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Voorwoord 

Toen ik, nu meer dan vier jaar geleden, aan mijn doctoraat begon, was ik  
één van de eerste bioingenieurs in de BIOI-groep van ESAT-SCD.  Ik kwam 
terecht in de vreemde wereld van ‘die andere’ ingenieurs.  Een wereld die ik 
misschien nog steeds niet helemaal begrijp, maar ik heb de voorbije jaren op 
ESAT wel ontzettend veel geleerd, en wil dan ook in de eerste plaats mijn 
promotor Prof. Bart De Moor bedanken.  Niet alleen voor de kansen die hij 
me gegeven heeft, maar ook voor de steun en interesse die hij altijd getoond 
heeft voor mijn, soms wel eigenzinnig onderzoek.  Het schrijfproces van 
mijn thesis is uit noodzaak van erg korte duur geweest, en daardoor werden 
de meeste geschreven regels van de administratieve afhandeling met de 
voeten getreden.  Ik wil de leden van mijn jury en begeleidingscommissie 
oprecht bedanken voor de tijd die ze vrijgemaakt hebben (en de flexibiliteit 
die ze daarbij getoond hebben) voor het nalezen van mijn tekst, ondanks 
ongetwijfeld overvolle agenda’s. 

Niemand ben ik meer voor mijn doctoraat verschuldigd dan Kathleen (ik zal 
de ‘Prof. Marchal’ achterwege laten, ik weet dat je daar maar niet aan kan 
wennen).  Het enthousiasme waarmee je mijn onderzoek dagdagelijks hebt 
begeleid is ongeëvenaard.  In al die jaren dat ik je ken, ben je meer een grote 
zus dan een baas geweest: ik kan me geen moment herinneren dat je niet 
klaarstond voor mij (of één van je andere studenten), en dat is meer dan 
bewonderenswaardig.  Ik heb je meer dan eens het bloed van onder de nagels 
gehaald, en dat zal zeker nog gebeuren.  Ik kan niet zeggen dat dat me spijt, 
maar ik beloof plechtig dat ik je nooit meer zal doen wenen. 

Ik wil ook het IWT bedanken, dat mij vier jaar lang financieel gesteund 
heeft, en zonder hetwelk dit onderzoek nooit was mogelijk geweest. 

Door de aard van mijn onderzoek heb ik de gelegenheid gehad om met 
verschillende biologische en biomedische onderzoeksgroepen samen te 
werken.  Ik ben betrokken geweest bij de meest interessante, en 
uiteenlopende onderzoeksprojecten.  Ik wil dan ook iedereen bedanken die 
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zo dapper was zijn of haar data, en/of het design van hun experimenten aan 
mij toe te vertrouwen.  Een bijzondere vermelding verdienen de mensen die 
bereid waren mij te volgen in mijn, misschien wat onorthodoxe opvattingen 
over microarrays, en daarin kosten noch moeite gespaard hebben:  Jos en 
Sigrid (CMPG), Johan en Bart (Afd. Planten en Micro-organismen), en Bart 
en Koen (ISLab). 

Doctoraatsonderzoek staat niet los van de groep waarin het gevoerd wordt, 
en de BIOI-groep van SCD is er één die alle hoeken van de Arenbergcampus 
gezien heeft: van de broeihete ESAT-zolder, naar de schroeiend hete 200F 
van scheikunde, en weer terug naar ESAT, ditmaal naar een ijskoude toren.  
Al die verhuizingen deden niets af aan de werklust en sfeer binnen de groep.  
Ik wil iedereen op BIOI, vroeger en nu, bedanken voor de geweldige tijd die 
ik er beleefd heb, en een speciaal bedankje voor de mensen waarmee ik 
nauw samengewerkt heb: Frank (had jij me niet op weg geholpen, had mijn 
doctoraat nooit op tijd klaar geraakt!), Ruth (Toki Toki Boom Boom?), 
Pieter (immaand oem teege te ziejevere in ef eige toal), Karen, Nathalie, Tijl, 
Tim en Thomas.  Ook mag ik Bart, Ida, en Ilse niet vergeten voor al hun 
hulp doorheen de administratieve rompslomp. 

Ongeveer op hetzelfde moment als ik, begon ene Bert Coessens aan zijn 
doctoraat in de BIOI-groep.  Bert is een wat timide jongen, wars van 
discussies, maar zondermeer een hele toffe pee.  Hij was mijn huisgenoot 
gedurende drie jaar en dat was niet altijd even gemakkelijk.  Tenminste voor 
hem niet: samenwonen met iemand die in constante ontkenning van de afwas 
vertoeft, moet met momenten een hele opgave geweest zijn.  En oh ja, Bert, 
het spijt me nog steeds heel erg van die gaten in je keukentafel.  
Ondervinding is een goede leerschool: een keuken is geen schrijnwerkerij. 

Hoewel sommige professoren hun studenten het tegendeel willen wijsmaken 
(althans, dat heb ik van horen zeggen), is het leven meer dan doctoreren 
alleen.   Doctoraatszorgen relativeren, vergeten, of verdrinken bij pot en pint, 
daar zijn vrienden (en broers!) voor.  Met mijn collega-muzikanten bij 
Kokain en The Mob Stories heb ik de voorbije jaren de meest memorabele 
momenten meegemaakt.  Niets is zo goed om een mens zijn frustraties weg 
te nemen dan ‘Gaaaaas geeeveeeeeuh!’ Muziek heeft altijd een centrale 
plaats gehad in mijn leven.  De zeldzame keren dat ik de laatste jaren eens 
vóór zeven uur opgestaan ben, was om samen met mijn voor-zolang-ik-me-
kan-herinneren beste vriend te lakken, schuren en polijsten aan een blok 
padouk om er een bespeelbaar instrument van te maken.  Dus Steven, 
wanneer beginnen we aan de volgende?  

Karel, ik herinner me nog de eerste mei in 2000 toen jij er voor gezorgd hebt 
dat mijn eindverhandeling netjes ingebonden klaar was om in te dienen.  En 
nu weer; zonder jou had dit boekje nooit op tijd klaar geweest.  Bedankt! 

 ii 



Voorwoord 

Terwijl ik de vorige alinea’s aan het typen was riep mijn moeder me toe 
vanuit de keuken: “Weet je nog toen je begon te studeren en wij zeiden dat je 
één keer mocht proberen en als het dan niet lukte…goh, en nu ga je je 
doctoraat afleggen!”  Dat weet ik nog al te goed, ma, pa en broer.  Ik weet 
ook dat jullie altijd voor mij klaar stonden en het nooit nagelaten hebben van 
mij op alle vlakken te steunen en mijn weg te laten kiezen.  Daarvoor kan ik 
jullie niet genoeg bedanken! 

En lieve Loo, ik ben nog het meest dankbaar voor het feit dat ik jou heb 
leren kennen, en voor je volharding om mij daarvan te overtuigen toen ik dat 
zelf nog niet wist…   

 

 

Kristof Engelen 

December 2005 

 iii 



Voorwoord 

 

 iv 



 

Abstract 

The microarray platform is a relatively complex technology that permits the 
simultaneous assessment of mRNA expression levels of thousands of genes 
in a single hybridization assay.  Normalization of spotted microarray 
measurements, the first step in a microarray analysis trajectory, aims at 
removing consistent and systematic sources of variations to allow mutual 
comparison of measurements acquired from different slides and 
experimental settings.  Data normalization largely influences the results of 
all subsequent analyses and the biological interpretation of these results, and 
is therefore a crucial phase in the analysis of microarray data.  Over the past 
years, the field of microarray analysis finally seems to have adapted a few 
generally applied methodologies for data normalization.  Although some 
approaches inherently work with absolute intensities, in general, 
normalization of spotted microarrays largely revolves around the calculation 
of the log-ratios of the measured intensities.  Moreover, these techniques 
generally show little interest in the underlying causes of the observed 
systematic and random variation in microarray data. 

The normalization methods we pursue in this thesis differ in spirit from 
standard log-ratio approaches.  The basic premise is to acknowledge the 
physical and biological reality of the process and address the normalization 
problem starting from units of absolute intensities.  These measured 
intensities are to be modelled as a function of systematic sources of variation 
in a physically and experimentally meaningful way, and should allow for the 
calculation of an absolute value of expression instead of being limited to the 
relative nature of intensity ratios.  During the initial research stage, the use of 
ANOVA for microarray normalization, at the time the only available method 
that allowed for calculation of absolute expression values, was evaluated and 
compared to ratio based approaches.  Based on these results, further research 
was conducted towards the development and deployment of generic 
(applicable to any experimental setup) ANOVA models for microarray 
normalization.  ANOVA approaches nevertheless suffer from several 
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shortcomings.  To circumvent these issues we developed a novel 
normalizing method for spotted microarray data, using external control 
spikes to fit a calibration model.  External control spikes serve to estimate 
the model parameters. The obtained parameters values are then employed to 
estimate absolute levels of expression for the remaining genes.  We illustrate 
the workings and principles of this method by applying it to a publicly 
available benchmark data set. 
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Korte inhoud 

Microroosters zijn een relatief complexe technologie, die toelaten de 
mRNA-expressieniveaus van duizenden genen tegelijkertijd te meten.  
Normalisatie van de metingen is de eerste stap in de analyse van 
microroosterdata.  De bedoeling ervan is het verwijderen van consistente en 
systematische bronnen van variatie, zodat metingen van verschillende 
microroosters en biologische condities onderling vergeleken kunnen worden.  
Normalisatie van de data heeft een substantiële invloed op de resultaten van 
alle daaropvolgende analyses en de biologische interpretatie ervan.  
Gedurende de voorbije jaren zijn verscheidene methodes voor de 
normalisatie van microroosterdata ontwikkeld die als standaard kunnen 
beschouwd worden.  Hoewel sommige van deze aanpakken inherent werken 
met absolute intensiteiten, is het verwerken van microroosterdata grotendeels 
gebaseerd op het berekenen van log-ratio’s van de gemeten intensiteiten.  
Daarnaast vertonen deze normalisatietechnieken weinig interesse in de 
onderliggende oorzaken van de geobserveerde systematische en willekeurige 
variaties van de gemeten intensiteiten. 

De normalisatiestrategieën die in deze thesis uitgewerkt zijn, zijn anders in 
opzet.  De achterliggende idee is om rekening te houden met de fysische en 
biologische realiteit van het proces en om het normalisatieprobleem aan te 
pakken vertrekkende van absolute intensiteiten.  De gemeten intensiteiten 
worden gemodelleerd op een fysisch en experimenteel betekenisvolle 
manier, om het zodoende mogelijk te maken om absolute waarden van 
genexpressie te schatten, in plaats van beperkt te zijn door de relatieve aard 
van intensiteitsratio’s.  Initieel onderzoek bestond uit de evaluatie van 
procedures voor microroosternormalisatie steunend op ANOVA-modellen, 
en een vergelijkende studie met op ratio’s gebaseerde technieken.  Verder 
onderzoek was gericht op de ontwikkeling van generische (toepasbaar op elk 
experimenteel design) ANOVA-modellen voor normalisatie van 
microroosterdata.  Deze aanpak vertoonde echter verschillende 
tekortkomingen en daarom werd een geheel nieuwe methode ontwikkeld 

vii 



Korte inhoud 

 viii 

gebaseerd op een fysisch gemotiveerd calibratiemodel.  Externe controles 
zijn een centraal onderdeel van deze methode aangezien ze toelaten de 
parameters van het calibratiemodel te schatten, dewelke op hun beurt kunnen 
gebruikt worden om absolute expressiewaarden voor de overige genen te 
berekenen. 

 



  

Notation 

 

Symbols 
y  Measured intensity 

3Cy ,  Used as subscripts; indicate 
whether a parameter applies to the 
Cy3 or the Cy5 channel. 

5Cy

I  Logarithm transformed intensities 

M  Log-ratios 

A  Average of the logarithm 
transformed intensities over Cy3 
and Cy5 

corrM  Corrected ratio based on an 
intensity dependent normalization 

ijklmI ,  Logarithm transformed intensities 
(ANOVA) 

ijklmnI

ijklmε , ijklmnε  Model error terms (ANOVA) 

jC  Condition effect parameter 

lD  Dye effect parameter 

mB  Batch effect parameter 
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Notation 

x 

mnijGC

kA ,  Array effect parameter ( )mkA

iG ,  Gene effect parameter ( )( )mniG

ijGC , )  Gene×condition interaction effect 
parameter 

( )(

ikGA  Gene×array interaction effect 
parameter 

( ) ( )ikmGAR ,  Replicate spot effect parameter ( ) ( )imGR

( )mnP ,  Pin-group effect parameter ( )mnkPA

0x  Target concentration in the 
hybridization solution 

sx  Amount of target hybridized to a 
spotted probe 

s  Remaining spot capacity 

0s  Total spot capacity 

sμ  Average spot capacity 

sε  Spot capacity error 

sσ  Spot capacity error variance 

AK  Hybridization constant 

1p  Saturation function slope 

2p  Saturation function intercept 

mε  Multiplicative intensity error 

mσ  Multiplicative intensity error 
variance 

aε  Additive intensity error 

aσ  Additive intensity error variance 
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Acronyms 
ANOVA Analysis of Variance 

AQBC Adaptive Quality Based 
Clustering 

aRNA Antisense RNA 

cDNA Complementary DNA 

CGH Comparative Genomic 
Hybridization 

ChIP Chromatin Immunoprecipitation 

DNA Deoxyribonucleic Acid 

ERCC External RNA Control 
Consortium 

EST Expressed Sequence Tags 

GNA Global Normalization 
Assumption 

INCLUSive Integrated Clustering and 
Upstream Sequence Retrieval 

LOWESS Locally Weighted Scatter Plot 
Smoothing 

MIAME Minimum Information About a 
Microarray Experiment 

mRNA Messenger RNA 

ORF Open Reading Frame 

PCR Polymerase Chain Reaction 

RNA Ribonucleic Acid 

RT-PCR Reverse Transcriptase PCR 

SAM Significance Analysis of 
Microarrays 
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Normalisatie van microroostermetingen: 
schatten van absolute expressiewaarden 

Hoofdstuk 1: Inleiding 

Hoge-doorvoer data en microroosters 
In traditioneel genetisch en moleculair biologisch onderzoek werden genen, 
eiwitten en andere moleculen een voor een bestudeerd als geïsoleerde 
entiteiten.  Technologische vernieuwingen hebben, voornamelijk gedurende 
het voorbije decennium, hier grondig verandering in gebracht.  De 
toepassing van hoge-doorvoer (high-throughput) technologieën (genomica, 
transcriptomica, metabolomica) laat immers toe om in een zeer korte tijd de 
DNA-sequentie van hele genomen in kaart te brengen, gelijktijdig de 
expressie van duizenden genen of proteïnen in een organisme te analyseren, 
de aard en concentratie van metabolieten te evalueren en de interacties 
tussen deze verschillende genetische entiteiten te identificeren.  De focus van 
biologisch onderzoek is verschoven van alleenstaande, of een beperkt aantal 
genen en proteïnen, naar de analyse van hele populaties.   

Het voordeel van een dergelijke holistische aanpak is dat men een beter 
inzicht kan bekomen in de fundamentele, moleculair biologische processen, 
aangezien een gen gesitueerd wordt in een globale context, als deel van een 
complex regulatorisch netwerk.  Een cel of organisme wordt beschouwd als 
een systeem dat interageert met zijn omgeving en waarvan het gedrag wordt 
bepaald door de dynamische interacties tussen genen, proteïnen en 
metabolieten op het niveau van het regulatorisch netwerk (i.e. 
systeembiologie). 

Hoge-doorvoer experimenten hebben onderzoekers niettemin voor 
verscheidene uitdagingen gesteld.  De analyse van data die gegenereerd 
wordt op zulk een grote schaal is verre van triviaal.  Bioinformatica is een 
jong en snel groeiend interdisciplinair onderzoeksdomein, hetwelk kan 
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gedefinieerd worden als de wetenschap die zich bezighoudt met het 
computationele management en de analyse van diverse soorten van 
moleculair biologische data, of deze nu betrekking hebben op genen en 
gerelateerde moleculen, cellen, organismen of zelfs hele ecologische 
systemen. 

De opkomst van microroosters (microarrays) was -en is nog steeds- een 
drijvende kracht achter de verdere ontwikkeling en wereldwijde inburgering 
van hoge-doorvoor technologieën.  Het doel van de meeste 
microroosterexperimenten is de identificatie van genen die differentieel tot 
expressie komen in RNA-stalen die geëxtraheerd zijn uit verschillende 
celtypes of cellen groeiend in verschillende condities.  Veel van de principes 
van moderne microroosters stammen uit de late jaren ’80 en de prille jaren 
’90 toen gekloneerde cDNA probes, gepositioneerd op membraanfilters, 
werden gehybridiseerd met complexe mengsels van target moleculen om 
verschillen in genexpressie te quantificeren [37,84,122,129,191].  Een grote 
doorbraak kwam medio jaren ’90, toen Pat Brown, Ron Davis en collega’s 
hun onderzoek publiceerden dat de werking beschreef van een tweekleuren, 
intern comparatieve techniek waarbij cDNA probes in hoge densiteit 
machinaal op een vaste drager werden bevestigd [49,175,176].  Deze studies 
hebben geleid tot de ontwikkeling van DNA-microroosters die toelaten de 
relatieve expressie van duizenden mRNA-transcripten simultaan te 
bestuderen. 

Microroosters zijn een complexe technologie die kan rekenen op de interesse 
van specialisten uit uiteenlopende onderzoeksdomeinen (niet alleen 
moleculair biologen en genetici, maar ook chemici, fysici, ingenieurs, 
wiskundigen, computerwetenschappers, etc.) en het gebruik ervan heeft 
geleid tot belangrijke resultaten en inzichten in uiteenlopende sectoren, 
gaande van fundamenteel biologisch onderzoek, tot biomedische en 
industriële toepassingen.  Het onderzoek dat beschreven wordt in deze 
doctoraatsthesis is volledig gesitueerd in het gebied van de analyse van 
microroosterdata.  Het handelt over de normalisatie van intensiteiten die 
bekomen worden van gescande beelden van een microroosterexperiment.  

Motivatie van het onderzoekswerk 
Normalisatie van de metingen is de eerste stap in de analyse van 
microroosterdata.  De bedoeling ervan is het verwijderen van consistente en 
systematische bronnen van variatie, zodat metingen van verschillende 
microroosters en biologische condities onderling vergeleken kunnen worden.  
Normalisatie van de data heeft een substantiële invloed op de resultaten van 
alle daaropvolgende analyses en de biologische interpretatie ervan.  Het is 
daarom een cruciale fase in de analyse van microroosterdata. 

Gedurende de voorbije jaren zijn verscheidene methodes voor de 
normalisatie van microroosterdata ontwikkeld die als standaard kunnen 
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beschouwd worden (enkele goede overzichtsartikels zijn vb. Leung and 
Cavalieri, 2003 [123], Quackenbush, 2002 [156], and Bilban et al., 2002 
[22]).  Hoewel sommige van deze aanpakken inherent werken met absolute 
intensiteiten (e.g. ANOVA [113,221]), is het verwerken van 
microroosterdata grotendeels gebaseerd op het berekenen van log-ratio’s van 
de gemeten intensiteiten.  Dit is te wijten aan het inherent differentieel 
karakter van microroosterexperimenten: twee verschillende stalen, gelabeld 
met verschillende fluorochromen (Cy3 en Cy5), worden gelijktijdig 
gehybridiseerd op hetzelfde microrooster.  Gezien de vergelijkende aard van 
microroosterexperimenten is het nemen van ratio’s van de gemeten 
intensiteiten een logische benadering voor de analyse van de resultaten.  Het 
gebruik van dergelijke ratio’s is echter niet zonder nadelen.  Vanuit een 
theoretisch standpunt zullen ratio’s de ruis op de metingen vergroten door de 
experimentele fout op de intensiteiten te vermenigvuldigen.  Daarnaast 
houden ratio’s geen rekening met mogelijk nuttige informatie in verband met 
het absolute niveau van genexpressie (een bepaalde intensiteitsratio kan 
bijvoorbeeld wijzen op een significant verschil in expressie in het geval van 
relatief hoge individuele intensiteiten, terwijl eenzelfde ratio voor lagere 
intensiteiten geen betekenis heeft omwille van een hogere 
onbetrouwbaarheid).  Het gebruik van ratio’s heeft ook verscheidene 
praktische implicaties.  Zo is het moeilijk om voor complexe experimentele 
designs meerdere biologische condities met elkaar te vergelijken, vooral 
wanneer deze niet vergeleken werden met dezelfde referenties. 

Een ingeburgerde normalisatiestap is de linearisatie van Cy3- versus Cy5-
intensiteiten (e.g. LOWESS [226]).  Dergelijke methoden nemen aan dat de 
distributie van genexpressiewaarden weinig globale veranderingen vertoont 
en gebalanceerd is ten opzichte van de geteste biologische condities (i.e. de 
Globale Normalisatie Assumptie), een assumptie waarvan werd aangetoond 
dat ze verre van altijd opgaat [206-208].  Microroosterdata worden dus over 
het algemeen genormaliseerd door de berekende ratio’s te transformeren 
naar een maat van differentiële expressie waaraan men verwacht dat de 
onderliggende biologische realiteit beantwoordt.  Ratio-
normalisatietechnieken vertonen weinig interesse in de onderliggende 
oorzaken van de geobserveerde systematische en willekeurige variaties in 
intensiteiten.  

De normalisatiestrategieën die in deze thesis uitgewerkt zijn, zijn anders in 
opzet (een overzicht van de thesis zelf wordt gegeven in Figuur N.1).  De 
achterliggende idee is om rekening te houden met de fysische en biologische 
realiteit van het proces en om het normalisatieprobleem aan te pakken 
vertrekkende van absolute intensiteiten.  De gemeten intensiteiten zullen 
gemodelleerd worden op een fysisch en experimenteel betekenisvolle 
manier, om het zodoende mogelijk te maken om absolute waarden van 
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genexpressie te schatten, in plaats van beperkt te zijn door de relatieve aard 
van intensiteitsratio’s.   
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Figuur N.1:  Organizatie van de thesis.  Hoofdstukken die handelen over het eigen onderzoek 
zijn in zwarte kaders weergegeven.. 
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 EXPERIMENTAL PROCEDURES 
AND TECHNOLOGY 2.1

MICROARRAY EXPERIMENT
2.1.2

Experiment design
2.1.2.1

Sample preparation
2.1.2.2

Hybridization and scanning
2.1.2.3

SLIDE PRODUCTION
2.1.1

Probe generation
2.1.1.1

Printing slides
2.1.1.2

PREPROCESSING AND 
NORMALIZATION

2.2.2

Background correction
2.2.2.1

Log-ratios and design
2.2.2.2

Dye related discrepancies
2.2.2.3

IMAGE ANALYSIS
2.2.1

DATA ANALYSIS 2.2

DATA EXPLORATION
2.2.3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figuur N.2:  Microroostertechnologie.  Bovenste paneel: overzicht van de experimentele 
procedures betrokken bij een microroosterexperiment, gaande van de productie van 
roosters tot het eigenlijke uitvoeren van de experimenten.  Onderste paneel: data-
analysecomponent van een microroosterexperiment. 
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Hoofdstuk 2: Microroosters 
In dit hoofdstuk wordt een overzicht gegeven van de technologische en 
experimentele principes van microroosters (sectie 2.1), gevolgd door een 
bespreking van enkele typische datakenmerken en analysetechnieken (sectie 
2.2).  In het laatste deel van dit hoofdstuk (sectie 2.3) worden enkele 
toepassingen van microroosters behandeld, die niet gericht zijn op het meer 
gebruikelijke monitoren van genexpressie. 

Technologie 
Deze sectie handelt over de technologieën en procedures die betrokken zijn 
in het uitvoeren van een microrooster experiment (zie Figuur N.2), gaande 
van de productie van de microroosters die de DNA-probes bevatten (sectie 
2.1.1), tot de preparatie van hybridisatieoplossingen (bevatten de target 
moleculen) en de eigenlijke hybridisatiereactie en scannen van het rooster 
(sectie 2.1.2). 

De eerste stap in de productie van microroosters is het genereren van probe-
oplossingen die fungeren als stocks van het DNA dat op de roosters kan 
gepositioneerd worden.  Tegenwoordig worden ofwel cDNA fragmenten, 
ofwel synthetische oligonucleotiden (oligomeren) gebruikt als probes voor 
microroosters.  Het eigenlijke printen van de microroosters kan gebeuren via 
contact printing [121,175], de methode die gebruikt werd voor het maken 
van de eerste microroosters [175] en nog steeds erg populair is, of door non-
contact printing (inkt jet) [91,178].  De meest kritieke factoren die een 
invloed hebben op de kwaliteit van de geproduceerde microroosters zijn het 
gebruikte type van printpin en de karakteristieken van het roosteroppervlak 
(een glazen plaatje met een coating die toelaat dat het probe-DNA 
gemakkelijk kan gebonden worden).  Daarnaast spelen ook eigenschappen 
van de geautomatiseerde printer (beweging van de printpinnen en 
positionering van de microtiterplaten en microroosters), de samenstellingen 
van de probe-DNA oplossing, en controle over omgevingsfactoren zoals 
temperatuur en vochtigheidsgraad een belangrijke rol .  Het plaatsen van 
DNA-probes op welomlijnde, discrete posities op een glazen drager mag 
conceptueel eenvoudig lijken, de precieze en betrouwbare productie van 
microroosters in de praktijk is niet zonder uitdagingen.  

Het uitvoeren van de eigenlijke microroosterexperimenten begint met het 
bedenken van een gepast experimenteel design, dat zoveel mogelijk 
biologisch relevante informatie oplevert, en terwijl rekening houdt met de 
beperkingen van microroostertechnologie, zoals de kostprijs van de 
experimenten en de beschikbaar van de biologische stalen.  De eerste fase in 
het genereren van hybridisatiestalen is het isoleren en zuiveren van mRNA 
uit celculturen of weefsels.  Wanneer slechts een beperkte hoeveelheid RNA 
voorhanden is (vb. geisoleerd uit een kleine hoeveelheid tumorweefsel), 
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wordt gewoonlijk een extra amplificatiestap ingelast.  Daarna worden deze 
stalen gelabeld, i.e. worden fuorochromen geïncorporeerd in de target 
sequenties.  De populairste fluorochromen zijn de carbocyanines Cy5 en Cy3 
[231], respectievelijk de ‘rode’ en de ‘groene’.  Het hybridisatieproces 
bestaat uit het incuberen van het gelabelde target-DNA met het probe-DNA 
dat vastgehecht is op het microrooster: fluorescente target sequenties 
hybridiseren met complementaire probes.  De uitgezonden fluorescentie kan 
gemeten worden met een confocale laserscanner en is een indicatie van de 
hoeveelheid geïmmobiliseerd target-DNA. 

Verwerking van de data 
Het uitvoeren van de experimentele procedures is slechts een eerste fase in 
een microroosterstudie, de daaropvolgende data-analyse (sectie 2.2) is 
evenzo belangrijk.  Deze sectie bespreekt een typische data-analyse pijplijn 
zoals geïllustreerd in Figuur N.2, beginnende met beeldanalyse (sectie 
2.2.1), gevolgd door normalisatie van de intensiteiten (sectie 2.2.2), en tot 
slot exploratie van de data op hoger niveau (sectie 2.2.3). 

De beeldanalyse van gescande microrooster converteert de bekomen scans 
naar numerieke waarden, geassocieerd met individuele probe-spots, die 
dienen als maat voor de hoeveelheid gehybridiseerd target.  Dit proces kan 
onderverdeeld worden in drie stappen: gridding (of addressing; het 
toekennen van coördinaten aan elk van de geprinte probes), segmentatie (het 
classificeren van de pixels van het beeld als voorgrond, i.e. behorende tot 
een spot van probe-DNA, of achtergrond), en intensiteitsextractie (het 
berekenen van voorgrond- en achtergrondintensiteiten voor elke spot op het 
microrooster voor zowel Cy5 als Cy3). 

Normalisatie van de ruwe, geëxtraheerde intensiteiten is een noodzakelijke 
stap vooraleer verdere analyses worden uitgevoerd die kunnen leiden tot 
biologische interpretaties (sectie 2.3).  In plaats van een exhaustieve lijst te 
voorzien van alle beschreven methodes, handelt dit deel van het hoofdstuk 
over typische karakteristieken en gerelateerde problemen van 
microroosterdata, en enkele van de standaardtechnieken die gebruikt worden 
om hiermee om te gaan: 

• Achtergrondcorrectie (sectie 2.2.2.1) is de eerste stap van het 
normaliseren van microroosterdata.  De bedoeling is om de 
‘voorgrond’ spotintensiteiten te corrigeren voor 
achtergrondcontributies, zoals niet-specifieke hybridizatie, residuele 
Cy5- en Cy3-moleculen, en fluorescentie afkomstig van andere 
delen van het rooster (overshining).  Het is algemeen aanvaard dat 
het effect van achtergrond additief is met respect tot de gemeten 
spotintensiteiten [34] (achtergrondcorrectie wordt dan ook vaak 
achtergrondsubtractie genoemd).  Het is helaas onmogelijk om de 
echte achtergrond te meten voor elke spot.  Als gevolg zijn er 
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verschillende methodes ontwikkeld om deze achtergrond bij 
benadering te kwantificeren.  In dit deel van het hoofdstuk geven 
we een korte bespreking van de voor- en nadelen van methodes die 
gebruik maken van een constante achtergrond, een locale 
achtergrond, een achtergrondmodel, en het simpelweg werken met 
de ruwe intensiteiten (i.e. geen achtergrondcorrectie uitvoeren).  

• Zoals reeds eerder vermeld is microroostertechnologie 
fundamenteel ontworpen met het oog op het meten van relatieve 
genexpressie.  Zodoende zijn log-ratio’s (sectie 2.2.2.2), het 
logaritme van de ratio’s Cy5- over Cy3-intensiteiten, de 
basiseenheden die gebruikt worden om de data te interpreteren. Het 
wordt aangenomen dat zulke ratio’s de grote, spot-gerelateerde 
variaties in intensiteiten teniet doen.  De motivatie voor de 
logaritmische transformatie is tweevoudig.  Microroosterdata 
vertonen buiten de additieve achtergrond ook multiplicatieve fouten 
die kunnen opgevangen worden door het nemen van een logaritme.  
Daarnaast vergemakkelijkt dergelijke transformatie de interpretatie 
van de berekende ratio’s.  De relatieve aard van microroosterdata en 
het gebruik van log-ratio’s heeft belangrijke gevolgen voor de 
experimentele setup van complexere experimenten (i.e. 
experimenten met meer dan twee biologische condities).  De 
centrale designkeuze is altijd of twee biologische stalen direct (op 
hetzelfde rooster) of indirect (op verschillende roosters) vergeleken 
worden.  In dit deel van het hoofdstuk bespreken we verder drie 
standaarddesigns: de colour-flip, het loop design, en het reference 
design.  

• Het gebruik van log-ratio’s omzeilt theoretisch gezien alle 
systematische fouten die afkomstig zijn van spots, printpinnen en 
roosters.  De meeste normalisatiestrategieen voor microroosters zijn 
daarom gefocust op het verwijderen van fluorochroom-
gerelateerde verschuivingen (sectie 2.2.2.3).  Dergelijke 
systematische variaties veroorzaken een significante distortie in de 
distributie van log-ratio’s, en zijn het gevolg van verschillende 
factoren, voornamelijk de fysische eigenschappen van de 
carbocyanines en de efficiëntie van de incorporatie van deze labels, 
maar ook verschillen in de hoeveelheid aan input RNA, en scanner-
specifieke excitatie- en meeteigenschappen.  Gewoonlijk worden 
alle genen gebruikt om te compenseren voor een fluorochroom 
gerelateerde verschuiving.  Men neemt aan dat dit niet onredelijk is 
omdat 1) slechts een relatief kleine proportie van alle genen 
significant van expressie zal variëren tussen twee mRNA stalen van 
distincte biologische condities, en 2) dat er symmetrie is in de 
hoeveelheid op- en neergereguleerde genen.  In de praktijk is de 
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geobserveerde verschuiving niet constant binnen een rooster en over 
verschillende roosters heen, wat aanleiding heeft gegeven tot 
intensiteitsafhankelijke herschalingsprocedures (e.g. LOWESS 
[226]), dewelke in dit deel verder besproken worden. 

Nadat de data genormaliseerd zijn, kunnen verdere analyses gebeuren met 
het doel van biologisch betekenisvolle resultaten te bekomen.  De 
biologische en biomedische vraagstukken die bestudeerd worden kunnen vrij 
uiteenlopend zijn, zodat verscheidene methodes en algoritmes uit het domein 
van de statistiek, data mining en machine learning hun weg gevonden 
hebben naar de verwerking van microroosterdata.  Dit deel van het 
hoofdstuk geeft een bondig overzicht van enkele van de meest wijdverbreide 
data-exploratiemethodes, zoals de selectie van genen met significant 
differentiële expressie, clustering van genexpressieprofielen, clustering van 
de geteste biologische condities, classificatie van de geteste biologische 
condities en inferentie van regulatorische (genetische) netwerken. 

Andere toepassingen 
Microroosters worden voornamelijk gebruikt om de expressieprofielen van 
specifieke celtypes en weefselstalen te bestuderen.  De differentiële labels en 
het daaruit volgende relatieve karakter van de experimenten, maakt 
microroosters echter uitermate geschikt voor andere types van genomische 
analyses.  In deze sectie worden twee van de meest courante applicaties 
besproken, namelijk Comparatieve GenoomHybridisatie en Chromatine-
ImmunoPrecipitatie op microroosters (respectievelijk CGH-arrays en ChIP-
chip).  CGH is een methode die toelaat sites met een variabel kopienummer 
te identificeren en in kaart te brengen voor het hele genoom.  ChIP-chip is 
een populaire technologie die toelaat de bindingsplaatsten van DNA-
bindingsproteïnen op het DNA te bepalen. 

 Hoofdstuk 3: Evaluatie van ANOVA-
normalisatie 
In dit hoofdstuk werd het gebruik van ANOVA voor 
microroosternormalisatie geëvalueerd.  Omdat er geen directe manier bestaat 
om een normalisatieprocedure te beoordelen (de daadwerkelijke 
expressieniveaus zijn immers niet gekend), werden significant differentiële 
genen geselecteerd o.b.v. ANOVA-genormaliseerde data en vergeleken met 
genen die geïdentificeerd werden als significant differentieel tot expressie 
komend o.b.v. de gemeten log-ratio’s [132].  Om de invloed van de 
gebruikte selectieprocedure te verminderen, werden de ANOVA-resultaten 
vergeleken met die van drie verschillende methodes die steunen op het 
gebruik van log-ratio’s. 
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Een eerste deel van dit hoofdstuk (sectie 3.1) beschrijft de principes van de 
op ANOVA gebaseerde, normalisatie van microroosters.  Het tweede deel 
(sectie 3.2) doet hetzelfde voor de op log-ratio’s gebaseerde methodes, die 
gebruikt werden voor de identificatie van genen met differentiële expressie.  
In een laatste deel (sectie 3.3) worden de resultaten weergegeven en 
besproken. 

ANOVA modellen voor normalizatie 
ANOVA (ANalysis Of VAriance) wordt steeds meer gebruikt voor de 
normalisatie  van microroosterdata [104,113,221].  Een ANOVA-
normalisatie modelleert de gemeten expressieniveaus van elk gen als lineaire 
combinaties van  predictorvariabelen, die, in de context van deze studie, de 
belangrijkste bronnen van variatie in een microroosterexperiment 
vertegenwoordigen (e.g. microrooster, fluorochroom, conditie, printpin, 
etc.).  De parameterisaties van de GC-variabele (genxconditie interactie) 
kunnen beschouwd worden als genormaliseerde data: ze beschrijven voor elk 
gen de conditie-geaffecteerde verandering in expressie.  Door het fitten van 
een ANOVA-model bekomt men bovendien een residuele foutendistributie, 
een schatting van de experimentele foutendistributie.  Deze residu’s kunnen 
gebruikt worden om significante genen te identificeren door 
betrouwbaarheidsintervallen op te stellen op het verschil in GC-
factorniveaus.  Meestal vertoont deze residuverdeling echter grote 
afwijkingen van normaliteit.  In dat geval is het gebruik van Gaussiaanse 
statistiek ongepast; ‘bootstrapping’ [50,67,68] (voor het eerst op 
microroosters toegepast door Kerr et al., 2000 [113]), een virtuele 
herbemonsteringsmethode (resampling), kan dan gebruikt worden als 
alternatief voor statistische inferentie. 

