
A KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

PRIMAL-DUAL KERNEL MACHINES

Promotor:
Prof. dr. ir. J. Suykens
Prof. dr. ir. B. De Moor

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de ingenieurswetenschappen

door

Kristiaan PELCKMANS

May 2005





A KATHOLIEKE UNIVERSITEIT LEUVEN
FACULTEIT INGENIEURSWETENSCHAPPEN
DEPARTEMENT ELEKTROTECHNIEK
Kasteelpark Arenberg 10, 3001 Leuven (Heverlee)

PRIMAL-DUAL KERNEL MACHINES

Jury:
Prof. G. De Roeck, voorzitter
Prof. J. Suykens, promotor
Prof. B. De Moor, promotor
Prof. J. Vandewalle
Prof. P. Van Dooren (UCL)
Prof. J. Schoukens (VUB)
Prof. M. Hubert
Prof. M. Pontil (UC London)

Proefschrift voorgedragen tot
het behalen van het doctoraat
in de ingenieurswetenschappen

door

Kristiaan PELCKMANS

U.D.C. 681.3*G12 May 2005



c©Katholieke Universiteit Leuven – Faculteit Ingenieurswetenschappen

Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektronisch
of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de
uitgever.

All rights reserved. No part of the publication may be reproduced in any form by
print, photoprint, microfilm or any other means without written permission from the
publisher.

ISBN 90-5682-610-7

U.D.C. 681.3*I26

D/2005/7515/44



Voorwoord

Ruim vier jaar van onderzoek zijn uiteindelijk samengebaldin het huidige werkstuk.
Ik geloof dat ik met tevredenheid terug kan kijken op deze jaren van wetenschappelijke
exploratie en persoonlijke evolutie. Deze periode heeft mein contact gebracht met vele
nieuwe gezichten, en heeft academische zowel als industriële waarheden en waarden
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Abstract

This text presents a structured overview of recent advancesin the research on machine
learning and kernel machines. The general objective is the formulation and study of
a broad methodology assisting the user in making decisions and predictions based on
collections of observations in a number of complex tasks. The research issues are
directly motivated by a number of questions of direct concern to the user. The proposed
approaches are mainly studied in the context of convex optimization.

The two main messages of the dissertation can be summarized as follows. At first
the structure of the text reflects the observation that the problem of designing a good
machine learning problem is intertwined with the question of regularization and kernel
design. Those three different issues cannot be considered independently, and their
relation can be studied consistently using tools of optimization theory. Furthermore,
the problem of automatic model selection fused with model training is approached
from an optimization point of view. It is argued that the joint problem can be written as
an hierarchical programming problem which contrasts with other approaches of multi-
objective programming problems. This viewpoint results ina number of formulations
where one performs model training and model selection at thesame time by solving a
(convex) programming problem. We refer to such formulations as to fusion of training
and model selection. Its relation to the use of appropriate regularization schemes is
disccussed extensively.

Secondly, the thesis argues that the use of the primal-dual argument which originates
from the theory on convex optimization constitutes a powerfull building block for
designing appropriate kernel machines. This statement is largely motivated by the
elaboration of new leaning machines incorporating prior knowlege known from the
problem under study. Structure as additive models, semi-parameteric models, model
symmetries and noise coloring schemes turn out to be relatedclosely to the design of
the kernel. Prior knowledge in the form of pointwise inequalities, occurence of known
censoring mechanisms and a known noise level can be incorporated into an appriate
learning machine easily using the primal-dual argument. This approach is related and
contrasted to other commonly encountered techniques as smoothing splines, Guassian
processes, wavelet methods and others. A related importantstep is the definition and
study of the relevance of the measure of maximal variation which can be used to obtain
an efficient way for detecting structure in the data and handling missing values.
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The text is glued together to a consistent story by the addition of new results, including
the formulation of new learning machines (e.g. the Support Vector Tube), study of
new advanced regularization schemes (e.g. alternative least squares), investigation
of the relation of the kernel design with model formulationsand results in signal-
processing and system identification (e.g. the relation of kernels with Fourier and
wavelet decompositions). This results in a data-driven wayto design an appropriate
kernel for the learning machine based on the correlation measured in the data.



Korte Inhoud

Dit proefschrift presenteert een breed overzicht van nieuwe bijdragen in het onderzoek
naar automatische leeralgoritmen. Het algemeen opzet is deformulering en de
studie van een methodologie voor het assisteren van de expert in het maken van
gefundeerde beslissingen of voorspellingen. Hoewel deze studie generiek van aard is
en er academische problemen zullen bestudeerd worden, is depraktische relevantie
van de gebruikte methode eerder aangetoond op verscheidenegevallenstudies. De
kritische problemen die ervaren werden in dergelijke studies motiveerden de keuze
van de onderzoeksonderwerpen. De aanpak is essentieel geworteld in een context van
convexe optimalisatie.

Het proefschrift bestudeert en motiveert in hoofdzaak tweestellingen. Ten eerste wordt
er geargumenteerd dat het probleem van het opstellen van eengoed leeralgoritme, de
vraag naar een goede maat van modelcomplexiteit en het ontwerp van een goede maat
van similariteit in de vorm van een zogenaamde kernfunctie sterk gerelateerd zijn.
De invalshoek van optimalisatie vormt een krachtig hupmiddel om de onderliggende
relaties te bestuderen en constructief te gebruiken. Verder wordt het probleem van
modelselectie dieper bestudeerd, eveneens vanuit een optimalisatieperspectief. Het
modelselectieprobleem wordt geı̈nterpreteerd als een hiërarchisch programmeerprob-
leem. Dit laatste vormt een techniek voor het oplossen van optimalisatieproblemen
waar meerdere kostfuncties moeten in rekening gebracht worden. Verschillende
modelselectieproblemen worden dan geformuleerd als een optimalisatieprobleem en
efficiënte manieren worden onderzocht om de taak van modelschatting en modelselec-
tie tegelijkertijd op te lossen met betrekking tot verschillende deeltaken.

Ten tweede wordt er geargumenteerd dat het primair-duale raamwerk zoals bek-
end vanuit convexe optimalisatieproblemen een krachtige bouwblok vormt voor het
formuleren van nieuwe leeralgoritmen. Deze bewering wordtgestaafd door het
uitwerken van verschillende leermachines voor complexe taken. Het inbrengen van
voorkennis met betrekking tot structuur en globale parameters in het leeralgoritme
is in het bijzonder een sterkte van de methode. We bestuderenvoornamelijk
enerzijds de structuur van additieve modellen, gedeeltelijk parametrische kernfunctie
methoden, het opleggen van modelsymmetrieën, en anderzijds de relatie van deze
drie met het ontwerp van een goede kernfunctie. Andere bestudeerde vormen
van opgelegde voorkennis omvatten puntsgewijze ongelijkheden, toegepaste vormen
van censureringsmechanismen, het behandelen van onvolledige observaties en het
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inbrengen van voorkennis met betrekking tot het ruisniveau. Dit centrale primair-duale
argument wordt gerelateerd en gecontrasteerd met andere bekende methoden uit de
literatuur. Verder werd een belangrijke stap gezet voor hetdetecteren van structuur uit
de observaties door het uitwerken en bestuderen van de maat van maximale variatie
van een functie.

Het verhaal is samengebracht tot een consistent geheel doorhet toevoegen van
een scala van nieuwe resultaten zoals het uitwerken van nieuwe leeralgoritmen,
bijvoorbeeld voor het schatten van onzekerheden (Support Vector Tubes), de studie van
nieuwe mechanismen voor complexiteitscontrole of regularisatie (zoals bijvoorbeeld
de formulering van het alternatieve kleinste kwadraten probleem), en de verdere studie
van de relatie tussen modelcomplexiteit, het ontwerp van dekernfunctie en resultaten
vanuit de theorie van systeemidentificatie. In het bijzonder wordt er een methode
voorgesteld voor het schatten van een goede kernfunctie uitde observaties gebaseerd
op de berekende correlatie geschat op de gegeven dataset.



Primair-duale Kernfunctie
Methoden

Vele problemen kunnen herleid worden tot het zoeken van geschikte
mathematische modellen op basis van een verzameling observaties en het
maken van voorspellingen op basis van deze modellen. Dit sleutelidee
vormt een belangrijk ingrediënt van verschillende wetenschappelijke deel-
gebieden zoals statistiek, systeemidentificatie en artificiële intelligentie,
en vindt een directe toepassing in een breed spectrum van praktische
problemen gaande van medische overlevingsanalyse tot het regelen van
complexe chemische processen. In het kielzog van de zogenaamde
Support Vector Machines (SVMs) (Cortes and Vapnik, 1995; Vapnik,
1998) is een nieuwe sterke impuls gegeven aan het wetenschappelijk
onderzoek naar algoritmen voor het automatisch leren met behulp van
leermachines (“Machine Learning”). Deze nederlandstalige samenvatting
van het proefschrift bevat twee delen. Het eerste bespreektde algemene
methodologie van SVMs en kernfunctie methoden op een inleidend
niveau. Het tweede deel geeft hierop gesteund een overzichtvan de
bijdrage van het proefschrift.

Dit onderzoek richt zich vooral op het ontwerp en de analyse van leersystemen voor
de automatische classificatie en het benaderen van functionele verbanden gegeven
een eindige verzameling observaties. Deze klasse van problemen werd bekeken
vanuit een nieuwe theoretische invalshoek bekend als de theorie van statistische
leeralgoritmen (Vapnik, 1998; Bousquetet al., 2004). Door de recente beschikbaarheid
van mogelijkheden om grote berekeningen op een automatische manier uit te voeren
en door de formulering van efficiënte numerieke algoritmen mag men spreken van
een doorbraak van de kernel methoden zowel op theoretisch vlak als in de praktijk.
De huidige tendens is om de klasse van kernelmethoden als eenvolwaardige aan-
vulling te zien op de klassieke statistische methodologie (Hastieet al., 2001). De
onderzoeksgroep SCD-SISTA en ondergetekende richtten zich de voorbije jaren op
het bestuderen en toepassen van een variant, de kleinste kwadraten SVMs (LS-SVMs)
(Suykenset al., 2002b). Dit onderzoek onderscheidt zich voornamelijk van andere
kernelgebaseerde methoden door het uitbuiten van expliciete verbanden met de theorie
van convexe optimalisatie (Boyd en Vandenberge, 2004). Belangrijke elementen van
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de LS-SVMs zijn de resulterende algoritmen die eenvoudigeren sneller zijn dan de
doorsnee SVM methoden, en de expliciete verbanden met methoden als neurale en
regularizatie netwerken, wavelets en splines (voor de laatste zie b.v. (Wahba, 1990)).
De praktische werkbaarheid van de algoritmen was de voorbije jaren bewezen onder
meer in het veld van medische signaalverwerking, bioinformatica, econometrie en
regeltoepassingen, zie (Suykenset al., 2002b).

A. Introductie tot Machine Leeralgoritmen en Kern-
functies

A.1 Machine Leeralgoritmen

Het onderzoeksgebied van machine leeralgoritmen bevat hetonderzoek naar hoe
programma’s te ontwerpen die verbeteren met de gegevens dieze opdoen (Mitchell,
1997). Zodoende is men geı̈nteresseerd in een automatisch formalisme of algoritme
Alg dat gegevensD - bijvoorbeeld in de vorm van observaties van een bepaald
fenomeen - en voorkennis van het probleemA (bijvoorbeeld in de vorm van
assumpties over het bestudeerde fenomeen) omzetten in een expertsysteem in de vorm
van wiskundige vergelijkingen. In het algemeen behoort hetbekomen expert systeem
tot een voorgedefinieerde klasseF van potentïele beschrijvingen die gedetermineerd
zijn op enkele onbekende parameters na. Een leeralgoritme kan aldus formeel
beschreven worden als een optimale afbeelding als

Alg : D ×A → F .

Men refereert naar deze mapping ook alsinferentie, schatter (in een statistische
context),leeralgoritme(in een context van artificiële intelligentie). Hier beperken we
ons tot de taak waarbij de observaties uiteenvallen in twee klassen, namelijk de bekende
invoer variabelenen de overeenkomdeuitvoer onbekendenof uitvoer etiketten. Het
doel van het geleerde resultaat is dan om voorspellingen te doen van de uitvoer
overeenkomende met nieuwe observaties van de invoer. In ditgeval kan de klasseF
van potentïele beschrijvingenf nauwkeuriger beschreven worden in termen van een
aantal onbekende parametersθ ∈ Θ als volgt

F =
{

f : R
D → D

∣∣∣ f (x,θ) = y
}

,

waarx∈R
D een mogelijke invoer eny∈D een mogelijke uitvoer representeert. Details

van de mappingAlg bepalen in grote mate de specificaties van het leeralgoritmein
kwestie:

Afbeelding: Alg Door een leeralgoritme te beschrijven als een welgedefinieerde
afbeelding van een set van observaties en een verzameling aannames op een
klasse van mogelijke modellen wordt impliciet aangenomen dat het resultaat
uniek is en worden globale optimalisatiemethoden (zoals dikwijls gebruikt in
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artificiële neurale netwerken) uitgesloten. Deze definitie maakt het mogelijk
om begrippen als gevoeligheid van het algoritme aan kleine perturbaties op de
observaties formeel te definiëren.

Optimaliteit: Het begrip optimaliteit staat centraal in deze definitie: elke gegeven
dataset en verzameling veronderstellingen impliceert eenresultaat dat het beste
is onder alle mogelijke hypothesen. De gebruikte vorm van optimaliteit is
in belangrijke mate bepaald door het uiteindelijke doel vanhet leeralgoritme
(e.g. verklaring en inzicht, voorspelling, de observatiesontdoen van ruis,...).
Optimaliteit wordt uitgedrukt in wiskundige symboliek dieeigen is aan de exacte
context van het leerprobleem (klassiek statistisch, Bayesiaans, deterministische
benadering,...).

Gegevens D : De observaties worden vaak verschaft in de volgende vorm

D = {(xi ,yi)}N
i=1 , (0.1)

met xi ∈ D
D de input observaties enyi ∈ D de overeenkomstige uitvoer obser-

vaties. De exacte vorm van het domeinD van de variabelen bepaalt in grote mate
de probleemstelling. Men maakt vaak een onderscheid tussenD = R (continue
onbekenden),D = {−1,1} (binaire observaties), nominale variabelen (bv.D =
{Jazz, pop,classic}) of ordinale variabelen (bv.D = {slecht,goed,super}).
Bovendien kunnen observaties ontbreken (“missen”) of foutzijn omwille van
verscheidene redenen.

Aannames A : Veronderstellingen komen voor in verschillende vormen: kwalitatief
(bijvoorbeeld het functioneel verband is strict stijgend), kwantitatief (bijvoor-
beeld er is een signaal-ruis verhouding), een a-priori bekend probabilistisch
model (bv. de ruis is normaal verdeeld) of in de vorm van latente kennis. In
de laatste zitten alle eigenschappen en resultaten bevat met betrekking tot de
probleemstelling zelf.

Klasse F : Een belangrijke vorm van voorkennis met betrekking tot de probleem-
stelling wordt verwerkt in de preciese klasse van modellen (bijvoorbeeld welke
gemeten variabelen zijn relevant voor het model). Bovendien legt de klasse
van hypothesen dikwijls een inherente structuur op het leerproces. Men maakt
bijvoorbeeld een onderscheid tussen oorzakelijke modellen (met een inherente
tijdscomponent), of beslissingsbomen met een hiërarchische structuur. Verder
is de klasseF van modellen vaak bepaald door de specifieke vorm van de
uitvoervariabelen (bijvoorbeeld regressie voor continueuitvoer en classificatie
voor binaire uitkomsten).

Analyse: Een uiteindelijke analyse van de resulterende modellen vanhet leeralgoritme
zoekt een antwoord op de vraag of het geleerde verband inderdaad bruikbaar
is. Hiervoor bestaan verschillende mogelijkheden. In eerste instantie kan men
de veralgemeningsperformantie (“generalisatie performantie”) van de schatting
evalueren met een toepasselijk model selectie criterium. Een voorbeeld hiervan
is om het geleerde model te gebruiken voor het voorspellen van de uitvoer van
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nieuwe observaties in een validatiefase. Een meer theoretische aanpak kan
gebasseerd worden op een mate van gevoeligheid van het leeralgoritme aan
kleine perturbaties in de data of de aannames.

A.2 Support Vector Machines en Kernfuncties

We beschouwen op dit ogenblik het specifieke geval waar de uitgang een binaire
waarde (−1 of 1) aanneemt. Dit geval van classificatie wordt dikwijls beschouwd
als een van de minst complexe maar meest generieke taken en verdiende zodoende een
groot deel van de interesse in het wetenschappelijk onderzoek van leertechnieken.

Probleemstelling

De methode van Support Vector Machines (SVMs) stamt uit het onderzoek naar
het induceren van een goede binaire classificatie regel uit een eindige verzameling
observaties. Concreet zoekt men een regelc : R

D → {−1,1} die het verwachte
etiket behorende bij toekomstige datapunten voorspelt. Laat de observaties samples
zijn van de random variabeleX en Y overeenkomstig de in- en uitvoer variabelen.
Gegeven een vaste maar onbekende distributiePXY over de random variabeleX enY,
de optimale classificatie regelc met minimaal risico op verkeerde voorspellingen kan
geformaliseerd worden als

ĉ = argmin
c:RD→{−1,1}

∫
I(y 6= c(x))dPXY(xy),

waar de indicator functieI(x 6= y) gelijk is aan 1 alsx 6= y en aan nul in het andere
geval.

Support Vector Machines

We beschouwen classificatieregels van de volgende vorm

sign
[
wTϕ(x)+b

]
.

Hierbij is ϕ : R
D → R

Dϕ een afbeelding van de gegevens met dimensieD ∈ N naar
een kenmerkruimteDϕ met mogelijk oneindige dimensie (Dϕ = +∞), w∈ R

Dϕ is een
parameter vector enb∈R een constante. Anders gesteld, men voorspelt een positief of
een negatief etiket bij een nieuwe invoerx∗ ∈ R

D afhankelijk aan welke kant dit punt
zich bevindt ten opzichte van het hypervlak Hp gegeven als volgt

Hp(w,b) =
{

x0 ∈ R
D | wTϕ(x0)+b = 0

}
.

Het is een klassiek resultaat dat de afstand van een puntxi tot het hypervlak Hp(w,b)
begrensd wordt als volgt

di =

∣∣wTϕ(xi)+b
∣∣

wTw
≥ yi

(
wTϕ(xi)+b

)

wTw
, ∀i = 1, . . . ,N.
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Resultaten in het domein van statistische machine leeralgoritmen geven dan garanties
dat het hypervlak Hp goede resultaten levert indien de observaties op maximale afstand
liggen van het hypervlak. Het optimale hypervlak wordt gegeven als de oplossing van
het volgende optimalisatieprobleem

max
w,b,d

d s.t.
yi

(
wTϕ(xi)+b

)

wTw
≥ d, ∀i = 1, . . . ,N.

Dit probleem kan herschreven worden doord te vervangen door 1/wTw wat altijd kan
gedaan worden (de locatie van het hypervlak is niet afhankelijk van zijn norm)

min
w,b

J (w) = wTw s.t. yi
(
wTϕ(xi)+b

)
≥ 1, ∀i = 1, . . . ,N.

Dit probleem is convex en heeft zodoende slechtséén globaal minimum. Indien
de afbeeldingϕ bekend is kan bovenstaand optimalisatieprobleem efficiënt opgelost
worden.

We bekijken nu het geval dat de afbeeldingϕ niet bekend is maar enkel de overeenkom-
stige kernfunctie gedefinieerd als

K(xi ,x j) = ϕ(xi)
Tϕ(x j) ∀xi ,x j ∈ R

D.

Het Mercer theorema stelt dan dat onder bepaalde voorwaarden opK (K is een positief
definiete functie) er een unieke overeenkomstige afbeelding ϕ bestaat. Vaak kan het
schattingsprobleem herschreven worden in functie van de kernel zodat de afbeeldingϕ
impliciet kan blijven in de berekening. Dit biedt concrete voordelen indien enkel iets
geweten is over het globale verloop van de functie (bijvoorbeeld “de functie is traag
variërend”) en men niet zozeer de expliciete parametrische vormkan neerschrijven.

Een mogelijk pad om dergelijke problemen te herschrijven infunctie van de kernfunctie
K is gegeven door resultaten in de theorie van convexe optimalisatie (Boyd en Van-
denberge, 2004). Beschouw de zadelpuntbeschrijving van het probleem die bekomen
wordt door het opstellen van de Lagrangiaan met Lagrange vermenigvuldigersαi voor
i = 1, . . . ,N

max
α

min
w,b

L (w,b;α) = wTw−
N

∑
i=1

αi
(
yi

(
wTϕ(xi)

)
−1

)
,

met beperking datαi ≥ 0 voor allei = 1, . . . ,N. Het minimum met betrekking tot de
zogenoemde primaire variabelenw enb wordt gegeven door de volgende voorwaarden:





∂L

∂w
= 0→ w = ∑N

i=1 αiyiϕ(xi)

∂L

∂b
= 0→ ∑N

i=1 αiyi = 0

Laat de vectorY ∈ R
N gedefinieerd zijn als volgtY = (y1, . . . ,yN)T en laat de matrix

ΩY ∈ R
N×N voldaan zijn aanΩY,i j = yiy jK(xi ,x j) voor alle i, j = 1, . . . ,N. Laat 1N
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Figure 0.1: Voorbeeld van een classificatieprobleem en het model bekomen door
toepassing van een SVM. Positieve (“+”) en negatieve (“o”) observaties zijn
gegroepeerd in twee verschillende klassen. De Support Vector Machine genereert een
model (voorgesteld als het hellende vlak) dat de beslissingmaakt of een nieuw datapunt
meest waarschijnlijk een voorbeeld is van de klasse van positieve (boven het vlak) of
negatieve samples (onder het vlak).

gedefinieerd zijn als de vector 1N = (1, . . . ,1)T ∈ R
N. Gebruik makende van deze

voorwaarden om dan de primaire variabelen te elimineren uitde zadelpuntformulering
resulteert in het volgende duale probleem

max
α

J D(α) =
−1
2

αTΩyα +1T
Nα s.t.

{
YTα = 0

αi ≥ 0 ∀i = 1, . . . ,N,

dat uitgedrukt wordt in termen van de duale vermenigvuldigers α = (α1, . . . ,αN)T ∈
R

N. Door een verdere technische ingreep (het uitbuiten van de zogenaamde compli-
mentariteitsvoorwaarden in de Karush-Kuhn-Tucker condities voor optimaliteit) kan
uit het beschreven duale probleem niet alleen de vectorα geschat worden, maar ook
de impliciet overeenkomstige schatting vanb kan gevonden worden. Eens zowelα̂
als b̂ berekend is, kan het impliciet geschatte model geëvalueerd worden in een nieuw
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datapuntx∗ ∈ R
D als volgt

sign

[
N

∑
i=1

α̂iyiK(xi ,x∗)+ b̂

]
.

Afgeleide resultaten relaxeren dan de maximale marge door toe te laten dat de
gevonden marge geschonden wordt door enkele observaties. Verdere uitbreidingen
bestuderen gelijkaardige formuleringen waar de uitvoer continue of ordinale waarden
kan aannemen.

Uitbreidingen

Deze aanpak heeft zijn kracht bewezen zowel op theoretisch als op praktisch vlak (see
e.g. (Scḧolkopf and Smola, 2002)). Er resteren echter nog een verzameling pijnpunten
waaronder de volgende: “Welke afweging tussen fit en modelcomplexiteit moet er
gemaakt worden?”, “Wat is de specifieke vorm en tunings parameter van de kernfunctie
die optimaal is voor de taak?”, of “Hoe kan men uit de observaties afleiden welke
invoervariabelen relevant zijn voor de taak?”. Deze vragenzijn allen een specifieke
vorm van het probleem van modelselectie. Op deze vraagstukken zal een antwoord
worden geformuleerd in het tweede en derde deel van het proefschrift.

Een uitgebreid deel van het onderzoek naar kernfunctie gebaseerde leeralgoritmen richt
zich op het formuleren van leermethodes voor het automatisch bouwen van modellen
voor complexere taken. Niet alleen classificatie, maar ook het schatten van continue
functionele verbanden uit de gegevens is een belangrijke taak voor leeralgoritmen. In
geval de data expliciete tijdsafhankelijkheden vertoont verschuift de focus meer naar
het onderzoeksgebied van systeemidentificatie. Dit blijkteen vruchtbaar gebied te zijn
voor het gebruik van leermachines die structurele vereisten kunnen incalculeren. In
het algemeen is het inbrengen van extra voorkennis in het leeralgoritme zelf niet alleen
een belangrijk desideratum, maar worden ook verkeerde schattingen vermeden op die
manier.

Andere vragen gerelateerd aan de formulering van SVMs en primair-duale kernfunctie
methoden hebben betrekking tot hoe men efficiënt de optimale oplossing kan berekenen
bijvoorbeeld voor grote datasets. Een andere tak van het onderzoek naar kernfunctie
gebaseerde leeralgoritmen richt de focus op het iteratief bijwerken van het geschatte
model overeenkomend met nieuwe observaties die men toekrijgt. Een veelbelovend
onderzoek richt zich dan op het ontwikkelen van snelle hardware implementaties van
het schattingsprobleem.

B. Bijdragen van het Doctoraatswerk

Het huidige doctoraatswerk beschrijft een verzameling nieuwe resultaten in het
onderzoek naar automatische leeralgoritmen en kernfunctie methoden. Dit biedt een
uniforme kijk op het onderzoek door volgende regels centraal te stellen:
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Convexe Optimalisatie: Dit onderzoek in het verlengde van de methode van SVMs
vertoont enkele grote verschillen met het klassiekere onderzoek naar artificïele
neurale netwerken. Naast de stevige theoretische fundering springt vooral
de eigenschap van globale optimaliteit in het oog. De eigenschap dat de
optimale schattingen uniek is heeft als resultaat dat herhaling van een ex-
periment gegarandeerd tot dezelfde oplossing zal leiden. Dit resulteert in
de mogelijkheid om stevige theoretische analyzes te bindenaan de optimale
schattingen. De uitdaging om nieuwe formuleringen van niet-lineaire technieken
te herformuleren als een standaard convex programmeringsprobleem vormt een
rode draad doorheen het onderzoek.

Opleggen van voorkennis: In vele toepassingen bezit men niet alleen observaties
om een model te bouwen maar heeft men ook voorkennis betreffende het
bestudeerde fenomeen ter beschikking. Een goed leeralgoritme moet zo mogelijk
rekening houden met die voorkennis zodat het resulteert in modellen die voldoen
aan die voorkennis. Een belangrijke vorm om voorkennis op teleggen aan het
leeralgoritme is om een specifieke model structuur voorop testellen.

Modelselectie: Dikwijls is het resultaat van het leeralgoritme bepaald op enkele
ontwerpparameters na. Een veel voorkomende parameter kwantificeert het
ruisniveau van de observaties. Indien de exacte waarde van deze ontwerpparam-
eter niet expliciet bekend is, kan men specifieke methoden gebruiken om deze
waarden te leren uit de observaties. Ondanks het uitgebreide onderzoek naar
mogelijke criteria die de kwaliteit bepalen van een specifieke ontwerpparameter,
is de automatisatie van dit metaprobleem in vele gevallen een open probleem.
Deze thesis bestudeert een dergelijk formalisme voor het automatisch uitvoeren
van modelselectietaken door het formuleren van hiëarchische programmer-
ingsproblemen.

Dit overzicht volgt in grote trekken de structuur van de tekst en legt de kernpunten van
de vier delen bloot.

Hoofdstuk 1: Problemen en Doelstellingen

Dit hoofdstuk legt op een formele manier de achtergrond van het onderzoek vast
zoals gegeven in Hoofdstuk A.1. Verder wordt de techniek vanSVMs en LS-
SVMs gerelateerd aan klassieke methoden als bekend vanuit statistiek en andere
wetenschappelijke domeinen. Een groot deel van het eerste hoofdstuk is gewijd aan
een overzicht van de verschillende onderzoeksdisciplinesbinnen het onderzoek van
automatische leeralgoritmen en kernfunctie modellen.

Hoofdstuk 2: Overzicht van de Theorie van Convexe Optimalisatie

Zoals reeds geargumenteerd wordt de theorie en praktijk vanconvexe optimalisatie
centraal gesteld in dit onderzoek: het primair-duale argument dat de hoeksteen vormt
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van vele uitgewerkte resultaten heeft een duidelijke afkomst in optimalisatietheorie.
Daartoe is er ruime aandacht besteed om een overzicht te geven van deze theorie
voor zover relevant voor dit onderzoek. Een convex programmeringsprobleem heeft
de volgende vorm.

Definition 0.1. [Convex Programmeringsprobleem]Laat m, p ∈ N en laat bi ∈ R

voor alle i = 1, . . . ,m, . . . ,m+ p. Een wiskundig optimalisatieprobleem heeft in het
algemeen de volgende vorm

p∗ = min
x∈RD

f0(x) s.t.

{
fi(x) ≤ bi ∀i = 1, . . . ,m

f j(x) = b j ∀ j = m+1, . . . ,m+ p,
(0.2)

waar fk : RD → R functies voorstellen voor alle k= 0, . . . ,m+ p. Men refereert naar
f0 als de objectieffunctie die geminimaliseerd dient te worden, fi voor alle i= 1, . . . ,m
en fj voor alle j= m+1, . . . ,m+ p stellen dan de functies van de ongelijkheids- en de
gelijkheidsbeperkingen voor. De vector(b1, . . . ,bm, . . . ,bm+p)

T ∈ R
m+p representeert

de begrenzingen van de beperkingen. Een optimalisatieprobleem isconvexindien de
punten die voldoen aan de beperkingen convex zijn (i.e. elkelineaire interpolatie van
twee oplossingen is opnieuw een oplossing) en de objectieffunctie convex is (i.e. elke
lineaire interpollatie van twee punten behorende tot de objectieffunctie is groter dan of
gelijk aan het overeenkomstige punt op de objectieffunctie).

Optimalisatieproblemen met verschillende kostenfuncties worden traditioneel aangepakt
door de verschillende objectieffuncties om te vormen totéén enkele globale kosten-
functie en deze dan te optimaliseren. In verschillende gevallen is een dergelijke
aanpak niet direct toepasbaar, bijvoorbeeld omdat de verschillende objectieffuncties
op een verschillend niveau staan. Dit proefschrift bestudeert een andere techniek om
dergelijke problemen te beschrijven via hiärchisch programmeren.

Definition 0.2. [Hiërarchische Programmeringsproblemen]Beschouw twee objecti-
effuncties f10 en f20 en bijbehorende beperkingen f1

i en f2j allen gedefinieerd op dezelfde

onbekende van gelijke dimensie (R
D). IndienΓ ⊂ R

D de globale oplossingsruimte is
van het eerste probleem f1

0 en f1i op enkele parameters na waarvan de waarden vast
gehouden worden (ontwerpparameters), dan bekomt men een hiërarchische aanpak
indien men op een tweede niveau het tweede probleem f2

0 en f2j beperkt tot de
oplossingsruimteΓ.

Dit wordt schematisch geı̈lusstreerd in Figuur 0.2.

Deelα

Dit hoofdstuk is in grote mate gewijd aan de afleiding van de resultaten die reeds in het
kort beschreven zijn in Subsectie A.2. In aanvulling hiertoe wordt het primair-duale
argument gebruikt om gelijkaardige leermachines te formuleren. Vooreerst wordt een
eenvoudig geval bestudeerd. Stel dat de data de vorm aannemen D = {(xi ,yi)}N

i=1 met
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Figure 0.2:Schematische voorstelling van een hiërarchisch programmeringsprobleem.
Laat f 1

0 , f 1
i en f 2

0 , f 2
j de twee objectieffuncties met bijbehorende beperkingen zijn.

Beiden werken op een parameterruimte inR
2 met parametersθ1 ∈ R en θ2 ∈ R.

Op het eerste niveau wordtθ2 vast gehouden en geoptimaliseerd overθ2 d.m.v. de
functies f 1

0 en f 1
i . Voor elke waardeθ2 bestaat er dan een unieke oplossing indien het

probleem convex is, voorgesteld doorΓ(θ2) = θ ∗
1 . Op een tweede niveau wordt er dan

geoptimaliseerd over deze parameter-ruimte{(θ1,θ2) | Γ(θ2) = θ1} met behulp van de
kostenfunctief 2

0 en eventuele beperkingenf 2
j .

x∈ R
D enyi ∈ R continu, en stel dat het model kan geschreven worden alsf (x) = wTx

met onbekende parameter vectorw ∈ R
D. Laat de matrixX ∈ R

N×D en de vector
Y ∈ R

N gedefinieerd zijn alsX = (x1, . . . ,xN)T en Y = (y1, . . . ,yN)T . De klassieke
methode van kleinste kwadraten om dan de onbekende parameters te zoeken gegeven
de observatiesD is dan om de volgende kostenfunctie te minimaliseren:

ŵ = argmin
w

J (w) =
γ
2

N

∑
i=1

(
wTxi −yi

)2
.

De oplossing kan analytisch berekend worden door oplossingvan het stelsel lineaire
vergelijkingen (

XTX
)

w = XTY.

Deze tekst beschouwt complexere vormen van zulke formuleringen die de model
formulering uitbreidt naar niet-lineaire impliciete voorstellingen door het gebruik van
het primair-duale argument zoals gebruikt in Sectie A.

Een reeks primair-duale kernfunctie machines wordt afgeleid, elk met een verschil-
lende kostenfunctie. De volgende afleidingen worden gegeven voor het geval van
regressie:
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• [SVM] De standaard SVM voor regressie wordt bekomen door hetaannemen
van een kostenfunktie van de volgende vorm

ℓε(e) = max(0, |e|− ε) .

• [LS-SVM] Door het beschouwen van een kleinste kwadraten kostenfunctie
bekomt men een variant van de SVM die efficiënt kan berekend worden door het
oplossen van een verzameling lineaire vergelijkingen. Eenander voordeel van
deze formulering is zijn sterke relatie met de theorie van splines en Gaussiaanse
processen en de interpretatie van de oplossing als een convolutie van de ruis met
de gegeven kernfunctie.

• [hSVM] Integratie van de Huber-kostenfunctie resulteert in een formulering
die het midden houdt tussen de twee voorgaande formuleringen. De klassieke
motivatie van de Huber-kostenfunctie als een methode voor het bekomen van
schattingen ongevoelig (“robust”) voor a-tyische observaties vormt een surplus.

• [SVT] De Support Vector Tube (SVT) is geformuleerd vanuit een andere
doelstelling. Deze associeert met elke gegeven invoerobservatie een interval
van de rëele getallen waarin het gross van de mogelijke overeenkomstige
uivoerobservaties mag verwacht worden. De SVT construeerteen minimaal
complexe begrenzing (“tube”) waar alle observaties in passen.

• [ν-SVT] Deze kernfunctie machine is een uitbreiding van de SVTwaarin
uitzonderingen worden toegelaten: in uitzonderlijke gevallen kunnen gegeven
observaties buiten de tube toegelaten worden. De parameterν geeft dan een
indicatie hoeveel uitzonderingen toegelaten worden.

In het geval van classifictie worden de standaard SVM en LS-SVM classificator
besproken.

In vele gevallen is het mogelijk voorkennis in de vorm van gekende structuur uit te
buiten in het leeralgoritme. De volgende gevallen zijn uitgewerkt:

• [Semi-parametrische structuur] Het geschatte model kan mogelijk een vermeng-
ing zijn van een lineair deel met overeenkomstige parameters en een niet-
parametrisch deel gesteund op kernfuncties. Laat elke observatie x bestaan uit
een deelxP ∈R

d gebruikt voor het parameterisch model (met parametersβ ∈R
d)

en een deelxK ∈ R
D voor het niet-parametrisch stukfK als volgt

f (x) = fK
(
xK)

+β TxP.

De schatting van dit soort modellen kan efficiënt gebeuren gebruik makende van
het primair-duale argument.

• [Additive Models] Het gebruik van additieve modellen levert vaak een praktisch
evenwicht tussen een interpreteerbaar resultaat en een flexibele modelstructuur.
Laat elke observatiex bestaan uit verschillende componentenx(p) met p =
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1, . . . ,P. In vele gevallen geven modellen van de volgende vorm een accurate
benadering van het bestudeerde fenomeen:

f (x) =
P

∑
p=1

fp

(
x(p)

)
+b,

met fp een serie van deelfuncties telkens gebaseerd op de overeenkomende
componenten. Een additioneel voordeel van deze model structuur is dat
theoretische resultaten aantonen dat schatting van deze modellen nauwkeuriger
(in welbepaalde zin, zie later) kan gebeuren.

• [Puntsgewijze ongelijkheden] Vaak zijn er kwalitatieve regels in de vorm van
ongelijkheden voorhanden waaraan de geschatte modellen moeten voldoen.
Indien deze ongelijkheden geformuleerd kunnen worden in termen van een
aantal concrete punten, kan het primair-duale argument gebruikt worden om een
overeenkomstig leeralgoritme te bouwen.

• [Gecensureerde observaties] In bepaalde gevallen zijn de observaties gecen-
sureerd. Bijvoorbeeld een meter kan maar tot een bepaalde waarde uitgelezen
worden door technische beperkingen. De kostenfunctie kan overeenkomstig
hiermee aangepast worden wat leidt tot een nieuwe kernfunctie methode.

Het laatste hoofdstuk van dit deel beschrijft dan het verband van de beschreven
methodologie met de klassieke resultaten splines in de context van ruizige observaties,
Gaussiaanse processen en Bayesiaanse technieken, wavelets, inverse problemen,
vealgemeende kleinste kwadraten methoden en andere methoden.

Deelγ

Het tweede deel focust zich op de computationele aspecten van de gebruikte vorm
van complexiteitscontrole of regularisatie. In eerste instantie worden verschillende
vormen van complexiteitscontrole beschreven. We maken eenonderscheid tussen
parametrische modellen waar complexiteit uitgedrukt kan worden in termen van de
norm van de parameters, en niet-parameterische kernfunctie methoden waar een maat
van complexiteit bijvoorbeeld kan uitgedrukt worden in de maximale variatie die een
functie vertoont op de gegeven dataset. In het eerste geval gebruikt men meestal
de 2-norm van de parameter vector (“ridge regression”). Hetvolgende voorbeeld is
klassiek. Beschouw opnieuw de lineaire model structuurf (x) = wTx. We bestuderen
de kostenfunctie

ŵ = argmin
w

Jγ(w) =
1
2

wTw+
γ
2

N

∑
i=1

(
wTxi −yi

)2
,

waar de ontwerpparameterγ ≥ 0 de afweging bepaalt tussen de complexiteitsterm
wTw en de empirische kost∑N

i=1

(
wTxi −yi

)2
. De optimale schatting kan analytisch
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berekend worden door oplossing van het stelsel lineaire vergelijkingen

(
XTX +

1
γ

ID

)
w = XTY,

waarID ∈ R
D×D de eenheidsmatrix voorstelt. Een analyse in de vorm van de evolutie

van de bias (verwachtte afwijking van de echte functie) en variantie (onzekerheid op
de geschatte functie) in functie van de ontwerpparameterγ is gegeven in de literatuur
voor deze lineaire schatter. Deze tekst geeft een gelijkaardige afleiding voor de
LS-SVM schatter in de vorm van bias en variantie. Verder is derelatie van deze
ontwerpparameter met de signaal-ruis verhouding uitgewerkt door het bestuderen van
gerelateerde regularisatieschemas genaamd Ivanov en Morozov regularisatie.

Huidige aandacht gaat meer en meer naar het gebruik van de 1-norm daar deze re-
sulteert in oplossingen waar vele waarden nul zijn (spaarsheid van de parameters). Dit
voorkomen van nullen in de oplossingsvector in het lineairegeval wordt gëınterpreteerd
als een vorm van selectie van invoervariabelen. In het gevalvan niet-parametrische
kernfunctie methoden voor additieve modellen stellen we het gebruik van de maat van
maximale variatie voor. De componenten met een bijbehorende maximale variatie van
nul duiden aan dat deze componenten niet wezenlijk bijdragen tot het geleerde model.
Zodoende is er een niet-parametrische vorm van structuurdetectie bekomen. Verdere
toepassingen van het principe van maximale variatie is bekomen in de context van het
behandelen van missende waarden in de observaties.

Hoofdstukken 7 en 8 beschouwen het probleem van selectie vaneen optimale ontwerp-
parameter die een afweging maakt tussen complexiteit en empirische performantie
(typisch genoteerd door een Griekseγ). Hiervoor worden modelselectiecriteria
beschouwd als validatie, kruis-validatie en anderen. Beschouw bijvoorbeeld opnieuw
het lineaire probleem zoals in vorige paragraaf, optimaliseren van de ontwerpparameter

γ met betrekking tot de performantie op een validatiedatasetDv =
{(

xv
j ,y

v
j

)}n

j=1
(met

xv
j ∈ R

D enyv
j ∈ R) resulteert in het volgende probleem

min
w,γ

J v(w) =
1
2

n

∑
j=1

(
wTxv

j −yv
j

)2
s.t.

(
XTX +

1
γ

ID

)
w = XTY.

Om complexere vormen van dit soort problemen formeel neer teschrijven, wordt
het mechanisme van hiërarchisch programmeren gebruikt waarbij overw en γ wordt
geoptimaliseerd met betrekking tot meerdere niveaus (zie vorig deel). Hiervoor worden
de Karush-Kuhn-Tucker condities voor optimaliteit afgeëist aan het optimalisatie
probleem. Hoewel dit soort problemen vaak niet meer convex is (zoals in dit geval),
kunnen er efficïente benaderingen van dit probleem gezocht worden zoals aangetoond
in het proefschrift.

Een andere aanpak van dit probleem is gevonden door de invoering van een her-
parametrisering van de afweging tussen het belang van complexiteit en empirische
kost. Laat de vectorc = (c1, . . . ,cN)T ∈ R

N de rol spelen van de ontwerpparameter
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γ in de ridge-regressie formulering gegeven als

ŵ = argmin
w

Jc(w) =
1
2

wTw+
γ
2

N

∑
i=1

(
wTxi −yi −c

)2
.

De optimale schatting ˆw is analytische gegeven voor elke vastec als volgt
(
XTX + ID

)
w = XT(Y−c),

zodat voor elke mogelijkec er exactéén globaal optimale oplossing bestaat. De
voorgestelde herparametrisering leidt in het algemeen totconvexe modelselectie
problemen. Dit pad is gevolgd voor het bouwen van nieuwe kernfunctie gebaseerde
leeralgoritmen waar het primair-duale argument niet direct kan worden toegepast. Een
belangrijke toepassing van het beschreven mechanisme is bekomen als een algoritme
dat constructief in een maximaal stabiele oplossing resulteert.

Deelσ

Het laatste deel behandelt de vraag wat een goede kernfunctie kan zijn voor een
welbepaalde taak. Vooreerst worden de relaties tussen gewogen regularisatieschema’s,
gewogen kleinste kwadraten en opgelegde lineaire structuur enerzijds, en het ontwerp
van kernfuncties anderzijds beschreven. Daarna wordt uitgewijd hoe het mechanisme
van structuurdetectie gebruik makende van de maat van maximale variatie zich leent
tot het selecteren van een relevante kernfunctie gegeven een verzameling alternatieven.

Als laatste wordt het verband bestudeerd tussen het gebruikvan isotropische kern-
functies (op basis van de wederzijdse afstand) en oorzakelijke filters. Dit resulteert in
een convexe aanpak voor het leren van de kernfuncties uit gegevens op basis van het
realizeren van de geschatte tweede orde karakteristieken van de observaties.

Conclusies

Dit proefschrift verdedigt hoofdzakelijk twee standpunten in het onderzoek naar het
ontwerp van goede leeralgoritmen. Ten eerste is er geargumenteerd dat de taken van het
ontwerp van een leermachine, de gebruikte maat van complexiteit en het bepalen van
de ontwerpparameters in het algemeen, op vele manieren gerelateerd zijn. Het blijkt
dat de studie van de interactie tussen genoemde onderwerpenefficiënt en consistent
kan uitgevoerd worden door een invalshoek van optimalisatie te nemen. Concreet
werd de taak van automatische modelselectie van ontwerpparameters bekeken als een
hiërarchisch programmeringsprobleem.

Ten tweede tonen we aan dat het primair-duale argument zoalsoorspronkelijk gebruikt
in de formulering van SVMs een sterk formalisme verschaft voor het bouwen van
nieuwe leeralgoritmen. Dit is aangetoond door het uitwerken en bestuderen van
verschillende formuleringen voor het leren van nieuwe complexe taken, en het relateren
en contrasteren van de methode met bestaande methodologiën. Een belangrijk resultaat
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is dat er aangetoond is dat structuur en voorkennis gemakkelijk kan ingebracht worden
in het leeralgoritme door het gebruik van het primair-dualeargument.

Appendices

Appendix A bespreekt de taak van het schatten van het ruisniveau in de data zonder dat
er expliciet gesteund wordt op een geschat model. Hiervoor werd er een voorstelling
van de data uitgewerkt op basis van de paarsgewijze verschillen tussen in- en
uitvoerobservaties respectievelijk. Daar deze voorstelling van een differogram nadruk
legt op de lokale eigenschappen van de data kunnen er eenvoudig eigenschappen zoal
het ruisniveau worden afgeleid.

Appendix B geeft een korte bespreking van het software project LS-SVMlab dat de
bestaande methodologie met betrekking tot LS-SVMs implementeert. In het kort
worden de belangrijke bouwblokken van deze software voor MATLAB/C besproken.
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List of Symbols

The following notation is used througout the text

Operators

, By definition
º,¹ Generalized Inequalities
argminxJ Argumentx minimizing the cost-functionJ
argmaxxJ Argumentx maximizing the cost-functionJ
Prob :S⊂ R

D → [0, 1] Probability
P : R

D → [0, 1] Cumulative Distribution Function (cdf)
p : R

D → R
+ Probability Density Function (pdf)

Alg : D → F Algorithm mapping a dataset to an estimated function
Modsel : F → R Model selection criterion
R : P→ R Risk of an estimate given a distribution
F : F → F Fourier transform of a function

Variables

X,Y,Z,e Random variables
U,S,Ω Matrices
Y,X Vectors of observations
x Vector of a single input observation
y Single input observation
γ,λ ,π,µ Hyper-parameters
D Dimension of input vector
P Number of parameters
N Number of observations in training set
n Number of observations in validation set
Deff Effective number of freedom
M Maximal variation

xxvii



xxviii

Sets

R Real numbers
R

d Vector of real numbers
R

d×n Matrix of real numbers
N Set of positive integers
T Set of time-instances
Sa Affine set
Sc Convex set
C Cone
D Dataset{(xi ,yi)}N

i=1
T Dataset used for training purposes
V Dataset used for validation purposes
F Set of functionsf
H Hilbert space of functions
S A set of indices
Pi Set of missing values of theith datapoint
Fϕ,(P) Class of Componentwise SVM models
Fϕ Class of SVM models
Fϕ,T Class of SVT models
Fϕ,P Class of SVM models including parametric terms
Fω Class of linear parametric models
E Set of error terms
A Set of assumptions

Distributions

N Standard distribution
U Uniform distribution
χ2 Chi-squared distribution
L Laplace distribution
W Wishart distribution
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Abbrevitions

ν-SVT Nu (ν) Support Vector Tube
ALS Least Squares estimator based on Alternatives
Areg Additive Regularization trade-off Scheme
cSVM Componentwise Support Vector Machine
cLS-SVM Componentwise Least Squares Support Vector Machine
CDF Cumulative Distribution Function
hSVM Huber-loss based Support Vector Machine
KKT Karush-Kuhn-Tucker conditions for optimality
LASSO Least Absolute Shrinkage Selection Operator
LS-SVM Least Squares Support Vector Machine
OLS Ordinary Least Squares estimator
PDF Probability Density Function
pLS Plausible Least Squares estimator
pSVM Support Vector Machine with a parametric component
RR Ridge Regression
SVM Support Vector Machine
SVT Support Vector Tube
TMSE Total Mean Square Error
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Chapter 1

Problems and Purposes

A broad overview is presented of a number of principles lyingat the
core of the process of induction of mathematical models froma finite
set of observational data. Together with this general elaboration, recent
advances in the area of kernel machines relevant to the presented research
are sketched. Section 1.1 discusses the general setting of learning from
data by induction, while Section 1.2 surveys the various approaches which
give a sound foundation for doing so. Section 1.3 synthesizes a brief
overview of various directions of the current research in machine learning
using kernel methods. Section 1.4 then discusses the main contributions
of the conducted research.

1.1 Learning

The science of learning plays a key role in the fields of statistics, data mining and
artificial intelligence, intersecting with areas of engineering and other disciplines. The
functional approach as e.g. used in (Bousquet and Elisseeff, 2002; Bousquetet al.,
2004) is employed to sketch a cross-section of this intertwined fields. Though this
point of view is not exclusive, its strength may be found in its inherent relationship
with convex optimization as showed next, its use in the problem of model analysis and
model selection and its formal language.

Learning algorithms

A learning algorithm can be described as a mappingAlg from a set of given
observationsD and a collection of prior knowledge and assumptions represented as
A , to an optimal estimate belonging to the classF :

Alg : D ×A → F . (1.1)

1



2 CHAPTER 1. PROBLEMS AND PURPOSES

Let this mapping act as a definition of the process ofinference(in this text). In
statistical literature, this mapping is also known as anestimation functionor an
estimator. This formalization of a learning algorithm is denoted alternatively as a
learning machine. The details of doing inference are explained in some detailin the
case of supervised learning where the given set of training samples contains inputs as
well as observed responses. The other cases (unsupervised,transductive learning and
experimental or interactive data) are only marginally considered in the text.

Mapping Alg: As the learning algorithm is considered to be a uniquely defined
mapping, some important assumptions (or restrictions) areimposed inherently.
The most important is that there is exactly one estimate corresponding with
a given dataset and a set of assumptions. Although quite restrictive with
respect to methods employing global optimization techniques (as e.g. multi-layer
perceptrons), this limitation will enable proper definition of a number of concepts
as (global) sensitivity and stability. In this setup, the question can be formulated
whether the mapping can be defined uniquely for any set of observations and
assumptions. This general question is approached in this work by the extension
of the primal-dual methodology to define learning algorithms for a variety of
assumptions, as e.g. in terms of the noise conditions or the structure to be
imposed on the algorithm.

Optimality: Somewhat central in the description of the learning algorithm as a
mapping is the issue of optimality: the training dataset andthe set of assumptions
is mapped onto one and only one estimate which is the best among alternatives.
The major concern is the purpose of the algorithm. One currently distinguishes
between the often overlapping and sometimes conflicting objectives of (i)
Prediction(what is the expected response of new observations), (ii)Explanation
(what can be said about the generating mechanism underlyingthe observations),
(iii) Denoisingor smoothing (which part of the observations is due to external
and unknown influences). Apart from these aims, an adequate definition of
optimality is founded in a theory of inference (induction).The following section
will elaborate on this issue. Inherently connected to the principle at hand is a
set of rules to conduct calculations. Consider for example the classical practice
of inference where one employs the notion of (relative) frequencies to translate
the notion of likelihood. A complete different set of mathematical operations
is used in e.g. Bayesian inference methods where computations are performed
on (families of) distribution functions. Often, the theoretical foundation of the
inductive technique translates into a measure of likeliness. From a practical
perspective, a mathematical norm is to be optimized to find the estimate which is
most consistent with the data or which captures optimally the chance regularity
in the observations. More on this matter of norms in Subsection 1.2.7.

Data D : Consider a set ofN given observations

D = {(xi ,yi)}N
i=1 , (1.2)

of the input valuesxi ∈ D
D in the D dimensional domainDD and the cor-

responding output valuesyi ∈ D. Alternative denominators are respectively
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explanatory or independent variables, covariates, regressors or features, and
outcome, response or dependent variable. One typically differentiates between
various types of domains of the observed values. Consider the univariate
case. An observation (sayx) may be acontinuousvariable (e.g. x ∈ R),
binary variable (e.g. x ∈ {−1,1}), categoricalvariable which may either be
a nominal (e.g. x ∈ {Jazz, Pop, Classical, other}), or anorderedvariable (e.g.
x∈ {Bad, Good, Superb, Exquisite}), or asequence. As a prototype of the latter,
consider the series{xt}t∈T whereT denotes a set of time instances.

Furthermore, an observation may be missing (we will only consider here the
case thatx is missing completely at random and no (external or conditional)
knowledge can be exploited for predicting the unknown value, see (Rubin, 1976).
Alternatively, the data observation may be known only partly due to a censoring
mechanism. Consider the example of a clinical test on the reliability of a
transplantation. An observation may be censored due to an unexpected car
accident of the patient under study.

Assumptions A : Assumptions (inexact) and prior knowledge (exact) come in differ-
ent flavors:

• prior knowledge may bequalitatively (e.g. “the underlying function is
strictly monotonically increasing”)

• somequantitativeproperties may be known (e.g. “the noise has a standard
deviation of 3.1415”)

• prior distributionsmay be employed to express knowledge on the problem
at hand (e.g. “the parameters are distributed as aχ2 distribution with a
certain degrees of freedom”)

• what is calledlatent knowledgeembodies the set of results, theorems and
(future) advances which may be of relevance to the problem athand (e.g.
“the arithmic mean is in the limit Gaussian distributed under mild regularity
conditions and has bounded deviation for finite samples due to Hoeffding’s
concentration inequality”).

Estimation Class F : A particularly important case of prior knowledge is the repre-
sentation of the members of the estimation class (denoted asmodels, estimated
mappings or estimates). One distinguishes between parametric and non-
parametric estimators as explained in the following subsection. Apart from this
issue, the representation of the final estimate may be used toembed the known
structure of the problem at hand. One can for example postulate a causal auto-
regressive model representation in the case of sequential data. Another example
is encountered when working with a (discrete) decision treeor with a real valued
decision rule.

The distinction in output type has led to a naming conventionfor the learning
task and the estimation class. Major classes in this respectinclude the
class of regressors (fa : D

D → R), of classifiers (fc : D
D → {−1,1}), of

multi-class classifiers (e.g.fm : D
D → {Jazz, Pop, Classical, other}) and the
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class of ordinal regressors (e.g.fo : D
D → {Bad, Good, Superb, Exquisite}).

This text will mainly focus on the first two choices, but laterchapters will
repeatedly touch upon the other cases. Apart from mentionedcharacterizations,
one also distinguishes between linear versus nonlinear andparametric versus
nonparametric models.

Analysis: The analysis of the result of the learning algorithm and the mapping
(1.1) itself is a major source of active research. A large setof notions
have been defined over time in order to quantify different aspects. Important
topics include the notions ofconsistency(does the estimate converge to the
true quantity whenN → +∞), bias/variance(what can be expected of the
distribution of the estimates based on finite and noisy samples (mean/variance)
) or sensitivity/stability(how is the estimate perturbed when modifying the
dataset). These notions are formalized lateron.

This manuscript is organized around a set of principal guidelines which are re-
occurring in the text at various places and under different disguises

Tools from convex optimization theory and linear algebra.This research mainly
differs from the classical methodology of multi-layer perceptrons and artificial
neural networks by putting the first property of convexity ofthe resulting
optimization problems. Together with tools from linear algebra, a language is
provided which enables the proper formulation and analysisof various nonlinear
algorithms.

Model representations and residuals. Once the parameters of the problem, or
the predictor in the non-parametric case are known, the characteristics of the
(stochastic model of the) residuals are known. Although sounding rather obvious
at first sight, this issue has some profound implications as motivated throughout
the text.

Prior knowledge as constraints. This issue stresses the importance of prior
knowledge (either qualitative or quantitative) to achievebetter performance of
the models. The primal-dual characterization is seen to be highly apropriate for
supporting this guideline.

1.1.1 Probability, dependencies and correlations

Dependencies and correlations make up the heart of classical probability theory and
statistical practice (Spanos, 1999). A brief overview of the basic machinery is given.
Probability theory is often considered in a purely mathematical setting of measure
theory as proposed in the seminal work (Kolmogorov, 1933). Let S be a the sample
space. LetB be a collection of subsets ofS representing the events of interest, (letB
be aσ -field). Consider a function Prob :B → [0,1] which satisfies the fundamental
axioms
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• Prob(S) = 1,

• Prob(A) ≥ 0 for all setsA⊂ S,

• Prob(
⋃

Ai) = ∑i Prob(Ai) if the sequence of subsets{Ai} is a finite or countable
set containing pairwise disjoint elements ofB.

This interpretation, abbreviated as the statistical space(S,B,P), reduces mathematical
probability theory to the study of sets and measure theory (Kolmogorov, 1933). As a
prototype, consider the space(R,BR,P) where the events of interest are described as
BR = {Bx = [−∞,x]⊂ R | x∈ R}. An intuitive explanation of the functionP becomes
then P(x) = Prob(x ∈ Bx′) = Prob(x′ ≤ x). In general, any space(S,B,P) can be
mapped onto(R,BR,PX) using a functionX : S→ R. This function (or its image) is
referred to as a random variable. Let the cumulative distribution function (cdf) of the
random variable be defined asPX : R → [0,1] such thatPX(x) = Prob({s : X ≤ x}).
The subscriptX of the functionPX is omitted with some abuse of notation in the cases
in which the context makes it clear which random variable is involved. The derivative
p(x) = ∂P(x)/∂x, if it exist, is referred to as the probability density function (pdf). The
expected value operatorE : X → R is defined as

E[X] =
∫

xdP(x) =
∫

xp(x)dx. (1.3)

Example 1.1 gives a simple example of one family of distribution functions and two
empirical estimators used to recover respectively the cdf and the pdf.

One proceeds by defining the notions of dependency and its weak variant correlation.
Let X, X1 and X2 be univariate random variables with (cumulative) distributions
functionsP(X), P1(X1) andP2(X2) respectively. Let the joint distribution denoted as
P12(X1,X2) be defined analogously. The random variablesX1,X2 are independent if the
following relation holds

P(X1,X2) = P(X1)P(X2). (1.4)

This motivates the definition ofN independently and identically distributed (i.i.d.)
random variablesX1,X2, . . . ,XN

P(X1, . . . ,XN) =
N

∏
i=1

P(Xi). (1.5)

An equivalent definition of independency is given as follows, for any well-defined
functionsg : R → R andh : R → R

E [ f (X1),g(X2)] = E [ f (X1)]E [h(X2)] . (1.6)

Consider the special case whereg and h are the functionsf (x) = x− E[X1] and
g(x) = x−E[X2] one obtains the covariation coefficient (or covariance)c(X1,X2) ,

E[(X1−E[X1])(X2−E[X2])]. The correlation coefficient corresponds to the normalized
covariation as follows

ρ(X1,X2) ,
c(X1,X2)√

c(X1,X1)c(X2,X2)
. (1.7)
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It follows that a zero covariance or zero correlation coefficient is a necessary (but not a
sufficient) condition for independence. If a±1 correlation coefficient is obtained, the
relationship betweenX1 andX2 is strictly linear. Finally, let the conditional probability
P(X1 | X2) be defined as

P(X1 | X2) ,
P(X1,X2)

P(X2)
. (1.8)

This elaboration provides sufficient information to most theoretical concepts which are
used throughout the text.

