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Basic problem: data 7→ model

given: data (e.g., measurements of an experiment)

W := {w(1), . . . ,w(T )}

find:

i) a linear static model B1

ii) a quadratic static model B2

iii) an LTI dynamic model B3

that best fits W

LTI — linear time-invariant
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Basic problem: data 7→ model

• What is a model? (in particular, linear, quadratic, LTI)

• What does it mean “the model fits the data well”?

• How to measure the fitting accuracy and find optimal models?

goals: find algorithms that realize the mappings

W 7→ B1, W 7→ B2, W 7→ B3, with B1, B2, B3 “optimal”

implement these algorithms in a ready to use software
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Example with 2 variables and 8 data points

w(1) =

[
1
7

]

, w(2) =

[
2
6

]

, w(3) =

[
5
8

]

, . . . , w(8) =

[
8
4

]
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Linear static model

a (nontrivial) linear static model in R
2 is a line through (0,0)
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Quadratic static model

a (nondegenerate) quadratic static model in R
2 is an ellipse
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Linear dynamic model

the data W is viewed now as a vector time series w =
(
w(1), . . . ,w(8)

)

(note that in this case the ordering of the data points is important)
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we look for a first order LTI model with one input
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Linear dynamic model

a first order LTI model with one input can be represented by a

scalar difference equation with one time lag

R0w(t)+R1w(t +1) = 0, for t = 1,2, . . . ,7, where R0,R1 ∈ R
1×2

let R1 =:
[
Q1 −P1

]
and suppose that P1 6= 0, then

w1 is an input (free) and w2 is an output (bound)

w1 w2LTI model
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Linear dynamic model

consider the model B3 :
[
0.13 1.22

]
w(t)−

[
0.44 1

]
w(t +1) = 0

data w a particular trajectory ŵ of B3
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Linear dynamic model

the data w and the trajectory ŵ of B3 visualized in the plane
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Summary

• A model is a subset of the data space. (behavior of the model)

linear static model: subspace of R
w, w := dim

(
w(t)

)

quadratic static model: hyperbola, parabola, or ellipsoid in R
w

finite dim. LTI model: shift-invariant closed subspace of (Rw)Z

next

• What does it mean “the model fits the data well”?

• How to measure the fitting accuracy and find optimal models?
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Fitting accuracy (static case)

consider a given model B ⊆ R
w and data W = {w(1), . . . ,w(T )}

the misfit (w.r.t. to the norm ‖ · ‖) between B and W is defined as

M(W ,B) := min
ŵ(1),...,ŵ(T )∈B

√
T

∑
t=1

‖w(t)− ŵ(t)‖2

the model B fits the data W “well” if the misfit M(W ,B) is “small”

note: M(W ,B) = 0 ⇐⇒ B is an exact model for W
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Example: linear static model
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M(W ,B1) = min
ŵ(1),...,ŵ(8)∈B1

√
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Example: quadratic static model
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Fitting accuracy (dynamic case)

consider a given model B ⊆ (Rw)T and data w =
(
w(1), . . . ,w(T )

)

misfit (w.r.t. to the norm ‖ · ‖) between B and w is defined as

M(w,B) := min
ŵ∈B

‖w− ŵ‖

the model B fits the data w “well” if the misfit M(w,B) is “small”

note: M(w,B) = 0 ⇐⇒ B is an exact model for w
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Example: linear dynamic model
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M(W ,B3) = min
ŵ∈B3

‖w− ŵ‖ = 3.5144
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Optimal approximate model

M — given model class, in the example

i) all lines in R
2 passing through (0,0)

ii) all ellipses in R
2

iii) all first order LTI systems with one input

find the model B∗ in M that best fits the data

B
∗ := arg min

B∈M
M(W ,B)

the models B1, B2, and B3 are optimal; they are computed by

algorithms and software that treat the general case
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Summary

• the model B fits the data W “well” if the misfit M(W ,B) is small

• M(W ,B) is a quantitative measure of the model quality

• B∗ = argminB∈M M(W ,B) is an optimal model for W in M

next

• find algorithms for the computation of B∗
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Approximation problems AX ≈ B

many classical approximation problems are of the type:

given A and B, solve for X , an overdetermined system AX ≈ B

typically there is no exact solution Ã basic idea: modify A and B

A+∆A =: Â, B+∆B =: B̂, so that ÂX = B̂ is solvable

in addition, preserve the structure (if any) of
[
A B

]
in

[
Â B̂

]

typical structures in A and B are block-Hankel and block-Toeplitz
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Examples of static approximation problems

in static approximation problems AX ≈ B, A and B are unstructured

the modification of A or B might be forbidden, i.e., ∆A = 0 or ∆B = 0
in this case, we say that A or B is fixed (exact)

classical examples:

1. Least squares — A fixed, B unstructured

2. Data least squares — A unstructured, B fixed

3. Total least squares — A and B unstructured (line fitting

model B1)
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Examples of dynamic approximation problems

