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Abstract

In this thesis we discuss subspace identification algorithms for linear, Hammer-
stein and Hammerstein-Wiener systems. Although linear subspace identification
algorithms have been around for several years, it is shown that under some
specific experimental conditions they can break down or yield unreliable results.
New solutions to known problems involving linear subspace identification and
regularization will be proposed and compared to existing approaches.

In a second part of the thesis, we focus on non-linear subspace identification
applied to Hammerstein and Hammerstein-Wiener systems. By combining
ideas from Least Squares Support Vector Machines with classical subspace
identification algorithms for linear systems it is shown that reliable subspace
identification algorithms for Hammerstein and Hammerstein-Wiener systems
can be obtained.
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Korte inhoud

In deze thesis bespreken we deelruimte-identificatie algoritmen voor lineaire,
Hammerstein en Hammerstein-Wiener systemen. Hoewel lineaire deelruimte-
identificatie algoritmen reeds meerdere jaren in omloop zijn, werd recent
aangetoond dat zij onder bepaalde experimentele omstandigheden kunnen falen
of onbetrouwbare resultaten kunnen opleveren. Nieuwe oplossingen voor deze
problemen, gesteund op lineaire deelruimte-identifcatie en regularizatie, zullen
worden voorgesteld en vergeleken met bestaande benaderingen

In een tweede deel van de thesis zal de aandacht worden toegespitst op
niet-lineaire deelruimte-identificatie voor Hammerstein en Hammerstein-Wiener
systemen. Door het combineren van ideeën omtrent kleinste kwadraten steun-
vector algoritmen (LS-SVMs) met klassieke deelruimte-identificatie algorit-
men voor lineaire systemen wordt aangetoond dat betrouwbare deelruimte-
identificatie algoritmen voor Hammerstein en Hammerstein-Wiener systemen
kunnen worden bekomen.

v



vi



Notation

Parameters

Unless otherwise stated, lowercase symbols will be used in this thesis to denote
column vectors. Uppercase symbols are used for matrices. Elements of matrices
and vectors are selected as follows:

A(i, j), A ∈ R
m×n The element at the ith row and jth column of A

A(i, :), A ∈ R
m×n The ith row of a matrix A

A(:, j), A ∈ R
m×n The jth column of a matrix A

A(i : j, k : l), A ∈ R
m×n The part of A lying within and between

rows i and j and columns k and l

Operators

, Definition

Set of numbers

R the set of real numbers
Z, Z

+, Z
+
0 The set of integers, non-negative integers, excluding zero

Matrix operations

AT transpose of a matrix
Tr(A) trace of a matrix i.e. sum of its diagonal elements
vec(A) column-wise vectorization of a matrix
Col(A) Column space of a matrix A
Col(A)⊥ Orthogonal complement of the column space of a matrix A
Row(A) Row space of a matrix A
Row(A)⊥ Orthogonal complement of the row space of a matrix A
N (A) null-space of a matrix A: Ax = 0, ∀x ∈ N (A)
⊗ Kronecker product, A⊗B = [A(i, j)B]
PAb Orthogonal projection of b onto the column space of A
P{B|A}c Oblique projection of c onto Col(B) along Col(A)
B/A Orthogonal projection of Row(B) onto Row(A)
C/

A
B Oblique projection of Row(C) onto Row(B) along Row(A)
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Norms and extreme singular values

‖x‖2, x ∈ R
n 2-norm of a vector

√∑n
i=1 x

2
i

‖x‖p, x ∈ R
n p-norm of a vector (

∑n
i=1 x

p
i )

1/p

‖A‖F , A ∈ R
m×n Frobenius norm of a matrix

√
Tr(AAT )

σmin(A), σmax(A) smallest and largest singular value of a matrix A
σ1(A), σ2(A) First, second singular value of A

(when sorted in non-ascending order)

Principal angles and directions

θmin Smallest principal angle between two spaces
θmin(A^B) Smallest principal angle between Row(A) and Row(B)
θmax(A^B) Largest principal angle between Row(A) and Row(B)

Expectation, covariance, variance

E {} expectation operator
Cov(), var() covariance, variance operator

Miscelaneous

z Forward shift operator zf(t) = f(t+ 1)
i imaginary unit, such that i2 = −1

δtk, t, k ∈ Z Kronecker delta:

{
δtk = 1, t = k
δtk = 0, t 6= k

s.t. such that

Abbreviations

ARX linear AutoRegressive model with eXogeneous inputs
CCA Canonical Correlation Analysis
CVA Canonical Variate Analysis
KCCA Kernel Canonical Correlation Analysis
LS-SVM Least Squares Support Vector Machines
MIMO Multiple-input / multiple-output
NARX non-linear AutoRegressive model with eXogeneous inputs
SISO Single-input / single-output
N4SID Numerical algorithms for Subspace State Space

System IDentification
PI-MOESP Past-Inputs Multivariable Output-Error State sPace
PO-MOESP Past-Outputs Multivariable Output-Error State sPace
RBF Radial Basis Function
SDP Semi Definite Programming
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Deelruimte identificatie
voor lineaire, Hammerstein
en Hammerstein-Wiener
systemen

Hoofdstuk 1: Inleiding

Het onderzoek beschreven in dit proefschrift situeert zich in de wereld van de
systeemidentificatie in het algemeen en deelruimte identificatie in het bijzonder.
Het doel van systeemidentificatie is het construeren van accurate wiskundige
modellen voor complexe dynamische systemen op basis van metingen uitgevoerd
op deze systemen.

Veel van de momenteel gebruikte identificatietechnieken kunnen worden
geclassificeerd als zogenaamde predictiefout methodes waarbij een gegeven
modelstructuur wordt voorop gesteld waarna een aantal vrije parameters
zodanig worden gekozen dat de opgemeten data maximaal kan worden verklaard
door het model. Een gekend nadeel van predictiefout technieken is dat het
op te lossen optimalisatieprobleem over het algemeen niet convex is, en dit
zelfs voor de relatief beperkte klasse van lineaire systemen. Bijgevolg bestaat
geen garantie dat het optimale minimum gevonden wordt. Daarenboven leidt
het inherent iteratieve karakter van de gebruikte optimalisatie-algoritmen tot
problemen gerelateerd aan trage convergentie of numerieke instabiliteit.

Voor lineaire systemen leveren deelruimte identificatie algoritmen een wel-
gekomen alternatief. Deelruimte identificatie technieken werden voornamelijk
ontwikkeld in het laatste decennium van de voorgaande eeuw en zijn volledig
gebaseerd op numeriek robuuste operaties zoals projecties en de singuliere
waarden ontbinding. Convergentieproblemen en numerieke instabiliteiten zijn
daardoor in principe uitgesloten. Daarenboven maken deelruimte technieken
gebruik van toestandsruimtemodellen met als enige parameter de orde van
het systeem. Dit in tegenstelling tot de predictiefout methodes die een
bepaalde specifieke parameterisatie verwachten die vooropgesteld wordt door
de gebruiker. Het resultaat is dan ook dat deelruimte technieken sterk aan

xv
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populariteit hebben gewonnen over de laatste twee decennia.
Toch blijven ondanks de huidige populariteit en de eerder vermelde nu-

merieke robuustheid van deelruimte technieken enkele belangrijke problemen
onopgelost. Zo werd het gedurende de afgelopen jaren duidelijk dat deelruimte
algoritmen in bepaalde gevallen onvolledige, of onbetrouwbare resultaten ople-
veren. Een ander nadeel van deelruimte technieken is dat ze grotendeels beperkt
zijn tot de klasse van lineaire systemen. Beide problematieken worden in het
proefschrift nader toegelicht.

Hoofdstuk 2: Lineaire geometrische technieken

In dit hoofdstuk overlopen we kort kleinste kwadraten regressie, de orthogonale
en schuine projectie, en de conditionering van deze laatste. Gegeven een matrix
A ∈ R

N×n met N ≥ n en b ∈ R
N , het doel van kleinste kwadraten regressie is

het vinden van een schatting xLS ∈ R
n zodat:

(xLS) = arg min
x
‖Ax− b‖2. (0.1)

De oplossing voor dit probleem is uniek indien en enkel indien A van volle
kolom-rang is en wordt gegeven door

xLS = A†b,

waarbij A† de zogenaamde pseudo-inverse is van A.

De orthogonale en schuine projectie

Lineaire geometrische projecties volgen dadelijk uit het concept van kleinste
kwadraten regressie. Er kan immers aangetoond worden dat de oplossing AxLS

met xLS de oplossing van het kleinste kwadraten probleem (0.1) de loodrechte
of orthogonale projectie is van de vector b op Col(A). In dit proefschrift wordt
echter vooral gewerkt met rij-ruimtes. De orthogonale projectie van de rij-ruimte
van een matrix B op de rij-ruimte van A wordt gegeven als

B/A = X̂AA = BA†A,

met X̂A bekomen uit het kleinste kwadraten probleem:

(X̂A) = argmin
XA

‖B −XAA‖F .

De schuine projectie van de rij-ruimte van C op de rij-ruimte van B via de rij-
ruimte van A, een centrale operatie in vele deelruimte identificatie algoritmen,
wordt op zijn beurt gegeven als

C/
A
B = X̂BB = C

[
A
B

]† [
0
B

]
,
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met X̂B bekomen uit het kleinste kwadraten probleem

(X̂A, X̂B) = arg min
XA,XB

∥∥∥∥C −
[
XA XB

] [A
B

]∥∥∥∥
F

.

Conditionering van de schuine projectie

De conditionering van de schuine projectie zal een belangrijke rol spelen in de
analyse van deelruimte algoritmen. Met A ∈ R

nA×N , B ∈ R
nB×N , nA+nB ≤ N

en ervan uit gaande dat nA ≤ nB en rank(B) = nB definiëren we het conditie-
getal van de lineaire operator in de schuine projectie C/

A
B als

CondL

([
A
B

]† [
0
B

])
=

σ1

([
A
B

]† [
0
B

])

σnB

([
A
B

]† [
0
B

]) =
1

sin(θmin)
,

met θmin de kleinste principale hoek tussen Row(A) en Row(B). Er kan
aangetoond worden dat het op deze manier gedefinieerde conditiegetal een maat
geeft voor de sensitiviteit van de projectie C/

A
B aan variaties op C. Het concept

van principale hoeken wordt hieronder nader toegelicht.

Principale hoeken en richtingen

Principale hoeken vormen in weze de multidimensionele uitbreiding van de hoek
tussen twee vectoren. Het is geweten dat de hoek a^ b tussen twee vectoren
a, b ∈ R

N kan bekomen worden als:

cos[a^ b] =
|aT b|

‖a‖2‖b‖2
.

Deze notie van een hoek wordt als volgt uitgebreid naar hoeken tussen
multidimensionele ruimtes. Neem aan dat S1 ∈ R

d1×N , d1 ≤ N en S2 ∈
R

d2×N , d2 ≤ N twee rij-ruimtes opspannen in R
N zodat rank(S1) = r1 and

rank(S2) = r2. We kiezen een eenheidsvector v1 ∈ R
N uit Row(S1) en een

eenheidsvector u1 ∈ R
N uit Row(S2) zodat de hoek tussen beide vectoren wordt

geminimaliseerd. De vectoren v1 en u1 worden de eerste principale richtingen
genoemd en de hoek ertussen de eerste principale hoek 0 ≤ θ1 ≤ π/2. De tweede
principale hoek en richtingen kunnen worden bekomen door de selectie van
eenheidsvectoren v2 ∈ Row(S1) en u2 ∈ Row(S2) loodrecht op respectievelijk
v1 en u1, en opnieuw zodat de onderlinge hoek minimaal is. Deze procedure
wordt herhaald tot r = min(r1, r2) hoeken en bijhorende principale richtingen
gevonden zijn.
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Hoofdstuk 3: Deelruimte identificatie

Deelruimte identificatie methodes identificeren systemen van de vorm:

xt+1 = Axt +But + wt,
yt = Cxt +Dut + vt,

(0.2)

waarbij ut ∈ R
m and yt ∈ R

l de ingangen en uitgangen van het systeem zijn op
tijdstip t. De zogenaamde toestand op tijdstip t wordt genoteerd als xt ∈ R

n.
Tenzij anders vermeld worden de procesruis en meetruis wit verondersteld met
gemiddelde nul en tweede orde momenten gegevens als

E

{[
wt

vt

] [
wT

k vT
k

]}
=

[
Q R
RT S

]
δtk.

Verder worden w en v ongecorreleerd verondersteld met de ingangen;

E
{
wtu

T
k

}
= 0, E

{
vtu

T
k

}
= 0, ∀t, k.

De representatie (0.2) is gekend als de toestandsruimterepresentatie.

Deelruimte identificatie op ingangs/uitgangsdata

Het basisidee achter deelruimte identificatie algoritmen is dat schattingen voor
de uitgebreide observeerbaarheidsmatrix en de toestanden van het bestudeerde
systeem kunnen bekomen worden door het combineren van een initiële projectie
met een singuliere waarden ontbinding. Eens de observeerbaarheidsmatrix en
de toestanden bekomen zijn worden de systeem matrices A, B, C en D bekomen
door het oplossen van een kleinste kwadraten probleem. Schattingen voor Q,
R en S volgen als de residuals van dit probleem. Een deelruimte identificatie
algoritme ziet er dan ook typisch als volgt uit:

• Uit ingangs/uitgangsdata worden bepaalde gestructureerde Hankel matri-
ces Yf , Y −

f , Uf , U−
f , Wp, W

+
p gevormd. De rij-ruimtes van deze matrices

worden geprojecteerd door middel van schuine projecties

Oi = Yf/
Uf

Wp, Oi+1 = Y −
f /

U−

f

W+
p .

Men kan bewijzen dat indien de zo bekomen projecties Oi en Oi+1

rank-deficient zijn, dezen kunnen worden ontbonden in de zogenaamde
uitgebreide observeerbaarheidsmatrix en een schatting voor de toestanden

Oi = ΓiX̂i, Oi+1 = ΓiX̂i+1.

Deze stap wordt typisch uitgevoerd door middel van een singuliere
waarden ontbinding.
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• In een tweede stap worden A, B, C en D berekend. Dit kan op
verscheidene manieren gebeuren. Een cruciale observatie is dat indien
zowel de in- en uitgangen als de toestanden in (0.2) bekend zijn, het vinden
van A, B, C en D in principe neerkomt op het oplossen van een kleinste
kwadraten probleem als volgt

(Â, B̂, Ĉ, D̂) = arg min
A,B,C,D

∥∥∥∥
[
X̂i+1

Yi|i

]
−

[
A B
C D

] [
X̂i

Ui|i

]∥∥∥∥
2

F

.

Uit (0.2) volgt ook dadelijk dat schattingen voor Q, R en S kunnen
bekomen worden uit de residuals van dit kleinste kwadraten probleem.

Merk op dat er in bovenstaande uiteenzetting steeds van wordt uit gegaan
dat opgemeten ingangen aanwezig zijn. Nochtans is het onder bepaalde
omstandigheden ook mogelijk schattingen te bekomen voor de systeemmatrices
A en C in (0.2) voor systemen zonder ingangen. Het bekomen identificatie
probleem staat bekend als het stochastisch identificatieprobleem.

Stochastische identificatie

Het stochastisch identificatieprobleem kan met deelruimte technieken worden
opgelost als volgt:

• Projecteer de rij-ruimtes van matrices Yf , Y −
f , Yp en Y +

p als

Oi = Yf/Yp, Oi+1 = Y −
f /Y +

p .

Opnieuw kan bewezen worden dat indien de zo bekomen projecties
rank-deficiënt zijn, zij kunnen worden ontbonden in de uitgebreide
observeerbaarheidsmatrix en bijhorende schattingen voor de toestanden
door het gebruiken van volgende relaties:

Oi = ΓiX̂i, Oi+1 = ΓiX̂i+1.

• In een tweede stap worden A en C bepaald uit de kleinste kwadraten
regressie

(Â, Ĉ) = argmin
A,C

∥∥∥∥
[
X̂i+1

Yi|i

]
−

[
A
C

]
· X̂i

∥∥∥∥
2

F

. (0.3)

Opnieuw kunnen schattingen voor Q, R en S bekomen worden uit
de residuals van dit kleinste kwadraten probleem. Nochtans zijn de
zo bekomen schattingen voor Q, R en S doorgaans niet consistent.
Een alternatieve methode bestaat erin een zogenaamd covariantiemodel
A,G,C, L0 te schatten en vervolgens een Riccati probleem van de volgende
vorm op te lossen

P = APAT + (G−APCT )(Λ0 − CPC
T )−1(G−APCT )T , (0.4)
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waarna Q, R en S kunnen berekend worden als

Q = (G−APCT )(Λ0 − CPC
T )−1(G−APCT )T ,

R = (G−APCT ).

Als dusdanig wordt een gepast ruismodel gevonden.

Hoofdstuk 4: Het probleem van gebrek aan reële
positiviteit

Zoals eerder vermeld bestaan er deelruimte identificatietechnieken voor syste-
men met en zonder gemeten ingangen. Vooral voor deze laatsten is het zeer
belangrijk niet enkel schattingen voor de systeemmatrices A en C te bekomen,
maar ook voor de covariantiematices van proces- en meetruis Q, R en S. In [33]
werd aangetoond dat stochastische deelruimte algoritmen kunnen falen indien
de Riccati vergelijking (0.4) geen positief definiete oplossing P heeft. In dit
geval wordt gezegd dat het covariantiemodel A,G,C, L0 niet reëel positief is.

Bestaande oplossingen voor het gebrek aan reële posi-
tiviteit

Gebrek aan reële positiviteit is een relevant probleem in praktische toepassingen.
Mede door deze praktische relevantie is het probleem over de laatste jaren
actief bestudeerd. Een belangrijk resultaat in dit verband is dat indien het
covariantiemodel stabiel is de volgende equivalenties gelden [50]:

• Het covariantiemodel is reëel positief.

• De spectrale densiteit Λ0 + C(zIn − A)−1G + GT (z−1In − A)−TCT is
positief semi-definiet voor alle z op de eenheidscirkel.

• De Riccati vergelijking (0.4) heeft een positief definiete opossing P .

Uit deze equivalenties kan dadelijk worden afgeleid dat indien L0 uit het
covariantiemodel kunstmatig wordt verhoogd, zodat de spectrale densiteit
gegarandeerd positief semi-definiet wordt, het resulterende covariantiemodel wel
reëel positief zal zijn. Deze oplossing voor het probleem van de reële positiviteit
werd reeds opgetekend in [120]. Evenzo kan worden aangetoond dat een gepaste
aanpassing van G tot een reëel positief covariantiemodel zal leiden [139]. Een
groot nadeel van deze, en vele andere voorgestelde [102, 147] methodes is dat
zij enkel werken indien het covariantiemodel reeds stabiel is. Verder is de
performantie niet altijd optimaal.
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Opleggen van reële positiviteit d.m.v. Tikhonov regulari-
satie

In dit proefschrift wordt een nieuwe methode voorgesteld [65] voor het opleggen
van reële positiviteit. De methode steunt op het concept van complexi-
teitscontrole of regularisatie. In de meest brede zin van het woordt staat
regularisatie voor de techniek waarbij een optimalisatieprobleem lichtjes wordt
aangepast zodat de onzekerheid op de bekomen oplossing (bvb. de variantie
op een verzameling van bekomen model parameters) sterk gereduceerd wordt.
Hoewel de aanpassing van het optimalisatieprobleem in het algemeen leidt
tot het invoeren van een verwachte fout (bias) is de grootte van de totale
fout vaak kleiner dan zonder regularisatie, precies dankzij de vermindering
van de variantie. Dit concept staat ook bekend onder de naam van de
bias/variantie afweging. Een ander voordeel van het gebruik van regularisatie
is dat bepaalde voorwaarden kunnen opgelegd worden op de oplossing van een
optimalisatieprobleem. Vooral deze laatste eigenschap is uiteraard nuttig voor
het oplossen van het probleem van de reële positiviteit.

De voorgestelde oplossing bestaat erin het standaard optimalisatieprobleem
(0.3) voor de schatting van A en C te vervangen door

(Â, Ĉ) = arg min
A,C

(∥∥∥∥
[
X̂i+1

Yi|i

]
−

[
A
C

]
· X̂i

∥∥∥∥
2

F

+ cTr

([
A
C

]
W

[
A
C

]T
))

,

met c ≥ 0 een positieve scalar en W een positief definiete matrix van geschikte
dimensie die voldoet aan W − ĜΛ̂−1

0 ĜT ≥ 0. Dit type van regularisatie wordt
ook wel eens Tikhonov regularisatie genoemd. Er kan bewezen worden dat
reële positiviteit kan opgelegd worden op het covariantiemodel in stochastische
deelruimte identificatie indien c voldoende groot wordt gekozen. Eveneens
blijkt de performantie van de voorgestelde methode beter dan deze van eerder
gepubliceerde algoritmen.

Hoofdstuk 5: Slecht geconditioneerdheid van
deelruimte identificatie problemen

Ondanks het feit dat deelruimte identificatie algoritmen gestoeld zijn op
numeriek robuuste geometrische operaties, zoals projecties en de singuliere waar-
den ontbinding, zijn de ingangs/uitgangs-varianten en vooral het welgekende
N4SID algoritme mogelijk slecht geconditioneerd onder bepaalde experimentele
omstandigheden. Dit laatste doet zich vooral voor indien de ingangen sterk
gekleurd zijn [22, 25].

Twee redenen voor dit fenomeen worden besproken in dit proefschrift. De
eerste is van toepassing op het N4SID identificatie algoritme, de tweede reden
is ook van toepassing op de meeste andere deelruimte identificatie algoritmen
zoals de PO-MOESP [155] en de CVA [94].
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Reden 1: Een slecht geconditioneerde schuine projectie

Het N4SID deelruimte identificatie algoritme wordt gedomineerd door een
schuine projectie van waaruit de uitgebreide observeerbaarheidsmatrix en de
toestanden van het systeem kunnen worden bekomen. Een belangrijke maat
voor de conditionering van deze schuine projectie is de volgende:

CondL

(
PT
{W T

p |UT
f }

)
=

1

sin(θmin)
,

met θmin de kleinste canonische hoek tussenWp en Uf . Uit [35–37] volgt dadelijk
dat deze hoek klein zal zijn indien de ingangen sterk gekleurd zijn. Bijgevolg kan
worden verwacht dat deelruimte identificatie algoritmen ondermaats presteren
voor dit type ingangen.

Reden 2: Correlatie tussen de stochastische toestand en de
ingangen

Deelruimte identificatie algoritmen schatten een interne toestand die zowel de
bijdragen van de ingangen van het systeem (de deterministische bijdragen) als
de bijdragen ten gevolge van de storingen (de stochastische bijdragen) bevat.
Hoewel theoretisch gezien de correlatie tussen het stochastisch gedeelte van de
toestand en de ingangen van het systeem nul is, zal dit niet noodzakelijk het
geval zijn indien gewerkt wordt met een eindige hoeveelheid meetdata. Er kan
worden aangetoond dat onder invloed van sterk gekleurde ingangen een zwakke
correlatie tussen de stochastische component van de toestand en de ingangen
van het systeem reeds kan leiden tot onbetrouwbare resultaten.

De orthogonale decompositiemethode

Een voorgesteld algoritme om met beide problemen om te gaan is de zogenaamde
orthogonale decompositie methode zoals voorgesteld in [26]. In tegenstelling
tot de meeste bestaande deelruimte identificatie algoritmen bevat de orthog-
onale decompositie methode een decompositie van de opgemeten data in een
stochastisch en een deterministisch gedeelte, uitgevoerd als

Y d
f = Yf/

[
UT

p UT
f

]T
,

Y s
f = Yf/

[
UT

p UT
f

]T ⊥
.

Er kan worden aangetoond dat deze initiële decompositie toelaat het probleem
van de zwakke correlaties tussen de stochastische toestand en de ingangen van
het systeem te omzeilen. De slecht-geconditioneerdheid van de schuine projectie
wordt op zijn beurt vermeden door het vervangen van de schuine projectie
door een orthogonale projectie, welke typisch wordt gevonden in algoritmen
uit de MOESP klasse. Samenvattend kan gesteld worden dat de uiteindelijke
orthogonale decompositie methode de projectie Oi = Yf/

Uf

Wp vervangt door

Oi = Yf/(Up/U
⊥
f ),
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wat leidt tot meer accurate schattingen.