Verschillende ANOVA-modellen werden geëvalueerd.  Deze modellen 
verschilden van elkaar in het aantal additionele interactievariabelen (voor het 
beschrijven van spot-gerelateerde variabiliteit).  Het model met de beste 
performantie bestond uit een eigen adaptatie van eerder beschreven modellen 
[111-113], en werd dan ook gebruikt in de vergelijkende studie: 

ijklmijki)i(mlkjiijklm )GC()AG()G(RDACGI εμ ++++++++=  (N.1) 

In dit model is μ het gemiddelde signaal over alle intensiteiten heen, stelt Gi 
het effect van het ide gen voor, stelt Cj het effect van de jde conditie voor, stelt 
Ak het effect van het kde rooster voor, stelt Dl het effect van de lde 
fluorochroom voor, stelt (GA)ik de interactie voor tussen het ide gen en het kde 
rooster, (GC)ij de interactie tussen het ide gen and de jde conditie.  De 
foutentermen εijkl worden verondersteld identiek verdeeld en onafhankelijk te 
zijn.  Het R(G)m(ik) effect representeert de mde replica van een gen dat 
meerdere malen gespot werd op elk rooster.  Deze typische, geneste 
structuur werd gekozen om variabiliteit, die kan toegewezen worden aan de 
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probe-oplossingen voor genen die meerdere malen gespot worden.  De 
probes van een enkel gen op verschillende roosters stammen immers van 
dezelfde PCR-reactie of dezelfde oligo-set.  

Identificeren van differentiële expressie o.b.v. log-ratio’s 
Op basis van een uitgebreide literatuurstudie konden bestaande methodes 
ingedeeld worden in afzonderlijke klassen, naargelang de gebruikte 
teststatistiek, distributie van de nulhypothese en hun onderliggende 
assumpties.  Drie methodes, die elk kunnen beschouwd worden als 
vertegenwoordiger van een verschillende klasse, werden geselecteerd: een 
‘fold’ test [157], een gepaarde t-test [12], en SAM (Significance Analysis of 
Micro-arrays [204]).  Deze drie methodes werden exhaustief bestudeerd en 
vergeleken met de ANOVA-normalisatie.  In deze paragraaf wordt een korte 
beschrijving gegeven van elk van deze drie, distincte methodes. 

De ‘fold’ test is een eenvoudige selectieprocedure die gebruik maakt van een 
arbitrair gekozen drempelwaarde; ze is gebaseerd op het principe dat een 
grotere verhouding (‘fold change’) tussen test en referentie met grotere 
zekerheid kan beschouwd worden als een sterkere respons t.o.v. 
omgevingssignalen dan een kleinere verhouding.   Voor elk gen wordt een 
log-ratio berekend, en indien metingen gerepliceerd zijn wordt een 
gemiddelde ratio berekend.  Genen waarvan de ratio’s een bepaalde 
drempelwaarde overschreiden (het meest gebruikelijke is tweevoud) worden 
beschouwd als diferentieel tot expressie komend [157]. 

Een t-test is geschikter dan een eenvoudige ‘fold’ test om tot statistisch 
relevante besluiten te komen i.v.m. de al dan niet differentiële expressie van 
een gen.  Als standaardstatistiek voor het vergelijken van twee populaties 
(i.e. gemeten intensiteiten in test vs. gemeten intensiteiten in referentie), 
houdt ze, in tegenstelling tot de ‘fold’ test, niet alleen rekening met het 
verschil tussen de gemiddelde logratio’s, maar ook met de consistentie van 
de metingen, gebruikt om deze gemiddelde logratio’s te bekomen.  Een 
gepaarde t-test zorgt voor nog meer sensitiviteit (‘power’) doordat intrinsiek 
rekening gehouden word met variatie over spots en arrays.  Het theoretische 
voordeel van een (gepaarde) t-test t.o.v. de ‘fold’ test, is dus dat kleinere 
verschillen tussen test en referentie als significant kunnen beschouwd 
worden wanneer de expressieniveaus voor het betrokken gen met grote 
nauwkeurigheid (hoge consistentie) werden gemeten, terwijl grotere 
verschillen als niet-significant kunnen worden geduid wanneer de metingen 
met lage consistentie werden bekomen.  In deze evaluatie werd de gepaarde 
t-test van Baldi en Long,  2001, gebruikt [12]. 

SAM (Significance Analysis of Micro-arrays) berekent voor elk gen een 
zogeheten ‘Relative difference d(i)’, die kan beschouwd worden als een 
gemodificeerde t-teststatistiek.  Een groter verschil met de (gepaarde) t-test 
echter, is dat SAM geen assumpties maakt m.b.t. de distributie van de 
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nulhypothese.  De SAM-procedure is gebaseerd op een niet-parametrische 
rangstatistiek: i.p.v. p-waarden te berekenen, worden differentiële genen 
geïdentificeerd via ordening en permutatieanalyse.  Een extra voordeel van 
deze methode is dat een schatting kan gemaakt worden van het aantal vals-
positieven.  Voor meer technische informatie wordt verwezen naar het 
oorspronkelijke artikel van Tusher et al., 2001 [204]. 
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Figuur N.3:  Gedetailleerde voorstelling van verschillende groepen van geselecteerde genen.  

Gemiddelde log-intensiteiten A zijn uitgezet tegen LOWESS-genormaliseerde log-
ratio’s M voor beide microroosters in elke plot.  Zwart: alle 3785 genen; rood en 
cyaan: geselecteerde genen op de 1ste resp. 2de array.  Horizontale lijnen markeren 
de 1,5- en 2-voudige over- en onderexpressiegrenzen.  De aangeduide genen werden 
geselecteerd door A) alle methodes, B) de gepaarde t-test, C) gepaarde t-test en SAM 
en D) ‘fold’ test en ANOVA-bootstrap. 
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Resultaten en conclusies 
Door elke methode op eenzelfde dataset toe te passen, en de karakteristieken 
van de verschillende groepen van genen te vergelijken, konden besluiten 
gevormd worden m.b.t. de performantie van, en inherente verschillen tussen, 
deze vier selectieprocedures.  In Figuur N.3 worden de belangrijkste 
bevindingen geïllustreerd. 

Een van de meest opmerkelijke vaststellingen was de lage graad van 
overeenkomst tussen de verschillende methodes: slechts acht genen werden 
door elke methode gedetecteerd (Figuur 1.1, plot A).  Genen die alleen door 
de gepaarde t-test werden geselecteerd (Figuur 1.1, plot B), waren erg 
consistent gemeten, maar ogenschijnlijk te weinig differentieel tot expressie 
komend, om biologisch relevant te zijn.  De t-test heeft mogelijk een veel te 
lage sensitiviteit, gezien het kleine aantal replica’s.  De genen die zowel door 
de t-test als door SAM werden geïdentificeerd, zijn weergegeven in Figuur 
1.1, plot C.  Deze metingen waren consistent en de gemiddelde logratio’s 
voldoende verschillend van nul.  Tot slot zijn de genen, die zowel door 
ANOVA-bootstrap, als de ‘fold’ test werden geselecteerd, weergegeven in 
Figuur 1.1, plot D.  Door hun hoge gemiddelde expressiewaarde worden 
deze genen door de selectieprocedures als significant beschouwd, maar de 
consistentie van deze metingen was opmerkelijk laag.  Bovendien was er een 
sterke heteroscedasticiteit in de data (grotere variantie voor lagere 
intensiteiten), waardoor de bekomen ratio’s voor lagere intensiteiten meer 
onbetrouwbaar werden, een verschijnsel dat nefast is voor de ‘fold’ test.  Om 
dezelfde reden werd de variatie bij lagere intesiteiten systematisch 
onderschat door de bootstrap-gebaseerde confidentie-intervallen, en 
overschat bij hogere intensiteiten, met als resultaat ongetwijfeld sterke 
vertegenwoordiging van zowel valspositieven als valsnegatieven in de 
geselecteerde genen. 

Zoals dikwijls het geval met statistische analyses, lijkt de betrouwbaarheid 
van de gebruikte methode hier sterk afhankelijk van de dataset: SAM 
presteerde duidelijk beter dan de andere methodes omdat de dataset beter 
voldeed aan de onderliggende assumpties.  Hoewel de ANOVA-gebaseerde 
selectieprocedure duidelijk mindere prestaties leverde, werd toch besloten op 
deze methode verder te bouwen voor het genereren van een normalisatie- en 
identificatiemethodologie.  Met het oog op meer complexe experimentele 
designs (t.o.v. colour-flip), die in het kader van de genetische 
netwerkinferentie dienen geanalyseerd te worden, biedt dit hele concept 
theoretisch gezien immers enkele belangrijke voordelen: 

• Inherent aan ANOVA is een normalisatie die, in tegenstelling tot de 
meer gebruikelijke slide-per-slide procedures, verschillende bronnen 
van variatie over het gehele experiment in rekening brengt door 
informatie te extraheren uit alle metingen.  Een goed normalisatie is 
niet onbelangrijk, aangezien de kwaliteit van 
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netwerkinferentieprocedures grotendeels zal afhangen van de 
invoerdata.   

• De residu’s die bekomen worden na het fitten van het ANOVA-
model kunnen gebruikt worden voor verdere statistische inferentie, 
zoals het identificeren van genen met differentiële expressie of het 
opsporen van inconsistente metingen. 

Een groot nadeel van de in de literatuur beschreven ANOVA-modellen is 
echter dat, voor elk experimentdesign, een andere analytische oplossing 
moet berekend, én geïmplementeerd  worden.  Een eigenschap die verder 
werd onderzocht in hoofdstuk 4. 

Hoofdstuk 4: Generische ANOVA-modellen 
Om aan beschreven tekortkomingen te beantwoorden, werd een 
analyseprocedure voor microroosterdata gecreëerd, gebaseerd op een 
generisch ANOVA-model.  Dit hoofdstuk beschrijft achtereenvolgens de 
problemen met beschreven ANOVA-modellen en hun toepassing op 
verschillende experimentele designs (sectie 4.1), de ontwikkeling van 
generische (toepasbaar op eender welk design) ANOVA-modellen voor 
microroosternormalisatie (sectie 4.2) en de implementatie van een dergelijk 
model in een gebruiksvriendelijke web-interface  (section 4.3).  Enkele 
belangrijke observaties die voortkwamen uit dit onderzoek worden 
besproken in het laatste deel (sectie 4.4). 

ANOVA-modellen en experimentdesign 
In dit deel van het hoofdstuk wordt beschreven hoe de parameters van een 
ANOVA-model geschat kunnen worden, hoe deze schatters beïnvloed 
worden door het design van het experiment.  Deze principes worden 
geïllustreerd aan de hand van drie simpele, maar conceptueel verschillende 
designs: een colour-flip design, een reference design, en een loop design.  
Het belangrijkste designprobleem van ANOVA-modellen is inherent aan de 
microroostertechnologie: het aantal condities dat tegelijkertijd kan gemeten 
worden op eenzelfde microrooster is beperkt tot twee.  Rooster en conditie 
zullen daarom nagenoeg nooit orthogonaal zijn, met uitzondering van vb. 
een simpel colour-flip design.   

Een reference design is wat dat betreft veel complexer.  Conditie-effecten 
zijn in dat geval ‘volledig verward’ met fluorochroomeffecten, aangezien 
elke conditie maar gelabeld is met een type fluorochroom.  Men kan dus niet 
zowel conditie-effecten als fluorochroom-effecten in rekening brengen in het 
model wanneer men een reference design wil analyseren.  Een alternatief 
hiervoor zijn loop designs, die conditie- en fluorochroom-gerelateerde 
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effecten gedeeltelijk ontwarren en bovendien meer vrijheidsgraden overlaten 
voor schatting van de experimentele fout en dus een betere basis bieden voor 
verdere statistische inferenties.  Afhankelijk van het gebruikte design kunnen 
effecten ook ‘gedeeltelijk verward’ zijn.  In dat geval is het wel mogelijk om 
schatters te bekomen voor elk effect, met het nadeel dat deze gecorreleerd 
zullen zijn.   

De geschiktheid van eender welk ANOVA-model voor de normalisatie van 
microroosterdata wordt bepaald door de typische eigenschappen van het 
gebruikte experimentdesign, hoe deze gerelateerd zijn aan de variabelen in 
het model, en het aantal vrijheidsgraden dat overblijft om de experimentele 
foutenverdeling te benaderen.  Bovendien zijn de drie designs die in dit deel 
van het hoofdstuk besproken werden verre van de enige die gebruikt worden 
voor microroosterexperimenten.  Meer nog, vaak dienen zij enkel als 
bouwstenen voor complexere designs, zodat de evaluatie van ANOVA-
modellen voor elk ander design een vervelende taak wordt. 

Generische ANOVA-modellen 
Dit deel van het hoofdstuk beschrijft het ontwerp van generisch ANOVA-
modellen voor microroosternormalisatie.  Deze modellen bieden 
verscheidene voordelen t.o.v. de modellen van Kerr et al. [111-113]: 

• Het belangrijkste voordeel (en de primaire focus tijdens de 
constructie ervan) is het generisch karakter met respect tot het 
experimentdesign, i.e. het kan elk type van design normaliseren in 
een enkele analyse.  Om te compenseren voor conditieafhankelijke 
variatie werd geopteerd voor een arrayxdye interactievariabele, 
aangezien het gebruik van een conditiefactor de analytische 
oplossingen van het model afhankelijk zou maken van het 
experimenteel design. 

• Incorporatie van een batch variabele: een batch kan gedefinieerd 
worden als een collectie van slides die dezelfde set van genen 
(representatief voor een deel van het genoom) bevatten.  Deze factor 
is van toepassing wanneer de gehele set van onderzochte genen te 
groot is om op een enkel rooster gespot te worden. 

• Incorporatie een pin-variabele: om ‘overfitting’ tegen te gaan wordt 
spottingvariabiliteit per pingroep en niet per individuele spot 
gemodelleerd. 

Twee modellen warden ontwikkeld die aan deze kenmerken voldoen.  Ze 
verschillen in de manier waarop de pingroep variabele gestructureerd is met 
respect tot de batch en array variabelen.  In een eerste model is de pingroep 
variabele verondersteld genest te zijn in de batch variabele, m.a.w. is een 
pingroep effect constant voor alle microroosters van dezelfde batch.  De 
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verantwoording hiervoor kan gevonden worden in het feit dat microroosters 
in serie geprint worden en met dezelfde printpinnen, zodat 
onregelmatigheden die aan deze pinnen te wijten zijn gelijkaardig zullen zijn 
voor roosters van dezelde serie.  Het tweede model veronderstelt een 
verschillend effect voor elke pin op elk rooster.  Dit is een meer algemene 
modellering die slechts enkele vrijheidsgraden meer vereist dan het eerste 
model.  Dit tweede model (N.2) is hieronder weergegeven, samen met de 
analytische oplossingen (N.3) van de weerhouden parameters: 

( ) ( ) ( )( ) ( )( ) ijklmnmnijmnimnk)m(klmklmijklmn GCGPAADADBI εμ ++++++++=  

 (N.2) 

......Iˆ =μ

 
......m....m IIB̂ −=

 
( ) .m.....m.k..mk IIÂ −=

 
........l...l IID̂ −=

 
( ) ........l....m.k...klm..mkl IIIIDÂ −−−=  

( ) .m.k..mn.k..mnk IIAP̂ −=
 

( )( ) [ ]m
i

...........imni B̂IIĜ avg−−=

 
( )( ) ( ) ( ) ( )[ ]mnkmklmkl

ij
.....i....ijmnij AP̂DÂÂD̂IICĜ +++−−= avg  (N.3) 

MARAN: een webapplicatie voor de normalisatie van 
microroosterdata 
Normalisatiemodel (N.2) werd gebruikt als uitgangspunt voor MARAN , een 
geïntegreerde analyseprocedure voor microroosterdata die online 
beschikbaar werd gesteld [72] (in samenwerking met ir. B. Coessens; 
http://www.esat.kuleuven.be/maran).  Een overzicht van de functionaliteit 
van MARAN is gegeven in Figuur N.4. 

Normalisatie van microroosterdata met MARAN is gebruiksvriendelijk en 
redelijk vanzelfsprekend.  Enkel predictorvariabelen, die relevant zijn voor 
bestudeerde experimentdesign, worden automatisch in rekening gebracht.  
Alle andere factoren kunnen door de gebruiker in de analyses meegenomen 
of weggelaten worden. 
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Figure N.4:  Schematic representation of the MARAN web application.  After the data have 
been uploaded, they can be normalized by means of a generic ANOVA model, 
optionally with a preceding LOWESS step to remove nonlinear dye biases.  The 
model and/or LOWESS procedure can be rerun at any time based on an evaluation of 
model fitting results (evaluation of modelling assumptions).  A module for filtering 
the data and a module that integrates MARAN into INCLUSive (for e.g. clustering, 
motif detection), are also available. 

 

 

Daarnaast bevat deze implementatie enkele bijkomende functionaliteiten, 
zoals figuren om de fit van het model te beoordelen, en een optie om 
eventuele niet-lineare fluorochroom verschuivingen te verwijderen m.b.v. 
een LOWESS-fit [226], en een module om genen met een significante 
verandering in expressie te selecteren.  Zoals reeds eerder vermeld kunnen, 
na de ANOVA normalisatie, de bekomen residu’s gebruikt worden voor een 
statistische analyse van de model parameters.  MARAN bevat ook een 
module om genen met een significante verandering in expressie te 
detecteren, steunend op de assumptie dat de foutentermen normaal verdeeld 
zijn, of door gebruik te maken van bootstrap-technieken [50,67,68] om de 
foutenverdeling te benaderen. 

MARAN werd ondergebracht in een vernieuwde versie van INCLUSive 
[41,198] (http://www.esat.kuleuven.be/inclusive): een suite van, grotendeels 
op ESAT-SCD ontwikkelde, algoritmes en methodes voor 
genexpressieanalyse en de ontdekking van regulatorische motieven. Alle 
applicaties van INCLUSive zijn beschikbaar via verschillende webpagina’s 
en als webservices.   
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Conclusies 
In het laatste deel van dit hoofdstuk bespreken we nog enkele kritieke punten 
aangaande het gevoerde onderzoek, zoals het belang van replica’s (in feite 
een centrale kwestie ongeacht de gekozen normalisatiemethode) en de 
implicaties ervan voor ANOVA-gebaseerde microroosteranalyse.  

Daarnaast leidde de toepassing van dit onderzoek tot enkele vreemde 
vasstellingen en noemenswaardige complicaties met betrekking tot de 
LOWESS-procedure. De bedoeling van het werk zoals beschreven in dit 
hoofdstuk was een globaal normalisatiemodel te ontwikkelen waardoor een 
residudistributie bekomen kan worden die voldoet aan onderliggende 
assumpties, i.e. een model dat een goede beschrijving biedt van de data.  
Helaas is het voor lineaire modellen (zoals ANOVA) onmogelijk om alle 
curvilineariteiten uit de data te verwijderen, zelf na een slide-per-slide 
intensiteitafhankelijke normalisatie (e.g. LOWESS).  De reden hiervoor is 
niet zozeer dat in de MARAN-procedure conceptuele fouten gemaakt 
worden, maar wel dat huidige lineaire en niet-lineaire normalisatiemethodes 
niet in staat zijn de niet-lineariteit, inherent aan microroosterdata, op een 
adequate wijze te compenseren.   

Een verklaring voor de niet-lineaire trends -en de specifieke manier waarop 
deze zich manifesteren- kan gevonden worden in de aanname dat de relatie 
tussen target-concentratie en intensiteit niet over het hele bereik lineair is, 
maar verzadigingskarakteristieken kan vertonen voor hogere en lagere 
intensiteiten.  Ze biedt eveneens een verklaring voor het feit dat een niet-
lineaire, slide-per-slide normalisatie  zoals LOWESS, vooraleer het fitten 
van een lineair normalisatiemodel (e.g. ANOVA), niet in staat is volledig te 
compenseren voor de geobserveerde niet-lineariteiten.  Zoals geïllustreerd in 
Figuur N.5 kunnen deze methodes enkel de niet-lineariteiten tussen de Cy3- 
en Cy5-intensiteitsmetingen verwijderen, maar nooit tussen de gemeten 
intensiteiten en de fluorochroom/cDNA-concentratie.  Wanneer hierna een 
lineair normalisatiemodel gefit wordt, dat verschillende bronnen van 
systematische variabiliteit over het gehele experiment in rekening brengt 
(e.g. een ANOVA-model zoals dat van MARAN), zal dit leiden tot residu’s 
waarin nog steeds uitgesproken niet-lineaire trends worden waargenomen. 

De constructie van een globaal niet-lineair normalisatiemodel, uitgaande van 
deze bevindingen, wordt in detail beschreven in hoofdstuk 5. 
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Figuur N.5:  Een verklaring voor hardnekkige niet-lineariteiten.  Twee verschillende 
saturatiecurves (cy3 en Cy5) beschrijven de relatie tussen fluorofoorconcentratie en 
gemeten intensiteit.  Niet-lineaire, microrooster-gebaseerde normalisatieprocedures 
(e.g. LOWESS) herschalen de Cy3 en Cy5 intensiteit-concentratie curves tot een 
nieuwe functie, die in feite gecentreerd is tussen de Cy3 en Cy5 curves.  Ze 
verwijderen dus de niet-lineaire relatie tussen beide fluorofoorintensiteiten, maar niet 
tussen de fluorofoorintensiteiten en de  overeenkomstige fluorofoorconcentraties. 

Hoofdstuk 5: Een calibratiemethode voor 
microroosters 
In dit hoofdstuk wordt een nieuwe methode besproken voor de normalisatie 
van microroosterdata [13].  Deze aan pak steunt op het gebruik van externe 
controles (spikes; een bespreking kan gevonden worden in sectie 5.1) om een 
calibratiemodel te fitten op de data.  Het calibratiemodel dat de kern is van 
deze normalisatieprocedure (sectie 5.2) bestaat uit twee componenten, die 
enerzijds de hybridisatie van gelabelde targetmoleculen op hun 
complementaire probes, en anderzijds de meting van fluorescentiesignalen 
van deze gehybridiseerde targets beschrijven.  De parameters van het model 
en de geïncorporeerde foutenverdelingen worden geschat op basis van 
metingen van externe controles, en kunnen gebruikt worden om absolute 
expressieniveaus te bekomen voor elk gen in elk van de biologische 
condities die in het experiment bestudeerd werden. 
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De resultaten die bekomen werden door het toepassen van deze methode op 
een publiek beschikbare dataset worden eveneens besproken (sectie 5.3).  
We tonen aan dat de procedure in staat is de typische niet-lineariteiten van 
microroosterdata te verwijderen, zonder enige assumpties te maken met 
betrekking tot de distributie van verschillen in genexpressie tussen 
biologische condities (i.e. zonder te steunen op de GNA).   In een volgend 
deel wordt de methode vergeleken met de combinatie LOWESS en 
ANOVA.  Aangezien het model targetconcentratie linkt aan gemeten 
intensiteit, tonen we bovendien aan hoe abolute waardes voor expressie 
kunnen bekomen worden.  Tot slot bespreken we nog de invloed van de veel 
gebruikte lokale achtergrondcorrectie in relatie tot de ontwikkelde methode. 

Mathematische modellen en algoritmes 
De hybridisatiereactie die vervat zit in het calibratiemodel relateert de 
hoeveelheid van gehybridiseerd target ( ) met de concentratie van het 
overeenkomstig transcript ( ) in de hybridisatieoplossing.  De 
hybridisatieconstante wordt constant geacht voor alle metingen afkomstig 
van hetzelfde rooster. 

sx

0x

s

K

xsx
A

⇔+0   (N.4) 

Er wordt verondersteld dat deze reactie zijn evenwicht bereikt heeft wanneer 
de eigenlijke metingen plaatsvinden, en dat ze kan gemodelleerd worden met 
een eerste-orde benadering (in de praktijk komt dit neer op de 
veronderstelling dat  constant is).  De hoeveelheid geprint DNA van een 
spot die beschikbaar is voor hybridisatie daarentegen neemt wel af met een 
stijgende hoeveelheid aan gehybridiseerd target (

0x

sxss −= 0 , met  de ‘spot 
capaciteit’ of maximale hoeveelheid probe), zodat bij thermodynamisch 
evenwicht kan geschreven worden: 

0s

( ) A
s

s K
xsx

x
=

−00  (N.5) 

De spotcapaciteit  volgt een zekere verdeling rond een gemiddelde 
spotcapaciteit 

0s

sμ : sss εμ +=0  of  waar ses s
εμ=0 ( )s0,~ σε Ns  de 

spotfout is.  Welke distributie het meest geschikt is, zal grotendeels afhangen 
van het type microrooster en de printprocedure die gebruikt werd.  De 
spotparameters sμ  en sσ  kunnen gelijk beschouwd worden voor alle 
metingen afkomstig van een microrooster, of verschillend op basis van 
pingroep. 
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Een tweede component van het model is de saturatiefunctie, dewelke de 
relatie beschrijft tussen de gemeten intensiteit y  en de hoeveelheid aan 
gelabeld target  dat gehybridiseerd is op een enkele spot van het rooster: sx

as pexpy m εε ++= 21  (N.6) 

Deze saturatiefunctie is een simpele lineaire vergelijking die een additieve 
en multiplicatieve fout op de intensiteiten in rekening brengt, respectievelijk 

( )a0,~ σε Na  en ( )m0,~ σε Nm  (dit type van functie werd reeds gebruikt in 
andere normalisatiestrategieën [62,98,165]).  De parameters p1 en p2 zijn 
specifiek voor elke combinatie van microrooster en fluorochroom. 

De modelparameters worden geschat voor elk microrooster afzonderlijk, 
gebaseerd op de gemeten intensiteiten y  van de externe controles en hun 
gekende concentratie  in de hybridisatieoplossing.  Schatters voor 0x mσ  en 

aσ  kunnen relatief gemakkelijk bekomen worden.  Schatters voor alle 
andere parameters kunnen bekomen worden door een kleinste-kwadraten 
oplossing, met name door de variatie (sum of squares) van de spotfouten 
( ) te minimaliseren met betrekking tot , , , 

 en .  De individuele spotfouten die nodig zijn om deze te 
berekenen voor een gegeven set van modelparameters zijn evenwel 
ongekend.  Ze worden geschat door volgende kostfunctie te minimaliseren 
voor elk paar van metingen die afkomstig zijn van dezelfde spot: 
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5,3 CyCyD =  

Gegeven vergelijkingen (N.5) en (N.6) 

De bekomen parameterwaarden kunnen gebruikt worden om een ( )j,ix0  (i.e. 
het expressieniveau van gen i in de biologische conditie j) te schatten 
gebaseerd op alle metingen die bekomen werden voor deze combinatie van 
gen en conditie.  Hoewel elk microrooster zijn eigen set van parameters 
heeft, kan deze normalisatie niettemin beschouwd worden als zijnde 
‘globaal’.  Immers, voor elke combinatie van een gen en een geteste conditie 
wordt een enkele, absolute expressiewaarde berekend, ongeacht het aantal 
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microroosters, of het aantal gerepliceerde probes op een rooster, waarop 
deze combinatie werd gemeten.  Het formaat van de resultaten van 
dergelijke normalisatie is dus vergelijkbaar met de genexcondition 
interactiefactor van de ANOVA-modellen in hoofdstuk 3 en hoofdstuk 4.  
De  worden geschat door volgende objectfunctie te minimaliseren: ( j,ix0 )
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Gegeven vergelijkingen (N.5) en (N.6) 

Toepassing en resultaten 
De beschreven normalisatiemethode werd geëvalueerd met een publiek 
beschikbare dataset [96], bestaande uit 14 hybridisaties.  Dit specifieke 
experiment had verschillende eigenschappen die het uitermate geschikt 
maakten voor de validatie van onze methode, met name: 

1. Ze bevatten de noodzakelijke probes om externe controles, die 
vereist zijn om de parameters van het calibratiemodel te schatten, in 
de experimenten te incorporeren. 

2. Het experimentdesign bevatte slechts een biologische conditie.  Elk 
microrooster bevatte dus een self-self hybridisatie.   

3. Alle microroosters werden voorzien van een extra set externe 
controles. 

Doordat voor het hele experiment slechts expressiewaarden gemeten werden 
voor een en dezelfde biologische condities, kon het normalisatiepotentieel 
van de methode geëvalueerd worden door gebruik te maken van mock 
designs.    Een voorbeeld hiervan is weergegeven in Figuur N.6, waar de 
geschatte expressiewaardes van ca. 19.000 genen geplot zijn voor twee 
hypothetische condities, afkomstig van een colour-flip design.  Aangezien 
beide condities in werkelijkheid een en dezelfde zijn, duidt de centrering van 
de punten rond de bissectrice erop dat de methode op een adequate wijze kan 
omgaan met de typische niet-lineariteiten van microroosterdata.  Door 
gelijkaardige designs te normaliseren met een ANOVA-model, 
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voorafgegaan door een LOWESS-fit, werd de methode vergeleken met meer 
standaard normalisatiestrategieën. 
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Figuur N.6:  Normalizatie van niet-lineaire artefacten.  Geschatte expressieniveaus voor C1 
zijn uitgezet tegen die van C2 na normalizatie van een hypothetisch colour-flip 
experiment.  C1 en C2 zijn in feite dezelfde biologische conditie.  De centrering van 
datapunten rond de bisectrice is een teken dat de typische microrooster niet-
lineariteiten genormaliseerd werden.   

De geschatte target concentraties zouden moeten vergeleken worden met de 
daadwerkelijke concentraties in de hybridisatieoplossing om hun 
accuraatheid te verifiëren.  Dit doen voor de hele populatie van transcripten 
is onmogelijk, aangezien deze concentraties voor de meeste genen ongekend 
zijn.  De gebruikte dataset bevatte echter een extra set van niet-commerciële 
controles waarvan deze concentraties wel gekend zijn.  Figuur N.7 toont aan 
dat, met uitzondering van de allerlaagste concentraties, de geschatte waardes 
goed overeenkomen met de echte concentraties in de hybridisatieoplossing.  
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Door verschillende factoren, zoals consistente spotfouten of genspecifieke 
hybridisatie-efficiënties, kunnen de geschatte waarden wel onderhevig zijn 
aan gengebonden herschalingen.  Ze kunnen niettemin geïnterpreteerd 
worden als absolute niveaus van expressie wanneer verschillende 
concentraties van een gen vergeleken worden. 
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Figuur N.7:  Evaluatie van geschatte, absolute expressieniveaus.  Geschatte mRNA-

concentraties (copy number per cell) voor alle 13 controles zijn uitgezet tegen de 
echte, gekende concentraties.  De zwarte lijn is de bissectrice.  Met uitzondering van 
de laagste concentraties komen de geschatte waardes goed overeen met de 
daadwerkelijke mRNA-concentraties in de hybridizatieoplossing 
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In een laatste deel van de resultaten illustreren we hoe onze methode kan 
toegepast worden op zowel ruwe intensiteiten als achtergrond-gecorrigeerde 
intensiteiten (zelfs als deze negatieve waarden vertonen).  Welke van de 
twee aan te raden is hangt grotendeels van het experiment zelf af: over het 
algemeen observeerden we dat achtergrond-gecorrigeerde metingen een 
groter lineaire bereik hebben, maar dat dit ten koste gaat van grotere 
meetfouten voor de lagere concentraties. 

Discussie 
Hoewel het gebruikte calibratiemodel een vereenvoudiging van de fysische 
realiteit inhoudt, waar storingsfactoren behandeld worden in een globale, 
niet-genspecifieke manier, tonen de resultaten aan dat ze in staat is 
microroosterdata op een adequate manier te normaliseren.  Een belangrijk 
verschil met de meeste bestaande methodes is dat onze methode niet steunt 
op aannames die betrekking hebben op de distributie van 
genexpressieniveaus van verschillende biologische condities.  Als gevolg is 
de beschreven procedure uitermate geschikt om experimenten te 
normaliseren waarvoor de GNA niet geldig is.  De procedure biedt een 
nieuwe aanpak voor de normalisatie van microroosterdata, die het beste 
combineert van ANOVA-modellen, aangezien er ook absolute 
expressiewaarden geschat worden, en methodes die een data linearisatie 
uitvoeren (e.g. LOWESS).   

Hoofdstuk 6: Conclusies en vooruitzichten 
Het onderzoek voorgesteld in deze doctoraatsthesis handelde volledig over 
de normalisatie van data afkomstig van microroosterexperimenten.  De 
strategieën die gevolgd werden, verschillen conceptueel van de 
standaardtechnieken.  De ingeburgerde, op ratio’s gebaseerde methodes zijn 
sterk gebonden aan assumpties aangaande de distributie van 
genexpressiewaardes.  De meeste van deze normalisatiemethodes vertonen 
weinig interesse in de onderliggende oorzaken van de systematische en 
willekeurige variaties van de gemeten intensiteiten.  Het uitgangspunt van dit 
onderzoek was om zoveel mogelijk de fysische en biologische realiteit van 
het proces te erkennen en het normalisatieprobleem aan te pakken 
vertrekkende vanaf absolute intensiteiten.  In plaats van beperkt te zijn tot de 
relatieve aard van intensiteitsratio’s, hebben we getracht een absolute maat 
van expressie te bekomen door de gemeten intensiteiten te modelleren in 
functie van de systematische bronnen van variatie op een experimenteel 
betekenisvolle manier. 
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Onderzoek 
Initieel onderzoek (beschreven in hoofdstuk 3) bestond uit de evaluatie van 
procedures voor microroosternormalisatie steunend op ANOVA-modellen 
en een vergelijkende studie met op ratio’s gebaseerde technieken.  Verder 
onderzoek was gericht op de ontwikkeling van generische (toepasbaar op elk 
experimenteel design) ANOVA-modellen voor normalisatie van 
microroosterdata (hoofdstuk 4).  In hoofdstuk 5 tenslotte, wordt beschreven 
hoe externe controles inzicht verschaften in vele van de problemen die 
opgemerkt werden in het voorgaand onderzoek, en werd een geheel nieuwe 
methode ontwikkeld gebaseerd op een fysisch gemotiveerd calibratiemodel. 

Voor toekomstig onderzoek is het in eerste instantie van belang dat deze 
ontwikkelde methode toegankelijk wordt voor een groot publiek.  Concreet 
zal een implementatie van de methode vrij beschikbaar worden gemaakt in 
de vorm van een ‘BioConductor Package’ [76] 
(http://www.bioconductor.org) .  Deze implementatie zal gepaard gaan met 
een verdere uitdieping van het fysisch model waarop onze 
normalisatiemethode steunt, zoals een uitbreiding met parameters en 
foutenverdelingen die meer lokale storingsfactoren in rekening brengen, om 
zo de variantie op de geschatte mRNA-concentraties verder te verkleinen.  
Daarnaast dient gewerkt te worden aan een statistische beschrijving van de 
complexe foutenverdeling op de geschatte mRNA-concentraties om verdere 
statistische inferenties te vergemakkelijken.  Door de universele 
basisprincipes waarop de normalisatieprocedure steunt, kan deze makkelijk 
aangepast worden zodat ze ook voor andere moleculair biologische high-
throughput technieken kan gebruikt worden.  Zo kan de methode compatibel 
gemaakt worden met de, op microroosters gebaseerde ChIP-chip 
technologie, maar ook andere technieken die voor een deel steunen op 
dezelfde principes als microroosters (e.g. differentiële labeling en relatieve 
expressie in 2D-DIGE) zouden baat kunnen hebben van gelijkaardige 
benadering. 

Vooruitblik 
Tijdens het doctoraatsonderzoek werd getracht een normalisatiemethode 
voor microroosterdata te ontwikkelen die verder gaat dan het analyseren van 
intensiteitsratio’s.  Er werd uitgegaan van de veronderstelling dat elke 
gemeten intensiteit een representatie is van de aanrijking van een specifiek 
mRNA-transcript, onderhevig aan een serie van experimentele factoren die 
al dan niet mathematisch kunnen gemodelleerd en in rekening gebracht 
worden.  We zijn van mening dat de analyse van microroosterdata voordeel 
zou hebben van een meer methodologische aanpak, in tegenstelling tot 
aanvaarde technieken die over het algemeen weinig aandacht schenken aan 
de experimentele karakteristieken van een microroosterexperiment.  In dit 
deel van het hoofdstuk wordt deze visie verder toegelicht alsook de 
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mogelijke implicaties ervan, zoals de absolute vereiste van externe controles.  
Daarnaast wordt verder ingegaan op de vraag wat differentiële expressie 
eigenlijk behelst en wat de invloed van de fysiologische toestand van de 
cellen, representatief voor de geteste biologische condities, hierop is (i.e. 
verschillen in hoeveelheid totaal RNA per cel en verschillen in hoeveelheid 
mRNA per totaal RNA). 
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Chapter 1 

Introduction 

1.1 A high-throughput revolution 
“Thus, the strength of genomic studies lies in the global 
comparisons between biological systems rather than 
detailed examination of single genes or proteins.  
Genomic information is often misused when applied 
exclusively to individual genes.  If one is interested only 
in one particular gene, there are many more conclusive 
experiments that should be consulted before using the 
results from genomics datasets.  Therefore, genomic 
data should not be used in lieu of traditional 
biochemistry, but as an initial guideline to identify areas 
for deeper investigation and to see how those results fit 
in with the rest of the genome.”   

