f as follows

Yy ={Ys RN, Or e RMN e RN |
(Qr+In)e=Y, Ys=Qe Qreur}. (9.64)

whereQr = yQr is still in the scale invariant sel ..

Note that these sets are non-convex by the occurrence ofajiaterms. Consider
model selection criteria based on the smoothing abilitiastloe training output
observations denoted &dodsels : RN x RN*N x &7 — R, such as e.gCp's statistic

(Mallows, 1973) or the generalized cross-validation cigte (Golubet al,, 1979). The

model selection problem may then be formulated as follows

(Y, O71,8) =argmin _fuosse (Yo, Q7,6) St (Y5, Qr1,€) € Z).

T
Ys.Q1.8

(9.65)
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which formalizes again the fusion argument as introducedhapter 7. This type of
problems is in general non-convex even if the functidadsel is convex. However,
one can find numerically efficient methods to solve the prot#eactly in a number of
cases where one is described explicitly.

Example 9.5 One can frame the recent literature on learning (Lanclateal, 2004) the
kernel in the presented framework. Especially the kernel charaatienz(9.61) seems
appropriate to study the transductive setting where the input points of pdaith need
evaluation are known beforehand.

9.4.2 Arealization approach

The method of moments estimates parameters by finding estpnssof those in terms
of the lowest possible order moments and then substitutaingpte moments in the
expression, see e.g. (Rice, 1988). In the case of second malaents for Gaussian
processes, a generalization of this principle was forredlainder the denominator of
stochastic realization theory. Although the original fotation was described towards
the identification of the system matrices of the one-sidatestpace model from the
observed sample auto-covariances (Kung, 1978), the sapneaayh may be employed
in order to approach the problem (9.65). Reconsider defimif.2 of a Gaussian
process.

Definition 9.3. [Second Order Moments of a Univariate Gaussia Process]The
second-order moments of a stationary Gaussian pro€¥s$.c, with zero mean are
defined as

oy (T)=E[YiY] | [[x—x[=1]. (9.66)

Then let Ce RN*N be the positive semi-definite covariance matrix which isplite
suchthatG = py (% —Xj) = pv(1). LetY=(y1,...,yn)" € RN be a vector containing
the observations corresponding with the equidistantly gachdata-points, e.g.;x=
,{,;_11. The sample covariance may then be written as follows

1
CreRVN st Gjj = N kY, (9.67)

Kl [k=T[=[i—=]]

which is positive semi-definite and Toeplitz. The choicd’feltermﬁ over the familiar

N%T ensures the property of positive-definiteness althoughtibduces a small bias

(Brockwell and Davis, 1987).

Here the assumption of stationarity is essential as it guide process of averaging out
the effect of the i.i.d errors in the observations.

An expression of the theoretical second order moments ofL8¥SVM smoother
is now derived. Under the assumption that the er@i@re i.i.d and conditional
independent orf such thaEle|f(x)] = 0, the following equalities hold as
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Cs=E[(Ys+6)(Ys+6)T] = y’E [Qee' Q"] + dZIn
= VQE[ed |Q" + 02N = Y?02QQ" + dZly.  (9.68)

Then substituting the sample covariance matkixinto the expression will result into
the equalities
Cr=Cs = Cy—d2ly=y?a2QQT, (9.69)

where the constard € Rg may dissolve into the kernel matrix. N — oo and(fy is
Toeplitz, then als@ will be Toeplitz (Kailathet al., 2000). This expression leads to
the following algorithm

Algorithm 9.1. LetCy denote the sample covariance matrix (9.69).

1. Determine an appropriate estimate of the noise level tyitg the data using
model-free techniques as described in e.g. (Pelckneias, 2004) such that
(Cy — 82In) = 0.

2. Take the square root of the resulting positive definiteplie matrix. Let
USU™ = Cy — 62 be the singular value decomposition (SVD) such that S
diag(o,...,0n) € RN*Nand UTU =UUT = Iy, then

Cy—62n=0Q" & O =Udiag\/0y,...,v/on)UT. (9.70)

3. Proper normalization of the resulting mati@ leads to a kernel matri@T and
a regularization termy > 0. The form of the kernel may be accessed by plotting
X against the first row 0€.

The obtained kernel can only be evaluated at the same saympalie as the original
data, which is a severe restriction for most learning taskevertheless, the plot of
the discrete kernel may be used as a tool suggesting the fotime &ernel. As in the
stochastic realization algorithm (Kung, 1978), reali@ativould amount to look for a
parsimonious model description of the kernel (impulse oesp).

Example 9.6 [Monte Carlo Example of the Realization Approach to Kernel Design]A
simple toy dataset is considered to illustrate the realization algorithm. Intardenerate
an appropriate dataset, the assumptions of the method must be intedpcaeefully.

For an optimal trade-off between accuracy and clarity of exposition,sthe of the
training set is takem = 200. Let the collectio{(x,z,&)}N; C R x R x R be a set
consisting of univariate point locations € R which are equidistantly sampled and and
two corresponding i.i.d. samples of the standard distribution suctgthat#"(0,1) and

& ~ 4(0,1). A dataset with underlying stationary covariance meabuie — R is then
generated as follows

N
yi=Y ho—xj)z+e, Vi=1,.. N (9.71)
=1
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Figure 9.5:An example of a kernel realizatio(e) GivenN = 200 noisy data-samples
of a nonlinear stationary function generated as a conariudf a white noise sequence
with a two-sided function. (b) The kernel estimate (solid line) resulting from the
realization algorithm versus the two-sided convolutiondiion (dashed line) used to
generate the data and t88% quantile interval of a Monte Carlo experiment (dotted
line). The peek at = 0 of the kernel estimate is to be attributed to the noise level.