Regularisatie ter verbetering van de conditionering

In dit proefschrift bestuderen we een alternatieve benadering dan de orthogonale
decompositie methode. Hoewel daarbij nog steeds gesteund wordt op de
orthogonale decompositie van de opgemeten data in een stochastisch en een
deterministisch deel, wordt de schuine projectie behouden als de sleutel voor
het bekomen van de toestand. Het probleem van de slechte conditionering van
de schuine projectie wordt aangepakt door het toepassen van regularisatie in de
schuine projectie. De schuine projectie wordt bekomen als Oi = L̂γ

2Wp, waarbij:

(L̂γ
1 , L̂

γ
2) = argmin

L1,L2

(∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

+ γ‖L2Wp‖
2
F

)
.

Het uiteindelijk bekomen algoritme presteert beter dan de orthogonale de-
compositie methode en levert, gecombineerd met resultaten uit hoofdstuk 4,
voldoende bewijs dat regularisatie een nuttige bijdrage kan leveren in de wereld
van de systeemidentificatie.

Hoofdstuk 6: Hammerstein, Wiener en Hammer-

stein-Wiener systemen

Zoals eerder vermeld is een nadeel van veel deelruimte identificatie algoritmen
dat zij in toepassing beperkt zijn tot de klasse van lineaire systemen. Nochtans
is een uitbreiding van het deelruimte-raamwerk naar bepaalde klassen van niet-
lineaire systemen mogelijk. In [51] werd bijvoorbeeld een deelruimte identificatie
algoritme voor bilineaire systemen ingevoerd. Een andere interessante ontwikke-
ling is de introductie van deelruimte identificatie algoritmen voor Hammerstein,
Wiener en Hammerstein-Wiener systemen [75,156,159].

Hammerstein, Wiener en Hammerstein-Wiener systemen zijn samengesteld
uit een lineair dynamisch gedeelte met transfer functie H(z), vooraf gegaan
en/of gevolgd door statische niet-lineariteiten f en g respectievelijk, of nog

yt = g(ỹt), ỹ(z) = H(z)ũ(z), ũt = f(ut).

Aangezien het dynamische gedeelte van dergelijke systemen lineair is, vormen
zij een zeer aantrekkelijk doelwit voor de uitbreiding van lineaire systeemidenti-
ficatie algoritmen naar niet-lineaire systemen. Dit terwijl de aanwezigheid van
de statische niet-lineariteiten toch toelaat een bredere klasse van gedragingen
te beschrijven dan hetgeen mogelijk is door gebruik te maken van lineaire
modellen. We beschouwen hieronder de identificatie van Hammerstein, Wiener
en Hammerstein-Wiener systemen in iets meer detail.
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Hammerstein identificatie

Hammerstein systemen bestaan uit een statische niet-lineariteit f gevolgd door
een lineair dynamisch systeem, of nog

y(z) = H(z)ũ(z), ũt = f(ut).

Technieken voor de identificatie van Hammerstein systemen onderscheiden
zich voornamelijk in de manier waarop de statische niet-lineariteit wordt
voorgesteld en het optimalisatieprobleem dat uiteindelijk wordt opgelost. Een
gekend probleem met de identificatie van Hammerstein systemen is dat de
uiteindelijke kostenfunctie doorgaans kruisproducten bevat tussen parameters
die de statische niet-lineariteit beschrijven en parameters die het lineaire
dynamische systeem beschrijven. Het opleggen van een criterium van maximale
waarschijnlijkheid resulteert dan in een zogenaamd bi-convex optimalisatiepro-
bleem waarvoor globale convergentie niet gegarandeerd is [131].

Het bi-convex optimalisatieprobleem wordt typisch opgelost door middel van
iteratieve algoritmen, door het maken van stochastische aannames (zoals witheid
van de ingangen), of door toepassing van een techniek die gekend staat als
overparameterisatie. In deze laatste worden producten van parameters bjck
zoals we die kunnen vinden in Hammerstein systemen van de vorm

yt =

n∑

i=1

aiyt−i +

m∑

j=0

nf∑

k=1

bjckfk(ut−j) + et

vervangen door nieuwe parameters θj,k = bjck zodat het model lineair wordt in
zijn parameters:

yt =

n∑

i=1

aiyt−i +

m∑

j=0

nf∑

k=1

θj,kfk(ut−j) + et. (0.5)

Voordeel van deze werkwijze is dat het bekomen optimalisatieprobleem convex
is en dus eenvoudig kan opgelost worden. Schattingen voor de bj en ck worden
daarna gevonden door het toepassen van een singuliere waarden ontbinding op:




θ̂0,1 θ̂0,2 . . . θ̂0,nf

θ̂1,1 θ̂1,2 . . . θ̂1,nf

...
...

...

θ̂m,1 θ̂m,2 . . . θ̂m,nf


 . (0.6)

Het grote voordeel van het gebruik van overparameterisatie is zonder twijfel
de bekomen convexiteit, zoals eerder vermeld. Een belangrijk nadeel van de
overparameterisatietechniek is dat het aantal te schatten parameters stijgt wat
leidt tot een grote variantie op de bekomen resultaten. Tenslotte is geweten dat
in bepaalde omstandigheden meerdere oplossingen θj,k bestaan die de residuals
in (0.5) minimaliseren. Er is dan geen garantie dat de schattingen voor θj,k nog
steeds voldoen aan θj,k = bjck, of nog, dat de matrix (0.6) rank-deficiënt is.
In Hoofdstuk 7 zullen we zien dat dit probleem kan vermeden worden door het
opleggen van zogenaamde centreringsbeperkingen.
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Wiener model identificatie

Wiener systemen zijn zeer verwant aan Hammerstein systemen. Zij bestaan uit
een lineair systeem gevolgd door een statische niet-lineariteit g, of nog

yt = g(ỹt), ỹ(z) = H(z)u(z).

Wiener-systemen worden gëıdentificeerd met gelijkaardige technieken als Ham-
merstein-systemen. We onderscheiden iteratieve technieken, stochastische
technieken en overparameterisatietechnieken. In dit proefschrift zullen we
niet verder ingaan op Wiener model identificatie. Over het algemeen kan
echter gesteld worden dat veel van de technieken besproken in dit proefschrift
toepasbaar zijn op Wiener systemen met een inverteerbare functie g.

Hammerstein-Wiener model identificatie

Hammerstein-Wiener systemen worden bekomen door het plaatsen van een
Hammerstein-systeem en een Wiener-systeem in cascade. Een statische niet-
lineariteit aan de ingang wordt dan gevolgd door een lineair dynamisch systeem
en een statische niet-lineariteit aan de uitgang, of nog

yt = g(ỹt), ỹ(z) = H(z)ũ(z), ũt = f(ut).

In tegenstelling tot de literatuur rond Hammerstein en Wiener identificatie
is de beschikbare literatuur rond Hammerstein-Wiener identificatie eerder
beperkt. In [12] wordt een schema uitgewerkt voor de identificatie van SISO
(enkele ingang, enkele uitgang) Hammerstein-Wiener systemen op basis van
overparameterisatie. Een nadeel van deze methode is dat een specifieke
modelstructuur wordt voorop gesteld, hetgeen de praktische toepasbaarheid
negatief bëınvloedt. Gebaseerd op [12] werd een meer algemene zogenaamde
blinde methode voor de identificatie van SISO systemen voorgesteld in [14]. Een
identificatiemethode voor Hammerstein-Wiener MIMO (Meerdere ingangen,
meerdere uitgangen) systemen werd voorgesteld in [29,30], maar steunt op eerder
beperkende restricties op de ingangen en is bovendien iteratief van aard. Andere
bijdragen zoals [48, 166] zijn gelimiteerd tot SISO systemen en/of iteratief van
aard.

Er kan dan ook gesteld worden dat heden ten dage geen betrouwbaar MIMO
identificatie algoritme voorhanden is dat niet iteratief is en bovendien niet
steunt op restrictieve assumpties op de ingangen. Een poging tot het bekomen
van een dergelijk algoritme, door het combineren van het kern canonische
correlatie analyse raamwerk en het deelruimte intersectie algoritme, zal worden
voorgesteld in Hoofdstuk 9.
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Hoofdstuk 7: Hammerstein ARX identificatie

In dit hoofdstuk beschouwen we allereerst de identificatie van SISO Hammer-
stein systemen in ARX vorm (AutoRegressieve modellen met eXterne ingangen):

yt =
n∑

i=1

aiyt−i +
m∑

j=0

bjf (ut−j) + et. (0.7)

We zullen daarbij gebruik maken van het zogenaamde LS-SVM formalisme
(kleinste kwadraten steun-vector machines). Het idee van dit formalisme is
dat een in essentie niet-lineair probleem linear kan gemaakt worden door een
projectie van meetgegevens in een hoog-, mogelijks oneindig-, dimensionele
ruimte. In deze ruimte kunnen dan klassieke lineaire technieken worden
toegepast. Deze techniek wordt hieronder toegelicht in het kader van statische
regressie of functieschatting.

Kleinste kwadraten steun-vector machines voor functi-
eschatting

Laat {(xt, yt)}Nt=1 ⊂ R
d × R een set van ingangs/uitgangs-trainingsdata zijn

met ingang xt en uitgang yt. Beschouw het regressiemodel yt = f(xt) + et

waarbij x1, . . . , xN deterministische punten zijn, f : R
d → R een ongekende

gladde functie met beeld in de reële getallen (i.e. Lipschitz continu) is, en de
e1, . . . , eN ongecorreleerde random fouten met E [et] = 0, E

[
e2t
]

= σ2
e <∞ zijn.

Het volgende model wordt verondersteld:

f(x) = wTϕ(x) + b,

waarbij ϕ(x) : R
d → R

nH een mogelijks oneindigdimensionele (nH = ∞)
kenmerkfunctie en w ∈ R

nH , b ∈ R. De geregulariseerde kostenfunctie van
de LS-SVM [135] wordt gegeven als

min
w,b,e
J (w, e) =

1

2
wTw +

γ

2

n∑

t=1

e2t , (0.8)

s.t. : yt = wTϕ(xt) + b+ et, t = 1, . . . , N. (0.9)

Het relatieve belang van de gladheid van de oplossing ten opzichte van de
accuraatheid van de fit aan de data wordt in hoofdzaak bepaald door de scalar
γ ∈ R

+
0 , waarnaar wordt gerefereerd als de regularisatieconstante.

De uitgevoerde optimalisatie staat gekend onder de naam van richelregressie
[68] in de kenmerkruimte. Om het beperkte optimalisatieprobleem op te lossen
wordt een Lagrangiaan geconstrueerd:

L(w, b, e;α) = J (w, e)−
N∑

t=1

αt{w
Tϕ(xt) + b+ et − yt},
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met αt de Lagrangevermenigvuldigers. Na het opleggen van de condities voor
optimaliteit ∂L

∂w = 0, ∂L
∂b = 0, ∂L

∂et
= 0, ∂L

∂αt
= 0 en de gepaste substituties

leidt dit tot het volgende duale probleem (d.i. het probleem uitgedrukt in de
Lagrangevermenigvuldigers):

[
0 1N

T

1N Ω + γ−1IN

] [
b
α

]
=

[
0
y

]
, (0.10)

waarbij y =
[
y1 . . . yN

]T
, 1N =

[
1 . . . 1

]T
, α =

[
α1 . . . αN

]T
, Ωij =

K(xi, xj) = ϕ(xi)
Tϕ(xj), ∀i, j = 1, . . . , N , met K de positief definiete kern.

Merk op dat bij het oplossen van het optimalisatieprobleem de kenmerkfunctie
ϕ niet gebruikt werd, en dus niet expliciet dient gedefiniëerd te worden. Enkel
het inwendig product, een positief definiete Mercer kern, is nodig. Dit wordt
de kerntruc genoemd [127, 150]. Voor de keuze van de kern K(·, ·), zie bvb.
[127]. Het resulterende kleinste kwadraten steun-vector machine model voor
functieschatting kan geëvalueerd worden in een nieuw punt x∗ als volgt:

f̂(x∗) =

N∑

t=1

α̂tK(x∗, xt) + b̂,

waarbij â an b̂ oplossingen zijn van (0.10). Naast functieschatting is het ook
mogelijk met behulp van LS-SVMs classificatie uit te voeren, alsook kern PCA
(principale component analyse), kern CCA (canonische correlatie analyse), kern
PLS (partiële kleinste kwadraten), recurrente netwerken en oplossingen voor
niet-lineaire optimale controleproblemen. Voor een overzicht met betrekking
tot toepassingen rond het kleinste kwadraten steun-vector machines raamwerk
wordt de lezer doorverwezen naar [80, 135–137].

LS-SVMs voor Hammerstein ARX identificatie

Voor het toepassen van het LS-SVM raamwerk op het ARX model worden
termen van de vorm bjf(u) in (0.8) vervangen worden door functies wT

j ϕ(u)
waarbij ϕ(u) de kenmerkfunctie is. Het schatten van de termen bj en f wordt
zo vervangen door het schatten van vectoren wj in een hoogdimensionele ruimte.
Merk op dat deze stap als een overparameterisatiestap kan beschouwd worden.
Uit

yt =
n∑

i=1

aiyt−i +
m∑

j=0

wT
j ϕ(ut−j) + d+ et,

volgt het primale LS-SVM probleem

min
wj ,a,d,e

J (wj , e) =
1

2

m∑

j=0

wT
j wj + γ

1

2

N∑

t=r

e2t ,

met als beperkingen

m∑

j=0

wT
j ϕ(ut−j) +

n∑

i=1

aiyt−i + d+ et − yt = 0, (0.11)
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N∑

t=1

wT
j ϕ(ut) = 0, (0.12)

waarbij noodzakelijke centreringsbeperkingen (0.12) werden toegevoegd (zie ook
Hoofdstuk 6). De oplossing van het primale probleem wordt gegeven door het
volgende lemma:

Lemma 0.1. Gegeven het systeem (0.7), worden de kleinste kwadraten steun-
vector schattingen voor de niet-lineaire functies wT

j ϕ : R → R, j = 0, . . . ,m,
gegeven als:

wT
j ϕ(u∗) =

N∑

t=r

αtK(ut−j , u∗) + βj

N∑

t=1

K(ut, u∗),

waarbij de parameters αt, t = r, . . . , N , βj , j = 0, . . . ,m, en de lineaire
modelparameters ai, i = 1, . . . , n en d worden bekomen uit de volgende set van
lineaire vergelijkingen:




0 0 1T 0
0 0 Yp 0
1 YT

p K + γ−1I K0

0 0 K0T
1T

NΩ1N · Im+1







d
a
α
β


 =




0
0
Yf

0


 , (0.13)

met K en K0 afhankelijk van de kernel K, en Yp een Hankel matrix gevuld met
uitgangsmetingen.

De projectie van het bekomen overgeparemeteriseerde model op de klasse van
de Hammerstein systemen gaat als volgt: Schattingen voor de autoregressieve
parameters ai, i = 1, . . . , n worden onmiddelijk bekomen uit (0.13). Tenslotte
hebben we voor een set van ingangen

[
u1 . . . uN

]
, dat:



b0
...
bm






f̂(u1)

...

f̂(uN )




T

=




αN . . . αr 0
αN . . . αr

. . .
. . .

0 αN . . . αr




×




ΩN,1 ΩN,2 . . . ΩN,N

ΩN−1,1 ΩN−1,2 . . . ΩN−1,N

...
...

...
Ωr−m,1 Ωr−m,2 . . . Ωr−m,N


+



β0

...
βm




N∑

t=1




Ωt,1

...
Ωt,N




T

, (0.14)

met f̂(u) een schatting voor

f(u) = f(u)−
1

N

N∑

t=1

f(ut).
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Zodus kunnen schattingen voor de bj en de statische niet-lineariteit f bekomen
worden uit een rank 1 benadering van de rechterhandzijde van (0.14), bij-
voorbeeld door toepassing van een singuliere waarden algoritme. Deze stap
correspondeert met de singuliere waarden stap die ook in klassieke overparame-
terisatie-algoritmen wordt aangetroffen.

Een gelijkaardige afleiding als zonet beschreven kan worden uitgevoerd voor
zogenaamde MIMO systemen. Een vergelijking van het kleinste kwadraten
steun-vector algoritme met bestaande overparameterisatietechnieken leert dat
door de inherente aanwezigheid van een regularisatieraamwerk in kleinste
kwadraten steun-vector algoritmes, en het feit dat centreringsbeperkingen op de
oplossingen eenvoudig kunnen worden opgelegd, de bekomen modellen typisch
beter zijn dan dezen bekomen via reeds langer bestaande overparameterisatie-
technieken. Dit gecombineerd met een heldere afleiding van de basisresultaten
en de vrijheid die bekomen wordt door de actieve keuze van een geschikte positief
definiete kernfunctie maakt van de voorgestelde techniek een prima kandidaat
voor Hammerstein model identificatie.

Hoofdstuk 8: Hammerstein N4SID identificatie

Gebasseerd op de resultaten in Hoofdstuk 7, wordt in Hoofdstuk 8 een
Hammerstein N4SID algoritme voorgesteld. Het eerder voorgestelde ARX
algoritme heeft immers als belangrijk nadeel dat het gebruik van ARX modellen
niet toelaat bepaalde types van verstoringen te beschouwen zoals bijvoorbeeld
meetruis. Dit laatste is wel mogelijk indien gebruik gemaakt wordt van
deelruimte algoritmen zoals het bekende N4SID-algoritme.

Een eerste stap naar de ontwikkeling van een Hammerstein N4SID algoritme
is de vervanging van de schuine projectie door een kleinste kwadraten steun-
vector regressieprobleem. Termen wh,s en de matrices Ly worden daarbij geschat
in vergelijkingen van de volgende vorm:

Yf (s, t) = Ly(s, :)Yp(:, t) +

2i∑

h=1

wT
h,sϕ(uh+t−2) +E(s, t),

waarbij E een te minimaliseren matrix met residuals is. Het LS-SVM primaire
probleem wordt dan geformuleerd als een beperkt optimalisatieprobleem:

min
wh,s,Ly,E,δy

J (wh,s, Ly, E, δy) =
1

2

il∑

s=1

2i∑

h=1

wT
h,swh,s +

γ

2

il∑

s=1

j∑

t=1

E(s, t)2,

s.t.





Yf (s, t) + [1i ⊗ δy](s) = Ly(s, :)(Yp(:, t) + 1i ⊗ δy) (a)

+
∑2i

h=1 w
T
h,sϕ(uh+t−2) +E(s, t),

∀s = 1, . . . , il, t = 1, . . . , j,∑N−1
t=0 wT

h,sϕ(ut) = 0, (b)

∀h = 1, . . . , 2i, s = 1, . . . , li.
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Na oplossen van dit primaire probleem kunnen schattingen voor de schuine
projectie en vervolgens de interne toestanden van het systeem worden bekomen.
In een tweede stap worden de systeemmatrices A, B, C en D, en de statische
niet-lineariteit f geschat, opnieuw door het oplossen van een kleinste kwadraten
steun-vector regressie probleem van de volgende vorm:

min
ωs,E,ΘAC

J (ω,E) =
1

2

n+l∑

s=1

ωT
s ωs +

γBD

2

n+l∑

s=1

j∑

t=1

E(s, t)2,

s.t.

{
Xi+1(s, t) = ΘAC(s, :)X̃i(:, t) + ωT

s ϕ(ui+t−1),∑N−1
t=0 ωT

s ϕ(ut) = 0,

met

Xi+1 =

[
X̃i+1

Yi|i − δy

]
, ΘAC =

[
A
C

]
, ΘBD =

[
B
D

]
.

Er kan eenvoudig experimenteel aangetoond worden dat het uiteindelijk bekomen
Hammerstein N4SID algoritme veel beter overweg kan met zaken als meetruis
dan het Hammerstein ARX algoritme gepresenteerd in Hoofdstuk 7. Nadeel
is uiteraard de grotere complexiteit en het toegenomen aantal parameters in
deelruimte-algoritmen.

Hoofdstuk 9: Hammerstein-Wiener identificatie

met deelruimte intersectie

De resultaten in Hoofdstukken 7 en 8 bleven beperkt tot Hammerstein
systemen. Hoewel kan aangetoond worden dat Wiener identificatie algoritmen
kunnen afgeleid worden steunende op gelijkaardige principes als deze gebruikt
in Hoofdstukken 7 en 8, mag er gesteld worden dat de identificatie van
Hammerstein-Wiener systemen heel wat complexer is. De literatuur rond
identificatie van Hammerstein-Wiener systemen is eerder beperkt en het gros
van de voorgestelde algoritmen is ofwel essentieel iteratief van aard, of gebaseerd
op eerder restrictieve aannames wat betreft de structuur van de ingangen (bvb.
witheid).

Opnieuw kijken we naar kleinste kwadraten steun-vector algoritmen voor de
ontwikkeling van een Hammerstein-Wiener deelruimte identificatie algoritme.
Een belangrijk nieuw element is het gebruik van canonische correlatie analyse,
en meer bepaald een niet-lineaire variant ervan, gekend als kern canonische cor-
relatie analyse. Deze laatste steunt op gegeneraliseerde eigenwaardenproblemen
van de volgende vorm:

KpKf Vf = KpKp VpΛ,

KfKp Vp = KfKf VfΛ,

waarbij Kp en Kf gepaste kernfuncties zijn. Men kan aantonen dat indien
de niet-lineariteit aan de uitgang van het Hammerstein-Wiener systeem inver-
teerbaar is, een interne toestand van het bestudeerde systeem kan bekomen
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worden via een kern canonische correlatie analyse -stap. De schatting van
de systeemmatrices A en B en de statische niet-lineariteit f volgt daarna
ongeveer hetzelfde verloop als in Hoofdstuk 8 en steunt volledig op het volgende
regressieprobleem:

min
w,E,A

J (w,E) = 1
2

∑n
s=1 w

T
f,swf,s + γu

2

∑n
s=1

∑j−1
t=1 E(s, t)2,

s.t. X̂i+1(s, t) = AX̂i(:, t) + wT
f,sUϕ(:, t) +E(s, t).

Schattingen voor de matrices C en D en de statische niet-lineariteit g vinden
we via:

min
w,E,C,D

J (w,E) = 1
2

∑l
s=1 w

T
g,swg,s +

γy

2

∑n
s=1

∑j−1
t=1 E(s, t)2,

s.t. Xi(1, t) = wT
g,sYϕ(:, t)− C(s, 2 : n)Xi(2 : n, t)

−D(s, :)Uf (:, t)−E(s, t).

Zoals eerder vermeld heeft het uiteindelijk bekomen algoritme tot groot voordeel
met betrekking tot bestaande algoritmen dat geen restrictieve aannames moeten
gemaakt worden wat betreft de ingangen van het systeem. Tevens is het
voorgestelde algoritme niet iteratief van aard.

Hoofdstuk 10: Besluiten

Algemene besluiten

In dit proefschrift werden technieken bestudeerd voor deelruimte-identificatie
van lineaire, Hammerstein en Hammerstein-Wiener systemen. Voor lineaire
systemen werd aangetoond dat ondanks de algemeen aanvaarde robuustheid
van deelruimte algoritmen, onder specifieke experimentele condities, problemen
kunnen optreden met betrekking tot conditionering, of het volledig falen van
het algoritme. Verscheidene oplossingen werden voorgesteld en getest in
dit proefschrift. Nieuwe voorgestelde methodes voor het oplossen van het
zogenaamde reële positiviteit probleem bleken beter te presteren dan bestaande
oplossingen. Het toevoegen van een regularisatieterm aan de schuine projectie
in ingangs/uitgangs-deelruimte-algoritmen bleek dan weer een positief effect te
hebben op de conditionering van deze laatsten.