Greenbaum et al., 2001 [83] 

Molecular biology has traditionally been directed towards understanding the 
role of a single, or a limited number of genes or proteins in a molecular 
biological process.  Over the past decades the advent of novel high-
throughput techniques has dramatically changed the scope of biological 
research and has given rise to large scale experimental methods for genome 
sequencing, expression analysis, and the identification of protein-protein 
interactions or protein-DNA interactions.  Genetic and molecular biological 
research has shifted its focus from targeting single genes to analyzing whole-
cell populations of genes and metabolites simultaneously.    

These holistic approaches offer the advantage of a better understanding of 
fundamental molecular biological processes, as one can study the function or 
expression of a gene in a global cellular context.  A genetic entity never acts 
on its own, but is always embedded in a larger network and should be treated 
accordingly (i.e. systems biology).  On the other hand, high-throughput 
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approaches pose several novel challenges to molecular biology, because the 
analysis of such large scale data turned out to be far from trivial.  
Bioinformatics is a young and rapidly growing interdisciplinary research 
area, which may be defined as the scientific field that deals with the 
computational management and analysis of all kinds of molecular biological 
information, whether it may be about genes and their products, whole 
organisms or even ecological systems.  There is an inseparable relationship 
between the experimental and the computational aspects.  On the one hand, 
data resulting from high-throughput experimentation require intensive 
computational interpretation and evaluation.  On the other hand, 
computational methods use empirical data to build a knowledge base for 
predictions.  Furthermore, they sometimes produce questionable predictions 
that should be reviewed and confirmed through experiments. 

A piece of history 
The start of the high-throughput revolution may be dated as far back as the 
late 1970s, with the emergence of a branch of biology now called genomics.  
At the Laboratory of Molecular Biology in Cambridge, Sanger and his 
colleagues developed a revolutionary method [170] to sequence strains of 
DNA and managed to unravel the genomes of bacteriophage φX174 [171], 
the human mitochondrion [6], and bacteriophage λ [172].  Among other 
discoveries, the complete φX174 sequence revealed the existence of 
overlapping genes, and the mitochondrial sequence showed that it used 
alternative codons.  Sanger introduced the notion that the sequence of the 
entire genome of a genetically defined entity formed a good start to 
understanding its biology.  This pioneering work inspired much larger 
projects, culminating in recent years in the sequencing of the human genome 
[119,212].  The huge quantity of high quality sequence information in the 
public databases, a measure of Sanger’s legacy, presents researchers 
worldwide with the challenge of progressing from sequence to function for 
genomes and organisms of high complexity.  Computer based methods of 
analysis –also pioneered in Sanger’s group [188]- go a long way to 
extracting biologically relevant information from the sequences, but 
computers and sequences can only go so far.  In order to measure levels of 
gene expression, experimental methods were needed that could be applied on 
a scale commensurate with the large size of the complex genomes. 

Global, but crude, surveys of gene expression had in fact been undertaken 
before, in the mid 1970s.  Polysomal RNA isolated from lines of cultured 
mammalian cells was transcribed in vitro into radiolabeled single-stranded 
cDNA, which was then hybridized with an excess of its unlabelled mRNA 
template.  Hybridization kinetics indicated that the mRNA comprised three 
kinetic classes, differing in sequence complexity and abundance in the 
mRNA population [24,77,78].  Work carried out during the next 25 years 
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amply confirmed these general conclusions.  Over the course of a quarter 
century, a number of mRNAs belonging to each abundance class were 
catalogued, mapped, and quantified by a combination of procedures, 
especially developed to measure the abundance of target mRNA.  The most 
popular of these procedures –northern blots [5] and ribonuclease protection 
[18]- remain in common use today.  Both methods suffer from the same 
limitations: they utilize labelled, specific DNA probes to detect one (or at 
best a few) specific mRNA in the preparation; quantification of mRNA is 
achieved indirectly by comparing the signal obtained from the target mRNA 
with that of a housekeeping gene, or of a known concentration of an artificial 
target RNA.  Similar deficiencies apply to other techniques, such as 
quantitative RT-PCR.  Despite their limitations, methods to analyze the 
abundance of one or a few species of mRNAs have provided keen insight 
into the biology of a wide range of ‘single gene’ function puzzles.  It was 
always clear however, that integrated comprehensive maps of cellular 
transcription could not be built bottom up from studies of individual 
mRNAs, and that the understanding and classifying of complex problems 
would require techniques to monitor global changes in gene expression.   

Microarrays 
The advent of DNA microarrays provided researchers with the means to 
monitor such global changes in gene expression.  In fact, microarrays 
became the central driving force behind the further development and 
worldwide acceptance of high-throughput techniques.  Many of the 
principles of modern microarrays were established in the late 1980s and 
early 1990s, when cloned cDNAs, arrayed on membrane filters, were 
hybridized to complex targets and used to quantify differences in expression 
of mRNAs over a wide dynamic range [37,84,122,129,191].  A major 
breakthrough came in the mid 1990s, when Pat Brown, Ron Davis, and their 
colleagues published papers describing the use of a two colour, internally 
comparative technique to probe cDNAs arrayed robotically at high density 
on solid substrates [49,175,176].  These studies led to the development of 
DNA microarrays to screen the relative abundance of thousands of mRNAs 
simultaneously.   

The objective of most microarray projects is to identify genes expressed at 
different abundances in complex samples of RNA extracted from different 
cells or from the cells growing under different conditions.  Differential gene 
expression analysis has uncovered networks of genes within common 
pathways of regulation [136,236], and has revealed differences between 
cancers that cannot be distinguished by conventional ways [3,186].  None of 
these important results could have been achieved as simply or speedily by 
any other means of analysis.  The technology has also produced many 
significant results in quite different areas of application.  Analysis of 
transcripts has been used to discover exons and genes for the annotation of 
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the draft sequence of the human genome [181], and analysis of genomic 
DNA detects amplifications and deletions found in tumours [75,97]. 

The microarray platform is a relatively complex technology and has drawn 
together a vigorous community of interest from several disciplines: 
engineers, materials scientists, mathematicians, and chemists, in addition to 
molecular biologists, geneticists, and computer scientists.  The research 
presented in this PhD thesis is based entirely in the field of microarray data 
analysis.  More precisely, it deals with the normalization of the intensity 
measurements that are obtained from scanned images of spotted microarrays. 

1.2 Motivation 
Normalization of spotted microarray measurements, the first step in a 
microarray analysis trajectory, aims at removing consistent and systematic 
sources of variations to allow mutual comparison of measurements acquired 
from different slides and experimental settings.  Data normalization largely 
influences the results of all subsequent analyses and the biological 
interpretation of these results, and is therefore a crucial phase in the analysis 
of microarray data.  It could be argued that the extraction of intensity values 
from scanned images in itself is a process subject to various experimental 
and computational factors, and that its proper execution should not be 
ignored within the framework of data preprocessing.  However, such 
procedures are often highly dependent on the type of equipment and are 
generally implemented in software that is provided by the manufacturer of 
the instruments.  More importantly, the availability of scanned images to 
researchers is rather low.  Laboratories that outsource their microarray 
experiments do not always have access to the scanned images of the analysis 
they commissioned, and microarray data that are submitted to public 
databases are rarely accompanied with the relevant image files.  Indeed, 
image files are not required in the results format of the widely accepted 
standard for reporting microarray data (Minimum Information About a 
Microarray Experiment or MIAME [29]), mainly due to the large size of 
such files and the implications for long term storage.  The basic 
measurement unit that is used throughout this thesis are therefore the 
intensities that are extracted from scanned microarray images, and little 
attention is given to the actual extraction process. 

Normalization of spotted microarray data 
Over the past years, the field of microarray analysis finally seems to have 
adapted a few generally applied methodologies for data normalization (for 
overviews, see for instance Leung and Cavalieri, 2003 [123], Quackenbush, 
2002 [157] and Bilban et al., 2002 [22]).  Although some approaches 
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inherently work with absolute intensities (e.g. ANOVA [113,221]), in 
general, preprocessing of spotted microarrays largely revolves around the 
calculation of the log-ratios of the measured intensities.  The reason can be 
found in the inherent differential nature of spotted microarrays: two different 
samples, labelled with different fluorescent dyes (Cy3 and Cy5), are 
hybridized to the same microarray, and their intensities are compared.  Given 
these experimental features, taking ratios is a genuinely logical approach to 
analyzing the data.  The use of intensity ratios however, is not without 
drawbacks.  From a theoretical point of view, ratios increase the 
measurement noise by multiplying the intensity errors.  Moreover, ratios 
disregard possibly useful information regarding the absolute level of gene 
expression (e.g. a certain ratio might indicate a significant change in 
expression for high intensity values, while the same ratio might be 
meaningless for lower intensities due to experimental error characteristics).  
Ratios also have severe practical implications, as for complex experimental 
designs, their use complicates comparing multiple biological conditions, 
especially when they are not measured with the same reference condition.   

A common ratio normalization step consists of the linearization of the Cy3 
versus Cy5 intensity ratios (e.g. LOWESS [226]), sometimes followed by, or 
inherently combined with, techniques for variance stabilization [62,98].  
These methods assume that the distribution of gene expression shows little 
overall change and is balanced between the biological samples tested 
(referred to as the ‘Global Normalization Assumption’).  If this assumption 
is violated, for instance when comparing drastically different biological 
conditions or when working with dedicated arrays, using such a 
normalization may yield erratic results that propagate throughout every step 
of the subsequent analysis and the biological interpretation of the results.  

Beyond differential expression: a different approach 
Normalization of intensity ratios is heavily bound to assumptions concerning 
the distribution of gene expression; they are guided by how expression levels 
are presumed to change across different biological conditions.  Put simply, 
microarray data are often normalized by transforming the calculated ratios 
into a measure of differential expression to which the concealed biological 
reality is expected to conform.  Ratio normalization techniques generally 
show little interest in the underlying causes of the observed systematic and 
random variation in microarray data.  The normalization methods we pursue 
in this thesis differ in spirit from the ones mentioned in the previous section.  
The basic premise is to acknowledge the physical and biological reality of 
the process and address the normalization problem starting from units of 
absolute intensities.  These measured intensities are to be modelled as a 
function of systematic sources of variation in a physically and 
experimentally meaningful way, and should allow for the calculation of an 
absolute value of expression instead of being limited to the relative nature of 
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intensity ratios.  When done properly, such an approach could circumvent 
most of the problems that seem to be inherent to the calculation of intensity 
ratios.  Moreover, estimates of absolute expression can greatly simplify the 
analysis of large, complex designs comparing multiple biological conditions 
and could aid inter-platform and inter-laboratory comparisons of expression 
analysis [13,101,120]. 

1.3 Thesis outline and achievements 
An overview of the organization of the thesis can be found in Figure 1.1.  
The relationship between the different chapters is of a chronological and 
causal nature: each chapter is a logical continuation of the research described 
in its predecessor.  Apart from chapter 2, which serves as an introduction to 
microarray technology, each chapter is associated with our own 
contributions to a research topic.  A brief chapter-by-chapter overview of the 
conducted research is given below.  A list of publications that resulted from 
this work can be found at the beginning of this text (see p. xli). 

Chapter 2: Spotted microarrays 
Since the prime focus of this PhD is with the normalization of spotted 
microarray data, this chapter will serve as a general introduction to 
microarray experiments and data analysis.  The first part gives an overview 
of the basic technology and experimental principles, followed by a survey of 
the most important features of microarray data and standard data analysis 
techniques.  A final part of this chapter will list some extended applications 
of spotted microarrays, other than the widespread monitoring of gene 
expression levels. 

Chapter 3: Evaluation of ANOVA normalization 
This chapter represents a first phase of this PhD research, where the use of 
ANOVA for microarray normalization was evaluated and compared to ratio 
based approaches (reported in Marchal et al., 2002 [132]).  The performance 
of any normalization procedure, especially one that estimates absolute 
expression levels, is hard to assess as the actual levels of mRNA abundance 
in any particular condition are normally unknown.  In order to nevertheless 
appraise the presence of  any markedly flawed features in ANOVA 
normalized data, genes thought to be differentially expressed were selected 
for both log-ratios and data preprocessed by ANOVA.  To minimize the 
influence of the used selection method, several different ratio based 
procedures for selecting differentially expressed genes were tested and 
compared to a selection procedure based on ANOVA normalization.   
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Chapter 6: Conclusions and outlook
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Chapter 2: Spotted microarrays
Survey of spotted microarray technology:
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•Data analysis
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Study comparing the potential of ANOVA normalization 
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Chapter 4: Generic ANOVA models
Development of generic ANOVA models and corresponding 

microarray normalization tools
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•Presence of external control spikes
•A physically motivated calibration model

OWN CONTRIBUTIONS

Figure 1.1:  Organization of the thesis.  Chapters that deal with our own research contributions 
are shown in black frames. 
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A first part of this chapter describes the principles of ANOVA based 
normalization of microarrays, and details some of the particular models 
[112,113] that can be used for normalizing colour flip designs, as well as the 
statistics that can be used to select differentially expressed genes based on 
ANOVA normalized data.  A second part will provide a background to the 
log-ratio based methods for selecting differentially expressed genes, namely 
the fold test [157], the paired t-test [126], and a method called Significance 
Analysis of Microarrays or SAM [204].  The third section describes the 
results of performing the analysis, a discussion of which can be found in the 
final section. 

Chapter 4:  Generic ANOVA models  
ANOVA models for microarray normalization can not readily be applied to 
any type of experimental setup of a microarray experiment.  This chapter 
describes the issues that are encountered when attempting to fit published 
ANOVA models to different experimental designs, and the development of 
generic (applicable to any experimental setup) ANOVA models for 
microarray normalization.  The following section is dedicated to the 
implementation of such a generic model in a user friendly web application, 
dubbed MARAN (http://www.esat.kuleuven.be/maran; Engelen et al., 2003 
[72]). 

The final part of this chapter discusses some interesting features that were 
revealed during the course of this research.  These results seem to indicate 
that a LOWESS normalization may not be able to completely alleviate 
intensity dependent nonlinear tendencies in the data (despite of harsh 
assumptions with regards to the distribution of gene expression from one 
biological condition to the next), and fuelled the research described in 
chapter 5. 

Chapter 5: A calibration procedure for spotted microarrays 
In this chapter we develop a normalizing method for spotted microarray 
data, using external control spikes to fit a calibration model (Engelen et al., 
2006 [73]).  This model incorporates parameters and error distributions 
representing both the hybridization of labelled target to complementary 
probes, and the subsequent measurement of fluorescence intensities.  
External control spikes serve to estimate the model parameters. The obtained 
parameters values are then employed to estimate absolute levels of 
expression for the remaining genes.  For each combination of a gene and a 
tested biological condition, a single absolute target expression level is 
estimated, taken the specificities of the design. 

We discuss results that were obtained from applying our method to a 
publicly available data set, and show that the procedure is capable of 
adequately removing the typical non-linearities of microarray data, without 

http://www.esat.kuleuven.be/maran
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making any assumptions on the distribution of differences in gene 
expression from one biological sample to the next.  Next, we compare our 
method to results obtained from normalizing the data with a standard 
LOWESS procedure prior to fitting an ANOVA model.  Since our model 
links target concentration to measured intensity, we further demonstrate how 
absolute expression values of transcripts in the hybridization solution can be 
estimated.  Finally, we illustrate the effect of local background correction 
and the models capacity to deal with negative (background corrected) 
intensity values. 

Chapter 6: Conclusions and outlook 
The results and observations that culminated from this work are summarized 
in this chapter, together with a short description of some concrete problems 
that will be studied in the future and an outlook on microarray normalization 
and spotted microarrays in general.  

1.4 Cooperations 
During the entire term of the PhD, (in)formal cooperations were made with 
several molecular biological and biomedical research groups, such as the 
Centre for Microbial and Plant Genetics (CMPG), the Molecular Physiology 
of Plants and Micro-organisms Section, the Laboratory for Molecular Cell 
Biology, the Microarray Facility (MAF; Flanders Interuniversity Institute for 
Biotechnology), the Experimental Medicine and Endocrinology Section 
(LEGENDO), the Gynaecology Section, the Intelligent Systems Lab (ISLab; 
University of Antwerp), and the Laboratory for Malting and Brewing 
Sciences.  These research groups provided us with the data sets of their 
microarray experiments, a necessary means for the evaluation of our 
algorithms and implementations.  In exchange, the obtained data were 
extensively analyzed.  Some of these analyses, usually together with extra 
experimental validation in a wet lab environment, have led to various 
publications [41,43,44,46-48,131,168,213], but are not discussed in this 
dissertation. 
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Chapter 2 

Spotted microarrays 

High-throughput experiments allow measuring the expression levels of 
mRNA (genomics), proteins (proteomics) and metabolite compounds 
(metabolomics) for thousands of entities simultaneously, and can provide a 
wealth of data that can be used to develop a global insight into the cellular 
behaviour.  The most powerful experimental designs consist of surveying a 
biological system in a wide array of responses, phenotypes or conditions.  
The combination of these experimental data and the right computational 
tools can lead to powerful new findings with applications in drug discovery, 
disease management, metabolic engineering, etc.  One of the main 
contributors to the surge of high-throughput applications in biological and 
biomedical research and industries is the development of DNA microarray 
technologies. 

DNA microarrays are a technology that permit the simultaneous assessment 
of mRNA expression levels of thousands of genes in a single hybridization 
assay. An array consists of a reproducible pattern of different DNAs 
(primarily PCR products or oligonucleotides) attached to a solid support. 
Each spot on an array represents a distinct coding sequence of the genome of 
interest.  There are two main microarray platforms that can be distinguished 
from each other in the way that DNA is attached to the support, and the 
specifics of how the hybridization reaction is performed: spotted 
microarrays, and GeneChip or Affymetrix arrays.   

• Spotted microarrays (sometimes still referred to as cDNA 
microarrays for historical reasons) are small glass slides on which 
pre-synthesized single stranded DNA or double-stranded DNA is 
spotted.  These DNA fragments can differ in length depending on 
the platform used (cDNA microarrays versus spotted oligomer 
arrays).  Usually the probes contain several hundred of base pairs 
and are derived from Expressed Sequence Tags (ESTs) or from 
known coding sequences from the organism under study.  Usually 

11 
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each spot represents one single gene or Open Reading Frame (ORF).  
A high-density spotted array can contain up to 25000 different spots. 
each spot represents one single gene or Open Reading Frame (ORF).  
A high-density spotted array can contain up to 25000 different spots. 

• GeneChip oligonucleotide arrays (Affymetrix Inc., Santa Clara) are 
high-density arrays of oligonucleotides synthesized in situ using 
light-directed chemistry.  Each gene is represented by 15-20 
different oligonucleotides (25-mers), which serve as unique 
sequence specific detectors. In addition, mismatch control 
oligonucleotides (identical to the perfect match probes except for a 
single base-pair mismatch) are added to allow the estimation of 
cross-hybridization. An Affymetrix array can represent over 40000 
genes.  
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Figure 2.1:  Spotted microarrays versus Affymetrix GeneChips.  The main conceptual 
difference between spotted microarrays (left) and Affymetrix GeneChips, is that 
spotted microarrays allow two-colour hybridization, which permits simultaneous, 
relative analysis of two samples on the same array.  Affymetrix arrays on the other 
hand, can only measure a single biological condition can array.  Taken from 
Harrington et al., 2000 [86]. 
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As illustrated in Figure 2.1, the main conceptual difference between spotted 
microarrays and Affymetrix GeneChips, lies in whether or not multiple 
samples are hybridized simultaneous to a single microarray.  Since the prime 
focus of this PhD is with the normalization of spotted microarray data, this 
chapter will give an overview of the basic technology and experimental 
principles (section 2.1), followed by a survey of the general data analysis 
techniques (section 2.2).  A final part of this chapter (section 2.3) will list 
some extended applications of spotted microarrays, other than the 
widespread monitoring of gene expression levels. 

2.1 Technology and experimental procedures 
This section describes the technology and procedures that are involved in a 
spotted microarray experiment (Figure 2.2), from production of the 
microarray slides (section 2.1.1), to the preparation of hybridization samples, 
the hybridization reaction, and fluorescence scanning of the hybridized 
samples to their complementary DNA on the microarray (section 2.1.2).  For 
sake of clarity, we abide to the convention [152] of referring to the material 
spotted on the microarray as probes, and the material to be hybridized on the 
microarray as targets (contrary to the accepted terminology for the single 
gene equivalent Northern blots or quantitive PCR techniques). 

2.1.1 Slide Production 

2.1.1.1 Probe generation 
The first step in the production of spotted microarrays is the generation of 
arraying material, which serves as the probe feedstock for printing.  These 
days, probes for microarrays are constructed using either cDNA fragments or 
synthetic oligonucleotides (oligomers). 

During the 1990s the rate of gene discovery has been greatly accelerated 
through the use of large-scale sequencing of cDNA libraries to generate 
expressed sequence tags (EST).  Craig Venter was one of the initial 
promoters of such endeavours [212] and projects to identify and catalogue 
ESTs in a wide range of species are still ongoing in both commercial and 
academic laboratories.  EST sequences from large-scale sequencing projects 
are deposited in dbEST [26], a division of GenBank [17], where an 
automated process called UniGene compares ESTs and assembles 
overlapping sequences into clusters.  Clone sets, compromising a single 
representative of each cluster, are a resource for microarray probes and can 
be obtained from authorized distributors 
(http://image.llnl.gov/image/html/idistributors.shtml). Most researchers who 
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array cDNA fragments work with such off-the-shelf clone sets, possibly 
supplemented with individual ESTs that are appropriate to their particular 
needs.  DNA for arraying is typically prepared from clone sets by high-
throughput polymerase chain reaction (PCR), rather then by purification of 
recombinant constructs (e.g. plasmids).  Because clone sets usually employ a 
restricted range of cloning vectors, it is often possible to use universal 
primers for the amplification of cDNA inserts. 
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EXPERIMENTAL PROCEDURES 
AND TECHNOLOGY 2.1

MICROARRAY EXPERIMENT
2.1.2

Experiment design
2.1.2.1

Sample preparation
2.1.2.2
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2.1.2.3
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Figure 2.2:  Microarray technology and experimental procedures.  Overview of the 
technology and experimental procedures that are involved in a spotted microarray 
survey, ranging from the production of the slide, to the actual performance of the 
microarray experiment. 
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The disadvantages of using cDNA clone sets for arraying are that the 
physical handling of large numbers of clones, including replication and 
amplification, is labour-intensive, and the complexity of the processes 
involved creates opportunities for errors.  Spotted arrays generated with sets 
of long synthetic oligonucleotides (60–70 mers) represent an attractive 
alternative to the arraying of cDNA-derived PCR products.  The use of 
commercially available oligonucleotide sets obviates much of the work in 
the development of array-ready material and takes advantage of the growth 
in genome sequence information.  Using EST databases and open reading 
frame (ORF) predicting programs, oligomer sequences are designed to abide 
by several constraints, such as a narrow range of melting temperature and the 
prevention of cross-hybridization [27,99,100].  Initial experiments indicated 
a high level of concordance between results obtained with PCR amplified 
cDNA fragments and oligomers [99], findings that were confirmed in recent 
publications [88]. 
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Figure 2.3:  A conceptual 3D representation of a contact arrayer.  The pinhead (yellow) that 
holds an arrangement of printing pins is shown rigged to a computer controlled 
robotic arm.  Right in front of the pinhead are two 96-well microtiter plates that 
contain the probe spotting solutions.  Further away from the pinhead are four series 
of glass slides layed out, ready to be printed.  Taken from the DeRisi Lab website 
(http://derisilab.ucsf.edu/). 
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2.1.1.2 Printing slides 
The first glass slide microarrays were produced at Stanford University [175] 
by an XYZ axis gantry robot that used banks of printing pins to ferry small 
volumes of DNA solutions from 96-well plates to the prepared surfaces of a 
series of glass slides (Figure 2.3).  This procedure of contact printing 
[121,175] is still one of the workhorse techniques for the in-house 
production of microarrays, although non-contact (ink jet) [91,178] printing 
methods are increasing their market share.  Commercial arrayers, both 
contact and noncontact, are available from several companies and building 
ones own arrayer remains an attractive and affordable option for the 
technically ample investigator (http://cmgm.stanford.edu/pbrown/mguide).   

A critical factor that influences the quality of the microarrays produced with 
contact printing, are the types of printing pins used in the spotting process.  
Key features include shape, reproducibility, durability, and surface 
roughness of the printing pins.  Proper cleaning of the pins at the end of each 
spotting cycle, so that the same pins may be used with different clones 
without significant cross-contamination, will also have a considerable effect 
on spot quality.  Two of the most used pin types are [27]: 

• Solid pins: made from solid steel, these pins are robust, highly 
uniform, easy to manufacture, and easily cleaned between cycles.  A 
major disadvantage is that simple solid pins are capable of only one 
round of printing per visit to the source plate.  The constant 
movement of the printing head between source plates and slides 
generates heat, so that evaporation from the source plate can be a 
problem. 

• Quill pins: these pins fill up by capillary action, and were developed 
to allow continuous printing of a series of slides after the pins have 
been fully loaded at the source plate (depending on the pin this can 
up to 200 slides and over).  Quill pins are capable of generating way 
smaller spots than solid pins (90-250 μm range), making them the 
ideal choice for generating high-density arrays.  The major 
drawback is the sensitivity of these pins to damage and blockage.  
Careful cleaning between clones is essential to prevent particle and 
bubble retention and to prevent cross-contamination or carryover 
between the wells of the different source plates. 

Other factors that greatly affect spot morphology, for both contact and non-
contact printing, are the characteristics of the slide surface.  Glass slides 
have been a favoured solid support for immobilization of probes because of 
their intrinsic material properties (low fluorescence and high transparency, 
good thermal properties, excellent rigidity and nonporous nature of glass), 
easy availability, and not in the least a surface that can readily be modified 
for stable DNA binding [27].  Several types of coatings can be applied that 
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attach firmly to the slide and tightly bind DNA spotted onto the surface.  
Some of the more popular substrates, along with their major features, are 
listed below: 

• Poly-L-lysine: this coating was used on the first cDNA microarrays 
[176] and is still widely favoured due to its ease of manufacture, 
accessibility, and overall good performance.  The binding of DNA is 
complex, but essentially involves charge interactions that can be 
converted to covalent bonding by baking or UV-irradiation. 

• Amino silane: a popular coating alternative to poly-L-lysine. DNA is 
bound to the surface through electrostatic interactions [85]. 

• Aldehyde: can covalently bind to chemically modified DNA.  This 
coating showed superior results in at least one head to head 
comparison of several commonly used substrates [234]. 

• Activated polymers: covalently binds DNA and holds it away from 
the slide surface, thereby making it more available for hybridization.  
The hydrophilic polymers reduce non-specific binding to the slide 
surface, resulting in lower background signals [159] 
(http://www.moterola.com/lifesciences). 

Because of the physics of nanoliter spot delivery, spot quality and array 
sensitivity depend largely on an interplay among not only printing surface  
and pin type and pin performance, but also printer characteristics (pin head 
movement and slide and plate mounting), the composition of the DNA probe 
solution, and control over environmental factors such as temperature and 
humidity.  While placing DNA probes at discrete positions on a glass 
support may be conceptually straightforward, the precise and reliable 
manufacturing of microarrays in practice is still not without challenges.   

2.1.2 Performing a spotted microarray experiment 

2.1.2.1 Experiment design 
Performing spotted microarray experiments is a costly undertaking, even 
when considering a decade of growing appliance and declining price tags.  
Good experimental design should therefore simplify analysis and empower 
the interpretation of data, while balancing these aims against the constraints 
of microarray cost and availability, and the amount of RNA available for 
testing and replication.  In spotted microarray experiments, the choice of 
design however, is not only influenced by financial considerations and the 
priorities of the biological questions underlying the experiment, but is 
heavily driven by the intrinsic relative nature of spotted microarray 
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expression measurements.  The central design choice is whether two samples 
will be compared directly (on one slide) or indirectly.  

A more detailed discussion and overview of different types of experimental 
designs is given in section 2.2.2.2. 

2.1.2.2 Sample preparation 
The first step in producing samples for hybridization is the isolation and 
purification of mRNA from tissues or cell cultures.  Success in expression 
analysis hinges on the quality of the isolated RNA [174].  RNA 
contaminated with salts, polysaccharides, DNA, proteins, or lipids will label 
inefficiently and can mediate non-specific binding of labelled DNA to 
matrix surfaces, generating high backgrounds during hybridization.  If the 
RNA is partially degraded, labelling may be biased towards sequences that 
lie at the 3’ termini or toward sequences that are relatively resistant to attack 
by RNAses.  This may distort the relative proportions of various targets 
detected by hybridization to DNA microarrays.   

On average, mRNA constitutes between 1% and 5% of the total cellular 
RNA, and mRNA species are heterogenous in size, abundance, and sequence 
[124].  For eukaryotic mRNAs, a tail of polyadenylate residues (poly(A)+ 
tail) at the 3’ termini makes them distinct from the rest of the RNA 
population, and this unique characteristic allows their purification and 
separation from the other RNA species by means of chromatography on 
poly(dT) cellulose [8,140].  The mRNA poly(A)+ tail can be conveniently 
exploited for other means.  Reverse transcriptase, an oncoretroviral enzyme, 
can be used to convert sample to target cDNA by means of a short primer 
(usually provided by an oligo(dT) fragment) that initiates cDNA synthesis.  
When dealing with prokaryotic (e.g. bacterial) organisms, mRNAs are not 
uniformly polyadenylated, which makes matters more complicated.  
Methods have been proposed to selectively polyadenylate prokaryotic 
mRNA in the presence of total RNA [220], but working with total RNA and 
random primers for the reverse transcriptase reaction is also a viable option. 

When only limited amounts of RNA are available (e.g. isolated from a small 
sample of tumour tissue), an extra amplification step is usually performed.  
PCR [169] is a highly efficient method for exponentially amplifying a 
population of single-stranded cDNA.  However, the nonlinear amplification 
results in a target population in which sequence representation is skewed 
compared with the original mRNA pool.  As an alternative, the amplified 
antisense RNA (aRNA) procedure [64,65,151,211] is a linear procedure that 
produces a target population more representative of the initial mRNA pool. 

A final step in the preparation of target samples is the labelling process, the 
incorporation of fluorochromes into the target sequences.  The most popular 
fluorochromes are without a doubt the carbocyanine dyes Cy3 and Cy5 [231] 
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(other examples include the Alexa dyes [145]), due to their specific 
fluorescence spectra referred to as the ‘green’ and ‘red’ dyes respectively 
(Figure 2.4).  Incorporation of the dyes can be done either directly or 
indirectly, but both procedures are dependent on the incorporation of 
modified oligonucleotides during the reverse transcriptase or amplification 
reaction.  Direct labelling [237,238] makes use of Cy3 or Cy5 labelled 
nucleotides, while indirect labelling [232] uses aminoallyl-nucleotides to 
which modified fluorescent dyes (Cy3, Cy5, or others) can be attached in a 
subsequent step.  In both cases, the goal is to achieve a density where an 
average of 1 base in 8 carries a fluorescent label.  Labelling at higher 
densities is counterproductive as quenching reduces the fluorescent yield 
[162]. 
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Figure 2.4:  Carbocyanine dyes.  Fluorescence excitation (grey curve) and fluorescence 
emission (blue curve) spectra for Cy3 and Cy5, the two cyanine dyes most common 
in spotted microarray experiments.   Taken from the Amersham Biosciences website 
(http://www.amershambiosciences.com). 
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2.1.2.3 Hybridization and scanning 
Hybridization is the process of incubating the labelled target DNA with the 
probe DNA tethered to the microarray substrate.  Fluorescent target DNA 
hybridizes to complementary probe DNA on the slide and the emitted can be 
measured as an indication of the amount of immobilized target DNA.  
Hybridization to the probe DNA should therefore ideally be linear, sensitive 
(detection of low abundance transcripts) and specific (no cross-
hybridization).  Both the amount of probe on the slide and the concentration 
of target in the hybridization solution are critical factors in this process.  
When the amount of probe DNA is limiting, the dynamic range of the 
system is limiting and estimates of differential expression get compressed 
[92,233].  If the concentration of the target in the hybridization mixture is 
too low, annealing will be slow and the attenuated signal may not be 
detected by the fluorescence scanner.  After hybridization, the array goes 
through a series of washes to remove all unbound labelled target DNAs.  
These washing steps are the most critical steps in obtaining consistently low 
backgrounds. 

After the hybridization and washing steps, the array is scanned to obtain a 
measure of the amount of target bound to each probe spot.  The arrays are 
stimulated with a laser, and the emitted fluorescence is captured by a CCD 
camera, non-confocal, or confocal laser scanner.  Typically, the scanner 
produces two 16-bit images (usually TIFF files), one for each fluorescent 
dye, containing intensities for a large number of pixels covering the scanning 
area of the array.  Operationally, the dynamic range of the microarray system 
is probably defined more by the scanners than by the concentration of target 
DNA.  Although a number of scanner settings can usually be adjusted, such 
as the PMT voltage (photo multiplier tube) which is often tuned to the 
brightest pixels, the 16-bit nature of scanning equipment restricts their 
dynamical range to 216 [27,128]. 

2.2 Data analysis 
Performing the actual experiments is only a first phase in any microarray 
survey.  Subsequent data analysis [139,156] is equally important and 
comprehensive.  This chapter will discuss a typical data analysis flow as 
illustrated in Figure 2.5, divided into image analysis (section 2.2.1), 
preprocessing and normalization (section 2.2.2) and high-level data 
exploration (section 2.2.3). 
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Figure 2.5:  A typical data analysis flow for spotted microarrays.  Starting from image 

analysis, followed by data preprocessing and normalization and ending with 
exploration and mining of the data to obtain biologically relevant results.  
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2.2.1 Image analysis  

The analysis of scanned microarray images converts the image into spot 
associated numerical values that serve as a measure of target abundance.  
Several commercial or non-commercial packages are available that are 
tailored specifically to this task.  The image analysis process can be divided 
into three major tasks: gridding, segmentation and intensity extraction. 

Gridding (or addressing) is the process of assigning coordinates to each of 
the spotted probes.  The basic layout of a microarray is known as it is 
determined by the spot deposition by the arrayer.  Gridding is meant to 
alleviate deviations from the exemplary spot positions, i.e. the translation of 
individual spots or the displacement of entire grids of spots caused by slight 
variations in print tip positions. Other parameters that may need to be 
considered are misregistration of the Cy3 and Cy5 channels, overall position 
and rotation of the array in the scanned image, and deviation from symmetry 
due to printer or scanner artefacts.  Gridding procedures are very varied and 
have not been well documented [27,130].   

Segmentation procedures classify the pixels of the image as either 
foreground (the spot mask), i.e. belonging to a printed spot of probe DNA, or 
background.  According to the geometry of these spot masks, each 
segmentation method can be categorized into one of four groups (three of 
which are shown in Figure 2.6).  Fixed circle segmentation fits a circle with 
constant diameter to all the spots in the image.  In adaptive circle 
segmentation, the diameter of the circle that defines the spot mask is 
estimated independently for each spot. Adaptive shape segmentation 
algorithms [1,214] are not bound to a circular delineation of the spot masks 
and have the advantage of being able to cope with irregular spot shapes.  
Histogram segmentation differs from the other methods in that they do not 
explicitly classify pixels into foreground or background.  Instead, these 
methods estimate foreground intensities from the distribution of pixels 
within a designated region (target mask). 

Intensity extraction is the final step in the image analysis and involves 
calculating foreground and background intensities for each spot on the array 
in both channels (Cy3 and Cy5).  Each pixel value in a scanned image is 
assumed to represent the level of hybridization at a specific location on the 
slide, and the total amount of hybridization at a particular probe spot should 
be proportional to the total fluorescence at the spot.  The natural measure of 
spot intensity is therefore the sum of pixel intensities within the spot mask. 
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Figure 2.6:  Segmentation procedures.  Red circles are a representation of the segmentation 
effect of fixed circle (left), adaptive circle (middle), and adaptive shape (right) 
segmentation; grey pixels represent the actual spot.  All three of these produce a spot 
mask where pixels inside the spot mask are considered as foreground, i.e. a measure 
of gene expression levels.  Taken from Bowtell and Sambrook, 2002 [27]. 

2.2.2 Preprocessing and normalization 

Normalization of the raw, extracted intensities is a necessary step before 
proceeding to any high-level analysis (section 2.2.3).  Normalization aims to 
remove consistent and systematic sources of variation to ensure 
comparability of the measurements, both within and across slides.  It largely 
influences the results of all subsequent analyses (such as e.g. identification 
of differentially expressed genes, clustering, etc.), and is therefore a crucial 
phase in the analysis of microarray data. 