1.1.2 Parametric vs. non-parametric

Classical statistical inference starts with the model designer postulating explicitly and
a priori a statistical model purporting to describe the stochastic mechanism underlying
the observed data. Parametric model inference is concernedwith the inference of the
(limited) set of unknown parameters in the postulated statistical model. The class of
parametric linear models is then defined as

Fω =
{

f : R
D → R

∣∣∣ f (x) = ωTx,yi = f (xi)+ei

}
, ei ∼ F(θ), (1.9)

whereF(θ) denotes a distribution function determined up to a few parametersθ . This
paradigm was the main subject of interest of the statisticalliterature and has had a
profound impact on related domains as system identification.

In contrast non-parametric (also called distribution-free) techniques do not postulate a
parameterized family of statistical models underlying theobserved data, but do instead
define the class of estimators implicitly by imposing properrestrictions. Consider for
example (and in contrast toFω ) the non-parametric class of continuous functions with
bounded higher order Lipschitz derivatives defined as

FL =

{
f : R

D → R
∣∣ ∂ d f (x)

∂xd ≤ Ld,∀x∈ R
D
}

. (1.10)

This definition commonly acts as a mathematical translationof the denominator
sufficiently smooth. The non-parametric approach often has a specific goal (as
prediction) but avoids to characterize the underlying generating mechanisms explicitly.

This terminology originates from statistical inference ofdensity functions (Silverman,
1986) (see Example 1.1), but is used deliberately throughout many fields as e.g. in
function approximation (e.g. to differentiate between parametric linear models versus
non-parametric smoothing splines). The use of an implicitly defined broad class as in
non-parametric estimators is often regarded as a safeguardagainst misspecification.
However, the question which approach will obtain the highest statistical adequacy
cannot be answered straightforwardly.

It is well-known that the early literature on robustness towards gross-errors, see Sub-
section 1.3.2, was motivated by the undue reliance of classical parametric inference on
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Figure 1.1:Descriptions of the the cumulative distribution function (cdf) of a sample
based on the parametric and non-parametric paradigm respectively. (a) The normal
cdf model for different values of the meanµ and the varianceσ . Typically, one
uses the maximum likelihood method to estimate the mean and the variance from the
sample. (b) The empirical cdf function is a theoretical sound method to summarize
all information regarding the distribution from the finite sample. The disadvantage of
this method are discontinuities which prohibit the proper derivation of an empirical
probability density counterpart.

the assumption of normality. Although a vague difference exist (robustness considers
deviations from parametric models, non-parametric methods consider implicit model
definitions), modern literature on robustness is in great pains to distinguish itself from
non-parametric methods (Hampelet al., 1986; Spanos, 1999). To side-step these
issues, this text will take the convention to distinguish between (non-) parametric model
(representations) and (non-) parametric noise models where the latter corresponds to
the robustness approach. This convention makes it possibleto speak of non-parametric
models with contaminated parametric models that require robust methods.

Example 1.1 [Representations of distributions] The difference between the parametric and
the non-parametric paradigm is illustrated readily by the following example in the field of
density estimation. LetY be a univariate random variable with samples{yi}N

i=1. Consider
on the one hand the parametric approach where a family of densities (saythe Normal
distribution) is postulated.

F̂(y; µ ,σ2) =
1

σ
√

2π
exp

(−(y−µ)2

2σ2

)
. (1.11)

The task of inference amounts to finding the optimal parameters (the meanµ and the
varianceσ2) from the observations. Employing the technique of maximum likelihood,
one arrives at the arithmic mean and the sample variance as the preferable estimate, see
also Example 1.2.
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One has at least two non-parametric approaches: the empirical cumulative distribution
(ecdf) estimator and the histogram, see e.g. (Rao, 1983; Silverman, 1986; Scott, 1992)
for a broad account of the issue. For a given realization of the sample the empirical cdf
(ecdf) is defined as (Billingsley, 1986)

F̂(y) =
1
N

N

∑
k=1

I(y≤ yk), for −∞ < y < ∞, (1.12)

where the indicator functionI(y≤ yk) equals 1 ify≤ yk and 0 otherwise. This estimator
has the following properties: (i) it is uniquely defined; (ii) its range is[0,1]; (iii) it is
non-decreasing and continuous on the right; (iv) it is piecewise constant with jumps at
the observed points, i.e. it enjoys all properties of its theoretical counterpart, the cdf.
Furthermore, supy

∣∣F(y)− F̂(y)
∣∣ → 0 with probability one as stated in the Glivenko-

Cantelli Theorem (see e.g. (Billingsley, 1986)). While the ecdf is a theoretical sound
tool, its practical applicability is obstructed as the corresponding estimated pdf cannot
be computed straightforwardly (the ecdf is not differentiable) and its extension to the
multivariate case is more involved.

The Parzen kernel approach represents any unknown but sufficiently smooth density
function as the sum of density kernels (Parzen, 1970).

F̂(y;h) =
1

Nh

N

∑
i=1

Kh

(
yi −y

h

)
, (1.13)

whereh∈ R
+
0 denotes the bandwidth andK : R×R → R

+ is the so-called Parzen kernel
function. An univariate example of the latter is

Kh(y,yi) =
1

h
√

2π
exp

(−(y−yi)
2

2h2

)
. (1.14)

Figure 1.1 and 1.2 illustrate the different approaches of the parametric, the empirical cdf,
the histogram and the Parzen window.

1.2 Generalization and Inference

Somewhat central in the discussion of induction from observational data lies at
the concept of generalization. A model which is generalizing well will provide
good predicted responses corresponding with new data-samples. Generalization acts
as a bridge between properties of the estimate based on the observations and the
expected global optimality principle. The intention of this text is not to advocate one
principle over any other but rather to place the discourse inits historical and scientific
context. Inference was motivated from different points of view throughout history. As
summarized by (Vapnik, 1998)

“Although the arms consisted mostly of mathematical symbols, the discus-
sion is essentially philosophical in nature”.
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Figure 1.2: Illustration of the difference between the histogram and the Parzen
window estimator for the assessment of the probability density estimation (pdf) of
a sample of size 100 i.i.d. sampled from the standard normal distribution. (a)
The histogram method using 10 equidistant bins,(b) The Parzen window with three
different bandwidthsh. Whenh is too small, the estimate exhibits too much variability
(under-smoothing). In the caseh is too big, too little detail of the distribution is
recovered (over-smoothing).

1.2.1 Summary and descriptive statistics

The early history of statistics mainly focused on the description of data-samples by
the use of so-called summary statistics (Pearson, 1902). Modern statistics criticized
this approach (Fisher, 1922) for its lack of mathematical rigor and its ill-defined
foundations. As was put by J. Williams, see also (Rice, 1988;Spanos, 1999)

“We must be careful not to confuse data with the abstractionswe use to
analyze them”, J. Williams, 1842-1910.

This type of reasoning on the raw data gained renewed interest and a better justification
with the advent of exploratory data analysis (EDA) (Tukey, 1977). The research on
EDA deals with methods of describing and summarizing data that are in the form of
a set of samples or batches. These procedures are useful in revealing the structure of
the observed data. In the absence of a stochastic model, the methods are useful for
purely descriptive purposes. Important tools here are the empirical cdf, the histogram
and related methods (see example 1.1), the arithmic mean, median and quantiles readily
summarized in a boxplot and the QQ-plot (Tukey, 1977). The latter is a very useful tool
for the comparison and advice of distribution functions underlying the data. Common
goals of EDA are to inspect the data on atypical observationsand to get an initial idea
on the class of stochastic models governing the relationships in the observed dataset.
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The difference between descriptive statistics and non-parametric or even parametric
statistics is in many cases very subtle and even artificial. Consider e.g. the case of
the mean statistic as in example 1.2 which cannot be assigneduniquely to the class
of descriptive or model based approaches. Moreover, visualization techniques and
summary statistics do often exploit (hidden) assumptions which impose an implicit
model on the data. For example the simplet-plot of the data over the indices
do suggest a certain ordering or explanation on the observations. Those issues
convert the distinction between descriptive and (non-)parametric models into a purely
philosophical discussion.

1.2.2 Function approximation

Many complex functions that occur in mathematics cannot be used directly in computer
simulations. This starting point motivated the elaboration of a subfield of mathematics
concerned with the approximation of functions using simpleschemes as polynomials.
The study of the theory and the application of this type of problems is embodied in the
literature on function approximation, see e.g. (Powell, 1981). The cornerstones of this
research were set out by the work of Chebychev two centuries ago, see e.g. (Chebyshev,
1859). Typical for this approach is the lack of any referenceto a probabilistic setting
and the use of worst-case analysis often translated in the use of anL∞ norm. Although
approximation algorithms are used throughout the sciencesand in many industrial and
commercial fields, the theory has become highly specializedand abstract.

Important results where described in various directions, including the study and
construction of (orthogonal) basis functions and their representational power. This
lead to the study of fractional functions which have had a severe impact on the
literature on system identification due to (Wiener, 1949), the construction of the
non-parametric splines models as described e.g. in (Schumaker, 1981) which are
discussed in the context of observational data including error terms in (Craven and
Wahba, 1979; Wahba, 1990) and revised in Section 5.1. The construction of localized
basis functions gained renewed interest through the theoretical and practical application
of wavelets, see e.g. (Daubechies, 1988) for a complete account.

1.2.3 Maximum likelihood

A more stochastic setting was proposed under the framework of Maximum Likelihood
(ML) for the purpose of fitting probability laws to the data aselaborated mainly due
to sir R.A. Fisher (Fisher, 1922). The main intuition goes asfollows. One starts by
postulating a class of statistical generating models governing the chance regularities
underlying the data. The different elements of this family are enumerated using a finite
set of parameters which ought to be recovered by the observedsamples.

The maximum of the likelihoodp(X|θ) of a parameterθ characterizing an element
from a finite dimensional class of probabilistic laws, givena set of observations
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generically denoted asX is denoted as

θml = argmax
θ

p(X|θ) = argmin
θ

N

∑
i=1

logp(X i |θ). (1.15)

The application of the ML in the context of fitting a Gaussian distribution with
unknown mean to the observed data is discussed in the following example.

Example 1.2 [Estimating location parameters, I] The estimation of location parameters of
a density from a set of i.i.d. samples is central in the field of statistics. The following
derivation shows the similarity between the mean location estimator and the least squares
method.

Let {yi}N
i=1 be sampled i.i.d. from a random variableY with pdf pY = N (µ ,σ2) =

1
σ
√

2π
exp

(
−(yi −µ)2/σ2

)
. The maximum likelihood estimator of the location parameter

µ becomes

µ̂ = argmax
µ

log
N

∏
i=1

1

σ
√

2π
exp

(−(yi −µ)2

σ2

)

= argmin
µ

N

∑
i=1

(yi −µ)2

⇔ 1T
N1Nµ̂ = 1T

NY, (1.16)

whereY = (y1, . . . ,yN)T ∈ R
N. The last equation follows from the normal equations

of the least squares estimate. From this it follows that the arithmic mean possesses the
properties of the maximum likelihood estimator in the case a Normal distributionmay be
assumed. (Fisher, 1922), see e.g. (Rice, 1988; Spanos, 1999).See also Example 3.3 for a
similar argument in the case of the Median.

An important issue in the theory of statistical inference becomes how the estimator
behaves on average. This is often approached by the development of approximations
to the sampling distribution of estimates by using limitingarguments as the sample size
increases. Then there are a number of important concepts to qualify the properties of
the estimator, including

Consistency An estimateθ̂ is called consistent in probability if for anyε > 0
arbitrarily small

lim
N→∞

P
(∣∣θ̂ −θ0

∣∣ > ε
)
→ 0, (1.17)

whereθ0 is the true parameter of the underlying parametric probabilistic rule.
Under reasonable conditions, the ML estimateθml is consistent (Cramer, 1946).

Fisher Information Matrix The (Fisher) information matrix of an estimatêθ is
defined as

I(θ) = E

[
∂ logp(X|θ)

∂θ

]2

= −E

[
∂ 2 logp(X|θ)

∂θ 2

]
, (1.18)

under appropriate smoothness conditions. The large sampledistribution of a
maximum likelihood estimate is approximatively normalθml ∼N

(
θ0,

1
N I(θ0)

)
.
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Bias A concept which will play an important role in the sequel is the decomposition of
the expected Mean Squared Error (MSE) in bias and variance. The reach of this
definitions were extended to the case of finite data samples. The bias-variance
decomposition follows from the following equality

MSE(θ̂ −θ0) = E[θ̂ −θ0]
2 = E

[
θ̂ −E[θ̂ ]

]2
+(E[θ̂ ]−θ0)

2, (1.19)

where the terms of the right hand side are referred to as thevariance and
the bias of the estimate respectively. In the case of ML, the estimator θml

is asymptotically unbiased following the previous item whenever the true
probabilistic law is contained in the parametric class of distributions. Bias and
variance of the estimator constitute a principal tool for the analysis of estimators
in the case of a finite number of observations.

Efficiency The efficiency of an estimatêθ with respect to an alternativẽθ is defined
as

eff(θ̂ , θ̃) =
MSE(θ̂ −θ0)

MSE(θ̃ −θ0)
=

E
[
θ̂ −E[θ̂ ]

]2
+(E[θ̂ ]−θ0)

2

E
[
θ̃ −E[θ̃ ]

]2
+(E[θ̃ ]−θ0)2

, (1.20)

which reduces to the fraction of the variances when bothθ̂ andθ̃ are unbiased
estimates. A classical result is that in the case of i.i.d. data-samples a lower-
bound holds. Let{X i}N

i=1 be an i.i.d sample and let̂θ be any unbiased estimate

E[θ̂ −θ0]
2 ≥ 1

N I(θ0)
, (1.21)

which is known as the Cramer-Rao inequality (Cramer, 1946).The inequality
holds asymptotically exactly in the case of ML estimatesθml under appropriate
regularity conditions. An important caveat arises in the case of a finite number
of samples where biased estimators exists which do improve on the bound even
in the prototypical case of estimating location parameters(Stein, 1956).

Sufficiency An estimateθ̂ is called sufficient if it contains all information in the
sample aboutθ0. Formally

P(θ0 | D) = P(θ̂ | D) ⇔∃Pθ ,PD s.t. P(D | θ0) = Pθ (θ̂ ,θ)PD (D), (1.22)

where the righthandside provides a convenient way for identifying sufficient
estimators. The Rao-Blackwell theorem states the following inequality: letθs

be a sufficient estimate and letθ̂ be any estimate, thenE[θs−θ0]
2 ≤ E[θ̂ −θ0]

2

under regularity conditions, see e.g. (Rao, 1965).

1.2.4 Bayesian inference

Bayesian inference is concerned with the calculus of distribution functions representing
degrees of belief in the phenomena under study. This is opposed to the classical view
of probability and distributions as the limit of relative frequencies. One can think
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of the former methodology as a formalization of a purely rational judge, while the
latter originates more from the analysis of rules of chance.The Bayesian method is
constructed around the following equality referred to as Bayes’ rule:

p(A|B) =
p(B|A)p(A)

p(B)
, (1.23)

where the terms are respectively called theposterior(p(A|B)), thelikelihood(p(B|A)),
the prior (p(A)) and theevidence(p(B)) which normalizes the right hand side.
Mathematical, philosphical as well as practical issues of the Bayesian methodology
were covered in detail in (Jaynes, 2003).

This general law may be applied readily to the parametric estimation problem of
a model with parametersθ ∈ Θ. Let A be replaced by the parameter spaceΘ
and substituteB by the observationsD and the assumptionsA . Then one can
readily express the posterior of the parameters given the data and an appropriate prior
distribution on the possible parametersΘ. Maximizing this posterior results in the
MAP (maximum a posterior) estimate

θ̂ = argmax
θ∈Θ

p(θ |D ,A ) =
p(D |θ ,A )p(θ |A )

p(D ,A )
. (1.24)

Although a decade or more older than the first glimpses of maximum likelihood (see
Laplace), Bayesian inference has not overruled the classicstatistical methodology
sofar, mainly due to practical problems as slow sampling schemes (Gibbs and Markov
Chain Monte Carlo), see e.g. (O’Hagen, 1988), oversimplifications or the enduring
question of the optimal prior. Current research on those topics however narrows swiftly
the gaps, see e.g. (Rasmussen, 1996; MacKay, 1998).

1.2.5 Statistical learning theory

The goal of statistical learning theory is to study and to formalize, in a statistical
framework, the property of learning algorithmsAlg (Bousquetet al., 2004). In
particular, most results take the form of so-called error bounds which amount to a worst
case analysis. Although existing for over 40 years, the theory of statistical learning
only gained the status of a major player in the field of inference from observational
data since a decade or so. This is mainly due to the introduction, analysis and practical
significance of the Support Vector Machine the kernel methods (Vapnik, 1998).

In statistical learning theory, one investigates under which conditions empirical risk
minimization results into consistent estimates minimizing the theoretical risk. The key
idea for creating effective methods of inference from smallsample-sizes is formulated
in the following main principle due to (Vapnik, 1998):

“If you possess a restricted amount of information for solving some
problem, try to solve the problem directly and never solve a more
general problem as an intermediate step. It is possible thatthe available
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information is sufficient for a direct solution but is insufficient for solving
a more general intermediate problem.”

Although intuitive at first sight, it is somewhat in contrastwith the paradigm of
classical statistics where one tries to recover the probabilistic rules governing the
data generation. The classical results from (Vapnik, 1998)may also be considered
as a generalization to the Glivenko-Cantelli theorem towards finite numbers of data-
samples stating that relative frequencies will converge tothe underlying probability.

A crucial principle then is to consider a class of hypotheseswith a restricted capacity.
As was put by (Bousquetet al., 2004),

“Surprisingly as it may seem, there is no universal way of measuring
simplicity (or complexity) and the choice of a specific measure inherently
depends on the problem at hand. It is actually in this choice that
the designer of the learning algorithm introduces knowledge about the
specific phenomenon under study. This lack of universal bestchoice
can actually be formalized in what is called theNo free lunchtheorem.
[...] If there is a priori no restriction on the possible phenomena that
are expected, generalization would be impossible and any algorithm
would be beaten by another on some phenomenon. [...] The core
assumption enabling generalization in this framework is that both given
training dataset and future sample points are independently distributed
using identical distributions (i.i.d.).”

The main theory describes the case of binary functions (classifications). LetX ∈ R
D

be a random variable with fixed but unknown cdfPX and letY ∈ {−1,1} be a binary
random variable with fixed but and unknown cdfPY . and let the theoretical riskR of
any mappingf : R

D → [0,1] be defined as follows

R( f ,PXY ) =

∫
I ( f (x)y≤ 0)dPXY , (1.25)

whereI(x≤ 0) equals one if(x≤ 0) and zero otherwise. The Bayes classifierf ∗ : X →
Y becomes

f ∗(x) = sign(E[Y|X = x]) . (1.26)

The classifierf ∗ is proven to achieve the minimal risk over all mappingsf . In this
setting, one typically possesses a finite number of data-samples of the random variable
denoted asD = {(xi ,y1)}N

i=1 ⊂ R
D × [−1,1]. The empirical risk based on this data

sample becomes

R̂( f ,D) =
N

∑
i=1

I ( f (xi)yi ≤ 0) . (1.27)

Now, statistical learning theory considers the question under which conditions the
empirical riskR̂ will converge to the true riskR in general, formally

sup
f

∣∣R( f )− R̂( f )
∣∣ Prob−→ 0. (1.28)
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More specifically, the convergence of the estimate minimizing the empirical risk to
the Bayes classifier is discussed. Extensions to various related induction tasks in the
occurence of a finite number of data-samples are discussed e.g. in (Vapnik, 1998;
Bousquetet al., 2004).

Necessary and sufficient conditions for convergence were expressed relying on various
measures of capacity, including

Growth Function The growth functionSF (N) is the maximum number of different
ways into whichN points can be divided into two classes with anf ∈ F .

VC-dimension The VC-dimension is the size of the largest number of sampleswhich
can be divided arbitrarily (shattered) in different classes using functions of the
classF . Formally, the VC-dimension of a classF is the largestN such that
SF (N) = 2N.

Covering Number A measure which is computable more easily is the covering
number. This number corresponds to the size (capacity) of the function class
F as measured by the Hamming distance based on the training dataset.

Rademacher Complexity The Rademacher complexity denotes the expected worst-
case risk over the class off ∈ F when assigning random labels to the dataset,
or formally Rc(F ) = Esupf∈F

1
2 ∑N

i=1 I( f (xi)σi < 0), where{σi}N
i=1 sampled

at random from{−1,1}N with p−1 = p1 = 0. > 5. The advantage of this
measure over the others is that an empirical approximation can be computed
straightforwardly.

This measures are used to construct bounds on the deviation of the empirical and
theoretical risk minimizer, see e.g. (Vapnik, 1998; Shawe-Taylor and Cristianini,
2004). See also Theorem 3.2 and 3.4.

1.2.6 Hypothesis testing

To complete this overview, a brief description is given of one of the most important
but also one of the most confusing parts of statistical inference. The difficultness of
the theory and practice of hypothesis testing is mainly due to the phenomena that (a)
numerous new concepts are needed before one is able to define the problem adequately,
and (b) there is no single method available for constructinggood tests under different
circumstances which is comparable to the maximum likelihood estimator in estimation.
While an historical account (as e.g. given in (Spanos, 1999))has at least the advantage
of a strict ordering, the subject is here only touched from the viewpoint of model
testing.

Somewhat central in the theory and practice of hypothesis testing is a problem
dependent definition of a null-hypothesisH0. The procedure of testing proceeds with
the derivation of the corresponding distribution of the estimate based on the finite
number of (noisy) data samples in case the null-hypothesis were valid. If expressed
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without explicit reference to the unknown parameters except the null-hypothesis
(pivotal function) by a proper normalization, a test statistic T : D×H0 →R is obtained.
This test statistic expresses how much a sample realizationof the null-hypothesis can
deviate from the expected outcome. The final test decides whether the estimate from
the observations is unlikely to be sampled from the test statistic. Applying the test
statistic on the observed data results in the so-calledp-value, defined as

p , P
(
c0 ≥ T(D)

∣∣ H0
)

(1.29)

wherec0 denotes the distribution of the test statistic for any sample realization of the
null-hypothesis. Ifp is small enough, the test would advocate rejection of the null-
hypothesis. Opposed to this original formulation due to sirR.A. Fisher was the relative
procedure of hypothesis testing as proposed by Neyman and Pearson (Neyman and
Pearson, 1928). The key to their approach was the introduction of the notion of an
alternative hypothesisH1 to supplement the notion of the null-hypothesis and thus
transform testing into a choice amongst different hypotheses. The design of a test
amounts then to the derivation of a proper normalized indicator functionT : D ⇒ R

which separates the null and the alternative hypothesis properly. LetR0 ⊂R be defined
such that for a pre-specified significance levelα ∈ R

+
0 the following relation holds:

{
P

(
T(D) 6∈ R0

∣∣ H0
)

= α
P

(
T(D) ∈ R0

∣∣ H1
)

= ε,
(1.30)

whereε ∈ R
+
0 is as small as possible.

Example 1.3 [Hypothesis tests for input selection] The following classical result is widely
known as the z-test, see e.g. (Rice, 1988). Given an i.i.d. sample of aunivariate Gaussian
distribution{xi}N

i=1. Consider the problem to decide whether a location parameter is zero
(µ = 0). Assume the second moment (variance)σ2 is given. Consider the following test
statistic

z=

√
N(µ̂ −µ)

σ
∼ N (0,1) (1.31)

whereµ̂ = 1
N ∑N

i=1. Then itsp-value is defined as

z= P
(
c0 ≥ T(D)

∣∣ c0 ∼ N (0,1)
)

(1.32)

expressing an absolute likelihood of the null-hypothesis. Alternatively, a relative
likelihood based test can be constructed. Consider the alternative hypothesisH1 that
µ 6= 0. Again t (T = t) is derived as a good indicator function separating the two
hypotheses. The thresholdcα of the test statisticT for a specified significance levelα
does not depend on any unknown parameter and is e.g. tabulated in various textbooks.
Given this specifications, the final test is summarized as follows

T(D) ≥ cα ⇒ P(H1) = 1−α , P(H0) = α . (1.33)

1.2.7 Towards an optimization perspective

While the formulation of appropriate optimality principlesgiving sound foundations to
the conducted inference often differ from a theoretical as well as practical perspective,
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the construction of the corresponding learning algorithm often coincides in large
extents. We stress the fact that those apparent correspondences do not streamline
the interpretation of the results. This issue motivates thefurther coexistence of the
various approaches. A similar point of view was adopted in the book (Boyd and
Vandenberghe, 2004).

The discrepancy between two objects can be expressed using different norms, each
with its own characteristics and properties. The followingenumeration is restricted to
the norms of vectors.

L1L1L1: The one-norm orL1 started history due to Laplace some decades before the
classical work by Gauss. Although obscured in scientific history in favour of the
L2 norm andL1, it regained recently interest due to efficient ways to calculate the
corresponding minimizer. This norm played a crucial role due to its relation to
the median location estimator (Andrewset al., 1972), in the recent formulation
of SVMs (Vapnik, 1998) and kernel machines (Schölkopf and Smola, 2002), its
theoretical properties for density estimation (Devroye and Györfi, 1985), and
the property that its minimizer typically presents zeros inthe solution parameter
(“sparseness”) as exploited in e.g. LASSO (Tibshirani, 1996).

L2L2L2: This measure gained a central role in all different approaches towards the task
of inference from data since the semimal work of Gauss two centuries ago. Its
importance was confirmed by the works of (Fisher, 1922) and the central place
of the corresponding central distribution, see e.g. (Jaynes, 2003) for a complete
account. Its central role triggered the formulation of LS-SVMs (Suykenset
al., 2002b) as a general methodology based on SVMs extending its reach from
classification to regression and unsupervised learning.

L∞L∞L∞: The L∞ norm came forth of the worst-case analysis in function-approximation
problems as formulated in the classical works of Chebychev (Chebyshev, 1859).
In theoretical and practical statistics its importance is given in results as the
central Glivenko-Cantelli therorem, see e.g. (Vapnik, 1998), and in the test-
statistics as Kolmogorov-Smirnoff (Conover, 1999). In thecontext of primal-
dual kernel machines this measure lies at the basis of Support Vector Tubes
(SVT) in Section 3.5 and the measure of maximal variation, see Section 6.4.

LpLpLp: The previous norms were generalized in the formulation of the so-called Minkowski
norms. This was exploited towards the modeling in the context of high
dimensional and functional data, see e.g. (Verleysen, 2003).

L0L0L0: It is argued that the use of theL0 is most appropriate for obtaining sparseness and
doing input selection (Westonet al., 2003). However, it results in non-convex
and even NP hard combinatorial optimization problems in most cases.

LHLHLH : An optimal trade-off between robustness and efficiency while preserving the
convexity property was found in the formulation od the Huberloss-function
(Huber, 1964; Andrewset al., 1972).
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ON: The issue that the use ofL1 norms andL0 norms leads to sparseness in the
solution vector triggered a research to how the resulting sparseness is related
to the structure of the true solution. Following (Donoho andJohnstone, 1994),
an oracle estimator which is defined as the minimizer of theOracle Norm
(ON) equals the estimator containing the true sparseness while minimizing the
theorethicalL2 risk. A number of different norms were proposed (Donoho and
Johnstone, 1994; Fan, 1997; Antoniadis and Fan, 2001) with corresponding
inequalities bounding the deviation from the oracle estimator. Norms as the
Smoothly Clipped Absolute Deviation (SCAD) were incorporated in kernel
machines in (Pelckmanset al., 2004,In press).

KL: There exist a whole range of criteria measuring the discrepancy between objects
of theoretical nature as well as originating from a practical need, In general,
those need not to be norms in the strict sense (not satisfyingthe triangularity
constraint). An important example of such a measure in a theoretical proba-
bilistic context is the Kullback-Leibler divergence (Conover, 1999) measuring
the discrepancy between distributions. Recent advances insystem identification
result in a norm between different dynamical systems based on the cepstrum
(De Cocket al., 2003). Other examples include dedicated measures used in text
processing, see e.g. (Joachims, 2002).

Minimax: Somewhat related to this discussion is the frequent occurence of minimax
methods. Those quantify the relationship between objects in terms of a
discrepancy measure and a similarity measure similarly. Those typically occur in
a setting of unsupervised learning as in PCA (Jollife, 1986), a worst case analysis
(El Ghaoui and Lebret, 1997; Goldfarb and IYengar, 2003) andin a transductive
setting, see e.g. (Lanckrietet al., 2004)

1.3 Research in Machine Learning

Apart from the central issue of inference and generalization, literature in the machine
learning domain focuses on many different issues. While often motivated from
practical concerns, those directions make up the field mature and lead to a globally
complete set of tools for handling a wide spectrum of problems. This section is by no
means exhaustive and only a selection of representative publications are cited.

1.3.1 Modeling and estimation

While the generic theory and research on learning, inferenceor estimation has become
fairly standard, an increasing demand for algorithms building models in highly specific
settings is noted. Differences in applications of the modeling paradigm can be
attributed to the presence of different assortments of prior knowledge typically studied
from a Bayesian perspective, see e.g. (Jaynes, 2003) for a complete account. However,
prior knowledge often comes under the disguise of known noise models or known
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model structures which can also be incorporated using otherapproaches as shown in
this text. Those forms often originate from the assumption of a specific generating
model, see e.g. (Shawe-Taylor and Cristianini, 2004) translating these issues in the
methodology of kernel machines. Consider e.g. the cases of the analysis of survival
rates in observed data, see e.g. (Kleinet al., 1997), and the handling of longitudinal
data, see e.g. (Molenberghset al., 1997).

1.3.2 Robust inference

Somewhat at the outset of theory of inference is a body of research involved with
estimation problems in the context of contaminated observations. This motivated the
research of a methodology which is highly robust towards theoccurrence of such
outliers in the observations as instantiated by (Huber, 1964), see e.g. (Andrewset
al., 1972). Important tools include different measures of influence and their empirical
counterparts (Tukey, 1977). New contributions in this fieldtowards the description of
robust model selection criteria were described in (De Brabanteret al., 2002a). Section
3.6 discusses some extensions of kernel machines towards this context.

1.3.3 Model selection and analysis

Analysis of the result of one individual estimator is a crucial task in the process of
building a good model from observations. Given a battery of results from different
estimators, the issue of model selection deals with the question which estimate is to be
favorized.

Somewhat similar to the case of the mapping (1.1), one can formalize the model
selection criterion as a mapping from the assumptions, the algorithm and the given
observations to an estimate of the generalization performance. Note that the assump-
tionsA and the algorithmAlg are frequently parameterized by a vectorΘ = (Θ1,Θ2).
Model selection is typically used to decide which value forΘ leads to the best
performing models. Consider for example the assumption that the noise level equals
σ2

e which correspond with a fixed regularization parameter. Onetypically optimizes
the model selection criterion over this valueσ2

e to let the corresponding model obtain
the best possible performance:

JModsel : A (Θ1)×Alg(Θ2)×D → R. (1.34)

The task of model selection typically amounts to the following optimization problem

Θ̂ = argmin
(Θ1,Θ2)

JModsel(Θ1,Θ2) (1.35)

The determination of regularization constants and other hyper-parameters as the kernel
parameters is important in order to achieve good generalization performance with the
trained model and is an important problem in statistics (Hastie et al., 2001) and learning
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theory (Vapnik, 1998; Suykenset al., 2003a). Several methods have been proposed
including validation (Val) and cross-validation (CV) (Stone, 1974; Burman, 1989),
generalized cross validation (Golubet al., 1979), Akaike information criteria (Akaike,
1973), MallowsCp (Mallows, 1973), minimum description length (Rissanen, 1978),
bias-variance trade-off (Hoerl and Kennard, 1970), L-curve methods (Hansen, 1992)
and many others. For classification problems in pattern recognition, the Receiver
Operating Characteristic (ROC) curve has been proposed formodel selection (Hanley
and McNeil, 1982). In the context of non-Gaussian noise models and outliers, robust
counterparts have been presented in (De Brabanteret al., 2002b; De Brabanteret
al., 2002a; De Brabanteret al., 2003). Translation of a priori knowledge (e.g. norm
of the solution, norm of the residuals or the noise variance)into an appropriate
regularization constant has been described respectively as the secular equation (Golub
and van Loan, 1989), in Morozov’s discrepancy principle (Morozov, 1984) and
(Pelckmanset al., 2004d). In the specific context of kernel machines amongst others
(Chapelleet al., 2002) proposed criteria with bounds on the generalizationerror
based on geometrical concepts (VC bounds, optimal margin and support vector span
(Scḧolkopf and Smola, 2002)) to determine the regularization constant. A bound
based on the leave-one-out cross-validation error was introduced in (Kearns, 1997).
Bounds on the generalization error with analysis of the approximation and sample
error were investigated in (Cucker and Smale, 2002). Efficient methods for calculating
the leave-one-out cross-validation criterion for some kernel algorithms based on the
matrix inversion lemma were described e.g. by (Van Gestelet al., 2002; Cawley and
Talbot, 2003). In general, the optimization of criteria fordetermination of unknown
regularization constants often leads to non-convex optimization (or even non-smooth)
and computationally intensive schemes (depending on the model selection scheme).
In (Chapelleet al., 2002) the determination of the tuning parameter is determined via
solving alternating convex problems. Related research canbe found in the literature
about learning the kernel, see e.g. (Herrmann and Bousquet,2003; Lanckrietet
al., 2004).

One of the most tempting and active research tracks in the statistical science and in
machine learning is concerned with the question which inputs may/should or can be
used in order to explain or predict optimally the observed dependent variable. Let
I ∈ R

D×D be a diagonal indicator matrixI = diag(ι1, . . . , ιD) with ιd ∈ {0,1} for all
d = 1, . . . ,D. Let ℓ( f ,D) denote generically a suitable measure for the performance
of a function f on a datasetD with N observations(xi ,yi). Then the input selection
problem may be formalized as the problem of selecting an appropriate matrixI such
that the corresponding estimate

f̂I = argmin
f

N

∑
i=1

ℓ( f (Ixi)−yi) s.t. f ∈ F , (1.36)

optimizes a suitable model selection problem. The method ofAnalysis Of Variance
(ANOVA) constitutes a body of research on this topic in the dedicated case of linear
parametric models satisfying the Gauss-Markov equations.Hypothesis tests make up
the primary tools of the ANOVA practitioner, see e.g. (Neteret al., 1974). The research
on input selection for non-parametric models more shifted towards the regularization
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paradigm (Girosiet al., 1995), especially since the advent of sparse regularization
criteria in the form of LASSO (Tibshirani, 1996), SURE (Donoho and Johnstone, 1994)
and basis pursuit (Friedman and Tukey, 1974; Friedmann and Stuetzle, 1981; Chenet
al., 2001), see Subsection 6.1.2.

1.3.4 Structured data and applications

Although the initial theory was restricted to one of the mostsimple problems of
binary classification of numerical vectors, extension of the methodology and the
analysis towards other data structures constitute now a full body of literature. These
investigations were largely driven by specific case studies.

OCR Initial research on SVMs was driven by the problem of OpticalCharacter
Recognition (OCR) which triggered the research on fast (approximative) imple-
mentations and on the incorporation of invariances (as rotations are translations
of the image) in the learning machine (Decoste and Schölkopf, 2002).

Text This type of application driven research was somewhat pioneered by the literature
on text mining using SVMs and kernel methods. Results and different applica-
tions are surveyed in (Herbrich, 2001; Joachims, 2002). This body of literature
relies heavily on the formulation of appropriate distance measures defined on
strings, graphs and trees. Typical tasks include the automatic classification of
web adresses (URLs) and the identification of unsolicited e-mail (spam).

Generative Models It is often the case that one has some kind of prior knowledge of
the process generating the observations. For example DNA sequences have been
generated through evolution in a series of modifications from ancestor sequences.
This information in the form of invariances, features or distances that we expect
it to contain may be used to tune the learning algorithm to thespecific task.
The discussion on this topic mainly concentrates on the design of an appropriate
kernel, amongst which the probabilistic models leading to the so-calledp-kernel
and the Fisher kernel, see e.g. (Shawe-Taylor and Cristianini, 2004) for an
overview. A noteworthy contribution in this context is (Bach and Jordan, 2004),
applying this mechanism towards the characterization of time-series.

While previous methods rely on the derivation and construction of appropriate
distance measures and equivalent kernels, many applications require a more elaborate
modification to the learning machine itself.

Identification of Nonlinear Systems The case where the observations are a sequence
sampled over time is generally coined as system identification. Initial examples
of the application of kernel methods to system identification tasks and nonlinear
time series analysis were given by (Mukherjeeet al., 1997; Mattera and
Haykin, 2001; M̈uller et al., 1999). A first approach towards the problem of
non-linear control using kernel methods was coined in (Suykenset al., 2001).
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New results on the fitting of nonlinear time time-series werediscussed in
(Fan and Yao, 2003; Dodd and Harris, 2002). Further investigations on the
topic concentrated more via the closely related Gaussian Processes, see e.g.
(Kocijan et al., 2003). The identification task of black-box models from input
and output data was investigated by the author and others in (Goethalset
al., 2005a; Goethalset al., 2004b; Goethalset al., 2004c), combining linear
subspace identification techniques (Vanoverschee and De Moor, 1996) with
kernel based LS-SVMs, see also (Suykenset al., 2002b).

Bio-informatics The field of kernel methods found a successful application area in
the field of bio-informatics. This research is concerned with the integration
of mathematical, statistical, and computer methods to analyze biological, bio-
chemical, and biophysical data. The field of Bio-informatics, which is the
merging of molecular biology with computer science, is essential to the use of
genomic information in understanding human diseases and inthe identification
of new molecular targets for drug discovery. Investigations typically concern
the processing of data from micro-array experiments representing the gene
expression coefficients corresponding to the abundance of mRNA in a sample.
A collection of results sampling the ongoing research on thetopic using kernel
machines can be found in (Schölkopf et al., 2004). Recent advances using LS-
SVM based approaches are published in (De Smet, 2004; Pochetet al., 2004).

Other applications where described in various survey worksincluding (Scḧolkopf et
al., 2001; Suykenset al., 2002b; Shawe-Taylor and Cristianini, 2004) and others.

1.3.5 Large datasets and online estimation

With the advent of fast computers and cheap measurement devices, an ever growing
collection of data is available. Mining for knowledge in this flood is not only a
theoretical quest but also requires adapted numerical methods to get informative
results in a reasonable time interval. LetN be the size of the training set. Large
scale algorithms may be categorized in one of the following classes, where the size
constraints are only indicative. This small overview follows the survey (Hamers, 2004).

Numerical (2,000< N < 20,000) In case the size of the dataset to be analyzed is
not overwhelming, one often can formulate computationallytractable algorithms
to compute the exact estimate. Consider e.g. the case where dependencies
have a strictly local character. In case one does not need an explicit global
model description but only a number of predictions on given data-points, fast
counterparts may be formulated. This idea was applied in theframework of
localized wavelets (Daubechies, 1988) and later exploitedin the context of
kernels (Genton, 2001; Hamers, 2004). For an overview of efficient numerical
algorithms for large scale applications, see e.g. (Golub and van Loan, 1989)
and (Van Dooren, 2004). Iterative approaches as the Krylov subspaces often
lead to a less memory intensive approach and applied in (Suykenset al., 2002b;
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Hamers, 2004). Methods for the trading the accuracy of the solution for speed
are generally based on low-rank approximations. A classical result there is
the Sherman-Morisson-Woodbury formula described in the field of Fredholm
equations, see e.g. (Presset al., 1988), and the N̈ystrom low rank approximation,
see e.g (Suykenset al., 2002b) for its application on LS-SVMs.

Decomposition techniques(10,000< N < 50,000) In case the dataset is even too
large to process in batch, a recursive approach may be advocated. Here the
assumption is that the model provides an effective representation of the optimal
solution thus far and a relatively simple updating rule is available to update
the optimal model with respect to a new chunk of data. This approach is
quite popular in the case of SVMs, denoted as chunking (Vapnik, 1998) and
in the case of one-sample chunks as sequential minimal optimization (SMO)
(Platt, 1999). Another noteworthy approach goes under the name of Successive
Over-relaxation (SOR) (Mangasarian and Musicant, 1999).

Sampling (N > 20,000) When an overwhelming amount of data is available which
would saturates the memory of the computer as well as the monopolizes the
cpu far too long, one may still obtain sensitive results by using an appropriate
sampling mechanism. While statistical literature has a longtradition in sampling
schemes (Rubinstein, 1981), the application towards kernel methods is still
premature. A notable effort was described using a Renyi entropy based
sampling mechanism (Girolami, 2002) and combined with Nÿstrom low rank
approximation to highly workable and efficient algorithm under the name of
fixed size LS-SVM, see (Suykenset al., 2002b; Espinozaet al., 2004).

Ensembles (N > 20,000) Another class of practical algorithms in the case of large
scale estimation constitute of committees of submodels each based on a sub-
sample of the data. These go under the name of fancy names as bagging
(Breiman, 1996), boosting (R̈atsch, 2001) and others, see e.g. (Bishop, 1995).

Recursive Estimation Recursive extensions to the LS-SVM formulation and the
closely related kernel PCA based on tracking the dominant eigenspace of a
kernel matrix growing simultaneously in the number of rows and the number
of columns are proposed and benchmarked in (Hoegaerts, 2005).

Hardware (N > 20,000) The last decade witnessed an emergence of the research on
analog implementations of data processing techniques as neural networks and
associative memories, see e.g. the special issue of IEEE Transactions on Neural
Networks, vol 4, number 3, may 1993. In line with this field, efforts were made
to port the formulation of SVMs (Anguitaet al., 2003) and LS-SVMs (Anguita
et al., 2004) to hardware implementations often enabling the fastprocessing of
huge datasets.

Database When the size of the collection of observations grows unboundedly, the
problem how to organize and memorize the samples becomes increasingly
important. This problem forms a major concern in the computer science part of
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Figure 1.3:This research on machine learning and kernel machines is driven by stimuli
from convex optimization theory, various application areas and the issues raised during
development of LS-SVMlab and results in the area of classical statistics.

the research in machine learning and artificial intelligence. For a general starting
point, see e.g. (Bertinoet al., 2001).

1.4 Contributions

The Ph.D. research of the author can be summarized from various perspectives. In
order to overview the main advances, we divide into four different categories (1)
published contributions which are surveyed in the present dissertation, (2) new research
results which complete the dissertation and enhance the streamline of the text, (3)
published research results which are not described explicitly in the present text as they
do not fit into the main pressented story, (4) other forms of contributions of the research
of the author as the development and support of the toolbox LS-SVMlab.

The synthesis of the Ph.D. research assimilated in the dissertation is twofold:

α-γ-σ The main structure of the text reflects the hypothesis that the questions
concerning the optimal learning algorithm (“α”), the best regularization trade-
off (“ γ”) and the characteristics of the smoothing kernel (“σ ”) are interrelated in
many possible ways (see Figure 1.4) and should be addressed together.

Primal-Dual Argument The second hypothesis which is motivated throughout the
thesis argues that the primal-dual argument based on convexoptimization theory
is not an ad hoc methodology, but can be centralized as a most powerful tool
for the design of new kernel machines. Moreover the method ispresented as a
valuable alternative to the parametric modeling strategy (Figure 1.5 illustrates
both methodologies).
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σ
Kernel Design

α
Model Estimation

γ
Regularization

Chapter 9

Chapter 4
Chapter 5

Chapter 3 Chapter 6
Chapter 7
Chapter 8

Figure 1.4:The main theme of the text manifests itself in three interrelated ways. Part
α studies the design of primal-dual kernel machines and extends results towards the
incorporation of extra structure in the modeling process itself. Partγ then discusses the
issue of regularization and its relation to imposing structure. An important advance in
that context is made in the formulation of a methodology to automate model selection
and tuning the regularization trade-off. Partσ finally discusses the relationship
between regularization and the design of kernels and proposes an approach assisting
the user in the choice of an appropriate kernel.

This work mainly builds on tools and results in (Suykenset al., 2002b; Boyd
and Vandenberghe, 2004; Vapnik, 1998; Wahba, 1990) and takes essentially an
optimization perspective towards the construction of new learning algorithms.

1.4.1 Contributions: published and in the dissertation

The text is built around a set of original results obtained bythe author during the Ph.D.
work. Only a subset of the published results are discussed insome detail to preserve a
consistent story.

Hierarchical programming problems Multi-objective optimization problems are typ-
ically approached using a Pareto or scalarization approach. The hierarchical
programming approach takes a different approach by not solving for the joint
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(a) (b)

Figure 1.5: The research of primal-dual kernel machines inherits ingredients of the
(a) parametric modeling paradigm (represented by the cube including the clock watch)
and the non-parametric paradigm constituting of a series ofindividual tools. (b) The
primal-dual framework (represented as the cube on the right) is a coherent approach
towards many modeling tasks. While the inner mechanism is rather complex, the use
of the method is rather intuitive (as e.g. the wheel). More specifically, a primal-
dual model has simultaneously a primal (parametric) and a dual (non-parametric)
representation.

multiple objectives, but they do consider instead the different cost-functions
at a different level. A typical occurrence of such a problem is found in the
task of automatic model selection. This view was introducedin (Pelckmans
et al., 2003b) and further elaborated in (Pelckmanset al., 2004e; Pelckmanset
al., 2004c; Pelckmanset al., 2005c; Pelckmanset al., 2004b).

Primal-dual Kernel Machines Many new learning machines based on kernels make
use of results in convex optimization theory. This motivates the definition of
a very broad class of machines where the primal-dual argument is put central.
Important instances are then found as the SVMs and the LS-SVMs. This view
follows directly from the work (Suykenset al., 2002b). This perspective was
taken as the main tool for designing new kernel machines in most publications
of the author. Figure 1.6 gives a schematic overview of the presented research
on primal-dual kernel machines.

Structured Primal-Dual Kernel Machines The primal-dual argument is elaborated
as a strong tool for incorporating prior knowledge in the learning task. We
studied prior knowledge in the form of modelstructure as estimating additive
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Figure 1.6:Contributions on primal-dual kernel machines as presentedin this text can
be organized as illustrated. The different issues of the study of optimality in different
tasks, the exploitation of structure in the learning process and the study of the role of
the kernel correspond roughly with the different parts and chapters.

models (Goethalset al., 2005a; Goethalset al., 2004b; Pelckmanset al., 2004,
In press; Pelckmanset al., 2005c; Pelckmanset al., 2005b; Pelckmanset
al., 2005e), semi-parametric models, learning in the context of giveninequalities
(Pelckmanset al., 2004g) and others.

Advances in regularization or complexity control Somewhat central into the theory
and practice of primal-dual kernel machines as well as SVMs is the issue of
complexity control or regularization. Two new regularization schemes and their
relation with the classical Tikhonov regularization were studied (Pelckmanset
al., 2004d). A main result is the formulation of the one-to-one relation between
noise level and the regularization constant in LS-SVMs.

Differogram and estimators for the noise levelA different approach towards the task
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of model selection and determining the regularization trade-off was initiated
in (Pelckmanset al., 2003a). Here, the noise level was put forward as a
single parameter controlling the necessary amount of smoothing to be applied
on the data. In order to estimate this parameter from observations, a data
representation constituting of all mutual differences between observations was
proposed. This so-called differogram cloud contains information on the second-
order moments and the variance present in the data. The differogram method
and various applications towards the task of model selection were further studied
in (Pelckmanset al., 2004a), together with extensions to robust estimators and
spatio-temporal data.

Maximal Variation and structure detection New advances for structure detection
for componentwise kernel machines were based on similar principles as the
LASSO estimator in the linear parametric case. Here an appropriate regular-
ization scheme is designed to detect components in the final predictor which do
not contribute actively. The main difference is that structure detection does not
follow from the sparseness of the parameters itself, but from the total amount a
specific component variates over the training set, i.e. contributes to the model on
the given dataset. Hereto, a measure of total variation (Pelckmanset al., 2004,
In press) and maximal variation (Pelckmanset al., 2005c) was used (Pelckmans
et al., 2005e).

Kernel machines for handling missing data A recent result was achieved for han-
dling missing values amongst the data observations. The handling of partially
missing observations is approached by using additive models. A worst-case
approach was taken in (Pelckmanset al.2005c) based on the measure of maximal
variation. This research was elaborated in (Pelckmanset al.2005b) where the
worst-case approach was contrasted to a method based on a modified empirical
risk functional.

Fusion and automatic model selectionThe problem of model selection gained a
crucial status into the theory and especially in the practice of applicability of
linear and nonlinear learning algorithms. Past research ofthe author focussed
especially on the optimization aspect: given a model selection criterion, how
to optimize this criterion on the dataset. Though such a problem are in many
cases computationally hard, appropriate relaxations can be devised (Pelckmans
et al., 2003b; Pelckmanset al., 2004b).

Additive Regularization Trade-off and LS-SVM substrates An efficient approach
to the problem of automatic model selection was studied in (Pelckmanset
al., 2003b) by using an appropriate re-parameterization of the hyper-parameter
under study. This paper considered regularization trade-off tuning with respect
to validation and cross-validation.

Hierarchical kernel machines and stable learning machinesIt was argued in
(Pelckmanset al., 2004e; Pelckmanset al., 2005c) that the formulation of
additive regularization trade-off could be used to emulatethe use of slightly
different optimality criteria while inheriting the main advantages of LS-SVM
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Figure 1.7: Illustration of the idea behind hierarchical kernel machines. On the
conceptual level, different hierarchical levels are formulated, each with their own
optimality principles and free variables. Computationally, all corresponding conditions
for optimality are fused into one constrained optimizationproblem.

formulations. This led to the concept of hierarchical kernel machines. A
special instance was described where algorithmic stability was maximized
during learning itself (Pelckmanset al., 2004c). Figure 1.4.1 gives a schematical
representation of such a hierarchical kernel machine. In (Pelckmanset al.,
2004c), the use of a representation similar as theL-curve was elaborated,
displaying information on the trade-off between empiricalperformance and
stability.

1.4.2 Contributions: new results in the dissertation

A variety of new results were added to bridge the gaps and to glue the main results
together. We emphasize the following results.

Positive OR constraints A first new contribution is the formulation of a specific
kind of quadratic constraints, denoted as positive OR constraint stating that at
most one of two positive variables may be non-zero. This typeof constraints
often occur in hierarchical programming problems. It is shown that this kind
of constraints may often be embedded in a quadratical programming problem
without losing the global property of convexity.

Sensitivity interpretation The perspective of convex optimization theory towards the
construction of learning machines reveals a strong relation between the dual
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model representation and the sensitivity of the estimate togiven observations.

Support Vector Tubes andν-Support Vector Tubes In addition to the standard ker-
nel machines, we studied a new formulation built for the taskof predicting
intervals for given covariates. This leads to a non-parametric generalization of
quantile interval estimators. A robust version turns out tocorrespond largely to
a ν-SVM and is called theν-SVT.

Efficient iterative algorithm for semi-parametric LS-SVMs and robust SVMs In ad-
dition to the sound formulation of the structured and robustkernel machine
given in Section 4.1 and Subsection 3.6.1, an efficient algorithm is elaborated
for calculating the estimate in the case of large datasets.

Kernel machines for handling censored dataThe mentioned results were employed
to design a primal-dual kernel machine capable of handling observations which
are censored. Censoring can occur due to sensor limitationsor other physical
phenomena as an unexpected failure of the data sample.

Relation semi-parametric LS-SVMs and generalized Least Squares regressionIn
addition to the relations of the LS-SVM with other well knowntechniques as
regularization networks, smoothing splines and others, the relationship with the
standard generalized least squares estimator is noted.

Alternative Least Squares A new result is stated in the context of linear parametric
models advancing the popular practice of LASSO estimators.The alternative
least squares method results in an estimator making use of only one single input
variable among the proposed alternatives.

Bias-variance trade-off for LS-SVMs The classical study of the impact of regular-
ization in bias and variance in the context of linear ridge regression is migrated
to a context of nonlinear kernel models. The main differenceis that bias and
variance are not expressed in terms of the parameters but in the prediction itself.

Fusion of ridge-regression and stepwise regression with validation The task of au-
tomatic model selection using the hierarchical programming approach is applied
to the task of learning the regularization trade-off and input selection in ridge-
regression and least squares respectively. Appropriate convex approximations to
the problem are described resulting in a practical and efficient approach of model
selection in those cases.

Plausible Least SquaresThe formulation of plausible least squares illustrates how
one can use the fusion argument beyond the context of classical model selection.
Instead the use of a significance test is embedded into an estimation problem.
Given the sample distribution of the parameter estimation using a resampling
procedure, plausible least squares estimates the least complex parameter vector
(in L1 sense) which cannot be rejected given the samples.

Fusion of LS-SVMs and SVMs with validation Similar formulations are derived for
selection of the regularization trade-off in SVMs and LS-SVMs. A relaxation
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to the former is elaborated resulting in fast and reliable estimates of the
regularization trade-off solving a convex problem.

A modified loss function approach to additive regularization The additive regular-
ization trade-off is seen to provide an efficient and convex approach towards
the task of model selection in ridge regression and LS-SVMs.A different
perspective towards this scheme is given where the trade-off expresses local
modifications to the loss function.

Relation weighting schemes and model structure with kerneldesign This disserta-
tion reports new advances in the study of good kernel designs. We state results
relating specific weighting schemes of errors and regularization, and model
structures with the form of the kernel. Those results are proven using tools from
optimization theory.

Kernel decompositions and structure detectionA practical method for detecting
appropriate kernel designs given a finite set of alternatives is formulated related
to the method of structure detection using the measure of maximal variation.

Realization approach to kernel designThe relation of smoothing kernels with smooth-
ing filters is used to design a technique to derive the form of the kernel from the
data observations itself. The implicitly used criterion for selecting the kernel
is based on the sample covariance in the data. In correspondence to classical
stochastical realization theory, the technique is build ona matrix decomposition
of the sample covariance matrix.

Various new examples give a theoretical or practical support of the concerning
elaboration. We especially spent some effort to illustratethe usability of the studied
results.

A χ2 density estimator Given the formulation of second order cone programming
problems, a probability density estimator is formulated which builds on the
classical result of histosplines but uses a more appropriate χ2-measure instead.

Learning machine based on Fourier feature space mapIn order to make the con-
cept of the feature space map less mysterious, a concrete mapping is studied
where data samples are mapped onto the corresponding Fourier coefficients.
Furthermore, it is shown that the application of a low-pass filter on the estimate
corresponds with the use of the classical RBF kernel. Thoughrelying heavily
on published results, the context of this example in primal-dual kernel machines
and the employed techniques are original.

Learning machine based on Wavelet feature space mapEquivalently, an explicit fea-
ture space mapping is based on the wavelet decomposition, showing that results
on wavelets can easily be migrated to a context of kernel machines and SVMs.

A robust location estimator based on the modified loss function approach The mod-
ified loss function interpretation to additive regularization trade-off is used to
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design a robust location estimator. The modifications to theclassical empirical
mean based on a least squares estimator are determined usingthe technique of
the quantile-quantile plot. We exploit the classical result that a linear relation of
the theoretical and empirical quantiles implicates a Gaussian distribution.

Kernel machine for handling colored noise schemesMost results rely (at least in
theory) on the property of i.i.d. of the data-samples. This example shows
however that one can design kernel machines with the noise following a known
coloring scheme by using the primal-dual argument.

Modeling discontinuities It is illustrated how one can incorporate a finite set of
known discontinuities in the estimates using semi-parametric primal-dual kernel
machines. This example is extended to the task of learning where an infinite set
of discontinuities can be modeled by building a partially explicit feature space
mapping.

Relation RBF-kernel and AR(1) representation A classical result concerning au-
toregressive models of first order and the convolution with an exponential func-
tion is interpreted into a kernel context. This example illustrates the equivalence
between prediction with smoothing filters and modeling withsmoothing kernels.

1.4.3 Contributions: Ph.D. research

During the doctoral research active contributions were made to various related fields.
The following contributions are only marginally touched inthe dissertation as they do
not fit straightforwardly into the presented story.

Robust Model Selection criteria Robust inference is concerned with the task of
estimation and prediction in the context of atypical observations or outliers.
Contributions to the literature in this field were made by formulating robust
model selection criteria together with a theoretical as well as practical assessment
of their performance. Robust cross-validation measures were described in (De
Brabanteret al., 2002b) and extensions of different information criteria as
Akaike’s were described in (De Brabanteret al., 2003). The report (De Brabanter
et al., 2002a) discusses the robust model selection criteria in more detail. The
extension of the robust kernel based methodology towards the estimation of
nonlinear ARX models in the context of outliers was discussed in (De Brabanter
et al., 2004). Here, various new tools as nonlinear influence functions and
empirical assessment of the robustness of nonlinear methods were proposed.
More details may be found in the dissertation (De Brabanter,2004).

Identification of nonlinear systems A fruitful field for research on learning in the
context of known structure was found in the literature on non-linear system
identification. The high potential of this cross-fertilization was shown in
(Espinozaet al., 2004) where a generic primal-dual kernel method was shown
to perform very well on a benchmark dataset denoted as theSilverbox Data
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consisting of a real-life nonlinear system (Schoukenset al., 2003). Further
advances for the identification of general problems where reported in (De
Brabanteret al., 2003; De Brabanteret al., 2004) where robustness issues are
studied with respect to model selection of nonlinear ARX problems and of the
identification task itself using LS-SVMs respectively.

Identification of Hammerstein and Hammerstein-Wiener systems A further con-
tribution was made in this direction by the construction andstudy of learning
algorithms for the identification of Hammerstein models consisting of a sequence
of a non-linear static model and a linear dynamical system. The publications
(Goethalset al., 2005a) and (Goethalset al., 2004a) study this task by combining
a primal-dual formulation succeeded by a linear Auto-Regressive model with
eXogenous variables (ARX). While the method ressembles the classical over-
parameterization technique, new elements were introducedin the form of
model complexity control or regularization (Pelckmanset al., 2005a) and a
primal-dual argument enabling a very broad and flexible representation of
the nonlinear model. In (Goethalset al., 2004b), extension are studied to
the classical N4SID subspace identification method towardsthe identification
of Hammerstein models where the nonlinearity is again represented as a
kernel machine. The subspace intersection method was employed towards the
identification of Hammerstein-Wiener systems consisting of a sequence of a
static nonlinearity, a linear dynamic model and again a nonlinear static function,
see (Goethalset al., 2004c) and (Goethalset al., 2005b). A thorough discussion
of the subject may be found in the Ph.D. dissertation (Goethals, 2005).