204 CHAPTER 9. KERNEL REPRESENTATIONS & DECOMPOSITIONS

Following Herglotz's theorem, see e.g. (Brockwell and Davis, 19879, generated
process is stationary f is a positive definite function. Let in this exampide defined
as the familiar mapping

ke —xi 12
(% —x;) = exp("oz"z) , 9.72)

with the constant = 1.

Figure 9.5 gives the results of a Monte Carlo experiment. The datasetajed in one
specific iteration is given in Figure 9.5.a where the solid line gives the tai®sgary
function and the dots give the actual observations. Panel 9.5.b themthie realization
of the kernel from this data using algorithm 9.1 (solid line). The dashedrifieates the

function h employed to generate the data as in (9.72). The dotted lines denote the 90%

quantile interval of the Monte Carlo experiment after 1000 iterations. aisiple shows
that one can successfully recover the shape of the kernel fromtiy@esaovariances in
the data. The peak of the realizationsrat 0 corresponds with the impact of the noise
level on the estimators and is to be attributed to the regularization parayneter

9.4.3 The differogram: non-equidistant and multivariate daa

The classical case of stochastic realization proceeds pysing a parametric model on
the derived decomposition. This subsection approachesas$e of non-equidistantly
sampled and higher dimensional data within the same sphé.main difference is that
no discrete state-space model is imposed, but an app®@iatnent of a parametric
class of kernels is identified instead. Hereto, the sameisonted as presented in
Appendix A in the context of estimating the noise level.

Definition 9.4. [The differogram] Let 2 = {(x;,yi)}\ ; C RP x R be a dataset. Then

define the sample differences as follows
Ax,ij:HXi*XjHZGRi Vi,j::1,...,N (9.73)
Ay,ij:||yi—yj||2€R Vl7j=1,...,N

which are samples of the random varialidg and Ay respectively. The differogram is

then defined as the
1
Y(&) = §E [Ay | Ny = 6x] ) (9.74)

The graphical presentation of all sample differendgy;j,Ayij)}i<;j is called the
differogram cloud.

This definition is closely related to the concept of the vgiréon (Cressie, 1993) in
the concept of spatial data analysis and to the U-statisicgudied in statistics (Lee,
1990). The definition was coined in (Pelckmagtsal,, 2003) and (Pelckmanst al.,,
2004g) for the purpose of the model free estimation of the noisellelhis was based
on the following result

02 = lim Y(8) . (9.75)

DAy—
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which was proven in (Pelckmares al., 2004). Appendix A surveys the main results
of this research focussed towards the estimation of theerieigl.

Now a simple result extends the use of the differogram to #ienation of auto-
covariances in the case of univariate data with stationamarance cogx;,X;j) =

p (|Ixi —Xjl|2). From the differogram, an expression for the covariancetfan can
be computed as follows

Y(8)? = %E [(Yi=Y))? [ Bx =1y
= %E [YE+YF—2YiY) | Ax =4
= oZ—E[YiYj|bx =1y
= oy —p(lx—xl3)- (9.76)
This results in the estimaje: R™ — R from the estimated differograf?i: RT - R
p (Ix —xjlI3) = of — ¥(80? (9.77)

Consider e.g. the parametric differogram model

A
Yhus(Bx) =V— exp( - X) ., hs>0 v>s. (9.78)

The use of the following estimator of the mod4| was motivated in (Pelckmaret
al., 2004).

2
f : Yhus(Bxij) — Dyii)
h,v,8) = argmin ( = ' :
( ) hvs iS5 Yh,v,s(Ax)

which can be efficiently solved using an iterative approach.

s.t. hys>0,v>s (9.79)

The following result motivates then the a continuous couoate to the realization
context.

Lemma 9.2. [A Stochastic Realization Approach in the case dflon-equidistant
Samples]Let p : R* — R be a stationary covariance function. Then its Fourier
transform is positive

Fp() = L Zp(AX) exp(—id )y, (9.80)

following from the Hertzglotz theorem, see e.g. (Doob, 1®8ckwell and Davis,
1987). The square-root decomposition of this function teotetically be formulated
as the pointwise square root of the Fourier transfoffp such that

pllx =) = [ kix. 2Kz x))dz
— (ZFK)(A) =V (FPp)(A), V-0 <A <o, (9.81)

following Parseval’s theorem (Doob, 1953).
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Chapter 10

Conclusions

This chapter reviews the most important results of this taxd
formulates some general conclusive remarks on the disgcusgghod-
ology. Furthermore, some interesting prospects of thearebetrack
are summarized and the general ideas for some paths suitatildure
investigation are described.