Performing microarray experiments is a complex, multi-step procedure 
(section 1.2), with equally vast opportunities for introducing variation that 
will ultimately contribute to the measured intensities [177].  Apart from 
human errors that can arise at various stages of the experiment (e.g. pipetting 
errors), critical factors include: the quality of the mRNA preparations, 
characteristics of the reverse transcriptase and the labelling reaction (number 
and density of dye incorporation), surface properties of the slide and 
composition of the spotting solution, deficiencies in the spotting equipment, 
stringency of the hybridization reaction and efficiency of the washing 
procedure, and equipment settings during slide scanning.  As such, 
consistent sources of variation that manifest themselves in the data can be 
attributed to individual (or sets of) spots, genes, biological conditions under 
survey, dyes (Cy3 and Cy5), and arrays.  

Since the emergence of microarrays in the mid 1990s, a plethora of 
(sometimes redundant) methods for normalizing spotted microarray data 
have been proposed.  Instead of providing an exhaustive listing of different 
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techniques, this section outlines typical characteristics and related problems 
of spotted microarray data, and the widely accepted remedial measures to 
deal with them: background correction (section 2.2.2.1), log-ratios and 
experiment design (section 2.2.2.2), and dye related discrepancies (section 
2.2.2.3). 

2.2.2.1 Background correction 
A first step in microarray data normalization is to correct the ‘foreground’ 
spot intensities for background, as the measured intensity of each spot 
includes a contribution of non-specific hybridization, residual Cy3 and Cy5 
dyes and fluorescence emitted form other parts of the array (overshining) 
and/or the slide substrate itself.  It is generally accepted that the background 
contribution is additive with respect to the spot intensity [34] (background 
correction is therefore often referred to as background subtraction).  
Unfortunately, it is impossible to measure the true background for each and 
every spot. The true background being a measurement of the fluorescence of 
a spot after the hybridization reaction, but with no complementary transcripts 
bound to it.  As a result, several methods have been developed to quantify 
the intensity of background signals, all of which can merely provide an 
approximation of the true background.   

The use of a constant background is by all means the simplest.  It employs 
the mean or median of the whole image background (as determined in the 
segmentation process) as a measure of background intensity.  Constant 
background correction is seldom used in real applications, due to its 
difficulty of dealing with inhomogeneous backgrounds. 

Local background intensities are estimated by focusing on small regions 
surrounding the spot masks.  Usually, the background estimate is the mean 
or median of pixel values within those specific regions.  Figure 2.7 illustrates 
different local background adjustment methods.  Local background 
correction remains one of the most popular techniques to this day, regardless 
of the multiple objections in the relevant literature [32,66,82,115,135,201].  
Apart from the substantial variance in local background intensities, the main 
critique is focused on the occurrence of higher than signal backgrounds, 
resulting in negative corrected intensities, which are of course insensible.  
Negative corrected intensities have been shown to not arise because the spot 
is being incorrectly located during image segmentation, but rather because 
more fluorescent compounds are actually binding to the area surrounding the 
spot than to the spotted probe itself [32].  This is thought to be caused by 
differences in the chemistry of non-specific binding of target and/or residual 
fluorochromes to the DNA-free substrate and the (non-homologous) spotted 
DNA.  Negative corrected intensities pose problems during further data 
analysis (e.g. the calculation of log-ratios, see section 2.2.2.2) and, as a 
consequence, need to be omitted or replaced by arbitrary values [45,202]. 
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Figure 2.7:  Local background correction.  Schematical representation of different local 
background corrections.  Black regions represent the spot mask.  Bounded grey 
regions represent the regions used for background calculation as used by software 
packages such as ScanAlyze (left), Imagene or QuantArray (middle), and GenePix or 
Spot (right). 

To avoid the high variability of local background estimates, while still 
providing a less rigid approximation than the all-slide, constant background, 
algorithms have been developed that essentially fit a background model to 
the image data.  The morphological opening, a non-linear smoothing filter, 
can be considered as such a technique [184], and a multitude of others have 
been proposed since [32,66,82,115,117,165,224,229,230]. 

The comparison of different background correction methods                   
indicates that estimates based on local neighbourhoods, and occasionally 
estimates based on background models, are quite noisy and tend to greatly 
inflate the standard deviation of the log-ratios [225].  At the other extreme, 
one can consider the possibility of no background adjustment at all.  This 
option is not without drawbacks either: not performing a background 
correction could possibly hamper the ability to identify differentially 
expressed genes [225].   

It has been suggested that it may be more meaningful to estimate 
background on the basis of a set of negative control spots [56,159,165,225].  
Up to this day, a widely accepted way to correct for background has yet to 
emerge.  This is reflected in the many applied and methodological 
microarray papers that are published each year, where the background 
correction procedures that are used, or discarded altogether, seem to be 
chosen depending on whichever strategy renders the most suitable results. 
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Figure 2.8:  Multiplicative and additive intensity error in microarray data.  The random 
variation, as measured by the standard deviation of the intensities, typically increases 
approximately linearly with the average signal strength, deteriorating the reliability 
of most statistical test.  Removal of these multiplicative errors can be done by log-
transforming the data (right hand plot), showing an increased variance at low 
intensity levels corresponding to the additive background error.  

2.2.2.2 Log-ratios and experimental design 
Spotted microarray technology is fundamentally designed towards the 
measurement of relative gene expression.  Hybridization is performed 
simultaneously with two differentially labelled samples (Cy3 and Cy5) and 
the resulting data consists of per spot intensities of both channels.  Although 
methods exist that work with the logarithm of the absolute intensities 
[104,113,221], the logarithm of the ratios of Cy5 over Cy3 intensities (log-
ratios) for each spot are the basic ‘unit’ of data interpretation.  These 
intensity ratios are thought to alleviate the large, spot related variations that 
occur in microarray data.  The motivation to perform a log-transformation on 
the other hand, is twofold: 

• Apart from the additive background error, microarray intensities also 
show a pronounced multiplicative error [34] (illustrated in Figure 
2.8).  The random variation, as measured by the standard deviation 
of the intensities, typically increases approximately linearly with the 
average signal strength, deteriorating the reliability of most 
statistical test.  Removal of these multiplicative errors can be done 
by log-transforming the data.  The increased variance at low 
intensity levels (Figure 2.8, panel B) is intuitively plausible, as low 
expression levels are generally assumed to be less reliable [71]. 
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• Interpretation of intensity ratios is facilitated by performing a 
logarithmic transformation.  Levels of over and under expression are 
brought to the same scale, i.e., values of under expression no longer 
range between 0 and 1 (a log2-base transformation is usually applied 
for convenience).  
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brought to the same scale, i.e., values of under expression no longer 
range between 0 and 1 (a log2-base transformation is usually applied 
for convenience).  

The relative nature of spotted microarray measurements has severe 
repercussions on the setup of the appropriate experiments (experiment 
design).  As pointed out before, the choice of experimental design is not only 
influenced by financial considerations and the priorities of the biological 
questions underlying the experiment, but is heavily driven by the differential 
labelling inherent to spotted microarrays.  The central design choice is 
whether two samples will be compared directly (on one slide) or indirectly 
(across slides).  Some excellent reviews on experimental design were 
published by Churchill, 2001 [38] and Yang and Speed, 2002 [227]. 
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Figure 2.9:  Experimental design.  Schematical representation of some basic experimental 
designs: A) Colour flip design, B) Reference design (4 conditions and a reference), 
and C) Loop design (4 conditions).  Black boxes represent the different biological 
conditions.  Arrows represent the arrays on which indicated conditions are 
hybridized, either labeled in Cy5 (red part of arrow) or Cy3 (green part of array).  
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The most basic designs that are commonly applied are depicted in Figure 2.9 
and are further discussed below.  The simplest microarray experiments 
compare expression in two distinct conditions. A test condition (e.g. a cell 
line triggered with a drug compound) is compared to a reference condition 
(e.g. a cell line triggered with a placebo).  Usually the test is labelled with 
Cy5 (red dye) while the reference is labelled with Cy3 (green dye).  
Performing replicate experiments is mandatory to infer relevant information 
on a statistically sound basis.  However, instead of just repeating the 
experiments exactly as described above, a more reliable approach is to 
perform colour flip experiments (also called dye swap experiments).  The 
same test and reference conditions are measured once more as a repeat on a 
second array but the dyes are swapped, i.e. on this second array, the test 
condition is labelled with Cy3 (green dye) while the corresponding reference 
condition is labelled with Cy5 (red dye). This allows better compensating for 
dye specific biases, to the extent that these biases are repeatable across 
slides.  Generally, colour flipped pairs are recommended whenever possible 
[27,38,227].  

When the multiple distinct biological conditions are compared (e.g. different 
mutant strains, different drug treatments, etc.), or when the conditions under 
study reflect the biological behaviour during the course of a dynamic process 
(e.g. a time course experiment), more complex designs are required.  
Customarily used, and still preferred by many molecular biologists, is the 
reference design: different test conditions are each paired with the same 
reference condition on separate arrays. The reference condition can be 
artificial and does not need to be biologically significant.  Its main purpose is 
to have a common baseline to facilitate mutual comparison between the 
samples. There are two main disadvantages to this approach.  Firstly, half of 
the measurements (and consequently half of the experiment costs) are 
replicates of the condition in which one is not primarily interested (i.e. the 
reference condition).   Secondly, genes that demonstrate a low expression 
level in the reference condition (or no expression at all), will produce 
unreliable ratios or even missing values.  In order to retain most signals, the 
choice of reference is therefore not trivial.  An independent sample is often 
chosen as reference, such as a mixture of mRNA, isolated from a wide range 
of biological conditions (mRNA pools).  The use of genomic DNA for 
bacterial microarrays can also be considered as an independent reference.  

An alternative to the reference design is the loop design.  A loop design can 
be viewed as an extended colour flip experiment. Every condition is 
measured twice, each time on a different array and labelled with a different 
dye.  For an equal number of arrays, a loop design offers more balanced 
replicate measurements of each condition than a reference design, while the 
dye specific biases are conceptually compensated for.  The main 
disadvantage of a loop design manifests itself when comparing two 
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conditions on opposite ends of the loop.  Such a comparison requires the 
evaluation of ratios upon ratios, significantly increasing the error variance 
for each step of the loop that separates the two conditions. 

These basic designs are by no means the only ones used in microarray 
experiments.  They often serve as templates or building blocks for larger and 
more complex designs (e.g. a reference design extended with a colour flip 
for every array is not uncommon). 

2.2.2.3 Dye related discrepancies  
The use of log-ratios theoretically removes all systematic errors originated 
from spots, printing pins or array effects.  As a result, normalization 
strategies for spotted microarrays are mostly centred on the removal of dye-
related discrepancies from the log-ratios.  These dye biases can cause a 
significant distortion of log-ratio distributions and stem from a variety of 
factors, namely physical properties of the dyes and efficiency of dye 
incorporation, but also differences in the amount of input RNA, and the 
scanner-specific excitation and collection process.  In practice, Cy5 
intensities often tend to be lower than the Cy3 intensities, and the observed 
imbalance is usually not constant within and across arrays. 

For any procedure intended on removing these consistent dye biases, a 
decision must be made as to which set of genes to use for the normalization 
(for a review, see Kroll and Wolfl, 2002 [118]).  Different approaches have 
been described, such as the use of spikes [208] (also called control spots, 
external controls), housekeeping genes (genes expected not to alter their 
expression level under the conditions tested), a microarray sample pool 
[226], or iterative procedures to find a set of invariant genes [173,203], but 
customarily, all genes are used to perform a correction for dye biases.  This 
is because it is assumed reasonable that 1) only a relatively small portion of 
genes will vary significantly in expression between two mRNA samples of 
distinct biological conditions, and 2) there is symmetry in the level of up-
regulated versus down-regulated genes.  We’ll further refer to these 
principles as the ‘Global Normalization Assumption’ or GNA.  The use of 
the GNA for normalization is less appropriate when the expression patterns 
between two biological conditions are expected to differ considerably.  For 
instance, in bacterial arrays, where genomic DNA is often used as a 
reference sample, or in dedicated arrays, which contain only a relatively 
small number of genes all thought to be involved in the studied process, this 
assumption is no longer valid and global rescaling to a log-ratio of zero is 
arbitrary. 
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Figure 2.10:  Linear normalization of data from a sngle microarray slide.  Linear 
normalization assumes that the intensity measurements in both channels (yCy5 and 
yCy3) are related by a constant factor for the entire slide.  A common choice for this 
transformation factor is the mean or median of the log intensity ratios for a given 
gene set (represented by a dotted line in the left plot).   

  

As dictated by the GNA, removal of dye specific intensity biases from any 
microarray should produces log-ratios that are evenly distributed around 
zero.  A linear normalization (Figure 2.10) assumes that the intensity 
measurements in both channels (yCy5 and yCy3) are related by a constant factor 
k for the entire slide:   

As dictated by the GNA, removal of dye specific intensity biases from any 
microarray should produces log-ratios that are evenly distributed around 
zero.  A linear normalization (Figure 2.10) assumes that the intensity 
measurements in both channels (yCy5 and yCy3) are related by a constant factor 
k for the entire slide:   

35 CyCy yky = ⋅  (2.1) 

A common choice for the transformation factor k is the mean or median of 
the log intensity ratios for a given gene set.  Alternatively the constant 
normalization factor can be determined by linear regression of the Cy5 
signal versus the Cy3 signal.  More complex approaches, that use an iterative 
method to estimate the constant normalization factor [34,59], have also been 
described.  

Unfortunately, assuming a linear relationship between the measurements in 
both channels is an oversimplification.  Variation between the Cy5 and Cy3 
channels is seldom constant, but changes as a function of the intensity of the 
signal and is most pronounced at extreme intensities (either high or low).  
MA-plots that plot the log-ratios M=log(yCy5/yCy3) against the average 
intensity A=log(√yCy5.yCy3) are often used to visualize this phenomenon.  
Performing an intensity dependent normalization can be done by generating 
a best-fit curve through the middle of an MA-plot, and setting this as the new 
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zero line for the vertical axis (Figure 2.11).  A corrected log-ratio Mcorr is 
calculated by shifting the log-ratio M by a quantity that depends on the 
corresponding A value: 

zero line for the vertical axis (Figure 2.11).  A corrected log-ratio Mcorr is 
calculated by shifting the log-ratio M by a quantity that depends on the 
corresponding A value: 

corrMAcM )(− =  (2.2) 

Several intensity-dependent normalizations have been proposed [74,107], 
but most popular, and widely applied procedure was first described by Yang 
et al. (2002) [226].  The estimate of c(A) is made using a LOWESS (LOcally 
WEighted Scatter plot Smoother; more detailed information can be found in 
appendix A) function [39] to perform a local scatter plot smoothing to the 
MA-plot.  The scatter plot smoother, a type of regression analysis, performs 
robust locally linear fits by calculating a moving average along the A axis.  
Robust in this context means that the curve is not affected by a small to 
moderate percentage of differentially expressed genes that appear as outliers 
in the MA-plot.  A user defined parameter f is the fraction of the data used 
for smoothing at each point; the larger the f value, the smoother the fit.  
Typically, a value of f between 30% and 40% is recommended. 
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Figure 2.11:  Intensity dependent normalization of data from a single microarray slide.  
Intensity dependent normalization techniques assume that the dye bias is non-linear 
in nature.  MA-plots that plot the log-ratios M=log(y /yCy5 Cy3) against the average 
intensity A=log(√y .yCy5 Cy3) are often used to visualize this phenomenon.  Performing 
an intensity dependent normalization can be done by generating a best-fit curve 
through the middle of an MA-plot, and setting this as the new zero line for the 
vertical axis.  A corrected log-ratio Mcorr is calculated by shifting the log-ratio M by a 
quantity that depends on the corresponding A value.  The curve that is shown in the 
left hand plot, and that serves as the basis for the non-linear rescaling, was estimated 
by performing a LOWESS fit [226]. 



Chapter 2 – Spotted microarrays 

32 

2.2.3 Data exploration 

After the data have been normalized, they can be explored in order to extract 
biologically meaningful results.  The biological or biomedical questions that 
need to be addressed can be quite diverse, and so numerous techniques and 
algorithms from statistics, data mining and machine learning have found 
their way into the microarray data analysis field.  This section lists an 
overview, which is by no means exhaustive, of different data exploration 
methods. 

A microarray experiment measures the expression levels from thousands of 
genes in parallel.  Genes that show little or no change in expression levels 
are typically of no biological relevance.  As such, a selection of the genes 
show a variable expression across the condition tested is often a crucial step 
in the analysis of any microarray experiment.  Over the years many methods 
have been proposed for the identification of significantly differential genes, 
some of which are discussed (and evaluated) in detail in chapter 3.  Related 
types of dimensionality reduction in the gene space are those that identify 
genes for which the expression profile is most correlated with the distinction 
between different conditions or sets of conditions (e.g. between different 
mutant strains or different classes drug compounds).  These methods can 
either be supervised (distinction is known; e.g. the methods described by 
Park et al., 2001 [147] or Golub et al., 1999 [81]) or unsupervised.  
Clustering of genes is a prominent form of unsupervised dimensionality 
reduction among researchers that work with microarray data.  Genes 
involved in a similar biological pathway or with a related function often 
exhibit similar expression behaviours across different biological conditions 
(co-expression).  The objective of cluster analysis of gene expression 
profiles is to identify clusters (subgroups) of such co-expressed genes.  The 
first generation of cluster algorithms that were used in microarray data 
analysis included standard techniques such as K-means [200], self-
organizing maps [116,192], principal component analysis [23] and 
hierarchical clustering [71] (illustrated in Figure 2.12 and still one of the 
more popular among researchers).  Although biologically meaningful results 
can be obtained with these algorithms, they often lack the fine-tuning that is 
necessary for biological problems [194].  A panoply of cluster algorithms 
have been designed since, better tailored to the specifics of microarray data, 
and the needs of molecular biology research [15,79,87,94,95,127,179,228] 
(for an overview, see Moreau et al., 2002 [138]). 

Other applications main point of interest lays in the space of the tested 
conditions (e.g. in pharmaceutical or clinical settings: drug discovery, 
toxicogenomics, disease management, etc.).  Examples are methods for class 
discovery, where the tested biological conditions are subdivided into classes 
based on the characteristic expression fingerprints of cells exposed to these 
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conditions (unsupervised), and class prediction, where the class membership 
of new conditions (e.g. drug compounds) is predicted based on a classifier 
model which was trained from a data training set (supervised).  For a more 
detailed overview, see Marchal et al., 2004 [131]. 
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detailed overview, see Marchal et al., 2004 [131]. 

  

  

  

 
 

Figure 2.12:  Clustering of microarray data.  Hierarchical clustering of the dataset of Cho et al., 
1998 ([35]) representing the mitotic yeast cell cycle.  After a selection of 3000 genes 
was made ([45]), hierarchical clustering was performed using the Pearson 
correlelation coefficient and an average linkage distance as implemented in 
EPCLUST ([30]). Only a subsection of the total tree is shown containing 72 genes. 
The columns represent individual experiments, the rows show the gene names. Green 
colour indicates down regulation while a red colour represents upregulation as 
compared to the reference. In the complete experimental set up a single reference 
was used (reference design). 
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One of the major challenges of the field of interdisciplinary biology is the 
inference of regulatory (or genetic) networks [9,25,83,146].  From a 
systems biology approach, a cell is considered a system that continuously 
interacts with its environment. The cell receives dynamically changing 
environmental cues and transduces these signals into the observed behaviour 
(i.e. change of phenotype or change of physiological response).  This signal 
transduction is mediated by the regulatory network.  A complete regulatory 
network can be seen as consisting of proteins interacting with each other, 
with DNA or with metabolites to constitute a complete signalling pathway 
[36,37,69,146,219].  Regulatory network inference became a big research 
topic as microarray technology made its way into mainstream biological 
research, but the underdetermined nature of the data made the construction 
of biologically relevant regulatory networks a daunting task.  With the 
advent of diverse types of high-throughput data however, the research in 
network inference has received a new impulse, often integrating different 
data types (genomics, transcriptomics, proteomics and metabolomics) to 
obtain biologically plausible results.  A comprehensive review of different 
methods and approaches can be found in Van den Bulcke et al. (2006) [210].   

2.3 Extended applications 
Spotted microarrays are predominantly used to study the expression profiles 
of specific cell types and tissue samples.  Contrary to Affymetrix GeneChip 
technology, the differential labelling and resulting relative nature of the 
measurements of spotted microarrays renders them suitable tools for other 
types of genomic analysis.  In this section we describe two such strategies: 
determining genomic copy number (attempts at which have also been made 
using GeneChip arrays [21]), and mapping DNA-protein interactions on the 
genome. 

Comparative Genomic Hybridization or CGH identifies and maps sites of 
variation in DNA copy number throughout the genome [60,105,106] in a 
single measurement.  In CGH as originally developed, total genomic DNAs 
from two (or more) cell populations are labelled with different fluorescent 
dyes and hybridized to metaphase chromosome spreads from a normal 
individual.  The binding ratio of sequences from the different cell 
populations at the locations on the chromosomes to which they are 
complementary is proportional to their relative initial concentrations in the 
hybridization mixture.  In the years since its inception, CGH has provided a 
wealth of information regarding regions of amplification and deletion in 
cancer cell lines and tumour samples [93,137,215,216].  Microarray 
implementations of CGH [153,154,185] have the potential to overcome 
many of the limitations of traditional cytogenetic CGH: using microarrays of 
mapped genomic clones permits the resolution of the measurements to be 
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determined by the spacing of the clones on the array and their size.  The 
exact performance requirements for accurate measurement of copy number 
nevertheless make array CGH a very demanding microarray technology. 

Chromatine immunoprecipitation or ChIP is a popular technology to 
identify the actual binding sites or loci for DNA binding proteins.  It relies 
on the use of a specific antibody to immunoprecipitate the protein of interest 
together with its associated DNA sequences.  Covalent cross-linking using 
formaldehyde allows specific interactions to be detected and has been used 
for mapping DNA-protein interactions in yeast [190], Drosophila [143], and 
mammalian cells [28].  This approach has been combined with microarray 
hybridization (ChIP-chips), initially in yeast [102,125,163,164], to enable 
mapping of DNA-protein interactions on a genomic scale.  The specifically 
immunoprecipitated DNA is labelled using one fluorescent dye, and the 
second dye is used to label a reference sample which can consist either 
simply of genomic DNA, amplified and labelled in parallel, or DNA derived 
from a parallel immunoprecipitation reaction that serves as a negative 
control.  The fluorescence log-ratio at an array element represents the 
enrichment of that locus in the immunoprecipitation sample and hence is 
indicative of the extent of binding of the protein to that locus.  Due to the 
amount of random sequences that are extracted during the 
immunoprecipitation reaction however, a large number of replicate 
measurements are necessary to infer DNA binding sites with any statistical 
significance. 

 



Chapter 2 – Spotted microarrays 

36 

 

 

 



Chapter 3 

Evaluation of ANOVA normalization 

The normalization -and further analysis- of data from spotted microarray 
experiments is based upon measurements of relative expression, usually 
represented as log-ratios (see chapter 2).  The technology however, is by no 
means restricted to the use of intensity ratios.  The estimation of absolute 
expression levels from the measured intensities is not conceptually 
impossible.  Calculation of log-ratios is thought to alleviate part of 
systematic variation, so any technique attempting to obtain absolute values 
of expression will have to be mindful of the various sources of systematic 
variation in a microarray experiment.  The first method to work with 
absolute intensities, and still the most common to this day, is the use of 
ANOVA models to normalize microarray data.   

This chapter represents a first phase of this PhD research, where the use of 
ANOVA for microarray normalization was evaluated and compared to a 
ratio based approach [132].  The performance of any normalization 
procedure, especially one that estimates absolute expression levels, is hard to 
assess as the actual levels of mRNA abundance in any particular condition 
are normally unknown.  In order to nevertheless appraise the presence of  
any markedly flawed features in ANOVA normalized data, genes thought to 
be differentially expressed were selected for both log-ratios and data 
normalized by ANOVA.  To minimize the influence of the used selection 
method, several different ratio based procedures for selecting differentially 
expressed genes were tested and compared to a selection procedure based on 
ANOVA normalization.  A two sample colour flip design (see chapter 2, 
section 2.2.2.2) was chosen as test data set.  Two sample colour flips are 
relatively simple designs for which several test procedures for identifying 
differentially expressed genes have been established.  Moreover, most 
biologists start off with such straightforward experiments to roughly identify 
the genes involved in the biological system studied.  Based on the 
conclusions drawn, more complex experiments are designed afterwards. 

37 
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A first part of this chapter describes the principles of ANOVA based 
normalization of microarrays (section 3.1), and details some of the particular 
models that can be used for normalizing colour flip designs, as well as the 
statistics that can be used to select differentially expressed genes based on 
ANOVA normalized data.  A second part (section 3.2) will provide a 
background to the log-ratio based methods for selecting differential genes, 
namely the fold test [157], the paired t-test [126], and a method called 
Significance Analysis of Microarrays or SAM [204].  The third section 
(section 3.3) describes the results of performing the analysis, a discussion of 
which can be found in the final section. 

3.1 ANOVA models for normalization 

3.1.1 Principles 

ANOVA (ANalysis Of Variance; more detailed information is given in 
appendix B, for a complete dissertation on the topic we refer to Neter et al., 
1996 [141]) models are used for studying the relation between a response 
variable and one or more explanatory or predictor variables  Specifically, 
single-factor studies are utilized to compare different factor level effects, to 
ascertain the best factor level, and the like.  In multifactor studies, analysis 
of variance models are employed to determine whether the different factors 
interact, which factors are the key ones, which factor combinations are best 
and so on.  Just as with regression models, the results of an ANOVA model 
fit can be represented in an ANOVA table, showing a factor-wise partitioning 
of the total sum of squares, the degrees of freedom, the resulting mean 
squares and possibly the result of statistical significance tests.   

The proper use of ANOVA generally requires two major assumptions to be 
satisfied.  At first the data should adequately be described by the linear 
ANOVA model.  Secondly, observations should be normally distributed with 
constant within group variances equal for all groups.  Satisfying both 
requirements results in the residuals of the fit (i.e. the difference between the 
observed and the fitted values) being independently and normally distributed 
random variables with zero mean and constant variance.  Residuals are 
therefore highly useful for examining the aptness of ANOVA models.  For 
instance, visual inspection of the residual plots can reveal much about the 
models behaviour.  If the data can not be fitted by a linear model (i.e. not 
satisfying the first assumption), residual plots show pronounced non-linear 
trends, not satisfying the second assumption results in heteroscedasticity (a 
non-constant error variance), indicated by an observed wedge-shaped trend 
in the residual plot.  Residual analysis can also detect other departures from 
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the ANOVA model, such as the prescence of outliers, non-indepence of error 
terms, non-normality of error terms, and the omission of important 
explanatory variables.  It should be noted though, that it is not necessary, nor 
is it usually possible, for an ANOVA model to fit the data perfectly.  
ANOVA models are reasonably robust against certain types of departures 
from the model, such as the error terms being not exactly normally 
distributed.  The major purpose of the examination of the appropriateness of 
the model is therefore to detect serious departures from the conditions 
assumed by the model [141].  

With regards to microarray data, ANOVA has been used to address several 
problems that are not necessarily limited solely to the normalization of the 
data (e.g. assessing the contributions of age, sex and genotype into 
transcriptional variations [104,221], or between natural populations of the 
same species [142]).  Considering the topic of this research, we will only 
focus on models that are designed to remove systematic sources of variation 
from microarray data.  Such models were originally proposed by Kerr et al., 
2000 [113].  When used for normalizing microarray data, ANOVA models 
describe the measured expression level of each gene as a linear combination 
of the explanatory variables that reflect the major sources of systematic 
variation in a microarray experiment.  The residuals of the fit can be 
considered as estimates of random, experimental noise.  Several explanatory 
variables representing condition (also referred to as varieties [108,109,111-
113]), dye and array related variation and combinations of these variables 
are taken into account in the models.  Only those interaction factors that 
have a physical meaning in the process to be modelled are retained.  Reliable 
use of an ANOVA model for the normalization of microarray data therefore 
requires a good insight into this process.  The gene×condition (GC) 
interaction effect however, is a key variable in all ANOVA models for 
microarray normalization, because it reflects how the expression of a gene 
depends on the biological conditions of the experiment (i.e. the condition-
specific expression for that gene).  This is the effect in which biologists are 
interested, and is thus referred to as the factor of interest.  In the context of a 
two sample colour flip experiment, the difference between the estimated GC 
effects of a single gene reflects the differential expression (it is in fact a 
rescaled version of the average log-ratio described in chapter 2, section 
2.2.2.2) and is called the contrast of interest.   

If the aforementioned assumptions can be satisfied (measurements can be 
explained by a linear model, independent and normally distributed 
residuals), one of the major advantages of using ANOVA for normalization 
consists of its ability to assess the different sources of variation across the 
entire experiment (i.e. the entire set of arrays) instead of treating each slide 
separately.  In contrast to a slide by slide approach, all measurements are 
combined during statistical inference.  Moreover, due to the specific way of 
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modelling measured intensities as a superposition of different experimental 
factors, absolute values of gene expression (i.e. the estimated values for the 
GC interaction factor levels) are obtained and one is not bound to the use of 
log-ratios for further analysis of the data. 

3.1.2 Models for normalizing colour flips 

Three different models were used in this study to normalize a colour flip 
experiment.  Two of these models were originally described by Kerr et al. 
[111,113], the third one is an adaptation on our part of the original models.  
The models differ from each other in the number of additional combined 
effects included.   

The first more simplified model does only compensate for array, dye and 
condition effects.  Let yijkl denote the intensity measurement from the ith 
gene, jth condition, kth array and lth dye, and let Iijkl be the log-transformed 
intensity of this measurement, i.e. Iijkl = log(yijkl).  The different sources of 
variation in a microarray experiment can be modelled as 

ijklijlkjiijkl GCDACGI εμ ++++++=
 (3.1) 

where μ is the overall average signal, the parameter Gi represents the effect 
of the ith gene, the parameter Cj represents the effect of the jth condition, the 
parameter Ak represents the effect of the kth array, the parameter Dl 
represents the effect of the lth dye, and the parameter (GC)ij represents the 
interaction between the ith gene and the jth condition, referred to as 
gene×codition.  The error terms εijkl are assumed to be independent and 
identically distributed with mean 0.  The array effects Ak account for 
differences between arrays averaged over all genes, dyes, and conditions.  
These may arise, for example, because arrays are hybridized under slightly 
different conditions that result in a change in hybridization efficiency across 
an array.  Similarly, the dye effects Dl account for differences between the 
average signal from each dye.  One dye is often inherently “brighter” than 
the other, and this must be taken into account in the analysis.  Remark that 
this dye effect corresponds to a simple linear rescaling, and does not 
compensate for intensity dependent variation (see section 2.2.2.3 of chapter 
2).  The terms Cj account for overall differences in the conditions.  Such 
differences could arise because of differential concentration of mRNA in the 
labelled sample.  The terms Gi account for average effects of individual 
genes spotted on the arrays in the experiment, i.e. they represent the ‘basal’ 
expression of a gene given all of the biological conditions that are surveyed.  
As explained before, the effects of interest in model (3.1) are the interactions 
between conditions and genes, the (GC)ij effects. These terms capture 
departures from the overall averages that are attributable to the specific 
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combination of a condition j and a gene i.  Non-zero differences in 
gene×condition interactions across conditions for a given gene indicate 
differential expression. 

In the second (3.2) and third (3.3) model spot effects are added, but each 
model does this in a different way.  In the second model, each spot is 
modelled individually as if each spot were spotted with a different pin.  In 
the original models of Kerr et al, 2000 [113] this was accomplished by 
incorporating a (GA)ik interaction factor.  However, a single (GA)ik effect can 
only account for the intensity contribution of a single spot, when every spot 
corresponds to a specific interaction between a gene i and an array k, i.e. 
when a probe for a particular gene is only spotted once on every array (as 
was the case for data set used by Kerr et al., 2000 [113]).  In the data set 
used in this study however, cDNA probes were spotted in duplicate on every 
microarray.  To compensate, an adaptation was made to the proposed model: 

( ) ijklmij)ik(mlkjiijklm GCGARDACGI εμ +++++++=
 (3.2) 

where R(GA)m(ik) represents the effect of the mth replicate spot for a single  
gene×array interaction GAik.  In this form, the replicate variable R is said to 
be ‘nested’ within the interaction variable GA.  The GAik effect could have 
been left in the model, but was omitted to restrict the overly use of degrees 
of freedom that may otherwise serve to estimate the error variance in the 
experiment.  By incorporating spot effects this way, the model stays true to 
the original concept of every spot on the array having a distinct parameter 
that quantifies its contribution to the measured intensity. 

The third model, an adaptation on our part of the original models is slightly 
more complex.  It is based on empirical observations and assumes a 
relationship between left and right spots on the same array.   

ijklmijik)i(mlkjiijklm GCGA)G(RDACGI εμ ++++++++=
 (3.3) 

In this model, the R(G)m(ik) effect represents all replicate spots on an array, 
the difference between these replicate spots is described by the replicate 
variable that is now nested within the gene variable.  This particular nesting 
structure is meant to account for the variability of the probe source of multi-
spotted genes, as the probes of a particular gene on different arrays usually 
originate from the same PCR amplification reaction or oligo set.   

For all models, it is also possible to include other effects, such as gene×dye 
interactions.  However, the physical or biological relevance of such 
additional effects usually does not outweigh the loss of degrees of freedom, 
needed to estimate the error variance in the experiment, that comes from 
including them. 
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3.1.3 Use of ANOVA model residual distribution 

Parameters of an ANOVA model can be estimated through a constrained 
least-squares fit (for details on estimation procedures and obtained solutions, 
see section 4.1.1 of chapter 4).  This results in a set of residuals eijklm and 
estimated values Îijklm, which are a linear combination of the estimated 
parameter values, so that: 

ijklmijklmijklm eÎI +=  (3.4) 

As stated in section 3.1.1 the proper use of ANOVA generally requires two 
major assumptions to be satisfied: the data should adequately be described 
by the linear ANOVA model, and observations should be normally 
distributed with constant within group variances equal for all groups.    
When both assumptions are satisfied and the residual distribution will show 
only slight deviations from normality (so that the actual model errors can be 
assumed to be normally distributed) and significantly differentially 
expressed genes can be identified based on normal assumptions.  In the 
particular case of a colour flip design, this would be done by constructing 
confidence intervals on the difference in GC effect.   

If the distribution of the residuals shows serious deviations from normality, 
confidence interval construction can still be done, but bootstrap analysis 
should be used as an alternative.  In bootstrap analysis [50,67,68] no explicit 
assumption on the distribution of the errors is made (somewhat similar to the 
permutation analysis of SAM described in section 3.2.3), but confidence 
intervals are estimated based on novel in silico generated datasets.  The only 
assumption is that the errors are identically and independently distributed 
(iid), i.e. assuming a constant error variance.   Simulated datasets are 
created as: 

*
ijklmI

*
ijklmijklm

*
ijklm eÎI +=  (3.5) 

where the  are drawn independently from *
ijklme ( )pnnÊ − , Ê being the 

empirical distribution of residuals from the original fit of the model, n the 
total number of intensity measurements in the experiments, and p the total 
number of degrees of freedom in the model.  Rescaling Ê produces a 
distribution of which the variance is closer to that of the real error term 
[113,223].  By adding residuals, randomly sampled with replacement from 
this rescaled residual distribution, to the estimated expression values in this 
way, thousands of novel bootstrapped datasets can be generated.  In the 
particular case of a colour flip design, a measure for the differential 
expression of each gene can be calculated for such a novel dataset as the 
difference in GC effect between the two conditions can be calculated.  Based 
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on these thousands of estimates of the difference in GC effect, a bootstrap 
confidence interval can be obtained [110,111,113].  

3.2 Identifying differentially expressed genes 
from log-ratios 

When consistent sources of variation have been removed by normalization, 
the replicate log-ratio measurements for a particular gene can be combined 
to find out whether a gene is differentially expressed.  A plethora of methods 
is available to identify differentially expressed genes in a statistically more 
founded way than the simple heuristic of a fold test 
[12,31,34,58,126,144,157,199,204,222,233].  Distinct classes of models can 
be discerned (see Table 3.1), differing from each other in the test statistic 
used, in the way the null hypothesis is modelled, and in their underlying 
assumptions.  In this study, three different ratio based methods for selecting 
differential genes were compared to the ANOVA-based bootstrapping: the 
fold test, the t-test described by Long et al., 2001 [126] and the SAM 
(Significance Analysis of Microarrays) method of Tusher et al., 2001 [204].  
Though quite advanced, these methods are still most intuitive and 
straightforward to understand for non-expert users, and cover a broad range 
of different approaches (see Table 3.1).  They are outlined in this section, but 
for the in depth technical details of each of these methods we refer to the 
individual references. 