1.4.4 Contributions: other output

LS-SVMlab

During the start of the research, we concentrated on a Matlab/C implementation of the
algorithms related to LS-SVMs. The methodology was embodied into a toolbox called
LS-SVMlab which can be found at

http://www.esat.kuleuven.ac.be/sista/lssvmlab/

including a full tutorial (Pelckmanset al., 2002a). A demonstration was presented at
NIPS 2002 (Pelckmanset al., 2002b). The toolbox includes extensions to multi-class
classification tasks, Bayesian interpretation, adequate preprocessing, model selection
and model tuning, handling of large scale algorithms, unsupervised learning tasks and
other. More details on the update are given in Section B.1. Figure 1.8.b reports some
measures of the impact of this toolbox. The goal of this toolbox was the practical
support of the (Suykenset al., 2002b). The toolbox was used e.g. in the project SOFT4s
regarding software simulators for replacing expensive sensors (De Mooret al., 2002)
and in various publications as (Espinozaet al., 2004; Pochetet al., 2004) and others.



34 CHAPTER 1. PROBLEMS AND PURPOSES

(a)

0 5 10 15 20 25 30
0

200

400

600

800

1000

1200

1400

1600

month

hi
ts

Jan. 2005Nov. 2002

Totaal:  20.714 hits
            in 27 months

2002 2003 2004 2005

(b)

Figure 1.8:(a) Main theme of the LS-SVMlab website.(b) Number of visits of the
website. The number of downloads of the toolbox in the 27 months of existence equals
11.581. This may be compared with the approximate500.000 hits of the classical
websitehttp://www.kernel-machines.organd the approximate27.000visits of the LS-
SVMlab site.

Industrial Projects

During the Ph.D, the author collaborated in two industrial projects:

Soft4S In the context of the chemical process industry, the monitoring of the details of
a process can be expensive due to very expensive sensors or the need for time-
consuming manual investigation of chemical samples. The aim of the Soft4s
project is to develop a simulator of such a sensors based on a series of less-
expensive measuring sensors. The main contribution of the author in this project
was the application of the software LS-SVMlab for this goal.Other advances
were reported including the application of Bayesian input selection, handling of
huge datasets and modeling of dynamic behaviour of the process under study,
see (De Mooret al., 2002) for more details.

ELIA The other project concerns the forecast of expected electricity consumption
on various locations. An important application of LS-SVMs was found in the
modeling on the dependence of load on the daily temperature.Further concerns
were the occurence of periodical variations, nonstationarities and clustering of
different stations.
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1.4.5 Chapter-by-chapter overview

The main theme of the text manifests in many interrelated ways each discussed in the
four chapters. Figure 1.4 highlights the global setup of thedissertation.

Introduction Part I discusses the general setting of the research and introduces a set
of definitions useful in the remainder of the text.

ααα Part II studies the formulation and properties of primal-dual kernel machines
in some detail. The characterα refers to the common symbol of the dual
representation of the modeling technique.

γγγ Part III examines the impact of the concept of complexity control or regularization in
the construction of algorithms. The Greek symbolγ refers to the typical trade-off
between complexity and empirical performance by the regularization constant in
the studied modeling strategies.

σσσ Part IV discusses the impact of the shape and the properties of the employed kernel
and proposes various methods to assist the user in the choiceof an appropriate
kernel. The symbolσ refers to the typical parameter also called the bandwidth
determining the amount of smoothness of the final estimate via the kernel.

Finally, a number of conclusive remarks and directions towards future work are
described.

Part I, chapter 1: Problems and Purposes

The first chapter presents an overview of a number of principles lying at the core of the
process of induction of mathematical models from a finite setof observational data.
Section 1.1 discusses the general setting of learning from data or induction, while
Section 1.2 survey the various approaches which give a soundfoundation for doing
so. Section 1.3 synthesizes a brief overview of the various directions of the current
research in machine learning using kernel methods.

Part I, chapter 2: Techniques from Convex Optimization Theory

As motivated in the previous chapter, the following text will essentially take an
optimization point of view. Moreover, convex optimizationtheory gives rise to the
primal-dual argument explored in this work. The following chapter reviews some
important results from the theory and discusses the renewedinterest for convex
optimization.

The first Section surveys a number of definitions which are necessary for a clear
exposition of the subject. More specifically, the reach of the theory of convex
optimization problems is properly defined. Section 2.2 thenreviews the machinery
of dual problems in the sense of Lagrange. Section 2.3 discusses the problem from
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a more practical point of view, while in Section 2.4 a number of useful extensions
are reported. Subsection 2.4.4 specifically introduces then the problem of hierarchical
programming.

Part II, chapter 3: Primal-Dual Kernel Machines

This chapter presents an overview of the application of the primal-dual optimization
framework to the inference of regression functions and classification rules from
a finite set of observed data-samples. The aim of the chapter is to provide a
sound and general basis towards the design of algorithms relying on the theory of
constrained optimization. While historical breakthroughsmainly focussed on the case
of classification, this chapter mainly considers the regression case.

Section 3.2 discusses general parametric and classical kernel based methods, while
Section 3.3 studies one of the most straightforward formulations leading to the standard
Least Squares Support Vector Machine (LS-SVM). This formulation is studied in some
detail as it will play a prototypical role in the remainder. Section 3.4 then proceeds
with the derivation of the Support Vector Machine (SVM) for regression. Section 3.5
gives a variation on the theme by proposing a primal-dual kernel machine for interval
estimation, coined as the Support Vector Tube (SVT). Section 3.6 considers a number
of extensions of the previous methods to the context of outliers, and Section 3.7 reports
a number of results in the context of classification.

Part II, chapter 4: Structured Primal-Dual Kernel Machines

It is common intuition that the incorporation of prior knowledge into the problem’s
formulation will lead to improvements of the final estimate with respect to naive
applications of an off-the-shelf method. The following chapter shows the flexibility
of the primal-dual optimization framework for incorporating this knowledge into the
estimation problem.

While extensive discussions and analysis are far beyond the scope of this text, the
relevance of this chapter is found in the fact that the remainder of the treatise and some
commonly formulated commentaries on the method frequentlytouch on these subjects.

Various types of structural information are considered, including semi-parametric
model structures (Section 4.1), additive models (Section 4.1), pointwise structure
(Section 4.1) in the form of inequalities and its extension towards handling censored
observations (Section 4.1).

Part II, chapter 5: Relations with other Modeling Methods

This chapter takes the opportunity to frame the preceding discussion into a broader
context and to review various related approaches. While differences were mainly
conceived in the conjectured assumptions and the way of deriving the results, the
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final formulations frequently present many correspondences. However, different
interpretations of the results seem to support the coexistence of the individual
approaches.

Methods close to the formulation of LS-SVMs include different variational approaches
as smoothing splines (Section 5.1), the approach of Gaussian processes (Section 5.2)
and Kriging methods in the context of spatial analysis (Section 5.3). Relationships
with other methods methods as system-identification, wavelets, the theory of inverse
problems and the weighted least squares approach are described in Section 5.4.

Part III, chapter 6: Regularization Schemes

Capacity control or regularization amounts to the artificial shrinkage of the solution-
space in order to obtain increased generalization. This topic re-occurs under many
disguises and in many domains. The purpose of this chapter isboth to motivate, to
analyze and to include regularization schemes in the process of model estimation.

Section 6.1 surveys results in the context of linear parametric models. Section 6.2
extends the results on the bias-variance result for LS-SVMsfor regression. Section 6.3
extends the classical regularization scheme in primal-dual kernel machines to various
other classical schemes. The measure of maximal variation for componentwise models
was introduced in Section 6.4 and various applications of this idea are presented.

Part III, chapter 7: Fusion of Training with Strong Measures

The amount of regularization is often determined by a set of constants which should
be set by the user a priori. The (meta-) problem of setting those is often classified as a
problem of model selection and considered as being solved. However, a procedure for
the automatic optimization of these hyper-parameters given model selection criterion
and model training procedure is highly desirable, at least in practice. This chapter
unfolds a framework for this purpose based on optimization theory.

Section 7.1 introduces the problem and the proposed solution towards it. Various
applications of this issue towards model selection problems in linear parametric models
are given. Section 7.2 studies the problem of model selection in the case of LS-SVMs
and SVMs.

Part III, chapter 8: Additive Regularization Trade-off Sch eme

This chapter elaborates on the results of the previous chapter, but rather takes a
different approach towards the problem of fusion. Instead of considering existing
training procedures, a flexible formulation employing an additive regularization trade-
off scheme is taken as the basis for fusion. The resulting substrate is found much easier
to proceed with whenever more complex model selection criteria are involved.
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The basic ingredients are introduced in Section 8.1 and various relations are discussed.
Section 8.2 then proceeds with the study of the fusion argument in the context of an
LS-SVM regressor with additive regularization trade-off.Furthermore, the concept
of an hierarchical kernel machine is introduced, leading tothe construction of kernel
machines maximizing their own stability (Section 8.3).

Part IV, chapter 9: Kernel Parameterizations and Decompositions

The generalization performance of kernel machines in general often depends crucially
on the choice of the (shape of the) kernel and its parameters.The following chapter
shows the relationship between the issue of regularizationand the choice of the kernel.
Furthermore, the idea of kernel decompositions is proposedto approach the problem
of the choice of the kernel. Finally, relations with techniques from the field of
system identification are elaborated. Given observed moments, the task of stochastic
realization amounts to finding those internal (kernel) structures effectively realizing
this empirical characterization. This results in a tool which can assist the user in the
decision for a good (shape of the) kernel.

Section 9.1 and Section 9.1.3 introduce a formal argument relating the regularization
scheme and a weighting term in the loss function respectively with the form of the
kernel using a primal-dual argument. Then Section 9.2 proceeds with the elaboration
of a method for searching compact kernel decompositions based on the method of
maximal variation. Section 9.4 then discusses a method for recovering the shape of
the kernel from the observed second order moments in the univariate case and is also
extended to the multivariate case.

Appendix A: Differogram

This appendix reviews the result of the differogram for estimating the noise level
without relying exlicitly on an estimated model. The differogram cloud constitutes of
a representation of the data in terms of the mutual distancesamongst input- and output
samples respectively. The behaviour of this representation towards the origin is then
proven to be closely related with the noise level. The use of aparametric differogram
model is used to estimate the noise level accurately. The main difference with existing
methods is that there is no need for an extra hyperparameter whatever.

Appendix B: LS-SVMlab

While the presented research is rather methodological in nature, much effort was spent
on the practical abilities of the methods and on increasing the userfrinedliness of
the tools by elaborating a MATLAB/C toolbox called LS-SVMlab. The content and
implementation details of the Matlab/C toolbox are discussed qualitatively and some
details are given about the interface.



Chapter 2

Convex Optimization Theory: A
Survey

As motivated in the previous chapter, the thesis will essentially take
an optimization point of view as primal-dual optimization aspects lie
somewhat at the core of the approach. This chapter reviews some
important results from optimization theory and discusses the renewed
interest for convex optimization. The first section surveysa number of
definitions which are necessary for a clear exposition of thesubject. More
specifically, the scope of the theory of convex optimizationproblems is
properly defined. Section 2.2 then reviews the machinery of dual problems
in the sense of Lagrange. Section 2.3 discusses the problem from a
more practical point of view, while in Section 2.4 a number ofuseful
extensions are reported. Subsection 2.4.4 then introducesthen the problem
of hierarchical programming.

2.1 Convex Optimization

While the mathematics of convex optimization has been studied for about a century,
several recent developments have stimulated new interest in the topic (Boyd and
Vandenberghe, 2004). The first is the recognition that interior-point methods -
developed in the 1980s to solve linear programming problems- can be used to solve
general convex optimization problems as well (Nesterov andNemirovski, 1994). The
second development is the discovery that convex optimization problems beyond least
squares and linear programming are more prevalent in practice than was previously
thought. Furthermore there are great practical as well as theoretical advantages to
recognizing or formulating a problem as a convex optimization problem. Moreover
practical reliable and highly automated implementations exist for solving those

39
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problems efficiently. This motivation is readily summarized in the following quote
due to (Rockafellar, 1993)

“In fact the great watershed in optimization isn’t between linearity and
non-linearity, but convexity and non-convexity.”

The remainder of the text primarily focuses on convex problems. A crash course is
synthesized based on (Boyd and Vandenberghe, 2004) and (Rockafellar, 1970).

2.1.1 Convex sets and functions

Convex analysis, the mathematics of convex sets, functionsand optimization problems
is a well-developed subfield of mathematics, see e.g. (Rockafellar, 1970). Letd∈N be
a positive integer denoting the dimensionality of the variables of a problem. Consider
the following definitions of subsets ofR

d:





Sa = {x | x = βx1 +(1−β )x2,x1,x2 ∈ Sa,β ∈ R}

Sc = {x | x = θx1 +(1−θ)x2,x1,x2 ∈ Sc,θ ∈ [0, 1] ⊂ R}

C = {x | x = θx1, x1 ∈ Ck, 0≤ θ ∈ R},

(2.1)

respectively denoted as an affine set, a convex set and a cone.The last is used to define
the generalized inequality as follows (Luenberger, 1969),

xºk z⇔ x−z∈ Ck. (2.2)

Consider the coneS +
c = R

d,+, then the generalized inequality ’ºk’ corresponds with
the inequality ’≥’. Another well-known example is the semi-positive cone denoted
asCpd, herefor letA,B∈ R

d×d be any symmetric matrices (AT = A,BT = B) and the
following ordering is defined

AºCpd
B⇔ A−BºCpd

0⇔ A−B positive semi-definite. (2.3)

see e.g. (Alizadeh and Goldfarb, 2003; Boyd and Vandenberghe, 2004).

A function f : R
d → R is called convex if it satisfies the following property

∀x1,x2 ∈ R
d,∀0≤ θ ≤ 1, f (θx1 +(1−θ)x2) ≤ θ f (x1)+(1−θ) f (x2), (2.4)

also referred to as Jensen’s inequality. Letf ′ : R
d → R denote the first derivative of

f over x. From the previous inequality, it follows thatf (x) ≥ f (x0)+ f ′(x0)(x− x0)
for all x,x0 ∈ R

D and that a global minimum is attained inx∗ ∈ R
d if f ′(x∗) = 0. This

result shows that from local information on a convex function, one can derive global
properties of it.
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2.1.2 Convex optimization problems

Definition 2.1. [Convex Optimization Problem] Let m, p ∈ N be positive integers
and bi ∈R for all i = 1, . . . ,m, . . . ,m+ p. Consider a well-defined generalized ordering
associated with a coneCk, represented as ’¹k’. A mathematical optimization problem
has the form

p∗ = min
x∈RD

f0(x) s.t.

{
fi(x) ¹k bi ∀i = 1, . . . ,m

f j(x) = b j ∀ j = m+1, . . . ,m+ p.
(2.5)

where fk : RD → R for all k = 0, . . . ,m+ p. The function f0 is referred to as
the objective function, the functions fi for all i = 1, . . . ,m and fj for all j = m+
1, . . . ,m+ p denote the inequality and the equality functions respectively. The vector
(b1, . . . ,bm, . . . ,bm+p)

T ∈ R
m+p represent the bounds. An optimization problem is

convex if it can be written in the form (2.5) with fi convex functions for all i=
0,1, . . . ,m, . . . ,m+ p as the domain satisfying the constraints then is convex.

The convention is adopted to omit the domainR
D from the formulation as any

restriction onx is explicified in the proper set of constraints. A conjugate function
can be associated to a convex problem as follows:

Definition 2.2. [Conjugate Function] Let f : R
D → R be a function. The conjugate

function f∗ : R
D → R then is defined as

f ⋆(y) = sup
x∈RD

(
yTx− f (x)

)
. (2.6)

Consider e.g. the functionfQ(x) = 1
2xTQx with Q = QT º 0 symmetric and strictly

positive definite. The maximum ofyTx− 1
2xTQx follows from taking the derivative

towardsy, resulting in the dual functionf ∗Q = fQ−1 : R
d →R defined asf ∗Q = 1

2yTQ−1y.

2.1.3 Standard convex programming problems

A number of classes of convex programming problems occur frequently and received
the following naming convention. LetNa,Nb,Nc ∈ N be positive integers, letA ∈
R

Na×d, B ∈ R
Nb×d andC ∈ R

Nc×d be matrices, leta ∈ R
Na, b ∈ R

Nb and c ∈ R
Nc

denote vectors, letQ∈ R
Na×Na be a symmetric positive definite matrix and letq∈ R

N

be a given vector.

LS An unconstrainedLeast Squares(LS) problem can be written in the form

min
x

‖Ax−a‖2
Q = (Ax−a)TQ(Ax−a). (2.7)

If Q were the identity matrixIN ∈ R
Na×Na, the ordinary least squares problem is

obtained. Taking the first order conditions for optimality result in the equations

(ATQA)x = ATQa, (2.8)
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which result in the unique global optimumx∗ ∈ R
d of (2.7) if ATQA is of full

rank. This set of equations can be solved with highly standard and reliable
numerical methods, see e.g. (Golub and van Loan, 1989).

LP A Linear Programming(LP) problem then can be written as

min
x

aTx s.t.

{
Bix≤ bi ∀i = 1, . . . ,Nb

Cjx = c j , ∀ j = 1, . . . ,Nc.
(2.9)

This class of problems was studied intensively in the literature on operations
research (Dantzig, 1963; Bellman and Kalaba, 1965). See e.g. (Todd, 2002) for
an historic account.

QP A Quadratic Programming(QP) problem can be written in the following
standard form

min
x

1
2

xTQx+qTx s.t.

{
Bix≤ bi ∀i = 1, . . . ,Nb

Cjx = c j , ∀ j = 1, . . . ,Nc,
(2.10)

which is convex if and only ifQ is positive definite and there exist a feasible
solution x satisfying the constraints. Research on this type of problems was
stimulated by e.g. the Markovitz portfolio problem (Markowitz, 1956).

SDP A Semi-definite Programming problem(SDP) takes the following form. LetX ∈
R

d×d be a matrix of unknowns.

min
X

tr(AX) s.t.

{
tr(BiX) = bi ∀i = 1, . . . ,Nb

CX º 0,
(2.11)

where the last constraint is referred to as a Linear Matrix Inequality (LMI). This
formulation has found a rich variety of applications in e.g.problems of Model
Predictive Control (MPC), see e.g. (Boydet al., 1994) and as illustrated by the
popularity of the LMI lab toolbox in this community.

SOCP A problem takes the form of aSecond Order Cone Programming(SOCP)
problem if it can be written as follows

min
x

qTx s.t.

{
‖Ax−a‖2

2 ≤ Bix−bi ∀i = 1, . . . ,Nb

Cjx = c j , ∀ j = 1, . . . ,Nc
(2.12)

The constraint‖Ax−a‖2
2 ≤ Bx−b is called a second order cone constraint since

it is the same as requiring that(Ax− a,Bx− b) lies in the second order cone
Sk = {(x, t) | x2 ≤ t,x∈ R

d, t ∈ R}. See e.g. (Loboet al., 1998).

Various other classes exist as the Quadratical constrainedQuadratical Programming
(QCQP) problems (Loboet al., 1998) or geometric programming problems (Boyd and
Vandenberghe, 2004).
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Figure 2.1:Illustrative example relating three different methods forunivariate density
estimation qualitatively. The classical histogram methodis prone to non-continuous
artifacts by construction. The Parzen window estimator results in smooth estimates but
is based on an ad hocL2 optimality criterion. The proposedχ2 approach makes a trade-
off between both approaches as it is based on a clear optimality principle and enforces
continuity on the knots.(a) shows a detail of the estimates of the three methods,
while (b) illustrates the global difference of theχ2 approach with respect to the Parzen
window. From the figure and the optimality principle (2.13) it is immediately clear that
theχ2 estimator is more flexible towards modeling data concentrations (peaks).

Example 2.1 [a χ2 density estimator] An example of the application of this class of
optimization methods towards the task of density estimation is given following thesetup
of Example 1.1. Let{yi}N

i=1 be i.i.d. sampled from a random variableY ∈ R
D with

smooth density functionpY : R
D → [0,1]. Assume a disjoint but complete partitioning

of the support of the random variable with contiguous setsS1,S2, . . . ,Ss such that⋃s
i=1Si = support(Y). Let fi denote the number of samples in the setSi such that

N = ∑r
i=1 fi . A common method in the case of grouped data is the minimumχ2-estimator

(Rao, 1983; Presset al., 1988). Under the assumption thatpY can be described by the
element of a parameteric family{pθ |θ ∈ Θ} with a setΘ of finite dimension, then the
chi-squared estimator takes the following form

θ̂ = min
θ

r

∑
i=1

‖ fi −N fA(Si , pθ )‖2
2

N fA(Si , pθ )
s.t. fA(Y , pθ ) = 1, (2.13)

where the functionfA is defined asfA(S , p) =
∫
y∈S p(y)dy.

Consider the univariate case whereY ∈ R. Let the sets be described as{S(i)|S(i) =
[b(i),b(i+1)],b(i) < b(i+1)}. The minimumb(1) and maximumb(r+1) describe the extrema
of the support of the distribution. Instead of a parametric family of densityfunctions,
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consider the (non-parametric) piecewise linear models

pc(y) = c(i) +

(
y−b(i)

)(
c(i+1) −c(i)

)

b(i+1) −b(i)
where b(i) ≤ y≤ b(i+1), c(i) ≥ 0. (2.14)

Let c =
(

c(1), . . . ,c(r),c(r+1)

)T
∈ R

r+1 and b =
(

b(1), . . . ,b(r),b(r+1)

)T
∈ R

r+1 be

vectors. In this case, the functionfA can then be written as follows

fA
(
S(i),c(i),c(i+1)

)
=

1
2

(
b(i+1) −b(i)

)(
c(i+1) +c(i)

)
= Aic

s.t. Ai =
1
2

[
0i−1

(
b(i+1) −b(i)

) (
b(i+1) −b(i)

)
0r−i

]
. (2.15)

Let b be given andc be unknowns to the problem andf = ( f1, . . . , fr)T ∈ R
r . Then the

chi-squared estimator with respect to the non-parametric model class ofthe piecewise
linear models may be formulated as

ĉ = min
c

r

∑
i=1

‖ fi −NAc‖2
2

NAc
s.t. f ≥ 0r , c≥ 0r+1, 1T

NAc= 1, (2.16)

where A = (A1, . . . ,Ar) ∈ R
r×r+1. This problem can be written as a convex SOCP

problem as follows. Letti ≥ ‖ fi−NAic‖2
2

NAic
which can be rewritten (see e.g. (Loboet

al., 1998)) asti +NAic≥
∥∥∥∥
[
2( fi −NAic)

ti −Aic

]∥∥∥∥
2

2
. The optimization problem becomes

ĉ = min
c

r

∑
i=1

ti s.t.

∥∥∥∥
[
2( fi −NAic)

ti −NAic

]∥∥∥∥
2

2
≤ ti +NAic, f ≥ 0r , c≥ 0r+1,1

T
NAc= 1.

(2.17)
This problem can be solved efficiently as a SOCP problem using e.g. the Matlab toolbox
SeDuMi as described in (Sturm, 1999).

This approach differs from more classical methods as a (finite sample)optimality
principle is postulated. Figure 2.1 illustrates the qualitative difference of thisestimator
and the classical histogram technique and the Parzen window estimator. The described
method is closely related to the method of histosplines, but uses aχ2 measure instead of
the constraint that the bin-area should equal the empirical frequency exactly (Rao, 1983).

2.1.4 Multi-criterion optimization

The following discussion of optimization with more than oneobjective is surveyed as
in (Luenberger, 1969) and (Boyd and Vandenberghe, 2004).

Definition 2.3 (Multi-criterion optimization problems). A multi-criterion or vector
optimization problem is defined as a programming problem

p∗ = min
x∈RD

f0(x) s.t.

{
fi(x) ¹k bi ∀i = 1, . . . ,m

f j(x) = b j ∀ j = m+1, . . . ,m+ p.
(2.18)
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Figure 2.2:Schematical illustration of the problem of multicriterionoptimization for
D = 2. (a) Feasible solutions (fill) with optimal solution with the inequality (x∗1,x

∗
2) ¹

(x1,x2) if x∗1 ≤ x1 andx∗2 ≤ x2. (b) Feasible solutions without an optimal point, but with
a collection of Pareto optimal points (thick line) which areall solutions to a scalarized
problem with scalarization termsλ .

where f0 : RD → R
Q where Q> 1. and fk : RD → R for all k = 1, . . . ,m+ p. The

functions fi for all i = 1, . . . ,m and fj for all j = m+1, . . . ,m+ p denote the inequality
and the equality functions respectively. The vector(b1, . . . ,bm, . . . ,bm+p)

T ∈ R
m+p

represent the bounds.

The optima to multi-criterion problems are defined as follows:

Definition 2.4. [Optimal and Pareto Optimal] The meaning of an optimal point x∗ ∈
R

D satisfying the constraints can be translated as follows. For all x ∈ R
D which satisfy

the constraints, the inequality fq
0 (x∗) ≤ f q

0 (x) holds for all q= 1, . . . ,Q. For a Pareto
optimal point x⋆ ∈R

D satisfying the constraints, one has for all x∈R
D which is feasible

that if fq
0 (x∗) ≤ f q

0 (x) for all q = 1, . . . ,Q, then fq0 (x∗) = f q
0 (x) for all q = 1, . . . ,Q.

Note that not every multi-criterion problem has an optimal element, but if it exists, it is
unique. Pareto optimal points always exist, but are often not unique, see also Figure 2.2.
In the case the problem (2.18) consists of convex functionsfk for all k = 0, . . . ,m+ p,
for every Pareto-optimal pointx⋆ ∈ R

D, there consist a parameterλ ∈ R
q with λ ºk∗ 0

such that it is the unique minimizer to

p∗ = min
x∈RD

λ T f0(x) s.t.

{
fi(x) ¹k bi ∀i = 1, . . . ,m

f j(x) = b j ∀ j = m+1, . . . ,m+ p,
(2.19)
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which is a one-dimensional (scalar) optimization problem which can be solved using
standard techniques. The set of Pareto optimax∗ may be found by exploring all such
scalarization vectorsλ . This scalarization technique is hevily used in the remainder
e.g. in the discussion of regularization schemes (see e.g. Chapter 6).

2.2 The Lagrange Dual

Th following definition follows the exposition in (Boyd and Vandenberghe, 2004). Let
α = (α1, . . . ,αm, . . . ,αm+p)

T ∈ R
m+p be a vector of Lagrange multipliers associated

with them inequalities and thep equalities whereαi ≥ 0 for all i = 1, . . . ,m. Then the
LagrangianL : R

D ×R
m×R

p → R of the optimization problem (2.5) is defined as
follows.

L (x;α) = f0(x)+
m

∑
i=1

αi( fi(x)−bi)+
m+p

∑
j=m+1

α j( f j(x)−b j). (2.20)

The Lagrange dual function is defined as the infimum overx,

g(α) = inf
x

(
f0(x)+

m

∑
i=1

αi( fi(x)−bi)+
m+p

∑
j=m+1

α j( f j(x)−b j)

)
. (2.21)

which can be proven to be concave even if the problem (2.5) is not convex. Fur-
thermore, the inequalityg(α) ≤ p∗ ≤ f0(x) holds for anyα ≥ 0,β and feasiblex
(satisfying the constraints). In the case the (in)equalities can be written in matrix form
(Bx≤ b,Cx= c) as previously (consider e.g. the QP), then the dual can be written in
function of the conjugate functionf ∗0 : R

m+p → R of f0 as defined in (2.6). Let the
vectorα be subdivided in two disjunct parts as followsαb = (α1, . . . ,αNb)

T ∈ R
Nb,+

andαc = (αNb+1, . . . ,αNb+Nc)
T ∈ R

Nc.

g(α) = inf
x

(
f0(x)+αbT

(Bx−b)+αcT(Cx−c)
)

= −αbT
b−αcTc− f ∗0 (−αbT

B−αcTC). (2.22)

In the case of an LP as in (2.9), this simplifies to

g(α) = inf
x

(
aTx+αbT

(Bx−b)+αcT(Cx−c)
)

= −αbT
b−αcTc+ inf

x
(aT −αbT

B−αcTC) x (2.23)

=

{
−αbT

b−αcTc if a = BTαb +CTαc

−∞ elsewhere.
(2.24)

The best lower-bound using the Lagrangian on the cost given by f0(x) for x a feasible
function is then obtained as

d∗ = max
α

g(α) s.t. αi ≥ 0, ∀i = 1, . . . ,Nb, (2.25)
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referred to as the Lagrange dual problem. Strong duality is said to hold when the
duality gapp∗−d∗ is zero. Convex problems have the property of strong dualityunder
mild regularity conditions (Slater’s condition). Also thefollowing result holds (see e.g.
von Neumann, (Rockafellar, 1970)).

Lemma 2.1. [Saddlepoint Interpretation, e.g. (Rockafellar, 1970)] If a vector
(x∗;α∗) ∈ R

d ×R
Nb ×R

Nc forms a saddlepoint of the Lagrangian such that

(x∗;α∗) = argmax
α

min
x

L (x;α) = argmin
x

max
α

L (x;α)

s.t. αi ≥ 0 ∀i = 1, . . . ,Nb, (2.26)

then x∗ is the optimum of the primal problem (2.5),α∗ gives the optimum to (2.25) and
strong duality holds.

This Lemma will form the basis to the framework of primal-dual kernel machines.

2.2.1 Conditions for optimality

In the case of a convex problem (2.5) with differential objective function and
constraint function satisfying Slaters condition, the so-called Karush-Kuhn-Tucker
(KKT) conditions are both necessary and sufficient conditions for a vector(x∗;α∗)
to be a global optimum to the primal problem (2.5) and to the dual problem (2.25):

KKT =





∂L (x;α∗)
∂xi

∣∣∣∣
xi=x∗i

= 0 ∀i = 1, . . . ,d (a)

fi(x∗) ≤ bi ∀i = 1, . . . ,m (b)
f j(x∗) = b j ∀ j = m+1, . . . ,m+ p (c)
α∗

i ≥ 0 ∀i = 1, . . . ,m (d)
α∗

i ( fi(x∗)−bi) = 0. ∀i = 1, . . . ,m (e)

(2.27)

In case the optimization problem is not convex, these conditions are only necessary.

Remark2.1. Note that in the case no inequalities occur in the convex programming
problem, the first order conditions are both necessary and sufficient (Luenberger, 1969;
Nocedal and Wright, 1999; Boyd and Vandenberghe, 2004).

2.2.2 Sensitivity interpretation

When strong duality holds, the optimal dual variables contain useful information about
the sensitivity of the optimum with respect to perturbations of the constraints. Let
ε = (ε1, . . . ,εm, . . . ,εm+p)

T ∈ R
m+p be a vector containing small perturbation terms

and let the functionp : R
m+p → R

d be defined as follows

p∗(ε) = min
x

f0(x) s.t.

{
fi(x) ≤ bi + εi ∀i = 1, . . . ,m

f j(x) = b j + ε j . ∀ j = m+1, . . . ,m+ p.
(2.28)



48 CHAPTER 2. CONVEX OPTIMIZATION THEORY: A SURVEY

This perturbed problem preserves convexity of the originalproblem (2.5). Let(α∗,β ∗)
be the optimal to the dual unperturbed problem. Then the following inequality holds

p∗(ε) ≥ d∗−
m

∑
i=1

α∗
i εi −

m+p

∑
i=m+1

α∗
j ε j . (2.29)

By strong duality, it follows that the derivative

∂ p∗(ε)

∂εi
= −αi . ∀i = 1, . . . ,m, . . . ,m+ p (2.30)

see e.g. (Rockafellar, 1970).

2.2.3 Dual standard programming problems

The dual of the standard programming problems itemized in Subsection 2.1.3 are
reviewed. Let 0D = (0, . . . ,0)T ∈ R

D be a vector of zeros of lengthD ∈ N. Let
Q ∈ R

d×d,A ∈ R
Na×d,B ∈ R

Nb×d,C ∈ R
Nc×d be matrices andq ∈ R

d,a ∈ R
Na,b ∈

R
Nb,c∈ R

Nc be vectors as in Subsection 2.1.3.

LP∗ Following equation (2.22), the dual function to the problem(2.9) is given as

g(α) = −αbT
b−αcTc+ inf

x
(a+BTαb +CTαc)Tx

=

{
−αbT

b−αcTc (a+BTαb +CTαc) = 0d

−∞ otherwise,
(2.31)

such that the dual problem can be written as

max
α

−
(

αbT
b+αcTc

)
s.t.

{
aT = −BTαb−CTαc

αb ≥ 0Nb.
(2.32)

Moreover, strong duality holds.

QP∗ The dual function to the problem (2.10) is given as

d∗ = max
α

g(α) = (BTαb+CTαc+q)TQ−1(BTαb+CTαc+q)−bTαb−cTαc

s.t. αb
i ≥ 0,∀i = 1, . . . ,Nb (2.33)

More detailed derivation of this problem will re-occur in chapter 4.

SOCP∗ Consider the primal SOCP problems that can be rewritten in the following form

p∗ = min
x

aTx s.t.

{
xºk 0

Cx= c,
(2.34)
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with ºk associated with the proper (pointed) second order cone (Boyd and
Vandenberghe, 2004). The dual problem to the problem (2.12)is given as

d∗ = max
α

−cTαc s.t.

{
CTαc +a = αb

αb º∗
k 0.

(2.35)

whereº∗
k is the generalized inequality corresponding with the dual cone k∗

which equals the original coneCk = Ck∗ in the case of the quadratic cone.

SDP∗ Let G,F1, . . . ,Fd be a set of matrices such thatG,F1, . . . ,Fd ∈ R
D×D for D ∈ N.

Consider the primal SDP problem without equality constraints

p∗ = min
x

aTx s.t. x1F1 + · · ·+xdFd +G¹ 0. (2.36)

The dual problem can then be written as

d∗ = max
Γ

− tr(GΓ) s.t.

{
tr(FiΓ) = ai ∀i = 1, . . . ,d

Γ º 0,
(2.37)

whereΓ ∈ R
D×D is a matrix containing the Lagrange multipliers.

Duality has a profound basis (Luenberger, 1969; Rockafellar, 1970) and has lead to a
number of interesting results both theoretically (feasibility study) as practically (e.g. in
learning theory, see later chapters), (Boyd and Vandenberghe, 2004).

2.3 Algorithms and Applications

2.3.1 Algorithms

A short summary of the main numerical algorithms for solvingconvex optimization
problems is given. While initial research following in the streamline of the seminal
work of (Dantzig, 1963) mainly focussed on simplex methods in the area of operations
research (Bellman and Kalaba, 1965), later investigationsconcentrate more on efficient
barrier methods as the interior point methods.

Since the seminal work of (Karmarkar, 1984) there has been a concentrated effort to
develop efficient interior-point methods for linear programming (LP). More recently,
researchers have begun to appreciate important propertiesof these interior-point meth-
ods beyond their efficiency for LP (Nesterov and Nemirovski,1994). Major advantages
include the fact that they extend gracefully to nonlinear convex optimization problems.
New interior-point algorithms for problem classes such as SDPs or second-order cone
programming (SOCPs) (Nesterov and Todd, 1997) are now approaching the extreme
efficiency of modern linear programming codes proving the notable efforts SDPack,
see e.g. (Alizadeh and Goldfarb, 2003) for pointers, and SeDuMi (Sturm, 1999).
Another class of methods relies on the exploitation of the primal and the dual problem
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formulation. In general primal-dual optimization algorithms try to find the global
optimum by minimizing the gap between the optimum of the primal and the dual.
Most state-of-the art implementations use ingredients of both interior point as well as
from primal-dual methods (Sturm, 1999). Recent advances describe methods to highly
increase the efficiency of the methods by exploiting structure in the matrices at hand.

2.3.2 Applications and the design of algorithms

Renewed interest for the theory of convex optimization was stimulated amongst others
by the reformulation of a number of estimation problems as a convex optimization
problem. While the initial literature mainly focussed on control problems as surveyed
in (Boydet al., 1993; Boydet al., 1998), a fruitful field of application is found into the
practice of estimation and identification and more specifically in the design of kernel
machines wich are explicitly based on an optimality principle as initiated by (Boser
et al., 1992; Cortes and Vapnik, 1995; Vapnik, 1998), see the remainder of the text.
More theoretical and mathematical applications were formulated in the form of convex
relaxations to hard combinatorial constraints, see e.g. (Grötschelet al., 1988; Boyd
and Vandenberghe, 2004).

A significant obstacle to the widespread use of the methodology remains: the high level
of experience in both convex optimization and numerical algebra required to use it.
Recent advances in the theory aim at lowering the barrier of using the methods for the
unexperienced. Disciplined Convex Programming (DCP) approaches this problem by
proposing a formal ruleset and conventions in order to derive proper convex programs
from the problem at hand (Grant, 2004).

The present text may be seen from a similar perspective as it illustrates the use of
the primal-dual optimization framework for the construction of various non-trivial
estimation tasks.

2.4 Extensions

This section describes a number of examples of optimizationproblems which can be
cast as convex problems. As those results will re-occur in the remainder of the text
under various disguises, they are treated here somewhat generically.

2.4.1 Robust and stochastic programming

Let 0.5 < η < 1 be a fixed confidence level. LetA ∈ R
D andB∈ R

Nb×D be a vector
and a matrix respectively . LetBi be samples of a random variable with Gaussian
distribution with meanBi and varianceΣi such thatBi ∼ N (Ai ,Σi). Consider the
following stochastic programming problem.

min
x

ATx+a s.t. Prob(Bix≤ bi) ≥ η ∀i = 1, . . . ,Nb. (2.38)
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Consider for a moment theith constraint and letu = Bix, u = Bix and σ2 de-
note var(u) = var(Bix). Let φ(x) denote the cdf of the standard normalφ(z) =

1√
2π

∫ z
−∞ exp(−t2/2)dt. The ith constraint (2.38) can be normalized to the standard

distribution as follows.

Prob

(
u−u

σ
≤ bi −u

σ

)
≥ η ⇔ bi −u

σ
≥ φ−1(η) (2.39)

⇔ Bix+φ−1(η)‖Σ1/2x‖2 ≤ bi , (2.40)

and asϕ−1(η) > 0 asη > 0.5, this inequality has the form of a second order cone
constraint:

min
x

Ax+a s.t. φ−1(η)‖Σ1/2x‖2 ≤ bi −Bi , ∀i = 1, . . . ,N. (2.41)

Application of this kind of formulations is found e.g. in stochastic Markovitz portfolio
problem (Goldfarb and IYengar, 2003). Recent advances in machine learning cast
robust counterparts of SVMs as SOCPs using similar results (Trafalis and Alwazzi,
2003).

2.4.2 Quadratical constraints

Consider the following quadratical form

xTHx+ f Tx (2.42)

with H ∈ R
D×D and f ∈ R

D. This kind of constraints is hard to cast as constraints into
an efficient optimization algorithm. A classical relaxation method for such quadratic
forms is based on semidefinite programming (Grötschelet al., 1988). letH f denote the
matrix

H f =

[
H 0.5 f

0.5 f T 0

]
∈ R

(D+1)×(D+1). (2.43)

One can rewrite the cost function of (2.42) as follows

xTHx+ f Tx =

[
x
1

]T

H f

[
x
1

]
. (2.44)

Consider the reparameterization of the problem (2.42) based on the new set of variables
Z ∈ R

(D+1)×(D+1) related withx as follows (Nesterov, 1998)
[
x
1

][
x
1

]T

= Z ⇔
[
x
1

]T

H f

[
x
1

]
=< H f ,Z >=

D+1

∑
i, j=1

H f ,i j Zi j . (2.45)

From this overparameterization, it is clear that the matrixZ should be symmetric
positive definite and rank one. The common relaxation then consists of omitting
the rank one constraint which is hard to impose. The former positive semi-definite
constraint is denoted asZ º 0. Such a relaxations can be cast as a convex semi-definite
programming problem, see e.g. (Zhang, 2000).
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Figure 2.3: A four-dimensional examplex = (x1,x2,x3,x4)
T ∈ R

4 is studied where
H ∈ R

4×4 is strictly positive definite and and the positive OR constraints x1x3 = 0
andx2x4 = 0 are to be satisfied.(a) displaying the HessianHTH and its augmented
counterpart (HTH + γN) (b) the evolution of the estimates when rangingγ from 0.5 to
50. From the figure it becomes apparent that the positive OR constraints are satisfied
when γ ≥ 30 (solid vertical line). The dashed vertical line indicates the value ofγ
where the problem becomes non-convex.

2.4.3 Positive OR-constraints

A special class of quadratical constraints is considered.

Definition 2.5. [Positive OR Constraint] A positive OR-constraint between scalars
x1,x2 ∈ R is defined as follows

x1 x2 = 0, x1,x2 ≥ 0. (2.46)

Let x denote the vector[x1,x2]
T ∈ R

2. The quadratic constraint (2.46) is equivalent

to xTNx = 0 whereN =

[
0 1
1 0

]
. Although this class of constraints does clearly

not describe a convex set, one can approach such constraintsefficiently if they are
embedded in a quadratical programming problem. Consider the following prototypical
problem:

JN(x) = xTHx+ f Tx s.t. xTNx= 0, x≥ 0 (2.47)

whereH =

[
h11 h12

h12 h22

]
∈ R

2×2 is positive definite andf =
[

f1 f2
]T ∈ R

2.

Example 2.2 [Augmented Hessian Relaxation]A technique based on augmenting the
Hessian is considered. Letγ ≥ 0 be a positive constant, the following modified problem
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to (2.47) is studied

JN,γ (x) =
(

xTHx+ f Tx
)

+ γ
(

xTNx
)

s.t. xTNx≤ 0, x≥ 0, (2.48)

which may be seen as a bi-criterion optimization problem with trade-off constantγ. This
problem is convex whenever the following condition is satisfied

HTH + γN º 0, (2.49)

see e.g. (Boyd and Vandenberghe, 2004). The termxTNx is bounded below by 0
by construction, such that the problem (2.48) reduces to the problem (2.47) when the
optimumxTNx= 0 is attained. This ensures the property that the modified cost-function
acts as an upper-bound to the cost of the original problem.

Formally, the modified problem (2.48) shares its first order conditions for optimality
as given by the KKT conditions with the necessary conditions for optimality ofthe
non-convex problem (2.47). This can be seen by relating the problem (2.48) with the
Lagrangian of the QP problem (2.47) given as

LH(x) = xTHx+ f Tx+λ (xTNx)−αTx (2.50)

with multipliersα ∈ R
+,D
0 andλ ∈ R

+
0 . Figure 2.3 illustrates this issue.

A four-dimensional examplex = (x1,x2,x3,x4)
T ∈ R

4 is studied whereH ∈ R
4×4 is

strictly positive definite and and the positive OR constraintsx1x3 = 0 andx2x4 = 0 are to
be satisfied.(a) displaying the HessianHTH and its augmented counterpartHTH + γN
(b) the evolution of the estimates when rangingγ from 0.5 to 50. From the figure it
becomes apparent that the positive OR constraints are satisfied whenγ ≥ 30 (solid vertical
line). The dashed vertical line indicates the value ofγ where the problem becomes non-
convex.

2.4.4 Hierarchical programming problems

An hierarchical programming (HP) problem amounts to the simultaneous optimization
of different objectives defined on a common set of variables.Here every level considers
the optimization of all variables constrained to the intersection of the solution spaces
corresponding to the previous levels, with respect to its own cost-function (Pelckmans
et al., 2003b; Pelckmanset al., 2005c). This approach is to be opposed to the more
standard approach as the scalarization technique to infer Pareto optima (see Subsection
2.1.4).

Consider for instance a two-level HP problem. Let both objectivesJ (1) andJ (2) act

on the variablesx andθ . Let the level one cost-functionJ (1)
θ (x) describe an optimum

x∗ corresponding to a certainθ which is provided by the user. Let the level two cost-

functionJ (2)(θ ,x) act onx andθ wherex∗ is to be a solution toJ(1)
θ for the optimal

θ ∗. Formally,
{

Level 1 : (x∗ | θ) = argminxJ
(1)

θ (x)

Level 2 : (xθ ,θ ∗) = argminx,θ J (2)(x,θ) s.t. xθ = (x | θ).
(2.51)
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The following example illustrates how one can formulate andsolve hierarchical
programming problems using results from convex optimization.

Consider on a first level an LP of dimensionD ∈N0 with N ∈N0 inequality constraints
and no equality constraints. LetB∈ R

N×D be a given matrix andu = (u1, . . . ,uN) be a
fixed but unknown vector.

First Level: x∗ = argmin
x∈RD

JD = aTx s.t. Bix≤ ui ∀i = 1, . . . ,N. (2.52)

The Karush-Kuhn-Tucker conditions provide necessary and sufficient conditions forx
to be a solution to (2.52). Letα = (α1, . . . ,αN)∈R

+,N be a vector of positive Lagrange
multipliers:

KKT(x,u;α) =





a = −BTα (a)
ui −Bix≥ 0 ∀i = 1, . . . ,N (b)
αi ≥ 0 ∀i = 1, . . . ,N (c)
αi(ui −Bix) = 0. ∀i = 1, . . . ,N (d)

(2.53)

Let F ∈ R
n×D be a given matrix withn ∈ N0 rows and f = ( f1, . . . , fn)T ∈ R

n be a
given vector. On a second level, consider the problem of choosingu such thatx satisfies
Fx− f optimally in anL2 sense. Letυ = (υ1, . . . ,υN)T ∈ R

N be a variable vector, then
the problem on the second level can be written as follows:

Second Level: (υ̂ , x̂) = argmin
x,υ∈RD

J
(2)
F = ‖Fx− f‖2

2

s.t. x solves (2.52) withu = υ . (2.54)

Using the KKT conditions, the problem equals

Second Level: (û, x̂, α̂) = argmin
x,u,α∈RD

J
(2)
F = ‖Fx− f‖2

2 s.t. KKT(x,u;α). (2.55)

One refers to this approach asfusionof a first level problem with a second level. In
general this amounts to multi-criterion optimization which builds a construction based
on the explicit description of the solution-space of previous levels, hence the name
Hierarchical programming problem. This method can be contrasted with the Pareto
(Pareto, 1971) multi-criterion approach.

The hierarchical programming problem (2.55) is convex up tothe complementary
slackness conditions (2.53.d) which belong to the class of positive OR constraints
as discussed in the previous subsection. Hierarchical optimization problems have a
natural application in the task of model selection as discussed in Chapters 7 and 8.

Remark2.2. Note that this programming paradigm is already employed in various
derivations. As a first example, consider the saddlepoint approach for constructing
the dual problem as surveyed in Section (2.2) and (2.26) for constructing the dual
problem. The saddlepoint is computed as the solution to the problem maxθ minx where
the maxθ is taken over the solution-space of the optimum to the minization. Another
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manifestation of the hierarchical programming approach isfound in the analysis of the
least squares estimator (see Subsection 3.2 and 6.1) as employed in the derivation of
the hat matrix and smoother matrix (Lemma 3.2 and 3.4) where the solution-space of
the least squares estimator is made explicit for the purposeof statistical analysis (see
e.g. (Rao, 1965)) as well as from a numerical point of view (see e.g. (Golub and van
Loan, 1989)).

Example 2.3 [Hierarchical programming with a QP] The following example is prototypi-
cal. LetQ,q∈ R

N be given vectors,x ∈ R the unknown parameter and letc ∈ R act as
a fixed but unknown hyper-parameter. Consider the following QP optimization problem

J
(1)
c on the first level

Level 1: min
x

J
(1)
c (x) =

1
2
‖Qx−q‖2

2 s.t. x≤ c. (2.56)

The Lagrangian then becomes

Lc(x;α) =
1
2
(Qx−q)T(Qx−q)+α(x−c), (2.57)

where α ∈ R
+ is a single positive Lagrange multiplier. Necessary and sufficient

conditions for the optimal solutionx∗ to (2.56) are given as follows

KKT (2.56)(x;α ,c)





QTQx−QTq+α = 0 (a)

x−c≤ 0 (b)

α ≥ 0 (c)

α(c−x) = 0 (d)

(2.58)

Let F, f ∈ R
n be vectors. On the second level, one can e.g. consider the following

hierarchical programming problem:

Level 2: min
x;α,c

J (2)(x;c) =
1
2
‖Fx− f‖2

2 s.t. KKT(2.56)(x;α ,c). (2.59)

The necessary conditions for optimality become

KKT(x,α ,c; r,s, t, l)





∂L

∂x
= 0→ FTFx− f TF = lα +QTQr−s

∂L

∂α
= 0→ l(c−x) = r + t

∂L

∂c
= 0→ εα = s

QTQx−QTq+α = 0

x−c≤ 0

α ≥ 0

comp. slackn. lα(x−c) ≤ 0 (g)

comp. slackn. s(c−x) = 0

comp. slackn. tα = 0,

(2.60)

wherer ∈ R andl ,s, t ∈ R
+ are the associated multipliers of the Lagrangian

L (x,α ,c; r,s, t, l) = J 2(x;c)− r(QTQx−QTq+α)+s(x−c)− tα + l(α(x−c)).
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To overcome the non-convex complementary slackness constraint (2.58.d), the following
relaxation is proposed. Letε > 0 be a constant such that

[
FTF ε

ε 0

]
º 0, (2.61)

such that the problem remanins convex, then the following relaxationJ (2′) is convex
and the solution(x̂, α̂, ĉ) does satisfy the conditions (2.58).

min
x;α,c

J (2′)(w)=
1
2
‖Fx− f‖2

2+ε(c−x)α s.t.





QTQx−QTq+α = 0 (a)

x−c≤ 0 (b)

α ≥ 0. (c)

(2.62)

After constructing the LagrangianL ′(x,α ,c; r,s, t) of problem (2.62) with multipliers
r ∈ R corresponding with (2.62.a) and 0≤ s, t ∈ R

+ corresponding with the inequalities
(2.62.bs), the following conditions for optimality holds:

KKT (2.62)(x,α ,c; r,s, t)





∂L ′

∂x
= 0→ FTFx− f TF = εα +QTQr−s

∂L ′

∂α
= 0→ ε(c−x) = r + t

∂L ′

∂c
= 0→ εα = s (c)

QTQx−QTq+α = 0

x−c≤ 0

α ≥ 0

comp. slackn. s(c−x) = 0

comp. slackn. tα = 0.

(2.63)

By comparing conditions (2.60) and (2.63), the only difference between the original
problem and the relaxation is the role of the unknownl (Lagrange multiplier) in the
former andε (hyper-parameter) in the latter, together with the occurence of the equality
l(α(x−c)) in (2.63.g). However, from condition (2.63.c) it follows that condition(2.60.g)
is always satisfied forε 6= 0, and thus the optimum to (2.62) satisfies the KKT conditions
(2.58). As the solution to the KKT conditions of (2.63) is identical for any value ofε, the
relaxation provides necessary and sufficient conditions for the problem (2.59).

This example may be seen as an application of the augmented Hessian approach
discussed in the previous subsection.
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Chapter 3

Primal-Dual Kernel Machines

This chapter presents an overview of the application of the primal-
dual optimization framework to the inference of regressionfunctions and
classification rules from a finite set of observed data-samples. The aim of
the chapter is to provide a sound and general basis towards the design of
algorithms relying on the theory of convex optimization. While historical
breakthroughs mainly focussed on the case of classification, this chapter
mainly considers the regression case. Section 3.2 discusses general
parametric and classical kernel-based methods, while Section 3.3 studies
one of the most straightforward formulations leading to thestandard Least
Squares Support Vector Machine (LS-SVM). This formulationis studied
in some detail as it will play a prototypical role in the remainder. Section
3.4 then proceeds with the derivation of the Support Vector Machine
(SVM) for regression. Section 3.5 gives a variation on the theme by
proposing a primal-dual kernel machine for interval estimation, coined
as the Support Vector Tube (SVT). Section 3.6 considers a number of
extensions of the previous methods to the context of outliers and Section
3.7 reports a number of results in the context of classification.

3.1 Some Notation

Before going into the subject, some notation is introduced.Let X ∈ R
D andY ∈ R be

random variables as described in Subsection 1.1.1. LetD = {(xi ,yi)}N
i=1 ⊂R

D×R be a
collection of observed i.i.d. data-samples as in Subsection 1.1. Let there be a mapping
f : R

D → R such thatE[Y|X = x] = f (x) and var[Y|X = x] < ∞ for all i = 1, . . . ,N. In
most cases, the vector(xi ,yi) is sampled from the random vector(X,Y), but one often
makes the assumption that var(X) ≪ var(Y) such that the samplesx can be considered
to be deterministic.
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Let xd
i denote thedth variable of theith sample with 1≤ d≤D. One can organize these

values into a matrix asX = (x1, . . . ,xN)T ∈ R
N×D. Let a superscript denote the column

or the variable and let a subscript denote a sample index. Then Xi = xi andXd contains
the samples of thedth variable. LetY = (y1, . . . ,yN)T ∈R

N ande= (e1, . . . ,eN)T ∈R
N

be vectors.

3.2 Parametric and Non-parametric Regression

3.2.1 Regression as conditional mean

The regression estimate which is optimal in the expected integrated square error sense
corresponds with the conditional mean, see e.g. (Hastieet al., 2001) and references

f (x) = E [Y|X = x] =
∫

ypY|X(y|x)dy=
∫

y
pXY (x,y)

pX(x)
dy. (3.1)

This result is somewhat similar to the optimal Bayes classifier (1.26), see e.g. (Hastie
et al., 2001) for a survey.

3.2.2 Parametric regression estimates

It is instructive to relate the general formulation (3.1) tothe linear least squares
problem. The following stochastic model underlying the chance regularities is
postulated classically.

Lemma 3.1. [Gauss-Markov Conditions] Let{xi}N
i=1 be samples from the random

variableX such that E[X2]≪E[Y2]. Letω ∈R
D be fixed (deterministic) but unknown.

A linear model is postulated f(x) = ωTx to underly the observationsD such that the
relation

yi = ωTxi +ei (3.2)

holds where the noise sequence{ei}N
i=1 sampled from the random variablee satisfies

the Gauss-Markov conditions, see e.g. (Rao, 1965; Neteret al., 1974):

(i.i.d.) Let the sequence{ei}N
i=1 be a sequence of i.i.d. samples from the random

variablee

(zero mean) E[e|X = x] = E[e] = 0 for all x ∈ R
D

(uncorrelated) Let 0 < σ2
e < ∞, then E[eiej ] = δi j σ2

e whereδi j = 1 if i = j and zero
elsewhere.

The parameter vectorω ∈ R
D can be estimated in least squares sense

ŵ = argmin
w

N

∑
i=1

(wTxi −yi)
2, (3.3)
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which also equals the maximum (log) likelihood (ML) estimate following from the
assumption thatepossesses a Gaussian distribution and thusyi ∼N (ωTxi ,σ2

e ) (Fisher,
1922), see e.g. (Rice, 1988). The global solution is characterized by its first order
conditions of optimality

(XTX) w = XTY, (3.4)

which are referred to as the normal equations. Due to the Gauss-Markov theorem,
the estimator ˆw solving (3.4) possesses the BLUE property (Best Linear Unbiased
Estimator) under the given assumptions (Neteret al., 1974; Rice, 1988). The least
squares estimator has the following interpretation via thehat matrix.

Lemma 3.2. [Hat matrix] Assume the function underlying the observationsD takes
the form of (3.2) and the errors are satisfy the Gauss-Markovconditions. The least
squares smoother can be written as a linear operator H as follows

Ŷ = HY with H= X(XTX)−1XT . (3.5)

where H∈ R
N×N is referred to as the hat matrix. The following properties hold

1. H is symmetric positive semi-definite (denoted as Hº 0)

2. The rank of H provides a measure of the (effective) dimensions of the fitted model

3. H is idempotent i.e. H= H2.

The proofs can be found in any statistical work concerning linear regression, see e.g.
(Rao, 1965; Neteret al., 1974).

Example 3.1 [Loss functions and noise distributions]An illustrative example is given of the
parameter estimation task in the context of different noise models and using estimators
employing different norms. Four different estimators are considered using the convex
cost-functions defined as follows





J1(w) = ∑N
i=1 |wTxi −yi | (a)

JH(w) = ∑N
i=1ℓH(wTxi −yi) (b)

J2(w) = ∑N
i=1(w

Txi −yi)
2 (c)

J∞(w) = maxNi=1 |wTxi −yi | (d)

(3.6)

where the Huber loss functionℓH is defined later-on in (3.59) and the constantc in the
Huber loss function is as commonly fixed asc = 1.345σ2

e (Huber, 1964). Consider the
linear model (3.2) withD = 5, N = 100, Xd taken random and independently from the
interval[−1,1]N for all d = 1, . . . ,D andω chosen uniformly from[−5,5]D. Four different
noise models were added (i) a Laplacian noise modelei ∼L (0,1.5), (ii) a Gaussian noise
modelei ∼N (0,1) and (iii) a contaminated noise model with a Gaussian nominal model
and 5% outliers with variance 10, (iv) a uniform noise modelei ∼ U ([−1.5,1.5]). The
performance is expressed in the mean squared error of the estimate ˆw = argminwJ (w)
to the true parameterω. The boxplots1 of Figure 3.1 show the results of a Monte Carlo
study with 1000 iterations.

1A boxplot is a compact representation of a distribution, based on a number of order statistics as the
median. From top to bottom, a boxplot displays respectively the upper outliers, upper-quartile plus 1.5 inter-
quartile range, the upper-quartile , the median, lower-quartile, lower-quartile minus 1.5 times inter-quartile
range, and all lower outliers.
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Figure 3.1:Numerical results of a Monte Carlo study relating the average MSE of the
estimate and the true parameter corresponding with a specific noise model and chosen
norm. This simulation results emphasize the importance of choosing an appropriate
norm corresponding to the underlying noise model.

This numerical example illustrates the fact that the choice of the most efficient lossfunc-
tion depends on the underlying distribution of the perturbations. More specificly, this
figure supports the theoretical results of maximum likelihood relating the optimal cost-
function (L2,L1,L∞,LH ) to the corresponding noise model (respectively (i), (ii), (iii) and
(iv)).