Voor Hammerstein en Hammerstein-Wiener systemen werden betrouwbare
deelruimte identificatie algoritmen ontwikkeld door het combineren van ideeën
ontrent kleinste kwadraten kern-vector machines met de belangrijkste projecties
die in deelruimte algoritmen aanwezig zijn. Ook hier werd aangetoond dat
de nieuwe voorgestelde algoritmen enkele belangrijke voordelen hebben ten
opzichte van bestaande technieken. Dit onder andere door het mechanisme
van regularisatie dat inherent aanwezig is in LS-SVMs, en het feit dat extra
beperkingen op de oplossingen van een kleinste kwadraten steun-vector regressie
eenvoudig kunnen worden opgelegd.
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Toekomstig onderzoek

De resultaten omtrent het gebruik van regularisatie als remedie voor slechte
conditionering in gecombineerd stochastisch-deterministische deelruimte iden-
tificatie kennen en zouden verder onderzocht moeten worden. Een niet
exhaustieve lijst van mogelijkheden ziet eruit als volgt:

1. Bestudeer het effect van regularisatie in de schuine projectie op de
bekomen toestand. Blijven de basis-eigenschappen omtrent deelruimte-
identificatie zoals het zogenaamde unificatietheorema behouden? Leidt
het gebruik van regularisatie tot een verandering van de basis waarin de
toestand wordt uitgedrukt?

2. Gebruik regularisatie in de schuine projectie maar tracht het gebruik
van een gescheiden parameterisatie voor het deterministische en het
stochastische deelsysteem te vermijden. Is het mogelijk een tweede
regularisatiestap te gebruiken ter vervanging van de gescheiden parame-
terisatie?

Wat niet-lineaire deelruimte technieken betreft mag het duidelijk zijn dat niet
alle mogelijkheden zijn uitgeput. Drie duidelijke mogelijkheden voor toekomstig
onderzoek tekenen zich af:

1. In Hoofdstuk 7 hebben we gezien dat het gebruik van centrerings-
beperkingen noodzakelijk is teneinde een goede schatting voor o.a.
Hammerstein ARX systeem te bekomen. Beter zou echter zijn om dadelijk
collineariteitsbeperkingen op te leggen op de verscheidene vectoren wj die
figureren in het algoritme.

2. In [151] werden enkele preliminaire resultaten gepresenteerd waarin de
ideeën rond LS-SVM Hammerstein-Wiener identificatie worden uitgebreid
naar algemeen niet-lineaire systemen. Dit is een beloftevol onderzoeksge-
bied aangezien de onderzochte technieken in principe toelaten deelruimte-
identificatie toe te passen op nagenoeg eender welk niet-lineair systeem.
Langs de andere kant zal het gebrek aan structuur in de bestudeerde
modellen leiden tot een explosie in het aantal parameters met een grote
onzekerheid op de bekomen modellen tot gevolg. Het blijft dus af te
wachten of dergelijke deelruimte algoritmen voor algemeen niet-lineaire
systemen nuttig zijn in de praktijk.

3. In plaats van het uitbreiden van enkele voorgestelde resultaten naar
algemeen niet-lineaire systemen is het wellicht interessant te onderzoeken
of de algoritmen bestudeerd in dit proefschrift kunnen worden uitgebreid
naar andere gestructureerde niet-lineaire modelklassen zoals de Wiener-
Hammerstein klasse, gekarakteriseerd door een Wiener model gevolgd door
een Hammerstein model.



Chapter 1

Introduction

In this introduction, we will briefly discuss the importance of
subspace identification algorithms in the system identification con-
text. It will be argued that subspace identification algorithms offer
many advantages over classical algorithms when presented with a
system identification task. Nevertheless, we will also see that under
certain experimental conditions, subspace identification algorithms
may break down, or produce unreliable results. Another drawback
of subspace identification algorithms will be found in the fact that
they are largely limited to linear systems. The focus of this thesis,
namely the study of the reliability of linear subspace identifica-
tion algorithms, and an extension of the subspace framework to
Hammerstein- and Hammerstein-Wiener systems follows naturally
from these observations.

1.1 Subspace identification

System identification in its broadest sense is a powerful technique for building
accurate mathematical models of complex systems from noisy data. It distin-
guishes itself from mathematical modeling approaches based on the combination
of a set of scientific laws, in that no detailed knowledge of the inner-workings
of the system is needed. Because of this, system identification algorithms often
offer a cheap alternative over more complex modeling approaches based on first
principles.

Many of the system identification algorithms in use today can be classified
as so called “predictor error”-methods. Typically, a certain model structure is
assumed and a set of free parameters is estimated by optimizing the predictive
performance of the corresponding models on measured data-sequences. A well
known drawback of these approaches, is that the resulting optimization problem
is in general non-convex, and this even for the relatively limited class of linear
systems. Consequently, many “predictor error”-methods are not guaranteed

1



2 Introduction

to deliver an optimal solution due to the presence of local minima in the
cost-function. Furthermore, the inherently iterative nature of the employed
optimization algorithms can lead to problems related to lack of convergence,
slow convergence or numerical instability.

For linear systems, subspace identification algorithms offer an alternative to
the classical “predictor error”-methods. Subspace identification algorithms were
mainly developed in the last decade of the former century and are entirely based
on numerically robust linear geometrical operations such as projections and the
singular value decomposition. As such, no convergence problems or numerical
instabilities will occur. Furthermore, in contrast to “predictor error” approaches
which require a certain user specified parameterization, subspace identification
algorithms use full state space models and the only parameter is the order of the
system. As a result subspace algorithms for the identification of linear systems
have strongly gained in popularity over the last two decades and are currently
used in a vast range of applications such as structural identification and fault
detection [15, 16].

However, despite the current popularity and the aforementioned robustness
of subspace identification algorithms, evidence has emerged over the last few
years that in some specific cases, subspace algorithms may fail, or yield
unreliable results. Another drawback of subspace algorithms is that they are
largely constrained to the class of linear systems. Both issues will briefly be
discussed in the following sections.

1.2 Positive realness

Subspace identification algorithms exist for input/output as well as output-
only system. Especially in the output-only case, the aim of identification,
including subspace identification, is to obtain not only a linear model for the
observed dynamics, but also an estimate for the statistics of the driving noise
sources. Although the former is not a problem when using output-only subspace
identification, it was shown [33] that the latter can fail if certain conditions are
not met by one of the intermediate results in the algorithm. Namely when the
so-called covariance model is not positive real. In case of a failure, the covariance
model is said to suffer from a lack of positive realness.

Lack of positive realness is a relevant problem in practical applications. In
this thesis we will show that it occurs, even for some seemingly trivial tasks
such as the modeling of an ambiently excited vibrating structure. Because of
its practical relevance, the positive realness problem has received considerable
attention over the last few years. Besides discussing some already existing
solutions, in this thesis we will introduce a new algorithm to impose positive
realness using the concept of Tikhonov regularization.

In its broadest sense, regularization denotes the act of slightly altering a
given optimization problem such that the uncertainty on the obtained solution
(e.g. the variance on a set of obtained model parameters) is significantly reduced.
Although altering the optimization problem in general leads to the introduction
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of a bias, the total expected error is often seen to decrease as a result of the
decrease in variance. This concept is known as the bias/variance trade-off.
Another advantage of regularization is that certain conditions can be imposed
on the solution of an optimization problem. It is this property that will turn
out to be particularly useful for the positive realness problem.

By using a special form of regularization, known as Tikhonov regularization,
it will be shown that positive realness can be imposed on the covariance model
in output-only subspace identification. Furthermore, the obtained model and
the statistics of the driving noises will be seen to be better than what can be
obtained using already existing solutions. A graphical description of the positive
realness problem is given in Figure 1.1.
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Figure 1.1: The covariance model is obtained as an intermediate step in output
only subspace identification. In order to be able to extract statistics for the noise
sources acting on the system, it needs to satisfy the positive realness assumption.
Positive realness can be imposed using results presented in Chapter 4 of this
thesis.

1.3 Ill-conditioning in subspace identification

Despite the fact that they are based on numerically robust geometrical
operations such as projections and the singular value decomposition, subspace
identification algorithms for input-output systems, and especially the well
known N4SID algorithm [144], are ill-conditioned under certain experimental
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conditions involving highly colored inputs [22, 25]. Two reasons for this
phenomenon will be discussed in this thesis. The first one only applies to
the N4SID identification algorithm, the second one also applies to most other
subspace identification algorithms such as the PO-MOESP [155] and the CVA
[94].

• Ill-conditioned oblique projection: The N4SID subspace identification
algorithm is dominated by an oblique projection, which enables the
estimation of an internal state based on input-output measurements. It
will be shown that this oblique projection is ill-conditioned for highly
colored inputs, leading to an unreliable state and model.

• Correlation between the stochastic system state and the input: Most
subspace identification algorithms yield an internal state which contains
contributions due to the system inputs (the deterministic contributions)
and contributions due to the disturbances acting on the system (the
stochastic contributions). Although theoretically the correlation between
the stochastic part of the state and the system inputs is zero, when working
with a finite amount of measurement data, this is not automatically the
case. It will be shown that in the presence of highly colored inputs, even
a weak correlation between stochastic components of the state and the
system inputs can lead to a serious deterioration of the obtained results.

A proposed algorithm to deal with both problems, the so-called orthogonal
decomposition method, was presented in [26]. In contrast to most existing sub-
space identification algorithms, the orthogonal decomposition method features
a decomposition of the measured data in a stochastic and a deterministic part
to deal with the problem of weak correlations between the stochastic state and
the system inputs. The ill-conditioning of the oblique projection is avoided by
replacing the oblique projection by an orthogonal projection which is commonly
found in MOESP type of algorithms.

In this thesis we will study an alternative to this approach, still involving
an orthogonal decomposition of the measured data in a stochastic and a
deterministic part, but maintaining the oblique projection as the key to
obtaining the state. It will be seen that the problem of ill-conditioning of the
oblique projection can be dealt with by applying regularization to the oblique
projection. The resulting algorithm will be seen to perform better than the
orthogonal decomposition method and, together with results obtained for the
positive realness problem, serves to highlight the opportunities that emerge
when using regularization in a subspace identification context.

1.4 Hammerstein and Hammerstein-Wiener i-
dentification

As mentioned earlier, a drawback of the subspace identification framework
is that its practical use is largely limited to linear systems. Nevertheless,
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an extension to some classes of non-linear systems is possible. In [51] for
instance, a subspace identification algorithm for the identification of bilinear
systems was introduced. Another interesting development is the introduction of
subspace identification algorithms for Hammerstein, Wiener and Hammerstein-
Wiener systems [75,156,159]. Hammerstein-, Wiener- and Hammerstein-Wiener
systems are composed of a linear dynamical part, preceded and/or followed
by a static non-linearity such as shown in Figure 1.2. Their dynamical part
being linear, these systems are very attractive targets for the extension of linear
system identification algorithms to non-linear systems. Meanwhile, the presence
of static non-linearities allows to describe a much wider range of dynamics than
what can be described by purely linear models. Unfortunately, most subspace
identification algorithms for use with Hammerstein, Wiener or Hammerstein-
Wiener models impose rather restrictive assumptions on the inputs of the system
(such as whiteness), or are iterative in nature.

An alternative is found in so-called overparameterization approaches which
are non-iterative, do not impose restrictive assumptions on the inputs, and lead
to trivially solvable convex-optimization problems. However, overparameteri-
zation approaches will be seen to suffer from an explosion in the number of
parameters with large uncertainties on the resulting model as a consequence.

In this thesis, we will introduce a new framework for the identification of
Hammerstein- and Hammerstein-Wiener systems based on methods of Least
Squares Support Vector Machines (LS-SVMs) [135]. Most results will be
introduced in a Hammerstein ARX setting and later be extended to subspace
identification in a Hammerstein- and a Hammerstein-Wiener setting. It will
be seen that the newly introduced algorithms are to some extent related to
the overparameterization approach but avoid the explosion in the number of
parameters due to the availability of a strong regularization framework in the LS-
SVM formalism. As such, the algorithms that are introduced in this thesis will in
general outperform existing overparameterization algorithms while keeping their
main advantages such as convexity and the fact that no restrictive assumptions
are imposed on the inputs. As an additional note, we mention that although
Wiener-model identification is not explicitly treated in this thesis, most results
for Hammerstein-model identification can easily be applied to Wiener systems
with an invertible output non-linearity.

1.5 Contributions

This thesis is composed of two parts. Part I will deal with subspace identification
in a linear framework, and largely revolve around the issues of positive-
realness in output-only subspace identification and possible ill-conditioning in
input-output subspace identification. The main contributions of this part are
summarized as follows:

• Imposing positive realness on a covariance model by using Tikhonov
regularization [65, 66].



6 Introduction

Hammerstein system

PSfrag replacements
Linear systemf

g static
non-linearity

Wiener system

PSfrag replacements
Linear system

f

g

static
non-linearity

Hammerstein-Wiener system

PSfrag replacements
Linear systemf g

staticstatic

non-linearitynon-linearity

Figure 1.2: Hammerstein systems (top), Wiener systems (middle) and
Hammerstein-Wiener systems (bottom) are composed of a linear dynamical
model preceded and/or followed by static non-linearities

• Showing that regularization can play an important role in dealing with
ill-conditioning in input-output subspace identification.

Part II will be concerned with an extension of subspace identification algorithms
to the class of Hammerstein-systems and the class of Hammerstein-Wiener
systems. This extension will be performed by means of the LS-SVM formalism,
first in a relatively intuitive ARX setting, thereafter applied to various
existing subspace identification algorithms. The contributions of this part are
summarized as follows:

• Introducing an algorithm for the identification of Hammerstein models
using LS-SVMs in an ARX setting [62, 64].

• Introducing an extension of the N4SID subspace identification algorithm
to the class of Hammerstein systems [63].

• Introducing an extension of the subspace intersection algorithm to the
class of Hammerstein-Wiener systems [60].
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Besides the results listed above it is useful to note that in order to keep the
discussion in this thesis concise and focused, several results obtained during the
doctoral research work were omitted from the text. A list of the most relevant
items is found here:

• The derivation of a recursive version of the stochastic realization algorithm
by using subspace tracking algorithms [61].

• Automatic separation of meaningful resonances from noise-induced phe-
nomena in modal analysis [58, 59, 61, 67, 129].

• A linear sensitivity analysis of N4SID subspace identification algorithms
[57].

• An improved condition number for the total least squares problem [56].

The interested reader is kindly referred to the relevant references.

1.6 Chapter-by-chapter overview

In this section, we provide an overview of the different chapters in this thesis
and the relations between them. A graphical outline of the relations between
the chapters is also given in the overview Figure 1.3.

Chapter 2: Linear geometrical tools

The reader is assumed to be familiar with the basic linear geometrical tools
such as the singular value decomposition and linear least-squares. However,
since Tikhonov regularization, as a solution to ill-conditioned least-squares
problems will play a central role in this thesis, it was judged useful to
commence this chapter with a brief review of the main properties of linear
least squares and the matrix condition number. Other linear geometrical
tools that will be discussed in this chapter are the orthogonal projection, the
oblique projection and canonical correlation analysis, all three key components
of subspace identification algorithms.

Chapter 3: Subspace identification

In Chapter 3, and starting from a conceptual overview of the theory of deter-
ministic and stochastic realization, the key ideas behind subspace identification
algorithms will be introduced. We will show that the state of a linear system
can directly be obtained from projections of structured data-matrices containing
input- and output-measurements on the system. Most of the discussion in
this chapter will center around so-called combined stochastic-deterministic
models where the state contains information from the stochastic as well as
the deterministic part of the system. Nevertheless, at the end of the chapter
subspace identification algorithms based on a separate parameterization of the
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stochastic and the deterministic part of the system will be introduced. These
algorithms will play a major role in the discussion on ill conditioned subspace
algorithms in Chapter 5.

Chapter 4: The positive realness problem

We will start the discussion on the positive realness problem in output-only
subspace identification with a description of the problem and the parameters
that influence its occurrence. After the introduction of a number of existing
approaches to impose positive realness on a covariance model we will propose
a new approach based on Tikhonov regularization. It will be proven that using
this new approach, positive realness can be guaranteed provided the amount of
regularization is appropriately chosen. Using tests on simulation datasets our
new approach will be seen to outperform existing approaches. Furthermore,
tests will be performed on a real-life application in the field of modal-analysis
to demonstrate the practical relevance of the approach.

Chapter 5: Ill-conditioning in subspace identification

At the beginning of this chapter we will argue that subspace identification
algorithms can perform very badly under certain experimental conditions, and
especially if the inputs are highly colored. Two main causes for this problem will
be discussed in detail and illustrated with an appropriate example. Thereafter,
it will be shown that the conditioning problems discussed in this chapter are
also found in more classical settings such as ARX model identification.

After discussing the similarities and differences of the conditioning problems
in subspace and ARX, the orthogonal decomposition method proposed in [26]
will be introduced as a possible solution. The key components of the orthogonal
decomposition method, the use of a separately parameterized model structure
and an orthogonal projection to obtain the state, instead of the oblique
projection which is commonly found in N4SID algorithms, will be discussed.

In an attempt to avoid having to replace the oblique projection by an
orthogonal projection, we will thereafter introduce a regularized version of
the N4SID which deals with the ill-conditioning in the oblique projection by
employing regularization. It will however be argued that the use of a separate
parameterization remains necessary in many cases. At the end of the chapter the
resulting regularized N4SID algorithm will be seen to outperform the orthogonal
decomposition method on a set of examples.

Chapter 6: Hammerstein, Wiener and Hammerstein-Wiener
systems

In this chapter, the state of the art in Hammerstein, Wiener and Hammerstein-
Wiener identification will briefly be reviewed. The overparameterization
approach which will prove to be essential in the following chapters will be
introduced, and its main weaknesses discussed.
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Chapter 7: Hammerstein NARX identification

After an introduction of the method of LS-SVM function approximation, an
ARX Hammerstein identification based on LS-SVMs will be introduced. Several
advantages of the LS-SVM based algorithm such as an inherently available
regularization framework, and the possibility to impose extra constraints on the
estimated non-linearities will be discussed, and this for SISO as well as MIMO
models. Finally, the newly proposed algorithm will be compared to existing
overparameterization approaches to highlight its advantages.

Chapter 8: Hammerstein N4SID identification

Based on the results in Chapter 7, in Chapter 8 a Hammerstein N4SID subspace
identification algorithm will be proposed. We will show that the oblique
projection in the N4SID algorithm can be replaced by an LS-SVM regression
problem similar to the least squares regression that was found in Chapter 7.
Following this strategy, a reliable N4SID subspace identification algorithm for
Hammerstein systems is obtained. At the end of the chapter, the newly proposed
algorithm is evaluated on a set of examples.

Chapter 9: Hammerstein-Wiener identification using sub-
space intersection

The results in Chapter 7 and 8 were limited to Hammerstein systems. Although
it can be shown that Wiener identification algorithms can be derived along the
lines of the derivations in these two chapters, identification of Hammerstein-
Wiener systems is a completely different matter altogether. The literature
on Hammerstein-Wiener identification is rather sparse, and most proposed
algorithms are either restrictive in the kind of inputs that can be used, or are
fundamentally iterative in nature.

In Chapter 9, a new Hammerstein-Wiener identification algorithm is pro-
posed which can conveniently be applied without imposing overly restrictive
assumptions on the system inputs and maintains convexity in the optimization
problem by using results from the theory of kernel canonical correlation analysis.
After an introduction into kernel canonical correlation analysis at the beginning
of the chapter, the classical subspace intersection algorithm is extended to a
Hammerstein-Wiener setting and tested on a number of examples.
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Chapter 2

Linear geometrical tools

Linear geometrical tools play an important role in this thesis. A brief
introduction to some key concepts related to least-squares regression,
various types of projections and the theory of Canonical Correlation
Analysis is therefore given in this chapter. For a more elaborate
overview of the topics discussed in this chapter, we refer the reader
to the extensive literature on the subject such as for instance found
in [5, 34,82,119].

2.1 Linear least-squares

Given A ∈ R
N×n with N ≥ n and b ∈ R

N , the aim of linear least-squares is to
find an estimate xLS ∈ R

n such that:

(xLS) = argmin
x
‖Ax− b‖2. (2.1)

It can be shown that a solution to the problem (2.1) can always be found. The
solution is unique if and only if A has full column rank and is given by [34]

(xLS) = A†b, (2.2)

with A† the Moore-Penrose pseudo-inverse of A [119]. If ATA is invertible,
the pseudo-inverse is given as A† = (ATA)−1AT . Alternatively, for matrices
A ∈ R

N×n with N ≤ n, and if AAT is invertible, the pseudo-inverse of A is
given as A† = AT (AAT )−1.

2.1.1 Geometric interpretation of the least-squares prob-
lem

Let A ∈ R
N×n with N ≥ n and rank(A) = n. Then A is a linear mapping of

R
n → R

N . We know that every vector u ∈ Col(A) can be written as u = Ax for
some x ∈ R

n. Let b ∈ R
N . Then ‖b−AxLS‖2 is the Euclidean distance between

11
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the endpoints of b and AxLS. It is clear that this distance is minimal if and only
if b−AxLS is perpendicular to Col(A). Hence, the solution to the least-squares
problem (2.1) can easily be understood as the vector xLS such that AxLS is the
orthogonal projection of b onto Col(A) (see also Figure 2.1).
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Figure 2.1: The solution xLS of the least-squares problem AxLS ' b is such that
AxLS is the orthogonal projection of b onto the column-space of A.

2.1.2 The matrix condition number

It is instructive to study the influence of a small perturbation δb on b on the
solution xLS of the least-squares problem (2.1). The condition number of a
matrix A is defined as its largest singular value divided by its smallest singular
value:

Cond(A) =
σ1(A)

σn(A)
=
σmax(A)

σmin(A)
,

With b = bR + bN where bR is the part of b which lies in Col(A) and bN is the
part which lies in its orthogonal complement denoted as Col(A)⊥ = N (A†), it
can be shown that for every δb [34]

‖δxLS‖2
‖xLS‖2

≤ Cond(A)
‖δb‖2
‖bR‖2

, (2.3)

with xLS = A†b and δxLS = A†δb.
Hence, the condition number of a matrix plays an important role in linear

algebra. A large condition number is usually the result of a near collinearity in
the columns of A. As long as A has full column rank, the solution to the least-
squares problem is known to be unique. However, with growing dependency
between the columns of A, multiple different solutions xLS will lead to good
approximations AxLS for the projection of b onto Col(A). In this case the
problem (2.1) is said to be ill-conditioned and the resulting estimates for xLS

are unreliable. As such, the condition number of the matrix A is a measure
for the conditioning of the problem (2.1). Note that this conditioning measure
does not depend on the the vector b. This due to the fact that bR in (2.3) is
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constrained to Col(A)⊥ = N (A†). The following relations can be shown to hold
for the matrix condition number of a matrix A ∈ R

N×n with rank(A) = n:

Cond(ATA) = Cond(A)2, σ1(AAT )
σn(AAT ) = Cond(A)2,

Cond(AT ) = Cond(A), Cond(A†) = Cond(A).

2.1.3 Variance on the estimated parameters

Following the discussion in 2.1.2 and assuming that b is perturbed by an
amount δb with statistical properties E {δb} = 0 and E

{
δb(δb)T

}
= σ2

b IN ,
the covariance matrix of the resulting perturbation on xLS is easily calculated
as:

E
{
δxLS(δxLS)T

}
= σ2

bA
†A†T

= σ2
b (ATA)−1(ATA)(ATA)−1 = σ2

b (ATA)−1 = σ2
bH

−1. (2.4)

In the equation above, the matrix H = ATA is the Hessian of the least-squares
problem (2.1). In general, the Hessian is defined as the square matrix of second
order partial derivatives of a scalar-valued function. The Hessian is important in
optimization theory since it offers a good insight into the cost-function’s shape
at a particular point. This is especially useful close to a local minimum, where
lines of equal cost roughly describe ellipsoids in the solution space, with their
main axes found as the eigenvectors of the Hessian, and the length of those axes
equal to the inverse of the respective eigenvalues. The condition number of the
Hessian is therefore a particularly useful measure to assess the sensitivity of a
local optimum. Large condition numbers point to heavily stretched ellipsoids,
meaning that in some directions the obtained solutions are far better defined
that in others. A condition number close to 1 signifies an almost spherical
symmetry in the local cost. For the least-squares problem, the relation between
the sensitivity of the solution and the condition number of the Hessian is also
apparent from relation (2.4). We have:

Cond
(
E
{
δxLS(δxT

LS)
})

= Cond(H) = Cond(A)2, (2.5)

2.1.4 Extension of the least-squares condition number to
general linear maps

The reasoning in 2.1.2 for the least-squares problem can be extended to obtain
a condition number for any linear operation L : R

N → R
M with M ≤ N and

rank(L) = n. Replacing A† in 2.1.2 by L, xLS by x, and taking b, δb ∈ R
N

and b = bR + bN with bN ∈ N (L) and bR ∈ N (L)⊥, we have δx = Lδb and
x = Lb = LbR so that

‖δx‖2 ≤ σ1(L)‖δb‖2,

‖x‖2 ≥ σn(L)‖bR‖2.
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Hence
‖δx‖

‖x‖
≤
σ1(L)

σn(L)

‖δb‖

‖bR‖
. (2.6)

For E
{
δb(δb)T

}
= σ2

b IN we have E
{
δx(δx)T

}
= σ2

bLL
T , so that we can

introduce the condition number of the linear operator as:

CondL(L) =
σ1(L)

σn(L)
=

√
σ1(LLT )

σn(LLT )
=

√
σ1(E {δb(δb)T })

σn(E {δb(δb)T })
, (2.7)

which will be used as a basis for the condition number of the orthogonal and the
oblique projection in the following sections. Note again that the vector b does
not appear in (2.7) due to the fact that bR in (2.6) is an element of N (L)⊥.