3.2.1 Fold test 

The fold test is a simple selection procedure that makes use of an arbitrary 
chosen threshold.  For each gene i an average log-ratio iM  (arithmetic mean 
of the replicate log-ratios) can be calculated as:  

WT,iKO,ii IIM −=  (3.6) 

with KO,iI  being the average of the logarithm transformed intensities for gene 
i in the knock-out condition, and WT,iI  being the average of the logarithm 
transformed intensities for gene i in the wild-type condition.  Average log-
ratios that exceed a certain threshold (usually chosen to correspond to a 
twofold expression ratio) are retained.  The fold test is based on the intuition 
that a larger observed fold change can be more confidently interpreted as a 
stronger response to the environmental signal than smaller observed 
changes.  Note that a fold test discards all information obtained from 
replicates [12]. 
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3.2.2 t-test 

A t-test is a hypothesis test that assumes that the observations are drawn at 
random from a normal population and that employs a Student t-distributed 
test statistic for confidence interval estimation.  The t-distribution describes 
the distribution of a normal variable, standardized with the sample variance 
s2 as opposed to the population variance σ2.  It is used for hypothesis testing 
of normally distributed variables when the population variance σ2 is 
unknown, in which case the sample variance s2 is used as an estimator of σ2.  
It is more appropriate to make statistical inference about the differential 
expression of a gene than a simple fold test, since it does not only take into 
account how much a gene is differentially expressed, but also the 
consistency of the individual measurements used to assess the average 
differential expression level.  The non-paired t-test evaluates if the average 
expression level of a gene in the test condition is significantly different from 
its average expression level in the reference condition. The H0 hypothesis 
states that the expression level of the test and reference are equal. The 
formula to compute the test statistic is depicted in Table 3.1. To calculate the 
within sample variance of a regular non-paired t-test, the four observations 
of the test are used to estimate the mean expression level of the gene in the 
test condition. In the same way the four measurements of the reference are 
considered as a single group. The standard deviations (si,KO, si,WT) are 
computed based on the deviation of the different measurements of a group 
from their respective group means (Īi,KO, Īi,WT).  Of course when the within 
variance is calculated in such a way, it intrinsically contains the consistent 
variations due to array and spot effects (the absolute expression values 
instead of the ratios are used to calculate an estimate of the average 
differential expression level).  This problem can be overcome by using a 
paired t-test.   

The paired t-test is a special case of the two-sample t-tests of hypotheses that 
occurs when the observations on the two populations of interests are 
collected in pairs (in a cDNA microarray experiment, measurements of the  
Cy5 and Cy3 channel for a particular gene, assessed on the same array and 
the same spot, are paired).  The difference with an unpaired two-sample t-
test is that both variables are presumed to be dependent.  This translates into 
the incorporation of the covariance between both variables in the test 
statistic.  As a result, a positive correlation within the pairs can cause the 
unpaired two-sample t-test to considerably understate the significance of the 
data if it is incorrectly applied to paired samples.  In Table 3.1 is outlined 
how a paired t-test is calculated for spotted microarray data.  For 
computation of the variance, a pair of observations can considered as a new 
variable.  The within group variation, as calculated by a paired t-test 
evaluates the deviation of this new variable from the mean of that variable, 
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taking into account the covariance between log-intensities obtained from the 
same spot.  As such a paired t-test, in contrast to a regular non-paired t-test 
intrinsically compensates for the variation over spots and arrays.  The lower 
within group variation increases the power of a paired t-test as compared to a 
regular t-test.  In practice, the advantage of a (paired) t-test is that smaller 
fold changes are considered significant for genes whose expression levels 
are measured with great accuracy (high consistency), and large fold changes 
are considered non-significant if expression levels were not measured 
accurately (low consistency).   

Usually a t-test is combined with a correction for multiple testing.  When 
considering a family of tests, the level of significance and power are not the 
same as those for an individual test.  For instance, a significance α of  0.01 
for individual gene expression indicates a probability of 1% of finding a 
ratio similar to the measured ratio under the null hypothesis (no differential 
expression present).  This means that for every 1000 genes tested (a family 
of 1000 tests), 10 would be expected to pass the test, though not 
differentially expressed.  To limit this number of false positives in a multiple 
test, a correction is needed.  The implementation of Baldi and Long, 2001 
(Cyber-T) uses a Bonferroni correction [12].  The choice of the Bonferroni 
correction factor however (see chapter 4 of Neter et al. [141]), is quite 
arbitrary and due to the immense amount of simultaneous tests (i.e. 
thousands of genes) the single step adjusted p-values, as implemented in the 
Cyber-T software, decrease the power of the statistical test (ability to detect 
real positives).  To handle these pitfalls, other corrections for multiple testing 
have been proposed [58].  Long et al., 2001 [126] provide other extensions 
to their implementation of the t-test such as the Bayesian t-test, a 
methodology developed to cope with the low number of replicates.   

3.2.3 SAM 

SAM (Significance Analysis of Microarrays) is another method for the 
analysis of paired or unpaired black and white experiments [204].  SAM 
calculates for each gene a modified t(i) statistic, called relative difference 
and referred to as d(i) in the original article. The difference between a t-test 
statistic t(i) and the d(i) values calculated by SAM, is the constant term s0, 
used to compensate for the dependency of the distribution of d(i) on the 
measured expression level.  Genes are ranked according to their d(i) value 
and the higher the absolute d(i) value, the more likely that the gene will be 
differentially expressed.  Instead of calculating a p-value using a Student t-
distribution, genes called differentially expressed are identified by 
performing a permutation analysis.  New random datasets are generated by 
permuting the original data.  In these permutated datasets, none of the genes 
is differentially expressed. The d(i) values in these randomized datasets are 



Chapter 3 - Evaluation of ANOVA normalization 

48 

calculated, ranked, and subsequently used to infer the expected differences, 
i.e. the d(i) value that can be expected if a gene is not differentially 
expressed. By using a scatter plot (Figure 3.1), ranked d(i) values of the 
experimental dataset are compared to ranked expected d(i) values.  

The delta value δ, a user-specified parameter determines the number of 
significant, differentially expressed genes; it expresses how much the 
measured d(i) value should exceed the expected one in order to consider a 
gene diferentially expressed (δ is measured as a displacement of the d(i) 
value from the d(i) = dexpected(i) line).  The number of false positives can be 
estimated as the number of genes present in the permuted dataset, for which 
the d(i) value exceeds the lowest d(i) value that was considered significant 
based on a given setting of the delta value δ.  Permutation analysis 
overcomes the need of a high number of replicates and is used as an 
alternative to correction for multiple testing.  The setting of the delta slider 
allows choosing a trade-off between the number of false positives (type I 
error) and the number of false negatives (type II error).  The lower the 
number of false positives, the more stringent the test and the fewer genes 
will be withheld as significant.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1:  SAM analysis output.  Expected differences in expression are plotted against 
observed differences in expression.  The value  δ determines the threshold (dotted 
lines) which is used to select genes of which the observed change is in expression is 
sufficiently different from the expected one, i.e. the genes that can be assumed to 
exhibit differential expression (grey dots).  The method also gives an indication of 
the number of false positives (False Discovery Rate or FDR).  The result depicted is 
that of the LOWESS normalized dataset (see section 1.3.3).  
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3.3 Results 

3.3.1 Data set 

The dataset used in this review compares a spontaneous knock-out (KO) and 
wild-type (WT) mouse (data kindly provided by Prof. T. Ayoubi; the 
experiment was conducted at the VIB MicroArray Facility by  Dr. P. Van 
Hummelen).  In the spontaneous knock-out mouse, the Hmgi-c gene has 
been disrupted by a 100kb deletion.  Hmgi-c RNA was consequently not 
transcribed and therefore did not result in a protein.  HMGI proteins play a 
critical role at promoter regions in the correct assembly and stabilization of 
higher order protein-DNA complexes required for efficient transcriptional 
activation of genes [103]. 

From both mice mRNA was extracted, labelled and hybridized on a mouse 
cDNA microarray containing 4202 cDNA fragments of 0.5 to 2kb.  The 
cDNA fragments were PCR amplified, purified and spotted in duplicate on 
Type-VII silane coated slides (catalogue number RPK0174, Amersham 
BioSciences, UK) using a Molecular Dynamics Generation III printer with 
12 capillary quill pins (Amersham BioSciences).  Duplicate spots were 
arrayed distant from each other on the left and right hand side of the slide.  
For the probes, 5  μg of total RNA was amplified using a modified protocol 
of in vitro transcription as described earlier and labelled during a reverse 
transcription reaction of the amplified RNA [155] with either Cy3-dCTP 
(green dye) or Cy5-dCTP (red dye).  The probes were mixed and hybridized 
overnight using an automatic slide processor (Amersham BioSciences).  
Hybridizations were repeated in the following way: in a first analysis, the 
test sample (KO) was labelled with the Cy5 (red) dye while the 
corresponding reference (WT) was labelled with the Cy3 (green) dye, and in 
a second analysis the colours were reversed (i.e. colour flip experiment). 
Since every gene was spotted in duplicate, this design resulted in four 
measurements per gene for each condition tested. 

3.3.2 Data preparation 

Prior to performing the distinct statistical tests, data were preprocessed as 
outlined in this paragraph.  Raw intensities were corrected with a local 
background subtraction and the resulting values were log-transformed.  
Genes, for whom at least one intensity measurement contained a value 
smaller or equal to zero, were treated separately.  Dividing by, or taking the 
logarithm of, negative or zero values during analysis will result in undefined 
(missing) values.  If these genes are not treated separately, the information 
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about such genes is lost.  In a two-sample experiment, below zero values in 
one particular condition might correspond to genes differentially switched 
off, i.e. being of great interest to the posed biological question.  In this 
particular example all genes containing below zero intensities behaved 
inconsistent, indicating that the value of zero was dye dependent rather than 
condition dependent.  Genes consistently switched on in one condition and 
off in the other were not detected. 

about such genes is lost.  In a two-sample experiment, below zero values in 
one particular condition might correspond to genes differentially switched 
off, i.e. being of great interest to the posed biological question.  In this 
particular example all genes containing below zero intensities behaved 
inconsistent, indicating that the value of zero was dye dependent rather than 
condition dependent.  Genes consistently switched on in one condition and 
off in the other were not detected. 

Array 1

M

A

M

A

LOWESS

Array 2

M

A

M

A

LOWESS

Figure 3.2:  LOWESS normalization of the data.  Effect of performing a LOWESS 
normalization on the data illustrated by MA-plots for both arrays.  The upper two 
plots correspond to one array, the lower two correspond to the other.   Original 
background corrected intensities are shown in the left plots, LOWESS corrected 
intensities are shown in the right plots.   
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A MODEL (3.1)

Source SS df MS
G 133176.3 3784 35.2
C 4536.6 1 4536.6
A 22432.4 1 22432.4
D 4822.5 1 4822.5
GC 1313.6 3784 0.3
Error 19210.4 22708 0.8
Total 185492.2 30279 6.1

B MODEL (3.2)

C MODEL (3.3)

Source SS df MS
G 133176.3 3784 35.2
C 4536.6 1 4536.6
A 22432.4 1 22432.4
D 4822.5 1 4822.5
R(GA) 15005.5 7570 2.0
GC 1313.6 3784 0.3
Error 4204.9 15138 0.3
Total 185492.2 30279 6.1

Source SS df MS
G 133176.3 3784 35.2
C 4536.6 1 4536.6
A 22432.4 1 22432.4
D 4822.5 1 4822.5
R(G) 2164.7 3785 0.6
GA 9052.6 3784 2.4
GC 1313.6 3784 0.3
Error 7993 15138 0.5
Total 185492.2 30279 6.1

e

e

e

Î

Î

Î

Figure 3.3:  Results of the three different ANOVA models tested.  Data were log-transformed, 
genes containing at least 1 zero value were removed, but no normalization by 
LOWESS was performed.  ANOVA models used:  μ: overall mean of the expression 
levels, A: array effect, D: dye effect, G: gene effect, C: condition effect, GC: effect 
of interest, R: replicate effect, AG: combined effect representing a spot effect, i: 
number of genes, j: number of conditions, k: number of arrays, l: number of dies, m: 
number of replicates.  ANOVA tables represent for each effect in the corresponding 
ANOVA model its contribution to the total variance (SS = sum of squares error). The 
residual SS, represented by Error is the variation in the dataset that could not be 
explained by any of the effects.  The total variation in the dataset represented by 
Total.  Df denotes the degrees of freedom, MS the mean square error.  Corresponding 
residual plots represent for each ANOVA model the plot of the residuals (e) versus 
the estimated intensity values (Î).  If the assumptions underlying an ANOVA model 
are satisfied residual plots should be structureless.  The possible causes for the 
observed heteroscedasticity in the residual plots are explained in the text.  
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For the fold test, t-test and SAM procedure, log-ratios were calculated and 
subsequently normalized for dye related biases by performing intensity 
based rescaling (LOWESS fit with smoothing parameter f set to 30%, [226]).  
The results of this normalization are depicted in Figure 3.2. 

When using ANOVA, different models can be devised to normalize colour 
flip designs.  Three such models were described in section 3.1.2, all of which 
were evaluated to select the most appropriate one for the colour flip 
experiment under study.  Figure 3.3 depicts the ANOVA tables and their 
corresponding residual plots that are obtained when fitting each of the three 
models to the data.  Residual plots were used to check if the models were 
appropriate and if the assumptions were satisfied.  The sum of squares values 
(SS) describe for each effect its contribution to the global variation in the 
experiment.  From Figure 3.3 it is clear that the contribution of array and 
gene effects had the highest impact.  Given the biological question 
underlying the experiment, only a limited number of genes were expected to 
exhibit a differential expression between wild-type and knock-out.  The 
marginal influence of the GC effect, as compared to the influence of the 
other effects, seemed to support this.  Because of the unrealistic assumption 
of individual spot effects in the second model (i.e. assuming that each gene 
is spotted by a different pin represented by the AG effect), the number of 
measurements available to estimate the spot effects were too low (only two 
values available per AG effect). The model ‘over-fitted’ the data as is also 
shown by the extremely low contribution of the residual error to the global 
variation in this model and the strange behaviour observed in the residual 
plot.  This observation underlines the danger of arbitrarily omitting and 
including effects and emphasizes the importance of choosing a realistic 
model.  The third model, probably best adapted to the technological reality 
of the process, seemed to perform best and was selected for further analysis, 
as it had less obtrusive trends in the residual plot (compared to the second 
model), and showed a smaller error variance than when data were 
normalized with the first model.  

All model fits however, suffered from another problem, which is illustrated 
for the third model in Figure 3.4.  Residuals were far from normally 
distributed and showed an apparent slight heteroscedasticity (a non-constant 
variance of the residuals) at low expression levels.  The observed residual 
behaviour can either be caused by not satisfying the underlying constant 
variance assumption of the data (second assumption), or in the worst case 
because the data are not adequately modelled by a linear model (first 
assumption).  By plotting the residuals against the estimated values for the 
individual combinations of effects (see Figure 3.5 A) it was clear that the 
observed heteroscedasticity did not only result from non constant variance in 
the dataset (presence of additive error in the low expression range) but that 
non-linear effects occurred in the data.  As explained in section 2.2.2.3 of 
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chapter 2, microarray data often show a strong non-linear dye bias across the 
intensity range.  Such behaviour prohibits readily using linear ANOVA 
models on non-linearized data.  To minimize their influence, non linear dye 
effects were removed by performing a LOWESS fit (smoothing parameter f 
set to 30%) prior to ANOVA.  The results of fitting the third ANOVA model 
on LOWESS modified data are depicted in Figure 3.5.  The impact of the 
LOWESS normalization is reflected by the zero contribution of the dye and 
condition effects in the ANOVA table. From the residual plot it is clear that 
linearization by LOWESS could not completely remove the 
heteroscedasticity in the residuals.  However, when residuals were plotted 
for each array and dye separately as shown in Figure 3.5 B, it is clear that 
non-linear tendencies have sufficiently been removed when performing 
LOWESS prior to ANOVA.  The estimated parameters and rescaled 
residuals of the third model fitted to LOWESS normalized data were used 
for bootstrap analysis and selection of differential expression.   

chapter 2, microarray data often show a strong non-linear dye bias across the 
intensity range.  Such behaviour prohibits readily using linear ANOVA 
models on non-linearized data.  To minimize their influence, non linear dye 
effects were removed by performing a LOWESS fit (smoothing parameter f 
set to 30%) prior to ANOVA.  The results of fitting the third ANOVA model 
on LOWESS modified data are depicted in Figure 3.5.  The impact of the 
LOWESS normalization is reflected by the zero contribution of the dye and 
condition effects in the ANOVA table. From the residual plot it is clear that 
linearization by LOWESS could not completely remove the 
heteroscedasticity in the residuals.  However, when residuals were plotted 
for each array and dye separately as shown in Figure 3.5 B, it is clear that 
non-linear tendencies have sufficiently been removed when performing 
LOWESS prior to ANOVA.  The estimated parameters and rescaled 
residuals of the third model fitted to LOWESS normalized data were used 
for bootstrap analysis and selection of differential expression.   

  

  

  

  

  

  

  

  

  

  

  

C LOWESS + MODEL (3.3) e

Î

Source SS df MS
G 133176.7 3784 35.2
C 0.0 1 0.0
A 22432.4 1 22432.4
D 0.0 1 0.0
R(G) 2164.7 3785 0.6
GA 9052.6 3784 2.4
GC 1239.8 3784 0.3
Error 5656 15139 0.4
Total 173722.2 30279 5.7

  

  

  

  

  

  

  

Figure 3.4:  Results of ANOVA model (3.3) fitted to LOWESS normalized data.  The 
ANOVA table and the corresponding residual plot of fitting ANOVA model (3.3) to 
the preprocessed data. In this case, data were log-transformed, genes containing at 
least 1 zero value were removed and in addition data were LOWESS normalized. 
Other symbols as in Figure 3.5.  The zero entries for condition and dye factors in the 
ANOVA table are a result of the array-by-array LOWESS normalization.  The 
residual plot exihibits a smaller variance compared to those of panels A and C of 
Figure 3.5, while showing a more homogeneous distribution (no artifacts) the the one 
depicted in panel B of Figure 3.5. 
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Figure 3.5:  Non-linear effects.  Influence of non-linear effects in the data on the residual plots of 
the ANOVA model.  Panel A: residual plots for the application of ANOVA model 
(3.3) on the data plotted separately for each array and each dye combination. Data 
were log-transformed, genes containing at least 1 zero value were removed.  Panel B: 
residual plots for the application of ANOVA model (3.3) on the LOWESS 
normalized data plotted separately for each array and each dye combination. Data 
were preprocessed as before, but an additional LOWESS normalization prior ro 
fitting the ANOVA model allowed removal of strong nonlinear dye effects. 
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Table 3.2: Overview of the number of 
statistically differentially expressed genes, as 
identified by the methods tested.   

 

 

 Method Number of genes 
called significant

Fold test 110

t -test 106

SAM 106

ANOVA 95% 163

ANOVA 99% 71

 

 

 

 

 

 Note: Parameters for each method were chosen as such 
that each method withheld approximately the same 
number of genes.  

3.3.3 Comparison of the different methods 

In this section, the output of the fold test, the t-test, SAM and the ANOVA-
bootstrap method are compared.  Since the number of genes called 
significantly differentially expressed depends on the specific parameter 
setting of each method (threshold for fold test, p-value for t-test, delta slider 
for SAM, significance level for bootstrap confidence intervals), parameter 
settings were chosen such that each method predicted approximately the 
same number of genes as being significant (Table 3.2).  All methods were 
performed on the data preprocessed as outlined in section 3.3.2, and yielded 
the following results:  

• After normalizing the data with ANOVA model (3.3), 163 genes 
were identified as potentially differentially expressed based on a 
95% bootstrap confidence interval, and 71 genes based on a 99% 
bootstrap confidence interval. 

• Using a two-fold threshold for the fold test, 110 genes were selected 
as being differentially expressed.   

• Using the paired t-test of Baldi and Long [12] on our dataset resulted 
in 186 genes with an individual p-value lower than 0.01 and 106 
genes with a p-value lower than 0.005.  Only 3 genes in our dataset 
passed the significance test after correction for multiple testing 
(assuming an experiment wide false positive rate of 0.25).  
Therefore, the single step adjusted p-values, as implemented in the 
Cyber-T software are seemingly too conservative, decreasing the 
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power of the statistical test (ability to detect real positives), and were 
omitted from these analysis.   
power of the statistical test (ability to detect real positives), and were 
omitted from these analysis.   

• Using a paired test and a value for the delta slider of 0.93, 106 genes 
were considered as differentially expressed by SAM, with a median 
number of false positives of 7 (Figure 3.1).   

• Using a paired test and a value for the delta slider of 0.93, 106 genes 
were considered as differentially expressed by SAM, with a median 
number of false positives of 7 (Figure 3.1).   

  

A C M M

A A

Figure 3.6:  Detailed representation of distinct groups of differential genes.  Average log-
intensities A are plotted against LOWESS normalized log-ratios M for both arrays in 
a single figure.  Black dots: normalized expression level of all 3785 genes.  Dots 
colored otherwise indicate the expression levels of the genes showing the profile of 
the corresponding groups.  Cyan and red: expression levels as measured on the first 
array or second array respectively.  +: right spots; *: left spots.  Dashed lines indicate 
1.5 fold and 2 fold levels of over and under-expression respectively.  A: genes 
detected by all methods (group 1 in Table 3.3).  B: genes only detected by the t-test 
(group 10 in Table 3.3).  These measurements were very consistent but probably too 
close to zero (not differentially expressed) to be biologically relevant.  C: genes only 
detected by t-test and SAM (group 11 in Table 3.3).  These measurements were 
consistent and sufficiently different from zero (differentially expressed) to be 
detected by resampling methods such as SAM.  D: genes detected by the fold test 
and ANOVA-based methods only (group 9 in Table 3.3).  Due to their high average 
expression value these genes were considered as being significant, but the 
consistency of these genes was remarkably low.  Most of the data points were 
located in the region of low average intensity.  In this range the ratio becomes a poor 
estimator of differential expression.  Due to the heteroscedasticity in the data, 
bootstrap based confidence intervals systematically underestimated the variation at 
low average intensity levels and failed to reject these potentially false positives. 

A A

M MB D 
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Of the 3785 genes spotted on the microarray slide, 246 genes were detected 
by at least one of the methods tested.  Results are summarized in Table 3.3.  
Validating these results is difficult and can hardly be done straightforward, 
as it is of course unknown which genes are actually differentially expressed.  
To facilitate inter-comparability, each group of genes in Table 3.3 are 
characterized by their range of average expression ratios and p-values (as 
determined by the t-test).  Both of these traits were used as guidelines for 
interpreting the obtained results.  The ‘average expression ratio’ was 
considered because, in all statistical tests, such a ratio was used as an 
estimator of the differential expression.  When using a fold test, t-test, or 
SAM, this constitutes the average log-ratio M .  When using ANOVA, 
differential expression is estimated as a difference in GC effects, which, in 
the case of a colour flip design, can be considered as a rescaled log-ratio.    
The p-value, as calculated by the paired t-test, can be considered an 
indication of the consistency of a particular measurement.  A lower p-value 
reflects a low variation between the replicate measurements for the ratio 
estimate of that gene.  This means that the better the specific characteristics 
of genes belonging to a group (higher differential expression level and more 
consistent measurements), the more reliable the predictions on the genes 
within that group are assumed to be.  Comparing these gene characteristics 
of the different groups allowed to make conclusions about the performance 
of the different methods tested, which are outlined below.   

Only 8 genes were detected by all methods (see Table 3.3, group 1).  Given 
that the number of differentially expressed genes identified by the individual 
methods ranges up to 100 and over, this points towards a rather low degree 
of agreement between the different methods in the prediction of the 
differentially expressed genes.   

Genes that were called differentially expressed merely based on a fold test 
showed a huge variation across the different replicate measurements.  As can 
be seen in Table 3.3, in group 8 and 9 the high p-values reflected this low 
consistency.  These genes would have been rejected by tests that take into 
account explicitly the within group variation (such as a paired t-test or 
SAM).  Indeed, the choice of a constant arbitrary threshold implicitly 
assumes that the variance among replicates is the same for every gene.  This 
is, however, not the case since the variation on the ratio, as estimator of the 
differential expression, depends on the variation of the absolute signals that 
constitute the factors of that ratio.  Low absolute expression values in one of 
the two channels results in unstable, often artificially high ratios.  As such, a 
fixed ratio threshold of 2 gave rise to a high number of false positives, 
especially in the low expression range where the signal to noise ratio is low.  
However, as the intensities in both the channels increase, the ratios 
theoretically become a more reliable estimate of the differential expression. 
In this region a fixed ratio threshold of 2 might have been too stringent.  
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Different variants of the fold test have been described hitherto that are based 
on additional series of filtering steps, e.g. a filtering step removing all genes 
below a certain signal to noise level.  Though likely to give better results 
than the fold test as described here, these fold tests make use of arbitrarily 
defined thresholds and are not statistically founded. 

From this perspective the paired t-test is a better alternative to the fold test.  
It does not only focus on the extent to which a gene is differentially 
expressed, but also takes into account the variation across the different 
measurements used to determine this average differential expression level.  
Indeed, genes that are retained by the paired t-test will per definition behave 
consistently (only genes with a p-value smaller than 0.005).  However, what 
is often observed is that the lower the signal, the more consistent genes tend 
to behave.  This could be observed in our dataset in group 10 (Figure 3.6) 
that represent all genes retrieved by the paired t-test only.  Although 
behaving consistently, these genes were almost not differentially expressed 
(relative expression value in logarithmic scale close to zero).  The observed 
consistency might have been merely coincidence. These genes were indeed 
rejected by the resampling based methods (SAM, and ANOVA followed by 
bootstrap), and are probably irrelevant from a biological point of view 
(Table 3.3, group 10).  Therefore using a paired t-test alone will probably 
result in the retrieval of consistently behaving but not necessarily 
differentially expressed genes.  On the other hand, the paired t-test 
apparently missed a number of presumably real differentially expressed 
genes in the data set.  Judging from Table 3.3, group 3 and group 4 
contained genes that were rejected based on the paired t-test, but not by the 
resampling based methods.  These genes exceeded a 2 fold expression level.  
It is, however, not straightforward to judge the relevance of these genes.  
Although not very consistent, their replicate measurements had the same 
tendency either being considerably over or under-expressed.  Due to the 
restricted number of available measurements, the power of the t-test could 
have been too low to retain these genes.  In contrast, the SAM method is less 
stringent because it makes no explicit assumptions on the H0 distribution.  
Therefore these genes, though missed by the paired t-test, are still considered 
significant by SAM.  Another interesting set of genes were those detected by 
both the paired t-test and resampling-based approaches.  These genes are 
grouped in groups 11 and 5, and were only marginally but reliably down- or 
up-regulated (Table 3.3).  It seems that these genes underwent subtle 
changes in expression level, barely exceeding what can be expected by 
coincidence (in contrast to the genes detected by the paired t-test alone) and 
are probably, from a biological point of view, most interesting.   

The behaviour of the ANOVA model is illustrated by Figure 3.6, depicting 
group 9 (group 7 and group 8 suffer from the same problem but are not 
shown).  The ANOVA-based bootstrapping approach assumes a constant 
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confidence interval identical for all genes.  The size of the confidence 
interval is estimated based on a fixed residual distribution of the model fit on 
the complete dataset.  As mentioned previously, if either one of the channels 
measures a signal close to zero (reflected by a low average expression level) 
the expression ratio (difference in GC effects) becomes an unreliable 
estimator of the differential expression.  Indeed, in our data set, gene 
expression values close to zero in either one of the channels often resulted in 
relative high but inconsistent expression ratios (p-values of the paired t-test 
range from 0.04-0.55).  For these genes, the constant confidence interval was 
a serious underestimation of the variation on these measurements.  Groups 7, 
8 and 9 (Table 3.3) are therefore most likely to contain predominately false 
positives.  On the other hand, for genes that were only slightly differentially 
expressed, the constant confidence intervals based on the constant residual 
variance were probably too stringent to retain these genes. This resulted in a 
failure of the ANOVA based bootstrapping test to detect genes with more 
subtle alteration in expression level such as those present in group 11.  
Finally, in group 6 and 12, genes were grouped that were only detected by 
SAM (Table 3.3).  These genes all behaved rather consistent (64% of the 
genes have p-value lower than 0.01, Table 3.3) and deserve further 
investigation.   

3.4 Discussion 
The goal of this chapter was to evaluate the use of ANOVA for 
preprocessing microarray data by identifying differentially expressed genes 
and comparing these to results from ratio based approaches.  Apart from 
gaining insight into the workings of ANOVA models for normalizing 
microarray data (and identifying differential genes), a better understanding 
of the particular advantages and disadvantages of the different ratio based 
selection procedures resulted from this research. 

With regards to the fold test, paired t-test, and SAM, the following 
conclusions could be made from our observations.   Each of the methods 
differs in the required assumptions on the variance of the data and on the 
distribution of the residuals under the H0 hypothesis.  Therefore, the method 
for which the underlying assumptions are best satisfied will give the most 
reliable results, i.e. the reliability of the methods is dependent on the data set, 
as is often the case with statistical tests.  The paired t-test could certainly be 
used as a more statistically founded alternative of the fold test.  However, 
due to the few replicate measurements, it had the tendency to retrieve many 
consistently behaving ratio estimates seemingly too close to 0 to be called 
differentially expressed.  Moreover, because of the restricted number of 
replicates, the paired t-test also has a rather low power.  Of all methods 
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tested on our dataset, SAM clearly outperformed the other methods because 
the underlying assumptions were probably best satisfied. 
tested on our dataset, SAM clearly outperformed the other methods because 
the underlying assumptions were probably best satisfied. 

  

Array 1

M

A

M

A
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Array 2

M

A

M

A
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Figure 3.7:  Local background correction of the data.  Effect of performing a local background 
correction normalization on the data illustrated by MA-plots for both arrays.  The 
upper two plots correspond to one array, the lower two correspond to the other.   
Raw intensities are shown in the left plots, background corrected intensities are 
shown in the right plots.  Although apparently increasing the measurement range, 
performing a local background correction is the main reason for observing an 
increased error variance at lower intensity levels.   
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Several conclusions can be drawn with regards to ANOVA normalization, 
and the use of its residual distribution for identifying differentially expressed 
genes.  The ANOVA based bootstrap method clearly underperformed in 
identifying differentially expressed genes.  The assumption of a constant 
residual variance is obviously an oversimplification viewing the nonlinear 
trends in the data and the additive error in the low expression range.  This 
oversimplification renders the use of the fitted residual distribution (with 
normal assumptions or by bootstrapping) for reliable identification of 
differentially expressed genes impossible.  Performing different 
transformations prior to ANOVA could help to alleviate the problem of 
heteroscedastic residuals.  In order to allow bootstrap analysis despite the 
unequal variance in residuals, Kerr et al., 2001 proposed an adapted 
bootstrap procedure [109].  Instead of assuming a constant error for all 
measurements, the residual distribution was considered either gene-specific 
or at least intensity-specific.  Another option could be to perform a non-local 
background correction or no background correction at all.  At the time this 
research was conducted, local background correction was widely considered 
as an obligatory step in the normalization of microarray data.  Since then, 
many objections have been uttered [32,66,82,115,135,201] (see also section 
2.2.2.1 of chapter 2) and the matter is considered less clear cut.  As shown in 
Figure 3.7, for the data set used, performing a local background correction, 
although apparently increasing the measurement range, is the main reason 
for observing an increased error variance at lower intensity levels.  Neither 
of these approaches however, will work when heteroscedasticity is caused by 
a superposition of non-linear trends in the residuals for separate 
combinations of major effects (Figure 3.5 A, e.g. all genes measured with 
Cy5 on the second array).  This was observed in our test examples, and can 
be attributed to non-linear dye discrepancies.  These non-linear tendencies in 
the data prohibit the use of ANOVA for data normalization.  Performing a 
LOWESS normalization (or a similar intensity based rescaling) prior to the 
application of an ANOVA model can alleviate such dye biases and can 
therefore be considered as a required step in any normalization procedure 
based on an ANOVA model. 

From a theoretical point of view, ANOVA is nevertheless a powerful tool for 
preprocessing microarray data.  The simultaneous use of all measurements, 
not only to normalize the data, but also to provide an estimate of the random 
experimental noise, can be considered as a major advantage.  ANOVA 
models also provide a means to account for different sources of systematic 
variations representing the physical realities of a microarray experiment, 
contrary to the normalization strategies for log-ratios, which often adopt 
dubious assumptions (GNA) and may be described as ‘what we expect, is 
what you get’.  More importantly, ANOVA models can deliver an estimate 
of absolute expression and take into account the specifications of each 
experimental setup.  They are therefore better suited to analyze more 
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complex designs than any ratio based procedure.  However, the ANOVA 
models presented in this chapter can not readily be applied to more complex 
designs, and extending these models is not a trivial matter.  The next chapter 
will deal the problems and issues that arise when designing ANOVA models 
for complex microarray experiments.   
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Chapter 4 

Generic ANOVA models 

ANOVA models for microarray normalization can not readily be applied to 
any type of experimental setup of a microarray experiment.  This chapter 
describes the issues that are encountered when attempting to fit published 
ANOVA models to different experimental designs (section 4.1), and the 
development of generic (applicable to any experimental setup) ANOVA 
models for microarray normalization (section 4.2).  Section 4.3 is dedicated 
to the implementation of such a generic model in a user friendly web 
application. 

4.1 ANOVA models and experiment design 
In this section we will describe how the parameters of ANOVA models are 
estimated, as well as how these estimators are influenced by the 
experimental design of the study.  These principles are illustrated by means 
of three simple, but conceptually different designs (see also chapter 2, 
section 2.2.2.2): a colour flip design, a reference design, and a loop design 
(Figure 4.1). 

4.1.1 Colour flip 

Reconsider model (3.3) outlined in chapter 3, section 3.1.2: 

ijklmijik)i(mlkjiijklm GCGA)G(RDACGI εμ ++++++++=  
 (4.1)  

Regardless of experiment design, each gene index i occurs m(i) times (as 
many as there are replicate spots on an array for that clone) with each 
combination of a condition, array, and dye, i.e. with each combination of (j, 
k, l).  In the particular case of a two array colour flip design, specifying any 
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two of array, dye and condition automatically determines the third.  With 
respect to the design variables array and dye, the layout of the tissue 
varieties forms a 2×2 Latin square [40].  A colour flip design is therefore 
often referred to as a Latin square design (illustrated in Table 4.1).   

 
Table 4.1: Latin square structure of a colour flip 
design with respect to the main variables dye, array, 
and condition. 

 

 

1 2

y5 Condition 1 Condition 2

y3 Condition 2 Condition 1

Dye Array
 

 

 

 

 

For any ANOVA model, estimates of the different factor levels can be 
calculated in a least-squares sense (see also appendix B).  Least-squares 
estimators (LSEs) minimize the sum of squares of model residuals.  For 
model (4.1), the error sum of squares (SSE) is: 

( )∑=
ijklm

ijklmeSSE 2

  
 ( )∑ +++++++−=

ijklm
ijik)i(mlkjiijklm GCGA)G(RDACGISSE 2μ

 (4.2) 
Generally, to fit a linear model it is not necessary to derive the functional 
form of least-squares parameter estimates, because these parameters can be 
calculated by matrix inversion (see section B.2, appendix B).  Due to the 
large number of parameters that need to be estimated in the case of 
microarray data however, this will be computationally infeasible for general 
matrix inversion programs.  A minimum of the SSE is therefore calculated 
analytically by solving the set of normal equations (NEs), which are 
obtained by taking the partial derivatives of the SSE with respect to each the 
model parameters and setting them to zero:   
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0      0      0      0 ====

In order to solve this system of equations, several constraints need to be 
taken into account.  Adhering to standard ANOVA conventions, for model 
(4.1) these constraints amount to: 

In order to solve this system of equations, several constraints need to be 
taken into account.  Adhering to standard ANOVA conventions, for model 
(4.1) these constraints amount to: 
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Solving the set of equations given by (4.3) and (4.2), such that the 
constraints in (4.4) are respected, leads to parameter solutions for model 
(4.1) that can be written as:  
 .....Iˆ =μ

 
 .........ii IIĜ −=

 
 ........j.j IIĈ −=

 
 

 
.......k..k IIÂ −=

 
 

......l...l IID̂ −=

 ( ) ( ) ....im...imi IIGR̂ −=

 
 

 
.......k......i..k.iik IIIIAĜ +−−=

 ........j.....i...ijij IIIICĜ +−−=  (4.5)
 where a dotted index ‘.’ indicates to average the logarithm transformed 

intensities over that index.   