10.1 Concluding Remarks

The main goal of this dissertation was twofold. At first, wguwed that the tasks of
design of an appropriate learning algorithm, the detertiinaof the regularization
trade-off and the design of an appropriate kernel are ielged in different ways
and should be considered jointly. Secondly we centralibedprimal-dual argument
originating from the theory on convex optimization in thesearch on the design
of learning machines. To support both conclusions, differeew results were
studied and reported, including (1) new learning machireesha SVT and kernel
machines handling missing values, non i.i.d errors, cexsobservations and others;
(2) incorporating model structure and prior knowledge ie tearning algorithm
itself and its close relation to the design of kernels. (3 ibsue of complexity
control or regularization was investigated in some detadl aew formulations of such
mechanisms are discussed; (4) the notion of hierarchicgirpmming and fusion of
training with model selection resulting in an automaticqaaure for tuning the global
characterization of a variety of learning machines and mseélection problems; (5)
the relation between techniques in system identificatiahsagnal processing on the
one hand, and kernel design on the other hand led to new apiy@®dn the task of
kernel design.

The text is organized as follows. The introduction survetex current state-of-the-
art of machine learning and primal-dual kernel machinesdaaowards the further
exposition. Chapter 2 discussed the important backborteéanethodology of primal-
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dual kernel machines as found in convex optimization theory

The first part studied the design and analysis of learninghinas employing the
primal-dual argument in some detail. While the stage was wehd elaboration of
the simplest case in the form of the LS-SVM regressor, eidesstowardslL;, L
and robust counterparts were formulated in Chapter 3. Thewimg chapter then
discussed extensions of those learning machines towaedbahdling of structure
in the form of parametric components, additive model stmed and pointwise
inequalities. Chapter 5 studied the relationship of thesgmé methodology towards
different established approaches in some detail.

The second part discusses the impact and the different fofro@mplexity control and
regularization. Chapter 6 surveyed different forms of tageation methods as found
in the literature. A number of extensions made by the autherevdiscussed in the
the setting of primal-dual kernel machines. An importanttdbution in this respect
was the formulation of the non-parametric measure of malxiragation. Various
consequences of this scheme were elaborated e.g. towargsdhlem of handling
missing values. Chapter 7 then discusses the hierarchiogrgmming argument
towards the fusion of training and model selection in a nunatb@arametric and non-
parametric cases. Chapter 8 took the argument a step fumttiez formulation of the
additive regularization scheme. This framework was thexdder the formulation of
fusing training and cross-validation and making stable&kmachines.

Chapters 9 initiated the research on learning the kernehéncontext of primal-
dual kernel machines. The first three sections discussed sesults establishing the
relationship between regularization schemes, weightest Eguares based primal-dual
kernel machines and the design of kernels. The final secsioiied a tool which can
play a crucial role into the design and learning of kernels)gloiting results in system
identification.

10.2 Directions towards Further Work

Mining for invariances and functional relationships

The task of machine learning may be summarized as follows
“Given a dataset, which patterns and relations are invilyignesent?”

The meaning of (statistical) invariance can be formalizectlassically in terms of
frequency or belief, see e.g. (Fisher, 1922; O’'Hagen, 198@es, 2003) and (Shawe-
Taylor and Cristianini, 2004). An alternative translatioay be defined aSnvariant
under different realizationsmeaning that any collection of the same variables under
different situations should preserve the invariant pateThe present text follows in
many derivations this spirit. For exampfasion of training and cross-validatioffPart

y) can be alternatively presentedidentify the functional relationship between input
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and output which is mostly invariant over the different fl& simple abstract example
explains this reasoningziven a number of digitized images of writings of the digit “7
collected from different writers, what is the invariantigtture over all realizations?

Although the setting is in some way natural to the unsupedvigarning problem,
counterparts can be formulated to the supervised case.ideorisr example the case
of regression. Given a set of measurements of variablescauld ask oneself which
set of variables can be explained using a deterministic mgpysing which variables:

“Given a collection of observed variables, which subsetlmaexplained
optimally given the remaining variables?”

While this problem of mining for functional relations encoasges classical statistical
inference, it can have a high relevance in case studies wdexe the assumption
about which variable acts as output and which as covariateatdbe made a priori.

Applications can be found in automatic compression mettaodkvarious detection

algorithms.

Errors-in-variables and Nonlinear System Identification

The main body of derivations in the text assumed input datetwtan be considered
as deterministic. In the case only perturbed versions ofrthats are observed, the
learning problem becomes much more complex. In the caseetireihg task has
no prior assignment of the labels “input” and “outputs”, t@blem of stochastic
components in the variables becomes even more promineneglecting of this
perturbation cannot be characterized as an assumptioricalgxamples include the
case of unsupervised learning and time-series predictiorthe case of the latter, a
NARX model for example is known to be often inferior in preiba performance
compared to nonlinear output error models.

However, a major problem is inherently connected to theimgptof stochastic

inputs: the errors on the input variables are to be propdgateugh the (unknown)
model. Even in the linear case, this will lead to quadratixaistrained (nhon-convex)
optimization problems, which eventually can be solved igffity using a Singular
Value Decomposition or a worst-case analysis. In the gptifmonlinear models, the
errors on the inputs have to propagate through the unknowiinearity which result in

complex global optimization problems. Desiderata in tlisecwould be to formulate
efficient optimization problems for solving the describedigem approximatively.

Interval Estimation

Most classical learning algorithms focus on point estirgto Inference of the
uncertainty of the model is usually obtained via computegrisive sampling methods
as bootstrap or Gibbs sampling schemes, or by exploitinficgrft assumptions or
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approximations as Normality of all involved distributioidowever, those approaches
digress in spirit from Vapnik’'s main principle as describe®ubsection 1.2.5.