2.2 The orthogonal projection

The orthogonal projection of a vector b onto the space spanned by the columns
of A (with A of full column rank) is defined as the vector y in Col(A) which is
closest to b in Euclidean norm. From Subsection 2.1.1, we know that y satisfies
y = Ax with x the solution to the least-squares problem (2.1). Hence, we have

y = AA†b = A(ATA)−1AT b = PAb, (2.8)

with an implicit definition for the linear projection operator PA.

2.2.1 Condition number of the orthogonal projection

The condition number of the linear operator PA and by extension of the
orthogonal projection is given by:

CondL (PA) = 1, (2.9)

which can easily be verified by plugging in the singular value decomposition
A = USV T in PA. Hence, the orthogonal projection is in general considered to
be perfectly conditioned.

2.2.2 Orthogonal projection onto the row-space of a ma-
trix

In the derivation of subspace identification algorithms in Chapter 3, we will
mostly work with row-spaces of matrices instead of column-spaces. The
orthogonal projection of the row-space of B onto the row-space of A can easily
be derived from the results. Its row-space is found as follows:

B/A = BPAT = BA†A.
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2.3 The oblique projection

2.3.1 Oblique projection onto the column-space of a ma-
trix

The oblique projection of the column-space of a matrix C ∈ R
N×nC onto the

column-space of a matrix B ∈ R
N×nB along the column-space of a matrix

A ∈ R
N×nA is given by C = BX̂B whereby X̂B is obtained from the following

least-squares problem:

(X̂A, X̂B) = arg min
XA,XB

∥∥∥∥C =
[
A B

] [XA

XB

]∥∥∥∥
F

,

and calculated as:

BX̂B = P{B|A}C =
[
0N×nA B

] [
A B

]†
C.

This projection is graphically depicted in Figure 2.2.
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Figure 2.2: The oblique projection of a vector c onto the column space of B
along the column space of A.

2.3.2 Oblique projection onto the row-space of a matrix

When working with row-spaces, the oblique projection of C onto Row(B) along

Row(A) can easily be derived along the lines of the results above. With X̂B

obtained from the least-squares problem:

(X̂A, X̂B) = arg min
XA,XB

∥∥∥∥C −
[
XA XB

] [A
B

]∥∥∥∥
F

,

the projection is given as follows:
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C/
A
B = CPT

{BT |AT} = X̂BB = C

[
A
B

]† [
0
B

]
.

Furthermore, it can be shown that

C/
A
B = [C/A⊥] · [B/A⊥]† ·B.

A condition number for the oblique projection will be derived in Section 2.5.
This derivation will be based on results from canonical correlation analysis which
will be presented in Section 2.4.

2.4 Canonical correlation analysis

In this section, we will briefly introduce the theory of canonical correlation
analysis or CCA. Although CCA was originally developed in a statistical setting
[82] we will mainly focus on its geometrical interpretation as the search for
principal angles and directions between two subspaces. The concept of principal
angles and directions will be introduced in Subsection 2.4.1. A brief discussion
on the statistical interpretation itself will be given in Subsection 2.4.2.

2.4.1 Principal angles between subspaces

It is well known that the angle a^ b between two vectors a, b ∈ R
N can be

obtained from:

cos[a^ b] =
|aT b|

‖a‖2‖b‖2
.

This notion of an angle can be generalized to angles between subspaces. Suppose
S1 ∈ R

d1×N , d1 ≤ N and S2 ∈ R
d2×N , d2 ≤ N span two row-spaces in R

N

such that rank(S1) = r1 and rank(S2) = r2. A natural extension of the one-
dimensional angle is to choose a unit vector v1 ∈ R

N from Row(S1) and a
unit vector u1 ∈ R

N from Row(S2) such that the angle between v1 and u1 is
minimized. The vectors v1 and u1 are called the first principal directions and
the angle between them is the first principal angle 0 ≤ θ1 ≤ π/2. The second
principal angle and direction can be found by choosing v2 and u2 perpendicular
to v1 and u1, again such that the angle between them is minimized. This
procedure is continued until r = min(r1, r2) angles and corresponding principal
vectors have been found. The procedure is graphically depicted in Figure 2.3.

Theoretically the search for principal angles and directions can be summa-
rized as the search for two matrices U ∈ R

r×N and V ∈ R
r×N such that

Row(U) ⊂ Row(S1) and Row(V ) ⊂ Row(S2) and

UUT = Ir, V V T = Ir, UV T = Λ, (2.10)

with Λ ∈ R
r×r a diagonal matrix containing the cosines of the principal angles.

From (2.10) we obtain:

UV T = UUT Λ,
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V UT = V V T Λ.

Choosing A ∈ R
r×d1 and B ∈ R

r×d2 such that U = AS1 and V = BS2, this
reduces to:

[
A B

] [ 0 S1S
T
2

S2S
T
1 0

][
AT

BT

]
=
[
A B

] [S1S
T
1 0

0 S2S
T
2

][
AT

BT

]
Λ. (2.11)

A sufficient condition for (2.11) to hold is that

[
0 S1S

T
2

S2S
T
1 0

][
AT

BT

]
=

[
S1S

T
1 0

0 S2S
T
2

] [
AT

BT

]
Λ. (2.12)

It was shown (see e.g. [69]) that equation (2.12), which can be solved as
a generalized eigenvalue problem, can be used to determine the principal
angles and directions associated with the row-spaces of S1 and S2. More
computationally efficient methods exist [35] but are outside the scope of this
thesis.
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Figure 2.3: The principal angles between the two-dimensional subspaces S1 and
S2 ⊂ R

3. The first principal angle, θ1, is zero and the first principal vectors,
u1 ∈ S1 and v1 ∈ S2, coincide, revealing a one-dimensional intersection of S1

and S2. The second principal directions are orthogonal to the first principal
directions: u2 ⊥ u1 and v2 ⊥ v1. The angle between u2 ∈ S1 and v2 ∈ S2 is θ2.

2.4.2 Statistical theory of canonical correlation analysis

Given two statistical variables x ∈ R
d1 and y ∈ R

d2 with E {x} = E {y} =
0, Canonical Correlation Analysis is concerned with finding two matrices
A ∈ R

r×d1 and B ∈ R
r×d2 such that the statistical variables Ax and

By are maximally correlated. It is thereby required that AE
{
xxT

}
AT =

BE
{
yyT

}
BT = Ir and AE

{
xyT

}
BT = Λ with Λ a diagonal matrix. The

elements on the diagonal of Λ are called the canonical correlations, and the
rows of Ax and By the canonical variates. It can be shown that the canonical
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correlations and variates of the random variables x and y can directly be
obtained from the following generalized eigenvalue problem

[
0 E

{
xyT

}

E
{
yxT

}
0

] [
AT

BT

]
=

[
E
{
xxT

}
0

0 E
{
yyT

}
][
AT

BT

]
Λ. (2.13)

which bears a remarkable similarity with the generalized eigenvalue problem
(2.12). From a comparison between (2.12) and (2.13) it is seen that if n
measurements of the variables x and y are available and stacked in the columns
of matrices S1 and S2, estimates for the canonical correlations and variates are
directly found from (2.12). For N → ∞ both generalized eigenvalue problems
are equivalent. Due to this equivalence, in this thesis the term canonical
correlation analysis will somewhat loosely be used not only to describe the
statistical analysis itself but also as the search for principle angles and directions
in a geometrical setting. From the context it will be clear which setting is
intended.

2.4.3 Application: calculating the intersection of two row-
spaces

In this thesis canonical correlation analysis will mostly be used to obtain the
intersection of two row-spaces Row(A) and Row(B). As was also seen in Figure
2.3, in this intersection the principal directions of Row(A) and Row(B) are the
same and their corresponding principal angles are zero. Hence, from a canonical
correlation analysis on the rows of A and B, the intersection can directly be
obtained as the space spanned by the principal directions corresponding to zero
principal angles.

2.5 A condition number for the oblique projec-

tion

As was seen in Subsection 2.3.2, the oblique projection of the row-space of a
matrix C onto the row space of a matrix B ∈ R

nB×N along the row-space of a
matrix A ∈ R

nA×N , with nA +nB ≤ N and assuming that nA ≤ nB , rank(B) =
nB , is given as:

C/
A
B = CPT

{BT |AT} = C

[
A
B

]† [
0
B

]
.

From the discussion in Subsection 2.4.1 we know that bases VA and VB exist for
Row(A) and Row(B) respectively so that:

VAV
T
A = InA , VBV

T
B = InB , VAV

T
B =

[
Λ 0

]
. (2.14)

Clearly, the choice of basis does not influence the result of the oblique projection.
Hence,

PT
{BT |AT } = PT

{V T
B |V T

A } =

[
VA

VB

]† [
0
VB

]
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and

CondL

(
PT
{BT |AT}

)2

=
σ1

(
P{BT |AT }P

T
{BT |AT}

)

σnB

(
P{BT |AT}P

T
{BT |AT }

) ,

with

P{BT |AT }P
T
{BT |AT} =

[
0 V T

B

]


I Λ 0
Λ I 0
0 0 I



−1 [

0
VB

]

=
[

0 V T
B

]



I
I−Λ2

−Λ
I−Λ2 0

−Λ
I−Λ2

I
I−Λ2 0

0 0 I



[

0
VB

]

= V T
B

[
I

I−Λ2 0

0 I

]
VB .

Hence, the condition number of the linear operator PT
{BT |AT } is given as:

CondL

(
PT
{BT |AT }

)
=

1

sin(θmin)
, (2.15)

with θmin the smallest principal angle between Row(A) and Row(B).

Remark: Note, as in the least squares case, that the condition number
(2.15) is independent of the matrix C. The reason for this is explained in
Subsections 2.1.2 and 2.1.4. As such, this does not mean that the conditioning
of an oblique projection of the form C/

A
B is independent of C. In general,

matrices C and δC can easily be found such that C/
A
B = 0, δC/

A
B 6= 0

and
∥∥∥δC/

A
B
∥∥∥

F
/
∥∥∥C/

A
B
∥∥∥

F
= ∞. The condition number (2.15) solely reflects

the conditioning of the linear operator PT
{BT |AT } according to the derivation

in 2.1.4 where the possibility of C/
A
B = 0 is explicitly excluded. Throughout

this thesis, this conditioning measure will turn out to be sufficient to understand
some practical problems that might turn up in subspace identification algorithms
(see Chapter 5).
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Chapter 3

Subspace identification

In this chapter linear subspace identification is introduced. Subspace
identification is treated as an extension to the idea of realization,
where the impulse response matrix is replaced by a set of free
responses. This chapter will mainly focus on the identification
of so-called combined stochastic-deterministic models, which are
excited by measured inputs, as well as unmeasured disturbances or
noise. The stochastic case will be seen to be a trivial extension
with the inputs set to zero. At the end of the chapter, subspace
identification algorithms based on separately parameterized stochastic
and deterministic subsystems will be introduced as they will play
an important role in the discussion on ill-conditioned subspace
identification algorithms in Chapter 5

3.1 Introduction

This chapter is concerned with the identification of systems of the form

xt+1 = Axt +But + wt,
yt = Cxt +Dut + vt,

(3.1)

with ut ∈ R
m and yt ∈ R

l the input and output of the system at time t,
respectively. The so-called system state at time t is denoted by xt ∈ R

n. The
system’s dynamics are governed by the matrices A ∈ R

n×n, B ∈ R
n×m, C ∈

R
l×n and D ∈ R

l×m. Unless otherwise stated, the process noise wt ∈ R
n and

output noise vt ∈ R
l will be considered white, zero mean with second order

moments

E

{[
wt

vt

] [
wT

k vT
k

]}
=

[
Q R
RT S

]
δtk. (3.2)

Furthermore, w and v will be considered to be uncorrelated with the inputs:

E
{
wtu

T
k

}
= 0, E

{
vtu

T
k

}
= 0, ∀t, k. (3.3)

23
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The representation (3.1) is known as the state space representation [86]. The
state space representation provides a convenient and compact way to model
and analyze systems with multiple inputs and outputs. In addition, state space
models are the preferred representation in modern control engineering [53, 88]
where the control action is often written in terms of the state. Hence, many
efforts have been undertaken in the last couple of decades to come up with
system identification algorithms that directly estimate state space models from
measured data. This as opposed to the so-called input-output representations,
generally produced by predictor error identification methods [99]. Two powerful
methodologies to estimate state space models from data are discussed in this
chapter. They are known as the realization approach, and the subspace
identification approach.

The estimation of the system matrices A, B, C and D from impulse
response measurements, the so-called deterministic realization problem [79,165],
is discussed in 3.2. In 3.3, we show that also in the case where no measured
inputs are available, estimates for the system dynamics, and the noise covariance
matrices Q, R and S can be obtained from a set of auto-covariances. The
corresponding technique is known as stochastic realization [3, 49, 54].

In Section 3.4, an intuitive introduction into the theory of subspace
identification is provided. It is shown that subspace identification algorithms
are based on the same underlying ideas as realization algorithms. However,
subspace identification algorithms offer many advantages, such as the fact that
they can directly be applied to various kinds of measured data (no need to
obtain impulse responses), and their greater robustness with respect to process-
and measurement-noise.

A more rigorous description of subspace identification is provided in Sections
3.5 and 3.7. This description involves the classical unifying theorem for
combined stochastic-deterministic subspace identification algorithms (Section
3.5), a unifying theorem for stochastic subspace identification algorithms
(Section 3.6), and a description of separately parameterized state-space models
and their usefulness (Section 3.7). Another point of discussion with respect to
the unifying theorems just mentioned is the non-uniqueness of the state space
representation (3.1). Replacing the state xt by ξt = Txt with T ∈ R

n×n an
invertible matrix in (3.1), we have:

ξt+1 = TAT−1ξt + TBut + Twt,
yt = CT−1ξt +Dut + vt.

(3.4)

Hence, the so-called similarity transformation T converts the system (3.1) into
an equivalent representation with state ξt and system matrices TAT−1, TB,
CT−1 and D. Evidently, realization and subspace identification algorithms
return but one of the possible representations. Ways to influence the particular
representation that is obtained will be discussed. An application of subspace
identification algorithms to a dataset from a glass oven is discussed in Section
3.8 A short summary of subspace identification algorithms, finally, will be given
in Section 3.9.



3.2 Deterministic realization 25

3.2 Deterministic realization

The term “deterministic system” is generally used to describe systems which are
purely driven by measured inputs. Hence, no disturbances or noise are taken
into account. In deterministic realization one deals with linear deterministic
systems of the form:

xt+1 = Axt +But,
yt = Cxt +Dut.

(3.5)

Given a finite series of impulse response matrices (also called the Markov
parameters)

H0 = D, Ht = CAt−1B, t > 0, (3.6)

the deterministic realization problem is formulated as follows:

Find the minimal system order n and the system matrices
A,B,C and D up to within a similarity transformation based
on a finite number of impulse response samples.

The key to the solution of the deterministic realization problem is the
factorization of a block Hankel matrix constructed from the impulse response
matrices (see [79, 165]). It can easily be seen that for a given i1, i2 ∈ Z

+
0

Hi1,i2 =




H1 H2 . . . Hi2

H2 H3 . . . Hi2+1

...
...

...
Hi1 Hi1+1 . . . Hi1+i2−1




=




C
CA
...

CAi1−1



[
B AB . . . Ai2−1B

]
= Γi1Ci2 ,

with an implicit definition for the so-called extended observability matrix
Γi1 , i1 ∈ Z

+
0 and the extended controllability matrix Ci2 , i2 ∈ Z

+
0 . For i1 and i2

sufficiently large, Hi1,i2 is rank deficient and its rank is equal to the minimal
system order. A possible realization for the matrices Γi1 and Ci2 can be obtained
from a singular value decomposition

Hi1,i2 = USV T =
[
U1 U2

] [S1 0
0 0

] [
V T

1

V T
2

]
,

as Γi1 = U1S
1
2
1 T and Ci2 = T−1S

1
2
1 V

T
1 , where S1 contains the n non zero singular

values of Hi1,i2 . T is a non-singular n×n matrix which symbolizes the freedom
in the choice of basis as noted in the introduction of this chapter. Once Γi1 and
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Ci2 are known, C and B can readily be extracted. In order to obtain the system
matrix A, the following relation is commonly used

Γi1A = Γi1 , (3.7)

where Γi1 and Γi1 symbolize Γi1 with respectively the last l and first l rows
removed. Hence, provided that Γi1 has full column rank, A can be obtained as
A = Γi1

†Γi1 .

Obtaining the impulse response matrices from data

The theory of deterministic realization relies heavily on the availability of the
impulse response matrices Ht, t ∈ Z

+. In practical situations, these impulse
response matrices are usually not available and need to be estimated from
measured data {ut, yt}, t = 0, . . . , N −1, e.g. by solving a least squares problem
of the following form (for i ∈ Z

+
0 ):

[
Ĥi Ĥi−1 . . . Ĥ0

]
= arg min

Hi,...,H0

∥∥[yi yi+1 . . . yi+j−1

]

−
[
Hi Hi−1 . . . H0

]




u0 u1 . . . uj−1

u1 u2 . . . uj

...
...

...
ui ui+1 . . . ui+j−1




∥∥∥∥∥∥∥∥∥

2

F

, (3.8)

with i and j arbitrary constants such that i + j ≤ N . A drawback with this
approach is that for finite i and a non-white input sequence u, one can easily
show that the impulse response coefficients will in general not be consistently
estimated. A more robust alternative will be found in the subspace identification
methods introduced in Section 3.4. Hankel matrices as the one encountered in
(3.8) will play a vital role in the derivation of subspace identification methods.
It is therefore convenient to introduce a common notation for these matrices.
We define:

Ui|k ,




ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
...

...
uk uk+1 . . . uk+j−1


 , i, k ∈ Z

+, j ∈ Z
+
0 ,

with a similar definition for Yi|k. With these definitions problem (3.8) can be
rewritten as
[
Ĥi Ĥi−1 . . . Ĥ0

]
= arg min

Hi,...,H0

∥∥Yi|i −
[
Hi Hi−1 . . . H0

]
U0|i

∥∥2

F
.

3.3 Stochastic realization

The term “stochastic system” is generally used to describe systems which are
purely driven by unmeasured inputs. In stochastic realization one deals with
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linear stochastic systems of the form:

xt+1 = Axt + wt,
yt = Cxt + vt,

(3.9)

with wt and vt as in Section 3.1. Defining Λi , E
{
yt+iy

T
t

}
as the output

covariance matrices, the stochastic realization problem is now formulated as
follows:

Given a finite set of output covariance matrices, find the minimal
system order n, the system matrices A and C up to within a
similarity transformation, and the noise covariance matrices Q,
R and S for the system (3.9).

This problem was studied intensively in [3, 49, 54]. A solution is found by
introducing G = E

{
xt+1y

T
t

}
. With this definition it can easily be seen that

Λi = CAi−1G, i > 0.

Hence, the output covariance matrices can be considered as the Markov
parameters of a deterministic system with system matrices A,G,C and Λ0 (see
also (3.6)). Applying the theory of deterministic realization (with i1 = i2 = i)
leads to

Hi,i =




Λ1 Λ2 . . . Λi

Λ2 Λ3 . . . Λi+1

...
...

...
Λi Λi+1 . . . Λ2i−1




=




C
CA
...

CAi−1



[
G AG . . . Ai−1G

]
,

(3.10)

from which A,G,C and Λ0 can easily be recovered. Extracting the noise
covariances Q,S and R is somewhat more involved. One possibility is to use a
particular representation of the system (3.9), known as the forward innovation
model by applying a Kalman filter [88] to (3.9). The resulting model in forward
innovation form is:

ξt+1 = Aξt +Ket,

yt = Cξt + et,

with {et} a white noise sequence with covariance matrix Σ = E
{
ete

T
t

}
and

K = (G−APCT )Σ−1 the so-called Kalman filter gain. It can be shown that the
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forward innovation model has the same statistical properties as the system (3.9)
[54, 113]. Denoting P = E

{
ξtξ

T
t

}
one has the following important relations:

P = APAT +KΣKT , (3.11)

Λ0 = CPCT + Σ, (3.12)

K = (G−APCT )Σ−1, (3.13)

from which

P = APAT + (G−APCT )Σ−1(G−APCT )T

= APAT + (G−APCT )(Λ0 − CPC
T )−1(G−APCT )T . (3.14)

The latter equation is known as a Riccati equation and can be solved for P
with fairly standard techniques (see e.g. [95] for a robust algorithm). Once P
is known, Σ can be extracted from (3.12) and K from (3.13). A realization for
the noise covariance matrices Q,S and R is now found as:

Q = KΣKT , R = KΣ, S = Σ. (3.15)

Obtaining the output auto-covariance matrices from data

The output-covariance matrices can conveniently be obtained from data as
follows:

lim
j→∞

1

j
Yi|2i−1Y

T
0|i−1 =




Λi . . . Λ2 Λ1

Λi+1 . . . Λ3 Λ2

...
...

...
Λ2i−1 . . . Λi+1 Λi


 = Γi

[
Ai−1G . . . AG G

]
,

which yields exactly the same decomposition as seen for Hi,i except for an
inversion of the order of the columns. Introducing the following convenient
notation:

Yp , Y0|i−1, Yf , Yi|2i−1, (3.16)

which we will refer to as the past and future output block Hankel matrices, this
can also be written as:

lim
j→∞

1

j
YfY

T
p = Γi

[
Ai−1G . . . AG G

]
. (3.17)

Note that an inversion of the rows of Yp would yield limj→∞
1
j YfY

T
p = Hi,i.

However, in subspace identification algorithms, it is more common to define Yp

as in (3.16). In order to obtain a consistent notation throughout this thesis,
we will therefore continue to work with the definition (3.16). Similarly, for the
inputs we define the past and future block Hankel matrices as

Up , U0|i−1, Uf , Ui|2i−1.
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Two further notations will be commonly used in the following discussion, namely
the joint past Wp and the joint future Wf , defined as

Wp ,

[
Up

Yp

]
, Wf ,

[
Uf

Yf

]
.

3.4 Intuition behind subspace identification

In this section, we will provide an intuitive overview of subspace identification
algorithms. It will be shown that the key idea behind subspace identification
algorithms is that estimates for the extended observability matrix and the
system states can be obtained from a set of free responses of the system. Several
ways to obtain such free responses are introduced and their relation to existing
subspace identification algorithms discussed. It is important to stress that
the sole aim of this section is to outline the basic concepts behind subspace
identification algorithms in an as easily accessible way as possible. Where
necessary, complexity will be traded for clarity in the presentation to obtain this
goal. It is also important to note that this section will not discuss the extraction
of the system matrices A, B, C and D from the extended observability and the
system states. This extraction, combined with a more rigorous mathematical
analysis of subspace algorithms is postponed until Section 3.5.

3.4.1 Free responses of a system

Given a noiseless linear n− th order state-space system of the form

xt+1 = Axt +But,
yt = Cxt +Dut,

(3.18)

we have for any t0 ∈ Z and i ∈ Z
+
0 that




yt0

yt0+1

...
yt0+i−1


 =




C
CA
...

CAi−1


xt0 +




D 0 . . . 0
CB D . . . 0
...

...
...