4. Finite Impulse Response system identification

A block-Toeplitz (blocks #inputs×#outputs), B unstructured

5. Impulse response approximation
[
A B

]
block-Hankel, block size: #inputs×#outputs

6. Global total least squares (diff. eqn. fitting, model B3)
[
A B

]
block-Hankel, block size: #time series×#variables

7. Output error identification

A fixed, B block-Hankel, block size: #time series×#outputs
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LTI model fitting Ã block-Hankel structure

consider the vector difference equation

R0w(t)+R1w(t +1)+ · · ·+Rlw(t + l) = 0

for t = 1, . . . ,T − l, it is equivalent to the system of equations

[
R0 R1 · · · Rl

]










w(1) w(2) w(3) · · · w(T − l)
w(2) w(3) w(4) · · · w(T − l +1)

w(3) w(4) w(5) · · · w(T − l +1)
... ... ... ...

w(l +1) w(l +2) w(l +3) · · · w(T )










︸ ︷︷ ︸
block-Hankel structured matrix

= 0
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Unification

static problems — unstructured

dynamic problems — block-Toeplitz/Hankel structure

question: How to unify these approximation problems?

answer: the right formalization turns out to be what is called

the structured total least squares (STLS) problem

STLS—tool for approximation by static and dynamic linear models

(B1 and B3 but not B2 are computed by solving STLS problems)
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Structured total least squares

structure specification S : parameters 7→ structured matrices

STLS problem: given structure S , parameter p, and rank n, find

p̂stls= argmin
p̂

‖p− p̂‖ subject to rank
(
S (p̂)

)
≤ n

perturb p as little as necessary, so that the perturbed structured

matrix S (p̂) becomes rank deficient with rank at most n

rank
(
S (p̂)

)
≤ n ⇐⇒ ∃ X ∈ R

n×• such that S (p̂)

[
X
−I

]

= 0
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Efficient computation

double minimization problem

min
X

(

min
p̂

‖p− p̂‖ subject to S (p̂)

[
X
−I

]

= 0

)

minimizing analytically over p gives the equivalent problem

min
X

(
S (p) [ X

−I ]
)⊤Γ−1(X)

(
S (p) [ X

−I ]
)

Γ(X) is block-banded and Toeplitz for a large class of structure

specifications S that includes in particular all examples listed before

the structure of Γ allows efficient cost function and gradient evaluation

Ã efficient local optimization algorithms
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Advantages over alternative algorithms

• flexible structure specification

• easily generalized to

– diagonal weighting in the cost function

– regularization

• software implementation is available

recognizing the structure of Γ encapsulates core computational problem:

Cholesky factorization of block-banded and Toeplitz matrix

we use software from SLICOT in order to solve this core problem
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Summary

• STLS — optimal data fitting by structured linear models

• exploiting the structure Ã efficient algorithms for optimal modeling
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Exact identification

given: a vector time series

w =
(
w(1), . . . ,w(T )

)

generated by an LTI system B

find: the system B back from the data w

note:
the given data is exact and the identified system fits exactly w
the time horizon T is much larger than the order n of B
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Algorithms for exact identification

1. w 7→ difference equation R

2. w 7→ impulse response H

3. w 7→ input/state/output representation (A,B,C,D)

3.a. w 7→ R 7→ (A,B,C,D) or w 7→ H 7→ (A,B,C,D)

3.b. w 7→ observability matrix 7→ (A,B,C,D)

3.c. w 7→ state sequence 7→ (A,B,C,D)
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Persistency of excitation

a condition for solvability of the exact identification problem

definition: the sequence u =
(
u(1), . . . ,u(T )

)
is

persistently exciting of order L

if the Hankel matrix

HL(u) :=









u(1) u(2) u(3) · · · u(T −L+1)
u(2) u(3) u(4) · · · u(T −L+2)
u(3) u(4) u(5) · · · u(T −L+3)

... ... ... ...
u(L) u(L+1) u(L+2) · · · u(T )









is of full row rank
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Fundamental Lemma

Let B be controllable and let w := (u,y) ∈ B|[1,T ]. Then, if u is

persistently exciting of order L+n, where n is the order of B,

image















w(1) w(2) w(3) · · · w(T −L+1)
w(2) w(3) w(4) · · · w(T −L+2)
w(3) w(4) w(5) · · · w(T −L+3)

... ... ... ...
w(L) w(L+1) w(L+2) · · · w(T )















= B|[1,L]

=⇒ with L = l +1, where l is the lag of B, the FL gives conditions

for identifiability, namely “u persistently exciting of order l +1+n”

=⇒ under the conditions of the FL, any L samples long trajectory

of B can be obtained as HL(w)g, for certain g Ã algorithms
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Example w 7→ impulse response H

under the conditions of FL, there is G, such that H = Ht(y)G

the problem reduces to the one of finding a particular G

[

Hl+t(u)

Hl+t(y)

]

G =








0
[ I

0]

0
H








← l zero samples

← t samples long impulse

← l zero samples

← t samples impulse response

block algorithm:

1. solve the system of equations in blue for G

2. substitute G in the equations in red Ã H
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Simulation example w 7→ impulse response H