As illustrated above, certain factor terms can often be ignored when solving 
the NEs for a particular variable of the model, e.g. the expression for the 
LES of the CG effect does not depend on whether GA effects are included in 
the model because of the peculiarities of the Latin square design.  This of 
course, is highly dependent on the experimental design of the study.  If we 
assume that the replication variable in model (4.1), which is nested within 
the gene variable (as indicated in the model), does not interact with any of 
the other variables, meaning that it only serves to account for replicate 
measurements in the form of duplicate spots, then there are four main 
variables.  Given these four main factors in the model, theoretically there are 
sixteen possible effects when we consider interactions of all orders.  It turns 
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out that the Latin square design has a particularly neat structure.  Each of 
these sixteen effects is completely confounded with one other effect, 
meaning one effect is estimable only assuming the other is zero.  The pairs 
of confounded effects for these four main factors in the case of a colour flip 
design are shown in Table 4.2.  Effects that are not completely confounded 
are called orthogonal in the Latin square.  Orthogonality arises when a factor 
is completely balanced with respect to another factor.  For example, if every 
condition in a microarray experiment appears in the design labelled with the 
red and green dyes equally often, condition is orthogonal to dye.  One 
consequence of orthogonality is that the estimates of the two factors are 
uncorrelated.  A second consequence is that including or excluding one 
effect in the model does not alter the estimates obtained for the other effect.   
In general, effects that are neither confounded nor orthogonal are said to be 
partially confounded.  The main design problem with ANOVA models for 
normalizing microarray data should already be apparent now.  Spotted 
microarray technology limits the number of conditions that can be measured 
on a single array to two.   Array and condition will therefore hardly ever be 
completely orthogonal, as for most experimental designs it is impossible to 
measure every condition on each array.  This becomes all the more clear 
when we consider other designs than a Latin square colour flip setup.   

 
Table 4.2: Confounding structure of the colour flip design.    

 Confounding effects 

 

ADC~μ  
DC~A  
AC~D  
AD~C  

ADCG~G  
ADG~GC  
DCG~GA  
ACG~DG  

 

 

 

 

 

 

 

 

 

 

- 

 Note: This design partitions the sixteen experimental factor effects into 
eight pairs. The members of each pair are completely confounded, i.e. one 
member of a pair is estimable only by assuming the other is zero. This 
results in uncorrelated estimates for all effects not in the same pair. Model 
(4.1) includes an effect from every pair except the last. Thus it accounts 
for all data effects except DG and ACG, which are assume to be zero. 
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  Figure 4.1:  Experimental design.  Schematical representation of the basic experimental designs 
that are discussed in relation to ANOVA model fitting in section 4.1: A) Colour flip 
design, B) Reference design (4 conditions and a reference), and C) Loop design (4 
conditions).  Black boxes represent the different biological conditions.  Arrows 
represent the arrays on which indicated conditions are hybridized, either labeled in 
Cy5 (red part of arrow) or Cy3 (green part of array).  

  

  

  

4.1.2 Reference design 4.1.2 Reference design 

A reference design (see also chapter 2, section 2.2.2.2) is used to compare 
multiple distinct biological conditions.  As illustrated in Figure 4.1, these 
different test conditions are each paired with the same reference condition on 
separate arrays.  One advantage of the reference design is that it is easily 
extendable.  Additional varieties can be added to the experiment by adding 
another array on which a new test condition is compared to the reference, 
given that mRNA samples of this reference are still available.  From an 
experimental point of view, another advantage is that each sample needs 
only to be labelled with one dye.  The reference design however, is not 
without drawbacks.  As pointed out earlier (chapter 2, section 2.2.2.2), more 
data are collected on the reference condition than any other, and this 
reference condition will generally be of least interest.  Moreover, the choice 
of reference has a big impact on the quality of measurements of relative 
expression when working with log-ratios.  Genes that demonstrate a low 
expression level in the reference condition (or no expression at all), will 
produce unreliable ratios or even missing values.   

A reference design (see also chapter 2, section 2.2.2.2) is used to compare 
multiple distinct biological conditions.  As illustrated in Figure 4.1, these 
different test conditions are each paired with the same reference condition on 
separate arrays.  One advantage of the reference design is that it is easily 
extendable.  Additional varieties can be added to the experiment by adding 
another array on which a new test condition is compared to the reference, 
given that mRNA samples of this reference are still available.  From an 
experimental point of view, another advantage is that each sample needs 
only to be labelled with one dye.  The reference design however, is not 
without drawbacks.  As pointed out earlier (chapter 2, section 2.2.2.2), more 
data are collected on the reference condition than any other, and this 
reference condition will generally be of least interest.  Moreover, the choice 
of reference has a big impact on the quality of measurements of relative 
expression when working with log-ratios.  Genes that demonstrate a low 
expression level in the reference condition (or no expression at all), will 
produce unreliable ratios or even missing values.   
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The latter is less of an issue when working with absolute intensities (e.g. 
fitting an ANOVA model), but other problems with this design become 
apparent when one considers model (4.1).  First, conditions are completely 
confounded with dyes because each condition is labelled with only one dye.  
Thus, one cannot include both condition effects and dye effects in an 
ANOVA model meant to normalize reference designs.  This in itself is not 
the biggest concern, because these main effects are not of actual interest and 
in practice, the dye effect will often be irrelevant, as a LOWESS 
normalization prior to fitting the ANOVA model is usually applied to 
remove intensity dependent dye biases.  Taking in these considerations, a 
revised version of model (4.1) could be: 

 ijklmijik)i(mkjiijklm GCGA)G(RACGI εμ +++++++=  (4.6) 

A more substantial problem with this model is the large cost in degrees of 
freedom that comes with the additional reference condition.  The total 
amount of measured intensities from a reference design with c conditions 
(including the reference), g genes, and r(i) spotted replicates for each gene i 
(so that s is the total number of spots on an array) is: 

( ) ( ) ( )scirc
g

i

1212
1

−=− ∑
=  

 The mean and the array, condition, and gene main effects together account 
for 2(c-1)+(g-1) degrees of freedom.  The effects of interest, the GC effects, 
account for (c-1)(g-1) degrees of freedom.  The spot effects represented by 
GA and R(G) effects, comprise (c-2)(g-1) and (s-g) degrees of freedom 
respectively.  Depending on the number of replicate spots, the degrees of 
freedom available may be too few too reliably estimate the random error.  In 
the common case were no replicate spots are available (and the R(G) effect 
can be omitted), no degrees of freedom remain to estimate the error term.  
Remark that this is always the case, irrespective of the number of replicates, 
when employing a slightly different model where the replicate variable is 
nested within the interaction variable array×gene (i.e. an R(GA) effect, see 
also chapter 3 section 3.1.2, model (3.2)).  In such cases, at least one set of 
effects must be excluded to be able to estimate error and allow statistical 
inference.  If we ignore spot effects all together, a yet further simplified 
model would be: 

ijklmijkjiijklm GCACGI εμ +++++=  (4.7) 

As is obvious from the discussion above, the confounding of effects in a 
reference design is more complex than for a Latin square design.  There is no 
counterpart to the simple confounding structure presented in Table 4.2.  As 
mentioned, conditions are completely confounded with dyes.  In addition, 
since the conditions are not balanced with respect to the arrays, condition 
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main effects and array main effects are partially confounded (as are 
genexcondition interactions and genexarray interactions).  When effects are 
partially confounded instead of completely confounded, it is possible to 
obtain separate estimates for each effect, at the cost of them being correlated.  
Generally, the estimators have a more complicated functional form because 
the effects must be ‘disentangled’.  This usually means less precise 
estimation, i.e. larger error bars.  Failure to account for potentially important 
effects that are confounded or partially confounded with effects of interest 
can produce biases in the estimates of the latter.  For instance, if there are no 
replicate measurements, it is impossible to obtain error terms for any of the 
measurements of the conditions of interest, since each gene is spotted only 
once on each array.  As a result, GC effects for the conditions of interest may 
be biased, and all estimates of the random error term will stem from 
measurements of the reference condition, and the dye that corresponds to it.  

4.1.3 Loop design 

The loop design may be considered as an alternative to the reference design 
(see Figure 4.1).  Using the same number of arrays as the reference design, 
the loop design collects twice as much data on the varieties of interest.  
Further, notice that for model (4.1) conditions are balanced with respect to 
the dyes because each condition is labelled once with both Cy5 and Cy3 
dyes.  This balance means that dye effects are not confounded with condition 
effects.  If one estimates all factor main effects and, in addition, the GC, and 
GA and R(G) interactions, then at least (in the case of no replicates) g-1 
degrees of freedom remain.  These degrees of freedom provide information 
to estimate error variation.  Therefore, contrary to the reference design, this 
design provides a basis for further statistical inference. 

A practical drawback of the loop design is that each sample must be labelled 
with both the Cy5 and Cy3 dyes, effectively doubling the number of 
labelling reactions.   Balancing condition with respect to dyes, and thus also 
genexcondition with respect to gene×dye, produces data in which gene×dye 
effects can be detected.  According to Kerr et al., 2001 [111] this variable 
could prove very useful, as it would inhibit any anomalous behaviour of 
genes with respect to dyes biasing estimates of the effect of interest.  One 
could argue however, that the extra degrees of freedom necessary to estimate 
such GD effects, and the fact that such observed anomalies may in fact be 
contributed to the intensity dependent bias between dyes (see chapter 2, 
section 2.2.2.3), may not be worthwhile the effort and may possibly lead to 
overfitting of the data.   

From the discussion above, it is clear that an ANOVA model can not readily 
be applied to any type of experiment design.  Careful consideration of the 
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peculiarities of the experimental design in relation to the retained variables 
in the model, and the resulting degrees of freedom that are available to 
estimate the random error, is necessary to assess the appropriateness of any 
ANOVA model.  The matter is further complicated in that the three designs 
detailed above are hardly the only ones used in microarray experiments.  In 
fact, they often serve as templates or building blocks for larger and more 
complex designs (e.g. a reference design extended with a colour flip for 
every array is not uncommon), so that the evaluation of ANOVA models  for 
every other experimental setup becomes a tedious task.                                                          

4.2 Generic ANOVA models 
As discussed in the previous section, the appropriateness of ANOVA models 
for normalizing microarray data is highly dependent on the design of the 
experiment.   This is a major drawback for the routine application of such 
models in the analysis of microarray data.  This section describes the 
construction of generic ANOVA models.  These models attempt to balance 
different trade-offs, so that they can take into account the major sources of 
variation in a microarray experiment, and yet are able to normalize any type 
of experiment design.  The primary characteristics of these models are 
discussed below. 

The models are generic, i.e. they can be applied to any type of experimental 
setup, there’s no need for deriving different analytical solutions for specific 
experimental designs.  The main problem in creating a generic model lays in 
the typical characteristics of spotted microarray technology, which limit the 
number of conditions that can be measured on a single array to two.  For 
most experimental designs it is thus impossible to measure each condition on 
every array; array and condition will hardly ever be completely orthogonal.  
The condition variable was therefore abandoned altogether in favour of the 
array×dye variable.  The AD factor is confounded with the C factor 
regardless of the experimental design (for a single array×dye combination, 
only one condition can be measured).  As such, condition dependent 
variation in intensity (e.g. an mRNA sample of one condition may hold a 
larger quantity of mRNA than that of another condition, resulting in higher 
intensity measurements) can be accounted for in the estimates of AD effects.  
Using this approach, it will be difficult to determine the actual contribution 
of individual conditions to the total intensity variation.  This is of little 
concern however, as the C effects are not of primary interest.  

These days, microarray printing technology can produce arrays that can sport 
enough probes to represent an entire genome.  Up until a few years ago, this 
was not always so.  Very often multiple, different arrays had to be used in 
order to assay the expression of all genes represented in a clone set.    The 
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incorporation of batch effects provides support for experiments that employ 
multiple arrays when the entire set of genes does not fit onto a single slide.   
As a result, all data points can be analyzed at once (different batches should 
otherwise require multiple analysis runs) and other parameters, such as dye 
effects, can be determined across all data points, instead of a batch-wise 
assessment. 

Spotting effects are not modelled on a per spot basis.  This will alleviate the 
overfitting observed with some of the previous models and, although it 
might increase the random error variance, it assures that regardless of 
experiment design, a sufficient number of degrees of freedom remain to 
estimate the random error term.  As an alternative to spot effects, a pin-
group effect is introduced into the models.  The motivation for the inclusion 
of this factor can be found in Figure 4.2, which shows the spot placement of 
a typical microarray.  Spots are grouped into smaller sub-grids, referred to as 
pin-groups.  Due to the specifics of the spotting process, spots belonging to 
the same pin-group often share similar printing errors. 

Two models were developed that satisfy these features.  They differ in the 
way the pin-group variable is structured with respect to the batch and array 
variables.  In a first model the pin-group factor P is assumed to be nested 
within batch only, and is thus assumed equal for all arrays belonging to a 
single batch (i.e. containing the same set of genes).  The reasoning behind 
this choice of pin factor is that microarrays are often printed in series (see 
chapter 2, section 2.1.1.2), and when intensity variation can be attributed to a 
certain print group due to spotting errors, a similar variation is often 
observed for that print group on all arrays of that printing series.  The model 
can be written as: 

( ) ( ) ( )( ) ( )( ) ijklmnmnijmnimn)m(klmklmijklmn GCGPADADBI εμ ++++++++=  

 (4.8) 

In this model, Iijklmn denotes the log-transformed intensity of the 
measurement from the ith gene, jth condition, kth array, lth dye, mth batch and 
nth pin-group.  As before, μ is the overall average signal, Dl represents the 
effect of the lth dye, Ak(m) represents the effect of the kth array, ADkl(m) 
represents the interaction between the kth array and the lth dye, Pn(m) 
represents the effect of the nth pin-group, Gi(n(m)) represents the effect of the 
ith gene, (GC)ij(n(m)) represents the interaction between the ith gene and the jth 
condition, and εijklmn represent the error terms which are assumed to be 
independent and identically distributed with mean 0.  The brackets in the 
subscripts in dictate the nesting structure.  The nesting of gene within batch 
and pin-group may seem somewhat artificial, especially when replicate spots 
are present, but the accompanying constraints assure an analytic solution for 
the parameters is always attainable. 
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Figure 4.2:  Pin-groups.  A scanned picture of a hybridized microarray slide that clearly shows 
the layout of a typical spotted microarray.  In this particular case, there are six rows 
and four columns of pin-groups, each consisting of 21 rows and 20 columns of 
spotted probes. 
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the parameter estimators can be written as 
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Where ‘avg’ is the weighted average of the appropriate effects between 
brackets over all measurements of the subscripted index.  For instance, 

( )[ ]mnm
i

P̂B̂ +avg  is the sum over all measurements of gene i of the 

corresponding B and P effects, divided by the number of measurements of 
gene i.  The solutions above are the most general case, allowing for replicate 
spots across several pin-groups (i.e. duplicate spots elsewhere on the array) 
and even across batches.  Although batches usually contain probes 
representing different genes, this is useful when for instance the same 
control probes are used on all batches.  If all genes are represented only once 
(no replicate spots), the equations for G and GC effects simplify to: 
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The second model (4.12) assumes a different pin-group effect for every pin-
group and every array.  The pin-group factor itself is omitted, and a 
pin×array interaction variable is introduced to cope with array specific pin-
group effects.  This is a more general approach that requires only a few more 
degrees of freedom than the previous model and is more appropriate when 
all the arrays in the experiment have not originated from the same printing 
series or assumptions with regards to constant pin-group effects within a 
particular printing series may not be valid for the experiment under study.  
Let Pn(m) represents the interaction of the nth pin-group and kth array, this 
second model can then be written as: 

( ) ( ) ( )( ) ijklmnijmnimnk)m(klmklmijklmn GCGPAADADBI εμ ++++++++=  

 (4.12) 
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parameter estimators for the batch, array, array×dye effects will be equal to 
those of the first generic model (4.8).  The remaining estimators can be 
written as: 

 ( ) .m.k..mn.k..mnk IIAP̂ −=
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Again, the solutions above are the most general case, allowing for replicate 
spots across several pin-groups and batches.  In the case that no replicate 
spots are present on the array, the equations for G and GC effects simplify 
to: 
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Figure 4.3:  Schematic representation of the MARAN web application.  After the data have 
been uploaded, they can be normalized by means of a generic ANOVA model, 
optionally with a preceding LOWESS step to remove nonlinear dye biases.  The 
model and/or LOWESS procedure can be rerun at any time based on an evaluation of 
model fitting results (evaluation of modelling assumptions).  A module for filtering 
the data and a module that integrates MARAN into INCLUSive (for e.g. clustering, 
motif detection), are also available. 

4.3 MARAN: a web-application for normalizing 
microarray data 

4.3 MARAN: a web-application for normalizing 
microarray data 

An implementation of model (4.12) was made publicly available (in 
cooperation with ir. B. Coessens) in the form of a user-friendly web-based 
application called MARAN [72] (http://www.esat.kuleuven.ac.be/maran).  
Model (4.12) was chosen over model (4.8) due to the more generic 
structuring of pin-group effects.  The implementation of the generic model is 
embedded in a larger framework for the normalization of microarray data.  
Apart from an ANOVA normalization module, additional functionalities are 
made available to the user.  A LOWESS fit procedure [226] is added as a 
remedial measure for non-linearities.  An option for filtering the results by 
selecting genes with significantly changing expression profiles is also 
available.  Preprocessing results can be sent from the MARAN website to 
the INCLUSive website [41,198] for further analysis, such as gene clustering 
and motif detection.  After registering, a user can upload one or more data 
files and perform any of these analysis steps.  The data and all result files 
and images generated during an analysis run can also be stored.  A schematic 
overview of the different conceptual modules of the MARAN web 
application is given in Figure 4.3.  Each of these components is discussed in 
greater detail in this section. 

An implementation of model (4.12) was made publicly available (in 
cooperation with ir. B. Coessens) in the form of a user-friendly web-based 
application called MARAN [72] (http://www.esat.kuleuven.ac.be/maran).  
Model (4.12) was chosen over model (4.8) due to the more generic 
structuring of pin-group effects.  The implementation of the generic model is 
embedded in a larger framework for the normalization of microarray data.  
Apart from an ANOVA normalization module, additional functionalities are 
made available to the user.  A LOWESS fit procedure [226] is added as a 
remedial measure for non-linearities.  An option for filtering the results by 
selecting genes with significantly changing expression profiles is also 
available.  Preprocessing results can be sent from the MARAN website to 
the INCLUSive website [41,198] for further analysis, such as gene clustering 
and motif detection.  After registering, a user can upload one or more data 
files and perform any of these analysis steps.  The data and all result files 
and images generated during an analysis run can also be stored.  A schematic 
overview of the different conceptual modules of the MARAN web 
application is given in Figure 4.3.  Each of these components is discussed in 
greater detail in this section. 
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Figure 4.4:  The modelling page of the MARAN web application.  Factors that are not relevant 
to the experimental design are automatically greyed out.  All other effects (except the 
effect of interest, GC effect), can be excluded by the user.  

 

4.3.1 Modelling the data 

Modelling the data is fairly straightforward and user-friendly.  On the 
'Modelling' page (depicted in Figure 4.4), a number of checkboxes represent 
the different sources of variation taken into account by the model. 
Depending on the specific design of the experiment, some of these 
checkboxes may be greyed out, i.e. any of these explanatory variables, that 
may not be relevant for a specific experimental design, are automatically 
discarded.  For instance, when the total number of genes fits on one array, 
there will be only one batch, so the 'batch box' will be greyed out.  All other 
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variables (except GC effects) can be included or excluded (depending on 
whether or not the user would like to incorporate the respective sources of 
variation in the model) by clicking the corresponding checkboxes.  For 
instance, not checking the gene effect will not normalize the expression data 
with respect to there mean ‘basal’ expression level (i.e. the gene effect).  In 
some cases, it may be useful to retain this information within the expression 
values. 

On this page, there's also a checkbox for log-transforming the data.  If the 
uploaded data is not log transformed when, we recommend checking this 
option.  Indeed, our model assumes that an additive error (absolute error is 
independent of measured intensities) is present, while in most cases there's a 
pronounced multiplicative error (absolute error on the measurement 
increases with the measured intensity), so that modelling assumptions are not 
satisfied.  Performing a logarithmic transforming the data (multiplicative 
errors become additive) is therefore often required [132] (see also chapter 2 
section 2.2.2.2). 

4.3.2 Interpretation of the results 

After completion of the analysis, normalized expression values (and all 
parameters and residuals of the fitted model) can be downloaded from the 
'Results' page (see Figure 4.5).  An ANOVA table of the fit is shown to 
allow for interpreting the different effects and their contribution to the total 
amount of variation (represented by the 'SS' (Sum of Squares) column).  
Based on the ANOVA table, the normalization can be rerun, omitting effects 
that are shown to be of little or no significance to observed variation in 
intensity.  Several plots for analyzing the ANOVA modelling assumptions 
are also included on this page.  As explained in section 3.1.1 of chapter 3, 
these assumptions are twofold: firstly, the data should be adequately 
described by a linear model.  Secondly, the error terms are assumed to be 
normally distributed with mean zero and constant variance.  Information 
about the heteroscedasticity (non-constant error variance) and normality of 
the residual distribution can be obtained from the 'Global residual plot' and 
the 'NQ plot' (Normal Quantile plot of residual values) respectively.  Serious 
heteroscedastic features should be avoided when using the residual 
distribution for selecting genes with significantly changing expression.  It 
should be noted, however, that deviations from normality, in the form of 
widened tails, can often be acceptable due to the small amount of data points 
compared to the number of parameters to be estimated.  As discussed in the 
section 3.1.3 of chapter 3, bootstrap methods are advisable for selecting 
genes with significantly changing expression when serious heteroscedasticity 
or non-normality occurs in the residual distribution.   
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Figure 4.5:  Result page of the MARAN web application.  Part of the results page after 
analyzing a data set.  All estimated parameters can be downloaded.  The page also 
displays the ANOVA table of the fit and several plots for evaluating the modelling 
assumptions. 
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More problematic, however, is an apparent heteroscedasticity caused by a 
superposition of non-linear trends in the residuals for each combination of 
major effects, indicating that a linear model is not adequate for describing 
the data (i.e. the first assumption is not satisfied).   The other plots on the 
‘Results’ page are residual plots for each specific array×dye combination.  
When obvious curvilinear trends are observed on these plots, remedial 
measures should be taken, as described below. 

4.3.3 Remedial measures for nonlinear dye bias 

A well-established remedial measure for removing non-linear dye effects in 
the dataset is the LOWESS fit as described by Yang et al., 2002 [226].  This 
intensity dependent rescaling (explained in greater detail in chapter 2, 
section 2.2.2.3) has been made available in the MARAN web application.  
The 'LOWESS' page can be accessed directly or after inspecting the results 
of an initial fit.   

4.3.4 Filtering the results 

After fitting an ANOVA model, the obtained estimates of the error terms can 
be used for various statistical analysis concerning the ANOVA parameters.  
Two different methods for selecting genes with significantly changing 
expression have been made available on the website.  Both methods differ in 
the calculation of confidence intervals for the GC effects (the parameters of 
interest, i.e. the condition-affected change in intensity for each gene), as 
derived from fitting the ANOVA model.  The statistical test for selecting 
genes with significantly changing expression, based on these confidence 
intervals, is identical for both methods. For each gene i: 

 H0: GCi1 =  GCi2 =…=  δi

 Ha: at least one GCij ≠ δi  (4.16) 

Where δi is an undefined value.  Basically, this test evaluates, for every 
single gene, whether a single expression level (i.e. δi) exists that could 
account for each calculated GCij (j=1,…,c; c being the total number of 
conditions in the experiment) effect of that gene (indicating that this gene is 
not differentially expressed).   

The first method is valid under the assumption of normally distributed error 
terms, with mean zero and constant error variance.  The null hypothesis for 
selecting differentially expressed genes is that all calculated GC effects for a 
single gene are sampling instances from a normal distribution (based on 
rescaled residuals) around a non-specified 'expression' value.  Correction for 
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multiple testing is done by using the Bonferroni correction procedure (see 
chapter 4 of Neter et al. [141]).  This correction is done depending on the 
number of conditions that are present in the experiment, not according to the 
number of genes (a way too restrictive measure as discussed in chapter 3, 
section 3.2.2).  A selection of genes can be obtained by entering a preferred 
significance or, when desired, p-values for all genes can be downloaded.  
Although this method should not be applied when there is doubt that the 
ANOVA assumptions are satisfied, this method is relatively fast and may 
therefore serve as a preliminary indication of differentially expressed genes. 

The alternative method is based on a bootstrap procedure [50,67,68].  It is a 
fixed predictor sampling method, similar to the one described by Kerr et al., 
2000 [113] and is appropriate when the residuals show serious deviations 
from normality, but no apparent heteroscedasticity is present.  A selection of 
genes can be obtained by entering a preferred significance.  It is not possible 
however, to obtain p-values for each gene, contrary to the method described 
above. 

4.3.5 Further analysis 

MARAN is integrated in INCLUSive [41,198] (created by ir. B. Coessens 
and Dr. G. Thijs), a web-based suite of algorithms and tools for the analysis 
of gene expression data and the discovery of cis-regulatory sequence 
elements (http://www.esat.kuleuven.ac.be/inclusive).  The complete results 
file (i.e. all of the estimated GC effects), or a selection of genes obtained 
after filtering, can be used for further analysis with any of the other tools 
implemented in INCLUSive.  These allow for clustering of microarray data 
(Adaptive Quality Based Clustering or AQBC [45]), functional scoring of 
gene clusters (based on Gene Onthology (GO) terms [7]), sequence retrieval 
at a myriad of different public, and detection of known  (MotifSampler [195-
197]) and unknown (MotifScanner [2]) regulatory elements using 
probabilistic sequence models and Gibbs sampling.  All tools (including 
MARAN) are available via different web pages and also as web services; 
several tools are also available through Toucan [2], a stand-alone application 
for the detection of cis-regulatory elements in promoter regions of higher 
eukaryotes.  The web pages of INCLUSive are connected and integrated to 
reflect a methodology and facilitate complex analysis using different tools 
(see Figure 4.6).   
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Figure 4.6:  INCLUSive.  Schematic overview of the data flow between the different modules of 
INCLUSive. The flow supports complex analysis of microarray data, comprising 
ANOVA normalization, filtering and clustering, functional scoring of gene clusters, 
sequence retrieval, and detection of known and unknown regulatory elements. All 
modules are independent of each other and can be used separately.  Taken from 
http://www.esat.kuleuven.be/inclusive. 

 

4.4 Conclusions 
In this chapter we have described the development of two generic ANOVA 
models for normalizing microarray data.  The major advantage of these 
models is that they are independent of experimental design and can readily 
be applied to any type of experimental setup; there is no need for deriving 
different analytical solutions, or redesigning the model for different 
experiments.    One of these models was made publicly available in the form 
of a web-based application for normalizing microarray data, dubbed 
MARAN. 

The benefits of these generic ANOVA models are evident.  There are 
however, some considerations to the general use of ANOVA for normalizing 
microarray data, which are outlined here in greater detail.  In section 4.4.1, 
we discuss the importance of replicate measurements (in fact a major issue 
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regardless of the chosen normalization method) and the implications on 
ANOVA based microarray analysis.  In section 4.4.2, we discuss some 
strange and important complications of the LOWESS normalization, which 
only became discernable after using ANOVA in combination with a 
LOWESS fit procedure in the analysis of large scale experimental designs. 

4.4.1 Experimental design limitations 

Using the generic models, it is technically possible to normalize any type of 
experimental design.  This does not imply however, that the quality of the 
normalization results is independent of the experimental design. In general, 
the more replicates are measured for each gene×condition combination, the 
better the estimated ANOVA parameters will be (which is not necessarily 
expressed through a low error sum of squares).  This follows naturally from 
the fact that each GC effect (the effect of interest, the condition affected 
change in intensity for each gene) is calculated from all measurements of a 
single gene×condition combination (after being corrected for the other 
experimental variations included in the model).  As a rule of thumb, we 
would suggest that each gene×condition combination is measured at least 
twice as to ensure a residual is obtained for each measurement (this is 
especially important when the residuals are later to be used as a statistical 
measure for e.g. selecting genes with significant change in expression).  
There are no strict regulations as to how these replications should be 
incorporated in the experimental design.  However, in order to avoid partial 
confounding of effects, it may be wise to ensure that experimental sources of 
variation are different from one replicate to the next.  For instance, a colour 
flip experiment may be more informative than simply repeating all 
measurements on a different array (same dye) or multiple spotting on the 
same array (same array, same dye), and it could help account for gene 
specific dye biases [14,51-55,112,133,134,139,182,193,203,227] should they 
occur. 

To illustrate how the lack of replicates can lead to bad error estimation (due 
to the lack of residuals), the data set of Spellman et al., 1998 [187] was 
normalized with MARAN.  This experiment is a reference design.  Eighteen 
arrays were used to test eighteen time points of the yeast cell-cycle (labelled 
in Cy5); each array used the same reference condition (labelled in Cy3).  
Since there was no multiple spotting, all genexcondition combinations 
measured with Cy5 were only measured once, while the combination of each 
gene with the nineteenth condition (i.e. the control condition, always 
measured in Cy3) were measured seven times each (once on each array).  
This results in partial residual plots for each array as the one illustrated in 
Figure 4.7.  There are no residuals for any of the measurements in Cy5 (red).  
Valuable biological interpretations may still be obtained from analyzing the 
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expression effects (after all, they are normalized with respect to various 
experimental sources of variation), but using the obtained residuals for 
further statistical inference may prove detrimental. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7:  Experimental design limitations.  Detailed residual plots (MARAN output; 
estimated intensity in X-axis, residuals in Y-axis) for the measurements of the 
fifteenth array after analyzing the data set of Spellman et al., 1998 [187]. The 
experiment is a reference design with 18 different conditions (time points in the 
Saccharomyces cerevisiae cell cycle).  C indicates condition number (19 being the 
reference condition), A indicates array number, D indicates dye number (Cy5 = 1 and 
Cy3 = 2 by default) and B indicates batch number.  Due to the characteristics of the 
reference design, no replicates are available for the conditions of interest, and as a 
result, no residuals are obtained for any of the Cy5 (red) intensities. 

 

4.4.2 Persistent non-linearities 

One of the major problems with ANOVA normalization models (or any 
linear model for that matter), is that they are unable to cope with typical non-
linear dye biases in microarray data (see chapter 2, section 2.2.2.3).  Thus, 
modelling assumptions are seldom satisfied and inferences regarding the 
normalization parameters (e.g. selecting genes with significantly changing 
expression), which are based on these residuals, are unreliable.  Remedial 
nonlinear measures, such as performing array-by-array LOWESS fits prior 
to the linear normalization, should alleviate these nonlinear dye 
discrepancies (e.g. in chapter 3, section 3.3.2 LOWESS normalized data did 
not show any nonlinear tendencies in the residuals of the ANOVA model 
fit).  Indeed, a LOWESS normalization is usually performed according to the 
principles dictated by the GNA (Global Normalization Assumption, see 
chapter 2, section 2.2.2.3).   The GNA assumes that only a limited number of 
genes on the array alter their expression, and that there is symmetry in the 
amount of up-regulated versus down-regulated genes.  LOWESS normalized 
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intensities should therefore be devoid of any systematic variation between 
both samples hybridized to the microarray (reflected in log-ratios that are 
evenly distributed around zero across the entire intensity range), regardless 
of whether they can be attributed to actual dye effects or other factors such 
as mRNA quantity and quality, or even biological characteristics that do not 
adhere to the GNA (e.g. the bulk of genes being up-regulated).  Some 
interesting features were revealed however, when using ANOVA in 
combination with a LOWESS fit procedure for the analysis of large scale 
experimental designs, indicating that a LOWESS normalization may not be 
able to completely alleviate intensity dependent nonlinear tendencies in the 
data, despite of its harsh assumptions with regards to the distribution of gene 
expression from one biological condition to the next (i.e. the GNA).  
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Figure 4.8:  Non-linearities after ANOVA normalization.  The residual plots (MARAN output; 
estimated intensity in X-axis, residuals in Y-axis) for some of the array and dye 
combinations in the vitamin D3 experiment of Verlinden et al., 2005 [213] for the 
data that was not LOWESS normalized.  The figure clearly shows the nonlinear 
tendencies and their relation with the dye variable, i.e. Cy5 (red) measurements tend 
to be progressively more overestimated at lower intensities, while Cy3 (green) 
measurements tend to be more underestimated. 
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Figure 4.9:  Persistent non-linearities after LOWESS and ANOVA normalization.  The 
residual plots (MARAN output; estimated intensity in X-axis, residuals in Y-axis) 
for some of the array and dye combinations (same as in Figure 4.8) in the vitamin D3 
experiment of Verlinden et al., 2005 [213] for the LOWESS normalized data.  This 
figure illustrates how a LOWESS fit can remove this characteristic dye bias for some 
arrays (upper two plots), but is not capable of removing all the systematic nonlinear 
variation in the data, as illustrated by the lower two plots. 

 

We will illustrate our general findings with the data set of Verlinden et al., 
2005 [213].  This microarray experiment was a study of the potent anti-
proliferative effects of 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3, the active 
metabolite of vitamin D3) that coincide with a hampered G1/S transition of 
the cell cycle.  cDNA microarrays were used to monitor gene expression in 
MC3T3-E1 mouse osteoblasts at 1, 6, 12, 24 and 36 h after treatment with 
1,25(OH)2D3 and compared to non-treated MC3T3-E1 cell lines at matched 
time points.  Hybridizations were performed by pairing the treated samples 
and control samples for every time point, replicated with a colour flip 
hybridization.  The total mouse clone set consisted of 21,492 cDNA 
fragments, and was spread across five different slides.  The design of this 
experiment thus consisted of ten different biological conditions, measured on 
a series of colour flip designs, and with multiple batches.  Measurements 
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were LOWESS normalized (smoothing factor f set to 30%) for each array.  
Both LOWESS normalized and original data from the entire experiment 
were fitted to ANOVA model (4.12).  Figure 4.8 shows the residual plots for 
some of the array×dye combinations in the experiment for the data that was 
not LOWESS normalized.  Figure 4.9 shows the residual plots for the same 
array×dye combinations in the experiment for the LOWESS normalized 
data.  Figure 4.8 clearly shows the nonlinear tendencies and their relation 
with the dye variable (i.e. Cy5 measurements tend to be progressively more 
underestimated at lower intensities, while Cy3 measurements tend to be 
more overestimated).  As shown in Figure 4.9, a LOWESS fit can remove 
this characteristic dye bias, but is not capable of removing all the systematic 
nonlinear variation in the data.  This is particularly puzzling as a LOWESS 
fit is essentially designed to remove all of the non-linear dye bias that can be 
observed in an MA-plot. 