Section 3.5 and Subsection 6.4.3 initiate a direction tdwére construction of models
for interval estimation based on tolerance intervals. Tabaration of those issues and
the analysis of the strategy makes up a new interesting dnessearch in statistical

learning and kernel machines. The relevance is not onlyndiyethe frequent need of
the users to assess the quality and uncertainty of the pi@dibut is also a necessary
tool for approaches towards the study of design of experisn@iisher, 1935) which is

also closely related to the next directive.

Interactive Learning and Design of Experiments

The learning task as described may be labeleassiveas the analysis draws
conclusions (hypothesi$] based on given data:

2 = H.

At least in the social sciences, one more often looks fonegitstrategies to investigate
a certain phenomenon. A strategy depends amongst othédrs wety one samples the
different outcomes. In the statistical design of experitheme investigates which
future data samples are most likely to increase the amourknofvledge of the
phenomenon under study. The amount of knowledge is ofteslated mathematically
as the inverse of the variance of the corresponding infemedel. This approach
towards the task of learning can be describeddive Schematically

N=H1= P,=Hy=---= Hy.
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Appendix A

The Differogram

This appendix reviews the result of the differogram for reating
the noise level without relying exlicitly on an estimated deb The
differogram cloud constitutes of a representation of thia da terms of
the mutual distances amongst input- and output samplesatiggly. The
behaviour of this representation towards the origin is theaven to be
closely related with the noise level. The use of a paramdifferogram
model is used to estimate the noise level accurately. Tha ditierence
with existing methods is that there is no need for an extraetpgrameter
whatever.

A.1 Estimating the Variance of the Noise

A.1.1 Model based estimators

Given a random vectdiX,Y) whereX € R andY € R, let {(x,yi)}\; be samples of
the random vector satisfying the relation

yi=f(x)+e, i=1...,N. (A1)

The error termsg are assumed to be uncorrelated random variables with zeao me
and variances? < « (independent and identically distributed, i.i.d.), ahdRY — R

a smooth function. The same setting was adopted e.g. in épeet al, 2003). An
estimatef of the underlying function can be used to estimate the naisince by
suitably normalizing the sums of squares of its associasidluals, see e.g. (Wahba,
1990). A broad class of model based variance estimatorseamitien as

~2 yTQy
%~ 1Q)
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with y = (y1,...,yn)" (Buckley and Eagleson, 1988),4r denotes the trace of the
matrix andQ = (Iy — S)2 a symmetridN x N positive definite matrix. Ley; = f(x)

andy = (Y1,...,98)" € RN, For most modeling methods, one can determine a
smoother matrixs € RN*N with § = Sysuch as e.g. in the cases of ridge regression,
smoothing splines (Eubank, 1999) or Least Squares SupgatblMachines (LS-
SVMs) (Suykenst al., 200D).

A.1.2 Model free estimators

Model-free variance estimators were proposed in the casguidistantly ordered data.
In the work of (Rice, 1984) and (Gassaral., 1986), such estimators of have been
proposed based on first- and second-order differences ofthes ofy;, respectively.
For example Rice suggested estimatirfgby

1 N-1

6% = 2(N—1) i; (Yir1—Yi)2. (A.2)

Gasseet al. (1986) have suggested a similar idea for removing locabtedfects by
using

2 1 N_lcz 2
L (A.3)
N—22,5°

whereg; is the difference betweep and the value at; of the line joining(x_1,Yi 1)
and(x+1,Yi11). The value; are chosen to ensure tHaf{c?é?] = o2 for all i when
the functionf in (A.1) is linear. Note that one assumes thak --- < Xy, X € R in
both methods.

In the case of non-equidistant or higher dimensional datalmnative approach is
based on a density estimation technique. Consider thesggremodel as defined in
(A.1). Assume thagy,. .., ey are i.i.d. with a common probability distribution function
F belonging to the family

f/’":{F:/xdF(x):Q 0</|x|de(x)<oo}, reNoand1<r<4. (A.4)

LetK : RY — R be a function called the kernel function andhet 0 be a bandwidth
or smoothing parameter. Then {iller et al, 2003 (to appear)) suggested an error
variance estimator given by

1 1 1/1 1 Xi — X
) 2 i — X
Of= — —i—vyi) =l =+=|K[—], A.5
Whereﬁ is defined as

ﬁM;K(”;XJ),iL...,N. (A.6)
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Figure A.1: Differogram of a linear function(a) Data are generated frogi= X; + €
with & ~ .#'(0,1), i.id andi = 1,...,N = 25; (b) All differencesi;; = |1 — x;|3
andbg;; = |lyi —yjl3 fori < j=1,...,N. The solid line represents the estimated
differogram model(c) All differences boxed using a log scale m%l j- The intercept

of the curve crossing the Y-axis corresponds to twice thenesed noise variancs2.

The cross-validation principle can be used to select thelwahh h. This paper is
related to (A.5) and (A.6) but avoids the need for an extreehyyarameter such as the
bandwidth and is naturally extendible to higher dimendiolada.