B is of order n = 4, lag l = 2, with m = 2 inputs, and p = 2 outputs

w is a trajectory of B with length T = 500

estimation error e = ||H − Ĥ||F and execution time for three methods

method error, e time, sec.

block algorithm 10−14 0.293

iterative algorithm 10−14 0.066

impulse∗ 0.059 0.584

∗ from System Identification Toolbox of Matlab
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Summary

• deterministic subspace algorithms are implementations of the FL

w 7→ obsv. matrix 7→ (A,B,C,D) — MOESP-type algorithms

w 7→ state sequence 7→ (A,B,C,D) — N4SID-type algorithms

• the FL reveals the meaning of the oblique and orthogonal projections

computation of special responses from data

• the FL gives identifiability conditions that are verifiable from w
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LTI approximate modeling

B — “true” (high order) model w — observed response

h — observed impulse resp.

B̂ — approximate (low order) ŵ — response of B̂

model ĥ — impulse resp. of B̂
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STLS as a kernel subproblem

• SVD-based methods:

balanced model reduction, subspace identification, and Kung’s alg.

use the singular value decomposition in order to find a rank deficient

matrix H (ŵ) approximating a given full rank matrix H (w)

note that SVD is suboptimal in terms of the misfit criterion ‖w− ŵ‖2
ℓ2

• STLS-based methods:

optimal approximation according to the misfit criterion

need initial approximation (e.g., from SVD-based method)

iterative improvement of heuristic suboptimal solution
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Data sets from DAISY

# Data set name T m p l
1 Data of a simulation of the western basin of Lake Erie 57 5 2 1

2 Data of Ethane-ethylene destillation column 90 5 3 1

3 Data of a 120 MW power plant 200 5 3 2

4 Heating system 801 1 1 2

5 Data from an industrial dryer (Cambridge Control Ltd) 867 3 3 1

6 Data of a laboratory setup acting like a hair dryer 1000 1 1 5

7 Data of the ball-and-beam setup in SISTA 1000 1 1 2

8 Wing flutter data 1024 1 1 5

9 Data from a flexible robot arm 1024 1 1 4
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Data sets from DAISY (cont.)

# Data set name T m p l
10 Data of a glass furnace (Philips) 1247 3 6 1

11 Heat flow density through a two layer wall 1680 2 1 2

12 Simulation data of a pH neutralization process 2001 2 1 6

13 Data of a CD-player arm 2048 2 2 1

14 Data from a test setup of an industrial winding process 2500 5 2 2

15 Liquid-saturated steam heat exchanger 4000 1 1 2

16 Data from an industrial evaporator 6305 3 3 1

17 Continuous stirred tank reactor 7500 1 2 1

18 Model of a steam generator at Abbott Power Plant 9600 4 4 1
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Simulation setup

the approximations obtained by the following methods are compared:

stls — misfit minimization method

pem — the prediction error method (Identification Toolbox)

subid — robust combined subspace algorithm

(initial approximation for stls and pem is the result of subid)

a model B̂ is obtained from wid — the first 70% of the data w

we consider output error identification, i.e., the input is assumed exact

and compare the misfit M(wval,B̂) on the last 30% of the data w and

the execution time for computing B̂
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Simulation results — output error
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Simulation results — execution time
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Simulation results — scatter plot misfit vs time
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Summary

• STLS is a kernel problem for approximate LTI modeling

approx. realization, model reduction, system ident., etc.

• a single algorithm can solve a large variety of problems

• the software implementation can solve problems with

a few thousands data points (T < 10000), a few outputs (p < 10),
and a few time lags (l < 10)
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Insights

• models are sets of allowed outcomes from a universum of outcomes

the representation free (behavioral) setting gives a notion of equivalence

• apriori fixed input/output partition (e.g., AX = B) Ã

“nongeneric

problems”

kernel and image representations do not suffer from this shortcoming

• a convenient repr. for LTI model is polynomial matrix in one variable

Ã kernel representation ≡ difference equation representation

• the EIV model W = W̄ + W̃ , W̄ ∈ B̄, W̃ ∼ N(0,σ2V ) is not as

convincing starting point as the deterministic misfit W = Ŵ +∆W
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Contributions

• new formulation and efficient solution method of the STLS problem

software implementation and C and Matlab

• adjusted least squares estimation of elipsoids

suboptimal in the misfit sense but very effective and efficient

• identifiability condition and algorithms for exact identification

• balanced model identification algorithms

• equivalence of the classical and errors-in-variables Kalman filters

• application of STLS for approximate system identification
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Thesis contents

Weighted total least squares Chapter 2

Structured total least squares Chapter 3

Fundamental matrix and ellipsoid estimation Chapters 4 and 5

Exact system identification Chapters 7 and 8

Errors-in-variables Kalman filtering Chapter 9

Approximate system identification Chapter 10
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Current and planned future work

• recursive identification methods

• extend the misfit framework with unobserved (latent) variables

• find link with the prediction error methods

• algorithms for STLS problems using kernel and image representations
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