CAi−2B CAi−3B . . . D







ut0

ut0+1

...
ut0+i−1




= Γixt0 +Hi

[
uT

t0 . . . uT
t0+i−1

]T
, (3.19)

with an implicit definition for Hi. Hence, the system outputs yt0 . . . yt0+i−1

are fully determined by the state xt0 and the inputs ut0 . . . ut0+i−1. The
vector Γixt0 contains the so-called free response of the system generated by
xt0 . The free response is the system output that would be obtained if the
inputs ut0 . . . ut0+i−1 were identically zero, and it will play the same central
role in subspace identification algorithms as the impulse response in realization
algorithms [103]. Its potential can be seen by assuming that multiple free
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responses for the system (3.18) are available (e.g. through measurements).

Denoting the rth free response as y(r), equation (3.19) becomes



y
(1)
t0 y

(2)
t0 . . . y

(j)
t0

y
(1)
t0+1 y

(2)
t0+1 . . . y

(j)
t0+1

...
...

...

y
(1)
t0+i−1 y

(2)
t0+i−1 . . . y

(p)
t0+i−1




= Γi

[
x

(1)
t0 . . . x

(j)
t0

]
, (3.20)

with j the total number of available responses. Hence, the free response matrix
at the left hand side of equation (3.20) is at most rank n. If it is rank n,

the extended observability matrix, and the generating states x
(1)
t0 . . . x

(j)
t0 can be

obtained by performing a singular value decomposition. As was the case for the
realization algorithm, the results of this operation will only be determined up
to a similarity transformation.

Obviously, in most practical cases, measuring free responses is a time-
consuming, if not impossible option. In such cases, the best one can hope
for is to obtain a good free response matrix from input-output measurements.
Obtaining a free response matrix from data will be the prime objective in
subspace identification algorithms.

The primary objective of subspace identification algorithms is to obtain
a free response matrix from measured data. Estimates for the extended
observability matrix and the generating states can be obtained from a low
rank approximation of this matrix.

3.4.2 Obtaining free responses from data

With j ≥ i ≥ n ∈ Z
+
0 and the block Hankel matrix notation introduced in 3.2

and 3.3, it follows from (3.19) that

Yf = ΓiXi +HiUf , (3.21)

with Xi =
[
xi xi+1 . . . xi+j−1

]
. Hence, the future outputs are fully

determined by a set of free responses and the future inputs. This situation
is graphically depicted in Figure 3.1. Obtaining free responses for the system
(3.18) is now a matter of removing the influence of the future inputs from (3.21).
Several ways to achieve this are briefly discussed below.

The projection algorithm

An obvious way to remove the influence of the future inputs is to project (3.21)
onto the orthogonal complement of the future inputs [27,38,43,97,138,148,154].
In this case:

Yf/U
⊥
f = Γi

(
Xi/U

⊥
f

)
, (3.22)
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PSfrag replacements

Xi

Uf

Yf

Up

Yp

+
Γi

Hi

Figure 3.1: The future outputs are fully determined by a set of free responses
and the future inputs.

from which an estimate for Γi and the part of the state in the orthogonal
complement of Uf can be obtained. Although this observation is limited to
the noiseless case, it can be shown that the projection presented above delivers
consistent estimates if the output is perturbed by white noise. This can easily
be understood from the fact that the projection (3.22) is basically a least
squares problem which is known to be consistent if the output (in this case
Yf ) is perturbed by white noise. However, in the presence of colored output
noise and/or process noise, the projection algorithm will lead to biased results.
Further improvements to this algorithm will largely focus on removing such
noise contributions.

The PI-MOESP algorithm

An improvement to the projection algorithm is found by realizing that for any
stable system of the form (3.18), and any t0 ∈ Z, the state xt0 is uniquely
determined by the system inputs up to time t0 − 1. Hence, with a slight abuse
of notation equation (3.21) can be rewritten as:

Yf = ΓiL∞U−∞|i−1 +HiUf ,

with L∞ a linear operator so that L∞U−∞|i−1 = Xi. However, in practical
cases, one never has access to an infinite amount of data. In the PI-MOESP
algorithm [152, 154, 155], the matrix U−∞|i−1 is therefore replaced by U0|i−1 =

Up, and the state sequence is replaced by its best possible estimate X̂i = LpUp

based on the data in Up. We have:

Yf ' ΓiX̂i +HiUf = ΓiLpUp +HiUf .

Hence, the output is approximated as the sum of two contributions. One from
the past inputs, which essentially determines the state sequence estimate X̂i,
and one from the future inputs. This situation is graphically depicted in Figure
3.2. Mathematically, the approximation as the sum of a past and a future
contribution is obtained by performing a projection of (3.21) onto the space

spanned by the rows of
[
UT

p UT
f

]T
followed by a projection onto U⊥

f to remove
the influence of the future inputs. It can be proven that for j → ∞ and under
a condition on the inputs known as persistency of excitation (see Section 3.7)
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we have

Yf/

[
Up

Uf

]
/U⊥

f = Yf/(Up/U
⊥
f ) = ΓiXi/(Up/U

⊥
f ),

and this even in the presence of colored process and/or output noise. The
strength of the algorithm is explained by the fact that any noise contribution is
immediately removed by the initial projection on the inputs. The disadvantage
of the PI-MOESP algorithm is that large parts of the dynamics are also removed
in the initial projection, such as the dynamics due to noise (the so-called
stochastic subsystem), and the part of the state which is not contained in
Up/U

⊥
f . Consequently, PI-MOESP results are often seen to exhibit rather large

uncertainties (variances) on the obtained parameters.

The PO-MOESP algorithm

The PO-MOESP algorithm [153] is essentially the same as the PI-MOESP
algorithm with the sole exception that the state is now replaced with its best
possible estimate based on the past input and output data in Wp. This might
seem strange, as the state vector Xi is not directly influenced by the past
outputs. Nevertheless, such estimates are quite common in system theory and
generally referred to as state observers. Assuming X̂i = LpWp, we have:

Yf ' ΓiX̂i +HiUf = ΓiLpWp +HiUf . (3.23)

Again, the output is approximated as the sum of a past and a future
contribution. However, in contrast to the PI-MOESP approach, the PO-
MOESP approach uses both the past inputs and past outputs to approximate
the state which should lead to smaller variances on the obtained parameters.
In line with the PI-MOESP algorithm, a free response matrix is obtained by

projecting (3.21) onto the space spanned by the rows of
[
W T

p UT
f

]T
followed

by a projection onto U⊥
f . The algorithm generates consistent estimates for Γi

in the presence of white process and/or output noise. The interpretation of the
obtained state is somewhat more complicated than in the PI-MOESP case. It
will be shown in Subsection 3.5.4 that the state can be seen as the result of a
non-steady state Kalman filter working in parallel on the columns of Wp. For

purely deterministic systems, it can be shown that Xi = X̂i = LpWp. The basic
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Figure 3.2: The future outputs can be decomposed along the future inputs and
past inputs contained in Up. The latter part is equal to ΓiX̂i with X̂i an estimate
for the state.
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decomposition at the heart of the PO-MOESP algorithm is graphically depicted
in Figure 3.3.

Note that the class of systems for which consistent estimates can be obtained
is a subset of the class which yields consistent estimates under the PI-MOESP
algorithm. However, the PO-MOESP has the advantage that most of the

internal dynamics are retained in the projection onto
[
W T

p UT
f

]T
. This allows

for the estimation of the stochastic subsystem together with the deterministic
one. Combined with the fact that a greater part of the state is conserved this
generally leads to results with smaller variances on the obtained parameters.

The N4SID algorithm

The N4SID algorithm [144, 147] is based on the same decomposition as the
PO-MOESP algorithm, graphically depicted in Figure 3.3. However, whereas
the PO-MOESP algorithm features an orthogonal projection onto U⊥

f after the

initial projection on
[
W T

p UT
f

]T
, the N4SID approach simply retains only the

part ΓiLpWp by performing an oblique projection Yf/Uf
Wp. This approach

yields qualitatively the same result as the PO-MOESP, namely the estimation
of the ΓiX̂i-term in (3.23). In fact, it is easily proven that.

(
Yf/Uf

Wp

)
/U⊥

f = Yf/

[
Wp

Uf

]
/U⊥

f = Yf/(Wp/U
⊥
f ).

Hence, the state obtained in the PO-MOESP algorithm is identical to the state
obtained in the N4SID algorithm up to a projection onto U⊥

f . As in the PO-
MOESP case, the algorithm provides consistent estimates for Γi in the presence
of white process and/or output noise.

The intersection algorithms

An algorithm which clearly distinguishes itself from the algorithms so far
introduced is the intersection algorithm of which the main ingredients were
introduced in numerous papers [38–42, 44, 106, 108, 162–164]. The intersection
algorithm is different in a sense that the states are not obtained from a
projection, but as the intersection of two row-spaces. In the discussion on

PSfrag replacements

X̂i ' Xi

Uf

Yf
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Yp
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Figure 3.3: The future outputs can be decomposed along the future inputs and
past measurements contained in Up and Yp. The latter part is equal to ΓiX̂i

with X̂i an estimate for the state.



34 Subspace identification

the PO-MOESP and the N4SID algorithm, we have stated that there exists a
matrix Lp ∈ R

n×i(m+l) such that for purely deterministic systems

Xi = LpWp. (3.24)

On the other hand, from ΓiXi = Yf −HiUf and assuming that Γi is of full rank,
it easily follows that the row space of Xi is contained in the union of the row
spaces of Uf and Yf . Hence, there exists a matrix Lf ∈ R

n×i(m+l) such that:

Xi = Lf

[
Yf

Uf

]
= LfWf . (3.25)

The row-space of the state is contained in the row-space of the past, and in the
row-space of the future, and is therefore contained in the intersection of the past
and the future, which can for instance be calculated using a technique known
as canonical correlation analysis introduced in Section 2.4. For the noiseless
case, it was proven in [42] that this intersection has dimension n and indeed
represents a valid state sequence. From the state sequence, matrices A, B,
C and D can be obtained. The intersection algorithm generates consistent
estimates for the system matrices, even if the inputs and outputs are corrupted
by white noise. However, in the latter case the input and output noise must
have equal covariance matrices, which severely limits the applicability of the
intersection method. Intersection algorithms are therefore not very commonly
used in practical applications. However, in Chapter 9 it will be shown that
despite their shortcomings, intersection algorithms might be very useful in
deriving subspace identification techniques for the class of Hammerstein-Wiener
systems.

The CVA algorithm

Similar to the intersection method, but independently developed is the so-called
CVA method, which is an abbreviation for ‘Canonical Variate Analysis’. The
analysis of the CVA-algorithm is quite involved and we refer to [94, 121] for a
full introduction. It suffices to say that from (3.24) and (3.25) it follows directly
that in the deterministic case:

Xi/U
⊥
f = LpWp/U

⊥
f

Xi/U
⊥
f = LfWf/U

⊥
f = LfYf/U

⊥
f .

Hence, an estimate for Xi/U
⊥
f can be obtained from the intersection of Yf/U

⊥
f

and Wp/U
⊥
f . In the original derivation of the CVA method, this intersection

is obtained using a canonical correlation analysis. The method is proven to be
consistent, even in the case of white process and/or output noise.
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3.5 A rigorous derivation of subspace identifica-

tion

In this section, we will provide a rigorous derivation of subspace identification.
Several of the earlier introduced subspace identification algorithms will be
discussed in greater detail, and necessary proofs and justifications for claims
made in the intuitive overview will be provided.

3.5.1 System description

As introduced in Section 3.1, this chapter is concerned with the identification
of systems of the form

xt+1 = Axt +But + wt,
yt = Cxt +Dut + vt.

(3.26)

Unless otherwise stated, the process noise wt ∈ R
n and output noise vt ∈ R

l is
considered white, zero mean with second order moments

E

{[
wt

vt

] [
wT

k vT
k

]}
=

[
Q R
RT S

]
δtk.

Furthermore, w and v are considered to be uncorrelated with the inputs:

E
{
wtu

T
k

}
= 0, E

{
vtu

T
k

}
= 0, ∀t, k.

{A,C} is assumed to be observable with observable modes that can be either
stable or unstable. {A,

[
B Q

1
2

]
} is assumed to be controllable with controllable

modes that are stable. The dimensions of all matrices and vectors appearing in
(3.26) are as introduced in Section 3.1.

The system (3.26) is essentially a combination of a deterministic subsystem,
driven by the input u and a stochastic subsystem influenced by w and v.
Consequently, the state and output can be split up in a deterministic part and
a stochastic part as xt = xd

t +xs
t and yt = yd

t +ys
t . The deterministic subsystem

is governed by the following state space equation:

xd
t+1 = Axd

t +But,
yd

t = Cxd
t +Dut.

The stochastic subsystem has the following form:

xs
t+1 = Axs

t + wt,
ys

t = Cxs
t + vt.

(3.27)

Note that in the above, it is assumed that the deterministic and stochastic
subsystem share the same dynamics governed by the matrices A and C. The
corresponding model structure (3.26) is referred to as a ‘jointly-parameterized’
model or a combined stochastic-deterministic model. Such a combined model
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can always be obtained, even if the stochastic subsystem were governed by
system matrices As, Cs which are different from the matrices Ad and Cd used
in the deterministic system. In this case on would stack the deterministic and
the stochastic state in one vector as follows:

[
xd

t+1

xs
t+1

]
=

[
Ad 0
0 As

] [
xd

t

xs
t

]
+

[
B
0

]
ut +

[
0
wt

]
,

yt =
[
Cd Cs

] [xd
t

xs
t

]
+Dut + vt.

(3.28)

The obtained system would of course not be guaranteed to be minimal. The
advantage of combining the dynamics of both subsystems in one single model
structure is that common dynamics which are excited by u as well as w are
naturally handled, whereas separate dynamics are easily incorporated as seen
above. Furthermore, in some applications a jointly parameterized model is
preferred over a separately parameterized one, for instance in modal analysis
where the estimates for the system matrix A are used to extract resonances
of a vibrating system. In this case it makes little sense to model the same
dynamics twice. It is for all these reasons that most subspace identification
approaches identify jointly parameterized models. The description of these
subspace identification approaches, which include the highly popular N4SID
and PO-MOESP will take up the largest part of the following discussion. We
will come back to the separately parameterized models in Section 3.7.

3.5.2 Notation and input-output equations

We will largely keep the notation that was introduced at the beginning of this
chapter. However where necessary superscripts (·)d

and (·)s
will be provided

to make a distinction between elements of the deterministic subsystem and
elements of the stochastic subsystem. The matrix Y s

p for example is similar
to the matrix Yp, introduced in (3.16), except that the former is filled with
the stochastic component ys of the outputs y instead of the entire output. In
addition we introduce:

Xd
p , Xd

0 ,
[
xd

0 xd
1 . . . xd

j−1

]
,

Xs
p , Xs

0 ,
[
xs

0 xs
1 . . . xs

j−1

]
,

Xd
f , Xd

i ,
[
xd

i xd
i+1 . . . xd

i+j−1

]
,

Xs
f , Xs

i ,
[
xs

i xs
i+1 . . . xs

i+j−1

]
,

as the past and future deterministic and stochastic state sequences, and

∆d
i ,

[
Ai−1B . . . AB A

]
,

∆s
i ,

[
Ai−1K . . . AK A

]
,

as the reversed extended controllability matrices of the deterministic and the
stochastic subsystem (in forward innovation form). With these notations, the
matrix input-output equations are summarized in the following theorem:
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Theorem 3.1. Combined matrix input-output equations:

Yp = ΓiX
d
p +HiUp + Y s

p , (3.29)

Yf = ΓiX
d
f +HiUf + Y s

f , (3.30)

Xd
f = AiXd

p + ∆d
iUp. (3.31)

Proof. Easily checked by recursive substitution into the state space equation
(3.26).

Note that equation (3.30) is basically equal to (3.21), except for the additional
contributions due to the stochastic subsystem stored in the Hankel matrix Y s

f .

3.5.3 Orthogonal projection on past and future data

In Subsection 3.4.2, it was seen that both the N4SID and PO-MOESP algorithm
feature an initial projection onto the space spanned by the rows ofWp and Uf . In
this subsection this projection will be studied in some more detail. By defining
the matrix Zi as:

Zi = Yf/

[
Uf

Wp

]
,

the following theorem sums up the main properties of the projection:

Theorem 3.2. Initial projection:

• Given the assumptions on the noise: E
{
wtu

T
k

}
= 0, E

{
vtu

T
k

}
=

0, ∀t, k,

• and if the input is persistently exciting of order 2i ( [99], p. 363), meaning
that rank

([
U0|2i−1

])
= 2mi,

• and if j →∞, then:

Zi = ΓiX̂i +HiUf ,

with

X̂i =
[
Ai − ΩiΓi ∆d

i − ΩiHi Ωi

]


Xd

u

Up

Yp


 , (3.32)

whereby

Ωi = χiψ
−1
i ,

χi = Ai(P d − P d
u )ΓT

i + ∆s
i ,

ψi = Γi(P
d − P d

u )ΓT
i + Ls

i ,

and Xd
u = Xd

p/

[
Up

Uf

]
, P d = 1

jX
d
pX

d
p

T
= E

{
xd

tx
d
t

T
}
, P d

u = 1
jX

d
uX

d
u

T
, Ls

i =

1
j Y

s
p Y

s
p

T .
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If the stochastic subsystem is identically zero (Ls
i = ∆s

i = 0), we have

X̂i = Xd
i =

[
∆d

i −A
iΓ†

iHi AiΓ†
i

] [ Up

Yp

]
,

Proof. The general proof is well documented in [144, 147]. The case where the
stochastic system is identically zero can directly be derived from the matrix
input-output equations (3.29)-(3.31) and by setting Ls

i = ∆s
i = 0 in (3.32).

Note from (3.32) that the state estimate X̂i is largely determined by the past

dataWp, as desired. In case of a noiseless system, we can write X̂i = Xi = LpWp

as predicted in the intuitive description of the PO-MOESP and the N4SID
algorithm. Two properties remain to be explored if noise is present:

• It was stated in Subsection 3.4.2 that the obtained state estimate X̂i is
a Kalman filter state. This property will be investigated in Subsection
3.5.4.

• Xd
u at the right hand side of (3.32) contains a contribution from the

future Uf . Projecting away the future inputs as is done in the orthogonal
projection on U⊥

f in PO-MOESP or the oblique projection in N4SID
will remove this component. The consequences of this are explored in
Subsection 3.5.5.

3.5.4 Relation to the Kalman filter

In this subsection, it will be shown that the sequence X̂i can be interpreted in
terms of a bank of j non steady state Kalman filters, applied in parallel to the
data. The non-steady state Kalman filter can be expressed as follows:

x̂t = Ax̂t−1 +But +Kt−1(yt−1 − Cx̂t−1 −Dut−1), (3.33)

Kt−1 = (G−APt−1C
T )(Λ0 − CPt−1C

T )−1, (3.34)

Pt = APt−1A
T + (G−APt−1C

T )

(Λ0 − CPt−1C
T )−1(G−APt−1C

T ), (3.35)

where x̂t denotes the Kalman filter state estimate at time t, Kt is the so-called
Kalman filter gain, G = E

{
xs

t+1y
T
t

}
, Λ0 = E

{
ys

t y
s
t
T
}
, Pt = P s − P̃t with

P s = E
{
xs

tx
s
t
T
}

and P̃t = E
{
(x̂t − xt)(x̂t − xt)

T
}

the error covariance matrix
of the estimated state. Note that the set of equations (3.33-3.35) is slightly
different from the classical formulation of the Kalman filter as it is for instance
found in [9]. In its classical formulation, the Kalman filter is expressed in

terms of the matrices P̃t rather than Pt = P s − P̃t. Nevertheless, the set of
equations (3.33-3.35) is mathematically equivalent to the classical Kalman filter
formulations (see Appendix A) and is more useful in our derivations.

The recursive set of formulas (3.33-3.35) is initialized with a certain initial
state x̂0 and initial matrix P0, which are in practical applications chosen by the
user. The following theorem allows to link the non-steady state Kalman filter
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to the sequence X̂i obtained by projecting Yf onto the space spanned by the
rows of Wp and Uf .

Theorem 3.3. Given an initial state estimate x̂0, an initial estimate of the
matrix P0 and input output measurements u0, y0, . . . , ui−1, yi−1, then the non-
steady state Kalman filter state estimate x̂i at time i can be explicitly written
as:

x̂i =
[
Ai −QiΓi ∆d

i − ΩiHi Qi

]




x̂0

u0

...
ui−1

y0
...

yi−1




,

where

Qi = (∆s
i − A

iP0Γ
T
i )(Ls

i − ΓiP0Γ
T
i )−1.

Proof. The proof is well documented in [144,147].

Applying Theorem 3.3 in parallel to the elements of a vector
X̂0 =

[
x̂0 x̂1 . . . x̂j−1

]
, we obtain:

X̂i =
[
Ai − ΩiΓi ∆d

i − ΩiHi Ωi

]


X̂0

Up

Yp


 , (3.36)

Equation (3.36) is essentially the same as (3.32) with the following substitutions:

X̂0 = Xd
u, (3.37)

P0 = P d
u − P

d. (3.38)

Hence, X̂i in (3.32) can indeed be seen as the result of a non-steady state

Kalman filter with initialization given by (3.37-3.38). We write X̂i = X̂i[X0,P0] =

X̂i[Xd
u,P d

u−P d]. The situation is graphically depicted in Figure 3.4.

3.5.5 A unifying theorem

From the discussion in Subsection 3.5.3 and Subsection 3.5.4 it can now be seen
that under the assumptions of Theorem 3.2,

Yf/Uf
Wp =

j→∞
ΓiX̂i[Xd

p /Uf
Up,P d

u−P d]

Yf/(Wp/U
⊥
f ) =

j→∞
Zi/U

⊥
f = ΓiX̂i[Xd

p /(Up/U⊥

f ),P d
u−P d].
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X̂0 = P0 = P d
u − P

dx0/

»
Up
Uf

–
. . . xq/

»
Up
Uf

–
. . . xj−1/

»
Up
Uf

–

Wp

u0 uq uj−1

ui−1 ui+q−1 ui+j−2

...
...

...

y0 yq yj−1

yi−1 yi+q−1 yi+j−2

...
...

...

X̂i x̂i
. . . x̂i+q . . . x̂i+j−1

? ? ?

?

Kalman
Filter

Figure 3.4: Interpretation of X̂i as a sequence of non-steady state Kalman filter
state estimates based upon i input-output observation pairs ut, yt. The Kalman
filter is initialized with X̂0 = Xd

u and P0 = P d
u − P

d.

Defining X̃i = X̂i[Xd
p/Uf

Up,P d
u−P d] and recalling the fact that Yf/(Wp/U

⊥
f ) =(

Yf/Uf
Wp

)
/U⊥

f we obtain

Yf/Uf
Wp =

j→∞
ΓiX̃i, (3.39)

Yf/(Wp/U
⊥
f ) =

j→∞
ΓiX̃i/U

⊥
f . (3.40)

This leads us to the following theorem, unifying a large set of existing subspace
identification algorithms in one single framework by introducing two weighting
matrices W1 and W2.

Theorem 3.4. Under the assumptions that:

1. The deterministic input ut is uncorrelated with the process noise wt and
the measurement noise vt.

2. The input ut is persistently exciting of order 2i.

3. The number of measurements goes to infinity j →∞.

4. The process noise wt and the measurement noise vt are not identically
zero.

5. Two user defined weighting matrices W1 ∈ R
li×li and W2 ∈ R

j×j are such
that W1 is of full rank and W2 obeys: rank(Wp) = rank(WpW2).
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And with Oi defined as the oblique projection:

Oi , Yf/Uf
Wp, (3.41)

and the singular value decomposition:

W1OiW2 =
[
U1 U2

] [S1 0
0 0

] [
V T

1

V T
2

]
= U1S1V

T
1 , (3.42)

we have:

1. The matrix Oi is given as Oi = ΓiX̃i with X̃i = X̂i[Xd
p /Uf

Up,P d
u−P d].

2. The order of the system (3.1) is equal to the number of singular values in
equation (3.42) different from zero.

3. The extended observability matrix Γi is equal to:

Γi = W−1
1 U1S

1/2
1 T,

with T a similarity transformation to indicate that the system is only
determined up to a change in basis (see equation (3.4)).

4. The state X̃i is equal to:

X̃i = Γ†
iOi

Proof. Trivial from the discussion in Subsections 3.5.3 and 3.5.4.