A.2 Variogram and Differogram

The differogram was motivated from a perspective of the saaribgram cloud
employed in spatial statistics and defined as follows

Definition A.1 (Semi-variogram). (Cressie, 1993)et{Z(x;),i € N} be a stationary
Gaussian process with meanVar[Z(x;)] < o for all i € N and a correlation function
which only depends oi;; = [[x —x; |3 for alli, j € N. It follows from the stationarity
of the process &), ...,Z(xn) that

2z -z)?] = o+ (1-p(y))

2
n (%), VijeN, (A7)
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Figure A.2: Differogram of a nonlinear functior(a) Data are generated according to
the nonlinear dataset described in (Wahba, 1990). with dfeerstandard deviation of
0.1 andN = 100. (b) Differogram cloud of all differences of the inputs and thepaiis
respectively. The solid line represents the estimatedmﬁg‘ranﬁ (A2) and the dashed
line denotes the corresponding weighting functigi (A2). The estimate of the noise
variance i$.1086



A.2. VARIOGRAM AND DIFFEROGRAM 239

where g2 is the small scale variance (the nugget effee),is the variance of the
serial correlation component anal: R — R is the correlation function (Diggle, 1990;
Cressie, 1993). The functiop: R — R* is called the semi-variogram.

The prefix semi-refers to the constan% in the definition. A scatter-plot of the
differences is referred to as the variogram cloud. A numbgramametric models
were proposed to mode} (Cressie, 1993). Estimation of the parameters of a
variogram model often employs a maximum likelihood criteri(Cressie, 1993)
leading (in most cases) to non-convex optimization proklenthe variogram can
be considered as being complementary to the auto-covarfamction of a Gaussian
process a€(Z(x) — Z(xj))? = 2E(Z(x))? — 2E(Z(x)Z(x;)). The auto-covariance
function is often employed in an equidistantly sampledirsgtin time-series analysis
and stochastic system identification, while the variogrdfows to handle non-
equidistantly sampled data, see also Subection 9.4.3.

Instead of working with a Gaussian proc&ssnachine learning is concerned (amongst
others) with learning an unknown smooth regression functic: R — R from
observationg (x;,yi)} ; sampled from the random vectX,Y). We now define the
differogram similar to the semi-variogram as follows:

Definition A.2 (Differogram). Let f: RY — R be a Lipschitz continuous function
such that y= f(x)+&. LetAiij = |Ix —x;||3 for alli,j=1,...,N be samples of the
random variableA and letAZ;; = [lyi —y;||3 be samples from the random variable
AZ. The differogram functiol : R* — R is defined as

Y(£2) = %E[A$|A2 =12 (A.8)

This function is well-defined as the expectation operatsults in a unique value
for each different conditioning\y = AZ by definition (Moodet al, 1963). A
main difference with the semi-variogram is that the diffgiaam does not assume an
isotropic structure of the regression functibn A motivation for this choice is that
the differogram will be of main interest in the direct regiohA%2 = 0 where the
isotropic structure emerges because of the Lipschitz gssom A similar reasoning
lies at the basis of the use of RBF-kernels and nearest n@ighbthods (Hastiet
al., 2001; Devroyeet al., 2003).

Although the definition is applicable to the multivariatsseasome intuition is given by
considering the case of one-dimensional inputs.A%t: (e — e,-)2 be samples form

the random variablag. For one-dimensional linear models= wx + b+ g where
w,b e Rand{g}N, isani.i.d. sequence where the inputs are standardizeal ifzean
and unit variance), the differogram equals

Yw(£2) = 2wA% + 3E[AZ], as illustrated in Figure A.1. Figure A.2 presents the
differogram cloud and the (estimated) differogram funtctid a non-linear regression,
while Section 6 reports on some experiments on higher diioeakdata.
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Equivalently to the nugget effect in the variogram, one caropthe following lemma
relating the differogram function to the noise variance.

Lemma A.1. Assume a Lipschitz continuous function®? — R such thaM € R+
where||f (X) — f(X’)HS <M|X —X’||§ with X" a copy of the random variable X. Let
{(%,yi)}}; be sampled from the random vectot,Y) and e obeying the relation ¥
f(X)+e. Assume that the random variable e has bounded moments i pendent
of f(X). Under these assumptions, the i, , Y(AZ) exists and equals?.

Proof: Let AZ;; = (& — €;)? be samples of the random varialig = (e— )% where

€ is a copy of the random variabke As the residuals are not correlated it follows
that E[AZ] = E [¢?] + 2E [e€] + E [€?] = 20%. Substitution of the definition of the
Lipschitz continuity into the definition of the differogragives

2Y(87) = EBY | A% =45
= E[(f)+e—f(X)—€)* [ |X—X'|3=af]
= E[(e—€)+ (F(X)— 1(X))* [ IX—X'|3=Af]
< E[BSHMIX X3 [ X =X|5 =45
— 2024+E[MIX=X[3 | X=X} =22]
= 202+MAZ, (A.9)

where the independence between the residuals and thedarictand hence between
AZ and(f(X) — f(X’))Z), and the linearity of the expectation operaiois used (Mood
et al, 1963). From this result, it follows that Iig@HOY(A)Z() — 0Z.

O

The differogram function will only be of interest near thenii A2 — 0 in the sequel.
A similar approach was presented in (Devr@yel., 2003) where the nearest neighbor
paradigm replaces the conditioning &% and fast rates of convergence were proved.