An explanation for this seemingly implausible phenomenon may be found in 
a saturation of the lower intensity levels.  It is generally assumed that the 
measured intensity of a signal (whether absorption, emission or 
fluorescence) is directly proportional to the concentration of the compound 
responsible for this signal (Law of Lambert-Beer [183]).  In reality however, 
this law only holds for a certain intensity or concentration range: saturation 
occurs in the higher and lower regions so that the actual relationship between 
intensity and concentration is more like a sigmoid (logarithmic scale).  This 
is arguably true for the fluorescence measurements of microarrays, where 
scanner characteristics, background signals, and quenching [160] can cause 
intensity saturation to occur.  So for microarrays we may assume two distinct 
saturation curves (one for Cy5, another for Cy3) that describe the 
relationship between measured intensity and concentration of fluorescent 
dye (an indication of the amount of hybridized target).   The distance 
between both curves would then coincide with the divergence, as generally 
observed in an MA-plot, of the point cloud with respect to the axis of zero 
log-ratios.  This is conceptually illustrated in the left hand panels of Figure 
4.10.  Intensity dependent normalization methods, such as LOWESS, will 
merely remove the nonlinearities between the Cy3 and Cy5 intensity 
measurements, and not between the measured intensity and the dye/target 
concentration.  After performing such a procedure, one is left with new 
intensities that still show a nonlinear relation to the corresponding 
concentration (right hand panels of Figure 4.10).  These remaining artefacts 
become apparent when fitting a linear ANOVA model, which takes in 
account different sources of variation across the entire experiment, to the 
LOWESS normalized data of complex experiment designs.  Indeed, when 
multiple conditions are measured across multiple arrays, such a model 
assumes linear relationships between absolute intensities measured for the 
same biological condition.  If only the nonlinear difference between Cy5 and 
Cy3 intensities is removed, as with a LOWESS procedure, residuals of the 
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model fit will still show pronounced nonlinear trends that would otherwise 
remain hidden through the use of log-ratios.  The next chapter will delve 
further into these observations, and will deal with the construction of a 
normalization method that will better acknowledge the particular nonlinear 
characteristics of the relation between measured intensity and target 
concentration. 

model fit will still show pronounced nonlinear trends that would otherwise 
remain hidden through the use of log-ratios.  The next chapter will delve 
further into these observations, and will deal with the construction of a 
normalization method that will better acknowledge the particular nonlinear 
characteristics of the relation between measured intensity and target 
concentration. 
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Figure 4.10:  An explanation for persistent non-linearities.  Two distinct saturation curves (one 
for Cy5, another for Cy3) describe the relationship between measured intensity (I) 
and concentration of fluorescent dye (C; an indication of the amount of hybridized 
target).   The distance between both curves would then coincide with the divergence, 
as generally observed in an MA-plot, of the point cloud with respect to the axis of 
zero log-ratios (left hand panels).  Intensity dependent normalization methods, such 
as LOWESS, will merely remove the nonlinearities between the Cy3 and Cy5 
intensity measurements, and not between the measured intensity and the 
concentration of labelled target.  After performing such a procedure, one is left with 
new intensities (IL) that still show a nonlinear relation to the corresponding 
concentration (right hand panels; indicated by the blue curve in the lower right hand 
panel).   
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Chapter 5 

A calibration procedure for spotted 
microarrays 

The normalization method we propose in this chapter differs in spirit from 
previously published normalization strategies [73].  It relies heavily on the 
intensity measurements of external control spikes (RNA transcripts that are 
added to the hybridization solution in known concentrations) and is based on 
a physically motivated calibration model.  It is nevertheless a continuation of 
the research described in the previous chapters as the basic idea remains 
unchanged.  The measured intensities are to be modelled as functions of 
systematic sources of variation in a physically and experimentally 
meaningful way, and should allow for the calculation of an absolute value of 
expression, instead of being limited to the relative nature of intensity ratios.  
External control spikes turned out to be an essential asset in this respect; a 
detailed description of their nature and of the insights that can be gained 
from their employment is given in section 5.1. 

The calibration model that is the core of this normalization procedure is 
presented in detail in section 5.2.1.  The model consists of two major 
components, describing the hybridization of target transcripts to their 
corresponding spotted probes on the one hand (section 5.2.1.1), and the 
measurement of fluorescence from the hybridized, labelled target on the 
other hand (section 5.2.1.2).  The parameters of this model and their error 
distributions are estimated from external control spikes (section 5.2.2), and 
are used to obtain absolute expression levels for every gene in every 
biological conditions present in he experiment (section 5.2.3).   

Results that were obtained from applying our method to a publicly available 
data set are discussed in section 5.3.  We show that the procedure is capable 
of adequately removing the typical non-linearities of microarray data, 
without making any assumptions on the distribution of differences in gene 
expression from one biological sample to the next (section 5.3.2), and 
compare our method to results obtained from normalizing the data with a 
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standard LOWESS procedure prior to fitting an ANOVA model (section 
5.3.3).  Since our model links target concentration to measured intensity, we 
further demonstrate how absolute expression values of transcripts in the 
hybridization solution can be estimated (section 5.3.4 and 5.3.5).  Finally, we 
illustrate the effect of local background correction and the models capacity 
to deal with negative (background corrected) intensity values (section 5.3.6). 

5.1 External control spikes 
In the previous chapter, we noted problems with the LOWESS fit procedure 
in completely removing systematic non-linear trends in microarray data.  It 
was speculated that this problem originated from saturation of the lower 
intensities, the characteristics of which are determined by the specific dye, 
and presumably for the same dye by different arrays as well (due to 
differences in hybridization and labelling reactions).  It is impossible to 
evaluate any hypothesis regarding the relation between concentration and 
measured intensity based on measurements from biological samples alone, 
as true concentrations of target in the hybridization solution are unknown.  
Experimental controls are required in order to extensively address this issue.  
Analysis of the data obtained from such controls should provide information 
on the dynamic range, sensitivity, and specificity of the hybridization, and 
should grant an insight in the reproducibility of the observed expression 
ratios.  Several types of controls can be used for monitoring a microarray 
experiment, and they can be conceptually subdivided into positive, negative, 
or spiked controls. 

• Positive controls are designed to verify that the targets are labelled 
to an acceptable specific activity by Cy3 and Cy5.  The 
corresponding target is added to samples prior to labelling, so that 
each target population (i.e. Cy3 and Cy5) should generate signals of 
approximately equal intensity after hybridizing to a positive control 
element.  Often dilutions of the spotting probe solutions series are 
generated to address the signal strength for a wide range of probe 
amount.   

• Negative controls are used to assess background signals and the 
degree of non-specific hybridization.  Typically, negative controls 
are segments of coding DNA derived from organisms have no 
known (or expected) homologues or paralogues in the species under 
study, but share approximately the same content of guanine and 
cytosine as the studied species.  For instance, microarrays used in 
expression analysis of mammalian genes often include negative 
controls composed of a combination of plant or bacterial coding 
sequences. 
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 Figure 5.1:  External control spikes.  A) Non-linear relationship (saturation) between measured 
intensity y and corresponding concentrations for all external control spikes with a 
Cy5:Cy3 ratio of 1:1.  B)  Measured intensities of all external control spikes 
(Cy5:Cy3 ratios 1:10, 1:3, 1:1, 3:1 and 10:1).  This plot illustrates the relatively 
small scanner errors, especially compared to the large variation in intensities that is 
observed in panel A. 
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• External control spikes (also spiked controls, or simply spikes) are 
made up of sequences that are chosen to not hybridize with any 
transcripts known to be expressed in the organism under study.  
They are added at a range of concentrations to Cy3 and Cy5 probes 
(i.e. a ratio 1:1) to provide data on the dynamic range of the system.  
Array elements corresponding to these controls should hybridize the 
Cy3 and Cy5 targets with equal intensity across a range of 
concentrations.  A complementary method is to vary systematically 
the amount of spiking target added to the two labelling reactions 
(e.g. in ratios of 1:10, 1:3, 1:1, 3:1 and 10:1) and then to compare the 
observed signal ratios in the Cy5:Cy3 channels with those predicted 
from the stoechiometry.   

Other types of experimental controls, such as housekeeping genes (genes 
that are assumed to be constantly expressed), spotted clone pools or spotted 
genomic DNA, have also been proposed (for an overview, see Kroll and 
Wölfl, 2002 [118]).  However, none of these are able to assess the dynamic 
concentration range of the intensity measurements, and are thus not 
appropriate for the research questions at hand.   

Several companies sell kits containing DNA samples for spotting, together 
with matched spike mixes, that can be used to validate and monitor the 
performance of microarrays (e.g. Lucidea Universal ScoreCard by 
Amersham, or SpotReport by Stratagene Inc.).  Figure 5.1, panel A displays 
the relation between the measured intensities of a series of external control 
spikes to their actual concentration in the hybridization solution.  The plotted 
measurements correspond to spikes of a single array which belonged to a 
data set of 14 arrays (see section 5.3.1), all complemented with the Lucidea 
Universal ScoreCard (Amersham) external control spikes.  This plot 
confirms the expected behaviour of the intensity saturation characteristics 
(see 4.4.2).  Not only is the saturation clearly present at lower (and higher) 
intensity levels, but there is a recognizable distinction between the Cy5 and 
Cy3 intensity signals of the labelled targets.  Moreover, this difference 
between both dyes varies somewhat across arrays (data not shown).   

Another prominent feature that can be observed in panel A of Figure 5.1 is 
large variation in intensity for a single spike concentration.  The level of 
variation seen in this plot is especially remarkable in view of the relatively 
small scanner errors, as illustrated in panel B of Figure 1.  Panel B plots the 
Cy3 versus Cy5 spike intensities, and shows that ratios of these controls 
seem highly conserved, in particular at upper intensity levels, an indication 
of fairly accurate scanner equipment.  This apparent contradiction can only 
be explained by assuming a per spot correlation between the Cy3 and Cy5 
intensities, i.e. the large intensity variation observed in panel A is directly 
caused by variation associated with the printed probes, not the scanner or 
amount of target in the hybridization solution (previous publications have 
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already shown that spot related errors have a large effect on the final 
observed signal [165], and that the influence of the scanner equipment is 
rather low [161]).  Whether the main source of this spot related variation can 
be attributed to the actual amount of deposited probe DNA, or to a measure 
of spot quality (e.g. probe density [150], cDNA probe length [189], etc.), the 
implications are equivalent.  Imperfections in the spotting process result in 
heterogeneous ‘spot capacities’, in terms of the available quantity of spotted 
probe, and allow distinct spots to bind different amounts of target from the 
hybridization solution.   

Apart from providing insight into the dynamic range and intensity variation 
of microarray measurements, there are other advantages to the employment 
of external control spikes in microarray analysis.  They can serve as a useful 
means of avoiding the Global Normalization Assumption (GNA, see section 
2.2.2.3 of chapter 2) in the normalization step of the analysis.  Normalization 
algorithms that do not require this GNA have already been proposed 
[217,235], but they are bound to other presumptions on the behaviour of 
gene expression values.  A more reliable strategy to avoid making any 
assumptions regarding the distribution of gene expression is to use external 
control spikes to estimate normalization parameters.  It is important to note 
that, contrary to external control spikes, none of the other types of 
experimental normalization controls, such as housekeeping genes, spotted 
clone pools or spotted genomic DNA (for an overview, see Kroll and Wölfl, 
2002 [118]), are able to compensate for unbalanced gene expression 
changes.  Moreover, by using external control spikes, it has been shown that 
global mRNA changes, resulting in an uneven distribution of expression 
changes, occur more frequently than what was previously believed 
[206,208], and that these changes can have a significant impact on the 
interpretation of data normalized according to the Global Normalization 
Assumption [158].  

In light of the points discussed above, it should come as no surprise that the 
normalization method described in this chapter relies heavily on 
measurements of external control spikes.  Details of the mathematical 
models and normalization algorithms are given in the following section 5.2.  

5.2 Mathematical models and algorithms 
External control spikes have previously been employed for quality control 
and normalization [10,16,70,80,99,158,208,218], but have seldom [33] been 
exploited to their full potential.  In fact, spikes are genuine calibration points, 
in that they relate the measured intensity to the actual target concentration in 
the hybridization solution.  Using these calibration points to estimate 
absolute expression levels instead of expression ratios could greatly simplify 
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inter platform comparisons and the analysis of large, complex designs 
comparing multiple biological conditions.   However, the large variation in 
measured intensity, caused by –unknown- spot related errors, prohibits the 
direct correlation of a measured intensity to a concentration of target in the 
hybridization solution.  The use of external control spikes to estimate 
absolute expression levels would therefore benefit from a more elaborate 
normalization procedure. 

The proposed normalization procedure itself is straightforward in principle: 
intensity measurements of external control spikes serve to estimate the 
parameters of a calibration model.  These parameters can then be used to 
obtain absolute expression levels for every gene in each of the tested 
biological conditions.  The calibration model consists of two components, a 
hybridization reaction and a dye saturation function.  In section 5.2.1a more 
detailed description of this model is given, along with its corresponding 
parameters and error distributions.  The parameter estimation and 
normalization procedure are outlined in section 5.2.2 and section 5.2.3 
respectively. 

5.2.1 A model for microarray intensity measurements 

5.2.1.1 Hybridization reaction 
To explain these large variations of absolute intensities observed for a single 
spike concentration, a hybridization component was included in our model to 
account for spot capacity errors.  The relation between the amount of 
hybridized target (xs) and the concentration of the corresponding transcript in 
the hybridization solution (x0) is modelled by the steady state of the 
following reaction:  

   (5.1) s

K

xsx
A

⇔+0

For this model, the hybridization constant  is assumed to be equal for all 
spots on a single microarray.  Differences in hybridization constants should 
therefore be interpreted as variations caused by microarray related factors 
such as temperature, salt concentrations, hybridization time, etc., but do not 
account for gene specific hybridization efficiencies. 

AK

The amount of probe in a spot will often be vastly in excess of the amount of 
its in target in solution.  The hybridization reaction itself is diffuse limited, 
and stirring has a large effect on overall rate [180].  A practical consequence 
is that when not properly stirred (e.g. when applied concentrated in a thin 
film) the solution of target immediately above a spot is rapidly exhausted of 
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target molecules complementary to the probes in the spot.  When stirred 
properly, the concentration of target across the entire slide will gradually 
decline until the reaction reaches a steady state.  A second assumption 
underlying our model is that target concentration x0 is in excess (i.e. x0 can 
be considered constant).  It may seem somewhat contradictory to the 
explanation above, but it is a mathematical simplification that ensures that 
the amount of hybridized target at the end of the reaction depends only on 
the initial concentration in the hybridization solution.  In fact, it is a first 
order approximation of the actual reaction, in which case the target 
concentration x0 would continue to diminish until the equilibrium is reached.  
The amount of spotted DNA of a spot (s) available for hybridization 
however, will decrease with an increasing amount of hybridized target xs (s 
= s0 - xs, s0 being the spot capacity or maximal amount of available probe), 
so that we can write at thermodynamic equilibrium: 

 
( ) A

s

s K
xsx

x
=

−00  (5.2) 

The spot capacity s0 follows a certain distribution around an average spot 
capacity sμ : sss εμ +=0  or  with the spot error εses s

εμ=0 s ~ N(0,σs).  
Whichever distribution is more appropriate will depend largely on the type 
of microarray slide and spotting procedure used.  The spot parameters μs and 
σs can be considered equal for all measurements of a single array.  Finally, 
we assume that the presence of distinct labels (Cy3 and Cy5) does not 
influence the hybridization efficiency of the differentially labelled 
transcripts, i.e.: 

  50300 Cy,Cy, xxx +=  and  
3

5

30

50

Cy,s

Cy,s

Cy,

Cy,

x
x

x
x

=  

  53 Cy,sCy,ss xxx +=  

In the above equations, it would be more accurate to explicitly model the 
amount of non-labelled target in the solution, and to include parameters for 
labelling efficiencies,  i.e. to write: 

503000 Cy,Cy, xxxx ++= ∗

 

53 Cy,sCy,sss xxxx ++= ∗   

with x0
* being the amount of non-labelled target in the hybridization 

solution, and xs
* being the amount of non-labelled target bound to the spotted 

probe.  However, the external control spikes are added to the hybridization 
solution before the actual labelling reaction, and so effects attributed to 
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labelling efficiency can be accounted for in the dye saturation function, 
which is described in the following section. 

5.2.1.2 Dye saturation function 
A second component of the model is the dye saturation function, which 
describes the relationship between the measured intensity  and the amount 
of labelled target x

y
s, hybridized to a single spot on the microarray:  

  (5.3) as pexpy m εε ++= 21

This dye saturation function is a simple linear equation incorporating an 
additive and multiplicative intensity error (this type of function stems from 
analytical chemistry [167] and has already been used in other normalization 
strategies [61-63,98,165,166]).  The parameters p1 and p2 are the respective 
slope and intercept of the linear function.  The additive and multiplicative 
errors are both assumed to be independently sampled from normal 
distributions, represented by εa ~ N(0,σa) and εm ~ N(0,σm) respectively.  The 
additive intensity error term is included because of the generally accepted 
notion that the contribution of slide background is additive with respect to 
the spot intensity [34] (see section 2.2.2.1 of chapter 2).  The validity of this 
notion can be confirmed by negative control spikes (probes to which no 
labelled target should bind), which generally show a relatively large 
variation in intensity.  The multiplicative intensity error is included to 
account for the typical multiplicative error that is present in microarray data, 
and is usually dealt with by log-transforming the measurements (see section 
2.2.2.2 of chapter 2).   

In total, there are three different error distributions that are assumed to 
influence intensity measurements: additive intensity error εa, multiplicative 
intensity error εm, and spot capacity error εs.  Figure 5.2 shows the effect of 
each error on measured intensity, and illustrates how spot related errors can 
account for the large variation in intensity observed in panel A of Figure 5.1.  
In the case of spotted microarray data, the plot would be slightly more 
complex, as there would be two distinct curves (one for Cy3 and one for 
Cy5) that are dependent on one and other through the parameters of the 
hybridization reaction.  Indeed, the parameters of the saturation function and 
the variances of the intensity error distributions are considered specific for 
all measurements of a single each array and dye combination.  The 
parameters of the hybridization reaction and variance of the spot error on the 
other hand, apply to all measurements of a single array.  As such, Cy3 and 
Cy5 intensities obtained from the same array element are modelled with 
different saturation parameters and intensity errors, but will share the same 
hybridization parameters and spot error.  For a single array, the resulting 
functions that relate measured intensities yCy3 and yCy5 to the amount of 
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corresponding target x0,Cy3 and x0,Cy5 in the hybridization solution, can be 
written as: 
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Where, as mentioned previously, the spot capacity s0 follows a certain 
distribution around an average spot capacity sμ : sss εμ +=0  or .  
The differentially labelled targets x

ses s
εμ=0

0,Cy3 and x0,Cy5 will compete for the same 
spotted probe DNA s0.  As shown in the equations above, the intensity 
measured for the Cy3 channel (yCy3) is not only dependent on the amount of 
Cy3 labelled target (x0,Cy3), but also on the amount of target labelled with 
Cy5 (x0,Cy5), and visa versa. 

 

y  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:  Calibration model.  Illustration of model shape and influence of respective error 
distributions on measured intensities (one dye only).  The thick black curve 
represents the relation between concentration and intensity if all error contribution 
were zero.  The coloured lines represent 99% confidence intervals for the separate 
errors in the model: green corresponds to additive intensity error εa, red to 
multiplicative intensity error εm, and blue corresponds to spot capacity error εs.  
Model parameters and error variances are based on estimates from actual microarray 
data (see section 5.3.1).

x0
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5.2.2 Parameter estimation 

The model parameters are estimated separately for each microarray, based 
on the measured intensities y of the external control spikes and their known 
concentration in the hybridization solution x0.  In order to determine these 
model parameters, it is important to have initial, reliable values for σm and 
σa.  Estimates for σa,Cy3 and σa,Cy5 can easily be obtained by computing the 
standard deviation of the intensities for the negative control spikes whose 
targets not present in the hybridization solution.  Finding a reliable for σm,Cy3 
and σm,Cy5 is less evident.  Although the additive intensity error can be 
neglected, the multiplicative errors are still confounded with the influence of 
spot errors at high intensity levels.  Estimating σm,Cy3 and σm,Cy5 
independently for both channels from these higher intensity replicate 
measurements is not feasible.  Obtaining an adequate approximation is 
nonetheless possible.  In the higher intensity range where the calibration 
controls (ratio 1:1) exhibit a log-linear behaviour in a yCy3 versus yCy5 plot 
(Figure 5.3), the main contribution to the observed variation can be assigned 
to the multiplicative intensity error.  Indeed in this range, differences in spot 
size will obviously nullify themselves and the additive intensity error can be 
neglected.  If we then assume that σm,Cy3 and σm,Cy5 contribute equally to the 
observed variation (σm = σm,Cy3 = σm,Cy5), a value for σm can be obtained 
(Figure 5.3) by performing an orthogonal regression on the selected data 
points. 

Obtaining a solution for the remaining parameters (dye saturation and 
hybridization parameters p1,Cy3, p1,Cy5, p2,Cy3, p2,Cy5 and KA respectively; μs is 
kept constant at an arbitrary value) is done in a least squares sense. The error 
sum of squares that is minimized is that of spot capacity errors, i.e.  

 
  (5.6) ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

i
i,ssSSE 2min ε

with respect to , , ,  and . 31 Cy,p 32 Cy,p 51 Cy,p 52 Cy,p AK

The minimization of SSEs is done numerically.  The individual spot errors, 
necessary to calculate the SSEs in every iteration (i.e. for any given set of 
parameter values), are of course unknown.  For every spot on the microarray, 
they are estimated by comparing the expected intensity (a function of target 
concentration x0,Cy3 and x0,Cy5, and a set of parameter values as indicated by 
(5.4) and (5.5)) to the measured intensity values (yCy3 and yCy5) for both 
channels, and scoring the difference based on the estimators of additive and 
multiplicative intensity variances.  More precisely, for each pair of 
measurements obtained from a single spot, the following object function is 
minimized with respect to that spots error εs: 
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subject to equations (5.4) and (5.5) 
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Figure 5.3:  Multiplicative intensity error.  Estimation of multiplicative intensity error is done 
on a subset of spikes (black dots; all other spikes are indicated by grey dots). 
Performing an orthogonal regression of Cy5 vs. Cy3 intensities on the selected data 
points (red line) will yield an error distribution of which the standard deviation is an 
estimate of √2σm. 
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 Figure 5.4:  Motivation of cost function term (5.8).  The grey surface corresponds to the 
probability density function for observing a certain intensity (a combination of 
additive and multiplicative error in the plane) for a single x0, given a set of model 
parameters.  The black curve in all three panels represents the deviation of a 
measured intensity from the expected intensity (as dictated by the model 
parameters), which can be explained by an infinite number of combinations of an 
additive and multiplicative intensity error.  A p-value for observing such a 
measurement would be calculated as the blue volume in panel A, while a likelihood 
would be calculated as the blue area in panel B.  Cost function term (5.8) is related to 
these as it is the negative logarithm of the maximum probability density function (i.e. 
the negative logarithm of the height indicated by the blue line in panel C). 
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The object function (5.7) is composed of two terms, one for the Cy5 
intensity, and another for the Cy3 intensity.  Both of these terms consist of a 
minimization as shown in equation (5.8) and are related to the probability of 
observing the measured Cy3 and Cy5 intensities for a given spot error εs and 
a given set of model parameters, in which case the expected intensities (and 
the amounts of hybridized target) can be calculated (equations (5.4) and 
(5.5)) since target concentrations of spikes are known.  The relation between 
this probability and cost function term (5.8) is illustrated in Figure 5.4.  The 
deviation of a measured intensity from the expected intensity could be 
explained by an infinite number of combinations of an additive and 
multiplicative intensity error, represented by the black curve in all three 
panels.  Calculating a p-value for observing a certain intensity deviation to 
address its likeliness would require solving the following double integral, 
corresponding to the volume indicated in panel A of Figure 5.4: 
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Another option would be to calculate the likelihood of observing a certain 
intensity measurement for a given expected intensity, which would require 
solving the following integral, corresponding to the area indicated in panel B 
of Figure 5.4: 
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The minimization in (5.8) is related to both (but far less computationally 
expensive) in that it corresponds to the negative logarithm of the maximum 
probability density value (i.e. a combination of a single εa and εm) for 
observing a measured intensity for a given expected intensity, as illustrated 
in panel C of Figure 5.4, i.e.: 
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subject to equations (5.4) and (5.5), i.e. 



Chapter 5 - A calibration procedure for spotted microarrays 

104 

( )( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛ =−

2

21

2

22
argminargmaxln

a

s

m

m

,

pexpy
yYP

m

mma σσ
ε ε

εεε
 

( ) ( )
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−
=

22

22

22
lnln

argmin
a

a

m

sa xppy
a σ

ε
σ

ε
ε

 

The parameter estimation procedure for an entire microarray is illustrated in 
Figure 5.5.  Panel A shows initial parameter settings (red and green curves), 
while panel B shows the final parameter settings.  The grey dots in Figure 
5.5 depict the relation between measured intensity and amount of hybridized 
target under the assumption of equal spot sizes (i.e. all εs are zero).  Most of 
these are localized in regions of high intensity error and are therefore very 
unlikely.  However, by allowing errors on individual spot capacities, and 
thus altering the amount of hybridized target per spot for both dyes (xs,Cy3 
and xs,Cy5), a good correspondence between intensities and saturation curves 
can be obtained for both channels, and across the entire measurement range 
(indicated by the black dots).  The parameters of the intensity error 
distributions, σm and σa, determine the allowed spread of measurements 
around the Cy3 and Cy5 saturation curves.  It is notable how well the Cy3 
and Cy5 intensities, and the relationships between them, can be explained by 
our model.  For instance in the example given, at lower intensities, Cy3 
intensities are persistently higher than Cy5 for equal amounts of hybridized 
target, while the opposite is true for higher levels, a trend that is nicely 
reflected by the fitted model.  Notice also that, while the ratios between Cy3 
and Cy5 intensities are highly conserved (at least at higher intensity levels), 
absolute intensities may vary to a large extent for transcripts with the same 
x0 due to spot inhomogenities. 

5.2.3 Normalization: estimation of absolute expression 
levels 

The obtained parameter values can be used to estimate a single x0(i,j) (i.e. the 
absolute expression level of a single gene i in a single biological condition j) 
based on all measurements that were obtained for this combination of gene 
and condition.  Although each array and dye combination is attributed with 
its own set of parameters, the normalization can be considered a global one.  
Namely, for each combination of a gene and a tested biological condition, a 
single absolute expression level of target is estimated, irrespective of the 
number of microarray slides, or the number of replicate spots on a slide, on 
which this gene condition combination was measured.  In this sense, the 
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results format of this normalization is comparable to the gene×condition 
interaction factor effects in the models of chapter 3 and chapter 4, or similar 
factors in other ANOVA models.  

 

A  
y 

xs

B 
y 

xs

Figure 5.5:  Parameter estimation.  At given parameter values (red and green curve), spot errors 
are obtained by estimating the amount of hybridized target xs for the measured 
intensities y of the external control spikes (black dots).  Grey dots depict the amount 
of hybridized target, assuming equal spot capacities (i.e. all εs = 0).  Panel A: initial 
parameter settings in this example are chosen to give a linear relation across the 
entire  measurement range and equal for Cy3 and Cy5.  Panel B: final parameter 
settings (convergence to a minimal SSEs).
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Although this procedure can be applied to any design, its complexity does 
depend on the used experimental setup.  For a single gene, it requires the 
estimation of expression values for all the biological conditions at once.  
These x0(i,C)  can be estimated by minimizing the following object function 
(an extension of the one used to estimate the model parameters): 
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subject to equations (5.4) and (5.5) 

 

The subscript C indicates the entire set of biological conditions under 
survey; it applies to all conditions that are present in the experimental 
design.  The set of data points, and the relevant array-dye combinations of 
parameters, that measure an expression value x0(i,j), is represented by Sj (a 
single data point belonging to this set is designated by Sj(k)).  So for a single 
gene i, expression values of all of the biological condition present in the 
experiment are estimated simultaneously (and together with all the relevant 
spot errors), and in such a way that the total contribution of the three random 
errors (i.e. the combined spot errors and additive and multiplicative intensity 
errors for all intensity data points that are a measure of gene i) is minimized 
as dictated by the cost function (5.9). 

5.3 Application and results 

5.3.1 Data set 

A publicly available data set [96], consisting of 14 hybridizations, was 
chosen to illustrate the workings, advantages and drawbacks of our 
normalization method.  This experiment was ideally suited to validate our 
procedure because firstly, it contained the necessary spots for measuring 
external control spikes, required for estimating the parameters of our model.  
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Secondly, the experimental design included only a single biological 
condition (self-self experiments), which allows assessing the performance of 
our normalization method in removing non-linear tendencies present in 
microarray data.  Lastly, they were outfitted with an additional set of control 
spikes that could be used to verify to what extent our method was capable of 
approximating the absolute target concentrations.  

Secondly, the experimental design included only a single biological 
condition (self-self experiments), which allows assessing the performance of 
our normalization method in removing non-linear tendencies present in 
microarray data.  Lastly, they were outfitted with an additional set of control 
spikes that could be used to verify to what extent our method was capable of 
approximating the absolute target concentrations.  
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Figure 5.6:  Removal of non-linear artefacts.  Estimated expression levels for C1 are plotted 
against estimated levels for C2 after normalizing a hypothetical colour flip 
experiment.  C1 and C2 in fact represent the same biological mRNA sample.  The 
centring of data points around the bisector (solid line) indicates that typical 
microarray non-linearities are adequately accounted for. 
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Figure 5.7:  Removal of non-linear artefacts.  Estimated expression levels are plotted against 
each other after normalizing a loop design experiment with 4 different hypothetical 
conditions (designated C1, C2, C3 and C4). These conditions in fact represent the 
same biological mRNA sample.  The centring of data points around the bisector 
(solid line) indicates that typical microarray non-linearities are adequately accounted 
for. 

5.3.2 Removal of non-linear artefacts 

Figure 5.6 illustrates the result of applying our method on a selection of two 
arrays from the 14-array experiment.  As this is a self-self design, the same 
biological sample was measured 4 times on these 2 arrays (twice labelled 
with Cy3 and twice with Cy5).  For the purpose of our test, we treated this 
self-self experiment as a colour flip design with two hypothetically different 
samples (designated C1 and C2).  Estimated expression levels x0 of the 
approximately 19000 genes are plotted in Figure 5.6 for C1 vs. C2.  Because 
in reality C1 and C2 represent the same biological condition, all estimates 
being centred along the bisector indicates that our model adequately 
accounts for the major sources of non-linear variation in the data.  The 
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increased variance of the estimates observed at lower target levels is inherent 
to microarray technology.  This range of expression corresponds to the 
saturation observed in the lower intensity region, i.e. where the additive error 
has a significant influence, considerably blurring the relationship between 
measured intensity y and expression level x0.  Because of these saturation 
effects, estimates of lower concentration are prone to be less reliable.  

As mentioned previously, our method is not bound by experimental design.  
To illustrate that these results are not only achievable with simple 
experimental setups, such as a colour flip, we normalized a set of 4 arrays as 
if it concerned a loop design with 4 different biological conditions (dubbed 
C1, C2, C3 and C4).  A comparison of the estimated expression levels is 
shown in Figure 5.7.  

5.3.3 Comparison to LOWESS+ANOVA 

We will illustrate the difference between our method and a LOWESS fit plus 
ANOVA normalization, by comparing the results of the 4 array loop design 
described in the previous section.  The same 4 arrays were rescaled for 
intensity dependent dye bias with a LOWESS procedure (smoothing factor f 
set to 30%), followed by an ANOVA normalization with model (4.13) (see 
chapter 4, section 4.2).  The results are shown in Figure 5.8, where for both 
approaches, estimated expression levels for C1 are plotted versus those for 
C3, and estimated expression levels for C2 are plotted versus those for C4.  
By doing so, these plots directly compare the biological conditions that were 
never measured together on the same microarray slide. 

What is immediately notable is the relatively high error variance our method 
displays for the lower range of estimated expression levels.  Such a feature is 
completely absent from the LOWESS+ANOVA normalized data.  It should 
be noted however, that panel A and B are plotted at different scales, and that 
the axis for panel B (our method) show more orders of magnitude than those 
of panel A (LOWESS+ANOVA).  In fact, the orders of magnitude that 
compromise the LOWESS+ANOVA estimates of expression roughly 
correspond to the higher range of expression for our method, where 
estimates are very accurate.  An explanation may be found in the fact that 
our method attempts to estimate actual expression levels and is greatly 
influenced by the saturation characteristics of the data.  An ANOVA 
normalization on the other hand, is a basic linear rescaling of the measured 
intensities, and as such, intensities that are saturated will remain saturated 
after normalization.  The spread out, lower range of estimates obtained with 
our method actually correspond to the dense blob of points at the lowest 
expression levels for the LOWESS+ANOVA method.  When interpreted 
correctly, both features tell the same tale: these estimates correspond to a 



Chapter 5 - A calibration procedure for spotted microarraysA calibration procedure for spotted microarrays 

110 

r 5 -  

110 

range of intensities that is saturated, and for which it is extremely hard to 
discern any useful information regarding the absolute levels of gene 
expression.  Another observation that is worthy of mentioning is that the 
normalized values from the LOWESS+ANOVA method are not completely 
symmetrical and, contrary our method, do not show an increased accuracy 
for higher expression levels.   

range of intensities that is saturated, and for which it is extremely hard to 
discern any useful information regarding the absolute levels of gene 
expression.  Another observation that is worthy of mentioning is that the 
normalized values from the LOWESS+ANOVA method are not completely 
symmetrical and, contrary our method, do not show an increased accuracy 
for higher expression levels.   
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Figure 5.8:  Comparison with LOWESS+ANOVA.  An illustration of the difference between a 

LOWESS fit (performed according to the GNA) plus ANOVA normalization (upper 
two panels), and the calibration method developed in this chapter (lower two panels).  
Four arrays that were hybridized with labelled target representing the same 
biological condition were normalized as if it concerned a loop design of 4 different 
conditions.  Estimated expression levels for conditions that were never measured 
together on the same microarray slide are directly compared in the plots (i.e. 
estimated expression levels for C1 are plotted versus those for C3, and estimated 
expression levels for C2 are plotted versus those for C4).   
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In this particular case, where all microarrays in fact constituted self-self 
hybridizations, the GNA that serves as the basis for rescaling the log-ratios 
according to a LOWESS fitted curve is a valid assumption.  It could 
nevertheless be argued that, in order to provide a decent comparison, results 
of our method should be compared to data that was rescaled according to a 
LOWESS curve fitted on the external control spikes with a ratio of 1:1.  
Indeed, if spikes are present on an array, these should be used to perform the 
rescaling instead of using all measurements.  Using spikes to fit the 
LOWESS curve ensures that the rescaling is independent of the GNA.  The 
results of this analysis are shown in Figure 5.9.  These are not markedly 
different from the ones depicted in panel A of Figure 5.9, and the points 
discussed above are also applicable in this case.  The fact that performing a 
LOWESS fit on the 1:1 spikes alone is not capable of completely linearizing 
data illustrates what was speculated in section 4.4.2 of chapter 4: intensity 
dependent normalization methods, such as LOWESS, will merely remove 
the nonlinearities between the Cy3 and Cy5 intensity measurements, and not 
between the measured intensity and the concentration of labelled target. 

In this particular case, where all microarrays in fact constituted self-self 
hybridizations, the GNA that serves as the basis for rescaling the log-ratios 
according to a LOWESS fitted curve is a valid assumption.  It could 
nevertheless be argued that, in order to provide a decent comparison, results 
of our method should be compared to data that was rescaled according to a 
LOWESS curve fitted on the external control spikes with a ratio of 1:1.  
Indeed, if spikes are present on an array, these should be used to perform the 
rescaling instead of using all measurements.  Using spikes to fit the 
LOWESS curve ensures that the rescaling is independent of the GNA.  The 
results of this analysis are shown in Figure 5.9.  These are not markedly 
different from the ones depicted in panel A of Figure 5.9, and the points 
discussed above are also applicable in this case.  The fact that performing a 
LOWESS fit on the 1:1 spikes alone is not capable of completely linearizing 
data illustrates what was speculated in section 4.4.2 of chapter 4: intensity 
dependent normalization methods, such as LOWESS, will merely remove 
the nonlinearities between the Cy3 and Cy5 intensity measurements, and not 
between the measured intensity and the concentration of labelled target. 
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Figure 5.9:  Comparison with LOWESS+ANOVA.  Results of a LOWESS fit (performed on 
external control spikes) plus ANOVA normalization.  These plots show essentially 
the same data as the upper two panels of Figure 5.8, the one difference being that the 
LOWESS fit was now performed on the external controls that were spiked in a ratio 
1:1, and not on all genes present on the microarray (i.e. not according to the GNA).  
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2 1000 10000 0 0.1 1 100 100 100
3 100 1000 10000 0 0.1 1 10 100
4 10 100 1000 10000 0 0.1 1 100

ilA5 1 10 100 1000 10000 0 0.1 100
DilA6 0.1 1 10 100 1000 10000 0 100

7 0 0.1 1 10 100 1000 10000 100
10000 0 0.1 1 10 100 1000 100

1000 10000 0 0.1 1 10 100 100
100 1000 10000 0 0.1 1 10 100

10 100 1000 10000 0 0.1 1 100
ilB5 1 10 100 1000 10000 0 0.1 100

0.1 1 10 100 1000 10000 0 100
DilB7 0 0.1 1 10 100 1000 10000 100

 
Table 5.1: Mixes of the 14 external control spikes.   

 

 Spik

 DilA
DilA

 
DilA
D

 DilA
DilB1

 
DilB2
DilB3
DilB4

 DDilB6

 

 

 

 

e Spike Mix 1 Spike Mix 2 Spike Mix 3 Spike Mix 4 Spike Mix 5 Spike Mix 6 Spike Mix 7 Reference Mix

DilA1 10000 0 0.1 1 10 100 1000 100

Note: These spike mixes were added tot the hybridization samples, prior to labeling.  From the total of 14 
arrays, 7 were hybridized with the respective spike mixes labeled in Cy5, each time against the reference 
mix labeled in Cy3.  The remaining 7 arrays were hybridized with the respective spike mixes labeled in 
Cy3, each time against the reference mix labeled in Cy5.  Concentrations are given in copy number per 
cell.  DilB6 was omitted from analysis due to quality issues [4]. 