In (3.42) it is assumed that for j →∞, S1 contains the non-zero singular values.
Hence, for j → ∞, the minimal order of the system can be determined from
the number of singular values different from zero. In practical cases, and for
finite data-samples, the smallest singular values will in general not be zero. In
this case, the order is estimated by looking for a ‘gap’ in the singular value
spectrum. The resulting low rank decomposition is in this case not exact and
can be shown to correspond to a form of frequency balanced model reduction
in the sense of Enns [145, 147]. Hereby, the weighting matrices W1 and W2 in
the SVD determine the particular frequency weighting that is used and thereby
have an impact on the state space basis in which the final model is returned. A
full analysis of the impact of the choice of W1 and W2 is outside the scope of
this thesis, and we refer the interested reader to [145, 147]. Nevertheless, some
particular choices for W1 and W2 deserve attention as they allow us to fit most
subspace identification algorithms in one framework. This is not only true for
the N4SID and the PO-MOESP algorithm (see (3.39) and (3.40)) but it can also
be shown that the CVA method can be included in this framework [146, 147].
Some weightsW1 and W2 which are needed to obtain different kinds of subspace
algorithms are displayed in Table 3.1.
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Method W1 W2

N4SID Iil Ij
MOESP Iil ΠU⊥

f

CVA

(
1
j Yf/U

⊥
f

(
Yf/U

⊥
f

)T
)−1/2

ΠU⊥

f

Table 3.1: Different combined stochastic-deterministic subspace identification
algorithms and their equivalent weighting matrices in the unifying Theorem
3.4.

3.5.6 Extracting the system matrices using the extended
observability matrix

Up till now, the discussion largely focused on obtaining an estimate for the
extended observability matrix and the Kalman filter state sequence X̃i based
on input-output data. The problem that remains to be solved is that of finding
the state-space matrices A, B, C, D, Q, R, S from Γi and/or X̃i. Two classes
of solutions for this problem exist. A first class extracts the matrices A and C
from Γi, as it is done in realization theory (see Sections 3.2 and 3.3). Estimates
for B and D are subsequently obtained by going back to the data and solving a
least-squares problem. This class of solutions is mostly found in the literature
on MOESP type of algorithms [152–155] but can equally well be used in other
algorithms. It is further discussed in the text below. A second class of solutions
extracts A,B,C and D using the obtained system states. This class of solutions
is mostly found in the literature on N4SID and CVA and is further discussed in
Subsection 3.5.7.

As mentioned above, in the first class of solutions, A and C are calculated
from Γi after which B and D can be found by solving a linear least squares
problem in the original data block-Hankel matrices. The advantage of this type
of approaches is that the procedure is very transparent, as will be shown shortly.
The disadvantage is that the second step, the estimation of B and D takes a
considerable amount of time, as a rather large least-squares problem needs to
be solved.

Determination of A and C

The matrix C can easily be extracted as the first l rows of Γi. For the matrix
A, we use the following shift invariance property [92]:

ΓiA = Γi,

where Γi and Γi symbolize Γi with respectively the last l and first l rows
removed. This is exactly the same approach as used in the derivation of
deterministic and stochastic realization in Sections 3.2 and 3.3.
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Determination of B and D

Many approaches exist to estimate B and D once A and C are known, and a
full overview would be beyond the scope of this thesis. It suffices to say that
once A and C are known, the transfer function of the deterministic system:

H(z) = C(zI −A)−1B +D,

is linear in the matrices B and D. Most existing approaches exploit this fact
and estimate B and D using a least squares algorithm in available input-output
data. We introduce one possible approach which will be used in this thesis, and
refer to [147] for further reading.

• Simulation error A simulated output ŷt can be determined as:

ŷt = Dut +

t−1∑

r=0

CAt−r−1Bur

= [uT
t ⊗ Il] · vec(D) +

(
t−1∑

r=0

uT
r ⊗ CA

t−r−1

)
· vec(B).

With this last equation, B andD can be found by minimizing the following
criterion:

s∑

t=0

[
yt − [uT

t ⊗ Il] · vec(D)−

(
t−1∑

r=0

uT
r ⊗ CA

t−r−1

)
· vec(B)

]2

,

which is linear in vec(D) and vec(B).

Determination of Q, R and S

The determination of Q, R and S has never been the main concern in the
original papers about MOESP-like approaches such as the ones presented in
[152,154,155]. In contrast to the state based approaches which will be outlined
in 3.5.7, no commonly accepted techniques to estimate Q, R and S are therefore
available. Nevertheless, once the system matrices A, B, C and D are obtained
several approaches exist to obtain estimates for Q, R and S. we discuss two
possibilities:

• Subtracting the deterministic outputs: Once A, B, C and D are
known, the stochastic part of the output can easily be removed as:

ys
t = yt − ŷ

d
t , ∀t, (3.43)

with ŷd
t an estimate for the deterministic output following from the

identified deterministic model. A so-called stochastic identification
algorithm (see also Section 3.6) can thereafter be performed on the outputs
ys

t to determine the properties of the noise-model. One possibility is
to estimate G from (3.10) using Γi and the output covariance matrices
Λi = E

{
yT

t+iyt

}
. Once G is known, Q, R and S can be obtained using

the equations (3.14-3.15).
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• Estimating the state: Once A, B, C and D are known, we can obtain
an estimate for the system states and the process and measurement noise
sequences ρw =

[
wi . . . wi+j−1

]
and ρv =

[
vi . . . vi+j−1

]
from:

[
X̃i+1

Yi|i

]
=

[
A B
C D

] [
X̃i

Ui|i

]
+

[
ρ̂w

ρ̂v

]
, (3.44)

which is linear in the unknown states. An estimate for the noise model is
now obtained as:

[
Q̂ R̂

R̂T Ŝ

]
=

1

j

[
ρ̂wρ̂

T
w ρ̂wρ̂

T
v

ρ̂v ρ̂
T
w ρ̂vρ̂

T
v

]
. (3.45)

The obtained states from (3.44) will converge to the true states for i→∞.
For finite i, the obtained states, and hence the noise model will in general
not be consistently estimated using this procedure.

A practical algorithm

A practical identification algorithm using the extended observability matrix
is found in Figure 3.5. This algorithm will be used in many examples and
derivations in this thesis.

3.5.7 Extracting the system matrices using the states

In Subsections 3.5.3, and 3.5.4 it was observed that

Zi = Yf/

[
Uf

Wp

]
= ΓiX̂i

[Xd
u,P d

u−P d]
+HiUf . (3.46)

We introduce U−
f = Ui+1|2i−1, Y

−
f = Yi+1|2i−1, U

+
p = U0|i, Y

+
p = Y0|i and

W+
p =

[
U+

p

Y +
p

]
, which are essentially the same as Uf , Yf , Up, Yp and Wp, except

for the fact that the border between “past” and “future” was shifted one instance
in time. With these definitions, it can easily be proven that (see [144,147])

Zi+1 = Y −
f /

[
U−

f

W+
p

]
= Γi−1X̂i+1

[Xd
u,P d

u−P d]
+Hi−1U

−
f . (3.47)

Hence, the state sequence X̂i+1 is the result of a set of Kalman filters working in
parallel on the columns of W+

p , with the same initial conditions as the Kalman

filter that generates X̂i. In other words, X̂i+1 is the result of just one further

iteration of the Kalman filter procedure that leads to X̂i. This situation is
graphically depicted in Figure 3.6. Removing the components along Uf from
(3.46) and (3.47), it is now obvious that:

Oi = Yf/Uf
Wp = ΓiX̂i

[Xd
p /Uf

Up,P d
u−P d]

= ΓiX̃i, (3.48)
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A practical algorithm using Γi

1. Calculate the oblique projection:

Oi = Yf/
Uf

Wp.

2. Calculate the SVD of the weighted oblique projection:

W1OiW2 = USV T .

3. Determine the order by inspecting the singular values in S and
partition the SVD accordingly to obtain U1, U2 and S1.

4. Determine Γi and Γ⊥
i as:

Γi = W−1
1 U1S

1/2
1 , Γ⊥

i = UT
2 W1.

5. Determine A from Γi as A = Γi
†Γi.

6. Estimate B and D from

(B̂, D̂) = argmin
B,D

s∑

t=0

[
yt − [uT

t ⊗ Il] · vec(D)

−

(
t−1∑

r=0

uT
r ⊗ CA

t−r−1

)
· vec(B)

]2

,

7. Subtract the estimated deterministic output

ys
t = yt − ŷ

d
t ,

and perform stochastic identification on the stochastic output
sequence ys

t .

Figure 3.5: A practical subspace identification algorithm using the extended
observability matrix.
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Oi+1 = Y −
f /U−

f
W+

p = ΓiX̂i
[Xd

p /
U

−

f

U
+
p ,P d

u−P d]
= ΓiX̃i+1. (3.49)

Note that based on the two state sequences X̃i and X̃i+1, estimates for the
system matrices can be obtained as follows:

[
X̃i+1

Yi|i

]
=

[
A B
C D

][
X̃i

Ui|i

]
+

[
ρ̂w

ρ̂v

]
, (3.50)

which can be solved in a least-squares sense for A, B, C and D.
Care should be taken about the fact that both state sequences X̃i and X̃i+1

should be calculated in the same state-space basis. By simply calculating X̃i and
X̃i+1 from the SVD of Oi and Oi+1, this is not necessarily the case. However,

X̃i and X̃i+1 can be forced into the same state-space by first determining Γi

and X̃i from (3.48) and calculating X̃i+1 as:

X̃i+1 = Γi
†Oi+1.

Another remaining problem, as can clearly be observed from (3.48) and (3.49),

is that the obtained state sequence estimates X̃i and X̃i+1 are the results of
two separate Kalman filters with initial conditions Xd

p/Uf
Up and Xd

p/U−

f
U+

p

respectively. This has some serious consequences, as the set of equations (3.50)
are not entirely consistent due to the different initial conditions [144, 147].
However, it can be proven [144, 147] that A, B, C and D, are consistently
estimated if at least one of the following conditions is satisfied:

• i→∞,

• The system is purely deterministic, i.e. vt = wt = 0, ∀t,

• The deterministic input ut is white noise.

If none of the above conditions is satisfied, one obtains biased estimates for A,
B, C and D using the algorithm described above.

Once A, B, C and D are obtained, estimates for Q, R and S can trivially
be obtained from the estimated residuals of (3.50) as in (3.45).

Remark on unbiased state-based algorithms

Unlike the method described above, state-based algorithms that do return
consistent estimates exist. However, since these algorithms are quite involved
and will not be used in this thesis for reasons of clarity, we refer to [144, 147]
for further reading on this topic. It suffices to say that a particular advantage
of state-based algorithms is that the noise-model is straightforwardly obtained,
without the need for a second stochastic identification step as is the case in
algorithms based on the extended observability matrix. Hence, even though
the unbiased state-based algorithms presented in [144, 147] are theoretically
quite involved, in practical applications they do have their advantages over the
approaches so far discussed. If one is only interested in the deterministic model,
an approach based on the extended observability matrix is probably preferable.
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X̂0 = P0 = P d
u − P

dx0/

»
Up
Uf

–
. . . xq/

»
Up
Uf

–
. . . xj−1/

»
Up
Uf

–

Wp

u0 uq uj−1

ui−1 ui+q−1 ui+j−2

...
...

...

y0 yq yj−1

yi−1 yi+q−1 yi+j−2

...
...

...

X̂i x̂i
. . . x̂i+q . . . x̂i+j−1

yi yi+q yi+j−1

ui ui+q ui+j−1

X̂i+1 x̂i+1 . . . x̂i+1+q . . . x̂i+j

? ? ?

?

Kalman
Filter

? ? ? ?

Kalman
Filter

Figure 3.6: Interpretation of X̂i and X̂i+1 as two consecutive estimates from a
non-steady state Kalman filter state estimates based upon i + 1 input-output
observation pairs ut, yt. The Kalman filter is initialized with X̂0 = Xd

u and
P0 = P d

u − P
d.

A practical algorithm

A practical identification algorithm using the states is found in Figure 3.7. This
algorithm will be used as a basis for the derivation of Hammerstein identification
methods in Chapter 8.

3.6 Stochastic subspace identification

3.6.1 Problem definition

The term stochastic subspace identification is used to describe the process
of using subspace identification to obtain a stochastic model if no known
input measurements are available. In that, the aim of stochastic subspace
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A practical algorithm using the states (biased)

1. Calculate the oblique projections:

Oi = Yf/
Uf

Wp,

Oi+1 = Y −
f /

U−

f

W+
p .

2. Calculate the SVD of the weighted oblique projection:

W1OiW2 = USV T .

3. Determine the order by inspecting the singular values in S and
partition the SVD accordingly to obtain U1 and S1.

4. Determine Γi as:
Γi = W−1

1 U1S
1/2
1 .

5. Determine the state sequences:

X̃i = Γ†
iOi

X̃i+1 = Γi
†Oi+1.

6. Solve the set of linear equations for A, B, C and D:

[
X̃i+1

Yi|i

]
=

[
A B
C D

] [
X̃i

Ui|i

]
+

[
ρw

ρv

]
,

7. Determine Q, R and S from the residuals as

[
Q R
RT S

]
=

1

j

[
ρwρ

T
w ρwρ

T
v

ρvρ
T
w ρvρ

T
v

]
.

Figure 3.7: A practical subspace identification algorithm using the states. For
general systems, the algorithm returns biased estimates for A, B, C and D.
Unbiased identification algorithms using the states exist and are described in
[144,147].
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identification is the same as that of stochastic realization theory. The only
difference is that stochastic subspace algorithms start from data-measurements
in structured block Hankel matrices, while stochastic realization algorithms start
from estimates of the output covariance matrices. Despite this difference, in this
section it will be seen that most existing stochastic realization algorithms can
easily be understood in the stochastic subspace identification framework.

The problem considered in stochastic subspace identification is the following:
given a system of the form

xt+1 = Axt + wt,
yt = Cxt + vt,

with wt and vt white noise sequences with second order moments

E

{[
wt

vt

] [
wT

k vT
k

]}
=

[
Q R
RT S

]
δtk,

and given a set of output measurements {yt}, t = 0, . . . , N − 1, find the
minimal system order n, the system matrices A and C up to within a similarity
transformation, and the noise covariance matrices Q, R and S.

3.6.2 A unifying framework

A stochastic subspace identification algorithm can directly be obtained by
setting the inputs to zero in the analysis of the combined stochastic-deterministic
case. Doing this, the oblique projection Yf/Uf

Wp reduces to an orthogonal
projection Yf/Yp. It can be shown that with a proper weighting of this
projection, most existing stochastic realization algorithms can be treated in a
subspace framework. This observation is summarized in the following theorem
[144,147]:

Theorem 3.5. Under the assumptions that:

1. The process noise wt and the measurement noise vt are not identically
zero.

2. The number of measurements goes to infinity j →∞.

3. Two user defined weighting matrices W1 ∈ R
li×li and W2 ∈ R

j×j are such
that W1 is of full rank and W2 obeys: rank(Yp) = rank(YpW2).

And with Oi defined as the orthogonal projection:

Oi , Yf/Yp, (3.51)

and the singular value decomposition:

W1OiW2 =
[
U1 U2

] [S1 0
0 0

] [
V T

1

V T
2

]
= U1S1V

T
1 , (3.52)

we have:
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1. The matrix Oi is given as Oi = ΓiX̃i with X̃i = X̂i[0,0] the result of a
non-steady state Kalman filter, initialized at 0, and applied in parallel to
the columns of Yp.

2. The order of the system is equal to the number of singular values in
equation (3.52) different from zero.

3. The extended observability matrix Γi, and the associated extended control-
lability matrix of the covariance model ∆c

i =
[
Ai−1G Ai−2G . . . G

]

are equal to (up to a change in basis):

Γi = W−1
1 U1S

1/2
1 T,

∆c
i =

1

j
Γ†

iYfY
T
p

with T a similarity transformation to indicate that the system is only
determined up to a change in basis (see equation (3.4)).

4. A realization X̃i for the state sequence is given as:

X̃i = Γ†
iOi.

Proof. The proof follows almost immediately by setting the inputs to zero in
Theorem 3.4. The expression for the inverted extended observability matrix ∆c

i

follows from (3.17). For a detailed proof of the theorem, we refer the reader
to [143,147].

3.6.3 Relation to existing stochastic subspace identifica-
tion algorithms

Stochastic subspace identification is very closely related to stochastic realization.
This is apparent from Yf/Yp = YfY

T
p (YpY

T
p )−1 = Γi∆

c
i (

1
j YpY

T
p )−1. Hence

for j → ∞ and Yp of full rank, the extended observability matrix returned
by stochastic realization and the extended observability matrix returned by
stochastic subspace identification are the same. By properly choosing the
weights W1 and W2 in Theorem 3.5, several variants of the basic stochastic
realization algorithm can be recovered, such as the principal component
algorithm (PC [6,8]), the unweighted principal component algorithm (UPC [8])
and the canonical variate algorithm (CVA [3,4, 8]). Without going into further
detail about these variants (the interested reader is referred to [147] and the
references therein) an overview of the appropriate weights is given in Table 3.2.
Note how the weights for the CVA case correspond to the weights for the CVA
case in the combined deterministic-stochastic case, with the inputs set to zero
in the latter algorithm. Also note how the UPC case corresponds to N4SID,
again with the inputs set to zero.
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Method W1 W2

PC Iil
1√
j
Y T

p (YpY
T
p )−1/2Yp

UPC Iil Ij

CVA
(

1
j YfY

T
f

)−1/2

Ij

Table 3.2: Different stochastic subspace identification algorithms and their
equivalent weighting matrices in the unifying Theorem 3.5

3.6.4 Extracting the system matrices

Two ways exist to estimate the system matrices A,C,Q,R and S in stochastic
subspace identification algorithms. A first possibility is to estimate a covariance
model A,G,C,Λ0, using results from Theorem 3.5. In a second step, Q, R and S
can then be obtained using a similar procedure as found in stochastic realization
algorithms (see 3.3). A second possibility is to obtain A,C from a least-squares
algorithm in a first step and estimate Q,R and S from the residuals of this least
squares problem. Both possibilities will briefly be outlined below.

Using the covariance model

As outlined in Section 3.3, the matrices A,G,C,Λ0 can be viewed as forming a
deterministic system of which the Markov parameters are the output covariance
matrices Λt, t ≥ 0 of the stochastic system. An estimate for Λ0 can directly be
obtained from the data as Λ0 = 1

j Yi|iY
T
i|i. G is obtained as the last l columns

of ∆c
i , where ∆c

i following directly from Theorem 3.5. As in the combined
stochastic-deterministic case, the system matrices A and C can be extracted
using the shift-invariance property of Γi, or using the estimated state sequences
X̃i, X̃i+1, where X̃i+1 = Γi

†Oi−1 with Oi−1 = Y −
f /Y +

p . We have

[
X̃i+1

Yi|i

]
=

[
A
C

]
X̃i +

[
ρ̂w

ρ̂v

]
,

where ρw and ρv can be shown to be uncorrelated with X̃i [144,147]. Unlike in
the combined deterministic stochastic case, the steady state Kalman filter banks
for X̃i and X̃i+1 have the same initialization, namely zero. Hence, in contrast
to the combined case, A and C can consistently be estimated as

[
A
C

]
=

[
X̃i+1

Yi|i

]
X̃†

i .

Consistent estimates for Q, R and S can now be obtained in a second step by
solving the set of equations (3.14-3.15), similar as in the stochastic realization
algorithm. It is this approach that is usually followed for the stochastic subspace
identification problem.
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Using least-squares residuals

As was seen above, one possibility to estimate the system matrices A and C is to
use the Kalman filter state sequences X̃i and X̃i+1. In a second step estimates
for Q, R and S can readily be obtained as

[
Q̂ R̂

R̂T Ŝ

]
=

1

j

[
ρ̂wρ̂

T
w ρ̂wρ̂

T
v

ρ̂vρ̂
T
w ρ̂v ρ̂

T
v

]

Similarly as in the combined case, these estimates will in general be biased,
unless i → ∞. Nevertheless this approach will be seen to be useful in some
specific cases in Chapter 4.

A practical algorithm

A practical stochastic subspace identification algorithm is found in Figure 3.8.

3.7 Subspace identification for separately para-

meterized models

The combined stochastic-deterministic subspace identification algorithm studied
in Section 3.5 identifies jointly parameterized models. As outlined in 3.5.1, this
means that the dynamics of the deterministic and stochastic subsystem are
considered to be equal. If this is not the case, a jointly parameterized model
can always be obtained by increasing the system order (see equation (3.28)).
However, increasing the system order increases the number of parameters to be
estimated, and hence also the variance of the uncertainty on the estimated
parameters. In recent years, a lot of attention has been drawn to this
problem, and it has been shown [23,26,90] that, although in general, combined
subspace identification approaches are still believed to outperform methods
based on a separate parameterization, for some specific cases using a separately
parameterized approach will lead to better results. A full analysis of this issue
will be given in Chapter 5. In the following we will restrict ourselves to a basic
introduction into subspace identification methods for separately parameterized
models.

3.7.1 Decomposition of the system in a deterministic and
a stochastic subsystem

At the heart of the separately parameterized approach is the so-called data
orthogonalization step, where the future outputs Yf are split up into an input-
dependent part along the past and future inputs:

Yd
f = Yf/

[
Up

Uf

]
,
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A practical stochastic subspace identification algorithm

1. Calculate the orthogonal projections:

Oi = Yf/Yp,

Oi+1 = Y −
f /Y +

p .

2. Calculate the SVD of the weighted orthogonal projection:

W1OiW2 = USV T .

3. Determine the order by inspecting the singular values in S and
partition the SVD accordingly to obtain U1 and S1.

4. Determine Γi as:
Γi = W−1

1 U1S
1/2
1 .

5. Determine the state sequences:

X̃i = Γ†
iOi

X̃i+1 = Γi
†Oi+1.

6. Solve the set of linear equations for A and C:

[
X̃i+1

Yi|i

]
=

[
A
C

]
X̃i +

[
ρw

ρv

]
.

7. Determine G as the last l columns of ∆c
i = 1

j Γ†
iYfY

T
p and Λ0 as

1
j Yi|iY

T
i|i.

8. Determine P from

P = APAT + (G−APCT )(Λ0 − CPC
T )−1(G−APCT ).

and Q, R and S from

Σ = (Λ0 − CPCT )−1, K = (G−APCT )Σ−1,
Q = KΣKT , R = KΣ, S = Σ.

Figure 3.8: A practical stochastic subspace identification algorithm. The
algorithm returns consistent estimates for A, C, Q, R and S.
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and a part uncorrelated with the inputs:

Ys
f = Yf/

[
Up

Uf

]⊥
.

Following this initial projection, an input-output subspace identification al-
gorithm (assuming no noise) is performed on Yd

f , and a stochastic subspace
identification algorithm is performed on Ys

f . Note that the no-noise assumption
on the deterministic data is justified in the limit for j →∞ as all noise-sources
are considered to be uncorrelated with the inputs, and therefore removed in the
initial projection.

3.7.2 Identification of the deterministic subsystem using
PI-MOESP

For the deterministic system, we know from Subsection 3.4.2 that an effective
way to obtain an estimate for the extended observability matrix and the state
is to project the future deterministic outputs onto the orthogonal complement
of the inputs. The corresponding projection

Oi = Yd
f /U

⊥
f = Yf/

[
Up

Uf

]
/U⊥

f = Yf/(Up/U
⊥
f )

corresponds to the projection introduced in the PI-MOESP algorithm [152].
For the PI-MOESP algorithm, it was proven that a consistent estimate for the
extended observability matrix can be obtained from the following relations

Yf = ΓiX
d
i +HiUf + Y s

f ,

Yf/(Up/U
⊥
f ) =

j→∞
ΓiX

d
i /(Up/U

⊥
f ).

Once the extended observability matrix is obtained, Ad, B, Cd and D can be
calculated as in the combined stochastic deterministic algorithms. Note that in
principle an algorithm based on the states is also possible. A biased version,
similar to the biased state-based algorithm for the combined case has been
described in [123]. However, as far as the PI-MOESP algorithm is concerned,
we will limit ourselves to algorithms based on the extended observability matrix
in this thesis.