A.2.1 Differogram models based on Taylor-series expansisn

Consider the Taylor series expansion of ondeentered am € R for local approxima-
tioninx e Rforalli=1,...,N

T [f(x)](m ilil (x —m)' + 0 (x —m) (A.10)

wheref (x) = ‘;L, [2f(x) = 23, etc. forl > 2. One may motivate the use of afh
order Taylor series approximation of the differogram fumeciwith centerm= 0 as a
suitable model because one is only interested in the&se 0:

r

Y./ (02) = ag+ o7 (02), where o7 (A2) = Zla(Af)', a,...,a eRT,  (A.11)
|=
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where the parameter vectar= (ag,a;,...,a)" € R*'+1is assumed to exist uniquely.
The elements of the parameter vechoare enforced to be positive as the (expected)
differences should always be strictly positive. The fumctd of the mean absolute
deviation of the estimate can be bounded as follows

9(0%a) = E[I67- Yy (a%a) | &% =47]
r
= E IA\Z(_aO_Zla'(Ai)w ]A2:A§]
|=
r
< Ellao+ Y a@))'|| +E[1a0]a% = A7]
=1
r —
= 3<ao+2a4(A§)'>é5(A§;a), (A.12)
=1

where respectively the triangle inequality, the prop¢@4 = A% and definition A.2
are used. The functioft : Rt — R™" is defined as an upperbound to the spread of
the sample#\Z from the functionY(A2). Instead of deriving the parameter vector
from the (estimated) underlying functid it is estimated immediately based on the
observed diﬁerencaﬁiij andAiij fori < j=1,...,N. The following weighted least
squares method can be used

N
: - ¢ 2 2 ..\2

B =2 sz a B~ Yo (Biid) A13
2 argaqufi?l/(a) igjamiij;a) (Av,u o ( X,ij a)) ( )

where the constaute Ry normalizes the weighting function suchthat ' c/9 (Aiij ;a).
The functiond corrects for the heteroscedastic variance structure émbeo the
differences (see e.g. (Sen and Srivastava, 1990)). As thengter vectoa is positive,

the weighting function is monotonically decreasing and wshsepresents always a

local weighting function.

A.3 Differogram for Noise Variance Estimation

A U-statistic is proposed to estimate the variance of theenfiom observations.

Definition A.3 (U-statistic). (Hoeffding, 1948)Let g: R' — R be a measurable and
symmetric function and lefu; }N ; be i.i.d. samples drawn from a fixed but unknown
distribution. The function

1
Un =U(g;u,...,UN) = Z 9(Uig,. .., Ui ), (A.14)
(V) 1<i;<S<ii <N

for| <N, is called a U-statistic of degree | with kernel g.
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It is shown (Lee, 1990) that for every unbiased estimatoetbas the same observa-
tions, a U-statistic exists with a smaller variance of theesponding estimator. If the

regression function was known, the errerdor all i = 1,...,N were observable and
the sample variance can be written as a U-statistic of drete?
62 =U(gier.... o) = > qu(ee)
N(N=1) 15w
1 1.,
and gl(a,ej) =5(& 79]) Aelj (A.15)

2 2

However, the true functiorf is not known in practice. A key step deviating from
classical practice is to abandon trying to estimate theajlfinction (Vapnik, 1998)
or the global correlation structure (Cressie, 1993). bdt&nowledge of the average
local behavior is sufficient for making a distinction betwesenoothness in the data and
unpredictable noise. As an example, consider0, the Oth order Taylor polynomial

of f centered ax; evaluated ax; for all i, j = 1,...,N. This approximation scheme is
denoted aJo[f (xj)] (%) = f(x) such that (A 15) becomes
2 1
~D 2
[0) = [ _ y _y.
2 S (e 106)— e~ Tolf))(x))?
N(N 1) l<|<]§N2 : :
2 1
= — N2 (A.16)
N(N—-1) 1<i55<N 2 el

where the approximation improves gs— x;. To correct for this, a localized second
order isotropic kernely : R> — R can be used

gZ(yi7y1) 219(A2 )A)Z/”a (A]-?)

X1 ]

where the decreasing weighting functiony.‘}](Az) is taken from (A.12) in order to
favor good (local) estimates. The constar R} is chosen such that the sum of the
weighting terms are constantc({I<J 1/9 (A X,J)) N(N-—1).

From this derivations one may motivate the following kerfioela U-statistic based on
the differogram model (A.11) and weighting function as dediin (A.12):
AN

gs(Yi,Yj) = ) (8,

219(A2 Vil

X,
with 9 (A%;;) =3(a0+ (%)), (A.18)
wherec € R{ is a normalization constant. The resulting U-statisticdvees
2

62 = —— Vi), A.19

One can show that this U-estimator equals the estimatertéagitof the differogram
model (A.11):
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Lemma A.2. Letx,...,xy € R4 and yi,...,yn € R be samples drawn according to
the distribution of the random vectdiX,Y) with joint distribution F. Consider a
U-statistic as in Definition A.3 with kernel g such that ' — R is a measurable
and symmetric function. Consider the differogram accaydmDefinition A.2 and the
differogram model (A.11). The estimator of the weightedatistic (A.18) of the noise
variance estimator (A.19) equals the interceptdad the estimated differogram model
using the weighted least squares estimate (A.13).