3.2.3 Non-Parametric regression estimates

Consider the Parzen window estimator (Parzen, 1962) for non-parametric density
estimation (see example 1-1, 1.13 and 1.14). The Nadarya-Watson non-parametric
kernel regression estimator then follows immediately from(3.1):

f̂ (x) =

∫
y

pXY (x,y)
pX(x)

dy=
∑N

i=1K(x,xi)yi

∑N
j=1K(x,x j)

, (3.7)

whereK : R×R→R denotes a nonnegative weight function centered around zerowith
bandwidthh as defined in example 1.1, see e.g. (Watson, 1964). This estimator has
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various optimality properties as described e.g. in (Rao, 1983) and often acts as a tool
for exploratory data analysis and for testing procedures.

3.3 L2 Kernel Machines: LS-SVMs

Consider the following class of models linear in the parameters

Fϕ =
{

f (x) = ωTϕ(x)
∣∣ ω ∈ R

Dϕ
}

, (3.8)

where the mappingϕ : R
D → R

Dϕ is fixed but unknown and can be infinite dimen-
sional. LetD = {(xi ,yi)}N

i=1 satisfy the relationyi = f (xi) + ei where f : R
D → R

is fixed andei is i.i.d. sampled from a random variablee with a fixed but unknown
distribution satisfyingE[e|X = x] = 0 andE[e2] = σ2

e < +∞. Extensions of this model
towards additional parametric terms (as the so-called intercept term) are discussed
extensively in the following chapter. This description of the model is referred to as
the primal modelbeing related to the to the following primal optimization problem.
Consider the regularized least squares loss function with hyper-parameterγ > 0:

(ŵ, ê) = argmin
w,e

Jγ(w,e) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i

s.t. wTϕ(xi)+ei = yi , ∀i = 1, . . . ,N, (3.9)

which is also referred to as ridge regression in feature space, see also (Saunderset
al., 1998). The Lagrangian of this constrained optimization problem becomes

Lγ(w,e;α) = Jγ(w,ei)−
N

∑
i=1

αi
(
wTϕ(xi)+ei −yi

)
. (3.10)

The first order (necessary and sufficient) conditions for optimality are given as

KKT(w,e;α)





∂Lγ

∂w
= 0→ w = ∑N

i=1 αiϕ(xi) (a)

∂Lγ

∂ei
= 0→ γei = αi ∀i = 1, . . . ,N (b)

∂Lγ

∂αi
= 0→ wTϕ(xi)+ei = yi ∀i = 1, . . . ,N. (c)

(3.11)

Eliminating the possibly infinite dimensional parameterw and the residualse, one
obtains an equivalent dual system expressed in the Lagrangemultipliers using matrix
formulations as (

Ω+
1
γ

IN

)
α = Y, (3.12)

whereα = (α1, . . . ,αN)T ∈ R
N is a vector,IN ∈ R

N×N denotes the identity matrix and
Ω ∈ R

N×N represents the kernel matrix defined as follows. LetΦN denote the mapped
training data pointsΦN = (ϕ(x1), . . . ,ϕ(xN))T ∈ R

N×Dϕ , then one defines the kernel
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matrix asΩ = ΦT
NΦN. Let a Mercer kernel functionK : R

D ×R
D → R be defined as

an inner product
ϕ(xi)

Tϕ(x j) , K(xi ,x j) ∀xi ,x j ∈ D . (3.13)

The following subsection elaborates on the duality betweenthe kernel function and the
mappingϕ.

The final estimate(ŵ, ê) = argminw,eJγ(w,e) can be evaluated in a new pointx∗ ∈R
D

in terms of the multipliers and the inner productK(xi ,x∗) = ϕ(xi)
Tϕ(x∗) as follows

f̂ (x∗) =
N

∑
i=1

α̂iK(xi ,x∗) = ΩD (x∗)
T α̂ , (3.14)

whereα̂i solve (3.12) for alli = 1. . . ,N. Here, the mappingΩD : R
D ×D → R

N is
defined asΩD (x∗) = (K(xi ,x∗), . . . ,K(xN,x∗))

T ∈ R
N.

Lemma 3.3. The dual problem to (3.9) becomes

max
α

J D
γ (α) =

1
2

αT
(

Ω+
1
γ

IN

)
α −YTα, (3.15)

from which not only the training solutions (3.12) follow, but also the HessianHe =(
Ω+ 1

γ IN
)

can be derived readily.

A detailed derivation on the variance of the estimator can befound in subsection 6.2.
Similar to the Hat matrix described in Lemma 3.2, one can reformulate the LS-SVM
as a linear operator as follows

Lemma 3.4. [Smoother Matrix] The estimated valueŝY of the given training data-
points Y using the model class (3.8) and regularized least squares cost-function (3.9)
follow from the linear operator Sγ ∈ R

N×N which is defined as follows

Ŷ = SγY where Sγ = Ω
(

Ω+
1
γ

IN

)−1

. (3.16)

The following properties hold:

1. Sγ is symmetric positive semi-definite Sγ = ST
γ º 0 (Boyd and Vandenberghe,

2004).

2. The smoother matrix has a shrinking nature, meaning that S2
γ ¹ Sγ or S2

γ −Sγ is
negative definite. Note the difference with the Hat matrix (see Lemma 3.2) which
is idempotent.

3. The rank of the smoother matrixΓ(Sγ) ≤ N is an indication of thenumber of
degrees of freedomor theeffective number of parametersas argued in (Mallows,
1973). This motivated the following definition

Deff = tr(Sγ) =
N

∑
i=1

λi

λi + γ−1 , (3.17)
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whereΛ = (λ1, . . . ,λN)T ∈ R
N denotes the eigenvalues of the kernel matrixΩ ∈

R
N×N.

Note that the smoother matrix is also positive definite, and consists as such of the
elements of a positive definite function which is sometimes referred to as the dual
kernel (Hardle, 1990; Girosiet al., 1995). The smoother matrix has an important
role into various model selection criteria as the PRESS statistic (Allen, 1974) and the
generalized cross-validation measure (Golubet al., 1979).

3.3.1 Mercer theorem and kernel trick

The Mercer theorem (Mercer, 1909; Aronszajn, 1950) was formulated as follows

Theorem 3.1. [Mercer Theorem] Let K : R
D ×R

D → R be in L2(C) where C
denotes a compact subset ofR

D. To guarantee that the function K: R
D ×R

D → R has
an expansion of the form

K(x,y) =
∞

∑
j=1

a jφ j(x)
Tφ j(y) ∀x,y∈ R

D, (3.18)

with positive coefficients aj ≥ 0, a set of mappings{φ j : R
D → R

Dϕ }∞
j=1 and Dϕ ∈

{N0,+∞}, it is necessary and sufficient that

∫

C

∫

C
K(x,y)g(x)g(y)dxdy≥ 0, (3.19)

be valid for any function g: R
D → R in L2(C).

This means that any kernel functionK corresponds with an inner product in a
corresponding feature space

∃ ϕ : R
D → R

Dϕ s.t. K(x,y) = ϕ(x)Tϕ(y) ∀x,y∈C, (3.20)

as long as the functionK is positive semi-definite. This classical result was introduced
in the literature by (Aizermanet al., 1964). The consequence is that if one fixes a
kernel functionK, one works explicitly with a feature space which is induced by this
kernel. As such, there is no need for the mappingϕ to be defined explicitly as long as
the model can be expressed completely in terms of inner-products between (mapped)
data-points. This principle is often referred to as thekernel trick(Vapnik, 1998), see
e.g. (Scḧolkopf and Smola, 2002).

3.3.2 Primal-dual interpretation

One can now properly define the concept of a primal-dual kernel machine.
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Definition 3.1. [Primal-dual Kernel Machines] A primal-dual kernel machine
consists of a model formulation which possesses a primal anda dual representation
in the sense of (Lagrangian) optimization theory. The primal representation is used to
formulate the optimality principle underlying the model asa constrained optimization
problem based on the training-set and all available prior knowledge, while the dual
representation refers to the characterization of the problem in the Lagrange multipliers
enabling the application of the kernel trick.

Note the difference with the primal-dual optimization methods in the context of
algorithms for (generic) convex optimization problem as described in Section 2.3. It is
instructive to discuss the conditions for optimality (3.11) in detail as those will re-occur
in most derivations of primal-dual kernel machines.

1. Condition (3.11.a) relates the parametersw of the fitted model to the finite
set of Lagrange multipliers. This condition goes along the same lines as the
Representer theorem (Craven and Wahba, 1979), see Section 5.1. Note that this
relation holds as long as theL2 norm of the parameters (wTw) is considered. It
will be crucial in all primal-dual kernel machine formulations.

2. Condition (3.11.b) states that theith Lagrange multiplier is proportional to the
ith residualei with a factorγ. This property is specific to the use of theL2 loss
function. It will be important in the realization approach for learning the kernel
as elaborated in Chapter 9.2.2.

3. Condition (3.11.c) repeats the original constraints.

Advantages of the use of primal-dual derivations of kernel machines include the
properties following from the derived KKT conditions for optimality (as the box
constraints in the case of SVM) and the sensitivity interpretation related to the Lagrange
multipliers (as elaborated next) following from the theoryof convex optimization At
this stage, one can state the duality between the estimated parameterw and the residuals
ei more clearly. Eliminating the Lagrange multipliersαi from condition (3.11.a) using
condition (3.11.b) results into the equation

ŵ = γ
N

∑
i=1

êiϕ(xi), (3.21)

stating that the model (parameters) and the noise terms are not only related via the
model definition, but also in a more direct way.

Example 3.2 [Learning Machine based on Fourier Decompositions] Consider the case of
a finite mapping of the observed data into a feature space using the Fourierdecomposition.
Let {xi}N

i=1 be equidistantly sampled on the interval[0,2π] such thatxi = 2π i−1
N for

all i = 1, . . . ,N. Define the mapping to feature spaceϕ : [0,2π] → R
2N+1 as follows

(Vapnik, 1998)

mapping: ϕ(x) =

(
1√
2
,sin(x), . . . ,sin(Nx),cos(x), . . . ,cos(Nx)

)
, (3.22)
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such that the feature space has a dimensionality ofDϕ = 2N+1. The corresponding inner
product becomes

kernel: K(xi ,x j ) =
1
2

+
N

∑
k=1

(
sin(kxi)sin(kxj )+cos(kxi)cos(kxj )

)
. (3.23)

Let w = (w0,w1, . . . ,wN,wN+1, . . . ,w2N) ∈ R
2N+1 be the parameter vector. The primal

linear model then becomes

function: f (x) = wTϕ(x) =
w0√

2
+

N

∑
k=1

wk sin(kx)+
N

∑
k=1

wN+k cos(kx). (3.24)

Consider the ridge regression loss function

cost: JF (w) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i s.t. wTϕ(xi)+ei = yi . (3.25)

The dual solution follows from solving (3.15) and the optimum takes the form

Dual estimate: f̂ (x) =
N

∑
i=1

αiK(xi ,x). (3.26)

whereαi for all i = 1, . . . ,N are the Lagrange multipliers characterizing the dual solution.
The estimated model̂f has Fourier coefficients

Primal estimate:
(
F f̂

)
(k) =

N

∑
i=1

αi (sin(kxi)+cos(kxi)) . (3.27)

Example 9.1 further studies this setting towards the context of more elaborate regulariza-
tion schemes and infinite feature space mappings.

A similar primal-dual derivation formed the basis towards new interpretations of
unsupervised learning problems for kernel PCA following (Schölkopf and Smola,
2002) in (Suykenset al., 2003b), see also (Suykenset al., 2002b) for extra results
on Kernel Canonical Correlation Analysis (KCCA) and KernelPartial Least Squares
(KPLS).

3.3.3 Sensitivity interpretation

This subsection studies the relationship of the dual representation and the sensitivity
of the solution to small perturbations in the observations.The following definition is
taken from Hampel (Hampel, 1974; Hampelet al., 1986).

Definition 3.2. [Influence Function] Let A denote a statistical functional mapping a
random vector(X,Y), and a distribution P onR. The influence function of A with
the (theoretical) nominal model P(X,Y) underlying a datasetD and a pointmass
distribution∆ is then defined as

IF(A,P,∆) = lim
ε↓0

A((X,Y),(1− ε)P(X,Y)+ ε∆,A )−A((X,Y),P)

ε
. (3.28)
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The most important empirical versions are the sensitivity curve (Tukey, 1977), and the
Jackknife (Tukey, 1958), based on addition and replacementrespectively. The latter is
considered. LetD−i denote the dataset without theith sample.

ˆIF(Alg,D ,δi) = lim
δ→0

Alg (D ,A )−Alg
(
{D−i ,(xi ,yi +δi)},A

)

δ
. (3.29)

This statistical concept is closely related to the perturbation and sensitivity inter-
pretation of the Lagrange multipliers as reviewed in subsection 2.2.2. LetAlg∗ :
D ×A ×R → R

D be defined as follows

Alg∗(D ,A ,δi) = argmin
w,e

Jγ(w,e,δi) =
1
2

wTw+
γ
2

N

∑
k=1

e2
k

s.t.

{
wTϕ(x j)+ej = y j ∀ j 6= i

wTϕ(xi)+ei +δi = yi ,
(3.30)

returning the optimum when varying theith constraint by adding a perturbationδi on
the ith constraint.

Lemma 3.5. [Sensitivity of LS-SVMs] The sensitivity of the estimatêαi on the ith
data-sample is given as follows

∂Alg∗(D ,A ,δ )

∂ei

∣∣∣
δ=0

= lim
δ→0

Alg∗(D ,A ,0)−Alg∗(D ,A ,δ )

δ
= −α̂i . (3.31)

The sensitivity of the estimatêw and the prediction̂f (x∗) with x∗ ∈ R
D is thus given as

{
∂ ŵ
∂ei

= α̂iϕ(xi)
∂ f̂ (x∗)

∂ei
= α̂iK(xi ,x∗).

(3.32)

From this, the estimated model (3.14) can be interpreted as the sum of the empirical
influences of the given data-samples.

3.3.4 Bounding theL2 risk

This formulation was also coined also as kernel ridge regression (Saunderset al., 1998),
under which name it received considerable attention from a statistical learning point of
view (Shawe-Taylor and Cristianini, 2004). Hence the following theorem

Theorem 3.2. [Bounding theL2 Risk] Let0< ε ≪N be a constant. Let f: R
D →R

be contained in the classFϕ (3.8) with bounded norm B∈R
+ such that‖w‖2

2 ≤ B. Let
D = {(xi ,yi)}N

i=1 be sampled i.i.d. from a fixed but unknown distribution PXY . Let the
L2 risk of a function f be defined as

R2( f ,PXY ) =
∫

( f (x)−y)2dPXY (xy). (3.33)
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Its empirical counterpart may be defined as follows

R̂2(w,D) =
1
N

N

∑
i=1

(
wTϕ(xi)−yi

)2
. (3.34)

If the mapped data-points{ϕ(xi)}i=1 are contained in a ball with radius R and origin
zero, one can bound the risk as follows

Prob
(∣∣R2(w,PXY )− R̂2(w,D)

∣∣

≤ 16RB
N

(
B
√

tr(Ω)+‖Y‖2

)
+12(RB)2

√
ln(2/ε)

2N

)
≥ (1− ε), (3.35)

where Ω = ΦNΦT
N denotes the kernel matrix as before and Y denote the vector

containing the N observed outputs.

From this result, it follows that the estimator (3.9) also minimizes the theoretical risk
if N → ∞ andB < ∞. Traditional statistics often prefers the analysis of thisestimator
from the point of view of bias-variance trade-off as elaborated in Chapter 6.

3.4 L1 and ε-loss Kernel Machines: SVMs

Instead of the commonL2-based approach, anL1 norm based norm is sometimes
preferred, although it is both practically as theoretically less covenient. Use of theL1

norm can be motivated as an appropriate noise scheme (e.g. Laplacian distribution, see
e.g. example 3.1) can be assumed or the method should be more robust to outliers than
a least squares estimator. The derivations are summarized in the following Lemma.

Lemma 3.6. [SVMs for regression] Consider the model classFϕ of (3.8). Let the
ε-loss function be defined as|e|ε = max(0, |e| − ε) (Vapnik, 1998). The regularized
ε-loss estimate follows from solving the optimization problem

(ŵ, ê) = argmin
w,e

JC,ε(w,ei) =
1
2

wTw+C
N

∑
i=1

|ei |ε

s.t. wTϕ(x)i +ei = yi ∀i = 1, . . . ,N. (3.36)

This is equivalent to the dual optimization problem

max
α+,α−

−1
2
(α−−α+)TΩ(α−−α+)+YT(α−−α+)− ε1T

N(α− +α+)

s.t. (α−
i +α+

i ) ≤C, ∀α+
i ,α−

i ≥ 0, ∀i = 1, . . . ,N (3.37)

whereα− = (α−
1 , . . . ,α−

N )T ∈R
N α+ = (α+

1 , . . . ,α+
N )T ∈R

N are the positive Lagrange
multipliers. The resulting function̂f can be evaluated at a new point x∗ ∈ R

D as

f̂ (x∗) = ΩD (x∗)
T(α̂−− α̂+). (3.38)
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Figure 3.2: Illustration of the principle behind bounding the empirical risk. (a)
Statistical learning theory provides bounds on the worst case deviation of the risk of
a function in terms of the empirical risk and the capacity of the functions.(b) Using
the upper bound (3.35), the empirical risk minimizer will converge to the theoretical
risk minimizers whenN → ∞ andB < ∞. If minimal empirical risk is attained (dashed
vertical line in), the minimizer of the true risk must satisfies the interval indicated by
the black arrows with high probability.
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Proof. One can reformulate theε-loss max(0, |ei − ε|) by using the slack variables
ξi = max(0, |ei − ε|) ∈ R

+,N as follows

ξi s.t. − (ξi + ε) ≤ wTϕ(xi)−yi ≤ (ε +ξi), ξi ≥ 0. (3.39)

Employing this change of variables in the cost function (3.36), the Lagrangian becomes

LC,ε(w,ξi ;α+,α−,β ) =
1
2

wTw+C
N

∑
i=1

ξi +
N

∑
i=1

α+
i

[
(wTϕ(xi)−yi)− (ξi + ε)

]

+
N

∑
i=1

α−
i

[
−(wTϕ(xi)−yi)− (ξi + ε)

]
−

N

∑
i=1

βiξi , (3.40)

with positive multipliersα+ = (α+
1 , . . . ,α+

N )T ∈ R
+N, α− = (α−

1 , . . . ,α−
N )T ∈ R

+N

andβ = (β1, . . . ,βN)T ∈ R
+N. The necessary and sufficient conditions for optimality

are given as

KKT





∂LC,ε
∂w

= 0→ w = ∑N
i=1(α

−
i −α+

i )ϕ(xi) (a)

∂LC,ε
∂ξi

= 0→ C = α−
i +α+

i +βi ∀i = 1, . . . ,N (b)

α+
i ,α−

i ,βi ≥ 0 ∀i = 1, . . . ,N (c)
−(ξi + ε) ≤ wTϕ(xi)−yi ≤ (ξi + ε) ∀i = 1, . . . ,N (d)
ξi ≥ 0 ∀i = 1, . . . ,N (e)
α+

i

[
(wTϕ(xi)−yi)− (ξi + ε)

]
= 0 ∀i = 1, . . . ,N ( f )

α−
i

[
−(wTϕ(xi)−yi)− (ξi + ε)

]
= 0 ∀i = 1, . . . ,N (g)

βiξi = 0. ∀i = 1, . . . ,N (h)
(3.41)

Alternatively, one can reformulate the optimization problem (3.36) as a saddle-point
problem minw,ξ maxα+,α−,β or in its dual form as in (3.37) after elimination of the
primal unknownsw,ξ and the dual multipliersβ . The obtained estimator ˆwTϕ(·) can
be evaluated in a new point using only the dual variables as in(3.38).

This formulation was coined as the Support Vector regressor(SVM regressor) (Vapnik,
1998). Note the correspondence between the dual representation of the solution to the
L2 (3.14) and theL1 kernel machine (3.38). The representer theorem states thatthis
correspondence is not a coincidence. In the language of SVM,the non-sparse Lagrange
multipliersαi are denoted as support values and the corresponding vectorsxi are called
support vectors. Note that sparseness here results from theuse of the 1-norm and the
inequalities. Following the complementary slackness conditions (3.41.fg), the support
vectors are located outside or on the maximal margin boundary f̂ (x)± ε.

Example 3.3 [Estimating location parameters, II] As an application of this result,
reconsider the setting of Example 1.2 of a sample{yi}N

i=1 sampled from an univariate
random variableY. Let the pdf ofY be a Laplacian such thatpY(y) = L (µ ,σ) =
1

2σ exp(−|y−µ |/σ). This distribution occurs e.g. as the distribution of the mutual
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Figure 3.3:The solid lines indicate theL1 (a) and theL2 (b) loss function used for the
estimation of location. The dashed line in(a) represents the values of the term(α+

i −
α−

i ) in the L1 estimator corresponding with the residual termei . The dashed line in
(b) represents the Lagrange multiplierαi of the dual of theL2 estimator corresponding
with the residual termei , see Example 1.2. Note the correspondence of the dashed line
with the theoretical influence function of the mean and the median.
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differences between two independent variates with identical exponentialdistributions
(Abramowitz and Stegun, 1972).

The maximum likelihood estimator of the location parameterµ then becomes

µ̂ = argmax
µ

log
N

∏
i=1

1
2σ

exp

(−|yi −µ |
σ

)

= argmin
µ

N

∑
i=1

|yi −µ |

= argmin
µ,e

N

∑
i=1

ei s.t. −ei ≤ yi −µ ≤ ei , (3.42)

which can be cast as an LP problem, see also Chapter 2. The Lagrangian becomes
L1(µ ,e;α+,α−) = ∑N

i=1ei +∑N
i=1 α+

i (µ−yi −ei)+∑N
i=1 α−

i (−µ +yi −ei) with positive
multipliers α+ = (α+

1 , . . . ,α+
N )T ∈ R

+,N andα− = (α−
1 , . . . ,α−

N )T ∈ R
+,N. Necessary

and sufficient conditions are given by the Karush-Kuhn-Tucker conditions:

KKT(µ ,e;α+,α−) =





∂L1

∂ei
= 0→ 1 = α+

i +α−
i ∀i = 1, . . . ,N (a)

∂L1

∂ µ
= 0→ ∑N

i=1 α+
i = ∑N

i=1 α−
i ∀i = 1, . . . ,N (b)

−ei ≤ yi −µ ≤ ei ∀i = 1, . . . ,N (c)
α+

i ,α−
i ≥ 0 ∀i = 1, . . . ,N (d)

α+
i (µ −yi −ei) = 0 ∀i = 1, . . . ,N (e)

α−
i (µ −yi +ei) = 0. ∀i = 1, . . . ,N ( f )

(3.43)
From the complementary slackness constraints (3.43.ef), it follows that α+

i andα−
i can

only be non-zero simultaneously whenµ = yi . Furthermore, the relationα+
i (1−α−

i ) = 0
holds elsewhere. In case all samplesyi were different, the equalityyi = µ can only be
attained for a singleyi , sayyµ . In summary,





α+
i = I(µ −yi > 0), α−

i = I(µ −yi < 0) if yi 6= µ
α+

i = α−
i = 0.5 if yi = µ

∑N
i=1 I(µ −yi > 0) = ∑N

i=1 I(µ −yi < 0),

(3.44)

where the indicator functionI(x > 0) equals one ifx > 0 and zero else. IfN
were odd, condition (3.43.b) ensures that(N− 1)/2 number of data-points are strictly
lower than µ and (N − 1)/2 are strictly larger such that̂µ = y((N+1)/2) If N were
even,N/2 data-points are strictly lower thanµ and N/2 are strictly larger, and̂µ =(

y((N−1)/2) + y((N+1)/2)

)
/2. As such the median would correspond with maximum

likelihood estimate whenever a Laplacian distribution may be postulated.

Figure 3.3.a illustrates the connection between the loss function|ei | and the value of the
corresponding Lagrange multipliers(α+

i −α−). Following Subsection 3.3.3, one sees
the connection between(α+

i −α−) and the sensitivity of the valuesei in the median
estimator. Figure 3.3.b shows the case of theL2 location estimator and the Lagrange
multipliersαi corresponding withei , again suggesting the sensitivity interpretation. For a
complete account of robust location estimators and influence functions,see e.g. (Andrews
et al., 1972) and the survey in (De Brabanter, 2004).
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3.5 L∞ Kernel Machines: Support Vector Tubes

A slightly different setting is considered. Example 3.4 considers the most basic case
(without covariates) in some detail.

Example 3.4 [Tolerance bounds] Let DZ denote a set{zi}N
i=1 ⊂ R sampled i.i.d from a

random variableZ with cdf PZ . Given an interval[−t, t]⊂R, one can give a bound on the
probability that future samplesz∗ ∈ Z sampled from the same distribution will lie inside
the interval. LetT : R

+ → S ⊂ R be elements of the following class

FT =
{

T : R
+ → S

∣∣ T(t) = [−t, t],0≤ t ∈ R
}

. (3.45)

Let the true risk and its empirical counterpart be defined respectively as





R1
T(It ,PZ) =

∫
It(|z| > t)dPZ(z)

R̂1
T(t,DZ) = 1

N ∑N
i=1 It(|zi | > t),

(3.46)

whereIt(|z| > t) equals one ifz 6∈ [−t, t] and zero otherwise. Ift is chosen with zero
empirical risk (R̂1

T(t,DZ) = 0), and after constructing the cdf and the empirical cdf (ecdf)
of the datasetD|Z| = {|zi |}N

i=1. Then the application of classical results (Vapnik, 1998)
gives the following results

• Due to the Glivenko-Cantelli theorem, the ecdf of|zi | will converge to the true cdf
whenN → ∞ such that

lim
N→∞

sup
z≥0

∣∣PZ(z)− P̂Z(z)
∣∣ P→ 0. (3.47)

• Application of the law of the iterated logarithm gives

Prob

(
lim
l→∞

sup
N>l

R1
T(It ,PZ) <

√
ln lnN

2N

)
= 1. (3.48)

• From the Kolmogorov-Smirnoff bound, the following inequality can be derived

Prob
(
R1

T(It ,PZ) > ε
)

< 2exp(−2ε2N), (3.49)

which hold for finite sample sets with sizeN.

• A related result originates from the theory of random variables and order statistics
known as the formulation of tolerance intervals:

Prob
(
R1

T(It ,PZ) > ε
)
≤ NεN−1− (N−1)εN, (3.50)

where 0< α < 1 is the confidence level, see e.g. (Rice, 1988), Chapter 3, Example
E.

Given a set of samplesD from a random vector(X,Y) with joint distributionPXY . let
Z be a random variable defined asZ = Y − f (X) with f : R

D → R a fixed function.
The transformed dataset then becomesDZ = {(xi ,zi)}N

i=1 wherezi = yi − f (xi). The
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Figure 3.4: (a) Illustration of the intuition behind the interpretation ofinterval
estimation in a univariate sample as explained in Example 3.4. (b) In the setting of
regression, the conditional distributionP(Y|X = x) may be estimated by the empirical
cdf estimator based on the residualsei = yi − f (xi) of the data observations (black
crosses), resulting in an uncertainty region as indicated by the gray zones. The solid
black line indicates the expected conditional densityf̂ (x) = E[Y|X = x]. The black
arrow indicates the height of the region with zero empiricalrisk.

marginal probability of the random vector(X,Z) over X becomes Prob(Z ≤ z,X ∈
R

d) = Prob(Z ≤ z) = PZ(z). The results of Example 3.4 may be used to derive bounds
on the marginal risk and the marginal empirical risk of the tube defined as follows





RT(It ,PXY ) =
∫

I (y 6∈ T(x))dPYX (yx) =
∫

It (|z| > t)dPZ(z)

R̂T(w, t,D) = 1
N ∑N

i=1 I(yi 6∈ T(xi)),
(3.51)

whereIt(y 6∈ T(x)) equals one ify 6∈ [wTϕ(x)− t, wTϕ(x) + t] and zero otherwise.
Subsection 3.6.2 gives a more detailed derivation which incorporates the complexity
of the tube. Consider the task of approximating the unknown support ofPXY . As in
practice one typically distinguishes between the unknown response variableY and the
inputsX which happen to be given, a support may be expressed as a function of the
given dependent variableX = x. To simplify matters further, the following family of
support functions is considered

Fϕ,T = {T(w, t) = wTϕ(x)± t | w∈ R
Dϕ , t ∈ R

+}. (3.52)

In a practical setting, those result may be used as follows. LetT(w, t) be an element of
Fϕ,T with empirical risk zero.Let {(x j ,y j)}N

j=1 ⊂ R
D ×R be drawn i.i.d. according

to the same distribution PXY underlyingD . In this case the output samples yj will on
average lie inside the interval T(x j) with high probability. This result shifts the focus
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of the point estimator̂f to the interval estimator[ f̂ − t̂, f̂ + t̂] denoted as the support
tube. As such, the proposed support vector tube is closely related to results in novelty
detection algorithms (Tax and Duin, 1999). Figure 3.5 illustrates the principle behind
the Support Vector Tube on a one-dimensional example. The primal-dual derivation is
summarized in the following Lemma.

Lemma 3.7. [Support Vector Tubes] Consider the class of support tubesFϕ,T

defined in (3.52). Letµ > 0 be a hyper-parameter. The smallest tube of minimal
complexity is found as the solution to the following optimization problem

(ŵ, t̂) = argmin
w,t

Jµ(w, t) =
1
2

wTw+ µt

s.t. − t ≤ wTϕ(xi)−yi ≤ t, ∀i = 1, . . . ,N. (3.53)

The dual problem becomes

(α̂+, α̂+) = argmax
α+,α−

−1
2
(α−−α+)TΩ(α−−α+)+(α−−α+)TY

s.t. (α− +α+)T1N = µ , α+, α− ≥ 0N. (3.54)

The resulting tube can be evaluated in a new point x∗ ∈ R
D as follows

T̂(x∗) = ΩD (x∗)
T(α̂−− α̂+)± t̂, (3.55)

where α̂+ and α̂− solve (3.54) and̂t can be recovered from the KKT conditions
(3.57.fg).

Proof. The Lagrangian becomes

Lµ(w, t;α+,α−) =
1
2

wTw+ µt +
N

∑
i=1

α+
i

[
(wTϕ(xi)−yi)− t

]

+
N

∑
i=1

α−
i

[
−(wTϕ(xi)−yi)− t

]
, (3.56)

with positive multipliersα+ = (α+
1 , . . . ,α+

N )T ∈ R
+N, α− = (α−

1 , . . . ,α−
N )T ∈ R

+N.
The necessary and sufficient conditions for optimality are given as

KKT





∂Lµ

∂w
= 0→ w = ∑N

i=1(α
−
i −α+

i )ϕ(xi) (a)

∂Lµ

∂ t
= 0→ µ = ∑N

i=1

(
α−

i +α+
i

)
∀i = 1, . . . ,N (b)

α+
i ,α−

i ≥ 0 (c)
−t ≤ wTϕ(x)i −yi ≤ t ∀i = 1, . . . ,N (d)
α+

i

[
(wTϕ(xi)−yi)− t

]
= 0 ∀i = 1, . . . ,N ( f )

α−
i

[
−(wTϕ(xi)−yi)− t

]
= 0. ∀i = 1, . . . ,N (g)

(3.57)
The saddle-point interpretation leads to the dual problem (3.54). The parametert can
be recovered from the complementary slackness conditions (3.57.fg) by the equality
wTϕ(xi)−yi = t which hold whenα+

i > 0.
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Figure 3.5:Illustration of the Support Vector Tube.(a) Let D be a sample of a joint
distributionPXY with bounded support.(b) Consider the transformed dataZ = Y −
f (X). The solid line shows an absolute upper-UZ respectively lower-bounduZ of the
support ofZ such thatP(uZ < Z < UZ) = 1. The dashed line shows the empirical
counterpart.
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3.6 Robust Inference of Primal-Dual Kernel Machines

3.6.1 Huber’s loss function

Definition 3.3. [Contaminated Noise Model, (Huber, 1964)] The general gross-
error model orρ-contamination noise model is defined as the union of the nominal
noise model F0 and an arbitrary continuous distribution G. Let0≤ ρ ≪ 1 be the first
parameter of contamination:

F (F0,ρ) = {F |F(x) = (1−ρ)F0(x)+ρG(x)}. (3.58)

This contamination scheme describes the case where the dataoccurs with large
probability (1− ρ) according to the (ideal) nominal model. Outliers occur with
probability ρ according to the distribution G.

A robust way to handle this family of noise models in parametric models is the use of
the so-called Huber loss function which is a combination of an L2 norm for obtaining
efficiency andL1 for the sake of robustness. The loss function is defined as follows

ℓH(e) =

{
e2

2 |e| ≤ c

c|e|− c2

2 |e| > c,
(3.59)

wherec is a constant depending on the noise levelσe. A good initial estimate forc was
proposed as ˆc = 1.483 MAD(D) where MAD(D) is the Median Absolute Deviation
of the estimated residuals MAD(D) = median

(
{ei = yi − f̂ (xi)}N

i=1

)
. Robust statistics

for non-parametric techniques were studied in (Hettmansperger and McKean, 1994).
Analogously, one can consider this family of noise models for non-parametric primal-
dual kernel machines as proposed in (Vapnik, 1998). The primal-dual derivations are
summarized in the following lemma.

Lemma 3.8. [Primal-Dual Kernel Machine with Huber-loss (Vapnik, 1998)]
Consider the class of modelsFϕ . Let c,ν ∈ R0 be positive constants and r=
(r1, . . . , rN)T ∈ R

N be slack-variables modeling the outliers. Then the kernel machine
based on the Huber loss function is equivalent to the following optimization problem

(ŵ, ê, r̂ i) = argmin
w,e,r

Jc,γ(w,e, r) =
1
2

wTw+ γ

(
c

N

∑
i=1

r i +
1
2c

N

∑
i=1

e2
i

)

s.t. − r i ≤ wTϕ(x)+ei −yi ≤ r i . (3.60)

The dual problem becomes

(α̂+, α̂−) = argmax
α+,α−

−1
2
(α−−α+)T

(
Ω+

c
γ

IN

)
(α−−α+) + YT(α−−α+)

(α+
i +α−

i ) = γc, α+
i ,α−

i ≥ 0, ∀i = 1, . . . ,N. (3.61)

and the estimate of a new data point can be written asf̂ (x∗) = Ω(x∗)(α̂+− α̂−) where
α̂+, α̂− solves (3.61).
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Proof. The Lagrangian of the cost-function becomes

Lc,γ(w,e, r;α+,α−) =
1
2

wTw+ γ

(
c

N

∑
i=1

r i +
1
2c

N

∑
i=1

e2
i

)

+
N

∑
i=1

α+
i

[
(wTϕ(xi)+ei −yi)− r i

]
+

N

∑
i=1

α−
i

[
−(wTϕ(xi)+ei −yi)− r i

]
, (3.62)

with positive Lagrange multipliersα+,α− ∈ R
+,N. The Karush-Kuhn-Tucker condi-

tions for optimality become

KKT





∂Lc,γ

∂w
= 0→ w = ∑N

i=1(α
−
i −α+

i )ϕ(xi) (a)

∂Lc,γ

∂ei
= 0→ γei = c(α−

i −α+
i ) ∀i = 1, . . . ,N (b)

∂Lc,γ

∂ r i
= 0→ γc = α+

i +α−
i ∀i = 1, . . . ,N (c)

α+
i ,α−

i ≥ 0 (d)
−r i ≤ wTϕ(xi)+ei −yi ≤ r i ∀i = 1, . . . ,N (e)
α+

i

[
(wTϕ(xi)+ei −yi)− r i

]
= 0 ∀i = 1, . . . ,N ( f )

α−
i

[
−(wTϕ(xi)+ei −yi)− r i

]
= 0. ∀i = 1, . . . ,N (g)

(3.63)
Substituting the conditions (3.63.abc) and maximizing over the Lagrange multipliers
α+,α− results in the dual problem (3.61).

The following algorithm can be used in practice to speedup the computations.

Algorithm 3.1. [Iteratively Re-weighted Robust LS-SVM] An iteratively re-
weighted algorithm based on the weighted LS-SVM regressor is proposed to solve
the optimization problem (3.60) efficiently. The algorithmwas first proposed as a
standalone formulation of a robust LS-SVM for regression (Suykenset al., 2002a). It
is based on following reformulation of the regularized least squares cost-function (3.9)
using the adaptive weighting termsΓ = (Γ1, . . . ,ΓN)T ∈ R

N:

(ŵ, ê) = argmin
w,e

J ′
c,Γ(w,e) =

1
2

wTw+
1
2

N

∑
i=1

Γie
2
i

s.t.





wTϕ(xi)+ei = yi (a)

Γie2
i = ℓH(ei) = e2

2 |e| ≤ c (b)

Γie2
i = ℓH(ei) = c|e|− c2

2 |e| > c. (c)

(3.64)

By alternating over the constraints (3.64.a) and (3.64.bc), one obtains an iterative
algorithm for solving the problem as follows:

• If the weightingΓ were known, one can obtain the solution to (3.64) by solving a
linear system following the primal-dual derivation of the LS-SVR as described in
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Figure 3.6:Empirical assessment of the influence of outliers on the Huber based SVM
regressor, the standard SVM regressor and the LS-SVM regressor. (a) Effect of the
global performance of the estimators when ranging the errorei on theith output from
0 to 5. (b) Influence on theith Lagrange multiplierαi of the estimators when ranging
the errorei on theith output from0 to 5.
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Subsection 3.3 (see (Suykenset al., 2002a)). Let DΓ = diag(Γ1, . . . ,ΓN) ∈ R
N×N

be a diagonal matrix, then the weighted LS-SVR results from

(Ω+DΓ) α = Y. (3.65)

From the necessary and sufficient conditions for optimalityit follows thatΓi êi =
α̂i whereα̂ = (α̂1, . . . , α̂N)T ∈ R

N solve (3.65). The estimated functionf̂ can be
evaluated in any point x∗ ∈ R

D as f̂ (x∗) = ΩD (x∗)α̂ (Suykenset al., 2002a).

• Given the estimateŝe= (ê1, . . . , êN)T ∈R
N, the weightingsΓ can be recomputed

by solving the equations

Γie
2
i = ℓH(ei) =

{
e2
i
2 |ei | ≤ c

c|ei |− c2

2 |ei | > c.
∀i = 1, . . . ,N, (3.66)

for Γi . From this equality, it follows that|α̂i | ≤ γc for all i = 1, . . . ,N.

• The algorithm then goes as follows:

1. InitiateΓ(t) = γ1N for t = 0

2. Computeα(t) from (3.65) andΓ(t)

3. Recompute the parametersΓ∗ by using equation (3.66)

4. Let 0 ≤ ρ ≪ 1 be a factor to decrease the speed of convergence and to
avoid instabilities. ThenΓ(t+1) = ρΓ(t) +(1−ρ)Γ∗

5. Let t= t +1 and iterate steps 2-5 until the algorithm converges.

A further convergence analysis of this algorithm is extended to future work.

It turns out that only a very few iterations are needed in practice (Suykenset al., 2002a)
and the solution follows much faster than from the QP formulation implemented by a
general purpose solver.

Example 3.5 [Comparison of Robust inference Machines] A simple example is given
to illustrate the effective robustness of the different approaches. A dataset is generated
as followsyi = sinc(xi) + ei wherexi is taken from the interval[−3, 3], N = 100 and
ei is taken from a contaminated Gaussian distribution. Consider the standard LS-SVM
regressor (Section 3.3), SVM for regression (Section 3.4), Huberbased SVM regressor
(subsection 3.6.1) and respectively. In the first example, theith error termei is grown
from zero to 10 and the corresponding prediction error

∫ |sinc(x)− f̂ (x)|dx is computed
for the four estimators. Figure 3.6.a reports the evolution of the global performance of
the different estimators while the errorei becomes more outlying. Figure 3.6.b gives the
corresponding evolution of theith Lagrange multiplier.

Let ei be distributed as followsei ∼ (1−ρ) N (0,0.1)+ρ U ([−10,10]) with 0≤ ρ ≪ 1
the factor of contamination. Figure 3.7.a gives the empirical influence function when
the factor of contaminationρ grows. Figure 3.7.b reports the performance in the case
ρ = 0, showing that the robustness of the hSVR and the SVR comes at the priceof
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efficiency and performance in the uncontaminated case with respect to the LS-SVR. While
the qualitative behavior is typical for the estimators, the quantitative properties (slope,
breakdown point etc.) depend on the chosen hyper-parameters. The hyper-parameters
where tuned using 10-fold cross-validation on the uncontaminated case and were fixed
throughout the experiment for clarity of illustration.

3.6.2 ν- Support Vector Tubes

A relaxation of the finite support assumption is considered based on the contaminated
noise model (3.58). The primal-dual derivations are summarized in the following
lemma.

Lemma 3.9. [ν-Support Vector Tubes] Consider the tube T(x) = wTϕ(x)±t where
w and t are to be estimated. Letν ,µ ∈ R

+
0 be constants.

(ŵ, t̂, r̂ i) = argmin
w,t,r

Jν ,µ(w, t, r) =
1
2

wTw+ν

(
N

∑
i=1

r i + µt

)

s.t.

{
−t − r i ≤ wTϕ(x)−yi ≤ t + r i ∀i = 1, . . . ,N,

r i ≥ 0 ∀i = 1, . . . ,N.
(3.67)

The dual problem becomes

(α̂+, α̂−) = argmax
α+,α−

−1
2
(α+ −α−)TΩ(α+ −α−)+(α+ −α−)TY

s.t.





0N ≤ α+,α−

(α+
i +α−

i ) ≤ ν ∀i = 1, . . . ,N

(α+
i +α−

i )T1N = νµ ,

(3.68)

and the estimate of a new datapoint can be written asf̂ (x∗) = Ω(x∗)(α̂+− α̂−) where
α̂− andα̂+ solve (3.68).

Proof. The Lagrangian of the cost-function becomes

Lν ,µ(w, r, t;α+,α−) =
1
2

wTw+ν

(
N

∑
i=1

r i + µt

)
−

N

∑
i=1

βir i

−
N

∑
i=1

α+
i

[
(wTϕ(xi)−yi)− t − r i

]
−

N

∑
i=1

α−
i

[
−(wTϕ(xi)−yi)− t − r i

]
, (3.69)

with Lagrange multipliersα+,α−,β ∈ R
N. The Karush-Kuhn-Tucker conditions for
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Figure 3.7: Empirical assessment of the performance of the Huber based SVR,
the standard SVR and the LS-SVR.(a) Empirical influence function of the global
performance of the estimators when increasing the factor ofcontaminationρ from
0 to 50%. (b) Global Performance of the estimators in the case of uncontaminated data
ei is approximatively normally distributed. The LS-SVR obtains the best performance
with the lowest variance.
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optimality become

KKT





∂Lν ,µ

∂w
= 0→ w = ∑N

i=1(α
+
i −α−

i )ϕ(xi) (a)

∂Lν ,µ

∂ t
= 0→ νµ = ∑N

i=1(α
+
i +α−

i ) ∀i = 1, . . . ,N (b)

∂Lν ,µ

∂ r i
= 0→ ν = βi +α+

i +α−
i ∀i = 1, . . . ,N (c)

α+
i ,α−

i ,βi ≥ 0 (d)
−r i − t ≤ wTϕ(xi)−yi ≤ t + r i ∀i = 1, . . . ,N (e)
r i ≥ 0 ∀i = 1, . . . ,N ( f )
α+

i

[
(wTϕ(xi)−yi)− t − r i

]
= 0 ∀i = 1, . . . ,N (g)

α−
i

[
−(wTϕ(xi)−yi)− t − r i

]
= 0 ∀i = 1, . . . ,N (h)

βir i = 0. ∀i = 1, . . . ,N (i)
(3.70)

Substituting the conditions (3.70.abc) and maximizing over the Lagrange multipliers
α+,α− results in the dual problem (3.68).

The naming conventionν-SVT follows from the fact that the primal problem and the
dual derivation goes along the same lines as theν-SVM (Scḧolkopf and Smola, 2002),
although the setting is different. This observation triggers the following result, which
follows from the Karush-Kuhn-Tucker conditions.

Lemma 3.10. [Sparseness inν-SVTs] The hyper-parameterµ is a lower-bound to the
number of nonzero Lagrange multipliers and serves as an upper-bound to the number
of outliers oi outside the tube.

Proof. This follows from the observation that for alli = 1, . . . ,N, the values ofα+
i and

α−
i cannot be nonzero simultaneously whent > 0. Furthermore, conditions (3.70.cd)

guarantee thatα+
i andα−

i lie in the interval[0,ν ] (also referred to as box constraints).
The second statement follows from the complementary slackness condition (3.70.i).

An analysis of the finite sample behavior of the robust SVT follows along the
same lines as that of the Support Vector Machine for regression (Shawe-Taylor and
Cristianini, 2004).

Theorem 3.3. [Risk ofν-SVTs, (Shawe-Taylor and Cristianini, 2004)]Let B∈ R+

and0 < ε ≪ 1 be fixed. Consider the classFϕ,T with bounded norm‖w‖2
2 ≤ B. Let

D = {(xi ,yi)}N
i=1 drawn i.i.d. from a fixed but unknown distribution PXY . Let the risk

RT(w, t,PXY ) and its empirical counterpartR̂T(w, t,D) be defined as in (3.51). Then
the following inequality holds for every element of the class Fϕ,T with bounded norm
‖w‖2 ≤ B simultaneously:

P

(∣∣∣∣∣RT(w,τ,PXY )− R̂T(w, t,D)

ε − τ

∣∣∣∣∣ ≤
4B

√
tr(Ω)

N(ε − τ)
+3

√
ln(2/ε)

2N

)
≥ (1− ε), (3.71)

whereτ ∈ R
+ is such that t< τ.
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This result corresponds entirely with Theorem 7.49 in (Shawe-Taylor and Cristianini,
2004). This provides an upper-bound to the theoretical riskthat a new point drawn
according toPXY will lie outside the Support Vector Tube with empirical riskas
obtained (3.60).

3.7 Primal-Dual Kernel Machines for Classification

While the previous elaboration mainly focused on the case of regression, the past
literature on kernel machines mainly considered the case ofclassification for a number
of reasons which are properly summarized in the following quotation

“(...) However, it was extremely lucky that at the first and the
most important stage of developing the theory - when the mainconcepts
of the entire theory had to be defined - simple sets of functions were
considered. Generalizing these results obtained for estimation indicator
functions (pattern recognition) to the problem of estimating real-valued
functions (regressions, densities, etc.) was a purely technical achieve-
ment.” (Vapnik, 1998).

Though a multitude of formulations and derivations exist, only two cases are elaborated
in some detail.

3.7.1 Standard Support Vector Machines

Let D = {(xi ,yi)}N
i=1 be samples from the random vector(X,Y) such thatxi ∈ R

D and
yi ∈ {−1,1}. Let us consider the hyperplane described as

Hp(w) =
{

x∈ R
dϕ

∣∣ f (x) = wTϕ(x) = 0
}

, (3.72)

where againϕ : R
D → R

Dϕ is a fixed but unknown mapping. LetFHp = {Hp(w), w∈
R

Dϕ } be the class of hyperplanes which is considered in this case.The placement of a
new pointx∗ with respect to the hyperplane Hp(w) can be determined as follows

ŷ∗ = sign[ f (x∗)] = sign
[
wTϕ(x∗)

]
. (3.73)

The distance of any pointϕ(x∗) to the hyperplane Hp(w) ∈ FHp is given as

d(ϕ(x∗),Hp(w)) =
| f (x∗)|

‖ f ′(x∗)‖2
≥ yi(wTϕ(x∗))

wTw
. (3.74)

Now consider the problem of finding the hyperplane with maximal margin:

(ŵ,m̂) = argmax
w,m

m s.t. d(ϕ(xi),Hp(w)) ≥ m. (3.75)
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Without loss of generality one can change variables such that wTw = 1/m. As such,
one rewrite equation (3.75)

ŵ = argmin
w

1
2

wTw s.t. yi
(
wTϕ(xi)

)
≥ 1 ∀i = 1, . . . ,N. (3.76)

Moreover, it follows that the resulting margin equalsm= 1/wTw. A proper relaxation
was formulated to the case where the data of the different classes is not strictly
separable by an hyperplane from the classFHp. After introducing the slack variables
ξ = (ξ1,ξ2, . . . ,ξN)T , one can write

(ŵ, ξ̂ ) = argmin
w,ξ

1
2

wTw+C
N

∑
i=1

ξi

s.t. yi
(
wTϕ(xi)

)
≥ 1−ξi ∀i = 1, . . . ,N. (3.77)

The first notions of this strategy appeared in (Vapnik, 1982). This formulation of SVMs
appeared first in literature in (Boseret al., 1992) and was elaborated in (Vapnik, 1995).

Statistical learning theory provides lower-bounds on the generalization performance of
such a maximal margin classifier. A central result is summarized in the following result
due to (Vapnik, 1998).

Theorem 3.4. [Bounding the risk]Let 0 < ε ≪ 1 be fixed. LetD = {(xi ,yi)}N
i=1 ⊂

R
D ×{−1,1}N be sampled i.i.d. from the fixed but unknown distribution PXY . Let the

theoretical risk of a classifier be defined as

R( f ,PXY ) =

∫
I(y f(x) < 0)dPXY , (3.78)

where I( f (x)y< 0) is one if f(x)y< 0 and zero otherwise. Its empirical counterpart is
defined asR̂(w,D) = 1

N ∑N
i=1‖yiwTϕ(xi)‖. The following bound holds simultaneously

for all hyperplanes with given VC-dimension c

P

(
R( f ,PXY ) ≤ R̂(w,D)+

√
cln(2N/c+1)− ln(ε/4)

N

)
≥ (1− ε). (3.79)

Extensions to so-called ramp-functions (squared classification loss) were studied e.g.
in (Cristianini and Shawe-Taylor, 2000). Alternative bounds were constructed using
complexity measures as the (empirical) Rademacher complexity (Shawe-Taylor and
Cristianini, 2004). A modified version of the primal-dual derivation (as can be found
e.g. in (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000)) is given in Subsection
6.4.3.

3.7.2 LS-SVMs for classification

Consider the parametric assumption that both classesC+1 = {(xi ,yi)}yi=+1 andC−1 =
{(xi ,yi)}yi=−1 are drawn from two different multivariate Gaussian distributions with
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equal variances, sayC+1 ∼ N (w+1, Idσ2) andC−1 ∼ N (w−1, Idσ2). Some algebra
shows (see e.g. (Friedman, 1989; Hastieet al., 2001)) that Hp(w) = 1

2(w+1 + w−1)
describes the unique line such thatx∈Hp(w)⇔P(y= +1|X = x) = P(Y =−1|X = x).
Given a finite sample, the penalized maximum likelihood estimate results from the
following optimization problem

(ŵ, ê) = argmin
w,e

1
2

wTw+
γ
2

N

∑
i=1

e2
i s.t. yi

(
wTxi

)
= 1−ei . (3.80)

Employing the primal-dual optimization framework, it is readily seen (Suykens and
Vandewalle, 1999; Suykenset al., 2002b; Van Gestelet al., 2002) that the solution is
characterized by the following linear system

(
Ωy +

1
γ

IN

)
α = 1N, (3.81)

whereΩy ∈ R
N×N is the modified kernel matrix defined asΩy

i j = K(xi ,x j)yiy j for all
i, j = 1, . . . ,N denotes the pointwise matrix product. The decision of a new point x∗ is
then made as follows

ŷ = sign

[
N

∑
i=1

α̂iyiK(xi ,x∗)

]
, (3.82)

whereα̂ = (α̂1, . . . , α̂N)T ∈R
N solve (3.81). This primal-dual derivation including bias

term was coined as Least Squares SVM classifier (Suykens and Vandewalle, 1999).
The dual solution is strongly related as kernel Fisher discriminant analysis (Baudat and
Anouar, 2000), proximal SVM (Fung and Mangasarian, 2001) and Regularized Least
Squares Classification (Rifkin, 2002).

Other kernel based approaches towards the task of classification include amongst others
Parzen based classifiers as the naive Bayes classifier, see e.g. (Hastieet al., 2001) and
kernel logistic regression (Jaakkola and Haussler, 1999).Robust minimax extensions
were studied in (Lanckrietet al., 2002; Trafalis and Alwazzi, 2003).
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Chapter 4

Structured Primal-Dual Kernel
Machines

It is a common intuition that the incorporation of prior knowledge
into the problem’s formulation will lead to improvements ofthe final
estimate with respect to naive applications of an off-the-shelf method. The
following chapter shows the flexibility of the primal-dual optimization
framework for decoding this knowledge into the estimation problem.
Various types of structural information are considered, including semi-
parametric model structures (Section 4.1), additive models (Section 4.1),
imposing pointwise structure (Section 4.3) in the form of inequalities and
its extension towards handling censored observations (Section 4.4).

4.1 Semi-Parametric Regression and Classification

4.1.1 Semi-parametric LS-SVMs for regression

Suppose the underlying function generating the data can be arbitrarily well approxi-
mated by a model contained in the following class

Fϕ,P =
{

f : R
D ×R

Dp → R
∣∣

f (x,xp) = wTϕ(x)+β Txp, w∈ R
dϕ ,β ∈ R

Dp
}

, (4.1)

wherex represents the non-parametric dependent variablex∈ R
D andxp ∈ R

Dp denote
the parametric dependent variable of dimensionDp. This setting reduces to the
commonly considered case of the intercept (bias) term whenever one choosesDp = 1
and xp = (1, . . . ,1)T ∈ R

N. Let Xp ∈ R
N×Dp denote the matrix withDp columns

where eachith column contains theN samples of theith parametric component for all

89
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i = 1, . . . ,Dp. Applications can be found in e.g. (Engleet al., 1986) for the modeling
of electricity demand.

As an example, consider again the regularized least squarescost function

(ŵ, β̂ , ê) = argmin
w,β ,e

J (w,β ,e) =
1
2

wTw+
γ
2

eTe

s.t. wTϕ(xi)+xp
i β +ei = yi ,∀i = 1, . . . ,N, (4.2)

where e = (e1, . . . ,eN)T ∈ R
N is a vector. Let 0Dp denote the vector of zeros

(0, . . . ,0)T ∈ R
Dp. The dual problem to this problem becomes similar as in (3.15)

[
0Dp×Dp Xp

T

Xp Ω+ 1
γ IN

][
β
α

]
=

[
0Dp

Y

]
, (4.3)

whereα ∈R
N are the Lagrange multipliers andΩ ∈R

N×N denotes the kernel matrix as
previously. Eliminating the Lagrange multipliers from thelinear system (4.3), results
in the following set of linear equations

[
XT

p

(
Ω+

1
γ

IN

)−1

Xp

]
β = XT

p

(
Ω+

1
γ

IN

)−1

Y. (4.4)

Note the correspondence with the generalized and weighted least squares regression
where the errors obey a pre-specified correlation function (Mardia et al., 1979;
Wetherill, 1986).

From the conditions of optimality, it follows that the optimal model can be evaluated
in a new point(x∗,x

p
∗) ∈ R

D ×R
Dp as follows

ŷ = ΩD (x∗)
T α̂ + β̂ Txp

∗ , (4.5)

where ΩD (x∗) = (K(x1,x∗), . . . ,K(xN,x∗))
T ∈ R

N and α̂ and β̂ solve (4.3). Fur-
thermore, the conditions for optimality result into the property γei = αi and the
orthogonality constraintsXTα = 0Dp in case the parametric components are not
regularizedγβ = 0. The following modification to the conjugate gradient algorithm
provides an efficient implementation for the solution of theset of linear equations (4.3):

Algorithm 4.1. [Semi-parametric Models] Given the set of linear equations (4.3),
the conjugate gradient algorithm (CG) can be modified for solving this positive semi-
definite linear system. First consider the positive definitematrix A∈ R

N×N and the
vector b∈ R

N, Then the set of linear equations Ax= b can be solved for x using CG as
described in e.g. (Golub and van Loan, 1989; Nocedal and Wright, 1999). Having fixed
this algorithm, one can cast the positive semi-definite problem (4.3) as two different,
less complex and strictly definite sets of equations as follows. The convergence speed
and the use of possible preconditioners (Nocedal and Wright, 1999) was investigated
in the context of LS-SVMs (Hamers, 2004).
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1. solve for A∈ R
N in the linear system

(
Ω+

1
γ

IN

)
A = Y. (4.6)

2. solve for B∈ R
N×Dp in the linear system

(
Ω+

1
γ

IN

)
B = Xp. (4.7)

3. Let S∈ R
Dp×Dp be defined as follows

S= XT
p B. (4.8)

4. The parametersβ then result from

Sβ = BTY. (4.9)

Note that this problem may be ill-conditioned as the condition number of S is
large.

5. The Lagrange multipliers solving (4.3) can be recovered as

α = A−BTβ . (4.10)

This algorithm corresponds with the derivation as in (Suykenset al., 1999; Suykenset
al., 2002b).

This algorithm can be verified easily by eliminating the variableB andA and comparing
the result with (4.4) and (4.3).

4.1.2 Semi-parameteric classification with SVMs

All machines described in the previous section can be extended with parameteric
components which are not to be regularized explicitly. Consider the case of classi-
fication with SVMs as described in Subsection 3.7.1. Let an observation consist of

a parametric termxP =
(

x(1), . . . ,x(P)
)T

∈ R
DP and a term used for non-parametric

modelingx∈ R
D. Consider the semi-parametric description of the hyperplane

Hp(w,β ) =
{

x∈ R
dϕ

∣∣ f (x) = wTϕ(x)+β Txp = 0
}

, (4.11)

with parametersβ ∈ R
Dp. Then the modified distance measure of a point consisting of

a parametric termxp
∗ ∈ R

DP andx∗ ∈ R
D is adopted

d(ϕ(x∗),Hp(w,β )) =
| f (x∗)|

‖ f ′(x∗)‖2
=

yi(wTϕ(x∗)+β Txp
∗)

wTw
. (4.12)

which is invariant to the parameteric termsxP. The resulting semiparameteric SVM is
summarized in the following Lemma.
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Lemma 4.1 (Semi-parameteric SVMs). Consider the maximal margin classifier
using a hyperpplane described in (4.11) and the modified distance function (4.12):

(ŵ, β̂ , ξ̂ ) = argmin
w,ξ ,β

1
2

wTw+C
N

∑
i=1

ξi

s.t.

{
yi

(
wTϕ(xi)+β Txp

i

)
≥ 1−ξi ∀i = 1, . . . ,N

ξi ≥ 0 ∀i = 1, . . . ,N.
(4.13)

The dual problem becomes

α̂ = argmax
α

−1
2

αTΩYα + α s.t.