3.7.3 Identification of the stochastic subsystem

The identification of the stochastic subsystem is more problematic than that of
the deterministic subsystem. From

Yf = ΓiX
d
i +HiUf + Y s

f ,

Ys
f = Yf/

[
Up

Uf

]⊥
=

j→∞
ΓiX

d
i /

[
Up

Uf

]⊥
+ Y s

f ,
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it is clear that Ys
f will still contain some elements of the deterministic subsystem,

namely those parts of the deterministic state Xd
i which are uncorrelated with

the past and future inputs. In [123], this difference between the estimated
stochastic outputs Ys

f and the true stochastic outputs Y s
f is called a ‘smoothing

error’. Ways to deal with this error are discussed below.

• Neglect the smoothing error: The most obvious solution is to neglect
the smoothing error. Nevertheless, it was shown in [123] that, if neglected,
this error can lead to biased results, and a much higher estimated order
for the stochastic model than the true one.

• Simulate the deterministic output contribution with the model
obtained using PI-MOESP: A possibility is to use the PI-MOESP
model to get estimates ŷd

t for the outputs yd
t based on available input

measurements. An estimate for the stochastic outputs ŷs
t is then obtained

as ŷs
t = yt − ŷd

t similar as in (3.43). The sequence {ŷs} can be used to
start a stochastic identification algorithm.

• Use a prefiltering technique to remove the smoothing error: In
[122], a prefiltering technique is described to remove the smoothing error.
However, the analysis of this technique is quite involved and beyond the
scope of this thesis. We refer the reader to [122] for further reading.

It should be noted at this point that the stochastic identification algorithms so
far discussed do not only need the future outputs Y s

f , but also the past outputs
Y s

p . However, for the past outputs, a decomposition by projecting on past and
future inputs and their complement is even more problematic than for the future
outputs. However, the data in Y s

f can conveniently be redistributed over a new
set of past and future block Hankel matrices. The length of the rows will thereby
decrease from j to j − i. In most practical cases, j � i and this decrease is
negligible.

3.8 A practical application

To emphasize the main advantages of subspace identification algorithms for
practical applications, in this section we will consider the application of subspace
identification to the practical example of a glass oven. The description here is
a summary of the more elaborate discussion regarding this example in [11,144].

The dataset is a part of the online database DaISy (Database for the
Identification of Systems) [45]. It consists of 3 inputs (2 burners and 1
ventilator) and 6 outputs (temperatures measured at different locations). The
data have been pre-processed using detrending, peak shaving, delay estimation
and normalization (see [11]). A total of 1247 data-points are available of which
700 are used to identify a linear model. Two different strategies are used:

1. The biased subspace identification algorithm presented in Figure 3.7 with
the number of block-rows set to i = 10 and the order n = 5.
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2. A predictor error method using the system identification toolbox in matlab
[100]. The predictor error method is initialized with the results of the
subspace identification algorithm.

On a Pentium-IV, 2 MHz, the subspace algorithm took 240 msec to complete
whereas the predictor error method needed 20.899 seconds. However, the extra
time needed hardly resulted in better estimates for the predictor error method.
For each output channel k in the validation data {yt(k)}, t = 701, . . . , 1247, the
relative prediction error for channel k is calculated as

εk = 100

√∑1247
t=701 (yt(k)− ys

t (k))
2

∑1247
t=701 y

2
t (k)

,

with ys
t the one-step ahead prediction for the output yt based on the obtained

models. The results are displayed in Table 3.3. Note that the estimates obtained
using the subspace identification algorithm are of the same quality as those of
the predictor error method but, as mentioned earlier, the subspace identification
algorithm is about a 1000 times faster. Furthermore, in contrast to the predictor
error method, the subspace algorithm does not rely on a proper initialization.
More examples of the use of subspace identification algorithms on practical
datasets are for instance found in [52, 147].

1 2 3 4 5 6
Subspace 64.74% 66.67% 65.35% 33.45% 30.04% 57.49%
PEM 71.83% 72.67% 71.07% 27.71% 30.15% 56.96%

Table 3.3: Performance of a subspace identification algorithm and a predictor
error method on a dataset originating from measurements on a glass oven,
and for each of the 6 outputs separately. The performance displayed is the
relative prediction error as given by the formula (3.8). Note that the data has
been detrended which in part explains the rather large relative prediction errors
obtained.

3.9 Summary

In this chapter, an overview of subspace identification algorithms was presented.
Three groups of subspace identification algorithms were discussed. The
first group contains the combined stochastic-deterministic algorithms where a
deterministic and a stochastic subsystem are estimated in one single orthogonal
or oblique projection. The second group contains the stochastic algorithms,
identifying systems without observed inputs. A third and last group contains
algorithms which estimate separately parameterized systems. A schematic
overview of the discussed methods, and their place in the spectrum of subspace
identification techniques is given in Figure 3.9.
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Figure 3.9: Summary of subspace identification algorithms. Subspace
identification algorithms can be split into two classes, based on whether the
deterministic and stochastic system are assumed to have the same dynamics (the
combined stochastic-deterministic scheme for jointly parameterized models), or
different dynamics (separately parameterized models). In the latter case, two
identification algorithms have to be used, a deterministic one and a stochastic
one. Unified frameworks exist for the combined and the stochastic methods.
The symbols Qi, Ri and Si are used to denote that the obtained noise model is
only consistent for i→∞.
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Chapter 4

The positive realness
problem

The most cited advantage of subspace identification techniques over
classical predictor error methods is that the former only make use
of numerically robust geometrical operations such as projections and
the singular value decomposition. Hence, in principle a subspace
identification algorithm will always produce a model provided some
assumptions on the data are met. Nevertheless, in some specific
cases, stochastic subspace identification algorithms are known to
break down due to the so-called lack of positive realness. In this
chapter, the concept of positive realness will be introduced in a
realization framework. The consequences of a lack of positive
realness for stochastic subspace identification algorithms will be
explored, and it will be shown that positive realness can be imposed
by using Tikhonov regularization.

4.1 Problem setting

In this section, the problem of positive realness will be introduced in a subspace
context. It will be shown that stochastic realization and stochastic subspace
identification algorithms break down if an intermediate result, the covariance
model, is not positive real.

4.1.1 The covariance model

We will largely follow the same notations as used in the introduction of
stochastic realization and stochastic subspace identification in Chapter 3. More
specifically, we will consider stochastic systems and models of the form:

xt+1 = Axt + wt,
yt = Cxt + vt,

(4.1)
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with

E

{[
wt

vt

] [
wT

k vT
k

]}
=

[
Q R
RT S

]
δtk.

Denoting the output covariance matrices as Λk = E
{
yt+ky

T
t

}
, and the cross-

covariance matrix between the states and the observations as G = E
{
xt+1y

T
t

}
,

we have that
Λk = CAk−1G, Λ−k = ΛT

k , k ≥ 1. (4.2)

As mentioned in the discussion on stochastic realization in Section 3.3, the
output covariances can be considered as Markov parameters of a deterministic
linear time invariant system with system matrices (A,G,C,Λ0). Throughout
this chapter, we will refer to (A,G,C,Λ0) as the ‘covariance model’. In
stochastic realization and stochastic subspace identification, the covariance
model is estimated from data, after which the following algebraic Riccati
equation is solved for P (see Section 3.3):

P = APAT + (G−APCT )(Λ0 − CPC
T )−1(G−APCT )T . (4.3)

Estimates for the noise covariance matrices Q, R and S are then obtained
through

Σ = Λ0 − CPC
T , K = (G−APCT )Σ−1,

Q = KΣKT , R = KΣ, S = Σ.

4.1.2 Positive realness of a covariance model

While any stochastic system of the form (4.1) can be described by a covariance
model (A,G,C,Λ0), it was shown by Faurre et al. [50] that the opposite is only
true under some rather stringent conditions. These are expressed by the positive
real lemma [49,50], which states that a covariance model (A,G,C,Λ0) describes
a stochastic process if and only if the following matrix inequality is satisfied for
at least one positive definite matrix P = P T > 0:

[
Q R
RT S

]
=

[
P G
GT D +DT

]
−

[
APAT APCT

CPAT CPCT

]
≥ 0. (4.4)

In such cases, the covariance sequence (4.2) is called positive and the model
(A,G,C,Λ0) positive real. Notice that a positive real model needs to be stable
to satisfy the Lyapunov equation in the upper left block of (4.4). The positivity
condition can be expressed in many forms. It can be shown that, among others,
the following equivalences hold, provided that A has no eigenvalues outside the
unit-circle [50]:

• The covariance sequence (4.2) is positive.

• The spectral density matrix Φ(z) of the system (4.1) is positive semi-
definite for all z on the unit circle: Sz(z) + ST

z

(
z−1
)
≥ 0 for z = ejω,

where Sz(z) = Λ0

2 + C(zIn −A)−1G.
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• The spectral density Sz(z) + ST
z

(
z−1

)
can be factorized as Sz(z) +

ST
z

(
z−1

)
= H(z)ΣHT

(
z−1

)
, with H(z) the transfer function of the

forward innovation model (Â, K̂, Ĉ, Il). This is the so-called spectral
factorization.

• The algebraic Riccati equation (4.3) has a positive definite solution P
which is the minimal solution of (4.4) and Λ0 − CPCT ≥ 0.

Note from the last equivalence that if a covariance model is not positive real,
no positive definite solution for the Riccati equation (4.3) exists and hence no
physically meaningful noise matrices Q, R and S can be obtained. Since the
covariance models identified as an intermediate step in stochastic realization
and stochastic subspace identification are estimated using a finite amount of
data, they are subject to various modeling errors. Hence, there is no immediate
guarantee that these intermediate covariance models will be positive real. It
is shown in [33] that this happens rather frequently in stochastic subspace
identification algorithms, causing the breakdown of the algorithm and leaving
the user without a noise model. In this chapter, we will explore several methods
to impose positive realness on a covariance model obtained as an intermediate
step in stochastic subspace identification algorithms. As for the stochastic
realization algorithm we can state that it fits in the unified stochastic subspace
framework (see Subsection 3.6.2), and is therefore implicitly treated in this text.

4.1.3 Causes of positive realness problems

The problem of positive realness may appear in practical applications. Even
when the true system is a valid linear stochastic system, its spectral density
Sz(z) + ST

z

(
z−1
)

may have eigenvalues that are near zero at some points.
The modeled spectral density risks being negative for these points due to
various reasons, which is of course physically impossible. The covariance model
Â, Ĝ, Ĉ, Λ̂0, for example, is built on a finite number of observed covariances
{Λ̂k}

2i−1
k=0 . Even if these were exact (j → ∞), the realization algorithm does

not ensure that the infinite covariance sequence {Λ̃k}∞k=0 = ĈÂk−1Ĝ derived
from the covariance model, is positive. The smaller the number of initial
covariances used to estimate the covariance model, the more likely this problem
is to occur. Hence the choice of i has a direct influence on the possible occurrence
of positivity problems [96, 111]. Secondly, for j finite, the observed covariances
are subject to statistical errors that may increase the probability for positive
realness problems to occur. Finally the ability of (Â, Ĝ, Ĉ, Λ̂0) to model the
observed covariance sequence is clearly dependent on the choice of the model
order n. The influence of the parameters i, j and n will be illustrated by means
of some examples in Section 4.4. For a further theoretical description, the reader
is referred to [96].
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4.2 Classical approaches to solve the positive

realness problem

Few remedies are given for the cases where the procedure for obtaining a
physically meaningful noise model breaks down due to positivity problems.
In most cases, the covariance model has to be discarded and a new model
must somehow be obtained (e.g. by using a different model order or by
changing the dimensions of the block Hankel matrix (i and j)). In order to
avoid such remodeling some proposals have been made by various authors
[101, 120, 139, 147]. Usually they consist of algorithms to alter one or more

matrices out of the identified set Â, Ĝ, Ĉ, Λ̂0 in order to make the covariance
model positive real. A drawback is that in many cases one ends up with a
biased model. Furthermore, most proposed algorithms only work if the identified
system matrix Â is stable, a condition that is not necessarily satisfied for high
order models identified on a finite amount of data [142]. In the following, we
will briefly review existing approaches to solve the positive realness problem. In
Section 4.3, a new method based on Tikhonov regularization will be proposed.
In Section 4.4 it will be shown that the newly proposed method outperforms
the existing approaches on a set of examples.

4.2.1 Altering Λ̂0

If the estimated covariance model is stable, the most obvious way to impose
positive realness is to lift the spectral density

Φ̂(z) = Λ̂0 + Ĉ(zIn − Â)−1Ĝ+ ĜT (z−1In − Â
T )−1ĈT

by replacing Λ̂0 with Λ̃0 = Λ̂0 + cIl, c > 0 such that the spectral density is
positive for all z on the unit circle. This method, was proposed by Peternell
in [120]. It is obvious that sufficiently increasing Λ̂0 will always result in a

positive real covariance model Â, Ĝ, Ĉ, Λ̃0. Several ways exist to estimate the
parameter c. The most obvious approaches are a grid search with a progressively
refined grid or a bisection algorithm [7]. In every iteration, positive realness can
be evaluated by solving the Riccati equation (4.3) and checking whether P > 0.
The biggest advantage of this technique is its simplicity and intuitiveness. The
biggest disadvantage is that, as stated above, changing Λ̂0 amounts to lifting
the entire spectral density, which is quite a drastic measure. Furthermore, since
Λ̂0 is obtained from data in a very direct way, one would expect it to be more
reliably estimated than Â,Ĝ and Ĉ. Hence, it seems more logical to adapt
Â,Ĝ and Ĉ in stead of Λ̂0. Another disadvantage is found in the fact that the
approach presented here can only be applied to stable models.

Example 4.1 An output sequence was created by filtering a zero mean white
Gaussian noise sequence with length 1000 through the following system:

H(z) =
(z − 0.99e±2j)(z − 0.98e±1.4j)(z − 0.99e±0.6j)(z − 0.9)(z + 0.9)

(z − 0.8e±2.1j)(z − 0.8e±j)(z − 0.8e±1.7j)(z − 0.8e0.8j)
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The stochastic subspace identification algorithm presented in Figure 3.8
was thereafter used to generate a covariance model Â, Ĝ, Ĉ, Λ̂0. The
spectral density of the obtained covariance model is plotted as a solid line
in Figure 4.1. Note that the spectral density is negative near the arrow
in the figure, reaching a minimum of -0.3494. As a result, the Riccatti
equation in step 8 of the algorithm in Figure 3.8 can not be solved for P .
If Λ̂0 is increased by 0.3494 the spectral density is positive (dashed line in
the Figure), and the forward innovation model can be obtained. A more
detailed analysis of this system including a full Monte-Carlo analysis and
plots for the forward innovation model is given in Section 4.5.
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Figure 4.1: The idea of the method presented by Peternell and explored in
Subsection 4.2.1 is to increase Λ̂0 so that the spectral density Φ̂(z) is positive
for all z on the unit circle. The spectral density of Example 4.1 is shown in
the figure (solid line) and clearly negative in the neighborhood of the arrow in
the figure. The lifted spectral density (dashed line) is positive over the entire
frequency range. In Subsection 4.2.2 an improved version of this algorithm is
discussed which changes Ĝ rather than Λ̂0 but has largely the same effect on
the spectral density. A full Monte-Carlo analysis on the system in Example 4.1
is given in Section 4.5.

4.2.2 Altering Ĝ

A slightly adapted version of the former approach is proposed in [139]. Again,

a matrix Λ̃0 = Λ̂0 + cIl, c > 0 is sought to make the spectral density positive
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for all z on the unit circle. However, in a second step the change cIl to Λ̂0 is
transferred to the matrix Ĝ and the original Λ̂0 is used in the covariance model.
Practically, the method amounts to finding a solution P̂ to the Riccati equation

P̂ = ÂP̂ ÂT + (Ĝ− ÂP̂ ĈT )(Λ̃0 − ĈP̂ Ĉ
T )−1(Ĝ− ÂP̂ ĈT )T ,

where-after a G̃ is sought such that

P̂ = ÂP̂ ÂT + (G̃− ÂP̂ ĈT )(Λ̂0 − ĈP̂ Ĉ
T )−1(G̃− ÂP̂ ĈT )T . (4.5)

Note that in the latter equation, Λ̃0 was again replaced by Λ̂0. The equation is
quadratic in the unknown G̃ and can easily be solved. The procedure proposed
in [139] determines Cholesky factors L1 and L2 such that

LT
1 L1 = Λ̂0 − ĈP̂ Ĉ

T , LT
2 L2 = Λ̃0 − ĈP̂ Ĉ

T ,

and calculates G̃ as

G̃ = ĜL−1
2 L1 + ÂP̂ ĈT (Il − L

−1
2 L1).

It can easily be checked that this is indeed a solution to (4.5). The resulting

model (Â, G̃, Ĉ, Λ̂0) is positive real. It is obvious that this method only works
for stable models, which can be considered to be its biggest disadvantage.

4.2.3 Constrained optimization using Semi Definite Pro-
gramming

In [102] a proposal was made for a new identification scheme based on existing
stochastic subspace methods and Semi Definite Programming (SDP). A stable
Ã is obtained by solving:

(Ã, P̂ ) = arg min
A,P
‖(A− Â)P‖2 s.t.

{
P > 0
P −APAT > 0

Positive realness is thereafter imposed by solving a similar SDP-problem
involving vectors of stacked covariance sequences. The algorithm is quite
involved and a full analysis is beyond the scope of this thesis. The interested
reader is referred to [102]. Note that this algorithm is applicable to stable as well
as unstable models and therefore more widely usable than the other methods
so far discussed.

4.2.4 Using the residuals in a least-squares approach

As outlined in 3.6.4, estimates for the matrices A and C in stochastic subspace
identification can be obtained using the shift-invariance property of the extended
observability matrix Γi, or using the steady state Kalman filter state sequences
X̃i and X̃i+1 through the equation

[
X̃i+1

Yi|i

]
=

[
A
C

]
X̃i +

[
ρ̂w

ρ̂v

]
. (4.6)
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In line with what is done in the combined stochastic deterministic case, the
residuals ρ̂w and ρ̂v in (4.6) can in principle be used to obtain estimates for the
noise matrices Q, R and S as

[
Q̂ R̂

R̂T Ŝ

]
= E

{
1

j

[
ρ̂w

ρ̂v

] [
ρ̂T

w ρ̂T
v

]}
, (4.7)

which does not involve an implicit calculation of the covariance model and avoids
possible positive realness problems. A drawback of this approach is that the
noise matrices are only consistently estimated for i→∞. Hence the reason why
the approach involving the Riccati equation is much more commonly used in
stochastic subspace identification. However, in case of positive realness problems
it is proposed in [147] to bypass the Riccati equation and use (4.7), ignoring
the bias that will be introduced. An advantage of this approach is that it is
intuitive and perfectly in line with what is done in the stochastic-deterministic
case. Again, the biggest disadvantage is that this approach is limited to stable
covariance models.

4.3 Imposing positive realness using Tikhonov
regularization

In this section, a new method will be proposed to impose positive realness
on a covariance model Â, Ĝ, Ĉ, Λ̂0 using the concept of weighted Tikhonov
regularization on A and C. Tikhonov regularization, which is discussed in
more detail in Appendix C is an effective way to deal with ill-conditioned
least-squares problems or impose certain conditions on the solutions of such
problems. In this section it will be shown that using Tikhonov regularization,
positive-realness can be imposed on the covariance model obtained in stochastic
subspace identification methods. The presented method works for stable as
well as unstable models and will be shown to outperform existing approaches in
Section 4.4.

4.3.1 Regularization on Â and Ĉ

We will assume that estimates Â and Ĉ for A and C are obtained using the
state estimates X̃i and X̃i+1 through (4.6). Formally, this is written as

(Â, Ĉ) = argmin
A,C

J1(A,C), (4.8)

with

J1(A,C) =

∥∥∥∥
[
X̃i+1

Yi|i

]
−

[
A
C

]
· X̃i

∥∥∥∥
2

F

.

To impose positive realness, we will add a regularization term to the cost
function J1(A,C) from (4.8):

(Ãc, C̃c) = argmin
A,C

(J1(A,C) + cJ2(A,C)) , (4.9)
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with

J2(A,C) = Tr

([
A
C

]
W

[
A
C

]T
)
,

where c ≥ 0 is a positive real scalar and W a positive definite matrix of
appropriate dimensions that satisfies W − ĜΛ̂−1

0 ĜT ≥ 0. A typical choice is
the identity matrix, which is motivated by [74].

In order to get a feel for the effects of the addition of the regularization term
cJ2(A,C) we note that a similar regularization term cTr

(
AWAT

)
, involving

only the system matrix A was described in [142], and was shown to impose
stability on a model. This can intuitively be understood from the fact that with
W the identity matrix, the term Tr

(
AWAT

)
is nothing else than the sum of

the squared poles of the system. Hence, adding an extra term cTr
(
AWAT

)

to the costfunction effectively drags the poles inside the unit circle as c is
increased. Although for the term cJ2(A,C) such an intuitive reasoning is not
straightforwardly available, we will prove that by the choice of the regularization
term cJ2(A,C) the covariance model can not only be made stable, but also
positive real, provided the regularization coefficient c is chosen sufficiently large.
A further advantage of the regularization term is that the problem (4.9) remains
quadratic and that the optimal solution follows from a linear set of equations:

[
Ãc

C̃c

]
=

[
X̃i+1

Yi|i

]
·X̃T

i ·
[
X̃iX̃

T
i + cW

]−1

=

[
Â

Ĉ

]
X̃iX̃

T
i

[
X̃iX̃

T
i + cW

]−1

, (4.10)

where we remind the reader that Â and Ĉ are the unregularized estimates for
A and C based on a finite set of output covariances. From the optimality of the
least squares estimate (4.10), it follows that for c1, c2 ≥ 0

J1(Ãc2 , C̃c2) + c1J2(Ãc2 , C̃c2) ≥ J1(Ãc1 , C̃c1) + c1J2(Ãc1 , C̃c1), (4.11)

J1(Ãc1 , C̃c1) + c2J2(Ãc1 , C̃c1) ≥ J1(Ãc2 , C̃c2) + c2J2(Ãc2 , C̃c2), (4.12)

where (4.12) can be rewritten as:

J1(Ãc1 , C̃c1) + c1J2(Ãc1 , C̃c1) + (∆c)J2(Ãc1 , C̃c1) ≥

J1(Ãc2 , C̃c2) + c1J2(Ãc2 , C̃c2) + (∆c)J2(Ãc2 , C̃c2),
(4.13)

with ∆c = c2 − c1. Combining (4.11) and (4.13) it is easily seen that the

regularization term J2(Ãc, C̃c) is a non-increasing function of c.
The idea of using regularization to deal with undesirable properties of an

estimator is by no means new. The concept of regularization amounts to
reducing the variance of an estimator at the expense of introducing a hopefully
small bias, the so-called bias-variance trade-off. In function approximation,
for instance, regularization is used to impose a certain amount of smoothness
and deal with the well known problem of over-fitting [55]. Other applications
are found in areas as neural networks [18], Support Vector Machines [132],
and system identification [130]. Furthermore, some known techniques can be
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rewritten in a regularization context. The technique described in [142] to impose
stability on a model using regularization, for instance, is essentially equivalent
to a technique described in [28], provided a certain choice for the weighting
matrices is made in the former reference. In a sense, most classical algorithms
outlined in Section 4.2 can also be considered as a form of regularization, in that
an undesirable property of the covariance model is removed at the expense of
the introduction of a small bias. As mentioned before the type of regularization
that is used in this chapter is known as weighted Tikhonov regularization and
is briefly explained in Appendix C

4.3.2 Choosing the regularization parameter

It will be shown in the following lemma that, by using the regularization
term introduced in (4.9), positive realness can always be imposed provided the
regularization coefficient c is chosen sufficiently large [65].

Lemma 4.1. Regularization on Â and Ĉ: Let Ĝ, Λ̂0, Â, Ĉ be given. Let
W ≥ 0 be chosen such that W − ĜΛ̂0Ĝ

T ≥ 0, and define Σ̂ = X̃iX̃
T
i , L =

Σ̂
[
ÂT ĈT

] [W Ĝ

ĜT Λ̂0

]−1 [
Â

Ĉ

]
Σ̂, P0 = Σ̂W−1Σ̂ − L. Suppose the covariance

model (Â, Ĝ, Ĉ, Λ̂0) is not positive real. Then there exists a c∗ such that the

system (Ãc, Ĝ, C̃c, Λ̂0), with Ãc and C̃c as in (4.10), is positive real for c ≥ c∗,
with c∗ = maxi|θi∈R+θi, and {θi}

2n
i=1 the set of generalized eigenvalues of the

following eigenvalue problem (with n the model order):

θ = λ

([
0n −In
P0 2Σ̂

]
,−

[
In 0n

0n W

])
.