Proof: This can be readily seen as the expectation can be estimatgiically in
two equivalent ways. Consider for example the mgaof the error termsy, ..., ey
which can be estimated gs= argmir, 3\ (e —p)? and asii = £ 3V, &, see e.g.
(Hettmansperger and McKean, 1994). As previously, one aée w

262 = lim E[AZ|A2 = A2
£Z—0

— limE|[—S_

D2 — of (N2 N2 = N2 A.20

if lim AQHOM(A)Z() = 0. The sample mean estimator becomes

5 NN-D2

26—3 - m kZ]_ m (A)Z/,k - %(Agk))

2 N ¢
~ N(N-1) i; 28 (12 )(Ai”_

X,i]
= U(gs;Us,...,Un), (A.21)

A (D))

where a unique indek=1,...,N(N — 1) /2 corresponds with every distinct pair<l
i < j <N. Alternatively, using the least squares estimate

2 NN-1/2 , , .
265 = argmin _C A2 (A2
) 020 kgl 79(A>2<,k)( e~ 7 (B — %)
. C 2
— argminS —— (A2, — o/ (A2..) — ' A 22
gaOEOiZﬂ(Aiij)( Vi ( x,u) ao) ( )

In both cases, the functiow : Rt — R of the differogram model and the weighting
functiond : R™ — R are assumed to be known from (A.13).

O

A.4  Applications

A model-free estimate of the noise variance plays an imporale in the practice
of model selection and setting tuning parameters. Exangdlesich applications are
given:
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1. Well-known complexity criteria (or model selection erni) such as the Akaike

Information Criterion (Akaike, 1973), the Bayesian Infation Criterion
(Schwartz, 1979) an@, statistic (Mallows, 1973) take the form of a prediction
error criterion which consists of the sum of a training sebefe.g. the residual
sum of squares) and a complexity term. In general:

N
3(s) = %_Zl<yi f(x:9)2+A (Qu(f)) 62 (A.23)

where S denotes the smoother matrix, see (De Brabaetal, 2002). The
complexity termQy () represents a penalty term which grows proportionally
with the number of free parameters (in the linear case) ceffieetive number of
parameters (in the nonlinear case (Wahba, 1990; Suyieals 2002)) of the

model f grows.

. Consider the linear ridge regression moglel w" x+ b with w andb optimized

W.I.t.

1 N
Jrry (W, b) = EWTWJr %E (yi —w'x —b)2. (A.24)
i=

Using the Bayesian interpretation (MacKay, 1992; Van Ge2@02) of ridge
regression and under i.i.d. Gaussian assumptions, therfmystan be written as
p(w,b | xi,Yi, 1, ¢) O exp(—Z (wx + b —yi)?) exp(—p(w'w)), the estimate of
the noise varianc€ = 1/62 and the expected variance of the first derivative
u = 1/02 can be used to set respectively the expected variance dkéfidbod
p(yi|xi, w,b) and on the priop(w, b). As such, a good guess for the regularization
constant when the input variables are independent becpmei /2.

Another proposed guess for the regularization consfaint ridge regression
(A.24) can be derived as in (Hoeet al, 1975): ¥ = W] oW s/(8ed) Where Ge

is the estimated variance of the noiskis the number of free parameters and
W_s are the estimated parameters of the ordinary least squesklem. These
guesses can also be used to set the regularization cormstapetparametric step
in fixed size LS-SVMs (Suykenst al., 2002) where the estimation is done in
the primal space instead of the dual via shtom approximation of the feature
map.

. Given the non-parametric Nadaraya-Watson estimafay = [T ;(K((x —

x)/My)]/ [N, K((x—x)/h)], the plugin estimator for the bandwidti is
calculated under the assumption that a Gaussian kernellie tsed and the

noise is Gaussian. The derived plugin estimator becd@gs- C62N~5 where
C ~ 6,/11/25, see e.g. (Hardle, 1990).

. We note that? also plays an important role in setting the tuning paransedér

SVMs, see e.g. (Vapnik, 1998; Cherkassky, submitted, 2002)



Appendix B

A Practical Overview:
LS-SVMlab

While the presented research is rather methodological inreat
much effort was spent on the practical abilities of the méshand on
increasing the userfrinedliness of the tools by elabogatifMATLAB/C
toolbox called LS-SVMlab. The content and implementatietads of the
Matlab/C toolbox are discussed qualitatively and someildetae given
about the interface.

B.1 LS-SVMlab toolbox

In 2002, a freeware Matlab/C toolbox was released by the sartters for the use
of algorithms based on LS-SVM classifiers and regressomd,vanious extensions
(Pelckmanst al,, 2002; Pelckmangt al,, 2002)

http://www.esat.kuleuven.ac.be/sista/lssvmlab/,

which is freely available for research purposes (for pecianditions, see website).

Two years of experience and feedback were embodied in a neade (LS-

SVMlab2). This section reviews and discusses issues caingethe main structure,
the newly implemented tools, a new graphical user interéawt a number of useful
extensions of this software package. Note that a whole rahgelated software for
the estimation of SVMs and other Machine Learning techrsgsiavailable on the web
(see e.g. http://www.kernel-machines.org). The presgptaach mainly differs from
most approaches as the package focuses not on only onegeelinit offers a whole
spectrum of kernel based methods for the application at.hitwteover, a graphical
interface was designed to ease the application of mostidedamethods. A couple of
sometimes conflicting desiderata were put first:
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1. The toolbox should provide algorithmic tools as devetbpecently by the
authors and co-workers for the generic user.

2. The use of the toolbox should be highly robust and usendily in order to
facilitate the application of the methodology to the uneigreced as well as the
demanding users.

3. The calls of the core algorithms and the implementati@ukhcorrespond with
the mathematical formulations as well as possible.

4. Functionality should be extendible towards other tragrand tuning algorithms
and other kernels.

Furthermore, the new toolbox should be backwards compsttitthe first release.

