	Overview			
Exact and approximate modeling in the behavioral setting	1. Illustrative example			
Ivan Markovsky PhD defense presentation 1 February 2005	 Approximate modeling via misfit minimization Structured total least squares Exact system identification Approximate system identification Insights and contributions 			
Basic problem: data \mapsto model	Basic problem: data → model			
given: data (e.g., measurements of an experiment) $\mathscr{W} := \{w(1), \dots, w(T)\}$ i) a linear static model \mathscr{B}_1 find: ii) a quadratic static model \mathscr{B}_2 that best fits \mathscr{W}	 What is a model? (in particular, linear, quadratic, LTI) What does it mean "the model fits the data well"? How to measure the fitting accuracy and find optimal models? 			
iii) an LTI dynamic model \mathscr{B}_3 LTI — linear time-invariant	goals: find algorithms that realize the mappings $\mathscr{W} \mapsto \mathscr{B}_1, \mathscr{W} \mapsto \mathscr{B}_2, \mathscr{W} \mapsto \mathscr{B}_3, \text{with } \mathscr{B}_1, \mathscr{B}_2, \mathscr{B}_3 \text{ "optimal"}$ implement these algorithms in a ready to use software			

2

Example with 2 variables and 8 data points

$$w(1) = \begin{bmatrix} 1\\7 \end{bmatrix}, \ w(2) = \begin{bmatrix} 2\\6 \end{bmatrix}, \ w(3) = \begin{bmatrix} 5\\8 \end{bmatrix}, \ \dots, \ w(8) = \begin{bmatrix} 8\\4 \end{bmatrix}$$

Linear static model

a (nontrivial) linear static model in \mathbb{R}^2 is a line through (0,0)

Quadratic static model

a (nondegenerate) quadratic static model in \mathbb{R}^2 is an ellipse

Linear dynamic model

the data \mathscr{W} is viewed now as a vector time series $w = (w(1), \dots, w(8))$ (note that in this case the ordering of the data points is important)

we look for a first order LTI model with one input

4

Linear dynamic model

0-_4

-2

0

2

4 W1 6

8

10

- What does it mean "the model fits the data well"?
- How to measure the fitting accuracy and find optimal models?

Linear dynamic model

Fitting accuracy (static case)

consider a given model $\mathscr{B} \subseteq \mathbb{R}^w$ and data $\mathscr{W} = \{w(1), \dots, w(T)\}$

the misfit (w.r.t. to the norm $\|\cdot\|)$ between ${\mathscr B}$ and ${\mathscr W}$ is defined as

$$M(\mathscr{W},\mathscr{B}) := \min_{\hat{w}(1),\dots,\hat{w}(T)\in\mathscr{B}} \sqrt{\sum_{t=1}^{T} \|w(t) - \hat{w}(t)\|^2}$$

the model \mathscr{B} fits the data \mathscr{W} "well" if the misfit $M(\mathscr{W}, \mathscr{B})$ is "small" note: $M(\mathscr{W}, \mathscr{B}) = 0 \iff \mathscr{B}$ is an exact model for \mathscr{W}

Example: linear static model

Example: quadratic static model

Fitting accuracy (dynamic case)

consider a given model $\mathscr{B} \subseteq (\mathbb{R}^w)^T$ and data $w = (w(1), \dots, w(T))$ misfit (w.r.t. to the norm $\|\cdot\|$) between \mathscr{B} and w is defined as

$$M(w,\mathscr{B}) := \min_{\hat{w}\in\mathscr{B}} \|w - \hat{w}\|$$

the model \mathscr{B} fits the data w "well" if the misfit $M(w, \mathscr{B})$ is "small" note: $M(w, \mathscr{B}) = 0 \iff \mathscr{B}$ is an exact model for w

14

12

Example: linear dynamic model

typical structures in A and B are block-Hankel and block-Toeplitz

Optimal approximate model

18

Examples of static approximation problems

in static approximation problems $AX \approx B$, A and B are unstructured the modification of A or B might be forbidden, *i.e.*, $\Delta A = 0$ or $\Delta B = 0$ in this case, we say that A or B is fixed (exact)

block-Hankel structured matrix

classical examples:

1. Least squares $-A$ fixed, B unstructured2. Data least squares $-A$ unstructured, B fixed3. Total least squares $-A$ and B unstructured(line fitting model \mathscr{B}_1)	 6. Global total least squares (diff. eqn. fitting, model \$\mathcal{B}_3\$) [A B] block-Hankel, block size: #time series×#variables 7. Output error identification A fixed, B block-Hankel, block size: #time series×#outputs 	
20	21	
LTI model fitting ~> block-Hankel structure	Unification	
consider the vector difference equation $R_0w(t) + R_1w(t+1) + \dots + R_lw(t+l) = 0$	static problems – unstructured dynamic problems – block-Toeplitz/Hankel structure	
for $t = 1,, T - l$, it is equivalent to the system of equations	question: How to unify these approximation problems?	
$\begin{bmatrix} R_0 & R_1 & \cdots & R_l \end{bmatrix} \begin{bmatrix} w(1) & w(2) & w(3) & \cdots & w(T-l) \\ w(2) & w(3) & w(4) & \cdots & w(T-l+1) \\ w(3) & w(4) & w(5) & \cdots & w(T-l+1) \\ \vdots & \vdots & \vdots & \vdots \\ w(l+1) & w(l+2) & w(l+3) & \cdots & w(T) \end{bmatrix} = 0$	answer: the right formalization turns out to be what is called the structured total least squares (STLS) problem	
$ \underbrace{ \begin{bmatrix} \vdots & \vdots & \vdots \\ w(l+1) & w(l+2) & w(l+3) & \cdots & w(T) \end{bmatrix} }_{\text{black Hankel structured matrix}} $	STLS—tool for approximation by static and dynamic linear models	

the structured total least squares (STLS) problem

Examples of dynamic approximation problems

A block-Toeplitz (blocks #inputs \times #outputs), B unstructured

 $\begin{bmatrix} A & B \end{bmatrix}$ block-Hankel, block size: #inputs×#outputs

4. Finite Impulse Response system identification

5. Impulse response approximation

STLS—tool for approximation by static and dynamic linear models $(\mathscr{B}_1 \text{ and } \mathscr{B}_3 \text{ but not } \mathscr{B}_2 \text{ are computed by solving STLS problems})$

Structured total least squares

structure specification \mathscr{S} : parameters \mapsto structured matrices

STLS problem: given structure \mathscr{S} , parameter p, and rank n, find

$$\hat{p}_{\mathrm{stls}} = rg\min_{\hat{p}} \|p - \hat{p}\|$$
 subject to $\mathrm{rank}ig(\mathscr{S}(\hat{p})ig) \leq n$

perturb p as little as necessary, so that the perturbed structured matrix $\mathscr{S}(\hat{p})$ becomes rank deficient with rank at most n

$$\operatorname{rank}\bigl(\mathscr{S}(\hat{p})\bigr) \leq n \quad \Longleftrightarrow \quad \exists \ X \in \mathbb{R}^{n \times \bullet} \text{ such that } \mathscr{S}(\hat{p}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0$$

Advantages over alternative algorithms

- flexible structure specification
- easily generalized to
 - diagonal weighting in the cost function
 - regularization
- software implementation is available

recognizing the structure of $\boldsymbol{\Gamma}$ encapsulates core computational problem:

Cholesky factorization of block-banded and Toeplitz matrix

we use software from $\ensuremath{\mathsf{SLICOT}}$ in order to solve this core problem

Efficient computation

double minimization problem

$$\min_{X} \left(\min_{\hat{p}} \|p - \hat{p}\| \text{ subject to } \mathscr{S}(\hat{p}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \right)$$

minimizing analytically over \boldsymbol{p} gives the equivalent problem

 $\min_{\boldsymbol{X}} \left(\mathscr{S}(\boldsymbol{p}) \left[\begin{smallmatrix} \boldsymbol{X} \\ -\boldsymbol{I} \end{smallmatrix} \right] \right)^\top \Gamma^{-1}(\boldsymbol{X}) \left(\mathscr{S}(\boldsymbol{p}) \left[\begin{smallmatrix} \boldsymbol{X} \\ -\boldsymbol{I} \end{smallmatrix} \right] \right)$

 $\Gamma(X)$ is block-banded and Toeplitz for a large class of structure specifications \mathscr{S} that includes in particular all examples listed before

the structure of Γ allows efficient cost function and gradient evaluation \rightsquigarrow efficient local optimization algorithms

Summary

- STLS optimal data fitting by structured linear models
- $\bullet\,$ exploiting the structure \rightsquigarrow efficient algorithms for optimal modeling