{
∑N

i=1 αix
p
i = 0 ∀p = 1, . . . ,P

0≤ αi ≤C ∀i = 1, . . . ,N,
(4.14)

where α = (α1, . . . ,αN)T ∈ R
N are the Lagrange multipliers corresponding to the

constraints in (4.13) andΩY ∈ R
N×N is defined asΩy,i j = K(xi ,x j)yiy j for all i , j =

1, . . . ,N.

The proof is omitted as it goes along the same lines as described in the previous chapter.

Remark4.1. This result triggers the following observation. Let the parameteric terms
consist of two variables which are (close to) collinear. It is clear that the solution to
the primal problem (4.13) is numerical ill-conditioned as no form of regularization on
the parameters is present. The dual problem (4.14) is not suffering this problem as
the influence of the parameteric terms does only occur in the occurence of the equality
constraints. The ill-conditioning however will reoccur ifone is interested in the value
of the estimated parameters by exploiting the complementary slackness conditions.

4.2 Estimating Additive Models with Componentwise
Kernel Machines

Direct estimation of high dimensional nonlinear functionsusing a non-parametric
technique without imposing restrictions faces the problemof the curse of dimension-
ality (Bellman and Kalaba, 1965). One way to quantify the curse of dimensionality
is the optimal minimax rate of convergenceN−2l/(2l+D) for the estimation of anl
times differentiable regression function which convergesto zero slowly ifD is large
compared tol (Stone, 1982). Several attempts were made to overcome this obstacle,
including projection pursuit regression (Friedman and Tukey, 1974; Friedmann and
Stuetzle, 1981) and kernel methods for dimensionality reduction (KDR) (Fukumizuet
al., 2004).

Another possibility to overcome the curse of dimensionality is to impose additional
structure on the regression function. Additive models are very useful for approximating
high dimensional nonlinear functions (Stone, 1985; Hastieand Tibshirani, 1990).
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These methods and their extensions have become one of the widely used non-
parametric techniques as they offer a compromise between the somewhat conflicting
requirements of flexibility, dimensionality and interpretability. Traditionally, splines
(Wahba, 1990) are commonly used in the context of additive models as e.g. in
MARS (see e.g. (Hastieet al., 2001)) or in combination with ANOVA (Neteret
al., 1974). Additive models were brought further to the attention of the machine
learning community by e.g. (Vapnik, 1998; Gunn and Kandola,2002).

The following approach was described in (Pelckmanset al., 2004,In press). Some extra

notation is introduced. Letx consist ofP different componentsx =
(

x(1), . . . ,x(P)
)

where each component is defined asx(p) ∈ R
D(p)

andD(p) ∈ N for p = 1, . . . ,P. In the
simplest case, letP = D, D(p) = 1 andx(p) = xp for all p = 1, . . . ,D.

Definition 4.1. [Additive Model] An additive model consists of a sum of (possibly
nonlinear) functions each based on one (or a set of) independent variable(s). Let x∈
R

D represent a set of d components
(

x(1), ...,x(P)
)

f (x) =
P

∑
p=1

f p
(

x(p)
)

, (4.15)

where fp : R
D(p) → R are smooth functions.

The optimal rate of convergence for estimators based on thismodel isN−2l/(2l+d)

whered = maxp

(
D(p)

)
which is independent ofD (Stone, 1985), andl ∈ R

+ is a

measure of the smoothness of the underlying function. Most state-of-the-art estimation
techniques for additive models can be divided into two approaches (Hastieet al., 2001):

• Iterative approachesuse an iteration where in each step part of the unknown
components are fixed while optimizing the remaining components. This is
motivated as:

f̂ p1

(
x(p1)

k

)
= yk−ek− ∑

p2 6=p1

f̂ p2

(
x(p2)

k

)
, (4.16)

for all k = 1, . . . ,N andd1 = 1, . . . ,D. Once theN−1 components of the second
term are known, it becomes easy to estimate the lefthandside. For a large class
of linear smoothers, such so-called backfitting algorithmsare equivalent to a
Gauss-Seidel algorithm for solving a large (ND×ND) set of linear equations
(Hastieet al., 2001). The backfitting algorithm (Hastie and Tibshirani, 1990) is
theoretically and practically well motivated.

• Two-stages marginalization approachesconstruct in the first stage a general
black-box pilot estimator (as e.g. a Nadaraya-Watson kernel estimator) and
finally estimate the additive components by marginalizing (integrating out) for
each component the variation of the remaining components (see e.g. (Linton and
Nielsen, 1995)).
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Although consistency of both is shown under certain conditions, important practical
problems (number of iteration steps in the former) and more theoretical problems (the
pilot estimator needed for the latter procedure is a too generally posed problem) are
still left.

The framework of the primal-dual kernel machines does provide a one-stage alterna-
tive. For completeness, consider the case of the LS-SVM orL2 kernel machine. The
derivation however is extendable to any chosen loss function for fitting an additive
model which includes a (parametric) bias term. The considered model class becomes

Fϕ,(P) =

{
f (x) =

P

∑
p=1

wp
Tϕp

(
x(p)

)
+b

∣∣ wp ∈ R
D(p)

ϕ ,b∈ R

}
, (4.17)

whereϕp : R
D(p) →R

D(p)
ϕ is a fixed but unknown mapping to a space of dimensionD(p)

ϕ
(possibly infinite dimensional). Consider the modified regularization term

(ŵp, b̂, ê) = argmin
wp,b,e

J c
γ (wp,b,e) =

1
2

P

∑
p=1

wp
Twp +

γ
2

N

∑
i=1

e2
i

s.t.
P

∑
p=1

wT
pϕp

(
x(p)

i

)
+b+ei = yi , ∀i = 1, . . . ,N. (4.18)

Constructing the Lagrangian gives

L c
γ (wp,b,e;α) = J c

γ −
N

∑
i=1

αi

(
P

∑
p=1

wT
pϕp

(
x(p)

i

)
+b+ei −yi

)
, (4.19)

with multipliers α = (αi , . . . ,αN)T ∈ R
N. Taking the first order conditions for

optimality gives

KKT





∂L c
γ

∂wp
= 0→ wp = ∑N

i=1 αiϕp

(
x(p)

i

)
∀p = 1, . . . ,P

∂L c
γ

∂ei
= 0→ γei = αi ∀i = 1, . . . ,N

∂L c
γ

∂b
= 0→ ∑N

i=1 αi = 0

∂L c
γ

∂αi
= 0→ ∑P

p=1wT
pϕp

(
x(p)

i

)
+b+ei = yi , ∀i = 1, . . . ,N.

(4.20)

By eliminating the primal variableswp andei , one obtains the following dual linear
system [

0 1T
N

1N ΩP + 1
γ IN

][
b
α

]
=

[
0
Y

]
, (4.21)

whereΩP = ∑P
p=1 Ω(p) ∈ R

N×N andΩ(p)
i j = Kp

(
x(p)

i ,x(p)
j

)
= ϕp

(
x(p)

i

)T
ϕp

(
x(p)

j

)
is

the inner product of the feature maps of thepth component evaluated on the pointsx(p)
i
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andx(p)
j . LetΩ(p)

D =
(

Kp

(
x(p)

1 ,x(p)
∗

)
, . . . ,Kp

(
x(p)

N ,x(p)
∗

))
∈R

N, then thepth estimated

model f p can be evaluated in a new pointx∗ =
(

x(1)
∗ , . . . ,x(P)

∗
)

as follows

f̂p(x∗) =
N

∑
i=1

α̂iKp

(
x(p)

i ,x(p)
∗

)
= Ω(p)

D

(
x(p)
∗

)T
α̂. (4.22)

The total function can be evaluated in a pointx∗ as follows

f̂ (x∗) =
P

∑
p=1

f̂p

(
x(p)
∗

)
+ b̂ =

P

∑
p=1

Ω(p)
D

(
x(p)
∗

)T
α̂ + b̂. (4.23)

Observe the fact that the unknownsα̂ are constant over the different components. This
is unlike any parametric approach or a backfitting approach where each component is
characterized by its own set of unknowns.

The set of linear equations (4.21) corresponds with a classical LS-SVM regressor
where a modified kernel is used given as

K(xk,x j) =
P

∑
p=1

Kp

(
x(p)

k ,x(p)
j

)
. (4.24)

Figure 4.1 shows the modified kernel in case a one dimensionalRadial Basis Function
(RBF) kernel is used for allD (in the example,D = 2) components. This observation
implies that componentwise LS-SVMs inherit results obtained for classical LS-SVMs
and kernel methods in general. From a practical point of view, the previous kernels (and
a fortiori componentwise kernel models) result in similar algorithms as considered in
the ANOVA kernel decompositions as in (Vapnik, 1998; Gunn and Kandola, 2002).

K(xk,x j) =
D

∑
d=1

Kd
(

x(d)
k ,x(d)

j

)
+ ∑

d1 6=d2

Kd1d2

(
(x(d1)

k ,x(d2)
k ),(x(d1)

j ,x(d2)
j )

)
+ . . . , (4.25)

where the componentwise LS-SVMs only consider the first termin this expansion. The
formal proof of the underlying theorem that the kernel of theunion of two orthogonal
subspaces equals the sum of the individual kernels corresponding with each subspace
may be found in (Aronszajn, 1950). The derivation as such bridges the gap between
the estimation of additive models and the use of ANOVA kernels.

4.3 Imposing Pointwise Inequalities

Consider the case where prior knowledge in the form of known (in)equalities are
known to hold on a finite set of locations. This kind of discrete structure can be
easily imposed during the learning process by adopting the primal-dual argument. This
case was studied in some detail in (Pelckmanset al., 2004g) and contrasted to various
existing two-stages approaches as described in (Boor and Schwartz, 1977; Gaylord and
Ramirez, 1991). The following example gives a further application of this research.
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Figure 4.1: Illustrations of the mechanism of componentwise LS-SVMs for fitting
additive models.(a) Estimation of an additive model with a componentwise kernel
machine and a RBF kernel corresponds with the use of a modification of the RBF
kernel as displayed.(b) A simple example of the two components of a componentwise
LS-SVM (solid lines) fitted 50 noisy data-samples with underlying additive model as
illustrated by the dashed-dotted lines. The contributionsof the two variables can be
visualized explicitly due to the additive structure. It becomes that this example depends
in a clear way on the first variable but not on the second one.
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Figure 4.2: Illustration of the use of monotone kernel machines in estimating the
cumulative distribution function.(a) As the ecdf is discontinuous at the sample points,
the estimated cdf should lie between the upper- (Y1) and lower-curve (Y2) where
possible while being smooth.(b) Application of the smooth estimate of the ecdf
on the artificial example of Subsection 4.1.(c) Boxplots of the results of a Monte
Carlo simulation for estimating the cdf based on respectively the Parzen window,
ecdf, the monotone LS-SVM smoother and the monotone Chebychev kernel regressor.
(d) Comparison of the smooth monotone Chebychev kernel machineand its sparse
representation (using only 5 support vectors) and a standard LS-SVM which is not
guaranteed to be monotone in general.
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Figure 4.3: (a) Density estimation of the suicide data using the derivativeof the
monotone Chebychev kernel regressor and the monotone LS-SVM technique. Both
estimates reflect the trimodal structure as well as the positive support. A well-
known drawback of the Parzen window estimator in this case isseen in that no single
bandwidth parameter of the Parzen window results in both a strictly positive density
(one has to under-smooth,(b)) and a smooth trimodal structure (one has to over-
smooth,(c)).

Example 4.1 [Empirical distribution estimate] In Example 1.1 and Example 2.1 different
approaches were given to the task of univariate density estimation. Complementary to
these examples, the techniques introduced in this section can be exploited for designing
an estimator of a kernel based cdf estimator in the case of univariate data-samples. Then
the empirical cdf estimator is defined as

P̂(x) =
1
N

N

∑
i=1

I(xi<x). (4.26)

Now assume that the generating cdf is smooth. The best smoother in regularizedL1 sense
which takes the structure of the cdf into account (at least at the sample points).
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JC(w,e) =
1
2

wTw+C
N

∑
i=1

|ei |

s.t.

{
wTϕ(xi)+ei = 1

N ∑N
j=1 I2

(x j<xi)
∀i = 1, . . . ,N

wTϕ(xi) ≤ wTϕ(x j ) if x1
i ≤ x1

j and x2
i ≤ x2

j .
(4.27)

A primal-dual kernel machine can be derivation using the standard techniques, see
(Pelckmanset al., 2004g) where the equivalent univariate case is studied in some detail.

The technique based on theL2 norm and theL∞ norm was applied to generate a density
estimate of the suicide data (see e.g. (Silverman, 1986)) by taking the numerical derivative
of the smooth estimate. In this case the support of the data was known to have an exact
lower bound at 0 which can be nicely incorporated in this framework as shown in Figure
4.3.b. A main advantage of this technique over the use of the Parzen kernel estimator
becomes apparent in this study. As well known in literature, this strictly positive dataset
manifests a tri-modal structure (Silverman, 1986). As shown in Figure 4.3.b and 4.3.c
one cannot find a single bandwidth of the Parzen window estimator which result in
a plausible density satisfying both constraints, while the monotone Chebychev kernel
machine manages to do so in Figure 4.3. Remark that for convenience,the density
function is displayed although no guarantees are given that the derivative of the estimated
cdf is optimal.

4.4 Censored Primal-Dual Kernel Regression

The case of incomplete or censored output observations is considered here. Let a
data observation consist of a triple(xi ,y

−
i ,y+

i ) ∈ R
D × R × R where the unknown

(noisy) output observation is only known to be contained in the intervalyi ∈ [y−i ,y+
i ].

For notational convenience, this notation differs somewhat from the one used in the
literature on survival regression as employed e.g. in (Cox,1972), where an extra
indicator variable is used to indicate wether the observation is censored or not. This
follows here from the fact is the range of the interval[y−i ,y+

i ] equals zero or not.
Let then Dc = {(xi ,y

−
i ,y+

i )}N
i=1 ∈ R

D × R × R. Let the data be generated from
yi = f (xi) + ei with yi ∈ [y−i ,y+

i ] and ei i.i.d. sampled from a fixed but unknown
distribution. LetY+ = (y+

1 , . . . ,y+
N)T ∈ R

N andY− = (y−1 , . . . ,y−N)T ∈ R
N. The primal-

dual derivation of a modified least squares cost-function issummarized in the following
Lemma.

Lemma 4.2. [Censored Primal-Dual Kernel Machines]Let the class of estimators
be contained inFϕ described in (3.8). Consider the modified regularized cost function

(ŵ, b̂, ê) = argmin
w,b,e

Jγ(w,b) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i

s.t. y−i ≤ wTϕ(xi)+b+ei ≤ y+
i , ∀i = 1, . . . ,N. (4.28)

The dual problem becomes
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Figure 4.4: A simple example of a censored primal-dual kernel machine. Given a
dataset based on thesinc-function including noise terms where observations of the
output abovey = 0.6 are censored and only known to be contained in the interval
[0.6,∞]. The lower bounds of the observations are denoted as asteriskses, while the
intervals of the censored observations are given as dotted lines. The underlyingsinc
function is given as a dashed-dotted line.(a) The application of the standard LS-SVM
discussed in Section 3.3. The solid line gives the estimate which follow the lower-
bound of the intervals.(b) The application of the modified LS-SVM for censored
observations. The circles indicate the sparse support vectors of the estimate. The main
advantage of the latter is seen in the fact that one does not try to fit the censoring bound
aty = 0.6.
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(α̂+, α̂−) = argmax
α+,α−

−1
2
(α−−α+)T

(
Ω+

1
γ

IN

)
(α+ −α−)

+Y−Tα−−Y−Tα+ s.t.

{
α+,α− ≥ 0N

1T
N(α−−α+) = 0.

(4.29)

The estimate can be evaluated in a new datapoint x∗ ∈R
D as f̂ (x∗) = ΩD (α̂−− α̂+)+

b̂ whereα̂+, α̂− solve (4.29) and̂b may be recovered from the complementary slackness
conditions.

Proof. The Lagrangian of the modified cost-function becomes

L c
γ (w,b,e;α+,α−) =

1
2

wTw+
γ
2

N

∑
i=1

e2
i

−
N

∑
i=1

α+
i

(
−(wTϕ(xi)+b+ei)−y+

i

)
−

N

∑
i=1

α−
i

(
(wTϕ(xi)+b+ei)−y−i

)
. (4.30)

The Karush-Kuhn-Tucker conditions become

KKT =





∂L c
γ

∂w
→ w = ∑N

i=1(α
−
i −α+

i )ϕ(xi) (a)

∂L c
γ

∂b
→ ∑N

i=1(α
−
i −α+

i ) = 0 (b)

∂L c
γ

∂e
→ γei = (α−

i −α+
i ) ∀i = 1, . . . ,N (c)

α+
i ,α−

i ≥ 0 ∀i = 1, . . . ,N (d)
y−i ≤ wTϕ(xi)+b+ei ≤ y+

i ∀i = 1, . . . ,N (e)
α+

i

(
−(wTϕ(xi)+b+ei)−y+

i

)
= 0 ∀i = 1, . . . ,N ( f )

α−
i

(
(wTϕ(xi)+b+ei)+y−i

)
= 0. ∀i = 1, . . . ,N (g)

(4.31)
Elimination of the primal variablesw,b ande using the conditions (4.31.abc) leads to
the dual formulation (4.29). Ifα+

i were nonzero, the equalitywTϕ(xi)+b+ei = −y+
i

(4.31.f) or the equivalent in (4.31.g) can be used to recoverthe termb implicit encoded
in the dual formulation (4.29).

The case of right censoring of theith datapoint (denoted asy+
i = ∞) follows along the

lines, but the multiplierα+
i equals zero and the optimization problem simplifies. The

case of left censoring of theith datapoint (denoted asy−i = −∞) is analogous. Note
that other loss functions (as e.g. theLε loss) can be treated along the same lines.

Lemma 4.3. [Sparseness in Censored Learning Machines]Only censored observa-
tions where y−i < y+

i may lead to sparse support vectors.

Proof. This follows readily from inspecting the complementary slackness conditions
(4.31.fg).

Figure 4.4 illustrates the difference on a simple example based on the sinc function.
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Chapter 5

Relations with other Modeling
Methods

This chapter takes the opportunity to situate the previous discussion
within a broader context and to review various related approaches. While
differences were mainly conceived in the conjectured assumptions and the
way of deriving the results, the final formulations frequently present many
correspondences. However, different interpretations of the results seem
to support the coexistence of the individual approaches. Methods close
to the formulation of LS-SVMs include different variational approaches
as smoothing splines (Section 5.1), the approach of Gaussian processes
(Section 5.2) and Kriging methods in the context of spatial analysis
(Section 5.3). Relationships with other methods in system-identification,
wavelets, the theory of inverse problems and the weighted least squares
approach are described in Section 5.4.

5.1 Variational Approaches and Smoothing Splines

Spline methods have a long tradition concerning theoretical as well as practical aspects
(Schoenberg, 1946), and extended their reach from a purely function approximation
setting towards a nonlinear smoothing task. The latter is reviewed briefly in accordance
with the exposition of (Wahba, 1990) in order to relate such smoothing splines to the
proposed methodology. All of the splines discussed in the cited work may be obtained
as solutions to variational problems, which makes the methodology at first sight
different from the discrete optimization approach of the primal-dual kernel machines.
The route followed by the work of G. Wahba differs from the main body of literature on
spline methods as it adopts the Reproducing Kernel Hilbert Space framework as studied
in (Aronszajn, 1950). For convenience, only the one dimensional case is considered,
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though extensions are made to two and three-dimensional smoothing problems, see e.g.
(Dierckx, 1993).

Somewhat central is the following definition:

Definition 5.1. [Mercer theorem and Reproducing Kernel Hilbert Space (rkhs),
(Mercer, 1909; Aronszajn, 1950)]A real Reproducing Kernel Hilbert SpaceH (rkhs)
is a Hilbert space (complete under an inner product< ·, · > and satisfying everywhere
the triangular inequality) of real valued functions f: R → R with the property that
for each x∈ R there exist a functional Rx : R → R (by the Riesz representer theorem)
such that< Rx, f >= f (x) are bounded linear functionals. Furthermore, a unique
reproducing kernel k: R×R → R can be attached to a specific rkhs defined as

k(x,y) =< Rx,Ry >, (5.1)

which is a positive definite function (see also the Mercer Theorem 3.1). The converse
also holds (a reproducing kernel constructs a unique rkhs).

At the core of the derivation of smoothing splines lies the description of an rkhsH f

endowed with an inner product (and hence a norm) involving derivatives as summarized
as follows

Lemma 5.1. [Rkhs of Smooth Functions, (Wahba, 1990)]The following Sobolev
space is a rkhs

H f =
{

f : [0,1] → R
∣∣ f (r) absolutely continuous

for all r = 0, . . . ,m−1, f (m) ∈ L2(R)
}

. (5.2)

Proof. The proof is sketched as follows (Wahba, 1990). Consider themth order Taylor
series approximation

f (x) =
m−1

∑
r=0

xr

r!
f (r)(0)+

∫ 1

0

(x−z)+
(m−1)!

f (m)(z)dz, fm−1(x)+ fm(x), (5.3)

where(z)+ = z if z> 0 and zero otherwise. LetH f be decomposed in two subspaces
corresponding with the two terms in the right hand side of equation (5.3) such that
H f = H f

0 +H f
m . Consider the Sobolev function space

H f
m =

{
f : [0,1] → R

∣∣ f (r) absolutely continuous,

f (r)(0) = 0 for all r = 0, . . . ,m−1, f (m) ∈ L2(R)
}

. (5.4)

It follows that any functionf ∈ H f
m can be written as

f (x) =
∫ 1

0

(x−u)+
(m−1)!

f (m)(u)du
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,

∫ 1

0
Gm(x,u) f (m)(u)du=< Gm(x, ·), f (m) > (5.5)

whereGm(x,u) is the Green function for the problemDm f = g with Dm denoting the
linear operator corresponding with themth derivative, (Wahba, 1990). It then can be
shown that the reproducing kernel corresponding withH f

m becomes

Km(x,y) =

∫ 1

0
Gm(x,u)Gm(u,y)du. (5.6)

Let {φr}m−1
r=0 be a set of functions spanning the null-space ofH f

0 . The rkhs
corresponding to the function spaceH f and the corresponding kernel becomes

{
‖ f‖ f

H = ∑m−1
r=0 f (r)(0)2 +

∫ 1
0 f m(u)2du+3mm

K(x,y) = ∑m−1
r=0 φ(x)rφ(y)r +

∫ 1
0 Gm(x,u)Gm(u,y)du= Gm(x,y).

(5.7)

The representer theorem then states that the functionf ∈ H f minimizing the
regularized cost-function can be represented as follows.

Theorem 5.1. [Representer Theorem, (Craven and Wahba, 1979)] Suppose we are
given a nonempty setX ⊂R

D, a positive definite real-valued kernel function Km : X ×
X →R being the reproducing kernel of a Hilbert spaceH f

m of functionals f: X →R.
Let the null-spaceH f

0 of H f
m spanned by a set of basis functions{φd : X → R}D

d=1,

let H f denote the sum of the orthogonal spacesH f = H f
0 +H f

m , letD be a training
set{(xi ,yi)}N

i=1 i.i.d. sampled fromX ×R, let g: R
+ → R be a strictly monotonically

increasing real-valued function,ℓ : R → R an arbitrary loss-function and a class of
functions

F =

{
f ∈ H f

∣∣ f (x) =
D

∑
d=1

wdφd(xi)+
∞

∑
i=1

βiK(xi ,x),xi ∈ X ,wd,βi ∈ R,‖ f‖ f
H < ∞

}
,

(5.8)
where‖·‖ f

H denotes the squared norm induced by the Hilbert spaceH f
m of functionals

f becoming‖ f‖H
F = ∑∞

i j=1 βiβ jKm(xi ,y j). Consider a regularized loss function

min
f∈F

J ( f ) = g(‖ f‖ f
H )+ γ

N

∑
i=1

ℓ( f (xi)−yi) , (5.9)

where g is a monotone function. Then any f minimizing the regularized loss function
admits the representation of the form

f̂ (x∗) =
N

∑
i=1

aiK(xi ,x
∗)+

D

∑
d=1

wdφd(x
∗), (5.10)

where a= (a1, . . . ,aN)T ∈ R
N and w= (w1, . . . ,wD)T ∈ R

D be vectors of unknowns.
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This theorem has a long tradition in functional analysis andvariational methods and
formed the basis of many methods as e.g. smoothing splines (Wahba, 1990) and was
tuned towards kernel machines (Schölkopf et al., 2001).

Let {φd}m−1
d=0 be an orthogonal set of basis functions spanning the subspace H f

0 such

thatφd(x) = xd

d! . Consider the cost-function

min
f∈H f

Jsplines( f ) =
N

∑
i=1

(yi − f (xi))
2 +λ

∫ 1

0
f (m)(u)2du. (5.11)

Let X ∈ R
N×m be a matrix containing the evaluations of these functionalsin the data

points such thatXid =
xd−1
i

(d−1)! for all d = 1, . . . ,m and i = 1, . . . ,N. In the case of the

decomposition (5.3), the kernelKm of H f
m becomes

Km(x,y) =

∫ 1

0

(x−u)m−1
+ (y−u)m−1

+

((m−1)!)2 du, (5.12)

and the solution of the optimization problem (5.11) followsfrom the solution to the set
of linear equations [

0m×m X′

X Ωm+ 1
λ IN

][
w
a

]
=

[
0m

Y

]
, (5.13)

whereΩm∈R
N×N is the kernel matrix with elementsΩm,i j = Km(xi ,x j). The estimated

function f̂ can then be evaluated in a new pointx∗ ∈ [0,1] as follows

f̂ (x∗) =
N

∑
i=1

âiKm(xi ,x∗)+
m−1

∑
r=0

ŵrφr(x∗), (5.14)

whereâ = (â1, . . . , âN)T ∈ R
N andŵ = (ŵ0, . . . , ŵm−1)

T ∈ R
m solve (5.13). This rkhs

derivation places the smoothing splines derivation into the context of kernel machines
endowed with the specific kernel (5.12) which may be rewritten as (Vapnik, 1998)

Km(xi ,x j) =
m

∑
d=0

Cd
m

2m−d+1
min(xi ,x j)

2m−d+1|xi −x j |d, (5.15)

whereCd
m is the number of combinations ofd elements takenm at a time.

The regularization term
∫ 1

0 f (m)(u)2dumay be expressed alternatively using the Fourier
expansion off denoted asF f as follows

∫ 1

0
f (m)(x)2dx=

∫

R

F f (λ )2

Fg(λ )
dλ (5.16)

whereF f (λ ) = 1√
2π

∫ 1
0 f (x)exp(−ixλ )dx andFg : R → R

+ is a positive symmetric

function that tends to zero when|λ | → ∞, see (Girosiet al., 1995). Different choices
for the low-pass filter ˜g may be considered. The case of thin-plate splines of order
m is equivalent to the choiceFg(λ ) = 1/λ 2m (Duchon, 1977; Schumaker, 1981). In
this case the null-spaceH0 is the vector space space of polynomials of degree at most
m− 1. It is interesting to contrast this derivation to Example 3.2, Example 9.1 and
Lemma 9.1.
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5.2 Gaussian Processes and Bayesian Inference

A stochastic process is defined as follows, see e.g. (Doob, 1953).

Definition 5.2. [Gaussian Process, (Doob, 1953)]Consider a family of random
variables ZT = {Zt}t∈T over an index setT with covariance function E(ZtZs) =
ρ(t,s). If ρ(t, t + u) = ρ(u), the processZT is called stationary. The processZT is
a Gaussian process when any finite subset of variables is entirely described by its first
two moments.

Classically, the index setT represents a series of time instants (Wiener, 1949). A
representation theory due to (Loeve, 1955) shows that thereis an intimate connection
between Gaussian processes (time series of second order) and reproducing kernel
Hilbert spaces:

Theorem 5.2. [Covariance vs. Reproducing Kernel, (Loeve, 1955)] A positive
definite covariance function of a time seriesρ generates a unique Hilbert space of
which K= ρ is the reproducing kernel.

This is discussed in (Loeve, 1955; Parzen, 1961; Grenander and Rosenblatt, 1957).
This result relates the Gaussian processes approach to the rkhs approach as summarized
in the previous subsection, see also (Weinert, 1982) which makes extensive use of this
result in the context of signal processing.

More recent work (O’Hagen, 1978; Neal, 1994) also approaches problems of static
regression and classification using this machinery, but mainly differ by taking a
Bayesian approach (Wahba, 1990; MacKay, 1998), see also subsection 1.2.4. Let the
index set here be denoted asX ⊂ R

D consisting of the deterministic inputs{xi}N
i=1

which are possibly higher dimensional and non-equidistantly sampled. One typically
proceeds under the assumption of zero meanE[ZX|X = x] = m(x) = 0. Bayes’ law then
relates the posterior probability of the Gaussian processP(ZX|D ,A ) to the likelihood
P(D |ZX,A ), the priorP(ZX|A ) and the evidenceP(D |A ) as follows

P(ZX|D ,A ) =
P(D |ZX,A )P(ZX|A )

P(D |A )
, (5.17)

see also Subsection 1.2.4. Letx∗ = xN+1 be the input data point to be evaluated,
y∗ = yN+1 the response to be found and letD∗ be defined as the extended dataset
{D ,(xN+1,yN+1)}. LetZ∈R

N+1 be a realization of the Gaussian processZX evaluated
in the observed data points. Assume theN + 1 observationsyi are versions ofZi

perturbed by i.i.d. noise such thatyi = Zi +ei for all i = 1, . . . ,N+1. The problem of
prediction using Gaussian processes then boils down to finding the realizationZ ∈ ZX

with maximal posterior probability.

To formalize the problem, the likelihood function and an appropriate prior of any
realizationZ is to be defined. The evidence is assumed to remain constant inthe
setup. Consider the prototypical case thatP(D |Z,A ) ∝ ΠN+1

i=1 exp(−‖Zi − yi‖/γ1)
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andP(Z|A ) ∝ exp(−ZTΣZ/γ2) with Σ ∈ R
N+1×N+1 a positive definite matrix. The

maximum a posteriori (MAP) Gaussian process realizationZ follows then from

max
Z∈ZX

logP(Z|D ,A ) = argmin
Z

1
γ1

N+1

∑
i=1

‖Zi −yi‖+
λ
γ2

ZTΣZ, (5.18)

where γ1,γ2 and λ are appropriate hyper-parameters. After taking the first order
optimality conditions and by application of the matrix inversion Lemma (Golub and
van Loan, 1989), the solution of the predictor ofx∗ is seen to equal the results (3.12) and
(3.14), see (O’Hagen, 1978). Note that the described paradigm resembles a parametric
approach where the goal is to recover the generating model incontrast to e.g. the
structural risk minimization based algorithms where one merely tries to predict with
minimal risk (see also Subsection 1.1.2). LetD(m) ∈ R

N+1×N+1 be the squared linear

mth order differential operator. IfΣ = D(m)T
D(m), the derivation is equivalent to the

(primal) cost-function at the basis of LS-SVMs for regression (see Section 3.3) and the
cost-function (5.11) of smoothing splines.

A major advantage of the Gaussian process formulation is theability of doing inference
of uncertainties of the model (Wahba, 1990) and to optimize the model’s hyper-
parameters. The latter leads to the hierarchical evidence framework as introduced
in (MacKay, 1992) and elaborated in the case of LS-SVMs in (Van Gestelet al.,
2002; Suykenset al., 2002b). A thorough empirical assessment of the performance of
Gaussian processes may be found in (Rasmussen, 1996) and of aBayesian techniques
applied on LS-SVMs in (Van Gestelet al., 2002).

5.3 Kriging Methods

Spatial statistics is concerned with the analysis of observations scattered over the (geo-
graphical) space (Cressie, 1993). Recent advances cast theproblem as a generalization
to the Wiener-Kolmogorov theory of prediction in time-series (Wiener, 1949) and
provide a flexible framework for smoothing and interpolation of spatial surfaces. Let
againX ⊂ R

D denote a spatial index set andZX be a Gaussian process over this set.
For notational convenience, letZ(x) denote the random variableZX given the fact that
X = x. The random variableZ(x) has a mean functionm : R

D → R and covariance
functionρ : R

D ×R
D → R such that one can write

{
E[Z(x)] = m(x)

cov(Z(xi)Z(x j)) = E
[
(Z(xi)−m(x))T (Z(x j)−m(x))

]
= ρ(xi −x j).

(5.19)

Let the mean functionm(x) be parameterized linearly asm(x) = ∑D
d=1 βdφd(xi). Let

Z = (z1, . . . ,zN)T ∈ R
N contain the observed samples at the spatial points{xi}N

i=1. Let
X ∈R

N×D be a matrix withidth entryXid = φd(xi) for all i = 1, . . . ,N andd = 1, . . . ,D,
and leta∈R

N be a vector of unknowns. Then the minimum mean square error unbiased
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predictorẐ(x∗) is given as




L−1Xβ = L−1Z

Ka = (Z−Xβ )

Ẑ(x∗) = k(x∗)Ta+xT
∗ β ,

(5.20)

whereK ∈ R
N×N is the covariance matrix withi j th entryKi j = ρ(xi ,x j) andk : R

D →
R

N a function such thatk(x∗) = (ρ(x1,x∗), . . . ,ρ(xN,x∗))
T . LetL then be the Cholesky

decomposition (Golub and van Loan, 1989) of the matrixK. This is a numerically
reliable form (Ripley, 1988) of universal Kriging (Cressie, 1993). The variance of the
estimate is given as follows





var
(
Z(x∗)− Ẑ(x∗)

)
= ρ(x∗,x∗)−‖e‖2

2 +‖g‖2
2

Le= k(x∗)

L−1Xg= Xβ − (L−1X)Te,

(5.21)

whereg,e∈ R
N are vectors (Ripley, 1988).

Remark5.1. We emphasize the close relationship with the derivation of the semi-
parametric LS-SVM formulation (see Section 4.1). The main difference is the
interpretation where in the case of Kriging the kernel playsthe role of the covariance
of the stochastic terms while in the case of SVMs and LS-SVMs,the kernel are
deterministic in nature. As such, Kriging methods are more related in nature to
Gaussian processes (see Section 5.2).

5.4 And also

5.4.1 Wavelets

Wavelets are a family of orthogonal bases that can effectively compress signals with
possible irregularities. Although wavelets constitute a large body of literature mainly
situated in function approximation problems (Daubechies,1988), the main ideas can
also be recovered in a smoothing context as eg. (Donoho and Johnstone, 1994). An
approach is sketched based on (Daubechies, 1992) and elaborated e.g. in (Yuet al.,
1998). What makes the wavelet expansion unlike the Fourier transform or RBF based
expansion is that the wavelet functions (mother functions)are (i) localized in frequency
andspace (compactly supported), (ii) will allow for varying resolution parameters (iii)
will favor sparse expansions and (iv) are orthonormal. Again the method is typically
applied to functions with respect to the time-index, but do not impose a causal ordering
and the extension to one-dimensional spatial indices is straightforward. For a thorough
elaboration of the subject and its extensions to multivariate cases we refer the reader to
(Daubechies, 1992).

The analysis starts from an appropriate definition of a so-called mother-functionδ :
R → R which is localized in space as well as in frequency such that∃L such that
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δ (x) = 0 if |x|> L and∃Lξ such thatFδ (ξ ) ↓ 0 if |ξ |> Lξ . Different classical results
as the Paley-Wiener theorem (Daubechies, 1992) state that functions cannot be both
band- (finite support ofF f ) and time-limited (finite support off ) at the same time.
Much of the literature on wavelets is then concerned with thederivation and analysis
of an appropriate basis making an optimal trade-off betweenband- and time-limiting.
Consider then the dilated (bya∈ R) and translated (by a vectorb∈ R) basis function.

δab(x) =
√

aδ
(

ax−b
a

)
. (5.22)

A set of mathematical operations were proposed (Daubechies, 1992) to infer an
orthonormal set of basis functions{ρab : R → R}a,b from the fatherδab. In this
case, one also refers to the method as multi-resolution analysis (Daubechies, 1992).
Traditional choices for the mother functionsρab with dilation a and translationb
are (i) the Haar functions (Haar, 1910) (emphasizing localizations in space) and
(ii) symmlets (Daubechies, 1992) emphasizing the band-limiting property. Letx be
sampled equidistantly in the interval[0,1], then the mother function and the scaled
basis functions become respectively





ρhaar(x) = I[0,1](x)(−I(x < 0.5))

ρhaar
ab (x) = 2−0.5aρhaar(2−ax−b),

(5.23)

See also Figure 5.1.a. The relationship of this method with the discussed primal-dual
kernel machines is illustrated in the following example.

Example 5.1 [Learning Machine based on Wavelet Decomposition]Consider the function
space based on the orthonormal Haar wavelet bases:

FS =

{
f : R → R

∣∣ f (x) =
S

∑
a=0

S−1

∑
k=0

wa,kρhaar
a,k2−a(x)

}
, (5.24)

where w contains the coefficients of the function for the different dilationss and
translationk2−s. A parametric approach as described in Lemma 6.1, is traditionally
employed for the construction of the approximation.

The mechanism of primal-dual kernel machines comes into play e.g. when infinite bases
expansions are considered or when one considers more complex regularization schemes
which can be written aswTG−1w as elaborated in Theorem 9.1. Consider the first case.
The kernel corresponding with the infinite basis expansion becomes

K(xi ,x j ) =
∞

∑
a=0

S−1

∑
k=0

ρhaar
a,k2−a(xi)

Tρhaar
a,k2−a(x j ) (5.25)

which can be simplified considerably by exploiting the localized structure of the basis
functions. An illustrative example was devised. LetD = {(xi ,yi)}N

i=1 containN = 25
univariate input samples randomly chosen in the interval[0,1]. Let yi then satisfyyi =
I(xi < 0.5)+ei with ei i.i.d. sampled fromN (0,0.2). The fit of the LS-SVM regressor on
this dataset employing the kernel (5.25) is displayed in figure 5.1.b, clearly showing the
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Figure 5.1: Illustration of the Haar wavelet bases.(a) A sample of the set of Haar
wavelet bases for the scales respectively0, . . . ,4 and different translations.(b) An
example of the fitted (solid line) indicator function (dashed-dotted line) sampled by
N = 25noisy observations (dots) using an LS-SVM regressor employing a kernel based
on the infinite Haar basis expansion.
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ability to recover the discontinuity in the data. A disadvantage of the use of this specific
wavelet kernel is that the solution is non-smooth in other locations.

The issue of wavelet kernels in smoothing tasks is discussed in more detailin (Amatoet
al., 2004) and the abilities to recover discontinuities using wavelets expansionsis reported
in (Antoniadis and Gijbels, 2002). An alternative approach which do avoidthe mentioned
disadvantage is elaborated in Example 9.3. This example shows the potential path towards
integration of wavelet based methods and the primal-dual kernel basedmethodology as
described in the present work.

5.4.2 Inverse problems

Most linear inverse problems can be formulated as follows: let f andg be elements of
a function (Hilbert) space(s)F andG . Given a linear operatorL : F → G . Consider
the equationg = L f . The forward problem then amounts to solving forg given f . The
inverse problem amounts to solving the equation forf giveng. Consider as a typical
example the integral operator which amounts to the problem

g(x) =
∫ b

a
K(x,y) f (y)dy, (5.26)

referred to as the Fredholm equation of the first kind, see e.g. (Presset al., 1988)
for an introduction. Inverse and ill-posed problems are very important in several
domains of applied science such as medical diagnosis, problems in vision, atmospheric
remote sensing etc., see e.g. (Berteroet al., 1988). The relevance of these problems
has stimulated the development of theoretical and practical methods for determining
approximative and numericallt reliable solutions (Hansen, 1998).

Fredholm equations of the first kind are often extremely ill-conditioned as may be
understood as follows. Convolving the functionf using the functionK amounts in
general to a smoothing operation which actually looses information. As such there is no
direct way to recover all information by an inverse operation and one needs additional
(external) knowledge on the solution in order to get a uniquesolution to the inverse
problem (Presset al., 1988). This concept is often referred to as regularizationor
capacity control and is treated extensively in the following Part, see e.g. (Backus and
Gilbert, 1970; Tikhonov and Arsenin, 1977; Morozov, 1984; Neumaier, 1998).

5.4.3 Generalized least squares

As already noted in Section 4.1, a direct correspondence between the modeling of
the parameters in a semi-parametric LS-SVM regressor and the classical Generalized
Least Squares estimator (Mardiaet al., 1979) can be observed. The GLS estimator is
well-described in statistical literature (e.g. see e.g. (Wetherill, 1986) and references).
The estimator e.g. possesses the important BLUE (Best Linear Unbiased Estimator)
property and appropriate efficient statistical tests were designed (Sen and Srivastava,
1990).
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Chapter 6

Regularization Schemes

Model complexity and regularization amounts to the artificial shrink-
age of the solution-space in order to obtain increased generalization. The
purpose of this chapter is both to motivate, to analyze and todiscuss dif-
ferent regularization schemes in the process of model estimation. Section
6.1 surveys results in the context of linear parametric models. Section 6.2
gives results on the bias-variance trade-off for regression using LS-SVMs.
Section 6.3 extends the well-known Tikhonov regularization scheme in
primal-dual kernel machines to various other classical schemes. The
measure of maximal variation for componentwise models is introduced
in Section 6.4 and various applications of this idea are presented.

6.1 Regularized Parametric Linear Regression

Consider the class of linear models

Fω =
{

fω(x) = ωTx
∣∣ ω ∈ R

D,b∈ R
}

. (6.1)

Let the datasetD = {(xi ,yi)}N
i=1 satisfyyi = ωTxi +b+ei where{ei}N

i=1 is a sequence
of uncorrelated i.i.d. samples with zero mean and bounded varianceE[e2

i ] = σ2
e < ∞.

For notational convenience, we do not include an intercept term in the derivations but
assume a proper normalization of the data.

This section elaborates the discussion in Section 3.2.

6.1.1 Ridge regression

The use of an 2-norm based regularization scheme results in amechanism which is
convenient to analyze and to apply. Given the model class (6.1), ridge regression (Hoerl

115
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et al., 1975) amounts to minimizing the following regularized cost function

ŵ = argmin
w

Jγ(w,b) =
γ
2
‖w‖2

2 +
1
2

N

∑
i=1

(
wTxi −yi

)2
. (6.2)

The modified normal equations become
(
XTX + γID

)
w = XTY, (6.3)

following from the first order conditions for optimality. This is seen as an application
of the Tikhonov regularization scheme for function approximation (Tikhonov and
Arsenin, 1977; Hansen, 1998).

6.1.2 LASSO

While Tikhonov regularization schemes based on‖w‖2
2 are commonly used in order

to improve estimates (statistically as well as numerically), interest in L1-based
regularization schemes has emerged recently as seen in the formulation and study of
LASSO (Least Absolute Shrinkage and Selection Operator) estimators (Tibshirani,
1996), SURE (Stein Unbiased Risk Estimator) (Donoho and Johnstone, 1994) and
basis pursuit (Friedmann and Stuetzle, 1981; Chenet al., 2001) algorithms. Here one
typically considers estimators of the form

ŵ = argmin
w

Jα(w) =
N

∑
i=1

(
wTxi −yi

)2
s.t. ‖w‖1 ≤ α, (6.4)

whereα ∈ R
+ is a hyper-parameter. The primal-dual optimization framework may be

used to derive properties on the estimator regarding the obtained sparseness and the
variance of the estimate (Osborneet al., 2000).

The optimization problem (6.2) and (6.4) simplify considerably when the inputs are
orthonormal:

Lemma 6.1. [Orthonormal Inputs, (Tibshirani, 1996)] If the input matrix X∈R
N×D

is such that XTX = ID, the solutions to the ridge regression estimate (6.2) and the
LASSO estimator (6.4) can be written as





ŵrr
d =

XT
d Y

1+γ ∀d = 1, . . . ,D

ŵlasso
d = sign(XT

d Y)[XT
d Y−λ ]+, ∀d = 1, . . . ,D

(6.5)

respectively. Hereλ is the Lagrange multiplier corresponding to the constraint‖w‖1 ≤
α.

This result was extended towards more general regularization cost-functions as the
hard- and soft- thresholding rule in (Donoho and Johnstone,1994). A similar argument
was used to compute efficiently the solution path of the LASSOestimator and the SVM
classifier over all constantsα > 0 as e.g. in (Hastieet al., 2004).
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6.1.3 Least squares amongst alternatives

A stronger formulation regarding sparseness is considered. Given a set of observed
input/output data-samplesD = {(xi ,yi)}N

i=1 ⊂ R
D ×R. Let one be interested in the

linear model (D > 1) with minimal empirical risk only using one single input variable.
This problem can be written as follows

ŵ = argmin
w

Js(w) =
N

∑
i=1

(wTxi −yi)
2 s.t. wgwd = 0, ∀g 6= d, (6.6)

from which it follows that at most one element of the parameter vector may be nonzero.
The following result leads to a practical approach to this problem.

Lemma 6.2. [Embedding Least Squares amongst Alternatives]The task of esti-
mating the optimal predictor based on a single variable amongst given alternatives is
considered. Formally, one searches the optimal model parameters w such that

wi w j = 0, ∀i, j = 1, . . . ,D, i 6= j. (6.7)

This quadratical constraints can be embedded in a least squares estimator as follows

(ŵ, t̂) = argmin
w,t

J(w) =
1
2

∥∥wTxi −yi
∥∥2

2 s.t.

{
tT 1D×D t ≤ wTw

−ti ≤ wi ≤ ti ∀i = 1, . . . ,D,

(6.8)
where1D×D ∈ R

D×D contains all ones.

Proof. Let X = (x1, . . . ,xN)T ∈ R
N×D andY = (y1, . . . ,yN)T ∈ R

N be vectors. The
Lagrangian of the constrained optimization problem (6.8) becomes

L (w, t;λ ,α+,α−) =
1
2
‖Xw−Y‖2

2

+
D

∑
i=1

α−
i (−ti −wi)+

D

∑
i=1

α+
i (−ti +wi)+

λ
2

(
tT 1D×D t −wTw

)
, (6.9)

whereα+,α− ∈ R
+,D andλ ∈ R

+ are positive multipliers. Let 1D ∈ R
D denote the

vector containing ones. The first order (necessary) conditions for optimality are given
by the Karush-Kuhn-Tucker conditions (KKT), see e.g. (Boydand Vandenberghe,
2004): 




(
XTX−λ ID

)
w−XTY = α−−α+ (a)

α−
i +α+

i = λ1T
D t ∀i = 1, . . . ,D (b)

−ti ≤ wi ≤ ti ∀i = 1, . . . ,D (c)

α+
i ,α−

i ≥ 0 ∀i = 1, . . . ,D (d)

α−
i (ti +wi) = 0 ∀i = 1, . . . ,D (e)

α+
i (ti −wi) = 0 ∀i = 1, . . . ,D ( f )

tT 1D×D t ≤ wTw (g)

λ ≥ 0, λ (tT 1D×D t −wTw) = 0, (h)

(6.10)



118 CHAPTER 6. REGULARIZATION SCHEMES

where the equalities (6.10.efh) are referred to as the complementary slackness con-
straints. By combining conditions (6.10.ef) and (6.10.b),it follows thatti = |wi | for all
i = 1, . . . ,D. From condition (6.10.g) it then follows that

tT 1D×D t ≤ wTw = tTt ⇒ tT (1D×D − ID) t ≤ 0. (6.11)

As the vectort and the matrix(1D×D − ID) contains all positive numbers, only
tT (1D×D − ID) t = 0 is to be considered. As such, conditions (6.7) are satisfiedin
(any) optimum to (6.8). This concludes the proof.

This task is elaborated in some detail here as it is closely related to the formulation
and handling of positive OR-constraints (see Subsection 2.4.3) which play often an
important role in hierarchical programming problems (see next Chapter).

The relationship with the least squares estimator when the relevant variable were
known beforehand is given in the following lemma.

Lemma 6.3. [Relation to Univariate Least Squares]Assume aγ∗ exist such that
(XTX − λ ∗ID) º 0 and that the constraint

(
tT 1D×D t

)
≤ wTw is satisfied, then the

prediction corresponds with the least squares predictor based on the variable with
nonzero parameter only.

Proof. Assume the single variate predictor uses finally one variable denoted asX(1) ∈
R

N for prediction. Let thenX(0) ∈ R
N×(D−1) be a vector denoting all other candidate

variables. Condition (6.10.a) can then be rewritten as
[
(XT

(1)X(1) −λ ) XT
(1)X(0)

XT
(0)X(1) (XT

(0)X(0) −λ ID′×D′)

][
w(1)

w(0)

]
=

[
XT

(1)Y

XT
(0)Y

]
+

[
α−

(1)
−α+

(1)

α−
(0)

−α+
(0)

]
, (6.12)

where the parametersw(1) ∈ R andw(0) ∈ R
D−1 correspond toX(1) andX(0) respec-

tively. In the case the parametersw(0) are zero andw(1) is nonzero, the following
property holds (

XT
(1)X(1)

)
w(1) = XT

(1)Y, (6.13)

asα+
(1)

−α−
(1)

= λw(1) from application of (6.10.bef) and the property that|w(1)|= 1Tt
in the solution to (6.10). Then note that (6.13) correspondswith the normal equations
of the least squares problem minw

∥∥X(1)w(1) −Y
∥∥2

2
. If also w(1) were zero and thus

1Tt = 0, the Lemma also holds asα− +α− = 0D.

This result is strongly related to the derivations of oracleinequalities as in (Donoho
and Johnstone, 1994; Antoniadis and Fan, 2001).

Remark 6.1. Note that this result leads to an alternative practical approach to
the problem (6.6). One can as well compute the least squares minimizer based
on every individual individual variable and then pick the variable obtaining the
best performance. This approach however becomes infeasible when more sets of
alternatives are considered. Consider e.g. the task of estimating a model based on
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10 variables where each individual variable belongs to a disjunct set of 2 candidates.
Then the described combinatorial method should compute 210 = 1024 candidate least
squares regressions, while the problem (6.8) would give theresult by solving one QP.

Sofar, we did not discuss the uniqueness of the solutions to (6.8) or (6.10) nor the
choice of the Lagrange parameterλ satisfying (6.10.g). However, it turns out that the
global optimum can be computed efficiently in many cases. In order to derive necessary
conditions for uniqueness of local solutions to (6.8), consider the following modified
formulation with fixed hyper-parameterγ ∈ R

+

(ŵ, t̂) = argmin
w,t

Jγ(w) =
1
2
‖Xw−Y‖2

2 +
γ
2

(
tT 1D×D t −wTw

)

s.t. − ti ≤ wi ≤ ti ∀i = 1, . . . ,D, (6.14)

which is a convex problem as long as(XTX − γID) is positive semi-definite (Boyd
and Vandenberghe, 2004). The KKT conditions characterizing the global solution then
corresponds to (6.10.a-f) withλ substituted by the givenγ. Furthermore, ifγ ≥ λ
whereλ solves (6.10) and(XTX−λ ID) is positive semi-definite, it is easily seen that
a solution to the original problem (6.8) follows uniquely asfor increased values the
cost of the termtT (1D×D − ID) t ≥ 0 corresponding toγ is to be smaller than the
cost corresponding toλ which is zero already. This results in a practical algorithmic
approach to estimate the solution to the original problem (6.8) if it is unique.

Algorithm 6.1. [Least Squares amongst Alternatives]Hereto, letσ− denote the
smallest eigenvalue of the sample covariance matrix XTX. Then it is easily seen that
γ = σ− is the largest value for which the problem (6.8) is convex. Furthermore, if the
conditionsŵiŵ j = 0 of the solution vector̂w corresponding toγ = σ− are satisfied
for all i 6= j = 1, . . . ,N the problem is solved as ifλ were found exactly. If not so, the
problem (6.8) is not convex and one can use local optimization strategies to search the
global solution.

A Monte Carlo simulation study was conducted. In each iteration, a datasetD =
{(xi ,yi)}N

i=1 was generated withN = 50 andD = 20. The outputs were generated as

yi = ω1x(1)
i +ei with ei ∼N (0,0.5) andω1 chosen in the interval[−5, 5]. The LASSO

estimator was tuned using the validation performance on a disjunct part of the data,
while the final performances of the estimate resulting from the tuned LASSO estimator
and from the proposed method respectively were quantified asthe mean squared error
between the estimate and the true parameter vectorω = (ω1,0. . . ,0)T ∈ R

20. Figure
6.1.a shows the evolution diagram of the LASSO estimator in asingle iteration step
by ranging the hyper-parameterα from which the structure of the true parameter
vector may be recovered. Panel 6.1.b then reports the results of the Monte Carlo
study with 1000 iterations comparing the tuned Ridge Regression (RR) estimator, the
tuned LASSO estimator and the proposed Alternative Least Squares method (ALS)
of Algorithm 6.1. In addition to this results, the proposed relaxation succeeded in
recovering the structure of the true parameter in 97.34% of the iterations, while the
LASSO recovered on the average 35.23% of the underlying structure. This example
shows the benefits of the proposed formulation in this specific case.
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Figure 6.1: Illustration of the Alternative Least Squares (ALS) as in Algorithm 6.1.
Panel(a) shows the evolution diagram of the LASSO estimator in a single iteration step
by ranging the hyper-parameterα from which the structure of the true parameter vector
may be recovered. Panel(b) reports the results of the Monte Carlo study with1000
iterations comparing the tuned Ridge Regression (RR) estimator, the tuned LASSO
estimator and the proposed ALS method. In addition to this results, the proposed
relaxation succeeded in recovering the structure of the true parameter in97.34% of
the iterations, while the LASSO recovered on the average35.23% of the underlying
structure.
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6.1.4 Bridge regression

The use of other norms for the regularization term from RidgeRegression to general
Minkowski norms has been discussed under the name of bridge regression (Frank and
Friedman, 1993; Fu, 1998; Antoniadis and Fan, 2001). The general Minkowski norm
is defined as

‖w‖p =

(
N

∑
d=1

wp
d

)
, (6.15)

which is convex (satisfying the triangular inequality) whenever p ≥ 1. The bridge
regression estimator then becomes

(ŵ, b̂) = argmin
w,b

J p
ψ (w,b) = ‖w‖p +

ψ
2

N

∑
i=1

(
wTxi +b−yi

)2
, (6.16)

which is a convex problem wheneverp ≥ 1. It is mostly solved using an iteratively
re-weighted algorithm where one uses the following reformulation

(ŵ, b̂;g) = argmin
w,b

J g
ψ(w,b) =

D

∑
d=1

gd
w w2

d +
ψ
2

N

∑
i=1

(
wTxi +b−yi

)2

s.t. gd
w w2

d = wp
d, ∀d = 1, . . . ,D, (6.17)

which is solved forw andb. The hyper-parametersgw = (g1
w, . . . ,gD

w)T ∈ R
N ∈ R

D

are consequently adjusted correspondingly, see e.g. (Fu, 1998). This procedure
corresponds with a particular instance of the Gauss-Seidelalgorithm, see e.g. (Hastie
and Tibshirani, 1990). The use ofp-norms different thanL2 or L1 may be usefull in
problems involving higher dimensional data, see e.g. (Frank and Friedman, 1993).

6.1.5 Shrinkage estimators for parametric large margin classifiers

Similar estimators were introduced recently in order to automatically select features
in parametric large margin classifiers (Westonet al., 2003; Bhattacharya, 2004). The
following estimator was proposed.

(ŵ, b̂) = argmin
w,b

JC(w,b) = ‖w‖1 +C
N

∑
i=1

[
1−yi(w

Txi +b)
]
+

, (6.18)

whereC∈ R
+ acts as a hyper-parameter.

6.2 The Bias-Variance Trade-off

A classical tool to analyze the generalization performancein the form of the total Mean
Squared Error (MSE) of the estimate with respect to the true model was found in the
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bias-variance trade-off (Hoerlet al., 1975; Hastieet al., 2001). Recently, this analysis
was introduced for the SVM classifier (Valentini and Dietterich, 2004). The discussion
is extended to the LS-SVM regressor as follows.

Let the observed dataD satisfy the relationyi = f ∗(xi)+ ei where f ∗ : R
d → R is a

smooth function and the errors{ei}N
i=1 satisfy the Gauss-Markov conditions described

in Definition 3.1. The vectorY∗ = ( f ∗(x1), . . . , f ∗(xN))T ∈ R
N denotes the true

function f ∗ : R
D → R evaluated in the training points which is typically unknownin

practice. LetŶ = ( f̂ (x1), . . . , f̂ (xN))T ∈ R
N denote the estimator̂f resulting from the

LS-SVM estimatef̂ evaluated on the training data. The total MSE can be decomposed
as

MSE(Ŷ,Y∗) = E
[
Ŷ−Y∗]2

= E
[
Ŷ−E[Ŷ]

]2
+

[
E[Ŷ]−Y∗]2

,

where the two last terms are denoted as the variance and the bias respectively. The bias,
covariance and the total mean squared error are then derivedfor the LS-SVM smoother
similar to the derivation in (Hoerl and Kennard, 1970; Hoerlet al., 1975).

Let E[Ŷ] denote the expected predicted smoothed data given the used model definition
using any realization of the noise terms{ei}N

i=1 in the data. The bias can then be written
as

Bias(Ŷ,Y∗) = Y∗−E[Ŷ] = Y∗−Ω[Ω+ INγ−1]−1E[Y]

= Y∗−Ω[Ω+ INγ−1]−1Y∗

= Y∗− [Ω+ INγ−1− INγ−1][Ω+ INγ−1]−1Y∗

= Y∗−Y∗ + γ−1[Ω+ INγ−1]−1Y∗

= γ−1[Ω+ INγ−1]−1Y∗. (6.19)

Let the singular value decomposition ofΩ ∈ R
N×N be denoted asΩ = UTSU where

UTU = IN andS= diag(σ1, . . . ,σN) ∈ R
N×N denote the eigenvalues ofΩ.