B.1.1 Software architecture

Somewhat at the core of the software design is the definiti@m @ppropriate Matlab
structure containing all information for the inference dfype of kernel machine. A
typical example of such a model is represented in Figure But,can be extended
with extra fields containing details on the specific methodaiaset. We shall refer to
such container as a data-structure if at least the substeuaith the data definition is
present. One can speak of a model structure if the containkrdes the data definition
and the specifications imethod. With a small abuse in notation, we will refer to
the latter as anodel As an example, Table B.1 expands the substruatietehod
containing details on the involved training methodologyey substructure contains
a status flag indicating whether the according stage (preprocessiaming,...) is
already processed successfully or will need to be redone.

The software folder (the different .m files) is organized @bofvs. The root directory
of the toolbox contains generic callsrainm, simm, tunem, prem anddispm) which
support the model interface and redirects the user to theopppte implementation.
On a second level the core functionalities are implemengedi@se to the formulas
as possible. Those are located in a set of subdirectorienmétke extension and
interpretability highly accessible. The implementati@me functional and make no
use of the model structure interface.

B.1.2 Model selection and generalization

A main advantage of this toolbox is its functionality regagdthe task of model
selection as it contains a wide range of useful routines égatithms for measuring
and maximizing the generalization performance of specifadeis. A number of
commonly used model selection criteria are implementechen gackage. These
include the classical procedures for computing differended selection criteria as
L-fold cross-validation, leave-one-out, Generalized €+dalidation (GCV), a variety
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model— | — data : Definitions of the data-sample involved in the modeliragess
— pre : Information on the pre- and post-processing
— train . Details on the used implementation
L type
L status
L train
L sim
Lreg
L kernel
— modsel : Specifications on the model selection procedure
— disp . Information on the used visualization technique

Table B.1:Definition of the model structure at the core of the toolbox

of information criteria and fast implementations of thoBellowing the contributions

in (De Brabanteret al., 2002), robust counterparts to some of the model selection
criteria were implemented. Apart from this estimation noely different methods for
the optimization of a model selection criterion are inchgjiranging from very generic
algorithms as a computer-intensive grid search and lodahagation routines to fast
initial estimates. Implementation of the fusion argumenetborated in this thesis
are provided. Furthermore, some useful tools assistingusiee in the design of an
appropriate kernel are encoded.

B.1.3 Building blocks

While the previous discussion describes the general settipdbolbox, this Subsec-
tion gives some details and illuminates some choices ofitipdeimentation.

Preprocessing The toolbox contains a set of functions for automaticalypocessing
the data before the stage of modeling. While this is oftenlisigependent on
the application at hand, some procedures as normalizatidrstandardization
is useful in most application. The standard preprocessiaggalure will handle
binary, categorical and continuous data in different ways.

Modeling and Estimation Somewhat central to the toolbox is an efficient C im-
plementation for solving standard LS-SVMs. A variety ofated parametric
techniques as ridge regression are supplied in order to @asparisons of
the method. Furthermore, a set of structured and dedicabedlpdual kernel
machines are implemented as described in the text. Spet2atian is given
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®3

Figure B.1:Example of a decision hyperplane found by application of gydut Vector
Machine.

to the construction of a user-interface assisting the usehe choice of an
appropriate algorithm.

Visualization Techniques Of direct concern to the user is the visual format in
which the result is presented on screen. In first instanceryetraining
procedure is engaged for making an appropriate visuadizatiFurthermore,
some visualization tools are implemented for represerttiegraw data as the
differogram technique and others. A final set of visual@atiools are involved
with the visualization of the model tuning process as evotutliagrams for
structure detection and computer-intensive grid-seardbe hyper-parameter
tuning.

Resampling Schemes and Bayesian Inferencilost results in the context of sta-
tistical learning and kernel machines focus on the fornaiof learning
machines for point estimation. However, the user is ofteso ahterested in
guantitative estimates of the (un)certainty of the progigeadiction. This need
is approached in two disjunct ways. Classical non-param&tatistics provides
a number of results on resampling schemes based on the rfapopsbcedure.
An entirely different approach emerged from the Bayesiantpaf view. This
implementation mainly builds on results described in (Vas®@let al., 2002).
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Extensions for ClassificationIn the task of classification dedicated tools as the
Receiver Operating Characteristic (ROC) curve of a bindagsifier (Hanley
and McNeil, 1982) is often a useful tool to analyze the ledrm®del. Another
useful extension towards the task of classification aretthetfons for converting
multi-class classification problems in sets of binary dfasdion task using
different encoding schemes, see e.g. (Singer, 2003). &ptention was paid
to efficient calculation of error correcting output codepresented in (Dietterich
and Bakiri, 1995).

Large Scale MethodsA number of dedicated functions enable the handling and
processing of large scale databases in the toolbox. A pahtdol here is the
fixed-size LS-SVM as introduced in (Suykeetsal., 2002) which is based on a
Nystrom approximation scheme combined with estimation enghimal space.

A problem especially apparent in medium to large scale problis the problem
of hyper-parameter tuning and model selection. Dedicateddlations based
on the fusion argument are implemented.

Unsupervised Learning The task of finding patterns in unlabeled data in the context
of primal-dual kernel machines is discussed in some detai{Suykenset
al., 2002) and advances are given in (Hoegaerts, 2005). The toolbotairs
implementations of kernel PCA, kernel CCA and kernel PLStbgr with fast
approximation schemes to those algorithms capable of manidirge datasets.