24

Exact identification

given: a vector time series $w = (w(1), \dots, w(T))$ generated by an LTI system \mathscr{B} find: the system \mathscr{B} back from the data w

note: the given data is exact and the identified system fits exactly w the time horizon T is much larger than the order n of \mathscr{B}

Algorithms for exact identification

1. $w \mapsto \text{difference equation } R$ 2. $w \mapsto \text{impulse response } H$ 3. $w \mapsto \text{input/state/output representation } (A,B,C,D)$ 3.a. $w \mapsto R \mapsto (A,B,C,D)$ or $w \mapsto H \mapsto (A,B,C,D)$ 3.b. $w \mapsto \text{observability matrix} \mapsto (A,B,C,D)$ 3.c. $w \mapsto \text{state sequence} \mapsto (A,B,C,D)$

Persistency of excitation

a condition for solvability of the exact identification problem

definition: the sequence $u = (u(1), \dots, u(T))$ is

persistently exciting of order \boldsymbol{L}

if the Hankel matrix

 $\mathscr{H}_{L}(u) := \begin{bmatrix} u(1) & u(2) & u(3) & \cdots & u(T-L+1) \\ u(2) & u(3) & u(4) & \cdots & u(T-L+2) \\ u(3) & u(4) & u(5) & \cdots & u(T-L+3) \\ \vdots & \vdots & \vdots & & \vdots \\ u(L) & u(L+1) & u(L+2) & \cdots & u(T) \end{bmatrix}$

Fundamental Lemma

Let \mathscr{B} be controllable and let $w := (u, y) \in \mathscr{B}|_{[1,T]}$. Then, if u is persistently exciting of order L + n, where n is the order of \mathscr{B} ,

$$\mathsf{image}\left(\begin{bmatrix}w(1) & w(2) & w(3) & \cdots & w(T-L+1)\\w(2) & w(3) & w(4) & \cdots & w(T-L+2)\\w(3) & w(4) & w(5) & \cdots & w(T-L+3)\\\vdots & \vdots & \vdots & & \vdots\\w(L) & w(L+1) & w(L+2) & \cdots & w(T)\end{bmatrix}\right) = \mathscr{B}|_{[1,L]}$$

 \implies with L = l + 1, where l is the lag of \mathscr{B} , the FL gives conditions for identifiability, namely "u persistently exciting of order l + 1 + n"

 \implies under the conditions of the FL, any *L* samples long trajectory of \mathscr{B} can be obtained as $\mathscr{H}_{L}(w)g$, for certain $g \rightsquigarrow$ algorithms

28

is of full row rank

Example $w \mapsto$ **impulse response** H

under the conditions of FL, there is G, such that $H = \mathscr{H}_t(y)G$ the problem reduces to the one of finding a particular G

$$\begin{bmatrix} \mathcal{H}_{l+t}(u) \\ \hline \mathcal{H}_{l+t}(y) \end{bmatrix} G = \begin{bmatrix} 0 \\ \begin{bmatrix} I \\ 0 \\ \hline 0 \\ H \end{bmatrix} \qquad \begin{array}{c} \leftarrow & l \text{ zero samples} \\ \hline \leftarrow & l \text{ zero samples} \\ \hline \leftarrow & l \text{ zero samples} \\ \hline \leftarrow & t \text{ samples impulse response} \end{array}$$

block algorithm:

- 1. solve the system of equations in blue for G
- 2. substitute G in the equations in red $\rightsquigarrow H$

Summary

- deterministic subspace algorithms are implementations of the FL $w \mapsto \text{obsv. matrix} \mapsto (A, B, C, D) \longrightarrow \text{MOESP-type algorithms}$ $w \mapsto \text{state sequence} \mapsto (A, B, C, D) \longrightarrow \text{N4SID-type algorithms}$
- the FL reveals the meaning of the oblique and orthogonal projections computation of special responses from data
- \bullet the FL gives identifiability conditions that are verifiable from w

Simulation example $w \mapsto$ impulse response H

 \mathscr{B} is of order n = 4, lag l = 2, with m = 2 inputs, and p = 2 outputs w is a trajectory of \mathscr{B} with length T = 500

estimation error $e = ||H - \hat{H}||_{\mathrm{F}}$ and execution time for three methods

method	error, e	time, sec.
block algorithm	10^{-14}	0.293
iterative algorithm	10^{-14}	0.066
$impulse^*$	0.059	0.584