The trace of the squared bias becomes

tr[Bias(Ŷ,Y∗)Bias(Ŷ,Y∗)T ] = γ−2tr
[
(Ω+ INγ−1)−1Y∗Y∗T(Ω+ INγ−1)−1

]

= γ−2Y∗T(Ω+ INγ−1)−2Y∗

= γ−2
N

∑
i=1

p2
i

(σi + γ−1)2 , (6.20)

wherepi = Y∗TUi andUi ∈ R
N denotes theith column ofU . The covariance of the

estimate can be written as follows

Cov(Ŷ,Ŷ) = E[ŶŶT ] = Ω(Ω+ INγ−1)−1E[YYT ](Ω+ INγ−1)−TΩT . (6.21)

The total variance can be written then as follows

tr(Cov(Ŷ,Ŷ)) = σ2
e tr[Ω(Ω+ INγ−1)−2Ω]

= σ2
e

N

∑
i=1

σ2
i

(σi + γ−1)2 . (6.22)
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The total mean squared error can be computed as

TMSE(Ŷ,Y∗) = tr
[
Cov(Ŷ,Ŷ)

]
+ tr

[
Bias(Ŷ,Y∗)Bias(Ŷ,Y∗)T]

= σ2
e

N

∑
i=1

σ2
i

(σi + γ−1)2 + γ−2
N

∑
i=1

p2
i

(σi + γ−1)2

=
N

∑
i=1

σ2
e σ2

i + γ−2p2
i

(σi + γ−1)2 . (6.23)

From this expressions, it is possible to make the bias-variance trade-off explicit when
the true functionf ∗ or Y∗ were known. The bias-variance decomposition for the LS-
SVM smoother is illustrated in figure 6.2.

Lemma 6.4. [Optimality of Regularization in LS-SVMs] Let the bias and variance
be formulated as in (6.20) and (6.22). There exists aγ < ∞ (or γ−1 > 0) resulting in a
lower TMSE with respect toγ = ∞.

Proof. The proof follows from the following inequality

∂ tr(bias(Ŷ,Y∗) bias(Ŷ,Y∗)T)

∂γ−1

∣∣
γ−1=0 < −∂ tr(Cov(Ŷ,Ŷ))

∂γ−1

∣∣
γ−1=0 (6.24)

whenγ−1 = 0. This result shows that there exists a nonzero amount of regularization
leading to a minimal TMSE.

In practice, regularization is more important for this nonlinear setting as for the linear
parametric ridge regression case.

6.3 Tikhonov, Morozov and Ivanov Regularization

6.3.1 Regularization schemes

The Tikhonov scheme (Tikhonov and Arsenin, 1977), Morozov’s discrepancy principle
(Morozov, 1984) and Ivanov Regularization scheme (Ivanov,1976) are discussed
simultaneously to stress the correspondences and the differences. The cost functions
are given respectively as

• Tikhonov, see Chapter 3 and Section 4.1:

min
w,e

JT(w,e) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i s.t. wTϕ(xi)+ei = yi , ∀i = 1, ...,N. (6.25)

• Morozov’s discrepancy principle (Morozov, 1984), where the minimal 2-norm
of w realizing a fixed noise levelσ2

e is to be found:

min
w,e

JM(w) =
1
2

wTw s.t.

{
wTϕ(xi)+ei = yi , ∀i = 1, . . .N

1
N ∑N

i=1e2
i = σ2

e .
(6.26)
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Figure 6.2: Illustration of the bias-variance trade-off.(a) A dataset based on the
relationyi = sinc(xi)+ ei with ei ∼ N (0,0.1) was generated. Different values forγ
in the applied LS-SVM smoother leads to over-smoothing (dashed-dotted line), under-
smoothing (dashed line) and an optimal trade-off between bias and variance (solid line).
(b) Theoretical values for the bias (solid line), the variance (dashed line) and the total
MSE (dashed dotted line) of an LS-SVM smoother.



6.3. TIKHONOV, MOROZOV AND IVANOV REGULARIZATION 125

−3 −2 −1 0 1 2 3
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

ξ

σ
2

- +

(a)

10
−2

10
−1

10
0

10
1

10
−2

10
−1

ξ

σ
2

Iξ

I2
σ

(b)

Figure 6.3:Illustration of a typical behavior of the Morozov secular equation (6.35.a).
(a) If ξ is positive, the secular equation is monotonically decreasing. If ξ is negative,
the function grows unbounded (poles) whenξ =−1/(2σi). (b) As the secular equation
is monotonically decreasing forξ > 0, a positive intervalIξ will be mapped uniquely
to an intervalI2

σ .
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• Ivanov (Ivanov, 1976) regularization amounts at solving for the best fit with a
2-norm onw smaller thanπ2:

min
w,e

JI (e) =
1
2

eTe s.t.

{
wTϕ(xi)+ei = yi , ∀i = 1, . . .N

wTw≤ π2.
(6.27)

This formulation is also referred to as the trust-region subproblem (Rockafellar,
1993; Nocedal and Wright, 1999) employed in the context of optimization
theory.

The Lagrangians become respectively




LT(w,e;α) = 1
2wTw+ γ

2 ∑N
i=1e2

i −∑N
i=1 αi(wTϕ(xi)+ei −yi)

LM(w,e;α,ξ ) = 1
2wTw+ξ (∑N

i=1e2
i −Nσ2)−∑N

i=1 αi(wTϕ(xi)+ei −yi)

LI (w,e;α,ξ ) = 1
2eTe+ξ (wTw−π2)−∑N

i=1 αi(wTϕ(xi)+ei −yi).
(6.28)

The conditions for optimality are

Condition Tikhonov Morozov Ivanov

∂L

∂w
= 0 w = ∑N

i=1 αiϕ(xi) w = ∑N
i=1 αiϕ(xi) w = 1

2ξ ∑N
i=1 αiϕ(xi)

∂L

∂ei
= 0 γei = αi 2ξei = αi ei = αi

∂L

∂αi
= 0 wTϕ(xi)+ei = yi , wTϕ(xi)+ei = yi , wTϕ(xi)+ei = yi

− ∑N
i=1e2

i = Nσ2 wTw≤ π2

− ξ ≥ 0 ξ ≥ 0

(6.29)

for all i = 1, . . . ,N. After elimination of the parameter vectorw, the Tikhonov
conditions result in the following set of linear equations as classical, see Chapter 3,

Tikhonov :

(
Ω+

1
γ

IN

)
α = Y. (6.30)

Re-organizing the sets of constraints of the Ivanov scheme results in the following sets
of linear equations where an extra nonlinear constraint relates the Lagrange multiplier
ξ with the hyper-parameterσ2 as follows

Morozov :

(
Ω+

1
2ξ

IN

)
α = Y s.t. αTα ≤ Nσ2, ξ ≥ 0. (6.31)

Similarly, the Morozov scheme has a dual problem which can berewritten as follows.
Let α̃ = 1

2ξ α, then

Ivanov :

(
Ω+

1
2ξ

IN

)
α̃ = Y s.t. α̃TΩα̃ ≤ π2, ξ ≥ 0, (6.32)
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and the dual representation may be evaluated at a new point asf̂ (x∗) = ΩN(x∗)T α̃ .

One now can rephrase the optimization problem (6.26) in terms of the Singular Value
Decomposition (SVD) ofΩ (Golub and van Loan, 1989). For notational convenience,
the bias termb is omitted from the following derivations. The SVD ofΩ is given as

Ω = USUT s.t. UTU = IN, (6.33)

whereU ∈ R
N×N is orthonormal andS= diag(σ1, . . . ,σN) with σ1 ≥ ·· · ≥ σN. Using

the orthonormality property of the SVD, the conditions (6.31) can be rewritten as




α = U
(

S+ 1
2ξ IN

)−1
p s.t. 1

4ξ 2 αTα ≤ Nσ2, ξ ≥ 0

α̃ = U
(

S+ 1
2ξ IN

)−1
p s.t. α̃TΩα̃ ≤ π2, ξ ≥ 0

(6.34)

where p = UTY ∈ R
N. Eliminating of the dual variablesα ∈ R

N and α̃ ∈ R
N

respectively leads to the equalities




1
4ξ 2 αTα = ∑N

i=1

(
pi

2ξ σi+1

)2
≤ Nσ2 (a)

∑N
i=1

σi p2
i

( 1
2ξ σi+1)2 ≤ π2. (b)

(6.35)

One refers to the equations in (6.35) as the secular equations (Golub and van Loan,
1989; Neumaier, 1998). Now the largest value ofξ (smallest fitting term) satisfying
this relation can be searched using e.g. a bisection algorithm (Presset al., 1988). As
can be seen from the expressions (6.35) and Figure 6.3, the relation betweenσ2(π2)
andξ ≥ 0 is strictly monotone and there is exactly oneξ corresponding with a given
noise levelσ2 (or π2).

6.3.2 Differogram

In (Pelckmanset al., 2003a; Pelckmanset al., 2004a), a model free noise variance
estimator denoted as a differogram method was elaborated. Appendix A gives details
on this estimator and relates it to a series of other estimators. The following example
shows a direct use of this method towards the estimation of the regularization trade-off.

Example 6.1 The Morozov regularization scheme (6.26) has various practical implications
including the following. Given prior information or a reliable estimate of the noise level,
one can transform this knowledge into an appropriate regularization parameterξ ≥ 0. Let
σe : D → R be an estimator of the noise variance in the datasetD such thatσe(D) = σ̂2

e
with varianceσ2

v . Let α ∈ R
+ be a fixed constant determining the relative width of the

interval. Given the interval[σ̂e±ασ2
v ], one may determine the corresponding interval of

regularization terms asIξ = [ξ̂−, ξ̂ +] and one can marginalize over this region. See also

Figure 6.3.b. Let̂Iξ be a finite subset ofIξ , then

f̂ (x∗) =
∫

ξ∈Iξ

fξ (x∗)dPξ
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=
N

∑
i=1

∫

ξ∈Iξ

ΩT
N(x∗)α̂ξ dPξ

≈
N

∑
i=1

∑
ξ∈Îξ

(
ΩT

N(x∗)α̂ξ

)
pξ , (6.36)

where fξ parameterized witĥαξ solves the LS-SVM cost-function (3.9) corresponding
with a regularization parameterγ = 2ξ and pξ > 0 are weighting terms corresponding

with the distribution onÎξ such that
∫

ξ∈Îξ
pξ dξ = 1. A similar result is also derived in

Algorithm 8.1.

A distribution free approach towards the estimation of the noise variance without the
explicit construction of a model was discussed in (Pelckmanset al., 2004a) called the
differogram. The key idea is to infer properties of the observed data onthe cloud of
mutual differences of the data-points defined as∆x,i j = ‖xi −x j‖2 and∆y,i j = ‖yi −y j‖2,
instead of on the data itself. Figure 6.4.a illustrates the effect of the chosen noise level on
the validation set of an artificial regression example. Figure 6.4.b shows the differogram
cloud of the higher dimensional data of the Boston housing dataset and its resulting
variance estimate. Section 9.4.3 discusses the differogram method in more detail in a
slightly different context.

6.4 Regularization Based on Maximal Variation

6.4.1 Maximal variation

Consider again the setting as in Section 4.2 of componentwise models where a

datapoint is reorganized as a set ofP components such thatx =
(

x(1), . . . ,x(P)
)

. In

(Pelckmanset al., 2004,In press) the use of the following criterion is proposed:

Definition 6.1. [Maximal Variation] Let x(p)
i be samples of the random variable

X(p) ∈ R
Dp with a finite range such that∃Lp

x with −Lp
x ≤ X(p) ≤ Lp

x . The maximal
variation of a function fp : R

Dp → R is defined as

Mp = sup
x(p)∈R

Dp

∣∣∣ fp

(
x(p)

)∣∣∣ , (6.37)

for all x(p) sampled from the same distribution underlying the datasetD . belonging to
the domain of fp. The empirical maximal variation can be defined as

M̂p = max
x(p)
i ∈D

∣∣∣ fp

(
x(p)

i

)∣∣∣ , (6.38)

with xi belonging to the training-setD .

The setting of statistical learning theory may be employed to derive a bound on the
deviation of the true maximal variation to the empirical maximal deviation, see also
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Figure 6.4: Example of the use of the Morozov discrepancy principle.(a) Training
error (solid line) and validation error (dashed-dotted line) for the LS-SVM regressor
with the Morozov scheme as a function of the noise levelσ2 (the dotted lines indicate
error-bars by randomizing the experiment). The (dashed lines) denote the true noise
level. One can see that imposing small noise levels results in overfitting. (b)
Differogram cloud of the Boston Housing Dataset displayingall differences between
two inputs (∆x = ‖xi − x j‖2) and two corresponding outputs (∆y = ‖yi − y j‖2). The
location of the curve passing the Y-axis given asE[∆y|∆x = 0] results in an estimate of
the noise variance.
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example 3.4 in Section 3.5. A main advantage is that this measure is not directly
expressed in terms of the parameter vector (which can be infinite dimensional in the
case of kernel machines). Moreover, the regularization scheme becomes independent
of the normalization and dimensionality of the individual components.

As an example, consider again the linear model (6.1). Furthermore, letL ∈ R such that
−L ≤ xd ≤ L with L = maxi(|xp

i |). The following relation holds,

|wd|1 =
1
L
|Lwd|1 =

Md

L
, ∀d = 1, . . . ,D. (6.39)

One then can rewrite (6.38) as follows

(ŵ, b̂) = argmin
w,b

J M
λ (w,b,M ) =

P

∑
p=1

Mp +λ
N

∑
i=1

(wTxi +b−yi)
2. (6.40)

By replacing the maximal variationsMd by its empirical counterpart, it can be solved
efficiently as

(ŵ, b̂, t̂) = argmin
w,b,t

J M̂
λ (w,b, t) =

D

∑
d=1

td +λ
N

∑
i=1

(wTxi +b−yi)
2

s.t. − td ≤ wdxd
i ≤ td, ∀d = 1, . . . ,D, ∀i = 1, . . . ,N, (6.41)

which can be casted as a quadratic programming problem with 2D+1 unknowns and
2D inequalities.

Though this formulation corresponds to a large extents withthe methods as LASSO
and the SURE formulation, the extension to the kernel version and the way to cope
with the missing values will crucially depend on this measure of maximal variation.
As the measure of maximal variation depends only on the predicted outputs and not on
the parameterized mapping, one may refer to the mechanism ofmaximal variation as
non-parametric regularization principle.

6.4.2 Structure detection in kernel machines

This mechanism is extended towards the setting of primal-dual kernel machines. The
formulation of componentwise LS-SVMs suggests the use of a dedicated regularization
scheme which is often very useful in practice. In the case where the nonlinear function
consists of a sum of components, one may ask oneself which components have no
contribution (fp(·) = 0) for prediction. Sparseness amongst the components is often
referred to as structure detection. The described method isclosely related to the kernel
ANOVA decomposition (Vapnik, 1998; Stitsonet al., 1999) and the structure detection
method of (Gunn and Kandola, 2002). However, the following method as originally
described in (Pelckmanset al., 2004, In press; Pelckmanset al., 2005c) starts from
a clear optimality principle, and extends hence the LASSO estimator to a nonlinear
kernel setting.
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Lemma 6.5. [Primal-Dual Kernel Machine for Structure Detection] Consider the
class of modelsFϕ , see (3.8). The following primal estimator is considered:

(ŵ, b̂, t̂, ê) = argmin
w,b,t,e

J M̂
µ,λ (w,b, t,e) = µ

P

∑
p=1

tp +
1
2

P

∑
p=1

wT
pwp +

λ
2

N

∑
i=1

e2
i

s.t.





∑P
p=1wT

pϕp

(
x(p)

i

)
+b+ei = yi ∀i = 1, . . . ,N

−tp ≤ wpϕ
(

x(p)
i

)
≤ tp ∀i = 1, . . . ,N,∀p = 1, . . . ,P.

(6.42)

Letα =(α1, . . . ,αN)T ∈R
N, ρ+

p =(ρ+
p,1, . . . ,ρ

+
p,N)T ∈R

+,N andρ−
p =(ρ−

p,1, . . . ,ρ
−
p,N)T ∈

R
+,N be the Lagrange multipliers associated with the corresponding constraints in

(6.42). The dual problem is then given as

(α̂, ρ̂+
p , ρ̂−

p ) = arg max
α,ρ+

p ,ρ−
p

Jγ(α,ρ+,ρ−)

− 1
2

(
α +

P

∑
p=1

(ρ+
p −ρ−

p )

)T

ΩP

(
α +

P

∑
p=1

(ρ+
p −ρ−

p )

)
− 1

2λ
αTα +YTα

s.t.





µ = ∑N
i=1(ρ

+
ip +ρ−

ip) ∀p = 1, . . . ,P

∑N
i=1 αi = 0

ρ+
ip,ρ−

ip ≥ 0, ∀i = 1, . . . ,N,∀p = 1, . . . ,P

(6.43)

whereΩP
i j = ∑P

p=1Kp

(
x(p)

i ,x(p)
j

)
for all i , j = 1, . . . ,N. The estimated predictor can

then be evaluated on a new data point x∗ ∈ R
D =

(
x(1)
∗ , . . . ,x(P)

∗
)

as follows

f̂ (x∗) =
P

∑
p=1

N

∑
i=1

(
α̂i + ρ̂+

ip − ρ̂−
ip

)
Kp

(
x(p)

i ,x(p)
∗

)
+ b̂, (6.44)

whereb̂ may be recovered from the complementary slackness conditions associated
with the primal-dual derivation.

The proof follows the formulation of the primal-dual kernelmachines as in Chapter
3. The main drawback of this approach is the huge number of Lagrange multipliers
(N(2P+1)) which occur in the dual optimization problem. Note that this number can
be reduced readily by only including those constraints of maximal variation belonging

to different input valuesx(p)
i 6= x(p)

j . This is especially useful in the case a number
of components consist of categorical or binary values. Subsection 8.4.1 describes a
computational shortcut.

It is known that the use of 1-norms may lead to a sparse solution which is unnecessarily
biased (Fan, 1997). To overcome this drawback, one has proposed the use of norms
as the Smoothly Clipped Absolute Deviation (SCAD) penalty function as suggested
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Figure 6.5:Results from a benchmark study on the dataset as discussed inExample 6.2
with N = 100andD = 25. The four first sub-plots show the contributions of the first4
components, with the dashed line indicating the empirical maximal variation. The last
two panels illustrate two components with zero empirical maximal variation.

by (Fan, 1997) and which have been implemented in a kernel machine in (Pelckmans
et al., 2004,In press). This text will not pursue this issue as it leads to non-convex
optimization problems in general. Instead, the use of the 1-norm is studied in order
to detect structure, while the final predictions can be made based on a standard model
using only the selected components (compare to basis pursuit, see e.g. (Chenet al.,
2001)).

Example 6.2 [Numerical Example of Structure Detection] An artificial example is taken
from (Vapnik, 1998). Figure 6.5.a and 6.5.b shows results obtainedon an artificial dataset
consisting ofN = 100 samples and dimensionD = 25, uniformly sampled from the
interval[0,1]25. The underlying function takes the following form:

f (x) = 10 sin(X1)+20 (X2−0.5)2 +10X3 +5 X4, (6.45)

such thatyi = f (xi)+ei with ei ∼ N (0,1) for all i = 1, . . . ,100.

Figure 6.5.a gives the nontrivial components (tp > 0) associated with the LS-SVM
substrate withµ optimized in validation sense. Here, the hyper-parametersµ andλ were
tuned using a 10-fold cross validation criterion. Figure 6.5.b presents the evolution of
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Figure 6.6: The evolution of the empirical maximal variation of the different
components when rangingµ from 1 to 104. The black arrow indicates the parameter
selected by using10-fold cross-validation, resulting in4 nontrivial contributions of
X1,X2,X3 andX4.

values oft whenρ is increased from 1 to 1000 in a maximal variation evolution diagram
(similarly as used for LASSO, see Subsection 6.1.2).

Note that an equivalent formulation is obtained by considering the Morozov type of
constrained least squares problems. Letσµ ∈ R

+ andσλ ∈ R
+ be constants. Then one

can alternatively write (6.42) as

J M̂
σµ ,σλ

(w,b, t) =
1
2

P

∑
p=1

wT
pwp

s.t.





1
P ∑P

p=1 tp ≤ σµ
1
N ∑N

i=1e2
i ≤ σλ

∑P
p=1wT

pϕp

(
x(p)

i

)
+b+ei = yi ∀i = 1, . . . ,N

−tp ≤ wpϕ
(

x(p)
i

)
≤ tp, ∀i = 1, . . . ,N,∀p = 1, . . . ,P.

(6.46)

in which case a similar formulation is obtained as in Lemma 6.5 whereµ andλ act as
multipliers to the two last inequality constraints.
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6.4.3 Kernel machines for handling missing values

Black-box techniques as neural networks and SVMs are quite useful in predictive
settings but are considered less appropriate for handling missing data (see e.g. (Hastie
et al., 2001), Table 10.1). One typically has to resort to preprocessing methods as data
imputation, data augmentation (Little and Rubin, 1987) or intractable EM methods,
see e.g. (Dempsteret al., 1977). The optimization based approach of primal-dual
kernel machines however can be employed to approach the problem as proposed in
(Pelckmanset al., 2005b) for the case of classification. The handling of missing values
gives rise to uncertainty in the model’s prediction. The useof additive models however
can recover still some information in this case associated with components which are
not affected.

The following setting is considered in the case of missing values of the input variables
where the missing values are complete at random (MCAR) (Rubin, 1976; Little and
Rubin, 1987).

Definition 6.2. [Integrated Risk] An observed input value xi takes a point distribution
Xi at the point xi , while a missing observation xm is only known to follow the marginal
distribution xm ∼ P(X) with P(X < x) = ∏N

i=1P(Xi < x). Then one may employ the
following integrated risk function.

R( f ,PXY) =
∫

x,y
ℓ(y− f (x))dPXY =

∫

x

∫

y
ℓ(y− f (x))dPY|XdPX, (6.47)

and the empirical counterpart

R̂( f ,D) =
N

∑
i=1

∫

y
ℓ(yi − f (x))dPXi . (6.48)

As such one has to take into account the marginal distribution P(X) only when
the observation is missing. In the case of all observed data,(6.48) reduces to the
classical risk as in (3.34). The case of building componentwise SVM classifiers in the
context of missing values is elaborated based on (Pelckmanset al., 2005b). A worst-
case counterpart of the integrated empirical risk is studied with the class of models

belonging to the componentwise kernel machinesf (x) = ∑P
i=1wT

pϕp

(
x(1)

)
.

Definition 6.3. [Worst-case Empirical Risk] A worst-case upper-bound to the
empirical integrated risk of (6.48) is given as follows

R̂ I ( f ,D) =
N

∑
i=1

max
u∈[−M,M ]

ℓ(u−yi), (6.49)

which reduces in the case of the Hinge loss function to

R̂h( f ,D) =
N

∑
i=1

[
1−yi

(
∑

p6∈Pi

wT
pϕp

(
x(p)

i

))
+ ∑

p∈Pi

Mp

]

+

. (6.50)
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This can be encoded in a primal-dual kernel machine as follows.

Lemma 6.6. [Primal-Dual Kernel Machine for Handling Missing Values]Consider

the model f(x) = ∑P
p=1wT

pϕp

(
x(p)

)
+b, where the mappingsϕp(·) : R

Dp →R
nh denote

the potentially infinite dimensional feature map for all p= 1, . . . ,P. The following
regularized cost-function is considered:

min
w,ξ ,t

JC(w,ξ , t) =
1
2

P

∑
p=1

wT
pwp +C

N

∑
i=1

ξi ,

s.t.





yi

(
∑p6∈Pi

wT
pϕp

(
x(p)

i

)
+b

)
−∑p∈Pi

tp ≥ 1−ξi

ξi ≥ 0 ∀i = 1, . . . ,N

−tp ≤ wT
pϕp

(
x(p)

i

)
≤ tp, ∀i, p | p∈ Pi .

(6.51)

The dual problem becomes then

max
αi ,ρ+

ip ,ρ−
ip

−1
2

N

∑
i, j=1

α(p)
y,i α(p)

y, j Ω̃P
i j +

N

∑
i=1

αi

s.t.





α(p)
y,i = αiyi +ρ+

ip −ρ−
ip ∀i | p 6∈ Pi

α(p)
y,i = αiyi ∀i | p∈ Pi

∑N
i=1yiαi = 0

λ = ∑i|p6∈Pi
(ρ+

ip +ρ−
ip)−∑i|p∈Pi

αi ∀p = 1, . . . ,P

0≤ αi ≤C ∀i = 1, . . . ,N

ρ+
ip,ρ−

ip ≥ 0, ∀i = 1, . . . ,N ∀p∈ Pi ,

(6.52)

whereαi ∈ R and ρ+
ip,ρ−

ip ∈ R
+ are the corresponding Lagrange multipliers,Ω̃P

i j =

∑P
p=1 K̃p

(
x(p)

i ,x(p)
j

)
for all i , j = 1, . . . ,N and whereK̃p

(
x(p)

i ,x(p)
j

)
= Kp

(
x(p)

i ,x(p)
j

)

if x(p)
i nor x(p)

j are missing and zero otherwise. The resulting nonlinear classifier

evaluated on a new data point x∗ =
(

x(1)
∗ , . . . ,x(P)

∗
)

takes the form

sign

[
P

∑
p=1

N

∑
i=1

α̂(p)
i Kp

(
x(p)

i ,x(p)
∗

)
+b

]
, (6.53)

whereα̂(p)
i for all i = 1, . . . ,N are solving (6.52).

Proof. The dual problem can be derived in the classical way. The LagrangianLC of
the constrained optimization problem becomes

LC(wp,ξi , tp;αi ,νi ,ρ+
ip,ρ−

ip) =
1
2

P

∑
p=1

wT
pwp +C

N

∑
i=1

ξi
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−
N

∑
i=1

νiξi −
N

∑
i=1

αi

[
yi

(
∑

p6∈Pi

wpϕp(x
(p)
i )+b

)
− ∑

p∈Pi

tp−1+ξi

]

− ∑
ip∈P

ρ+
ip

(
tp +wT

pϕp

(
x(p)

i

))
− ∑

ip∈P

ρ−
ip

(
tp−wT

pϕp

(
x(p)

i

))
, (6.54)

with positive multipliers 0≤ αi ,νi ,ρ+
ip,ρ−

ip. The solution is then given as the saddle
point of the Lagrangian resulting in the dual problem (6.52). From the condition for

optimality wp = ∑i|p6∈Pi
αiyiϕp

(
x(p)

i

)
, the result (6.53) follows.

Example 6.3 [Numerical Results on Missing Values]A data set was designed in order
to quantify the improvements and the difference of the proposed (linear and kernel)
componentwise SVM classificators over standard techniques in the case of missing data
and multiple irrelevant inputs. The Ripley dataset (n = 150, d = 2, binary labels) was
extended with three extra (irrelevant) inputs drawn from a normal distribution (N (0,1)).
The component consisting of inputsX1 and X2 is detected correctly by the hyper-
parameter optimizing the validation performance. In a second experiment, a portion
of the data was marked as missing data. The performance on a disjoint validation set
consisting of 100 points was used to tune hyper-parameters, while the final classifier was
trained on all 250 samples. The performance on a fresh test set of size 1000 was used to
quantify the generalization performance. For the purpose of comparison, the results of
linear Fisher discriminant analysis were computed which cope with the missing values by
omitting the corresponding samples, while the other approaches follow the derivations of
Subsection 2.3. Figure 6.7.a shows the estimated generalization performance in function
of the percentage of missing values.

As a second case, one considered the UCI hepatitis dataset (n = 80,d = 19) with
approximately 50% of the samples containing at least one missing value. A standard
SVM with RBF kernel and the componentwise SVM considering up to secondorder
components were compared. The former replaces the missing values with the sample
median of the corresponding variable while the latter follows the described worst-
case approach. The respective hyper-parameters were tuned using leave-one-out cross-
validation. Figure 6.7.b displays the receiver operating characteristic (ROC) curve of
both classifiers on a test-set of size 55. As the componentwise only employed 25 non-
sparse components out of the 380 components up to second order (Dp ≤ 2), the proposed
method outperformed the SVM both in interpretability as generalization performance.
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Figure 6.7:(a) Misclassification rate of the extended Ripley dataset in function of the
percentage of missing values. Notice that the worst-case analysis is not breaking down
when the percentage of missing values is growing.(b) ROC curves on the test-set of the
UCI hepatitis dataset using an SVM with RBF kernel with imputation of missing values
and componentwise SVM employing the measure of maximal variation employing the
proposed method for handling missing values. The latter consists of 25 non-sparse out
of the approximatively 400 components.
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Chapter 7

Fusion of Training with Model
Selection

The amount of regularization is often determined by a set of constants
which should be set by the user. The (meta-) problem of setting these is
often treated as a problem of model selection and consideredas being
solved. However, a procedure for the automatic optimization of these
hyper-parameters given a certain model selection criterion and model
training procedure is highly desirable, at least in practice. This chapter
outlines a framework for this purpose based on optimizationtheory.
Section 7.1 introduces the problem and sketches the proposed solution.
Various applications of the approach towards model selection problems in
linear parametric models are given. Section 7.2 studies theproblem of
model selection in the case of LS-SVMs and SVMs.

7.1 Fusion of Parametric Models

In order to make intuition on this topic more accessible, thefusion argument for the
parametric case is considered first. Unless stated otherwise, the validation performance
function is taken as the generic standard for model selection. LetDv = {(xv

j ,y
v
j)}n

j=1 ⊂
R

D ×R be a collection of data-samples i.i.d. sampled from the samedistributions
as those underlying the training datasetD . Let Xv = (xv

1, . . . ,x
v
n)

T ∈ R
n×D and

Yv = (yv
1, . . . ,y

v
n), then the validation model selection criterionModselv : R

D×Dv →R

becomes

J v(w) =
n

∑
j=1

(wTxv
j −yv

j)
2. (7.1)

Extension to the closely relatedL-fold and leave-one crossvalidation (Stone, 1974) and
to information criteria as Akaikes AIC (Akaike, 1973),Cp (Mallows, 1973) or GCV

139
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(Golubet al., 1979) may follow along the same lines.

7.1.1 Fusion of ridge regression and validation

At first, the task of appropriate selection of the ridge parameter γ ≥ 0 in linear
parametric models (see also Section 3.2 and Subsection 6.1.1) is studied. Consider
the validation model selection criterionModselv as in (7.1). Necessary and sufficient
conditions on a parameter vectorw to be the global optimum to (6.2) are given by the
normal equations (6.3): (

XTX + γID
)

w = XTY. (7.2)

The optimization problem of optimizing the solution-spaceover the hyper-parameter
γ ∈ R

+ with object-functionModselv may be formalized as an hierarchical program-
ming problem (see Subsection 2.4.4):

min
γ ,w

J v(w) =
1
2
‖Xvw−Yv‖2

2 s.t.
(
XTX + γID

)
w = XTY holds and γ ≥ 0.

(7.3)

This may be rewritten as the constrained optimization problem

(ŵ, γ̂) = argmin
γ ,w

J v(w) =
1
2
‖Xvw−Yv‖2

2 s.t.





(
XTX

)
w+wγ = XTY (a)

γw = wγ (b)

γ ≥ 0. (c)
(7.4)

Note that the collinearity constraint (7.4.b) is non-convex. One may refer to this
formulation asFusion of Ridge regression with model-selection, or shortly Fridge
regression. This typical formulation of fusion of training and validation can also be
regarded from another perspective.

Definition 7.1 (Solution path). The solution path of an estimator denotes the set of
estimates from the data corresponding to any admissable hyper- or design-parameter.

The solution path of ridge regression with respect to the regularization constantγ is
shown in Figure 7.1.a. Then the task of fusion of an estimatorwith a (model selection)
criterion amounts to minimizing this criterion over the solution path, see Figure 7.1.b.
The solution path of the LASSO estimator and the SVM were described and analysed
in (Efronet al., 2004) and (Hastieet al., 2004) respectively.

7.1.2 Convex relaxation to fusion of ridge regression

It turns out that in some cases the problem (7.4) can be solvedefficiently. Assume that
X is orthonormal such thatXTX = ID as in Lemma 6.1. Then the first order conditions
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Figure 7.1: Illustration of the solution path of ridge regression(a) the costfunction
in the parameterspace (surface) and the solution path (solid line) with respect to the
regularization constant.(b) The validation cost of the solutionpath with respect to the
regularization constant. This figure illustrates that while the training problem may be
convex in the parameters, the subproblem of hyper-parameter tuning may not.



142 CHAPTER 7. FUSION OF TRAINING WITH MODEL SELECTION

for optimality become

wd = λXT
d Y, λ =

1
1+ γ

, ∀d = 1, . . . ,D. (7.5)

The fusion problem becomes as such

(ŵ, λ̂ ) = argmin
λ ,w

J v(w,λ ) =
1
2
‖Xvw−Yv‖2

2 s.t.

{
w = λXTY

0 < λ < 1,
(7.6)

which can be solved efficiently as a quadratic programming problem.

The inputs are in general not orthonormal at all, especiallyin the cases where regular-
ization in the form of ridge regression is needed. However, the presented formalism
can be used in order to obtain good initial estimates of the regularization constant and
the parameters by adopting a suitable preprocessing step. LetUSUT denote the SVD of
XTX with S= diag(σ1, . . . ,σD) ∈ R

D×D andU ∈ R
D×D orthonormal. Then the normal

equations (7.2) can be written as follows

U (S+ IDλ )UTw = XTY ⇔UTw =
D

∑
d=1

(σd +λ )−1UT
d XTY. (7.7)

This can be approximated when the singular values{σd}D
d=1 can be clustered in a small

numbers around centers{σπi}I
i=1 whereπi denote disjunct sets of subsets of 1, . . . ,D

such that
⋃I

i=1 πi = {1, . . . ,D}. This result in the approximation

UTw≈
I

∑
i=1

λπi ∑
d∈πi

UT
d XTY where λπi =

1
σπi +λ

. (7.8)

A numerical example is constructed withN = 100 ten-dimensionalD = 10 input
datapoints which are ill-conditioned (rank larger than 1000), see Figure 7.2.a for a
typical spectrum of singular values. The output satisfies the relationyi = ωxi +ei where
ω is a random vector andei ∼ N (0,1) andei ∼ N (0,1). A separate validationset of
sizen = 75 is used for tuning the regularization trade-off. Resultsof a Monte Carlo
experiment with 1000 iterations are given in Figure 7.2.b. The latter achieves the same
performance as the ridge regression but is computationaly much less intensive

7.1.3 A convex relaxation to stepwise selection

Consider the case of input selection for linear models basedon model selection criteria.
Given a vector of indicatorsı = (ı1, . . . , ıD)T ∈ {0,1}D, the model is given asf (x) =
wT

ı I(ı)x whereI(ı) = diag(ı) ∈ R
D×D. The problem of ordinary least squares of this

model is given as

Jı(w) =
1
2

N

∑
i=1

(
wT I(ı)xi −yi

)2
, (7.9)
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Figure 7.2: Example of the convex approach to fusion of ridge regressionwith
validation. (a) A typical spectrum of the covariance matrix in linear parametric
regression. The first two singular values and the remaining eight are clustered in two
groups with average singular value97 and5 respectively.(b) Result on a Monte Carlo
experiment relating estimqtes of Ordinary Least Squares (OLS) with Ridge Regression
estimqtes manually tuned on a validation set and the convex approach to fusion as
described in Subsection 7.1.2. The latter achieves the sameperformance as the ridge
regression but is computationaly much less intensive.



144 CHAPTER 7. FUSION OF TRAINING WITH MODEL SELECTION

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w1

w
2

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

w1

w
2

(b)

Figure 7.3:Schematic illustration of the hierarchical programming problem approach
towards convex stepwise selection.(a) Contourplot of the least squares costfunction
due to the inequality constraints|w| ≤Wı (square).(b) Solution path (dashed line) of
the global least squares minimizer when varying the constraintsWı.
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By use of the upper-boundWı ∈ R
D such thatWı = |I(ı)w| where | · | denotes the

absolute value andWı,d = 0 if and only if ıd = 0, for all d = 1, . . . ,D, one can write
equivalently

JWı(w) =
N

∑
i=1

(
wTxi −yi

)2
s.t. −Wı ≤ w≤Wı, (7.10)

where the upper-boundWı can now be chosen a-priori when the relevant inputs
indicated by the vectorı are fixed. The Lagrangian becomes

LWı(w;α+,α−) =
1
2

N

∑
i=1

(
wTxi −yi

)2
+α−T

(−w−Wı)+α+T
(w−Wı), (7.11)

such that the Lagrange multipliersα−,α+ ∈ R
D are positive. The necessary and

sufficient Karush-Kuhn-Tucker conditions are given as follows:

KKT (7.10)(w;Wı,α+,α−)





(XTX)w−XTY = α−−α+ (a)

α−
d ,α+

d ≥ 0 ∀d = 1, . . . ,D (b)

−Wı
d ≤ wd ≤Wı

d ∀d = 1, . . . ,D (c)

α−
d (Wı

d +wd) = 0 ∀d = 1, . . . ,D (d)

α+
d (Wı

d −wd) = 0. ∀d = 1, . . . ,D (e)

(7.12)
Fusion of training and model selectionModsel can be formalized as

(ŵ;Ŵı, α̂+, α̂−) = argmin
w;Wı,α+,α−

J Modsel(w) s.t. KKT(7.10)(w;Wı,α+,α−) holds.

(7.13)
It is clear that the problem of input selection with respect to a model selection
criterion will result into a discrete and non-convex optimization problem. This is often
approached with a greedy and somewhat ad hoc stepwise method(see e.g. (Hastieet
al., 2001)).

Based on the previous reformulation of the input selection problem in terms of
the vector of hyper-parametersWı as in (7.10), a convex relaxation method can be
considered. Consider the validation model selection procedure. One can show that the
following modification to (7.13) is convex whenε ≥ 0 is sufficiently small following
the elaboration of hierarchical programming problems given in Subsection 2.4.4:

(ŵ;Ŵı, α̂+, α̂−) = argmin
w;Wı,α+,α−

J v
ε (w;Wı,α+,α−)

= ‖Xvw−Yv‖2
2 + ε

(
α+T

(Wı −w)+α−T
(Wı +w)

)

s.t.





(XTX)w−2XTY = α−−α+

α−
d ,α+

d ≥ 0 ∀d = 1, . . . ,D

−Wı
d ≤ wd ≤Wı

d ∀d = 1, . . . ,D.

(7.14)
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Figure 7.4: A solution space of ridge regression (RR), LASSO and plausible
least squares (pLS) estimators. The parameter space with the solution paths of
respectively the Ridge Regressor (dashed-dotted) and the LASSO estimator (solid line)
corresponding with different values of their respective hyper-parameters. The rectangle
indicates the subspace of solutions which cannot be rejected with aα significance level.

The following subsection gives an alternative approach based on an entirely different
principle and which yields better performances in practice.

7.1.4 Plausible least squares estimates

Another example of fusion of a least squares estimate with a certain criterion is
formulated. Here, one does not rely on an explicit parameterization scheme of the
solution-space by an hyper-parameter as the regularization constant, but the set of
solutions which cannot be rejected by a given significance level is considered instead.

Consider the case of deterministic inputsxi ∈ R
D and stochastic outputsyi follow-

ing approximatively a Gaussian distributionyi ∼ N (ωTxi ,σe). The least squares
estimate follows from the normal equations (3.4) where the only stochastic part
occurs asc(X,Y). Example 7.1 derives the distribution of the sample covariance
estimator ˆcd(D). This can be used to specify a range on the covariance which
is plausible given the finite set of samples in the classical way. Let ĉ(D ,α) =
(ĉ1(D ,α), . . . , ĉD(D ,α))T ∈ R

D be theα-quantile of the sample distribution of the
sample covariance. Then the solutionsw satisfying the following inequalities cannot
be rejected with anαs significance level

ĉD

(
D ,

αs

2

)
≤ (XTX)w≤ ĉD

(
D ,1− αs

2

)
. (7.15)
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The set{w satisfies eq. (7.15)} specifies a convex solution set forw, see Figure 7.4.

Example 7.1 [Sample Covariance Distribution] Let D = {(xi ,yi)}N
i=1 where xi ∈ R are

deterministic points∀i = 1, . . . ,N andyi i.i.d. sampled from a random variableY i with
E[Y i ] = 0, conditional meanE[Y i |xi ] = wx1 and bounded variance 0< var(Yi) < ∞ and
w∈ R fixed but unknown. Different approaches could be taken to derive expressions on
the sample distribution of ˆc(D).

Consider the sample covariance estimator ˆc(D) = 1
n ∑N

i=1xiyi . It follows from the central
limit theorem that ˆc(D) → N (µc,σ2

v ) whenN → ∞ where the meanµv andσ2
v can be

computed as follows
{

µv = E[ĉ(D)] = 1
N ∑N

i=1xiE[Y i |xi ] =
w
N ∑N

i=1x2
i

σ2
v = var[ĉ(D)] = 1

N ∑N
i=1xi var(Y i |xi) =

σ2
e

N ∑N
i=1xi .

(7.16)

Whenσ2
e were not known,Y i is approximately Gaussian, the sample variance estimateσ̂2

e
can be used. The sample distribution can then be described accurately asa t-distribution
with N−1 degrees of freedom (see e.g. (Neteret al., 1974)). When alsoX can becomes
a random variable, the analysis becomes much more cumbersome. Letthe random vector
Z be defined as followsZ = (X,Y) ∈ R

D+1 and letZ ∈ R
N×D+1 contain theN samples

(xiyi). In the caseZ follows approximatively multivariate GaussianZ ∼ N (0D+1,ΣZ),
then the covariance matrixZTZ ∈ R

D+1×D+1 follows a Wishart distributionW (Σ,N)
with N degrees of freedom. By definition, the elementsC of the Wishart distribution are
confined to the positive (semi-) definite coneSº 0. In the caseD = 1 andΣ = σ2

x , the
wishart distribution reduces to theσ2

x χ2(N) (Rao, 1965; Mardiaet al., 1979). Details on
this approach and its references to the use of the Wishart distribution may be found e.g.
in (Letac and Massam, 2004).

From a more practical point of view, the finite sample distribution of ˆc may be determined
using the bootstrap procedure (Efron, 1979) which results in accuratesample distributions
under mild regularity assumptions. Figure 7.5.a gives the sample distribution in the case
σ2

e = 1, σ2
x = 1, N = 100 andb1 = 3.14 using the bootstrap. Its theoretical counterpart

described in (7.16) is given in Figure 7.5.b.

7.1.5 Plausible least squares and subset selection

We proceed by application of this formulation of the plausible solutionset of the least
squares estimates towards subset selection. The followingquestion is adressed:What is
the sparsest least squares solution which is still plausible?As classicaly, the concept of
plausibility may be encoded as passing a hypothesis test. A typical test for this simple
case is the t-test (see also previous example). Thus one may describe the plausible
solutionset of the least squares estimate as in equation (7.15)

cond(7.17)(w,αs) : ĉD

(
D ,

αs

2

)
≤ (XTX)w≤ ĉD

(
D ,1− αs

2

)
. (7.17)

The desideratum of sparseness is relaxed by the use of theL1 norm as classicaly. Then
this question may be translated as follows

ŵ = argmin
w

Jα(w) = ‖w‖1 s.t. cond(7.17)(w,αs) holds, (7.18)
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Figure 7.5: (a) Finite sample distribution of the sample covariance estimator using
bootstrap. (b) Limit sample distribution forN → ∞ when σe were known (normal
distribution) and when it were estimated (Student’st-distribution).
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where
[
ĉD(D)−ασ2

e , ĉD(D)+ασ2
e

]
= S⊂ R

D denotes the confidence interval of
significance level 0< α ≪ 1 for the covariance (see previous example). This is another
example of the hierarchical programming problem where plausiable model training is
fused with a sparsness criterion.

Algorithm 7.1. (Subset selection using plausible least squares) The algorithm for
estimating the most sparse least squares estimate which cannot be rejected with a
significance levelαs is found as follows.

1. Compute the sample distributions of the covariance of theinput Xd with the
observed output Y for all d= 1, . . . ,D, using either a bootstrap procedure or the
sample moments (see example 7.1).

2. Given a significance level0 < αs < 1, construct the convex set

Sαs = {w | cond(7.17)(w,αs) holds }. (7.19)

3. Find the most sparse solution vectorŵ in Sαs by solving the fusion problem
(7.18).

A numerical Monte Carlo experiment relating sparseness andperformance of Ordinary
Least Squares (OLS), Ridge Regression (RR) (see Subsection6.1.1), LASSO estimate
(see Subsection 6.1.2) Alternative Least Squares (ALS) (see Subsection 6.1.3), and
the proposed method (plausible Least Squares or pLS) where the confidence interval
was constructed using the quantiles from a simple bootstrapprocedure with 10000
iterations. A dataset was constructed as follows, letD = {(xi ,yi)}N

i=1 with N = 100,
D = 10 and the observations generated asyi = ωTxiei with ei ∼ N (0,1) and ω =
(ω1,ω2,0, . . . ,0)T ∈ R

D whereω1,ω2 ∼ U (−5,5). The regularization constant of the
ridge regression estimate and the LASSO estimate as well as the significance level
α of the proposed method are tuned with respect to the performance of the estimate
on a separate validation set of sizen = 20. The final performance is measured using
the mean squares error of the estimate on a new testet of size 1000. Panel 7.6.a gives
boxplots of the performances, while panel 7.6.b compares the ability to detect structure.
Those figures shows that the given approach can have advantage both in performance
as in structure detection in this dedicated example.

7.2 Fusion of LS-SVMs and SVMs

7.2.1 Fusion of LS-SVMs with validation

Fusion of the LS-SVM as described in Section 3.3 and the validation criterionModselv

as defined in (7.1) can be written as follows

J v(α,γ) =
n

∑
j=1

(
ΩN(xv

j)
Tα −yv

j

)2
s.t.





Ωα +αγ = Y (a)

γ−1α = αγ (b)

γ−1 ≥ 0 (c),

(7.20)



150 CHAPTER 7. FUSION OF TRAINING WITH MODEL SELECTION

OLS RR LASSO ALS pLS

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
ec

ov
er

ed
 S

tr
uc

tu
re

(a)

OLS RR LASSO ALS pLS
−0.05

0

0.05

0.1

0.15

0.2

0.25

T
es

ts
et

 p
er

fo
rm

an
ce

(b)

Figure 7.6:Performance of different multivariate estimators based ona least squares
cost function. A Monte Carlo experiment relating the Ordinary Least Squares (OLS),
Ridge Regression (RR), LASSO, Alternative Least Squares and the proposed method
(plausible Least Squares or pLS) on an artificial dataset generated as described below.
The regularization constants and the significance levelαs were tuned with respect
to the performance on a disjunct validation set.(a) The recovered structure, while
the ALS estimator picks always exactly one significant variable, the plausible least
squares outperforms the LASSO method.(b) This property is traded by a small loss in
performance of the estimates.
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whereΩN : R
D → R is defined asΩN(x) = (K(x1,x), . . . ,K(xN,x))T . As can be seen

from this formulation, the constraint set of (7.20) is non-convex because of condition
(b) including an unbounded quadratical termγ−1α. This renders the problem (7.20)
non-convex even when the model selection criterionModsel is convex on its own. A
convex approach to the above problem is given in (Pelckmanset al., 2004b) based on
a matrixA∗ leading to an appropriate linearization of the problem. Theexample below
we show an alternative approach.

Example 7.2 [Convex Approximation of Fusion of LS-SVMs with Validation] Let K be
decomposed asUSUT using a singular value decomposition withU ∈R

N×N orthonormal
such thatUTU = UUT = IN andS= diag(σ(1), . . . ,σ(N)) ∈ R

N×N with ordered singular
valuesσ(1) ≥ ·· · ≥ σ(N). Then problem (7.20) can be rewritten as follows

J v(α ,γ) =
n

∑
j=1

(
ΩN(xv

j )
Tα −yv

j

)2
s.t.

{
(S+ IN)UTα = UTY (a)

γ−1 ≥ 0. (b)
(7.21)

Now we defineλ(i) for all i = 1, . . . ,N as follows

λ(i) ,
1

σ(i) +1/γ
. (7.22)

As the functionf (x) = 1/(x+ z) is strictly decreasing forx∈ R
+ given any fixed value

of z∈ R
+, the following inequalities are obtained:

{
λ(1) ≤ λ(2) ≤ ·· · ≤ λ(N)

0 < λ(i) ≤ 1
σ(i)

∀i = 1, . . . ,N.
(7.23)

Now we apply the overparaterization technique by omitting the constraint (7.21.b) and
use the linear inequalities (7.23) instead, resulting in the relaxation

(α̂, λ̂ ) = argmin
α,λ

J v(α) =
n

∑
j=1

(
ΩN(xv

j )
Tα −yv

j

)2

s.t.





UTα = ∑N
i=1 λ(i)U

T
i Y (a)

λ(1) ≤ λ(2) ≤ ·· · ≤ λ(N) (b)

0 < λ(i) ≤ 1
σ(i)

∀i = 1, . . . ,N (c),

(7.24)

whereλ =
(

λ(1), . . . ,λ(N)

)T
∈ R

N. Given the estimates, the approximate regularization

constant̂γ can be recovered from the relation

γα = Y−Ωα , (7.25)

and by substituting of the estimateα̂ .

A monte Carlo study was conducted to assess the practical relevance of the proposed
method. Let{(xi ,yi)}100

i=1 ⊂ R×R satisfy the relationyi = sinc(xi)+ ei with {ei}100
i=1 ∼

N (0,0.1). A validation set of sizen = 50 was used to optimize the regularization
constantγ via (a) a linesearch (using 40 evaluations), (b) the method presented in
(Pelckmanset al., 2004b) using a matrixA∗ and (c) the presented method. While the
proposed method achieves equivalent performance on a testset, the solution was found a
factor 20 faster than the first method. The method proposed in (Pelckmanset al., 2004b)
gains even a factor 2 in performance, but the loss in performance is significant and the
algorithm requires a good choice of the matrixA∗.
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Figure 7.7: (a) Performance on a validation-set of the estimate with respect to the
regularization constantγ in the LS-SVM estimate. Vertical lines indicate the minima
found by linesearch (dashed), the method based on the matrixA∗ (dashed dotted) and
the relaxation described in example 7.2 (solid line).(b) Results of a Monte-Carlo
experiment relating the performance of an LS-SVM estimate using linesearch, the
method based on a matrixA∗ and the presented method. While the first performs as
well as the last, the latter is computationally much more attractive.



7.2. FUSION OF LS-SVMS AND SVMS 153

7.2.2 Fusion of SVMs with validation

Consider the primal class of classifiers

Fsvm =
{

f (x) = sign
(
ωTϕ(x)

)
| ω ∈ R

Dϕ
}

. (7.26)

By employing the cost-function of the SVM (see Subsection 3.7.1) but using instead
the ramp function (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000; Shawe-Taylor
and Cristianini, 2004), one may write

(ŵ, ê) = argmin
w,e

JC(e) =
1
2

wTw+C
N

∑
i=1

e2
i

s.t. yi [w
Tϕ(xi)] ≥ 1−ei , ei ≥ 0, ∀i = 1, . . . ,N (7.27)

Necessary and sufficient conditions are provided by the Karush-Kuhn-Tucker condi-
tions with multipliersα,ρ ∈ R

N as in Subsection 3.7.1.

KKT (7.27)(w,e;α,ρ) =





w = ∑N
i=1 αiyiϕ(xi) (a)

Cei = αi +ρi ∀i = 1, . . . ,N (b)

yi [wTϕ(xi)] ≥ 1−ei ∀i = 1, . . . ,N (c)

ei ≥ 0 ∀i = 1, . . . ,N (d)

αi ≥ 0,ρi ≥ 0 ∀i = 1, . . . ,N (e)

αi
(
yi [wTϕ(xi)]−1+ei

)
= 0 ∀i = 1, . . . ,N ( f )

ρiei = 0, ∀i = 1, . . . ,N (g).

(7.28)

Elimination of the variablew yields the necessary and sufficient conditions for the dual
problem. The set of variables(w,C,α,ρ,e) ∈ R

D+1+3N satisfying those constraints
is non-convex due the positive OR constraints (7.28.fg). This solution space was
characterized as a piecewise linear set in (Hastieet al., 2004).
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Chapter 8

Additive Regularization
Trade-off Scheme

This chapter is related to the results of the previous chapter, but rather
takes a different approach towards the problem of fusion. Instead of
considering existing training procedures, a flexible formulation employing
an additive regularization trade-off scheme is taken as thebasis for fusion.
The resulting substrate is found much easier to proceed withwhenever
more complex model selection criteria are involved. The basic ingredients
are introduced in Section 8.1 and various relations are discussed. Section
8.2 then proceeds with the study of the fusion argument in thecontext of
an LS-SVM regressor with additive regularization trade-off. Furthermore,
the concept of an hierarchical kernel machine is introduced, leading to the
construction of kernel machines maximizing their own stability (Section
8.3).

8.1 Tikhonov and the Additive Regularization Trade-
off

8.1.1 The additive regularization trade-off

A reformulation to the LS-SVM formulation was proposed in (Pelckmanset al., 2003b)
leading to convex model selection problems. LetD be as in Chapter 3. Letc =
(c1, . . . ,cN)T ∈ R

N be a fixed vector of hyper-parameters. The central modification

155
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is to consider the following class of cost functions

(ŵ, ê)= argmin
w,e

J c(w,e)=
1
2

wTw+
1
2

N

∑
i=1

(ei−ci)
2 s.t. wTxi +ei = yi . ∀i = 1, . . . ,N.

(8.1)
In the papers (Pelckmanset al., 2003b; Pelckmanset al., 2005c) this formulation was
conceived as a modified trade-off parameterization replacing the classical regulariza-
tion constantγ in the ridge cost-function (3.9) or (6.2). This is referred to as the
Additive regularization trade-off (AReg) scheme. The modified normal equations are
given as (

XTX + ID
)

w = XT (Y−c) . (8.2)

Oncec is fixed, the parameter vector ˆw solving (8.2) is the unique global minimizer of
(8.1).

8.1.2 A modified loss-function perspective

The parameterization scheme (8.1) can be interpreted as a Modified Loss Function
(MLF) scheme. This can be seen most clearly by omitting the regularization term
wTw. Let d = (d1, . . . ,dN)T ∈ R

N be a fixed vector of terms.

J b(w,e) =
1
2

N

∑
i=1

(ei −di)
2 s.t. wTxi +ei = yi ∀i = 1, . . . ,N. (8.3)

The modified normal equations become
(
XTX

)
w = XT (Y−d) , (8.4)

Note that the formulations (8.2) and (8.4) result in equal solutionsw when the following
condition onc andd is satisfied:

XTc+w = XTd, (8.5)

wheneverXTX is of full rank. This establishes the close connection between the AReg
trade-off scheme and the MLF scheme.

Example 8.1 [Imposing Normal Distribution on the Residuals] This context of modified
loss functions may be used for the formulation of robust estimators as exemplified as
follows. Let{yi}N

i=1 be an i.i.d. sample from a random variableY with fixed but unknown
pdf pY . Following Example 1.2, the maximum likelihood location parameter of a density
with Gaussian distribution corresponds with the least squares estimate.

Let pY instead follow a contaminated distributionFε (N ,U ) defined in (3.58). Let
d ∈ R

N be fixed such thatDd = {yi −di}N
i=1 ∼ N , then the MLF argument leads to the

following estimator

µ̂ = argmin
µ

Jd(µ) =
N

∑
i=1

(yi −di −µ)2 ⇔ µN = 1T
N(Y−d). (8.6)
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Figure 8.1: Illustration of a use of the MLF mechanism in the case of a sample of a
contaminated model.(a) A Quantile-Quantile plot (’.’) of the original sample{yi}N

i=1
and of the modified samples{yi − di}N

i=1 (’o’) versus the quantiles of the standard
normal distribution. The coefficients of the regression (solid line) equal the estimated
location and scale parameter of the nominal model. The figureillustrates the difference
in which outliers (at the tails) and samples form the nominalmodel (at the center) are
treated by the MLF mechanism.(b) Boxplots representing the results of a Monte-
Carlo study comparing the mean, median, trimmed mean (β = 25%) and the proposed
method based on MLF for estimating the location. The performance is expressed as
the mean squared error of the estimate and the true location parameter,N = 50 and
the contamination factor was set to25%. While the trimmed mean, the median and
the MLF based method achieve comparable performance, the latter yields additionally
estimates of the scale and quantiles of the nominal model.

Employing the fusion argument, the question which vectord makes a maximal likelihood
estimateµ̂ may be formalized as follows

J o(µ ,d) = ‖d‖1 s.t.

{
(yi −di) ∼ N

µN = 1T
N(Y−d).

(8.7)

The first constraint may be approached by imposing small higher (> 2) moments on the
distribution ofDd, see e.g. (Boyd and Vandenberghe, 2004)

An approach may be used using the Quantile-Quantile method comparing twodistribu-
tions based on the ordered dataset. Let therefory(i) ≤ y(i+1) for all i = 1, . . . ,N−1 denote
the ordered samples. As the order is retained by translating the samples witha constant

µ . By comparison of this ordered samples with LetDz =
{

z(i)
}N

i=1
be an ordered sample

from the standard normalN (0,1) such thatz(i) ≤ z(i+1) for all i = 1, . . . ,N− 1. The
deviation of the sampleDc of the normal distributionDz may then be quantified by the
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maximal deviationd = supi

∣∣∣
(

y(i) −d(i)

)
−

(
µ +z(i)

)∣∣∣ as follows. LetσY ∈ R
+ be the

slope of the QQ-plot, see Figure 8.1

(µ̂, σ̂Y, r) = argmin
µ,σY ,r

r s.t. − r ≤
(

y(i) −d(i)

)
−

(
µ +σyz(i)

)
≤ r. (8.8)

Let g = (g1, . . . ,gN)T ∈ R
N,+ be a vector of positive slack variables. Using the Pareto

approach to multi-criterion optimization results in the following problem

min
µ,σy,r,d,g

J o
λ (µ ,σy, r,d,g) = λ r +

1
N

N

∑
i=1

gi

s.t.





y(i) −d(i) ≤ y(i+1) −d(i+1) ∀i = 1, . . . ,N−1

−r ≤
(

y(i) −di

)
−

(
µ +σyz(i)

)
≤ r ∀i = 1, . . . ,N

−gi ≤ di ≤ gi ∀i = 1, . . . ,N

µN = 1T
N(Y−d).

(8.9)

From this problem formulation not only follows an estimate of the locationµ̂, but also
of the scale parameter̂σy of the nominal model behind the sample. Moreover, quantile
intervals of the nominal model follow from the estimate. The non-sparse elements of
d may indicate the outliers in the model, Figure 8.1.a shows an example of a quantile-
quantile plot (QQ-plot) of the original samples and of the modified samples using the
mechanism as described. Panel 8.1.b reports results of a Monte-Carlo study comparing
the mean, median, trimmed mean (β = 25%) and the proposed method based on MLF for
estimating the location. The performance is expressed as the mean squared error of the
estimate and the true location parameter,N = 50 and the contamination factor was set to
25%.

