

2

3

Example with 2 variables and 8 data points

$$
w(1) = \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \ w(2) = \begin{bmatrix} 2 \\ 6 \end{bmatrix}, \ w(3) = \begin{bmatrix} 5 \\ 8 \end{bmatrix}, \ \dots \ , \ w(8) = \begin{bmatrix} 8 \\ 4 \end{bmatrix}
$$

Linear static model

a (nontrivial) linear static model in \mathbb{R}^2 is a line through $(0,0)$

Quadratic static model

a (nondegenerate) quadratic static model in \mathbb{R}^2 is an ellipse

Linear dynamic model

the data *W* is viewed now as a vector time series $w = (w(1),...,w(8))$ (note that in this case the ordering of the data points is important)

we look for ^a first order LTI model with one input

4

Linear dynamic model

−4 −2 0 2 4 6 8 10

*w*1

• How to measure the fitting accuracy and find optimal models?

Linear dynamic model

Fitting accuracy (static case)

consider a given model $\mathscr{B} \subseteq \mathbb{R}^w$ and data $\mathscr{W} = \{w(1), \ldots, w(T)\}\$ the misfit (w.r.t. to the norm $\|\cdot\|$) between $\mathscr B$ and $\mathscr W$ is defined as

$$
M(\mathscr{W},\mathscr{B}):=\ \min_{\hat{w}(1),\ldots,\hat{w}(T)\in\mathscr{B}}\ \sqrt{\sum_{t=1}^T\|w(t)-\hat{w}(t)\|^2}
$$

the model $\mathscr B$ fits the data $\mathscr W$ "well" if the misfit $M(\mathscr W,\mathscr B)$ is "small" note: $M(W, \mathcal{B}) = 0 \iff \mathcal{B}$ is an exact model for W

Example: linear static model

Example: quadratic static model

Fitting accuracy (dynamic case)

consider a given model $\mathscr{B} \subseteq (\mathbb{R}^w)^T$ and data $w = (w(1), \ldots, w(T))$ misfit (w.r.t. to the norm $\|\cdot\|$) between $\mathscr B$ and w is defined as

$$
M(w,\mathscr{B}):=\min_{\hat{w}\in\mathscr{B}}\|w-\hat{w}\|
$$

the model $\mathscr B$ fits the data *w* "well" if the misfit $M(w, \mathscr B)$ is "small" note: $M(w, \mathscr{B}) = 0 \iff \mathscr{B}$ is an exact model for *w*

14

12

Example: linear dynamic model

18

17

Optimal approximate model

Examples of static approximation problems

in static approximation problems $AX \approx B$, A and B are unstructured the modification of A or B might be forbidden, *i.e.*, $\Delta\!A=0$ or $\Delta\!B=0$ in this case, we say that A or B is fixed (exact)

classical examples:

Examples of dynamic approximation problems

^A block-Toeplitz (blocks #inputs [×]#outputs), *B* unstructured

4. Finite Impulse Response system identification

5. Impulse response approximation

 $(\mathscr{B}_{1}$ and \mathscr{B}_{3} but not \mathscr{B}_{2} are computed by solving STLS problems)

22

Structured total least squares

structure specification \mathscr{S} : parameters \mapsto structured matrices

STLS problem: given structure $\mathscr S$, parameter p, and rank n , find

$$
\hat{p}_{\text{stls}} = \arg\min_{\hat{p}} \|p - \hat{p}\| \quad \text{subject to} \quad \text{rank}\big(\mathcal{S}(\hat{p})\big) \le n
$$

perturb *p* as little as necessary, so that the perturbed structured matrix $\mathscr{S}(\hat{p})$ becomes rank deficient with rank at most *n*

$$
\text{rank}\big(\mathscr{S}(\hat{p})\big) \le n \quad \iff \quad \exists \; X \in \mathbb{R}^{n \times \bullet} \text{ such that } \mathscr{S}(\hat{p})\begin{bmatrix} X \\ -I \end{bmatrix} = 0
$$

Advantages over alternative algorithms

- flexible structure specification
- easily generalized to
	- diagonal weighting in the cost function
	- regularization
- software implementation is available

recognizing the structure of Γ encapsulates core computational problem:

Cholesky factorization of block-banded and Toeplitz matrix

we use software from SLICOT in order to solve this core problem

Efficient computation

double minimization problem

$$
\min_{X} \left(\min_{\hat{p}} \| p - \hat{p} \| \quad \text{subject to} \quad \mathscr{S}(\hat{p}) \begin{bmatrix} X \\ -I \end{bmatrix} = 0 \right)
$$

minimizing analytically over *^p* ^gives the equivalent problem

 $\min_X \left(\mathscr{S}(p) \left[\frac{X}{-I} \right] \right)^\top \Gamma^{-1}(X) \big(\mathscr{S}(p) \left[\frac{X}{-I} \right] \big)$

^Γ(*X*) is block-banded and Toeplitz for ^a large class of structure specifications $\mathscr S$ that includes in particular all examples listed before

the structure of Γ allows efficient cost function and gradient evaluation \rightsquigarrow efficient local optimization algorithms

Summary

• STLS — optimal data fitting by structured linear models

• exploiting the structure \rightsquigarrow efficient algorithms for optimal modeling

24

Exact identification

given: ^a vector time series $w = (w(1), \ldots, w(T))$ generated by an LTI system $\mathscr B$ find: the system $\mathscr B$ back from the data w

the given data is exact and the identified system fits exactly w the time horizon T is much larger than the order n of \mathcal{B}

Algorithms for exact identification

1. $w \mapsto$ difference equation *R* 2. $w \mapsto$ impulse response *H* 3. $w \mapsto \text{input}/\text{state}/\text{output}$ representation (A, B, C, D) 3.a. $w \mapsto R \mapsto (A, B, C, D)$ or $w \mapsto H \mapsto (A, B, C, D)$ 3.b. $w \mapsto$ observability matrix \mapsto (A, B, C, D) 3.c. $w \mapsto$ state sequence \mapsto (A, B, C, D)

Persistency of excitation

^a condition for solvability of the exact identification problem

definition: the sequence $u = (u(1),...,u(T))$ is

persistently exciting of order *L*

if the Hankel matrix

 $\mathscr{H}_L(u) :=$ $\begin{bmatrix} u(1) & u(2) & u(3) & \cdots & u(T-L+1) \\ u(2) & u(3) & u(4) & \cdots & u(T-L+2) \\ u(3) & u(4) & u(5) & \cdots & u(T-L+3) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ u(L) & u(L+1) & u(L+2) & \cdots & u(T) \end{bmatrix}$

Fundamental Lemma

Let $\mathscr B$ be controllable and let $w := (u, y) \in \mathscr B|_{[1,T]}$. Then, if *u* is persistently exciting of order $L+n$, where *n* is the order of \mathscr{B} ,

$$
\text{image}\left(\begin{bmatrix}w(1) & w(2) & w(3) & \cdots & w(T-L+1) \\ w(2) & w(3) & w(4) & \cdots & w(T-L+2) \\ w(3) & w(4) & w(5) & \cdots & w(T-L+3) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w(L) & w(L+1) & w(L+2) & \cdots & w(T)\end{bmatrix}\right) = \mathscr{B}|_{[1,L]}
$$

 \implies with $L = l + 1$, where *l* is the lag of \mathscr{B} , the FL gives conditions for identifiability, namely "*u* persistently exciting of order $l + 1 + n$ "

 \implies under the conditions of the FL, any *L* samples long trajectory of \mathscr{B} can be obtained as $\mathscr{H}_L(w)g$, for certain $g \rightarrow \mathscr{B}$ algorithms

30

28

is of full row rank

Example $w \mapsto$ impulse response *H*

under the conditions of FL, there is *G*, such that $H = \mathcal{H}_t(v)G$ the problem reduces to the one of finding ^a particular *G*

$$
\[\frac{\mathcal{H}_{l+t}(u)}{\mathcal{H}_{l+t}(y)}\] G = \begin{bmatrix} 0 \\ \frac{[\begin{array}{c}l\\0\end{array}]}{0} \\ H \end{bmatrix} \begin{array}{c} \leftarrow & l \text{ zero samples} \\ \leftarrow & t \text{ samples long impulse} \\ \leftarrow & l \text{ zero samples} \\ \leftarrow & t \text{ samples impulse response}\end{array}\]
$$

block algorithm:

- 1. solve the system of equations in blue for *G*
- 2. substitute *G* in the equations in red \rightsquigarrow *H*

Summary

- deterministic subspace algorithms are implementations of the FL $w \mapsto$ obsv. matrix \mapsto (A, B, C, D) — MOESP-type algorithms $w \mapsto$ state sequence \mapsto (A, B, C, D) — N4SID-type algorithms
- the FL reveals the meaning of the oblique and orthogonal projections computation of special responses from data
- the FL ^gives identifiability conditions that are verifiable from *^w*

Simulation example *^w* 7→ impulse response *^H*

B is of order $n = 4$, lag $l = 2$, with $m = 2$ inputs, and $p = 2$ outputs *w* is a trajectory of \mathscr{B} with length $T = 500$

estimation error $e = ||H - \hat{H}||_F$ and execution time for three methods

[∗] from System Identification Toolbox of Matlab

LTI approximate modeling

- "true" (high order) model $w -$ observed response observed impulse resp.
- B ˆapproximate (low order) model *h* ˆ
- ˆ — $\;$ impulse resp. of $\hat{\mathscr{B}}$

32

STLS as ^a kernel subproblem

• SVD-based methods:

balanced model reduction, subspace identification, and Kung's alg. use the singular value decomposition in order to find ^a rank deficient matrix $\mathscr{H}(\hat{w})$ approximating a given full rank matrix $\mathscr{H}(w)$

note that SVD is suboptimal in terms of the misfit criterion $||w− $\hat{w}||^2$ ₂$

• STLS-based methods:

optimal approximation according to the misfit criterion need initial approximation (e.g., from SVD-based method) iterative improvement of heuristic suboptimal solution

36

Data sets from DAISY (cont.)

Data sets from DAISY

Simulation setup

the approximations obtained by the following methods are compared:

- stls misfit minimization method
- pem the prediction error method (Identification Toolbox)
- subid robust combined subspace algorithm

(initial approximation for stls and pem is the result of subid)

a model $\hat{\mathscr{B}}$ is obtained from w_id — the first 70% of the data w

we consider output error identification, *i.e.*, the input is assumed exact

and compare the misfit $M(w_{\mathrm{val}},\hat{\mathscr{B}})$ on the last 30% of the data w and the execution time for computing $\hat{\mathscr{B}}$

38

42

Insights

- models are sets of allowed outcomes from ^a universum of outcomes the representation free (behavioral) setting ^gives ^a notion of equivalence
- \bullet apriori fixed input/output partition $(e.g.,\ AX=B) \leadsto \begin{array}{c} \text{\tt ``nongeneric}\\ \text{\tt problems''} \end{array}$ kernel and image representations do not suffer from this shortcoming
- a convenient repr. for LTI model is polynomial matrix in one variable \rightsquigarrow kernel representation \equiv difference equation representation
- \bullet the EIV model $\mathscr{W}=\bar{\mathscr{W}}+\tilde{\mathscr{W}},\,\,\tilde{\mathscr{W}}\in\bar{\mathscr{B}},\,\,\tilde{\mathscr{W}}\sim \mathsf{N}(0,\sigma^2V)$ is not as convincing starting point as the deterministic misfit $\mathscr{W}=\hat{\mathscr{W}}+\Delta \mathscr{W}$
-
- new formulation and efficient solution method of the STLS problem software implementation and C and MATLAB

Contributions

- adjusted least squares estimation of elipsoids suboptimal in the misfit sense but very effective and efficient
- identifiability condition and algorithms for exact identification
- balanced model identification algorithms
- equivalence of the classical and errors-in-variables Kalman filters
- application of STLS for approximate system identification

Thesis contents

Current and planned future work

- recursive identification methods
- extend the misfit framework with unobserved (latent) variables
- find link with the prediction error methods
- algorithms for STLS problems using kernel and image representations

44