 * from System Identification Toolbox of $\rm Matlab$

LTI approximate modeling

- \mathscr{B} "true" (high order) model w observed response h — observed impulse resp.
 - 3 approximate (low order) model

32

STLS as a kernel subproblem

• SVD-based methods:

balanced model reduction, subspace identification, and Kung's alg. use the singular value decomposition in order to find a rank deficient matrix $\mathscr{H}(\hat{w})$ approximating a given full rank matrix $\mathscr{H}(w)$

note that SVD is suboptimal in terms of the misfit criterion $||w - \hat{w}||_{\ell_2}^2$

• STLS-based methods:

optimal approximation according to the misfit criterion need initial approximation (*e.g.*, from SVD-based method) iterative improvement of heuristic suboptimal solution

36

Data sets from DAISY (cont.)

#	Data set name	Т	т	р	l
10	Data of a glass furnace (Philips)	1247	3	6	1
11	Heat flow density through a two layer wall	1680	2	1	2
12	Simulation data of a pH neutralization process	2001	2	1	6
13	Data of a CD-player arm	2048	2	2	1
14	Data from a test setup of an industrial winding process	2500	5	2	2
15	Liquid-saturated steam heat exchanger	4000	1	1	2
16	Data from an industrial evaporator	6305	3	3	1
17	Continuous stirred tank reactor	7500	1	2	1
18	Model of a steam generator at Abbott Power Plant	9600	4	4	1

Data sets from DAISY

#	Data set name	Т	т	р	l
1	Data of a simulation of the western basin of Lake Erie	57	5	2	1
2	Data of Ethane-ethylene destillation column	90	5	3	1
3	Data of a 120 MW power plant	200	5	3	2
4	Heating system	801	1	1	2
5	Data from an industrial dryer (Cambridge Control Ltd)	867	3	3	1
6	Data of a laboratory setup acting like a hair dryer	1000	1	1	5
7	Data of the ball-and-beam setup in SISTA	1000	1	1	2
8	Wing flutter data	1024	1	1	5
9	Data from a flexible robot arm	1024	1	1	4

Simulation setup

the approximations obtained by the following methods are compared:

- stls misfit minimization method
- pem the prediction error method (Identification Toolbox)
- subid robust combined subspace algorithm

(initial approximation for stls and pem is the result of subid)

a model $\hat{\mathscr{B}}$ is obtained from w_{id} — the first 70% of the data w

we consider output error identification, *i.e.*, the input is assumed exact

and compare the misfit $M(w_{val}, \hat{\mathscr{B}})$ on the last 30% of the data w and the execution time for computing $\hat{\mathscr{B}}$

38

Insights

- models are sets of allowed outcomes from a universum of outcomes the representation free (behavioral) setting gives a notion of equivalence
- apriori fixed input/output partition (e.g., AX = B) ~
 ^{"nongeneric}
 problems"
 kernel and image representations do not suffer from this shortcoming
- a convenient repr. for LTI model is polynomial matrix in one variable
 → kernel representation ≡ difference equation representation
- the EIV model $\mathscr{W} = \tilde{\mathscr{W}} + \tilde{\mathscr{W}}$, $\tilde{\mathscr{W}} \in \bar{\mathscr{B}}$, $\tilde{\mathscr{W}} \sim \mathsf{N}(0, \sigma^2 V)$ is not as convincing starting point as the deterministic misfit $\mathscr{W} = \hat{\mathscr{W}} + \Delta \mathscr{W}$

Contributions

- new formulation and efficient solution method of the STLS problem software implementation and C and MATLAB
- adjusted least squares estimation of elipsoids
 suboptimal in the misfit sense but very effective and efficient
- identifiability condition and algorithms for exact identification
- balanced model identification algorithms
- equivalence of the classical and errors-in-variables Kalman filters
- application of STLS for approximate system identification

Thesis contents

Weighted total least squares	Chapter 2
Structured total least squares	Chapter 3
Fundamental matrix and ellipsoid estimation	Chapters 4 and 5
Exact system identification	Chapters 7 and 8
Errors-in-variables Kalman filtering	Chapter 9
Approximate system identification	Chapter 10

Current and planned future work

- recursive identification methods
- extend the misfit framework with unobserved (latent) variables
- find link with the prediction error methods
- algorithms for STLS problems using kernel and image representations

44