8.1.3 LS-SVM substrates

The extension of the AReg scheme to primal-dual kernel machines was studied in
(Pelckmanset al., 2003b; Pelckmanset al., 2005c). Consider the modified cost-
function to (3.9) with given valuesc∈ R

N:

J c(w,e) =
1
2

wTw+
1
2

N

∑
i=1

(ei −ci)
2 s.t. wTϕ(xi)+ei = yi . ∀i = 1, . . . ,N (8.10)

The dual solution is then uniquely determined by the following equations

KKT (8.10)(α,e;c) =

{
(Ω+ IN)α +c = Y (a)

e= α +c, (b)
(8.11)

whereα ∈R
N are the Lagrange multipliers. The resulting predictorf̂ may be evaluated

in any pointx∗ ∈R
D as f̂ (x∗) = ΩN(x∗)T α̂ whereΩN : R

D →R
N is defined asΩN(x) =

(K(x1,x), . . . ,K(xN,x))T . Note that the vector of residualse is not eliminated as in
Section 3.3 as it will be often needed later-on. We refer to this dual characterization
of the solution space to the AReg cost-function as theLS-SVM substrate. Note that



8.2. FUSION OF LS-SVM SUBSTRATES 159

the LS-SVM formulation (3.9) is taken as a starting point as this lead to the simplest
characterization, see also Section 3.3.

Remark that by relating condition (8.11.a) to (3.15.a), onecan derive the condition on
c andγ for which the solutions equal as follows

(γ−1−1)α = c, γ−1 > 0, (8.12)

which is clearly non-convex if bothγ,c andα are unknown.

8.2 Fusion of LS-SVM substrates

Fusion of the LS-SVM substrate with a model selection criterion Modsel( f ,D) with
respect to the regularization constantsc ∈ R

N may be written as a hierarchical
programming problem

(ê, α̂; ĉ) = argmin
e,α;c

JModsel (α) s.t. KKT(8.10)(e,α;c) holds. (8.13)

A crucial property of (8.11) and (8.13) is that the regularization vectorc∈ R
N occurs

linearly in the constraints. The price one has to pay for thisadvantage is the increased
number of regularization constantsc∈ R

N absorbing the non-convex constraints. The
remainder of this section will mostly be concerned with the appropriate restriction of
the effective degree of freedom of the constantsc∈R

N by imposing a-priori knowledge
or model selection criteria on the solution space KKTc(α,e) for all c∈ R

N.

8.2.1 Fusion of LS-SVM substrates with validation

At first, the case whereModsel is the validation performanceModselv on a disjunct
validation datasetDv is studied.

Jc,Modsel
v(α,c) =

n

∑
j=1

(
ΩN(xv

j)
Tα −yv

j

)2
s.t. (Ω+ IN)α +c = Y. (8.14)

As was shown in (Pelckmanset al., 2003b), the size of the validation-setDv should
be significantly larger thanN in order to obtain stable solutions. This may be seen
informally asn samples need to determineN degrees of freedom parameterized by the
regularization constant.

In order to approach this disadvantage, the solutionα (and thusc) was restricted to the
convex hull of the quadratic constraint (8.12). To compute an approximative convex
hull of the constraint (8.12), was constructed using a discrete set of regularization
constantsΓ = {γ1}Q

q=1, leading to a convex set

SΓ =

{
α =

Q

∑
q=1

gqαγq ∈ R
N

∣∣∣
(
Ω+ γ−1

q IN
)

αγq = Y,
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gq ≥ 0 ∀q,
Q

∑
q=1

gq = 0

}
. (8.15)

Figure 8.2.a illustrates the solutionset spanned by three Thikonov nodes. Figure 8.2.b
gives the results of a numerical comparison of the evolutionof the generalization
performance in terms of the number of nodes with respect to the generalization ability
of the original solution to problem (7.20) using a naive line-search with the same
number of evaluations. This formulation is closely relatedto the marginalization
over the noise constant as described in Example 6.1. As can bederived from the set
description, the following algorithm may be used:

Algorithm 8.1. [Ensemble Approach to the Fusion of LS-SVMs with Validation]
LetΓ = {γq}Q

q=1 be a set of possible regularization parameters for1< Q∈ N denoting
the vertices of the hull.

1. For eachγq, compute the solutionαγq to the LS-SVM regressor (3.12).

2. Let g= (g1 . . . ,gQ)T ∈ R
Q be a vector. Solve the problem

( f̂g, ĝ) = argmin
fg,g

J Γ,Modsel

αγq
( fg,g) s.t.





fg(x) = ΩN(x)T ∑Q
q=1gqαγq (a)

∑Q
q=1gq = 1 (b)

gq ≥ 0, ∀q = 1, . . . ,Q (c)
(8.16)

which is convex whenModsel( f ) is a convex measure on f= wTϕ.

A new point x∈ R
D may be evaluated aŝfΓ(x∗) = ∑Q

q=1gq
(
ΩN(x∗)Tαγq

)
.

This algorithm is related to the ensemble approach as elaborated e.g. in (Perrone and
Cooper, 1993; Bishop, 1995; Breiman, 1996) and surveyed in (Hamers, 2004).

8.2.2 Fusion of LS-SVM substrates with cross-validation

In order to avoid the non-trivial process of dividing valuable data into a separate
training and validation set, Cross-Validation (CV) (Stone, 1974) has been introduced.
The following is based on theL-fold CV (where Leave-One-Out CV is a special case
with L = N). Let T denote the set of indices of the datasetD andVl denote the set of
indices of thel th fold. Then the setT is repeatedly divided into a training setTl and a
corresponding disjoint validation setVl , ∀l = 1, . . . ,L such thatT = Tl ∪Vl =∪L

l=1Vl

andVl ∩Vk = ∅, ∀l 6= k = 1, . . . ,L. In the following,N(l) denotes the number of
training points andn(l) the number of validation points of thel th fold. Figure 8.3
illustrates this repeated training and validation process.

All L training and validation steps can be solved simultaneouslybut independently by
stacking them into a block diagonal linear system. For notational convenience, the
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nodesn compared to the result of a naive line-search usingn evaluations. The proposed
method is seen to outperform the line-search approach forn small.
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w̄, b̄, c̄i : ∀i ∈ T

i ∈ T

Figure 8.3:Schematical representation of theL-fold cross-validation procedure.

indicator matrixI(S1,S2) is introduced denoting a sparse matrix with(i, j)th entry 1 if
S1(i) = S2( j) and 0 otherwise for setsS1 andS2, e.g.:

I(S1,S2) =




1 0 0 0

0 1 0 0

0 0 0 1




where S1 = {a,b,d} and S2 = {a,b,c,d}.

(8.17)
As argued in the previous subsection, in each fold the numberof validation data may
not be smaller than the number of training data. To avoid thisdifficulty in the cross-
validation setting, there is an opportunity to restrict in anatural way the degrees of
freedom of the additive regularization constantsc(l) for all l = 1, . . . ,N(l). As in
classical cross-validation practice, the (additive) regularization constants should be
held constant over the different folds, i.e.

c(l) = ITl ,T c, ∀l = 1, . . . ,L. (8.18)

This reduces the freedom of the regularization constants from (L − 1)N to N.
Embedding this in a single linear system results in the following problem. Let
ℓcv : R

2LN →R be a convex loss function of the training residualse(l) and the validation
errorse(l)v of theL folds.

(
α̂(l), ĉ, ê(l), ê(l)v

)
= argmin

α(l),c,e(l),e(l)v

ℓcv
(

e(l)v,e(l)
)

s.t. KKTl
(8.20)

(
α(l),c,e(l),e(l)v

)
∀l = 1, . . . ,L, (8.19)
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where theL sets of constraints are the Karush-Kuhn-Tucker conditionsfor the
individual folds (8.11) and

KKT l
(8.20)

(
α(l),c,e(l),e(l)v

)
:





I(Tl ,T ) (Ω+ IN) I(T ,Tl )
α(l) + I(Tl ,T )c = I(Tl ,T )Y (a)

α(l) + I(Tl ,T )c = e(l) (b)

I(Vl ,T )ΩI(T ,Tl )
α(l) +e(l)v = I(Vl ,T )Y, (c)

(8.20)
for all l = 1, . . . ,L. This problem formulation has 2LN unknowns with 2LN −
N different constraints leading to large scale problems already when N > 100.
In (Pelckmanset al., 2003b), the following choice for the cost-functionℓcv was
considered.

min
α(l),c,e(l),e(l)v

1
2L

L

∑
l=1

e(l)vT
e(l)v +

1
2L

L

∑
l=1

e(l)T
e(l) s.t.

KKT l
(8.20)

(
α(l),c,e(l),e(l)v

)
∀l = 1, . . . ,L, (8.21)

A big disadvantage of this approach is the rapid growth of thenumber of parameters
whenN > 100.

8.2.3 A fast approach to fusion with CV

In order to reduce the computational complexity of the approach, a slightly different
approach may be formulated leading to a convex problem of 2N variables andN
constraints. Therefor, the level 1 training of the different folds is written as a multi-
criterion optimization problem:

(
w(l),e(l)

k ,b
)

= argmin
w(l),e(l)

k ,b




1
2w(1)T

w(1) + 1
2 ∑k∈T (1)

(
e(1)

k −ck

)2

. . . . . .

1
2w(L)T

w(L) + 1
2 ∑k∈T (L)

(
e(L)

k −ck

)2




s.t.





w(1)Tϕ(xk)+b+e(1)
k = yk ∀k∈ T (1)

. . .

w(L)Tϕ(xk)+b+e(L)
k = yk. ∀k∈ T (L).

(8.22)

Although the criteria of (8.22) can be solved individually but with coupled regulariza-
tion constants (8.18), one can relax the problem by trying tofind one Pareto-optimal
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solution (Boyd and Vandenberghe, 2004). The scalarizationtechnique with weights
1N = (1, . . . ,1)T ∈ R

L in the objective function is used leading to a much compacter
problem than the original formulation (Pelckmanset al., 2003b).

L

∑
l=1

∑
k∈Tl

(
e(l)

k −ck

)2
=

N

∑
i=1

∑
l |i∈Tl

(
e(l)

i −ci

)2
=

N

∑
i=1

(
∑

l |i∈Tl

e(l)
i − (L−1)c̃i

)2

s.t. c̃i = ∑
l |i∈Tl

e(l)
i +

√
∑

l |i∈Tl

(
e(l)

i −ci

)2
. (8.23)

Eliminating the residualse(l) and the original regularization termc, the following
constrained optimization approach to the cross-validation based AReg LS-SVM is
obtained

min
w(l),b,ek

J (cv) =
1
2

L

∑
l=1

w(l)T
w(l)

(L−1)
+

1
2

N

∑
k=1

(ek− c̃k)
2

s.t.
1

L−1 ∑
l |k∈Tl

w(l)T
ϕ(xk)+b+ek = yk, ∀k = 1, . . .N. (8.24)

The Lagrangian of this constrained optimization problem becomes

L (cv)(w(l),b,ek;αk) =
1
2

N

∑
k=1

(ek− c̃k)
2 +

1
2

L

∑
l=1

w(l)T
w(l)

L−1

−
N

∑
k=1

αk

(
1

L−1 ∑
l |i∈Tl

w(l)T
ϕ(xk)+b+ek−yk

)
. (8.25)

The conditions for optimality w.r.t.w(l),b,ek,αk for all i, l for the training become:




∂L (cv)/∂ek = 0 → ek = c̃k +αk (a)

∂L (cv)/∂w(l) = 0 → w(l) = ∑i∈Tl
αkϕ(xk) (b)

∂L (cv)/∂b = 0 → ∑N
k=1 αk = 0 (c)

∂L (cv)/∂αk = 0 → ∑l |i∈Tl
w(l)Tϕ(xk)+b+ek = yk. (d)

(8.26)

From (8.26.b) one can recover

∑
l |i∈Tl

w(l) = ∑
l |i∈Tl

∑
i∈Tl

αkϕ(xk) = (L−1)
N

∑
k=1

αkϕ(xk)+ ∑
j∈Vl

α jϕ(x j). (8.27)

After elimination of the variablesw(l) andc̃, the dual problem becomes:



0 1T
N

1N Ω+ 1
L−1Ω(cv)







b

α


+




0

e


 =




0

Y


 (8.28)
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with

Ω(cv) =




ΩV1

ΩV2

. . .

ΩVL




(8.29)

andΩVl ∈ R
n(l)×n(l)

is the kernel matrix between elements of the validation set of the
l th fold ΩVl

i, j = K(xi ,x j),∀i, j ∈ Vl . From (8.26.b) one can recover an expression for
the individual models of the different folds such that thel -th model can be evaluated in
point xv

j for j ∈ Vl as

yv
j =

(
ŵ(l)

)T
ϕ(xv

j)+ b̂+ev
j = ∑

k∈Tl

α̂kK(xk,x
v
j)+ b̂+ev

j (8.30)

with residual f̂ (l)(xv
j)−yv

j denoted asev
j andα̂ andb̂ solve (8.28). In matrix notation,

conditions (8.28) and (8.30) can be written as

KKT (8.24)(α,b,e,ev)=




0 1T
N

1N
L−1

L Ω+ 1
L Ω(cv)

0N
L+1

L Ω(cv)− 1
L Ω







b

α


+




0

e

e−ev




=




0

Y

0N




.

(8.31)
The fusion of the training equations (8.28) and the validation set of equations (8.30)
results in the following constrained optimization problem

Fusion : (ĉ, α̂, b̂) = argmin
c,α,b

N

∑
k=1

e2
k +

N

∑
k=1

(ek−ev
k)

2 s.t. KKT(8.24)(α,b,e,ev) holds.

(8.32)
The estimated average model can then be evaluated in a new point x∗ as

f̂ (cv)(x∗) = ∑
l |k∈Tl

w(l)T
ϕ(x∗) =

N

∑
k=1

α̂kϕ(xk)+ b̂, (8.33)

whereα̂ andb̂ are the solutions to (8.32).

Example 8.2 [Numerical Comparison of Different Kernel based Fusion Schemes] A
numerical comparisons of the different fusion schemes was reported in (Pelckmanset
al., 2003b). Table 8.1 gives results of numerical experiments on regression benchmark
datasets with the Tikhonov regularization based LS-SVMs (tuned forγ using validation
(Val) and cross-validation (CV)) and the LS-SVMs with additive regularization trade-
off (AReg) (tuned forλ with validation and cross-validation). For the latter, results are
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given based on the full implementation (Subsection 8.2.2) and the fast implementation
(Subsection 8.2.3). Results of two artificial datasets (a two-dimensionallinear function
and thesinc function) are given. The size of the training, validation and noise free
test set were 30, 20, 500, respectively. Cross-validation based tuning procedures were
provided with the joint training-validation dataset. Data generation, training and testing
were repeated 1000 times. Performance is measured in average meansquared error
(Mean(MSE)) and standard deviation (Std(MSE)) of the predictions on the test set which
is fixed a priori in the different randomizations. Additionally, the techniques were
compared on two benchmark data sets from the UCI Machine Learning Repository, the
Abalone data (N = 700,n = 500,ntest = 2977 andd = 7) and the Boston housing dataset
(N = 220,n = 120,ntest = 166, d = 11). Data division in training and validation set,
tuning, training and testing were repeated respectively 100 and 1000 times. The results
show also an increased performance in the case of the first two experiments using the full
implementation of AReg LS-SVM based on 10-fold cross-validation. According to the
Wilcoxon Rank Sum test, the test set performance is even significantly better using the
AReg (CV) LS-SVM for the first two toy examples.

8.3 Stable Kernel Machines

Stability analysis in general aims at determining how much avariation of the
formulation (data) influences the estimate of an algorithm.This notion is used in
many different domains (numerical, robust statistics, control theory) under different
denominators (e.g. sensitivity, perturbation, influence or conditioning). The more
specific definition of stability of a learning algorithm defined in e.g. (Devroyeet
al., 1996; Bousquet and Elisseeff, 2002) is used here. Originally, it was proposed for
the estimation of the accuracy of learning algorithms itself by revealing the connection
between stability and generalization error (Devroyeet al., 1996). In particular, one
can derive (Bousquet and Elisseeff, 2002) a bound on the generalization error or risk
functional based on an observed quantitative measure of stability. Although many
subtle differences exist between different definitions (one distinguishes amongst others
between (pointwise) hypothesis, error or uniform stability), this section only works
with the two concepts of uniformα andβ stability as they are most clearly put within
an optimization point of view. Uniform stability was used toderive exponential bounds
for different algorithms, including techniques for unsupervised learning (k-nearest
neighbor), classification (soft margin SVMs) and regression (Regularized least squares
regression and LS-SVMs). While in previous papers about stability, the object of
interest was the learning algorithm itself (Bousquet and Elisseeff, 2002), the context of
hierarchical programming problems and LS-SVM substrates may be used to formulate
a constructive approach.
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LS-SVM
Tuned AReg

Val CV Val CV Fast CV

linear regression(30,20,500)

Mean(MSE): 0.5887 0.5931 0.5887 0.3796 0.5858

Std(MSE): 0.5108 0.5125 0.5108 0.4069 0.5074

sinc (30,20,500)

Mean(MSE): 0.0289 0.0269 0.0286 0.0174 0.0240

Std(MSE): 0.0217 0.0185 0.0210 0.0086 0.0145

Abalone (700,500,2977)

Mean(MSE): 4.6609 4.8502 4.6622 5.0258 4.6216

Std(MSE): 0.1188 0.2311 0.1164 0.1808 0.0952

Computation time (s): 67.81 126.39 10.672 1401.6 19.28

Boston Housing(220,120,166)

Mean(MSE): 0.1815 0.1883 0.1814 0.1874 0.1260

Std(MSE): 0.0491 0.0523 0.0500 0.0446 0.0262

Computation time (s): 0.1199 9.1834 0.0732 10.0728 1.0195

Table 8.1:Numerical results from the experiment described in Example8.2. The mean
and the standard deviation of the test-set performance of100 randomizations of the
respective datasets are given. These results suggest that the fusion argument does not
affect the generalization performance while avoiding the need for non-convex and time
consuming line searches.
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8.3.1 Stable regressors

While most stability criteria of learning machines take a form based on the difference
in loss between the training and leave-one-out error, a common relaxed version called
α-stability can be taken

∣∣∣ek−e(v)
k

∣∣∣ ≤ αS ∀k = 1, . . . ,N. (8.34)

This is considered as a measure for measuring the performance of learning machines
and used to derive bounds on the generalization abilities. Here, we use it as a special
form of regularization. ImposingαS -stability on additively regularized (AReg) LS-
SVMs boils down to a quadratic programming problem

(
α̂(l), ĉ, ê(l), ê(l)v

)
= argmin

α(l),c,e(l),e(l)v

JαS

1
2L

L

∑
l=1

e(l)vT
e(l)v

s.t.





max
l 6=h

max
j∈Vh

∣∣∣e(l)
j −e(h)v

j

∣∣∣ ≤ αS ∀h = 1, . . . ,L

KKT (8.20)

(
α(l),c,e(l),e(l)v

)
. ∀l = 1, . . . ,L

(8.35)

Note the huge number of unknowns into the formulation which occur already whenN
has a moderate size. To cure this disadvantage, the fast CV formulation may be used
instead

min
α(l),c,e(l),e(l)v

JαS
=

1
2L

L

∑
l=1

e(l)vT
e(l)v s.t.





KKT l
(8.20)

(
α(l),c,e(l),e(l)v

)
∀l = 1, . . . ,L,

max
l

max
i∈Vl

∣∣∣e(l) −e(l)v
∣∣∣ ≤ αS .

(8.36)

8.3.2 StabilityL-curves

One can visualize the trade-off between stability and loss in a graph by exploring
the solutions for a range of values ofαS . We shall refer to this graph as theLα -
curve, analogously to theL-curve (Hansen, 1992; Neumaier, 1998; Golub and van
Loan, 1989) displaying the trade-off between bias and variance (see Figure 8.4).

Example 8.3 This experiments focus on the choice of the regularization scheme in kernel
based models. For the design of a Monte-Carlo experiment, the choice ofthe kernel
and kernel-parameter should not be of critical importance. To randomize the design of
the underlying functions in the experiment with known kernel-parameter,the following
class of functions is considered

f (·) =
N

∑
k=1

ᾱkK(xk, ·) (8.37)

where the input pointsxk are equidistantly taken between 0 and 5 for allk = 1, . . . ,N
with N = 75 andᾱk is an i.i.d. uniformly randomly generated term. The kernel is fixed
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Figure 8.4: The toy problem as described in Section 4 was used to generatethe
following figures:(a) Classical L-curve of the regularization parameterγ in (3.12) with
respect to the training error;(b) TheLα curve visualizing the trade-off between fitting
error‖e‖2

2 and theα upper bound of the stability measure;(c) The curve visualizing
a typical relationship between the performance of the leave-one-out performance and
theα upper bound of the stability measure.

asK(xk,x j ) = exp(−‖xk − x j‖2
2) for all i, j = 1, . . . ,N. Output data points points were

generated asyk = f (xk)+ek for k = 1, . . . ,N whereek areN i.i.d. samples of a Gaussian
distribution.

Given this method to generate datasets with a prefixed kernel, a Monte Carlostudy was
conducted to relate the designed algorithms in a practical way as reported inFigure 8.5.

8.4 Hierarchical Kernel Machines

The idea of hierarchical programming and fusion of trainingand model selection levels
was used to formalize an hierarchical modeling strategy.

8.4.1 Alternative training criteria

Sometimes the designers assumptions and optimality criteria do not allow for straight-
forward primal-dual derivations or do result in a number of unknowns (Lagrange
multipliers) which makes the approach less practical. Consider e.g. the case of
structure detection as elaborated in Section 6.4.

Sparseness is often regarded as good practice in the machinelearning community
(Vapnik, 1998; von Luxburget al., 2004) as it gives an optimal solution with a minimal
representation (from the viewpoint of VC theory and compression). The primal-
dual framework also provides another motivation for tryingto sparsify the support
values based on sensitivity analysis. The optimal Lagrangemultipliers α̂ contain
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Figure 8.5:Results from numerical experiments with the data generating mechanism as
described in Section 4.(a) Result of theα-stable,β -stable, 2-norm (8.32) and standard
LS-SVM on a particular realization of the dataset.(b) Boxplot of the obtained accuracy
obtained on a testset on a Monte-carlo study of the differentmethods for randomly
generated functions according to equation (8.37).

Validation

LS−SVM Substrate
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Hierarchical Kernel Machine Convex Optimization problem

Level 1:

Level 2:

Level 3:

Fused Levels

Structure Detection
Sparse LS−SVM

ci

ρ,ζ

Figure 8.6:Schematic representation of an hierarchical kernel machine. Conceptually,
one formulates the problem of substrates (level 1), modeling (level 2) and model
selection (level 3) on different levels. Interaction of thelevels is guided by a
proper set of hyper-parameters. Computationally, the different levels are treated as
an hierarchical programming problem employing the KKT conditions to impose the
conceptual structure.
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information of how much the (dual) optimal solution changeswhen the corresponding
constraints are perturbed, see Subsection 3.3.3. In this respect, one can design a kernel
machine that minimizes its own sensitivity to model mis-specifications or atypical data
observations by minimizing an appropriate norm on the Lagrange multipliers. Let
ℓ : R → R be a convex and differentiable loss-function. The 1-norm isconsidered

min
e,α,b,c

N

∑
i=1

ℓ(ei)+ζ‖α‖1 s.t. KKT(8.10)(α,e;c) hold, (8.38)

where 0< ζ ∈ R acts as a hyper-parameter. This criterion leads to sparseness (Vapnik,
1998) and was studied in (Pelckmanset al., 2004e).

As already hinted at in Subsection 6.4.2, the current framework may be used to
obtain a much more practical formulation to the problem of structure detection for
componentwise kernel models using the measure of maximal variation. The kernel
machine for structure detection minimizes the following criterion for a given tuning
constant 0< ρ ∈ R:

min
e,tp,α,b,c

N

∑
i=1

ℓ(ei)+ρ
P

∑
p=1

tp s.t.

{
KKT (8.10)(α,e;c) hold with Ω = ∑P

p=1 Ω(p)

−tp1N ≤ Ω(p)α ≤ 1Ntp, ∀p = 1, . . . ,P

(8.39)

which has a unique minimum and can be solved efficiently whenℓ is convex.

8.4.2 Finishing it all up: fusion with validation

As argued in Chapter 7, the automatic tuning of the hyper-parameterρ in (8.39) orζ
in (8.38) of the second level with respect to an appropriate model selection criterion is
highly desirable, at least in practice. A similar approach with respect to a validation
criterion using a third level of inference. This three levelarchitecture constitutes the
hierarchical kernel machine. The LS-SVM substrate constitute the first level, while the
sparse LS-SVM and the LS-SVM for structure detection makes up the second level.
The validation performance is used to tune the hyper-parametersζ (or ρ) on a third
level.

A third level is added to the LS-SVM for structure detection in order to tune the hyper-
parameterζ of the second level where one choosesℓ(e) = e2. Figure 8.8 summarizes
the derivation below and points out the hierarchical approach. Reconsider the problem
(8.39) whereρ acts as a hyper-parameter. One can eliminatee and c from this
optimization problem leading to

min
t,α

Jρ(α, t) =
1
2
‖ΩPα−y‖2

2+ρ
P

∑
p=1

tp s.t. −tp1N ≤Ω(p)α ≤ tp1N, ∀p= 1, . . . ,P.

(8.40)
Let ξ +p andξ−p ∈ R

+,N for all p = 1, . . . ,P be multipliers of the Lagrangian. The
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Jζ (e,α) = ‖e‖2
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Jv(ev) = ‖ev‖2
2

α +c = e

Jc(w,ei) = wTw+∑N
i=1(ei −ci)

2 s.t. wTϕ(xi)+ei = yi

ζ

c

min
ζ ,ξ+,ξ−,a;α

‖Ωα −yv‖2 +b−ξ−T
(a−α)+b+ξ +T

(a+α)

(Ω+ IN) α +c = y

ΩPTΩPα −yTΩP = (ξ−−ξ +)

ξ−,ξ + ≥ 0

−a≤ α ≤ a

ζ = 1T
N(ξ− +ξ +)

(w,e)

(c;α,e)

(ζ ,ev;a,c,ξ +,ξ−;α,e)

Figure 8.7:Schematical representation of the hierarchical kernel machine for sparse
representations. From a conceptual point of view, inference is done at different levels
and interaction is guided via a set of hyper-parameters. Thefirst level constitutes of an
LS-SVM substrate. On the second level, inference of theci is defined in terms of a cost
function inducing sparseness, whileζ is optimized on a third level using a validation
criterion.
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Figure 8.8:Schematical representation of the hierarchical kernel machine for structure
detection. On the second level, inference of theci is expressed in terms of a
least squares cost function with a minimal amount of maximalvariation, whileρ is
optimized on a third level using a validation criterion.
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corresponding Karush-Kuhn-Tucker conditions then become

KKTρ(α, t;ξ +,ξ−)=





ΩPTΩPα −yTΩP = ∑P
p=1(ξ−p−ξ +p) (a)

ρ = 1T
N(ξ−p +ξ +p) ∀p = 1, . . . ,P (b)

ξ +p,ξ−p ≥ 0 ∀p = 1, . . . ,P (c)

−tp1N ≤ Ω(p)α ≤ tp1N ∀p = 1, . . . ,P (d)

ξ−p
i (tp +Ω(p)

i α) = 0, ∀i = 1, . . . ,N ∀p = 1, . . . ,P (e)

ξ +p
i (tp−Ω(p)

i α) = 0, ∀i = 1, . . . ,N, ∀p = 1, . . . ,P ( f )

(8.41)
The problem of fusion then becomes

Fusion: min
ρ,t,α,ξ−,ξ+

J v =
1
2
‖ΩP,vα −yv‖2

2 s.t. KKTρ(α, t;ξ +,ξ−) (8.42)

whereΩP,v ∈ R
n×N = ∑P

p=1 Ω(p),v and Ω(p),v
i j = Kp

(
x(p)

i ,x(p),v
j

)
for all i = 1, . . . ,n

and j = 1, . . . ,N. The problem (8.42) is convex up to the complementary slackness
constraints (8.41.ef) which belong to the class of positiveOR constraints, see also
Subsection 2.4.3.

The estimated model can be evaluated at new data pointsx∗ ∈ R
d as

f̂ (x∗) = ŵTϕ(x∗) =
N

∑
i=1

α̂i ∑
tp 6=0

Kp
(

x(p)
i ,x(p)

∗
)

, (8.43)

whereα̂ andt̂p are solutions to (8.42).

Example 8.4 [Numerical Results of Sparse LS-SVMs]The performance of the proposed
sparse LS-SVM substrate was measured on a number of regression and classification
datasets, respectively an artificial dataset sinc (generated asY = sinc(X) + e with e∼
N (0,0.1) andN = 100,d = 1) and the motorcycle dataset (Eubank, 1999) (N = 100,d =
1) for regression (see Figure 8.9), the artificial Ripley dataset (N = 250,d = 2) (see Figure
8.10) and the PIMA dataset (N = 468,d = 8) from UCI at classification problems. The
models resulting from sparse LS-SVM substrates were tested against thestandard SVMs
and LS-SVMs where the kernel parameters and the other tuning-parameters (respectively
C,ε for the SVM,γ for the LS-SVM andξ for sparse LS-SVM substrates) were obtained
from 10-fold cross-validation (see Table 8.2).

Example 8.5 [Numerical Results of Structure Detection]An artificial example is taken from
(Vapnik, 1998) and the Boston housing dataset from the UCI benchmark repository was
used for analyzing the practical relevance of the structure detection mechanism. This
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Figure 8.9: Comparison of the SVM, LS-SVM and sparse LS-SVM substrate of
subsection 8.4.1 on the Motorcycle regression dataset. Onesees the difference in
selected support vectors of(a) a standard SVM and(b) a sparse hierarchical kernel
machine.
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Figure 8.10: Comparison of the SVM, LS-SVM and sparse LS-SVM substrate of
subsection 8.4.1 on the Ripley classification dataset. One can see the difference in
selected support vectors of(a) a standard SVM and(b) a sparse hierarchical kernel
machine. The support vectors of the former concentrate around the margin while the
sparse hierarchical kernel machine will provide a more global support.
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SVM LS-SVM Sparse LS-SVM substr.

MSE Sparse MSE MSE Sparse

Sinc 0.0052 68% 0.0045 0.0034 9%

Motorcycle 516.41 83% 444.64 469.93 11%

PCC Sparse PCC PCC Sparse

Ripley 90.10% 33.60% 90.40% 90.50% 4.80%

Pima 73.33% 43% 72.33% 74% 9%

Table 8.2:Performances of SVMs, LS-SVMs and the sparse LS-SVM substrates of
Subsection 8.4.1 expressed in Mean Squared Error (MSE) on a test set in the case
of regression or Percentage Correctly Classified (PCC) in the case of classification.
Sparseness is expressed in percentage of support vectors w.r.t. number of training data.
The kernel machines were tuned for the kernel parameter and the respective hyper-
parametersC,ε; γ and ζ with 10-fold cross-validation. These results indicate that
sparse LS-SVM substrates are at least comparable in generalization performance with
existing methods, but are often more effective in achievingsparseness.

subsection considers the formulation from Subsection 8.4.1, where sparseness amongst
the components is obtained by use of the sum of maximal variation. The performance on
a validation set was used to tune the parameterρ both via a naive line-search as well as
using the method which is described in Subsection 8.4.2.

Figure 8.11 shows results obtained on an artificial dataset consisting of 100 samples and
dimension 25, uniformly sampled from the interval[0,1]25. The underlying function takes
the following form:

f (x) = 10 sin(X1)+20 (X2−0.5)2 +10X3 +5 X4 (8.44)

such thatyi = f (xi)+ ei with ei ∼ N (0,1) for all i = 1, . . . ,100. Figure 8.11 gives the
nontrivial components (tp > 0) associated with the LS-SVM substrate withρ optimized
in validation sense. Figure 8.12 presents the evolution of values oft whenρ is increased
from 1 to 1000 in a maximal variation evolution diagram (similarly as used forLASSO
(Hastieet al., 2001)).

The Boston housing dataset was taken from the UCI benchmark repository. This dataset
concerns the housing values in suburbs of Boston. The dependent continuous variable
expresses the median value of owner-occupied homes. From 13 given inputs, an additive
model was build using the mechanism of maximal variation for detection of which input
variables have a non-trivial contribution. 250 data-points were used for training purposes
and 100 were randomly selected for validation. The analysis works with standardized
data (zero mean and unit variance), while results are expressed in the original scale.
The structure detection algorithm as proposed in Subsection 8.4.1 was used to construct
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Figure 8.11:Results of structure detection on an artificial dataset as used in (Vapnik,
1998), consisting of 100 data samples generated by four componentwise non-zero
functions of the first 4 inputs and 21 irrelevant inputs and perturbed by i.i.d. unit
variance Gaussian noise. This diagram shows the evolution of the maximal variations
per component when increasing the hyper-parameterρ from 1 to 10000. The black
arrow indicates a valueρ corresponding with a minimal cross-validation performance.
Note that for the corresponding value ofρ , the underlying structure is indeed detected
successfully.

the maximal variation evolution diagram. Figure 8.13 displays the contributions of the
individual components. The performance on the validation dataset wasused to tune the
kernel parameter andρ . The latter was determined both manually (by a line-search) as
automatically by fusion as described in Subsection 8.4.2. For the optimal parameterρ,
the following inputs have a maximal variation of zero:

1 CRIM: per capita crime rate by town,

2 ZN: proportion of residential land zoned for lots over 25,000 sq.ft.,

4 CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise),

10 TAX: full-value property-tax rate per 10,000,

12 B: 1000(Bk−0.63)2 where Bk is the proportion of blacks.

Testing was done by retraining a componentwise LS-SVM based on only theselected
inputs. The resulting additive model increases in performance expressed in MSE on an
independent test-set with 22%. The improvement is even more significant (32%) with
respect to a standard nonlinear LS-SVM model with an RBF-kernel.
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Figure 8.12:Results of structure detection on an artificial dataset as used in (Vapnik,
1998), consisting of 100 data samples generated by four componentwise non-zero
functions of the first 4 inputs and 21 irrelevant inputs and perturbed by i.i.d. unit
variance Gaussian noise. The resulting nontrivial components (tp > 0) associated with
the LS-SVM substrate withρ optimized in validation sense.
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Figure 8.13:Results of structure detection on the Boston housing dataset consisting
of 250 training, 100 validation and 156 randomly selected testing samples. The
contributions of the variables which have a non-zero maximal variation are shown.
The fusion argument as described in Subsection 8.4.2 was used to tune the parameter
ρ .
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Chapter 9

Kernel Representations &
Decompositions

The generalization performance of kernel machines in general often
depends crucially on the choice of the (shape of the) kernel and its
parameters. The following chapter shows the relationship between the
issue of regularization and the choice of the kernel. Furthermore, the
idea of kernel decompositions is proposed to approach the problem of the
choice of the kernel. Finally, relations with techniques from the field of
system identification are elaborated. Given observed second moments,
the task of stochastic realization amounts to finding those internal (kernel)
structures effectively realizing this empirical characterization. This results
in a tool which can assist the user in the decision for a good (shape of the)
kernel. Section 9.1 introduces a formal argument relating the regulariza-
tion scheme and a weighting term in the loss function respectively with
the form of the kernel using a primal-dual argument. Then Section 9.2
proceeds with the elaboration of a method for searching compact kernel
decompositions based on the method of maximal variation. Section 9.4
then discusses a method for recovering the shape of the kernel from the
observed second order moments in the univariate case and is also extended
to the multivariate case.

9.1 Duality between regularization and kernel design

9.1.1 Duality between kernels and regularization scheme

A classical result in the theory of smoothing splines (Wahba, 1990) can be cast in the
more general context of kernels using a primal-dual argument.
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Theorem 9.1. [Duality between Regularization and Kernel Design] Let ϕ : R
D →

R
Dϕ be a fixed mapping where Dϕ ∈ {N,+∞}. Consider the class of models (3.8) given

asFϕ =
{

f (x) = ωTϕ(x)
∣∣ ω ∈ R

Dϕ
}

. Let ℓ : R → R be a convex and differential
loss function and let G∈ R

Dϕ×Dϕ be a positive semi-definite matrix. Consider the
class of estimation methods optimizing the following L2 regularized cost function on
the training datasetD = {(xi ,yi)}N

i=1

(ŵ, ê) = argmin
w,e

JG(w,e) =
1
2

N

∑
i=1

ℓ(ei)+
1
2

wTGw

s.t. wTϕ(xi)+ei = yi , ∀i = 1, . . . ,N. (9.1)

Let{φd : R
D →R

R} be a set of functions spanning the null-space of Gϕ. Letφ ∈R
N×R

be defined asφir = φr(xi) for all i = 1, . . . ,N and r= 1, . . . ,R be of full rank. Then
Gφd = 0 for all d = 1, . . . ,D. The resulting estimate can be evaluated as follows

f̂ (x) =
N

∑
i=1

α̂iKG(xi ,x)+
R

∑
r=1

β̂rφ(x), (9.2)

where KG(xi ,x) = ϕ(xi)G†ϕ(x) with G† ∈ R
Dϕ×Dϕ the pseudo-inverse to G. Further-

more the unknownŝα = (α̂1, . . . , α̂N)T ∈ R
N and β̂ =

(
β̂1, . . . , β̂R

)T
∈ R

R are unique

for the given loss functionℓ and datasetD .

Proof. The proof starts with the primal-dual characterization of the global optimum to
the constrained optimization problem (9.1), see condition(a) of Subsection 3.3.2. Let
α = (α1, . . . ,αN) ∈ R

N be the Lagrange multipliers in the corresponding Lagrangian
LG. An invariant condition for optimality independently for the choice ofℓ is

∂LG

∂w
= 0→ Gw= ΦT

Nα, (9.3)

whereΦN = (ϕ(x1), . . . ,ϕ(xN))T ∈ R
N×Dϕ which holds in the optimum. If the inverse

G−1 to G exists such thatGTG−1 = G−TG = IDϕ , then the solution takes the form

f̂ (x) = α̂TΦNG−1ϕ(x)T =
N

∑
i=1

α̂iKG(xi ,x), (9.4)

where the modified kernelKG : R
D×R

D →R is defined asKG(xi ,x) = ϕ(xi)
TG−1ϕ(x)

and the vector̂α contains the unique Lagrange multipliers following from the problem
(9.1).

In the case the matrix is not invertible, the proof is a littlebit more involved. Lets∈N0

denote the rank of the matrixG. Let G = USUT be the SVD of the matrixG such that
UTU = IDϕ andS= diag(σ(1),σ(2), . . . ,σ(s),0, . . . ,0)∈R

Dϕ×Dϕ . LetG† be the pseudo-

inverse ofG such thatG† = US†UT with S† = diag(σ−1
(1)

,σ−1
(2)

, . . . ,σ−1
(s) ,0, . . . ,0) ∈
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R
Dϕ×Dϕ . Let Q ∈ R

Dϕ×Dϕ be span the null-space, e.g.Q = U diag(0T
s ,1, . . . ,1)UT .

Then condition (9.3) can be rewritten as follows

Gw= ΦT
Nα ⇔ w = G†ΦT

Nα +Qw. (9.5)

If the rank of the null-space ofQ definedR= Dϕ −s is finite, a finite set of functions
{φr : R

D → R}R
r=1 can be constructed as follows. LetU0 ∈ R

Dϕ×R contain theR
eigenvectors corresponding with the zero singular values.

φr = ϕ(x)TU0
r , ∀r = 1, . . . ,R, (9.6)

then this set is a minimal set. From this it follows that the matrix φ ∈ R
N×R defined as

φir = φr(xi) for all i = 1, . . . ,N andr = 1, . . . ,R must be full rank. Thus, the solution
to (9.1) can then be written as (9.2) where uniqueness follows from the convexity
properties.

Moreover, from condition (9.5) it follows thatαΦT
N cannot be contained in the null-

spaceQϕ or in the span of{φr}R
r=1 such that the condition

0Dϕ = αΦT
NQ⇔ φTα = 0R. (9.7)

is necessary and sufficient for uniqueness.

This result also holds in the case of SVMs (Section 3.4) and SVTs (Section 3.5) which
both employ a related formulation based on slackness variables.

The semi-parametric primal-dual kernel machines as elaborated in Section 4.1 may be
seen as a direct application of this result. Let{φd : R

D → R}R
r=1 be a set of parametric

basis functions such thatφ ∈ R
N×R (whereφir = φr(xi)) is of full rank. Letϕφ be an

extended version of the mappingϕ such that

ϕφ (x) = (φ1(x), . . . ,φR(x),ϕ)T ∈ R
R+Dϕ . (9.8)

Let G = diag(0T
R,1T

Dϕ ) ∈ R
R+Dϕ be a diagonal matrix with zero weights to the

parametric components. Then consider the estimator minimizing the regularized
squared loss

(ŵ, ê)= argmin
w,e

Jγ ,G(w,e)=
γ
2

N

∑
i=1

e2
i +

1
2

wTGw s.t. wTϕ(xi)+ei = yi , ∀i = 1, . . . ,N.

(9.9)
The pseudo inverseG† andQ have then a particular easy form such that the solution is
characterized by the following set of linear equations




0R×R φT

φ ΩG + 1
γ IN







β

α


 =




0R

Y


 , (9.10)

following conditions (9.5) and (9.7) and whereΩi j = K(xi ,x j) = ϕ(xi)
TG†ϕ(x j). This

set of linear equations is equivalent to equation (4.3).
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9.1.2 Kernels as smoothing filters

Theorem 9.1 not only relates the quest of regularization with the research on learning
the kernel but also supports the interpretation of kernel machines as smoothing filters
as discussed in the following example.

Example 9.1 [Learning Machine based on a Fourier Decomposition, II]The setting of
example 3.2 is studied in some more detail. LetD = {(xi ,yi)}N

i=1 contain a sample with
univariate inputsxi uniformly sampled from a finite interval. LetϕF : R → R

∞ be a
mapping of a pointx to its Fourier coefficients defined as follows

ϕF (x)λ = exp(iλx) (9.11)

whereλ = −∞, . . . ,∞ acts similarly as an index. the inner product with anyω ∈ R
∞ is

then defined as

< ω,ϕF (x) >=
1√
2π

∫ ∞

−∞
ωλ exp(iλx)dλ , ωTϕF (x). (9.12)

which amounts to the classical inverse Fourier transform whereλ plays the role of the
frequency parameter. Let(F f ) : R → R denote the Fourier transform of the functionf .
The previous elaboration proves that one works with a kernel machine which implicitly
works with a Fourier representationω : R → R if the following kernel is used

K f (xi ,x j ) =< ϕF (xi),ϕF (x j ) >=
1√
2π

∫ ∞

−∞
exp

(
iλ (x j −xi)

)
dλ , (9.13)

which equals a generalized function in the form of a Dirac function∆(x j − xi) which
integrates to one.

Given this Fourier interpretation, a plausible choice is to impose a decreasing weighting
term penalizing for higher frequencies leading to less smooth solutions. This corresponds
with a complexity measure corresponding with a high-pass filter on the estimated model,
see e.g. (Wahba, 1990; Girosiet al., 1995). Let the functiong : R → R be defined as

g(λ ) =

{
exp

(
− λ 2

h

)
λ 6= 0

0, λ = 0
(9.14)

whereh < c∈ R is an appropriate constant. Then the regularization term with weighting
matrix can be formalized as

ωTGω ,

∫ ∞

−∞
g(λ ) ω2(λ )dλ . (9.15)

Following the previous theorem, this would coincide with the use of a parametric intercept
term (lying in the null space ofG) and the use of the kernel

KG(xi ,x j ) =
1√
2π

∫ ∞

−∞
g(λ )exp

(
iλ (xi −x j )

)
dλ = exp

(
− (xi −x j )

2

h

)
, (9.16)

following from the invariance property of the functionf (x) = exp(−x2) with respect to
the Fourier transform such that(F f )(x) = f (x) for all x∈R. which results in the classical
RBF kernel with bandwidthh, see e.g. Appendix A in (Girosiet al., 1995).
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9.1.3 Duality between error weighting schemes and kernel design

A similar argument can be used to explicify the relationshipbetween the a weighted
least squares scheme and the dual representations in terms of kernels.

Theorem 9.2. [Weighted Least Squares Primal-Dual Kernel Machines] Consider
the same setting as in the previous theorem. Let H∈ R

N×N be the known positive
definite weighting matrix of the errors.

(ŵ, ê) = argmin
w,e

JH(w,e) =
1
2

eTHe+
1
2

wTw

s.t. wTϕ(xi)+ei = yi . ∀i = 1, . . . ,N (9.17)

The global optimum follows from the set of linear equations

(ΩH + IN) e= Y, (9.18)

The solution then may be evaluated in any point x∗ ∈ R
D as follows

f̂ (x∗) = ΩN(x∗)
THê, (9.19)

whereê= (ê1, . . . , êN)T ∈ R
N solves (9.18) andΩN : R

D → R
N is defined asΩN(x) =

(K(x1,x), . . . ,K(xN,x))T ∈ R
N.

Proof. The proof again starts with the primal-dual derivations as in Section 3.3. Let
α = (α1, . . . ,αN)T ∈ R

N be a vector containing Lagrange multipliers. The Lagrangian
becomes

LH(w,e;α) =
1
2

eTHe+
1
2

wTw−
N

∑
i=1

αi
(
wTϕ(xi)+ei −yi

)
. (9.20)

Necessary and sufficient first order conditions for optimality then characterize uniquely
the global optimum as follows





∂LH

∂w
= 0→ w = ΦT

Nα

∂LH

∂e
= 0→ He= α

∂LH

∂αi
= 0→ wTΦN +e= Y,

(9.21)

whereΦN ∈ R
N is defined asΦN = (ϕ(x1), . . . ,ϕ(xN))T . Let H† denote the pseudo-

inverse toH, then after eliminatingw andα, the dual set of equations becomes as in
(9.18). Remark that this time the result is not expressed in the Lagrange multipliers
α but in the vector of residualse as the latter contains more information (ase is not
restricted to the image ofH).
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Remark9.1. Note that if an inverseH−1 to H exists, the solution can be expressed
alternatively as follows (

Ω+H−1) α = Y, (9.22)

where the relationwH = ΦT
Nα is used.

This result enables the construction of models consisting of a deterministic component
modeled by a primal-dual kernel machine and a stochastic component modeled by
a Gaussian process. Let{Y i}N

i=1 be a Gaussian process with a non-parametric
function for the meanf (x) and fixed covariance functionρ : R

D ×R
D → R, then the

probabilistic rules governing the observations may be written as




E[Y|x] = wTϕ(x) ∀x∈ R
D

cov(Y i ,Y j) = E[(Y i − f (xi))(Y j − f (x j))] = ρ(xi ,x j), ∀xi ,x j ∈ R
D.

(9.23)

Let C ∈ R
N×N be the covariance matrix such thatCi j = ρ(xi ,x j) for all i, j = 1, . . . ,N

which is strictly positive definite. Define the random variablesZ as followsZ i = Y i −
f (xi), then{Z i}N

i=1 is a Gaussian process. The log likelihood of a realizationZ =
(z1, . . . ,zN)T ∈ R

N of this non i.i.d. process is given as

ℓ(Z) = log
(
ZTC†Z

)
, (9.24)

as in e.g. (Whittle, 1954; Box and Jenkins, 1979; Brockwell and Davis, 1987). This
motivates the following penalized likelihood cost-function

(ŵ, Ẑ) = argmin
w,Z

Jγ ,ρ(w,Z) =
γ
2

ZTC−1Z+
1
2

wTw

s.t. wTϕ(xi)+zi = yi , ∀i = 1, . . . ,N, (9.25)

with C−1 the inverse of the covariance matrixC such thatC−TC = CTC−1 = IN. The
output value corresponding to a new datapointx∗ ∈ R

D can be estimated as follows

f̂ (xi) = ΩN(x∗)
T α̂, (9.26)

where α̂ solve the dual system (9.18). One may refer tof̂ as the (deterministic)
mean function of the process. Following a similar argument as standard in Gaussian
Processes based on the matrix inversion Lemma (see also Section 5.2), the expected
response at positionx∗ ∈ R

D is given as

E[Y∗ | x∗,Y1 = y1, . . . ,YN = yN] = (ΩN(x∗)+ρN(x∗))
T α̂, (9.27)

where the functionρN : R
D → R

N is defined asρN(x) = (ρ(x1,x), . . . ,ρ(xN,x))T ∈
R

N. From this expression and (9.18), it can be seen that the difference between the
covariance (and the weighting scheme) on the one hand and thekernel on the other
is indistinguishable in the formulations. In the extremal case of the same functional
form of the kernel and the covariance function, the difference dissolves completely. A
similar result was obtained in the theory of smoothing splines (Wahba, 1990).
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Example 9.2 [Colored Noise Scheme]A classical example is considered where the noise
scheme can be modeled by a first order Auto-Regressive (AR) process

Fϕ,a =
{

f (x) = wTϕ(x), yt = f (xt)+(1+aq)et
∣∣ w∈ R

Dϕ ,
}

, |a| < 1, (9.28)

whereq denotes the backshift operatorqet = et−1. Defineqe1 = e0 wheree0 ∈ R is an
appropriate initial condition, to setup a proper initial condition. This type of models was
elaborated by (Engleet al., 1986) in the case of modeling the electricity load as a function
of amongst others the temperature. Let{(xt ,yt)}T

t=1 be a set of observations recorded at
a finite sequence of equal time intervals corresponding witht = 1, . . . ,T. In this case the
following cost-function may be written

(ŵ, ê)= argmin
w,e

Ja,γ (w,e)=
1
2

wTw+
γ
2

N

∑
t=1

e2
t s.t. wTϕ(xt)+(1+aq)et = yt ∀t = 2, . . . ,T,

(9.29)
wherezt = (1+aq)et for all t = 2, . . . ,T andzt = et defines a Gaussian process{zt}T

t=1
with covariance matrixC∈ R

T defined as follows

Ckl = cov(zk,zl ) =





σ2
e if k = l

aσ2
e if |k− l | = 1

0 otherwise.

(9.30)

After constructing the LagrangianLa,γ with multipliers α = (α2, . . . ,αT)T ∈ R
T , one

obtains the following conditions for optimality





∂La,γ
∂w

= 0→ w = ∑T
t=1 αtϕ(xt)

∂La,γ
∂e

= 0→ γet = (1+aq)αt ∀t = 1, . . . ,T

∂La,γ
∂αi

= 0→ wTϕ(xt)+(1+aq)et = yt , ∀t = 1, . . . ,T.

(9.31)

Let the matrixTa ∈ R
T×T be defined as follows

Ta =




1 2a a2 0 . . . 0

0 1 2a a2

...
. . .

. . .

1 a

0 0 1




. (9.32)

As this matrix has all eigenvalues one (Golub and van Loan, 1989), the variableset andw
may be eliminated from the set of equations (9.31) resulting in the following set of linear
equations (

Ω+
1
γ

Ta

)
α = Y, (9.33)
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The resulting mean function̂f may be evaluated in a new pointx∗ ∈ R
D as follows

f̂ (x∗) = ΩN(x∗)T α̂, (9.34)

whereα̂ = (α̂1, . . . , α̂T)T ∈ R
T solves the system (9.33). In this example, the parameter

a was considered to be known. It becomes apparent (from an optimization point of view)
that the determination of the regularization constant and the auto-regressive parameter
amounts to non-convex model selection problems, as also regarded in this way in (Engle
et al., 1986).

From the dual system (9.33), it may be concluded that the problem is equivalent to the
weighted problem as follows. DefineT−1

a = diag
(
(1+aq)−1, . . . ,(1+aq)−1

)
, then

(ŵ, Ẑ) = argmin
w,Z

J T
γ,a(w,Z) =

1
2

wTw+
γ
2

ZTT−1
a Z s.t. wTϕ(xt)+zt , ∀t = 2, . . . ,T,

(9.35)
where{zt}T

t=1 is a non-white process with covarianceρ ,

9.1.4 Duality of linear structure and kernel design

This subsection shows how imposed structure in the form of symmetric functions
reflect in the design of the kernel matrix. Specificly, consider the task of estimating
even functionsf from data such thatf (x) = f (−x) for all x ∈ R

D. Consider the
following model

f (x) =
1
2

(
wTϕ(x)+wTϕ(−x)

)
, (9.36)

which should be even by construction. Consider the primal problem:

(ŵ, ê) = argmin
w,e

Jγ(w,e) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i

s.t.
1
2

(
wTϕ(x)+wTϕ(−x)

)
+ei = yi ∀i = 1, . . . ,N (9.37)

Eliminating the latter infinite constraint results in the following problem

(ŵ, ê) = argmin
w,e, f

Jγ(w,e) =
1
2

wTw+
γ
2

N

∑
i=1

e2
i

s.t.
1
2

wTϕ(xi)+
1
2

wTϕ(−xi)+ei = yi , ∀i = 1, . . . ,N. (9.38)

Using a primal-dual argument, the corresponding dual problem can be summarized as
follows (

Ω(2) +
1
γ

IN

)
α = Y, (9.39)

where the modified kernel matrix becomesΩ(2) = 1
4 (Ω−,− +2Ω− +Ω) and the

matricesΩ−,Ω−,− ∈ R
N×N are defined asΩ−

i j = K(xi ,−x j) andΩ−,−
i j = K(−xi ,−x j)

respectively. The function can be evaluated in a new point as

f̂ (x∗) = Ω(2)
N (x∗)

T α̂ , (9.40)
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where α̂ solve the dual set of equations (9.39) andΩ(2)
N : R

D → R
N is defined as

Ω(2)
N (x∗) = 1

4 (K(x1,x∗)+2K(−x1,x∗)+K(−x1,−x∗), . . .)
T ∈ R

N.

Remark9.2. This structural approach should be contrasted with the approach sketched
in Section 4.3 where structure was imposed pointwise. The present technique
also guarantees that future prediction on (yet unknown) testpoints will satisfy the
constraints. It is however more difficult to apply than the pointwise approach as an
appropriate model definition (9.36) is not easily found e.g.in the case of inequality
(monotonicity) constraints. Note finally that this form of structural constraints also
translates into the use of an appropriate kernel.

9.2 Kernel decompositions and Structure Detection

9.2.1 Kernel decompositions

The problem of choosing an appropriate kernel may be approached in correspondence
with the following principle“If nothing were known a priori on the choice of the kernel,
then let the data decide”, which situates this issue closely to a Bayesian interpretation
as in (MacKay, 1992) and was elaborated in the case of LS-SVM models in (Van Gestel
et al., 2002). The motivation for the concept of kernel decompositions is summarized
in the following lemma.

Lemma 9.1. [Kernel Decomposition]Let Dp = ∑P
p=1Dϕp ∈ N0 be a fixed nonzero

positive integer. Letϕ∗
P : R

D →R
DP denote the extended feature space mapping defined

as
ϕ(P)(x) =

(
ϕ1(x)

T , . . . ,ϕP(x)T)T ∈ R
DP. (9.41)

Let c= (c1, . . . ,cP)T ∈ R
+,P be a vector of positive constants. Consider the modified

regularized least squares cost-function of the LS-SVM regressor given as

Jc =
1
2

P

∑
p=1

cp
(
wT

pwp
)
+

1
2

N

∑
i=1

e2
i s.t.

P

∑
p=1

wT
pϕp(xi)+ei = yi , ∀i = 1, . . . ,N, (9.42)

where the vector c∈R
+,P determines the regularization trade-off. Letα̂ =(α̂1, . . . , α̂N)T ∈

R
N denote the unique solution to the dual problem of (9.42). Then the solution takes

the form

f̂ (x) =
N

∑
i=1

α̂iK(P)(xi ,x), (9.43)

where K(P) : R
D ×R

D → R is defined as

K(P)(xi ,x j) =
P

∑
p=1

cpKp(xi ,x j), ∀xi ,x j ∈ R
D, (9.44)

and Kp is the kernel corresponding with the pth feature map such that Kp(xi ,x j) =
ϕp(xi)

Tϕp(x j). We refer to the kernel K(P) as a kernel decomposition.
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Figure 9.1:Illustratic example showing the benefits of imposing structural constraints
on the estimate of a function (dashed-dotted line) with noisy observations (dots).(a)
estimate of standard LS-SVM without imposing the structure. (b) estimate using the
presented method imposing the even structure of the data. This latter has improved
generalization on the left-half plane. This approach is especially usefull as a modular
approach for semi-parametric tasks (see Section 4.1).
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This result is easily proven by using a primal-dual argumentand is closely related to
Theorem 9.1. A special case is encountered when the vector ofconstantsc is taken
constant, saycp = 1/γ for all p= 1, . . . ,P in which case the formulation reduces to the
componentwise kernel machines formulation as elaborated in Section 4.2. However,
the present result has a slightly different focus.

9.2.2 Structure detection using kernel decompositions

Let K(P) : R
D × R

D → R denote a kernel decomposition consisting ofP ∈ N0

componentsK(P)(xi ,x j) = ∑P
p=1Kp(xi ,x j). From the close relationships between

componentwise kernel machines (4.2) and kernel decompositions (9.1), one can
consider methods for obtaining models that contain sparse in the components, which
would lead to a sparse kernel decomposition. The approach towards structure detection
using the measure of maximal variation as described in Subsection 6.4.2 may be
employed to let the data decide on which specific kernel and parametric terms to use.

Example 9.3 [Modeling discontinuities] An example is elaborated in the case one knows
that the underlying function may contain a number of discontinuities ofKth order. Let
the set{xq ∈ R}Q

q=1 denote the set of knots at which place a discontinuity may occur of
thekth derivative. A conveniently broad class of discontinuities is obtained when this set

correspond with the data samples{xi}N
i=1. Let {ς (k)

q : R → R}q,k denote the set of basis
functions modeling the discontinuities as follows

ς (k)(x;xq) =
∫

. . .
∫

I∗(x > xq)dxk, (9.45)

whereI∗(x > 0) equals+1 if x > 0 and−1 otherwise. Then the primal model takes the
form

Model: f (x) = wTϕ(x)+
K

∑
k=0

N

∑
i=1

wikς (k)
i (x;xi). (9.46)

Using the regularized least squares cost-function (9.42) with the weightsc = 1R/γ, the
estimated model takes the form

Result: f̂ (x) =
N

∑
i=1

α̂iK(P)(xi ,x), (9.47)

whereK(P) : R
D ×R

D → R is defined as

Kernel: K∗(xi ,x j ) = K(xi ,x j )+
N

∑
i=1

K

∑
k=1

Kxi ,k
ς (xi ,x j ), ∀xi ,x j ∈ R

D, (9.48)

and the kernelKxi ,k
ς is defined as

K
xq,k
ς (xi ,x j ) = ς (k)(xi ;xq)ς (k)(x j ;xq), ∀xi ,x j ∈ R. (9.49)

Note that the discontinuities land up into the kernel as regularization is applied toit.
This was necessary in order to avoid ill-posedness due to the large set ofbasis functions
{ς (k) : R → R}q,k.
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Figure 9.2: Illustration of the technique for the modeling of data with underlying
function containing discontinuities at the observed points. (a) Given a function
including a discontinuity (dashed line) andN = 40 noisy observations (dots).(b)
Example of the basis functionsς (0)

q andς (1)
q at the knotxq = 0.6283.