5.3.4 Evaluation of absolute expression level estimates 

Although we have shown that our method is capable of estimating absolute 
expression levels that respect true ratios between the different conditions 
compared, the previous experiment does not reveal anything about the 
accuracy of these absolute estimates, i.e. it does not show to what extent 
these absolute expression levels approximate the actual concentrations of 
target in the hybridization solution. 

To verify the accuracy of estimated target concentrations, they should be 
compared with their actual concentrations in the hybridization solution.  
Doing this for the entire population of transcripts is impossible, as for most 
of the genes this concentration is unknown.  However, the data set contains 
an additional set of non commercial spikes for which the absolute 
concentrations in the hybridization solution are known.  The extracted 
mRNA samples were complemented with fourteen external controls at 
amounts of 104, 103, 102, 10, 1, 0.1 or zero copies per cell.  In all fourteen 
hybridizations, these controls were compared with a unique reference RNA, 
capable of binding to all of the 14 spike probes, always added at a 
concentration of 100 copies per cell.  The experimental design for these 
control spikes is summarized in Table 5.1.  Results obtained after performing 
our normalization are shown in Figure 5.10 (one spike was omitted from 
analysis because of quality issues [4]).  Because the estimated target 
concentrations, expressed in pg/ml, were not directly comparable to the units 
of copy number per cell, a linear rescaling of these values by a factor that set 
our estimate of the unique reference RNA to ‘100’ (copies per cell) was 
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performed.  Figure 5.10 shows that, except for the lowest concentrations, 
estimated values correspond fairly well to the true target concentrations as 
present in the hybridization solution.  As explained above, also here 
estimates of the lowest concentrations show a higher error variance.  
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Figure 5.10:  Evaluation of absolute expression level estimates.  Estimated mRNA 
concentrations (copy number per cell) for all of the 13 controls are plotted against 
the actual, spiked concentrations.  The solid line depicts the bisector.  Execpt for the 
lowest concentrations, estimated values correspond well to the true target 
concentrations as present in the hybridization solution. 
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Figure 5.11:  Consistent spot errors.  Estimated spot capacities s0, corresponding to the 14 
microarrays of the experimental design, are plotted for each of the 13 external controls, 
revealing consistent (per spike), and across-array spot errors.  The solid line represents 
the mean spot capacity. 

μs
s0

5.3.5 Comparison of estimated concentrations between 
genes 

Although Figure 5.10 shows that concentrations can be accurately estimated, 
there are several gene-dependent factors that could influence the obtained 
results, possibly hampering the comparison of estimated concentrations 
between different genes.  Gene specific hybridization efficiencies for 
instance, are not taken into account by our model.  ‘Consistent spot errors’ 
are another factor for which it is theoretically impossible to compensate.  
Microarrays are usually spotted in series: experimental errors that influence 
the DNA probe solutions used for spotting will affect an entire set of 
microarrays in a similar way.  This type of ‘consistent spot error’ will 
manifest itself on individual spots across multiple microarray slides, contrary 
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to e.g. variations related to the spotting pins themselves, which would also 
affect multiple spots on a single array.  The particular setup of the 13 
external controls, used for assessing the accuracy of estimated expression 
levels, can provide some insight.  Because the universal reference RNA can 
hybridize to all the probes of these spikes, it couples the spot errors of all 
probes during the estimation of target concentrations.  As a consequence of 
this coupling, consistent spot errors could partially be compensated for, as 
illustrated in Figure 5.11.  For certain spikes (e.g. Dil2a), estimated spot 
capacities were persistently above or below the average capacity, a feature 
that was only detectable through the presence of the universal reference 
RNA.  As a result, estimated target concentrations can be subject to gene 
specific rescaling, hampering the comparison of these concentrations 
between genes.  They can nevertheless be interpreted as absolute values of 
expression when comparing different concentrations for a single gene.  

5.3.6 Influence of local background corrections 

In our model the combination of the additive intensity error εa and intercept 
of the dye saturation function p2 can be regarded as an elementary model for 
the entire slide’s background. Having a single background for all spots is 
different from the spot specific background corrections performed during 
standard microarray analysis, which estimate a spot specific background 
from pixels corresponding to the area of the glass slide surrounding the 
spotted probe (see chapter 2, section 2.2.2.1).  This background model is by 
no means a restriction concerning the use of background corrected values; 
our normalization can be applied to both raw and background corrected 
intensities.  Moreover, our method is perfectly capable of working with 
negative intensity values that may arise when measurements are lying below 
background.   

Whether or not using background corrected measurements is advisable, 
depends largely on the data quality.  The effects of background correction on 
estimated parameters and intensity data are illustrated in Figure 5.12.  
Performing a spot specific background correction prior to applying the 
model would ideally result in the lower saturation limit of our model (p2) 
becoming zero.  Local background intensities however, are only a crude 
approximation of the true background (for a detailed discussion, see section 
2.2.2.1 of chapter 2), so in reality, the estimate for p2 will indeed be lower, 
but never reaches a zero level.  Moreover, the standard deviation estimate for 
the additive intensity error will be significantly larger than the estimate for 
non-background corrected intensities.  In general, a trade off can be 
observed: background corrected measurements have a larger linear range, 
but at the expense of increased measurement errors for lower concentrations.  
This effect is not only discernable in the estimated parameters, but is often a 
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prominent feature when comparing MA-plots for raw versus background 
corrected intensities (see e.g. Figure 3.7 in chapter 3). 
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 Figure 5.12:  Effect of background correction.  A) Model parameters (thick line) and 99% 
confidence interval for intensity errors (thin lines), estimated from raw, non-
background corrected data (red = Cy5; green = Cy3) . B) Model parameters and 99% 
confidence interval for intensity errors, estimated from background corrected data.  
Compared to panel A, an increased linear range, as well as an increased error 
variance, can be observed for lower intensity measurements. 
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5.4 Discussion 
In this chapter we presented an approach for normalizing spotted microarray 
data, using external control spikes to fit a calibration model.  This model 
incorporates parameters and error distributions representing both the 
hybridization of labelled target to complementary probes, and the subsequent 
measurement of fluorescence intensities.  External control spikes serve to 
estimate the model parameters. The obtained parameters values are then 
employed to estimate absolute levels of expression for the remaining genes.  
For each combination of a gene and a tested biological condition, a single 
absolute target expression level can be estimated, taken the specificities of 
the design.  Incorporation of external control spikes is thus an absolute 
requirement for any data set to be normalized according to the methods 
described in this chapter.  While the data that served as an example to 
illustrate the workings of procedure (see section 5.3.1) was outfitted with a 
commercial set of control spikes, any set of external controls that relates 
target concentration to measured intensity across the entire measurement 
range, can serve to supply the input calibration data.  It is important to 
realize however, that the amount of controls and their overall quality will 
naturally have a large influence on the final, normalized data, because they 
will determine the accuracy of the estimated model parameters.   

The calibration model in itself is fairly basic, in that, with the exception of 
spot size errors, it is aimed at capturing the global characteristics of an 
experiment and their overall influence on intensity measurements, 
generalizing on hard to quantify local sources of variation.  The combination 
of the additive intensity error εa and intercept of the dye saturation function 
p2 for instance, can be regarded as a global model for the entire slide’s 
background.  

The array specific hybridization constant Ka, another global factor, obviously 
does not account for transcript specific hybridization efficiencies.  Therefore, 
care should be taken when interpreting the estimated expression levels as 
actual concentrations or when comparing estimated expression levels 
between genes.  On the other hand, probe sequences for spotted microarrays 
are often specifically selected to have properties that obviate large 
differences in transcript specific hybridization effects (contrary to 
Affymetrix GeneChip arrays, where the short oligonucleotide probes show 
large differences in hybridization efficiency [89,90]). Besides these gene 
specific hybridization effects, comparison of estimated expression levels 
between genes is also complicated by ‘consistent spot errors’ across multiple 
slides.  These errors, resulting from experimental inaccuracies in the probe 
DNA preparation, can arise when microarray slides are spotted in series.  
Due to the characteristics of microarray technology, they cannot be dealt 
with model wise.   
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Although our model is a simplification of physical reality dealing with errors 
in a global, non-gene specific way, results show that our method is capable 
of adequately linearizing and normalizing spotted microarray data.  An 
important difference over most existing normalization methods is that our 
procedure does not rely on any assumptions on the distribution of gene 
expression levels from one biological sample to the next.  Hence, our 
procedure is particularly well suited to normalize experiments for which the 
Global Normalization Assumption (GNA) may not be entirely valid, i.e. 
experiments for which there is no symmetry in the amount of genes that are 
up-regulated versus down-regulated.  Such is typically the case with 
experiments comparing drastically contrasting biological conditions or with 
dedicated spotted microarrays, containing only a limited number of spotted 
probes, representing genes involved in the studied biological process.  

In contrast to other normalization methods that use spikes to circumvent the 
Global Normalization Assumption [208], our procedure computes absolute 
expression levels, avoiding the use of ratios.  Moreover, for the described 
experiment, the estimated absolute expression levels approximate the actual 
concentrations fairly well.  Some caution is nevertheless advised when 
interpreting estimated concentrations as such.  This is only problematic as 
far as comparing expression levels between different genes; the points 
discussed above have little or no consequence if a comparison is made 
between estimated target levels across biological conditions for a single 
gene.  

Our method offers a novel approach to normalizing spotted microarrays that 
combines the advantages of approaches that attempt to estimate absolute 
expression levels [33,57,113], and methods that perform data linearization 
using the ratio distribution (e.g. LOWESS). The procedure offers 
independence of assumptions concerning the distribution of gene expression 
(i.e. the GNA) by retaining much of the inherent calibration information of 
external control spike measurements.  



Chapter 6 

Conclusions and outlook 

The research presented in this PhD thesis dealt entirely with the 
normalization of data from spotted microarrays.  The strategies that were 
pursued differ in spirit from most accepted techniques.  Standard ratio based 
normalization is heavily bound to assumptions concerning the distribution of 
gene expression; they are guided by how expression levels are presumed to 
change across different biological conditions.  Ratio normalization methods 
generally show little interest in the underlying causes of the observed 
systematic and random variation in microarray data.  The underlying idea of 
our research was to acknowledge –as much as possible- the physical and 
biological reality of the process and address the normalization problem 
starting from units of absolute intensities.  Instead of being limited to the 
relative nature of intensity ratios, we attempted to estimate absolute values 
of expression by modelling the measured intensities as a function of 
systematic sources of variation in an experimentally meaningful way.  The 
results and observations that culminated from this work are summarized in 
section 6.1, followed by a short description of some concrete problems that 
will be studied in the future (section 6.2).  An outlook on microarray 
normalization and spotted microarrays in general, is given in the final 
section of this dissertation (section 6.3).  

6.1 Achievements 
Initial research (described in chapter 3) consisted of the evaluation of 
ANOVA models for microarray normalization and comparing them to ratio 
based approaches [132].  ANOVA models were the first method to work 
with absolute intensities, linearly rescaling them to obtain estimates of 
absolute expression levels.  This preliminary research demonstrated that 
ANOVA based normalization was not without its share of flaws, especially 
regarding the use of the residual distribution for identifying differentially 
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expressed genes.  Nevertheless, it remained an interesting and potentially 
powerful tool that deserved further attention.  Other notable observations 
showed that typical non-linear dye biases in the data prohibit the sole use of 
ANOVA for data normalization.  Performing a LOWESS fit (or a similar 
array-by-array intensity based rescaling) prior to the application of the 
ANOVA model should therefore be considered as a required step in any 
ANOVA based normalization procedure. 

ANOVA models for microarray normalization can not readily be applied to 
any type of experimental setup of a microarray experiment.  Attempting to 
fit the published ANOVA models to different experimental designs can be a 
tedious task, and so further research was directed at the development of 
generic (applicable to any experimental setup) ANOVA models for 
microarray normalization (chapter 4).  To insure the availability to a wide 
range of public, such a generic model was implemented in a user friendly 
web application [72] (http://www.esat.kuleuven.be/maran).  Some 
interesting features were revealed during the course of this research.  Results 
seemed to indicate that a LOWESS normalization may not be able to 
completely alleviate intensity dependent nonlinear tendencies in the data 
(despite of harsh assumptions with regards to the distribution of gene 
expression from one biological condition to the next). 

These observations begged for a re-examination of our working hypothesis, 
and fuelled the research described in chapter 5.  External control spikes 
provided further insight and led to the development of a novel normalizing 
method for spotted microarray data [73], which itself relies on such external 
controls to fit a calibration model.  The model incorporates parameters and 
error distributions representing both the hybridization of labelled target to 
complementary probes, and the subsequent measurement of fluorescence 
intensities.  External control spikes serve to estimate the model parameters. 
The obtained parameters values are then employed to estimate absolute 
levels of expression for the remaining genes.  For each combination of a 
gene and a tested biological condition, a single absolute target expression 
level is estimated, taken the specificities of the design.  The results that were 
obtained from applying our method to a publicly available data set show that 
the procedure is capable of adequately removing the typical non-linearities 
of microarray data, without making any assumptions on the distribution of 
differences in gene expression from one biological sample to the next and 
thus completely avoiding the GNA.  The new procedure performed well 
compared to a standard LOWESS procedure (prior to fitting an ANOVA 
model), and might be considered superior in several aspects.  More 
importantly, since our model links target concentration to measured 
intensity, absolute expression values of transcripts in the hybridization 
solution can be estimated with fair accuracy.   
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6.2 Future work 
The calibration method described in chapter 5 will be the basis for further 
investigations.  It is to be made widely available as a ‘BioConductor 
Package’ (www.bioconductor.org).  BioConductor [76] is an ‘open source’ 
and ‘open software development’ project; its goal is providing access to 
software for the analysis of genomic data.  Mostly all of the established 
methods for microarray normalization (as well as a plethora of tools for 
further analysis) are already available to the public in the form of 
BioConductor packages.  As such, BioConductor is used across the globe, 
and on a large scale, for the analysis and interpretation of microarray data. 

The implementation of a BioConductor package will coincide with a further 
elaboration of the semi-physical model (chapter 5, section 5.2.1) that is used 
in this normalization procedure.  The model in itself is fairly basic, in that, 
with the exception of spot size errors, it is aimed at capturing the global 
characteristics of an experiment and their overall influence on intensity 
measurements, generalizing on often hard to quantify local sources of 
variation.  In the models current form, there is plenty of room for 
improvement by adding parameters and error distribution that account for 
more local factors of experimental noise, with the intention of diminishing 
the error variances on the estimated target levels. 

As the procedure itself estimates a single expression level based on all 
available replicates within the experiment, it is imperative that some measure 
of reliability for these estimates can be obtained as well.  Some further 
research is necessary to find computationally inexpensive ways that 
adequately quantify the error distribution on the estimated target levels.  
With the proper test statistics, confidence intervals based on these 
distributions could be used to identify genes with significantly changing 
expression, or genes that were measured with a high inconsistency.  Also, 
having a measure of reliability on the estimated expression levels could 
prove a welcome addition for downstream analysis algorithms used for data 
exploration (section 2.2.3, chapter 2).   

Because of the universal principles that are the basis of this normalization 
procedure, it could be easily adapted to work with other molecular biological 
high-througput techniques.  A promising candidate is the ChIP-chip 
technology (see chapter 2, section 2.3), used for identifying binding sites for 
DNA binding proteins.  It relies on the use of spotted microarrays to 
compare the abundance of DNA molecules in two populations.  One sample 
consists of immunoprecipitated DNA (i.e. DNA representing binding sites), 
the other sample serves as a negative control.  For such a comparison, the 
GNA is utterly inappropriate, rendering standard normalization strategies 
useless and adding to the requirement of a large number of replicate 
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measurements to infer DNA binding sites with any statistical significance.  
The underlying principles of our model however (section 5.2.1 in chapter 5), 
are no different in this case than for the more common expression profiling 
experiments.  Incorporating external controls into ChIP-chip experiments in 
order to normalize the data might result in more accurate predictions of 
DNA binding sites at fewer expenses (i.e. less microarray hybridizations).  
Other high-throughput technologies that are essentially different from 
microarrays, but share similar characteristics (such as differential labelling) 
might also benefit from a similar normalization approach.  A good example 
is Fluorescence 2D Difference Gel Electrophoresis (2D-DIGE) technique 
that aims to compare the expression of proteins in different biological 
conditions [148,149,205,209].  2D-DIGE uses molecular weight- and pI-
matched, spectrally resolvable dyes (Cy2, Cy3 and Cy5) to label protein 
samples prior to 2D electrophoresis.  By using different dyes to separately 
label proteins isolated from different biological conditions, multiple samples 
(up to three) can be co-separated and quantitated by three different set of 
wavelengths.  

6.3 Outlook 

Red light, green light… 
The central issue that stood at the core of this thesis was modelling intensity 
measurements from spotted microarrays in a semi-physical way (i.e. 
acknowledging the experimental reality) in order to obtain absolute estimates 
of target expression levels.  We attempted to create a normalization method 
by not treating microarray data merely as proportions of differential 
expression, but upholding the view that every measured intensity is a 
representation of an actual abundance of mRNA, subject to a variety of 
experimental factors which may –or may not- be mathematically modelled 
and accounted for.   

When spotted microarrays were introduced in the mid 1990s, they 
empowered researchers with an impressive tool to compare gene expression 
characteristics on a high-throughput scale.  The principles for interpreting 
the data were remarkably simple: red light indicated over-expression in one 
sample, green light indicated over-expression in the other sample, a yellow 
blob could be anything in between, and a black void corresponded to a lack 
of expression in either condition.  Equally noteworthy, these red over green 
intensity ratios were accurately quantifiable.  It soon became clear however, 
that getting reliable measures for differential expression was slightly more 
complex due to various experimental biases that are introduced during the 
course of an experiment.  The need for proper normalization strategies thus 
quickly arose.  Normalization methods were generally conceived as ad hoc 
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adjustments of the measured ratios, showing little interest in the underlying 
causes of the observed systematic and random variation in the data.  To this 
day, little has changed.  Elaborate mechanisms for rigorously quantifying 
different sources of random and systematic noise, and for assessing their 
influence on the relation between measured intensity and actual mRNA 
abundance, have yet to be established.  Instead, microarray data are still 
routinely normalized by forcing corrected ratios to comply with an expected 
pattern of behaviour.  This claim does not only hold true for many 
procedures that aim at removing dye related discrepancies, but also, for 
instance, for log-ratio variance stabilization techniques.  The goal of such 
techniques is to counter the large variation at lower intensity levels that is 
often observed in MA-plots, thus facilitating further statistical inferences.  
What such methods fail to recognize, is that this region of increased ratio 
variance corresponds to the saturation range of intensities, i.e. where little or 
no information regarding actual mRNA concentration is retained in the 
measured intensities.   Measured ratios in this region are often hard to 
reproduce, and replicate experiments show little consistency for these ratios 
(see e.g. chapter 3), meaning that genes with overall low intensity levels are 
hard to find significantly differentially expressed.  One could dispute the 
usefulness of such variance stabilization techniques.  It may be better to 
accept that, downwards from a certain point, there is minor knowledge to be 
gained with regards to actual expression levels. 

We feel that the analysis of microarray data could benefit from a more 
methodical approach to its experimental nature.  This however, would 
require some change in the way microarray experiments are performed and 
the data are managed.  Most notably, there is the absolute requirement for 
inclusion of experimental controls, necessary to build calibration models and 
estimate model parameters.  Experimental controls should not be limited to 
the type of external control spikes we relied on in chapter 5, but could be 
incorporated at different stages during sample processing.  Ideally, controls 
would be added at each step of a microarray experiment to ensure a 
maximum discernment of systematic and random variation introduced at 
distinct phases.  However in practice, experimental controls consist of 
external control mixes that are spiked only once, and logic dictates that this 
is done early during sample processing so that as many steps as possible are 
monitored.   

Regrettably, incorporating external controls into microarray experiments 
comes with an added cost that not all researchers are willing to pay.  This 
could soon change though, as there are some forces at work, such as the 
industry led External RNA Control Consortium [11] (ERCC; 
http://www.affymetrix.com/community/standards/index.affx), that are 
lobbying for a greater acceptance of external controls in microarray 
experiments.  The ERCC is endeavouring to establish and develop an 

http://www.affymetrix.com/community/standards/index.affx


Chapter 6 - Conclusions and outlook 

affordable, universal set of external RNA controls that can be used across 
several organisms without fear of cross-hybridization.  Providing standards 
for the incorporation of spikes brings about other problems.  At present, the 
absolute amount and incorporation percentage of labelled material being 
applied to microarrays is usually not reported (this is not a requirement 
according to MIAME [29] guidelines).  The volumes that are applied are 
sometimes chosen to have the same total fluorescence value, which does not 
necessarily correspond to applying equal amounts of target due to the 
differential labelling.  Altering the proportion of Cy3 versus Cy5 sample 
which are hybridized will naturally affect the concentrations of the spiked 
controls, ultimately leading to wrong normalizations when not reported 
properly.  
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Figure 6.1:  Inappropriate use of a GNA based normalization.  Microarray data are often 
normalized according to the GNA regardless of features that reveal its 
inappropriateness.  Such circumstances expose themselves by showing unusually 
large, often increasing log-ratio variances for higher average intensity levels.  In this 
figure, some examples are shown of ill-suited use of GNA based normalization.  A) 
Khodursky et al, 2000 [114] (Stanford Microarray Database Experiment ID 1639).  
B) Courcelle et al, 2001 [42] (SMD-ExpID 1290).  C) Bernstein et al, 2002 [19] 
(SMD-ExpID 8589).  D) Bernstein et al, 2004 [20] (SMD-ExpID 19340).   
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Figure 6.2:  Unbalancing changes in global gene expression.  Yeast stationary phase culture 
(R) compared with mid-log phase culture (G).  A) MA scatter plot after LOWESS 
normalization using external controls.  B) LOWESS normalization for using all 
genes, i.e. according to the GNA.  The aberrant pattern of external control spots 
(blue) occurred because messenger RNA levels had not changed uniformly across 
the entire range of expression levels.  C) Comparison of different normalization 
strategies. The left and middle columns correspond to the graphs shown in (B) and 
(A), respectively.  The drop in total RNA yields per cell (see Methods) can also be 
taken into account (right column).  Taken from van de Peppel et al., 2005 [208]. 
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Figure 6.3:  Cells, total RNA, and mRNA.  A) Schematic representation of a glucose starvation 
experiment of Saccharomyces cerevisiae (circles represent the 39 samples that were 
analyzed).  The OD600 is a measure of culture density.  B) Cell count per OD600 
throughout the culture (left) and for the first 40 hr (right).  This gives an idea of the 
difference in average cell size.  For an equal amount of cells, a bigger OD600 
indicates a larger average cell size. The coloured bar represents the various culture 
periods, with abbreviations according to panel A.  C) Number of cells/ml.  D) Total 
RNA per 108 cells.  E) Average polyA signal, an indication of the amount of mRNA 
being transcribed.  Taken from Radjonic et al., 2005 [158]. 
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Despite these issues, the use of external controls has some substantial 
advantages, not in the least due to its potential to completely avoid any 
assumptions relating to the distribution of gene expression values, i.e. there 
is no need for a GNA.  The importance of this independence from the GNA 
should not be underestimated.  A LOWESS fit that relies on all genes may 
be fairly robust for small numbers of outliers (i.e. when only a few genes are 
differentially expressed) [226], but it is important to stress that, when the 
GNA is violated, the normalized data would report faulty ratios for a great 
many genes.  It has long been undisputed that the GNA is a ‘safe’ 
assumption, thought to be inappropriate only in the most extreme cases, i.e. 
when comparing radically different biological conditions.  Circumstances 
where the GNA is inappropriate beyond a doubt expose themselves by 
showing unusually large, often increasing log-ratio variances for higher 
average intensity levels.  Sadly enough in reality, such prominent features 
are ignored by researchers (some examples from published research articles 
[19,20,42,114] are shown in Figure 6.1), and data is normalized according to 
the GNA regardless.  Even more worrying, it has recently been shown 
however that such global, unbalancing changes in gene expression can also 
occur under more conventional experimental conditions, and are in fact more 
common than what was previously believed [206-208] (an example is shown 
in Figure 6.2).  The method we describe in chapter 5 could be a convenient 
tool for further addressing the validity of the GNA when comparing different 
biological conditions. 

… and the eye of the beholder 
The main purpose of any transcript profiling experiment is to reveal which 
genes alter their expression and to what extent.  A seemingly trivial question 
comes to mind: “When is a gene considered differentially expressed?”  Or 
even better: “When is a genes expression considered to be constant across 
different biological conditions?”  

When microarray experiments are performed, usually equal amounts of Cy5 
and Cy3 labelled target are hybridized to the array.  Alternatively, this 
amount is varied according to the total fluorescence intensity of the samples.  
The reasoning behind this rescaling is that it would help alleviate intensity 
biases caused by differential labelling.  Although intuitively plausible, in 
light of the distinct saturation characteristics of measured intensities from 
hybridized Cy3 and Cy5 samples, this remedial measure has little relevance.  
One could state that the general idea is to compare equal amounts of mRNA, 
regardless of their proportion to the total RNA in the cell.  Indeed, a variety 
of processing steps lies between selecting a biological population of cells 
and hybridizing its labelled target to a microarray, ranging from isolation of 
total RNA, to separation, reverse transcribing and labelling of the mRNA 
(see chapter 2, section 2.1).  When comparing merely the mRNA from 
different biological condition, one is completely oblivious to the fact that 
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total RNA samples contain different proportions or compositions of mRNA.  
There is nonetheless an easy way to monitor such differences, namely by 
spiking external control mixes into total RNA samples, thereby controlling 
all of the downstream steps.  Of course any factor that might alter the initial 
ratios of spikes controls is completely confounded with the amounts of 
labelled target that are ultimately applied to the microarray.  This brings us 
back to the point mentioned earlier: there is need for a proper format 
reporting all relevant experimental steps, including the amounts of 
hybridized target sample.   

When treating differential expression as a unit per amount of mRNA, one 
does not only dismiss the composition of total RNA in a cell, but also the 
basic unit of life, the cell itself, is utterly ignored.  What happens when one 
or more of the relevant biological conditions consists of cells in which RNA 
transcription is significantly impaired or has even grinded to a near halt (e.g. 
nutrition deprived cells)?  How meaningful is it in such circumstances to 
compare expression levels, normalized with respect to amounts of mRNA or 
total RNA?  A recently published research paper, of which some results are 
reproduced in Figure 6.3, illustrates these points perfectly [158].  Holstege 
and colleagues describe an expression profiling experiment of 
Saccharomyces cerevisiae quiescence entry and exit, including intervening 
events, that covered 9 days of culture.  All the time points in this experiment 
were complemented with ChIP-chip data for the RNA polymerase II protein.  
Expression data were normalized by performing a LOWESS normalization 
using external control spikes, which were added to total RNA, thus avoiding 
GNA-like assumptions and more accurately determining mRNA level 
changes.  Moreover, additional rescaling factors, based on the total RNA 
yield per cell, were taken into account in the analysis.  By incorporating all 
of these factors into their research, they were able to reach conclusions that 
one might be hard pressed to find otherwise.  They showed that transcription 
activity is shut down all but entirely in stationary phase, but that the 
transcription machinery is maintained, largely in an inactive state, and the 
RNA polymerase II is poised for immediate response by being held upstream 
of many genes required for changes in environmental conditions and 
reproliferation. 

So how should we define the units to compare gene expression across 
different biological conditions: as quantities per cell, as quantities per total 
amount of RNA, as quantities per amount of mRNA, or as something 
entirely different?  Perhaps the better strategy is to incorporate all of these 
factors into the analysis, as each one of them contains its own share of 
biologically relevant information.  Perhaps it is more rewarding to compare 
biological conditions as a whole, instead of focussing on significantly 
differential genes.  Studying the distribution of absolute expression levels for 
a single cellular state in its own right could lead to notable biological 
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insights.  Which genes are expressed tout court, at what level, which 
pathways and functional categories are active in the cell and to what degree, 
how do they relate to the condition studied, and how (un)likely are all these 
observations compared to other expression profiles that are available for the 
same organism?  Of course, such analysis would require accurate 
measurements of absolute mRNA levels across the entire expression range, 
from the highest activity of transcription to a complete lack of a genes 
expression.  Technology is not yet up to the task, and –for now- differential 
expression will remain very much in the eye of the beholder. 
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Appendix A 

Locally Weighted Scatter Plot Smoothing 

Locally Weighted Scatter Plot Smoothing (LOWESS) is a statistical 
technique for plotting a smooth curve through a set of data points in a scatter 
plot (a graph with a predictor variable as its X-axis and a response variable 
as its Y-axis).  The LOWESS fit procedure, originally proposed by Cleveland 
(1979) [39], combines much of the simplicity of linear least squares 
regression with the flexibility of nonlinear regression.  At each point in the 
data set a low-degree polynomial is fit to a subset of the data (localized 
subset), with explanatory variable values near the point whose response is 
being estimated.  The polynomial is fit using weighted least squares, giving 
more weight to points near the point whose response is being estimated and 
less weight to points further away.  The value of the regression function for 
the point is then obtained by evaluating the local polynomial using the 
predictor variable values for that data point.  The LOWESS fit is complete 
after regression function values have been computed for all of the n data 
points.  The procedure is illustrated in Figure A.1.   

One of the chief attractions of the LOWESS method is that the data analyst 
is not required to specify a global function of any form to fit a model to the 
data.  Several of the details and parameters of this method however, such as 
the degree of the polynomial model and the weights, are flexible. The three 
most important choices that are available to the user are briefly discussed 
below: 

• Degree of the local polynomials: the local polynomials fit to each 
subset of the data are almost always of first or second degree; that is, 
either locally linear or locally quadratic.  The original LOWESS 
algorithm relied on a linear polynomial as local regression function.  
LOESS (without ‘w’) differs in using a quadratic polynomial for its 
regression.  In practice however, LOWESS and LOESS are often 
treated as synonyms.  Using a zero degree polynomial would turn 
LOWESS into a weighted moving average.  
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Figure A.1:  Illustration of the LOWESS fit procedure.  Plot (a) through (d) show the localized 
subset (vertical lines), local polynomial fit (diagonal lines within localized subset), 
and smoothed response value (cross) as the algorithm progresses from one data point 
to the next.  The number of data points that are retained in a localized subset 
(determined by f) does not change as the smoothing process progresses from data 
point to data point.  However, depending on the number of nearest neighbours, the 
regression weight function might not be symmetric about the data point to be 
smoothed.  In particular, plots (a) and (b) use an asymmetric weight function, while 
plots (c) and (d) use a symmetric weight function.  For the LOESS method, the 
graphs would look similar, except the smoothed value would be generated by a 
second degree polynomial.  Taken from The MathWorks website 
(http://www.mathworks.com/access/helpdesk/help/toolbox/curvefit/ch_data7.html). 
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• Smoothing parameter: the smoothing parameter f is the proportion 
of data used in each fit.  The value of f is a number between (d+1)/n 
and 1, with d denoting the degree of the local polynomial.  Large 
values of f produce the smoothest functions that are more robust in 
response to fluctuations in the data. The smaller f is, the closer the 
regression function will conform to the data variations. 

• Weight function: the traditional weight function used for LOWESS 
is the tri-cube weight function. 
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In this formulation x is the predictor value associated with the 
response value to be smoothed, xi are the nearest neighbours of x as 
defined by the span (dependent on f), and Δx is the distance along the 
abscissa from x to the most distant predictor value within the span.  
The weights have the characteristics that the data point to be 
smoothed has the largest weight and the most influence on the fit 
and that data points outside the span have zero weight and no 
influence on the fit. 
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Appendix B 

Analysis of Variance 

This appendix serves to give a short overview of the principles of analysis of 
variance techniques and the notation, as used in this dissertation, to describe 
the models as well as the procedures for estimating the model parameters.  
For more detailed information we refer to the book ‘Linear statistical 
models’ of Neter et al. (1996) [141]. 

B.1 Principles 
Analysis of variance (ANOVA) models are versatile tools for studying the 
relation between a response variable and one or more explanatory or 
predictor variables (referred to as factors).  ANOVA models are a basic type 
of linear statistical models that share many features with regression models.  
Like regression models, they are concerned with the statistical relation 
between one or more predictor variables and a single explanatory variable, 
the latter of which the nature is always quantitative.  ANOVA models 
however, differ from ordinary regression models in two key respects:  

• The explanatory or predictor variables in ANOVA models are often 
qualitative (manufacturing type, gender, location, etc.).  In ordinary 
regression models, both the predictor and response variable are 
quantitative. 

• If the predictor variables are quantitative, no assumption is made in 
ANOVA models about the nature of the statistical relation between 
them and the response variable.  Thus, the need to specify the nature 
of the regression function encountered in ordinary regression 
analysis does not arise in ANOVA models.  Instead, every particular 
form of a predictor variable (such an instance of a factor is referred 
to as factor level) is attributed with its own parameter. 
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B.2 Notation 

ANOVA models 
We will illustrate the notation of the ANOVA models and estimation of the 
parameters with a simple two-factor study (i.e. two predictor variables).  
When multiple factors are involved, a single combination of factor levels is 
referred to as a treatment.  The mean response for a given treatment in a two 
factor study can be referred to as  μij, where i refers to the level of factor A (i 
= 1,…,a) and j refers to the level of factor B (j = 1,…,b): 

 ijiiij αββαμμ +++=  (B.1) 

This formulation indicates that each  μij can be viewed as the sum of four 
component factor effect parameters.  Specifically, (B.1) states that the mean 
response for the treatment where factor A is at the ith level and factor B is at 
the jth level is the sum of an overall constant μ, the main effect parameter αi 
for factor A at the ith level, the main effect parameter βj for factor B at the jth 
level, and the interaction effect parameter αβij.  The interaction effect 
parameter is the difference between the treatment mean μij and the value that 
would be expected if the factors were additive.  If in fact the two factors are 
additive, all interactions equal zero, i.e. αβij ≡ 0. 

It is further assumed that the measured responses for each treatment are 
random selections from a normal distribution with the same variance, and 
that they are independent from the measured responses for any other factor.  
As such, we can write: 

 ijkijiiijkY εαββαμ ++++=  (B.2) 

Where Yijk is the response value of the kth trial, and nij the sample size (k = 
1,…,nij), for the treatment where factor A is at the ith level, factor B is at the 
jth level, and the error terms εijk are independent N(0,σ). 

Parameter estimation 
Obtaining estimators for the parameters in ANOVA model (B.2) is usually 
done through least squares or maximum likelihood methods.  Both lead to 
minimizing the residual sum of squares (SSE): 
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subject to restrictions for the main effects: 
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and subject to restrictions for the interaction effects: 
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The Ŷijk represent the fitted values, i.e. the linear combination of parameters 
for the corresponding treatment, and eijk represent the residuals, which are 
defined as the difference between the observed and the fitted values. 

When this minimization is performed (which can easily be done analytically 
by setting the partial derivatives of the SSE with respect to each of the 
parameters to zero, and solving this system of equations), the following 
estimators for the parameters are obtained: 

 ...Yˆ =μ  

 .....ii YYˆ −=α  

....j.j YYˆ −=β  

 ....j...i.ijij YYYY +−−=αβ  (B.6) 

where a dotted index ‘.’ indicates to average the measurements of the 
response variable over that index.   

Matrix notation 
ANOVA models are linear models because they can be stated in the 
following form (regression model approach): 

 
εXβY +=  (B.7) 

The vector Y is of size n×1 containing the total of n observations on the 
response variable.  Similarly, the vector ε is of size n×1 and represents the 
error terms.  The predictor matrix is of size n×p, and parameter vector β is of 
size p×1.  It should be noted that p is not the total amount of parameters in 
the model, but the degrees of freedom that are associated with the 
parameters.  In the case of model (B.2), with restrictions (B.4) and (B.5), this 
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amounts to p=(a-1) +(b-1) +(a-1)(b-1).  Indeed, due to restrictions (B.4), we 
only need a-1 parameters αi and b-1 parameters βj in the regression model, 
and we can represent αa and βb as: 

121 −−−−−= aa ... αααα  

 121 −−−−−= bb ... ββββ  (B.8) 

Similarly for the interaction parameters, if we recognize the restrictions 
(B.5), we only need (a-1)(b-1) parameters αβij in the regression model, and 
can represent αβaj and αβib as: 

  121 −−−−−= b,iiiib ... αβαβαβαβ a,...,i 1=  

  j,ajjaj ... 121 −−−−−= αβαβαβαβ b,...,j 1=  (B.9) 

The elements of the predictor matrix X can only be 0, 1 or -1.  A 1 or 0 
indicates whether a factor effects parameter is applicable to an observed 
response variable or not respectively.  The -1 entries of X are meant to 
account for equations (B.8) and (B.9).  Matrix X is known as it corresponds 
to the design of the experiment.  A least squares estimator b for the 
parameter vector β can be obtained by solving the linear equation (B.7) as: 

 ( ) YXXXb TT 1−
=  (B.10) 
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