9.2. KERNEL DECOMPOSITIONS AND STRUCTURE DETECTION 195

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

X
1

Y

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

X
2

Y

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

X
3

Y

−2 −1 0 1 2
−0.5

0

0.5

1

1.5

X
4

Y

Figure 9.3:A toy example usingN = 40 datapoints. The contributions of the second
and the third discontinuity tends to zero as the impact of themaximal variations are
increased in the loss function as indicated by the arrows.

Now the stage is set for application of the structure detection approach based on maximal
variation as elaborated in Subsection 6.4.2. This is particular relevant here for a number
of reasons, including (1) knowing the location and number of discontinuities is important
for understanding and analysis of the result, (2) the measure of maximal variation is
suited for this type of basis functions as a zero maximal variation does implya zero
weighting of the term, (3) the scale-independence of the measure of maximal variation
decreases the impact of the scale of the basis functions on the prediction.As the number
of basis functions grows in the number of datapoints, the hierarchical modeling strategy
is advisable.

Figure 9.3 illustrates this application. The first panel shows basis functions modeling
discontinuities of orderk = 0,1,2, while the second panel shows the contributions of a
simple toy example. This example is based on a set ofN = 40 observations generated as
yi = sinc(xi)+ I(xi > 1.11)+ei with ei ∼ N (0,0.1). Only first-order discontinuities are
considered, while they only can occur at a finite number of places{xq}Q

q=1 = {−1,0,1}.

The contributions of the basesϕ(0)(·;−1) andϕ(0)(·;0) will tend to zero by increasing
the impact of the maximal variation term in the cost function indicating that no effective
discontinuity is present in the data on the knots−1 and 0. This example was loosely
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motivated on the research on modeling discontinuities as described by (Ansley and
Wecker, 1981) and mentioned in (Wahba, 1990).

9.3 One-sided Representations

9.3.1 Time series analysis and signal processing

As was already touched upon in example 3.2 and in Section 5.1,there is a close
relation between harmonic analysis and smoothing functions (Vapnik, 1998; Girosiet
al., 1995). However, there is a conceptual difference between this field with the subject
of signal processing and time series analysis, quoting (Wiener, 1949):

“While the past of a time series is accessible for examination, its future is
not. That means that the involved operators (for time seriesanalysis) must
have an inherent certain one-sidedness.”

which is not valid in the case of the mentioned methods. This principle will constitute
the main difference between Gaussian processes as reviewedin Section 5.2 and
stochastic processes with a time index setT. This difference becomes apparent by
studying the Wiener-Hopf equation for the causal filtering problem.

Let the two time series{ut}N
t=1 (input) and{yt}N

t=1 (output) be equidistantly sampled
and letU = (u1, . . . ,uN)T ∈ R

N and Y = (y1, . . . ,yN)T ∈ R
N. Let K f ∈ R

N×N be
a lower diagonal matrix such thatK f

i j = 0 if j > i. This will represent the linear
operator filtering the input as to mimic the output signal, orinformally K fU ≈ Y.
Note that the lower diagonal form of the linear filterK f represents the one-sided
character of the operator, see (Kailathet al., 2000) and also the literature on Volterra
equations of the first kind (Presset al., 1988). Under the assumption of stationarity,
the covariance matricesE[UYT ] ∈ R

N×N andΩ = E[YYT ] ∈ R
N×N are Toeplitz. Let

[.]lower : R
N×N → R

N×N denote an operation mapping a matrixA∈ R
N×N to its upper-

diagonal counterpartB∈ R
N×N such thatBi j = Ai j if j ≤ i and zero otherwise. Then

the Wiener-Hopf technique for finding the optimal predictive filter is summarized as
follows.

min
K f

∑
i
(K f

i U −yi)
2 ⇔

[
E[UYT ]−K f E[YYT ]

]
lower = 0N×N

⇔ K f =
[
E[UYT ]L−TD−1]

lowerL
−1, (9.50)

where theLDL transformation of the covariance matrix is used such thatΩ = LDLT

with L ∈ R
N×N lower triangular andD ∈ R

N×N diagonal (Golub and van Loan, 1989),
see e.g. (Kailathet al., 2000). It is interesting to relate this central derivationto the
smoothing problem (Kailathet al., 2000), the LS-SVM modeling approach (Section
3.3) and the realization approach discussed in Chapter 9.2.2.
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(a) (b)

Figure 9.4:Illustration of a one-sided and non-causative process occurring in nature.
(a) Seismograms measuring the strength of earthquakes have an inherent one-sidedness
as they do present oscillatory behavior caused by the main quake. (b) Sand dunes in
the desert do not present an inherent time order but consistsof a spatial process as the
hill peaks depend smoothly on the neighboring slopes.

Another crucial assumption for statistical analysis of time series is that operators which
come into consideration are not tied down to an origin in space as any statistical
distribution may not be affected by a shift in origin (Wiener,1949). This assumption
is described readily by the ergodic theorems, see (Birkhoff, 1931), which relevance in
the static smoothing problem is yet latent.

9.3.2 One-sided representations

One-sided representations for univariate time-series include the popular Auto-Regressive
(AR) model of orderK ∈ N0

ŷt+1 =
K

∑
k=0

akyt−k, ∀t = K, . . . ,T. (9.51)

A non-causative counterpart was formulated in the context of spatial data analysis
named as the Spatial Auto-Regressive (SAR) models (Ripley,1988). Consider the
univariate processZ sampled at equidistant points enumerated byi = 1, . . . ,N. The
simplified SAR model of orderK takes the form

E[Zi |Z j , i 6= Z j ] =
K

∑
k=1

ak (Zi−k +Zi+k) , ∀i = k+1, . . . ,N−k, (9.52)

wherea = (a1, . . . ,aK)T ∈ R
K is the vector with parameters. The difference between

the one-sided representation (9.51) and the spatial (9.52)can be clearly seen, although
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their theoretical properties coincide to large extents (Cressie, 1993).

We define here the phrase “a certain one-sidedness” as in the previous quote in the
definition of one-sidedness and spatial representation.

Definition 9.1. [One-sided Representations]A model with a one-sided representation
does only describe relationships of the outcome with previous variates. A model with a
spatial representation is violating this constraint.

Note that the literature on time-series and systems theory define causality of a model
estimate in a different way, see e.g. (Brockwell and Davis, 1987; Kailathet al., 2000).

System theory and identification have a slightly different focus as they study the be-
havior and modeling of a one-sided dynamical system from input-output measurements
typically denoted as{(ut ,yt)}T

t=1 ∈R
Du×R

Dy. A linear one-sided input-output relation
is characterized by its so-called impulse responseh = (h0, . . . ,h∞)T defined as follows

E[ yt
∣∣ (u−∞, . . . ,ut) ] =

∞

∑
τ=0

hτut−τ , ∀t = −∞, . . . ,∞, (9.53)

where one also refers toh as the Markov parameters. As this representation
involves a possibly infinite vector of parametersh, identification often employs
more parsimonious system representations. Important examples are the rational
polynomial representations as the Box-Jenkins class of models (see e.g. (Box and
Jenkins, 1979; Ljung, 1987)), and the state-space models. Let againK ∈ N0 be the
order of the system and letA∈ R

K×K , B∈ R
K×Du, C∈ R

Dy×K andD ∈ R
Dy×Du be the

system matrices. Then a state-space model can be written as follows (Kalman, 1960),
see e.g. (Kailathet al., 2000)

{
xt+1 = Axt +But ∀t = 1, . . . ,T

yt = Cxt +Dut , ∀t = 1, . . . ,T,
(9.54)

where the sequencext is called the state of the system at time instantst = 2, . . . ,T
and represent (informally) the memory of the system at a timeinstantt. The goal
of one-sided models as (9.51) and (9.54) is prediction, explanation and control as
well as smoothing. It then comes as no surprise that the issueof determining the
required amount of smoothing in static tasks have inherent relations to the mentioned
approaches as illustrated in the next example.

Example 9.4 [One-sided auto-regressive representation and the convolution] Consider the
sequence{yt}T

t=1 which constitutes of a convolution of an unobserved indexed array
{et}T

t=1 (the index set denotes typically the time) with a given convolution vectorh∈ R
T

yt =
T−t

∑
τ=0

hτ et−τ , ∀t = 1, . . . ,T. (9.55)

Let h be defined as follows

hτ = exp
(
− τ

σ

)
, ∀τ = 0, . . . , (9.56)
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where 0< σ ∈ R denotes a bandwidth parameter. The task of optimizing this bandwidth
parameter such that two given series{et} and{yt} are related optimally as (9.55) amounts
to solving

min
σ ,e

=
T

∑
t=1

e2
t s.t. yt =

t

∑
τ=0

exp
(
− τ

σ

)
(et−τ ), ∀t = 1, . . . ,T. (9.57)

In order to tackle the problem the following analytical property is used

∞

∑
τ=0

aτ q =
1

1−aq
, if |a| < 1, (9.58)

whereq is a linear operator (more specific,q is the backshift operatorqxt = xt−1). Using
this equation, it follows that

∞

∑
τ=0

aτ q =
∞

∑
τ=0

exp(τ ln(a))q =
∞

∑
τ=0

exp

(
−τ ln

(
1
a

))
q

=
1

(1−aq)
, (9.59)

such that (9.57) and (9.59) are equivalent ifσ = 1/ ln( 1
a). Problem (9.57) can be written

equivalently as

min
a,e

J (a,e) =
T

∑
t=2

e2
t s.t. yt = ayt−1 +xt +et , −1≤ a≤ 1, (9.60)

wheree= (e1, . . . ,et)
T ∈R

T . This amounts to solving a convex constrained least squares
problem.

A cornerstone of the research on system identification is given by realization theory
which establishes the relation between the system matricesand the Markov parameters
parameterizing the impulse response (9.53) of the system under study. In the case of
stochastic state-space models without external inputsut , stochastic realization theory
provides a related approach based on the auto-covariances of the model (Kung, 1978).

9.4 Stochastic Realization for LS-SVM Regressors

A numerical method is proposed to access the shape of the underlying kernel under the
assumption of stationarityy of the data (the covariance measure underlying the data is
only a function of the displacement between two measurements).
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9.4.1 Univariate and equidistantly sampled data

In order to fix the ideas, let us consider here the case of univariate and equidistantly
sampled data. In this case the kernel matrix takes a particularly simple form

ΩT =




k0 k1 . . . kN−1

k1 k0 . . .

. . .
. . .

kN−1 k1 k0




s.t. kτ = K(xi ,xi+τ)= K(xi ,xi−τ), ∀τ = 0, . . . ,N−1,

(9.61)
which is known as a symmetric Toeplitz matrix (Golub and van Loan, 1989) and plays
a central role in the research on system identification, see e.g. (Kailathet al., 2000).
As such, the admissible class of kernel matricesΩT may be described as follows

KT =
{

ΩT
∣∣ ΩT º 0, ΩT = ΩT

T , ΩT Toeplitz
}

, (9.62)

which is a proper pointed cone, see e.g. (Alizadeh and Goldfarb, 2003; Geninet al.,
2003; Boyd and Vandenberghe, 2004).

Definition 9.2. [Admissible LS-SVM models]The set of optimal LS-SVM models for
any admissible kernel and constant regularization term maybe described as

FKT =
{

f : R
D → R, α ∈ R

N, γ ∈ R
+
0 , ΩT ∈ KT , e∈ R

N

s.t.





(
ΩT + 1

γ IN
)

α = Y (a)

γe= α (b)

f (xi) = ΩT,i α (c)

γ > 0 (d)





. (9.63)

The subset of optimal LS-SVM smoothers then can be written after elimination ofγ,α
and f as follows

Y Y
KT

=
{
Ys ∈ R

N,Ω̃T ∈ R
N×N,e∈ R

N
∣∣

(
Ω̃T + IN

)
e= Y, Ys = Ω̃ e, Ω̃T ∈ KT

}
. (9.64)

whereΩ̃T = γΩT is still in the scale invariant setFKT .

Note that these sets are non-convex by the occurrence of quadratic terms. Consider
model selection criteria based on the smoothing abilities on the training output
observations denoted asModsels : R

N ×R
N×N ×A → R, such as e.g.Cp’s statistic

(Mallows, 1973) or the generalized cross-validation criterion (Golubet al., 1979). The
model selection problem may then be formulated as follows

(Ŷs,Ω̂T , ê) = argmin
YS,ΩT ,e

JModsel(Ys,ΩT ,e) s.t. (Ys,ΩT ,e) ∈ Y Y
KT

, (9.65)
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which formalizes again the fusion argument as introduced inChapter 7. This type of
problems is in general non-convex even if the functionModsel is convex. However,
one can find numerically efficient methods to solve the problem exactly in a number of
cases where one is described explicitly.

Example 9.5 One can frame the recent literature on learning (Lanckrietet al., 2004) the
kernel in the presented framework. Especially the kernel characterization (9.61) seems
appropriate to study the transductive setting where the input points of pointswhich need
evaluation are known beforehand.

9.4.2 A realization approach

The method of moments estimates parameters by finding expressions of those in terms
of the lowest possible order moments and then substituting sample moments in the
expression, see e.g. (Rice, 1988). In the case of second order moments for Gaussian
processes, a generalization of this principle was formulated under the denominator of
stochastic realization theory. Although the original formulation was described towards
the identification of the system matrices of the one-sided state-space model from the
observed sample auto-covariances (Kung, 1978), the same approach may be employed
in order to approach the problem (9.65). Reconsider definition 5.2 of a Gaussian
process.

Definition 9.3. [Second Order Moments of a Univariate Gaussian Process]The
second-order moments of a stationary Gaussian process{Yx}x∈D with zero mean are
defined as

ρY(τ) = E
[
Y iY j

∣∣ ‖xi −x j‖ = τ
]
. (9.66)

Then let C∈ R
N×N be the positive semi-definite covariance matrix which is Toeplitz

such that Ci j = ρY(xi −x j) = ρY(τ). Let Y= (y1, . . . ,yN)T ∈R
N be a vector containing

the observations corresponding with the equidistantly sampled data-points, e.g. xi =
i−1
N−1. The sample covariance may then be written as follows

CY ∈ R
N×N, s.t. CY,i j =

1
N ∑

k,l | |k−l |=|i− j|
ykyl , (9.67)

which is positive semi-definite and Toeplitz. The choice forthe term1
N over the familiar

1
N−τ ensures the property of positive-definiteness although it introduces a small bias
(Brockwell and Davis, 1987).

Here the assumption of stationarity is essential as it guides the process of averaging out
the effect of the i.i.d errors in the observations.

An expression of the theoretical second order moments of theLS-SVM smoother
is now derived. Under the assumption that the errorse are i.i.d and conditional
independent onf such thatE[ei | f (xi)] = 0, the following equalities hold as
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Cs = E[(Ys+e)(Ys+e)T ] = γ2E
[
ΩeeTΩT]

+σ2
e IN

= γ2ΩE[eeT ]ΩT +σ2
e IN = γ2σ2

e ΩΩT +σ2
e IN. (9.68)

Then substituting the sample covariance matrixĈY into the expression will result into
the equalities

ĈY = Cs ⇒ ĈY −σ2
e IN = γ2σ2

e ΩΩT , (9.69)

where the constantσ ∈ R
+
0 may dissolve into the kernel matrix. IfN → ∞ andĈY is

Toeplitz, then alsoΩ will be Toeplitz (Kailathet al., 2000). This expression leads to
the following algorithm

Algorithm 9.1. LetĈY denote the sample covariance matrix (9.69).

1. Determine an appropriate estimate of the noise level underlying the data using
model-free techniques as described in e.g. (Pelckmanset al., 2004a) such that(
ĈY − σ̂2

e IN
)
º 0.

2. Take the square root of the resulting positive definite Toeplitz matrix. Let
USUT = ĈY − σ̂2

e be the singular value decomposition (SVD) such that S=
diag(σ1, . . . ,σN) ∈ R

N×N and UTU = UUT = IN, then

ĈY − σ̂2
e IN = Ω̃Ω̃T ⇔ Ω̃T = U diag(

√
σ1, . . . ,

√
σN) UT . (9.70)

3. Proper normalization of the resulting matrix̃ΩT leads to a kernel matrix̂ΩT and
a regularization termγ > 0. The form of the kernel may be accessed by plotting
xi against the first row of̂Ω.

The obtained kernel can only be evaluated at the same sampling rate as the original
data, which is a severe restriction for most learning tasks.Nevertheless, the plot of
the discrete kernel may be used as a tool suggesting the form of the kernel. As in the
stochastic realization algorithm (Kung, 1978), realization would amount to look for a
parsimonious model description of the kernel (impulse response).

Example 9.6 [Monte Carlo Example of the Realization Approach to Kernel Design]A
simple toy dataset is considered to illustrate the realization algorithm. In orderto generate
an appropriate dataset, the assumptions of the method must be incorporated carefully.

For an optimal trade-off between accuracy and clarity of exposition, thesize of the
training set is takenN = 200. Let the collection{(xi ,zi ,εi)}N

i=1 ⊂ R×R×R be a set
consisting of univariate point locationsxi ∈ R which are equidistantly sampled and and
two corresponding i.i.d. samples of the standard distribution such thatzi ∼ N (0,1) and
εi ∼N (0,1). A dataset with underlying stationary covariance measureh : R → R is then
generated as follows

yi =
N

∑
j=1

h(xi −x j )zi + εi , ∀i = 1, . . . ,N. (9.71)
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Figure 9.5:An example of a kernel realization.(a) GivenN = 200noisy data-samples
of a nonlinear stationary function generated as a convolution of a white noise sequence
with a two-sided function. (b) The kernel estimate (solid line) resulting from the
realization algorithm versus the two-sided convolution function (dashed line) used to
generate the data and the90% quantile interval of a Monte Carlo experiment (dotted
line). The peek atτ = 0 of the kernel estimate is to be attributed to the noise level.
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Following Herglotz’s theorem, see e.g. (Brockwell and Davis, 1987),the generated
process is stationary ifh is a positive definite function. Let in this exampleh be defined
as the familiar mapping

h(xi −x j ) = exp

(
−‖xi −x j‖2

2

σ2

)
, (9.72)

with the constantσ = 1.

Figure 9.5 gives the results of a Monte Carlo experiment. The dataset generated in one
specific iteration is given in Figure 9.5.a where the solid line gives the true stationary
function and the dots give the actual observations. Panel 9.5.b then gives the realization
of the kernel from this data using algorithm 9.1 (solid line). The dashed lineindicates the
function h employed to generate the data as in (9.72). The dotted lines denote the 90%
quantile interval of the Monte Carlo experiment after 1000 iterations. This example shows
that one can successfully recover the shape of the kernel from the sample covariances in
the data. The peak of the realizations atτ = 0 corresponds with the impact of the noise
level on the estimators and is to be attributed to the regularization parameterγ.

9.4.3 The differogram: non-equidistant and multivariate data

The classical case of stochastic realization proceeds by imposing a parametric model on
the derived decomposition. This subsection approaches thecase of non-equidistantly
sampled and higher dimensional data within the same spirit.The main difference is that
no discrete state-space model is imposed, but an appropriate element of a parametric
class of kernels is identified instead. Hereto, the same toolis used as presented in
Appendix A in the context of estimating the noise level.

Definition 9.4. [The differogram] LetD = {(xi ,yi)}N
i=1 ⊂ R

D×R be a dataset. Then
define the sample differences as follows

{
∆x,i j = ‖xi −x j‖2 ∈ R

+ ∀i, j = 1, . . . ,N

∆y,i j = ‖yi −y j‖2 ∈ R
+ ∀i, j = 1, . . . ,N

(9.73)

which are samples of the random variable∆X and∆Y respectively. The differogram is
then defined as the

ϒ(δx) =
1
2

E
[
∆Y

∣∣ ∆X = δx
]
. (9.74)

The graphical presentation of all sample differences{(∆x,i j ,∆y,i j )}i< j is called the
differogram cloud.

This definition is closely related to the concept of the variogram (Cressie, 1993) in
the concept of spatial data analysis and to the U-statisticsas studied in statistics (Lee,
1990). The definition was coined in (Pelckmanset al., 2003a) and (Pelckmanset al.,
2004a) for the purpose of the model free estimation of the noise level. This was based
on the following result

σ2
e = lim

∆x→0
ϒ(∆x) . (9.75)
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which was proven in (Pelckmanset al., 2004a). Appendix A surveys the main results
of this research focussed towards the estimation of the noise level.

Now a simple result extends the use of the differogram to the estimation of auto-
covariances in the case of univariate data with stationary covariance cov(xi ,x j) =
ρ (‖xi −x j‖2). From the differogram, an expression for the covariance function can
be computed as follows

ϒ(δx)
2 =

1
2

E
[
(Y i −Y j)

2 | ∆X = ∆x
]

=
1
2

E
[
Y2

i +Y2
j −2Y iY j | ∆X = ∆x

]

= σ2
Y −E[Y iY j | ∆X = ∆x]

= σ2
Y −ρ

(
‖xi −x j‖2

2

)
. (9.76)

This results in the estimatêρ : R
+ → R from the estimated differogram̂ϒ : R

+ → R

ρ̂
(
‖xi −x j‖2

2

)
= σ2

Y − ϒ̂(δx)
2 (9.77)

Consider e.g. the parametric differogram model

ϒh,v,s(∆x) = v−exp

(−∆x

h

)
, h,s> 0, v > s. (9.78)

The use of the following estimator of the modelϒh was motivated in (Pelckmanset
al., 2004a).

(ĥ, v̂, ŝ) = argmin
h,v,s

∑
i< j

(
ϒh,v,s(∆x,i j )−∆y,i j

)2

ϒh,v,s(∆x)
s.t. h,s> 0, v > s. (9.79)

which can be efficiently solved using an iterative approach.

The following result motivates then the a continuous counterpart to the realization
context.

Lemma 9.2. [A Stochastic Realization Approach in the case ofNon-equidistant
Samples] Let ρ : R

+ → R be a stationary covariance function. Then its Fourier
transform is positive

Fρ(λ ) =
∫ ∞

−∞
ρ(∆x)exp(−i∆xλ )d∆x, (9.80)

following from the Hertzglotz theorem, see e.g. (Doob, 1953; Brockwell and Davis,
1987). The square-root decomposition of this function can theoretically be formulated
as the pointwise square root of the Fourier transformFρ such that

ρ(‖xi −x j‖) =
∫ ∞

−∞
k(xi ,z)k(z,x j)dz

⇐⇒ (Fk)(λ ) =
√

(Fρ)(λ ), ∀−∞ < λ < ∞, (9.81)

following Parseval’s theorem (Doob, 1953).
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Chapter 10

Conclusions

This chapter reviews the most important results of this textand
formulates some general conclusive remarks on the discussed method-
ology. Furthermore, some interesting prospects of the research track
are summarized and the general ideas for some paths suitablefor future
investigation are described.

10.1 Concluding Remarks

The main goal of this dissertation was twofold. At first, we argued that the tasks of
design of an appropriate learning algorithm, the determination of the regularization
trade-off and the design of an appropriate kernel are interrelated in different ways
and should be considered jointly. Secondly we centralized the primal-dual argument
originating from the theory on convex optimization in the research on the design
of learning machines. To support both conclusions, different new results were
studied and reported, including (1) new learning machines as the SVT and kernel
machines handling missing values, non i.i.d errors, censored observations and others;
(2) incorporating model structure and prior knowledge in the learning algorithm
itself and its close relation to the design of kernels. (3) the issue of complexity
control or regularization was investigated in some detail and new formulations of such
mechanisms are discussed; (4) the notion of hierarchical programming and fusion of
training with model selection resulting in an automatic procedure for tuning the global
characterization of a variety of learning machines and model selection problems; (5)
the relation between techniques in system identification and signal processing on the
one hand, and kernel design on the other hand led to new approaches in the task of
kernel design.

The text is organized as follows. The introduction surveyedthe current state-of-the-
art of machine learning and primal-dual kernel machines biased towards the further
exposition. Chapter 2 discussed the important backbone forthe methodology of primal-
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dual kernel machines as found in convex optimization theory.

The first part studied the design and analysis of learning machines employing the
primal-dual argument in some detail. While the stage was set by the elaboration of
the simplest case in the form of the LS-SVM regressor, extensions towardsL1, L∞
and robust counterparts were formulated in Chapter 3. The following chapter then
discussed extensions of those learning machines towards the handling of structure
in the form of parametric components, additive model structures and pointwise
inequalities. Chapter 5 studied the relationship of the present methodology towards
different established approaches in some detail.

The second part discusses the impact and the different formsof complexity control and
regularization. Chapter 6 surveyed different forms of regularization methods as found
in the literature. A number of extensions made by the author were discussed in the
the setting of primal-dual kernel machines. An important contribution in this respect
was the formulation of the non-parametric measure of maximal variation. Various
consequences of this scheme were elaborated e.g. towards the problem of handling
missing values. Chapter 7 then discusses the hierarchical programming argument
towards the fusion of training and model selection in a number of parametric and non-
parametric cases. Chapter 8 took the argument a step furtherin the formulation of the
additive regularization scheme. This framework was then used for the formulation of
fusing training and cross-validation and making stable kernel machines.

Chapters 9 initiated the research on learning the kernel in the context of primal-
dual kernel machines. The first three sections discussed some results establishing the
relationship between regularization schemes, weighted least squares based primal-dual
kernel machines and the design of kernels. The final sectionsstudied a tool which can
play a crucial role into the design and learning of kernels byexploiting results in system
identification.

10.2 Directions towards Further Work

Mining for invariances and functional relationships

The task of machine learning may be summarized as follows

“Given a dataset, which patterns and relations are invariantly present?”

The meaning of (statistical) invariance can be formalized as classically in terms of
frequency or belief, see e.g. (Fisher, 1922; O’Hagen, 1988;Jaynes, 2003) and (Shawe-
Taylor and Cristianini, 2004). An alternative translationmay be defined as“invariant
under different realizations”meaning that any collection of the same variables under
different situations should preserve the invariant patterns. The present text follows in
many derivations this spirit. For example,fusion of training and cross-validation(Part
γ) can be alternatively presented asidentify the functional relationship between input
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and output which is mostly invariant over the different folds. A simple abstract example
explains this reasoning:Given a number of digitized images of writings of the digit “7”
collected from different writers, what is the invariant structure over all realizations?

Although the setting is in some way natural to the unsupervised learning problem,
counterparts can be formulated to the supervised case. Consider for example the case
of regression. Given a set of measurements of variables, onecould ask oneself which
set of variables can be explained using a deterministic mapping using which variables:

“Given a collection of observed variables, which subset canbe explained
optimally given the remaining variables?”

While this problem of mining for functional relations encompasses classical statistical
inference, it can have a high relevance in case studies whereeven the assumption
about which variable acts as output and which as covariate cannot be made a priori.
Applications can be found in automatic compression methodsand various detection
algorithms.

Errors-in-variables and Nonlinear System Identification

The main body of derivations in the text assumed input data which can be considered
as deterministic. In the case only perturbed versions of theinputs are observed, the
learning problem becomes much more complex. In the case the learning task has
no prior assignment of the labels “input” and “outputs”, theproblem of stochastic
components in the variables becomes even more prominent as neglecting of this
perturbation cannot be characterized as an assumption. Typical examples include the
case of unsupervised learning and time-series prediction.In the case of the latter, a
NARX model for example is known to be often inferior in prediction performance
compared to nonlinear output error models.

However, a major problem is inherently connected to the setting of stochastic
inputs: the errors on the input variables are to be propagated through the (unknown)
model. Even in the linear case, this will lead to quadraticalconstrained (non-convex)
optimization problems, which eventually can be solved efficiently using a Singular
Value Decomposition or a worst-case analysis. In the setting of nonlinear models, the
errors on the inputs have to propagate through the unknown nonlinearity which result in
complex global optimization problems. Desiderata in this case would be to formulate
efficient optimization problems for solving the described problem approximatively.

Interval Estimation

Most classical learning algorithms focus on point estimators. Inference of the
uncertainty of the model is usually obtained via computer intensive sampling methods
as bootstrap or Gibbs sampling schemes, or by exploiting sufficient assumptions or
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approximations as Normality of all involved distributions. However, those approaches
digress in spirit from Vapnik’s main principle as describedin Subsection 1.2.5.

Section 3.5 and Subsection 6.4.3 initiate a direction towards the construction of models
for interval estimation based on tolerance intervals. The elaboration of those issues and
the analysis of the strategy makes up a new interesting area of research in statistical
learning and kernel machines. The relevance is not only given by the frequent need of
the users to assess the quality and uncertainty of the prediction, but is also a necessary
tool for approaches towards the study of design of experiments (Fisher, 1935) which is
also closely related to the next directive.

Interactive Learning and Design of Experiments

The learning task as described may be labeled aspassiveas the analysis draws
conclusions (hypothesis)H based on given dataDN:

D ⇒ H.

At least in the social sciences, one more often looks for optimal strategies to investigate
a certain phenomenon. A strategy depends amongst others in the way one samples the
different outcomes. In the statistical design of experiments one investigates which
future data samples are most likely to increase the amount ofknowledge of the
phenomenon under study. The amount of knowledge is often translated mathematically
as the inverse of the variance of the corresponding inferredmodel. This approach
towards the task of learning can be described asactive. Schematically

D1 ⇒ H1 ⇒ D2 ⇒ H2 ⇒ ·· · ⇒ HN.
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Appendix A

The Differogram

This appendix reviews the result of the differogram for estimating
the noise level without relying exlicitly on an estimated model. The
differogram cloud constitutes of a representation of the data in terms of
the mutual distances amongst input- and output samples respectively. The
behaviour of this representation towards the origin is thenproven to be
closely related with the noise level. The use of a parametricdifferogram
model is used to estimate the noise level accurately. The main difference
with existing methods is that there is no need for an extra hyperparameter
whatever.

A.1 Estimating the Variance of the Noise

A.1.1 Model based estimators

Given a random vector(X,Y) whereX ∈ R
d andY ∈ R, let {(xi ,yi)}N

i=1 be samples of
the random vector satisfying the relation

yi = f (xi)+ei , i = 1, . . . ,N. (A.1)

The error termsei are assumed to be uncorrelated random variables with zero mean
and varianceσ2 < ∞ (independent and identically distributed, i.i.d.), andf : R

d → R

a smooth function. The same setting was adopted e.g. in (Devroyeet al., 2003). An
estimate f̂ of the underlying function can be used to estimate the noise variance by
suitably normalizing the sums of squares of its associated residuals, see e.g. (Wahba,
1990). A broad class of model based variance estimators can be written as

σ̂2
e =

yTQy
tr[Q]
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with y = (y1, . . . ,yN)T (Buckley and Eagleson, 1988), tr(·) denotes the trace of the
matrix andQ = (IN −S)2 a symmetricN×N positive definite matrix. Let ˆyi = f̂ (xi)
and ŷ = (ŷ1, . . . , ŷN)T ∈ R

N. For most modeling methods, one can determine a
smoother matrixS∈ R

N×N with ŷ = Sysuch as e.g. in the cases of ridge regression,
smoothing splines (Eubank, 1999) or Least Squares Support Vector Machines (LS-
SVMs) (Suykenset al., 2002b).

A.1.2 Model free estimators

Model-free variance estimators were proposed in the case ofequidistantly ordered data.
In the work of (Rice, 1984) and (Gasseret al., 1986), such estimators ofσ2 have been
proposed based on first- and second-order differences of thevalues ofyi , respectively.
For example Rice suggested estimatingσ2 by

σ̂2 =
1

2(N−1)

N−1

∑
i=1

(yi+1−yi)
2 . (A.2)

Gasseret al. (1986) have suggested a similar idea for removing local trend effects by
using

σ̂2 =
1

N−2

N−1

∑
i=2

c2
i ε̂2

i , (A.3)

whereε̂i is the difference betweenyi and the value atxi of the line joining(xi−1,yi−1)
and(xi+1,yi+1). The valuesci are chosen to ensure thatE

[
c2

i ε̂2
i

]
= σ2 for all i when

the function f in (A.1) is linear. Note that one assumes thatx1 < · · · < xN, xi ∈ R in
both methods.

In the case of non-equidistant or higher dimensional data analternative approach is
based on a density estimation technique. Consider the regression model as defined in
(A.1). Assume thate1, . . . ,eN are i.i.d. with a common probability distribution function
F belonging to the family

F =

{
F :

∫
xdF(x) = 0, 0 <

∫
|x|r dF(x) < ∞

}
, r ∈ N0 and 1≤ r ≤ 4. (A.4)

Let K : R
d → R be a function called the kernel function and leth > 0 be a bandwidth

or smoothing parameter. Then (Müller et al., 2003 (to appear)) suggested an error
variance estimator given by

σ̂2
e =

1
N(N−1)h ∑

1≤i< j≤N

1
2

(yi −y j)
2 1

2

(
1

f̂i
+

1

f̂ j

)
K

(
xi −x j

h

)
, (A.5)

where f̂i is defined as

f̂i =
1

(N−1)h ∑
j 6=i

K

(
xi −x j

h

)
, i = 1, . . . ,N. (A.6)
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Figure A.1:Differogram of a linear function.(a) Data are generated fromyi = xi +ei

with ei ∼ N (0,1), i.i.d and i = 1, . . . ,N = 25; (b) All differences∆2
x,i j = ‖xi − x j‖2

2

and ∆2
y,i j = ‖yi − y j‖2

2 for i < j = 1, . . . ,N. The solid line represents the estimated
differogram model;(c) All differences boxed using a log scale for∆2

x,i j . The intercept
of the curve crossing the Y-axis corresponds to twice the estimated noise variance2σ̂2

e .

The cross-validation principle can be used to select the bandwidth h. This paper is
related to (A.5) and (A.6) but avoids the need for an extra hyper-parameter such as the
bandwidth and is naturally extendible to higher dimensional data.

A.2 Variogram and Differogram

The differogram was motivated from a perspective of the semi-variogram cloud
employed in spatial statistics and defined as follows

Definition A.1 (Semi-variogram). (Cressie, 1993)Let{Z(xi), i ∈ N} be a stationary
Gaussian process with mean̄z,Var[Z(xi)] < ∞ for all i ∈ N and a correlation function
which only depends on∆2

x,i j = ‖xi −x j‖2
2 for all i , j ∈N. It follows from the stationarity

of the process Z(x1), . . . ,Z(xN) that

1
2

E
[
(Z(xi)−Z(x j))

2
]

= σ2 + τ2(
1−ρ(∆2

x,i j )
)

= η (∆2
x,i j ), ∀i, j ∈ N, (A.7)
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Figure A.2:Differogram of a nonlinear function.(a) Data are generated according to
the nonlinear dataset described in (Wahba, 1990). with the noise standard deviation of
0.1 andN = 100. (b) Differogram cloud of all differences of the inputs and the outputs
respectively. The solid line represents the estimated differogramϒ̂(∆2

x) and the dashed
line denotes the corresponding weighting function1/ϑ(∆2

x). The estimate of the noise
variance is0.1086.
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whereσ2 is the small scale variance (the nugget effect),τ2 is the variance of the
serial correlation component andρ : R → R is the correlation function (Diggle, 1990;
Cressie, 1993). The functionη : R → R

+ is called the semi-variogram.

The prefix semi- refers to the constant12 in the definition. A scatter-plot of the
differences is referred to as the variogram cloud. A number of parametric models
were proposed to modelη (Cressie, 1993). Estimation of the parameters of a
variogram model often employs a maximum likelihood criterion (Cressie, 1993)
leading (in most cases) to non-convex optimization problems. The variogram can
be considered as being complementary to the auto-covariance function of a Gaussian
process asE(Z(xi)− Z(x j))

2 = 2E(Z(xi))
2 − 2E(Z(xi)Z(x j)). The auto-covariance

function is often employed in an equidistantly sampled setting in time-series analysis
and stochastic system identification, while the variogram allows to handle non-
equidistantly sampled data, see also Subection 9.4.3.

Instead of working with a Gaussian processZ, machine learning is concerned (amongst
others) with learning an unknown smooth regression function f : R

d → R from
observations{(xi ,yi)}N

i=1 sampled from the random vector(X,Y). We now define the
differogram similar to the semi-variogram as follows:

Definition A.2 (Differogram). Let f : R
d → R be a Lipschitz continuous function

such that yi = f (xi)+ei . Let∆2
x,i j = ‖xi −x j‖2

2 for all i , j = 1, . . . ,N be samples of the

random variable∆2
X and let∆2

y,i j = ‖yi − y j‖2
2 be samples from the random variable

∆2
Y. The differogram functionϒ : R

+ → R
+ is defined as

ϒ(∆2
x) =

1
2

E[∆2
Y

∣∣∆2
X = ∆2

x]. (A.8)

This function is well-defined as the expectation operator results in a unique value
for each different conditioning∆2

X = ∆2
x by definition (Mood et al., 1963). A

main difference with the semi-variogram is that the differogram does not assume an
isotropic structure of the regression functionf . A motivation for this choice is that
the differogram will be of main interest in the direct regionof ∆2

X = 0 where the
isotropic structure emerges because of the Lipschitz assumption. A similar reasoning
lies at the basis of the use of RBF-kernels and nearest neighbor methods (Hastieet
al., 2001; Devroyeet al., 2003).

Although the definition is applicable to the multivariate case, some intuition is given by
considering the case of one-dimensional inputs. Let∆2

ei j
= (ei −ej)

2 be samples form

the random variable∆2
e. For one-dimensional linear modelsyi = wxi + b+ ei where

w,b∈ R and{ei}N
i=1 is an i.i.d. sequence where the inputs are standardized (zero mean

and unit variance), the differogram equals
ϒw(∆2

x) = 1
2w∆2

X + 1
2E[∆2

e], as illustrated in Figure A.1. Figure A.2 presents the
differogram cloud and the (estimated) differogram function of a non-linear regression,
while Section 6 reports on some experiments on higher dimensional data.
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Equivalently to the nugget effect in the variogram, one can proof the following lemma
relating the differogram function to the noise variance.

Lemma A.1. Assume a Lipschitz continuous function f: R
d → R such that∃M ∈ R

+

where‖ f (X)− f (X′)‖2
2 ≤ M ‖X−X′‖2

2 with X′ a copy of the random variable X. Let
{(xi ,yi)}N

i=1 be sampled from the random vector(X,Y) and e obeying the relation Y=
f (X)+e. Assume that the random variable e has bounded moments and is independent
of f(X). Under these assumptions, the limitlim∆2

x→0 ϒ(∆2
x) exists and equalsσ2

e .

Proof: Let ∆2
e,i j = (ei −ej)

2 be samples of the random variable∆2
e = (e−e′)2 where

e′ is a copy of the random variablee. As the residuals are not correlated, it follows
that E[∆2

e] = E
[
e2

]
+ 2E [ee′] + E

[
e′2

]
= 2σ2

e . Substitution of the definition of the
Lipschitz continuity into the definition of the differogramgives

2ϒ(∆2
x) = E[∆2

Y

∣∣ ∆2
X = ∆2

x]

= E
[(

f (X)+e− f (X′)−e′
)2 ∣∣ ‖X−X′‖2

2 = ∆2
x

]

= E
[(

e−e′
)2

+
(

f (X)− f (X′)
)2 ∣∣ ‖X−X′‖2

2 = ∆2
x

]

≤ E
[
∆2

e +M‖X−X′‖2
2

∣∣ ‖X−X′‖2
2 = ∆2

x

]

= 2σ2
e +E

[
M‖X−X′‖2

2

∣∣ ‖X−X′‖2
2 = ∆2

x

]

= 2σ2
e +M∆2

x, (A.9)

where the independence between the residuals and the function f (and hence between
∆2

e and( f (X)− f (X′))2), and the linearity of the expectation operatorE is used (Mood
et al., 1963). From this result, it follows that lim∆2

x→0 ϒ(∆2
x) → σ2

e .

¤

The differogram function will only be of interest near the limit ∆2
x → 0 in the sequel.

A similar approach was presented in (Devroyeet al., 2003) where the nearest neighbor
paradigm replaces the conditioning on∆2

X and fast rates of convergence were proved.

A.2.1 Differogram models based on Taylor-series expansions

Consider the Taylor series expansion of orderr centered atm∈ R for local approxima-
tion in xi ∈ R for all i = 1, . . . ,N

Tr [ f (xi)](m) = f (m)+
r

∑
l=1

1
l !

∇(l) f (m)(xi −m)l +O(xi −m)r+1, (A.10)

where∇ f (x) = ∂ f
∂x , ∇2 f (x) = ∂ 2 f

∂x2 , etc. forl ≥ 2. One may motivate the use of anr-th
order Taylor series approximation of the differogram function with centerm= 0 as a
suitable model because one is only interested in the case∆2

x → 0:

ϒA (∆2
x) = a0 +A (∆2

x), where A (∆2
x) =

r

∑
l=1

al (∆2
x)

l , a0, . . . ,ar ∈ R
+, (A.11)
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where the parameter vectora= (a0,a1, . . . ,ar)
T ∈R

+,r+1 is assumed to exist uniquely.
The elements of the parameter vectora are enforced to be positive as the (expected)
differences should always be strictly positive. The function ϑ of the mean absolute
deviation of the estimate can be bounded as follows

ϑ(∆2
x;a) = E

[
|∆2

Y −ϒA (∆2
X;a)|

∣∣ ∆2
X = ∆2

x

]

= E

[
|∆2

Y −a0−
r

∑
l=1

al (∆2
X)l |

∣∣ ∆2
X = ∆2

x

]

≤ E

[
|a0 +

r

∑
l=1

al (∆2
x)

l |
]

+E
[
|∆2

Y|
∣∣∆2

X = ∆2
x

]

= 3

(
a0 +

r

∑
l=1

al (∆2
x)

l

)
, ϑ̄(∆2

x;a), (A.12)

where respectively the triangle inequality, the property|∆2
Y| = ∆2

Y and definition A.2
are used. The function̄ϑ : R

+ → R
+ is defined as an upperbound to the spread of

the samples∆2
Y from the functionϒ(∆2

x). Instead of deriving the parameter vectora
from the (estimated) underlying functionf , it is estimated immediately based on the
observed differences∆2

x,i j and∆2
y,i j for i < j = 1, . . . ,N. The following weighted least

squares method can be used

a∗ = arg min
a∈R

r+1
+

J (a) =
N

∑
i≤ j

c

ϑ̄(∆2
x,i j ;a)

(
∆2

y,i j −ϒA (∆2
x,i j ;a)

)2
, (A.13)

where the constantc∈R
+
0 normalizes the weighting function such that 1= ∑i< j c/ϑ̄(∆2

x,i j ;a).
The function ϑ̄ corrects for the heteroscedastic variance structure inherent to the
differences (see e.g. (Sen and Srivastava, 1990)). As the parameter vectora is positive,
the weighting function is monotonically decreasing and as such represents always a
local weighting function.

A.3 Differogram for Noise Variance Estimation

A U-statistic is proposed to estimate the variance of the noise from observations.

Definition A.3 (U-statistic). (Hoeffding, 1948)Let g: R
l → R be a measurable and

symmetric function and let{ui}N
i=1 be i.i.d. samples drawn from a fixed but unknown

distribution. The function

UN = U(g;u1, . . . ,uN) =
1(N
l

) ∑
1≤i1≤···≤i l≤N

g(ui1, . . . ,ui l ), (A.14)

for l < N, is called a U-statistic of degree l with kernel g.
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It is shown (Lee, 1990) that for every unbiased estimator based on the same observa-
tions, a U-statistic exists with a smaller variance of the corresponding estimator. If the
regression function was known, the errorsei for all i = 1, . . . ,N were observable and
the sample variance can be written as a U-statistic of orderl = 2

σ̂2
e = U(g;e1, . . . ,eN) =

2
N(N−1) ∑

1≤i≤ j≤N

g1(ei ,ej)

and g1(ei ,ej) =
1
2
(ei −ej)

2 =
1
2

∆2
e,i j . (A.15)

However, the true functionf is not known in practice. A key step deviating from
classical practice is to abandon trying to estimate the global function (Vapnik, 1998)
or the global correlation structure (Cressie, 1993). Instead, knowledge of the average
local behavior is sufficient for making a distinction between smoothness in the data and
unpredictable noise. As an example, considerr = 0, the 0th order Taylor polynomial
of f centered atxi evaluated atx j for all i, j = 1, . . . ,N. This approximation scheme is
denoted asT0[ f (x j)](xi) = f (xi) such that (A.15) becomes

σ̂2
e =

2
N(N−1) ∑

1≤i≤ j≤N

1
2
(yi −y j)

2

≈ 2
N(N−1) ∑

1≤i≤ j≤N

1
2

(ei + f (xi)−ej −T0[ f (x j)](xi))
2

=
2

N(N−1) ∑
1≤i≤ j≤N

1
2

∆2
e,i j , (A.16)

where the approximation improves asxi → x j . To correct for this, a localized second
order isotropic kernelg2 : R

2 → R can be used

g2(yi ,y j) =
c

2ϑ̄(∆2
x,i j )

∆2
y,i j , (A.17)

where the decreasing weighting function 1/ϑ̄(∆2
x) is taken from (A.12) in order to

favor good (local) estimates. The constantc∈ R
+
0 is chosen such that the sum of the

weighting terms are constant: 2c(∑N
i≤ j 1/ϑ̄(∆2

x,i j )) = N(N−1).

From this derivations one may motivate the following kernelfor a U-statistic based on
the differogram model (A.11) and weighting function as derived in (A.12):

g3(yi ,y j) =
c

2ϑ̄(∆2
x,i j )

(
∆2

y,i j −A (∆2
x,i j )

)

with ϑ̄(∆2
x,i j ) = 3

(
a0 +A (∆2

x,i j )
)
, (A.18)

wherec∈ R
+
0 is a normalization constant. The resulting U-statistic becomes

σ̂2
e =

2
N(N−1) ∑

1≤i≤ j≤N

g3(yi ,y j). (A.19)

One can show that this U-estimator equals the estimated intercept of the differogram
model (A.11):



A.4. APPLICATIONS 243

Lemma A.2. Let x1, . . . ,xN ∈ R
d and y1, . . . ,yN ∈ R be samples drawn according to

the distribution of the random vector(X,Y) with joint distribution F. Consider a
U-statistic as in Definition A.3 with kernel g such that g: R

l → R is a measurable
and symmetric function. Consider the differogram according to Definition A.2 and the
differogram model (A.11). The estimator of the weighted U-statistic (A.18) of the noise
variance estimator (A.19) equals the intercept a0 of the estimated differogram model
using the weighted least squares estimate (A.13).

Proof: This can be readily seen as the expectation can be estimated empirically in
two equivalent ways. Consider for example the meanµ of the error termse1, . . . ,eN

which can be estimated aŝµ = argminµ ∑N
i=1(ei − µ)2 and asµ̂ = 1

N ∑N
i=1ei , see e.g.

(Hettmansperger and McKean, 1994). As previously, one can write

2σ̂2
e = lim

∆2
x→0

E[∆2
Y|∆2

X = ∆2
x]

= lim
∆2

x→0
E

[
c

ϑ̄(∆2
X)

(
∆2

Y −A (∆2
X)

) ∣∣ ∆2
X = ∆2

x

]
, (A.20)

if lim ∆2
x→0A (∆2

x) = 0. The sample mean estimator becomes

2σ̂2
e =

2
N(N−1)

N(N−1)/2

∑
k=1

c

2ϑ̄(∆2
x,k)

(
∆2

y,k−A (∆2
x,k)

)

=
2

N(N−1)

N

∑
i< j

c

2ϑ̄(∆2
x,i j )

(
∆2

y,i j −A (∆2
x,i j )

)

= U(g3;u1, . . . ,uN), (A.21)

where a unique indexk = 1, . . . ,N(N−1)/2 corresponds with every distinct pair 1≤
i < j ≤ N. Alternatively, using the least squares estimate

2σ̂2
e = arg min

a0≥0

N(N−1)/2

∑
k=1

c

ϑ̄(∆2
x,k)

(
∆2

y,k−A (∆2
x,k)−a0

)2

= arg min
a0≥0

∑
i< j

c

ϑ̄(∆2
x,i j )

(
∆2

y,i j −A (∆2
x,i j )−a0

)2
. (A.22)

In both cases, the functionA : R
+ → R

+ of the differogram model and the weighting
functionϑ̄ : R

+ → R
+ are assumed to be known from (A.13).

¤

A.4 Applications

A model-free estimate of the noise variance plays an important role in the practice
of model selection and setting tuning parameters. Examplesof such applications are
given:
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1. Well-known complexity criteria (or model selection criteria) such as the Akaike
Information Criterion (Akaike, 1973), the Bayesian Information Criterion
(Schwartz, 1979) andCp statistic (Mallows, 1973) take the form of a prediction
error criterion which consists of the sum of a training set error (e.g. the residual
sum of squares) and a complexity term. In general:

J(S) =
1
N

N

∑
i=1

(yi − f̂ (xi ;S))2 +λ
(
QN( f̂ )

)
σ̂2

e , (A.23)

whereS denotes the smoother matrix, see (De Brabanteret al., 2002a). The
complexity termQN( f̂ ) represents a penalty term which grows proportionally
with the number of free parameters (in the linear case) or theeffective number of
parameters (in the nonlinear case (Wahba, 1990; Suykenset al., 2002b)) of the
model f̂ grows.

2. Consider the linear ridge regression modely = wTx+b with w andb optimized
w.r.t.

JRR,γ(w,b) =
1
2

wTw+
γ
2

N

∑
i=1

(yi −wTxi −b)2. (A.24)

Using the Bayesian interpretation (MacKay, 1992; Van Gestel, 2002) of ridge
regression and under i.i.d. Gaussian assumptions, the posterior can be written as
p(w,b | xi ,yi ,µ ,ζ ) ∝ exp(−ζ (wxi + b− yi)

2)exp(−µ(wTw)), the estimate of
the noise varianceζ = 1/σ̂2

e and the expected variance of the first derivative
µ = 1/σ2

w can be used to set respectively the expected variance of the likelihood
p(yi |xi ,w,b) and on the priorp(w,b). As such, a good guess for the regularization
constant when the input variables are independent becomesγ̂ = â2

1/σ̂2
e .

Another proposed guess for the regularization constantγ̂ in ridge regression
(A.24) can be derived as in (Hoerlet al., 1975): γ̂ = ŵT

LSŵLS/(σ̂ed) whereσ̂e

is the estimated variance of the noise,d is the number of free parameters and
ŵLS are the estimated parameters of the ordinary least squares problem. These
guesses can also be used to set the regularization constant in the parametric step
in fixed size LS-SVMs (Suykenset al., 2002b) where the estimation is done in
the primal space instead of the dual via a Nÿstrom approximation of the feature
map.

3. Given the non-parametric Nadaraya-Watson estimatorf̂ (x) = [∑N
i=1(K((x−

xi)/h)yi)]/ [∑N
i=1K((x− xi)/h)], the plugin estimator for the bandwidthh is

calculated under the assumption that a Gaussian kernel is tobe used and the
noise is Gaussian. The derived plugin estimator becomeshopt = Cσ̂2N− 1

5 where
C≈ 6

√
π/25, see e.g. (Hardle, 1990).

4. We note that̂σ2
e also plays an important role in setting the tuning parameters of

SVMs, see e.g. (Vapnik, 1998; Cherkassky, submitted, 2002).



Appendix B

A Practical Overview:
LS-SVMlab

While the presented research is rather methodological in nature,
much effort was spent on the practical abilities of the methods and on
increasing the userfrinedliness of the tools by elaborating a MATLAB/C
toolbox called LS-SVMlab. The content and implementation details of the
Matlab/C toolbox are discussed qualitatively and some details are given
about the interface.

B.1 LS-SVMlab toolbox

In 2002, a freeware Matlab/C toolbox was released by the sameauthors for the use
of algorithms based on LS-SVM classifiers and regressors, and various extensions
(Pelckmanset al., 2002b; Pelckmanset al., 2002a)

http://www.esat.kuleuven.ac.be/sista/lssvmlab/,

which is freely available for research purposes (for precise conditions, see website).

Two years of experience and feedback were embodied in a new upgrade (LS-
SVMlab2). This section reviews and discusses issues concerning the main structure,
the newly implemented tools, a new graphical user interfaceand a number of useful
extensions of this software package. Note that a whole rangeof related software for
the estimation of SVMs and other Machine Learning techniques is available on the web
(see e.g. http://www.kernel-machines.org). The present approach mainly differs from
most approaches as the package focuses not on only one technique but offers a whole
spectrum of kernel based methods for the application at hand. Moreover, a graphical
interface was designed to ease the application of most described methods. A couple of
sometimes conflicting desiderata were put first:
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1. The toolbox should provide algorithmic tools as developed recently by the
authors and co-workers for the generic user.

2. The use of the toolbox should be highly robust and user-friendly in order to
facilitate the application of the methodology to the unexperienced as well as the
demanding users.

3. The calls of the core algorithms and the implementation should correspond with
the mathematical formulations as well as possible.

4. Functionality should be extendible towards other training and tuning algorithms
and other kernels.

Furthermore, the new toolbox should be backwards compatible to the first release.

B.1.1 Software architecture

Somewhat at the core of the software design is the definition of an appropriate Matlab
structure containing all information for the inference of atype of kernel machine. A
typical example of such a model is represented in Figure B.1,but can be extended
with extra fields containing details on the specific method ordataset. We shall refer to
such container as a data-structure if at least the substructure with the data definition is
present. One can speak of a model structure if the container includes the data definition
and the specifications inmethod. With a small abuse in notation, we will refer to
the latter as amodel. As an example, Table B.1 expands the substructuremethod

containing details on the involved training methodology. Every substructure contains
a status flag indicating whether the according stage (preprocessing, training,...) is
already processed successfully or will need to be redone.

The software folder (the different .m files) is organized as follows. The root directory
of the toolbox contains generic calls (trainm, simm, tunem, prem anddispm) which
support the model interface and redirects the user to the appropriate implementation.
On a second level the core functionalities are implemented as close to the formulas
as possible. Those are located in a set of subdirectories making the extension and
interpretability highly accessible. The implementationsare functional and make no
use of the model structure interface.

B.1.2 Model selection and generalization

A main advantage of this toolbox is its functionality regarding the task of model
selection as it contains a wide range of useful routines and algorithms for measuring
and maximizing the generalization performance of specific models. A number of
commonly used model selection criteria are implemented in the package. These
include the classical procedures for computing different model selection criteria as
L-fold cross-validation, leave-one-out, Generalized Cross-Validation (GCV), a variety
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model− − data : Definitions of the data-sample involved in the modeling process

− pre : Information on the pre- and post-processing

− train : Details on the used implementation

x type

x status

x train

x sim

x reg

x kernel

− modsel : Specifications on the model selection procedure

− disp : Information on the used visualization technique

Table B.1:Definition of the model structure at the core of the toolbox

of information criteria and fast implementations of those.Following the contributions
in (De Brabanteret al., 2002a), robust counterparts to some of the model selection
criteria were implemented. Apart from this estimation methods, different methods for
the optimization of a model selection criterion are including, ranging from very generic
algorithms as a computer-intensive grid search and local optimization routines to fast
initial estimates. Implementation of the fusion argument as elaborated in this thesis
are provided. Furthermore, some useful tools assisting theuser in the design of an
appropriate kernel are encoded.

B.1.3 Building blocks

While the previous discussion describes the general setup ofthe toolbox, this Subsec-
tion gives some details and illuminates some choices of the implementation.

PreprocessingThe toolbox contains a set of functions for automatically preprocessing
the data before the stage of modeling. While this is often highly dependent on
the application at hand, some procedures as normalization and standardization
is useful in most application. The standard preprocessing procedure will handle
binary, categorical and continuous data in different ways.

Modeling and Estimation Somewhat central to the toolbox is an efficient C im-
plementation for solving standard LS-SVMs. A variety of related parametric
techniques as ridge regression are supplied in order to easecomparisons of
the method. Furthermore, a set of structured and dedicated primal-dual kernel
machines are implemented as described in the text. Special attention is given
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Figure B.1:Example of a decision hyperplane found by application of a Support Vector
Machine.

to the construction of a user-interface assisting the user in the choice of an
appropriate algorithm.

Visualization Techniques Of direct concern to the user is the visual format in
which the result is presented on screen. In first instance, every training
procedure is engaged for making an appropriate visualization. Furthermore,
some visualization tools are implemented for representingthe raw data as the
differogram technique and others. A final set of visualization tools are involved
with the visualization of the model tuning process as evolution diagrams for
structure detection and computer-intensive grid-searches for hyper-parameter
tuning.

Resampling Schemes and Bayesian InferenceMost results in the context of sta-
tistical learning and kernel machines focus on the formulation of learning
machines for point estimation. However, the user is often also interested in
quantitative estimates of the (un)certainty of the provided prediction. This need
is approached in two disjunct ways. Classical non-parametric statistics provides
a number of results on resampling schemes based on the bootstrap procedure.
An entirely different approach emerged from the Bayesian point of view. This
implementation mainly builds on results described in (Van Gestelet al., 2002).
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Extensions for Classification In the task of classification dedicated tools as the
Receiver Operating Characteristic (ROC) curve of a binary classifier (Hanley
and McNeil, 1982) is often a useful tool to analyze the learned model. Another
useful extension towards the task of classification are the functions for converting
multi-class classification problems in sets of binary classification task using
different encoding schemes, see e.g. (Singer, 2003). Special attention was paid
to efficient calculation of error correcting output codes aspresented in (Dietterich
and Bakiri, 1995).

Large Scale MethodsA number of dedicated functions enable the handling and
processing of large scale databases in the toolbox. A principal tool here is the
fixed-size LS-SVM as introduced in (Suykenset al., 2002b) which is based on a
Nÿstrom approximation scheme combined with estimation in the primal space.
A problem especially apparent in medium to large scale problems is the problem
of hyper-parameter tuning and model selection. Dedicated formulations based
on the fusion argument are implemented.

Unsupervised Learning The task of finding patterns in unlabeled data in the context
of primal-dual kernel machines is discussed in some detail in (Suykenset
al., 2002b) and advances are given in (Hoegaerts, 2005). The toolbox contains
implementations of kernel PCA, kernel CCA and kernel PLS together with fast
approximation schemes to those algorithms capable of handling large datasets.