Proof. We show that (4.4), with A, C, G and P replaced by Ãc, C̃c, Ĝ and P̂ ,

holds under the assumptions of the lemma for P̂ = W . This means that

[
W Ĝ

ĜT Λ̂0

]
−

[
ÃcWÃT

c ÃcWC̃T
c

C̃cWÃT
c C̃cWC̃T

c

]
≥ 0, (4.14)

where the first term is positive semidefinite since W ≥ 0, W − ĜΛ̂−1
0 ĜT ≥ 0,

and Ãc and C̃c are as defined in (4.10). Notice that the left hand side of (4.14)
can be seen as the Schur complement of the following matrix (see Appendix
B for an introduction into the Schur complement and its relation to positive
definiteness of a matrix):




W Ĝ ÂΣ̂

ĜT Λ̂0 ĈΣ̂

Σ̂ÂT Σ̂ĈT (Σ̂ + cW )W−1(Σ̂ + cW )


 ≥ 0, (4.15)
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which must be positive semi-definite since (4.14) holds and (Σ̂ + cW )W−1(Σ̂ +
cW ) is positive semi-definite by construction. Again taking the Schur comple-

ment of (4.15), with W − ĜΛ̂−1
0 ĜT ≥ 0, we obtain

(Σ̂ + cW )W−1(Σ̂ + cW )−L ≥ 0.

This can also be written as

c2W + 2cΣ̂ + Σ̂W−1Σ̂−L ≥ 0. (4.16)

Equation (4.16) is clearly satisfied for c → ∞. The exact lower bound c∗ for
(4.16) to hold is given by the largest non-negative root of

det
(
c2W + 2cΣ̂ + Σ̂W−1Σ̂−L

)
= 0.

Using the definition of P0, this reduces to

det
(
c2W + 2cΣ̂ + P0

)
= 0 ⇐⇒ det

(
c
(
cW + 2Σ̂

)
+ P0

)
= 0

⇐⇒ det

(
c

[
In 0n

0n W

]
+

[
0n −In
P0 2Σ̂

])
= 0.

From Lemma 4.1 it follows that a positive real model is always obtained for
c ≥ c∗, and in particular for c = c∗. Furthermore, since any positive real
model is necessarily stable (which follows immediately from the upper left part
of (4.4)), stability is automatically guaranteed. However, c∗ can be a too
conservative estimate. In general it seems reasonable to keep the amount of
regularization as low as possible. Hence one should search for the smallest
possible c ≤ c∗ for which a positive real model is found. A lower bound cs
for c can be found from a theorem presented in [142], where cs follows from
a generalized eigenvalue problem and is shown to be the smallest c imposing
stability on the estimated covariance model. As shown in Figure 4.2, a minimal
c imposing positive realness will always satisfy cs ≤ c ≤ c∗. When the realization
(Ãcs , Ĝ, C̃cs , Λ̂0) is not yet positive real, i.e., Φ(z) < 0 for a certain z = ejθ, we
can find a c ≥ cs imposing positive realness, for instance by applying a bisection
algorithm or an iterative search with progressively refined grid on the interval
cs ≤ c ≤ c∗.

4.4 Comparing the presented algorithm to ex-
isting techniques

In this section we will compare the presented algorithm to the existing
techniques discussed in the beginning of this chapter. This comparison will
be performed by hand of a set of Monte-Carlo simulations.
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c*

stability guaranteed positive realness guaranteed

optimal amount of regularization

unstable

cs

0
c

Figure 4.2: The optimal amount of regularization c is certainly larger than the
amount of regularization that is needed to make the covariance model stable cs.
Furthermore it is certainly smaller or equal to c∗ which was shown to impose
positive realness in Lemma 4.1.

4.4.1 Examples

Gaussian, zero mean, unit variance, white noise sequences where fed into two
known systems to create a set of output sequences. For each output sequence the
stochastic subspace identification algorithm presented in Figure 3.8 was used in
combination with techniques to impose positive realness where necessary. The
systems that were used for the simulation are the following:

H1(z) =
(z − 0.99e±2j)(z − 0.98e±1.4j)(z − 0.99e±0.6j)(z − 0.9)(z + 0.9)

(z − 0.8e±2.1j)(z − 0.8e±j)(z − 0.8e±1.7j)(z − 0.8e0.8j)

H2(z) =
(z − 0.85e±2.3562j)(z − 0.8999e±0.7853j)(z − 0.9802)

(z − 0.9e±3j)(z − 0.9196e±0.1998j)(z − 0.8507)
,

where the latter is an example that was previously used in [102] to study the
performance of the SDP-technique. Results for these two systems are reported
in Table 4.1 for H1(z) and Table 4.2 for H2(z). The abbreviations for the
different techniques used in the tables are the following:

• REGbΛ0
: Adapting Λ̂0 such as explained in 4.2.1. A bisection algorithm

was used to determine the optimal change to Λ̂0.

• REG bG: Adapting Ĝ such as explained in 4.2.2. Again a bisection
algorithm was used in the implementation.

• SDP: A technique based on semi definite programming problems explained
in 4.2.3. The performance of the SDP-technique was evaluated using
software written by the authors and published on their website.

• RES: Estimating the noise model using the residuals such as explained in
4.2.4.

• REG bA, bC : Regularization on Â and Ĉ.

Each table contains the results of 4 different experiments, each with a different
choice of the parameters n (order of the model), i (number of block-rows),
and N (number of observations). For each experiment, 1000 Gaussian white
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n = 8, i = 16, N = 500 Not positive real 528/1000 Unstable 0/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 1.6 2.05 2.24 1.46 9.54 - -
Var(d∞) 0.324 0.666 0.624 0.239 504 - -
Mean(d2) 0.571 0.695 0.771 0.549 1.93 - -
Var(d2) 0.0181 0.0573 0.0566 0.0146 3.41 - -
Mean(d1) 1.35 1.76 1.82 1.32 3.47 - -
Var(d1) 0.0813 0.459 0.31 0.0673 3.38 - -

n = 8, i = 12, N = 500 Not positive real 794/1000 Unstable 4/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 1.55 2.19 2.42 1.48 3.59 2.48 8.01
Var(d∞) 0.253 0.684 0.665 0.518 37.2 0.0523 68.4
Mean(d2) 0.577 0.75 0.846 0.549 1.12 1 1.62
Var(d2) 0.0171 0.0662 0.0716 0.0159 0.274 0.00826 0.8
Mean(d1) 1.37 1.87 2.02 1.29 2.54 2.47 3.16
Var(d1) 0.0881 0.475 0.426 0.0662 0.843 0.0872 1

n = 8, i = 16, N = 1000 Not positive real 544/1000 Unstable 1/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 1.15 1.58 1.75 1.05 8 1.46 41.9
Var(d∞) 0.157 0.495 0.445 0.0977 1.84e+03 - -
Mean(d2) 0.413 0.533 0.602 0.418 1.48 0.55 8.05
Var(d2) 0.00939 0.0456 0.0407 0.00594 4.41 - -
Mean(d1) 0.972 1.5 1.41 1.03 2.74 1.44 10.3
Var(d1) 0.0431 0.716 0.208 0.0275 2.43 - -

n = 10, i = 16, N = 500 Not positive real 727/1000 Unstable 182/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 1.7 2.45 2.63 2.19 18.3 2.48 15.1
Var(d∞) 0.488 1.57 1.04 6.02 4e+03 2.31 3.76e+03
Mean(d2) 0.579 0.784 0.889 0.591 2.46 0.696 2.06
Var(d2) 0.0172 0.0907 0.117 0.0294 8.59 0.0298 9.65
Mean(d1) 1.36 1.98 2.12 1.35 4.08 1.65 3.47
Var(d1) 0.0709 0.643 0.76 0.0655 6.7 0.174 6.82

Table 4.1: Performance for various techniques over a Monte-Carlo simulation
with 1000 datasets generated using the linear system (H1(z)) with model orders
n = 8 or n = 10, block-rows i = 12 or i = 16 and number of data-pointsN = 500
or N = 1000. The number of covariance models that needed corrections for
stability and/or positive realness are given for every case. Mean and standard
deviations of the distance measures d∞, d2 and d1 over the 1000 datasets are also
given. Note that these measures are consistently lower for REG bA, bC and RES
with respect to other techniques. However, a disadvantage with RES is that its
applicability is limited to stable models. Another interesting observation from
the table is that the number of unstable models increases as the model order
increases and that the number of non-positive real covariance models increases
with decreasing i (see also Section 4.4.2).
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n = 5, i = 10, N = 500 Not positive real 419/1000 Unstable 39/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 5.07 10.1 11.1 9.6 49.1 6.71 27.7
Var(d∞) 4.45 15.2 19.5 836 5.19e+04 36.4 5.23e+03
Mean(d2) 1.31 2.95 3.31 1.41 4.76 1.75 3.72
Var(d2) 0.175 1.5 1.96 0.508 60.4 0.324 32
Mean(d1) 2.15 5.19 5.92 2.01 5.3 2.95 4.55
Var(d1) 0.356 4.65 6.54 0.602 25.5 0.84 18.6

n = 5, i = 8, N = 500 Not positive real 425/1000 Unstable 35/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 5.02 9.28 10.1 6.18 12.5 7.3 9.21
Var(d∞) 4.09 17 22.1 35 532 45.9 390
Mean(d2) 1.31 2.67 2.95 1.37 2.52 1.79 1.9
Var(d2) 0.167 1.66 2.24 0.335 7.57 0.601 1.88
Mean(d1) 2.14 4.66 5.24 1.96 3.42 2.95 2.95
Var(d1) 0.345 5.17 7.54 0.485 7.26 1.85 1.32

n = 5, i = 10, N = 1000 Not positive real 399/1000 Unstable 4/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 3.84 10.8 12.1 6.26 31 5.22 4.54
Var(d∞) 2.18 12.6 14.6 67.2 6.47e+03 1.71 1.74
Mean(d2) 1.02 3.24 3.66 1.14 4.16 1.56 1.41
Var(d2) 0.102 1.2 1.46 0.302 26.3 0.146 0.214
Mean(d1) 1.67 5.65 6.55 1.62 4.78 2.6 2.49
Var(d1) 0.214 3.9 5.01 0.389 16.6 0.404 0.57

n = 8, i = 10, N = 500 Not positive real 632/1000 Unstable 427/1000
Stable models Unstable models

REG bA, bC REG bG REGbΛ0
RES SDP REG bA, bC SDP

Mean(d∞) 5.87 9.93 10.8 7.81 21.7 8.61 33.6
Var(d∞) 7.83 16.1 19.9 66.7 9.27e+03 24.4 7.83e+04
Mean(d2) 1.38 2.74 3.06 1.47 2.53 1.79 2.81
Var(d2) 0.19 1.54 2.04 0.318 23.1 0.513 35.9
Mean(d1) 2.17 4.77 5.37 2.07 3.07 2.88 3.38
Var(d1) 0.317 5.14 7.33 0.371 8.42 1.5 19.6

Table 4.2: Performance for various techniques over a Monte-Carlo simulation
with 1000 datasets generated using the linear system (H2(z)) with model orders
n = 5 or n = 8, block-rows i = 8 or i = 10 and number of data-points N = 500
or N = 1000. The number of covariance models that needed corrections for
stability and/or positive realness are given for every case. Mean and standard
deviations of the distance measures d∞, d2 and d1 over the 1000 datasets are also
given. Note that these measures are consistently lower for REG bA, bC and RES
with respect to other techniques. However, a disadvantage with RES is that its
applicability is limited to stable models. Another interesting observation from
the table is that the number of unstable models increases as the model order
increases.
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noise-sequences with zero mean and unit variance were generated with the
desired length N , and an equal number of covariance models were produced.
The number of covariance models that needed corrections for stability and/or
positive realness are displayed in the table. Remembering that unstable models
are always non-positive real the latter number will always be greater than the
former. Below this information, the performance of each technique on these
non-positive real models is given. The performance on all non-positive real,
but stable models is given at the left. The results for the unstable models are
given at the right for those methods which can deal with unstable covariance
models. The performance measures d∞, d2, d1 used in the tables are norms of
the differences between the transfer functions of the simulated and the identified
stochastic models in forward innovation form:

dp =
∥∥∥H(z)− Ĥ(z)( bA, bK, bC,1)

∥∥∥
p
, p = 1, 2,∞.

4.4.2 Discussion

Two techniques, RES and REG bA, bC clearly outperform the others. For some
experiments the former results in slightly better estimates. However, problems
with this method might occur as the system order is increased. To visualize
this, in Figure 4.3 the estimated spectral density Ĥ1(z)Ĥ1(z)

T for the first
example (H1(z)), fourth experiment (n = 10, i = 16, N = 500) averaged over
all 818 stable runs (including the ones which did not need correction) are given,
together with the spectral density of the original model and a 2σ error bound
on the latter. Hereby, σ is the standard deviation on the spectral density as
obtained from the Monte-Carlo simulation. It is clear that the uncertainty on
the obtained spectral density is much higher when using the RES technique
than when using the REG bA, bC technique. As for the complexity, all algorithms

discussed in this chapter are roughly O(qn3), with q the number of iterations
necessary to find a regularization constant c or to solve an SDP problem. For
RES, q = 1 as no optimization is performed.

Apart from the performance of the different techniques, it is also interesting
to have a look into the influence of the parameters n, i and N on the occurrence
of positive realness problems. In Table 4.1, decreasing i from 16 to 12 clearly
resulted in a much higher number of non positive real models. In Table 4.2,
however, the number of non positive real models remained largely the same
when decreasing i. It is well known that when the modeling order n increases,
the probability to obtain unstable models increases considerably (see also [142]).
This can also be observed in Tables 4.1 and 4.2. Finally, it can be observed that
for the examples described in this chapter the influence of N on the occurrence
of positivity problems is relatively low compared to that of n and i.



4.5 A practical application 73

0 1 2 3
−30

−20

−10

0

10

20

30

dB

0 1 2 3
−30

−20

−10

0

10

20

30

dB

0 1 2 3
−30

−20

−10

0

10

20

30

dB

0 1 2 3
−30

−20

−10

0

10

20

30

dBPSfrag replacements

(a) RES (b) SDP

(c) REG bG (d) REG bA, bC

Figure 4.3: Averaged Spectral density over 1000 runs for the example (H1(z))
with n = 10, i = 16, N = 500 (dashed line) with 2σ error region (dotted line).
The solid line is the spectral density of the original model used for simulation.
Two techniques, RES and REG bA, bC clearly outperform the others.

4.5 A practical application

The regularization procedure described in this chapter was used to identify
a stochastic subspace model from 2 minutes of measurements on a steel
transmitter mast for cellular phone networks [115], which is displayed in Figure
4.4. Nine accelerometers were placed on the mast and the mast’s response on
the wind turbulence was measured with a sampling rate of 100Hz for about

5 minutes. Thereafter, the data was downsampled by a factor of 8. A 16th-
order stochastic SISO subspace model was created based on data from one
of the accelerometers and using subspace identification with i, the number of
block rows, set to 32. For this set of parameters a stable, but non positive
real covariance model was obtained, where-after the different regularization
techniques described in this chapter were used to obtain positive real models.
The original measurement spectrum and the modeled spectra resulting from the
two best performing techniques in the simulations of section 4.4, namely RES
and REG bA, bC are displayed in Figure 4.5, together with the absolute values of
the differences between them. Note that all the spectra are strictly positive.
Also note that the RES technique performs better in the regions between the



74 The positive realness problem

Figure 4.4: Vibration measurements on a steel transmitter mast were used
to evaluate the performance of the algorithm proposed in this chapter. The
transmitter mast is located in Antwerp, Belgium and is part of a cellular phone
network.

peaks, while REG bA, bC is seen to fit the peaks themselves better. For comparison,
the variances of the model fit errors for REG bG and SDP are given below the
figure.

4.6 Conclusions

Stochastic subspace methods for the identification of linear time-invariant
systems are known to be asymptotically unbiased [143]. However, if a finite
amount of data is used, the procedure might break down due to positive realness
problems. In this chapter a regularization approach was proposed to impose
positive realness on a formerly identified covariance model. It was shown that,
if an adequate amount of regularization is used, a positive real model can always
be obtained. The simulation results indicate that this new approach in general
yields better models than other existing techniques. Similarly, the approach was
seen to be useful for the analysis of practical datasets as in the area of structural
identification and vibration analysis.
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Figure 4.5: Output spectra of one of the accelerometers on a steel mast (dashed
lines), together with the estimated spectra using REG bA, bC and RES (full line).
The absolute differences between the spectra in the uppermost two figures are
depicted in the figures at the bottom. The variances of the differences are
3.71 · 10−6 for the REG bA, bC case and 11.05 · 10−6 for the RES case. In similar
experiments the variances for the REG bG and SDP techniques were found to be
10.47 · 10−6 and 15.05 · 10−6 respectively.
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Chapter 5

Ill-conditioning in subspace
identification

Over the last few years, experimental evidence has been mounting
that in certain experimental conditions, combined subspace identi-
fication algorithms, and especially the N4SID algorithm, may run
into ill-conditioning and lead to ambiguous results. Various reasons
for this phenomenon will be explored in this chapter and a recently
proposed solution, the so-called orthogonal decomposition method,
will be discussed. The orthogonal decomposition method will be seen
to differ from N4SID by the replacement of the oblique projection
with an orthogonal projection, and by a preliminary decomposition
of the system in a deterministic and a stochastic component. An
improved version of N4SID will thereafter be proposed which copies
the idea of the decomposition in a deterministic and a stochastic part
but maintains the oblique projection. In order to avoid conditioning
problems, regularization will be performed on the latter. It will be
shown that an improved regularized N4SID-algorithm is obtained
which can compete with the orthogonal decomposition method, even
under difficult experimental conditions.

5.1 Introduction

The majority of linear subspace identification algorithms with known inputs are
of the combined stochastic-deterministic type. The reason for the popularity
of these methods is that the estimated state sequence X̃i, which is expressed
as a function of the past input- and output-data contained in Wp, can
conveniently be interpreted as the result of a non-steady state Kalman filter
(see Subsections 3.5.4 and 3.5.5). This in contrast to approaches based on
separately parameterized stochastic and deterministic subsystems, introduced
in Section 3.7, where the estimated state is solely expressed in terms of the past

77
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inputs Up. Hence, combined stochastic-deterministic subspace approaches can
somewhat loosely be seen as the subspace equivalent of ARX modeling [84,85],
whereas an algorithm as the PI-MOESP is more closely related to the basic
ideas behind FIR modeling [116]. Especially for a small number of block-rows
i in Up, combined algorithms can be expected to outperform algorithms based
on separately parameterized models.

Nevertheless, it was observed in several papers [21, 25, 26, 89] that in
certain experimental conditions the standard combined stochastic-deterministic
subspace identification methods, and most notably the N4SID, may yield
unreliable results. It was argued in these publications that this behavior can
be explained in terms of an ill-conditioning of the multiple regression problem
underlying the oblique projection Yf/

Uf

Wp and/or a correlation between the

stochastic contribution to the outputs of the system and the system inputs. In

PSfrag replacements
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Problems
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Figure 5.1: Short overview of two types of problems discussed in this chapter
(first line), possible solutions (second line), and algorithmic implementations of
these solutions (third line).

this chapter we will discuss both sources of ill-conditioning and show that they
are to a large extent caused by the same phenomenon, namely a high coloring in
the systems inputs. Existing methods to deal with the bad conditioning of the
oblique projection by replacing it by an orthogonal projection will be discussed
and analyzed. We will argue that combined methods such as PO-MOESP and
CVA, where the oblique projection is replaced by an orthogonal projection, have
some specific advantages over N4SID when faced with conditioning problems.
Nevertheless, in the presence of strong stochastic resonances in frequency bands
where the input power is low, any existing combined method will be seen to yield
unreliable results. Using separately parameterized model structures, based on
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the work in [21, 26] will be introduced as a remedy against this phenomenon.
Special attention will thereby go to the orthogonal decomposition method which
combines the advantages of PO-MOESP with a separate parameterization and
is introduced in [23] as the most likely candidate to replace classical combined
approaches when faced with conditioning problems.

The most important contribution of this chapter will be the introduction of
an alternative to the orthogonal decomposition algorithm which copies the idea
of the separate parameterization but reinstates the oblique projection Yf/

Uf

Wp

as the main geometrical operation to estimate the system state. An extra
regularization term will be added to the oblique projection to avoid possible
cases of ill-conditioning. Numerical results will be provided to prove that
under optimal as well as difficult experimental conditions, the newly proposed
regularized N4SID algorithm is competitive with the orthogonal decomposition
method. The aim of this chapter is thereby not the introduction itself of yet
another subspace method, but to demonstrate that regularization can play an
important role in the initial steps of subspace identification.

This chapter is organized as follows. In Section 5.2 possible causes of ill-
conditioning will be investigated. In Section 5.3 the orthogonal decomposition
method will be introduced as a solution to ill-conditioning, based on the work
presented in [21, 22, 26]. In Section 5.4 a new algorithm will be proposed based
on weighted regularization in the oblique projection Yf/

Uf

Wp. In Section 5.5,

finally, the performance of the newly proposed algorithm will be investigated
on a number of examples. A graphical overview of the problems, solutions and
resulting algorithms presented in this chapter is given in Figure 5.1.

5.2 An analysis of ill-conditioning in subspace
identification

5.2.1 Reasons for ill-conditioning

Two reasons are often cited in the literature [22, 25] for the occurrence of
conditioning problems in combined stochastic-deterministic subspace identifi-
cation algorithms. The first involves a strong correlation between the rows
of the past and future block-Hankel matrices Wp and Uf and centers around
the oblique projection which is implicitly or explicitly found in all combined
subspace algorithms. Its influence is mostly felt in the estimates for the system
matrices A and C. The second relates to stochastic contributions to the outputs
which are correlated with the system inputs, and leads to unreliable estimates
for B and D. Both cases will be discussed below.

The oblique projection as a source of conditioning problems

In the unifying Theorem 3.4 for combined stochastic-deterministic subspace
identification methods it was seen that a key component of these algorithms is
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the oblique projection of the future outputs Yf along the future inputs Uf onto
the past Wp. Following the notation in Chapter 3, we have:

Oi = Yf/
Uf

Wp =
j→∞

ΓiX̃i,

from which estimates for the extended observability matrix Γi and a non-steady
state Kalman filter sequence X̃i can be obtained. In essence this oblique
projection can be understood in a least squares regression framework where
matrices L̂1 and L̂2 are calculated as:

(L̂1, L̂2) = arg min
L1,L2

∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

(5.1)

and the oblique projection is given as Yf/
Uf

Wp = L̂2Wp. It is well known that

the least squares problem (5.1) is ill-conditioned if the condition number of the

regression matrix
[
W T

p UT
f

]T
is large. This typically happens when one or

more rows in the regression matrix are nearly parallel. An important measure
is the smallest principal angle between the space spanned by the rows of Wp and
the space spanned by the rows of Uf . Denoting this angle by θmin and following
the derivation in 2.5 for the condition number of a general oblique projection
we have:

CondL

(
PT
{W T

p |UT
f }

)
=

1

sin(θmin)
. (5.2)

As mentioned in the introduction, it is reported in various articles [21, 26, 89]
that combined stochastic-deterministic subspace identification algorithms, and
especially the N4SID, tend to give bad results if the condition number (5.2) is
high, a situation that is graphically illustrated in Figure 5.2. This situation
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Figure 5.2: Possible ill-conditioning of the oblique projection due to a near
parallelism between Wp and Uf . If Wp and Uf are nearly parallel, a small
variation on Yf can have a relatively large effect on the oblique projection in
the direction of the principal directions of Wp corresponding to small principal
angles.

will typically occur when strongly colored inputs are applied to the system.
In [35–37] it was proven that there is a strong correlation between the amount
of coloring in the input signal u and the principal angles between the row spaces
formed by the block Hankel matrices Up and Uf . More specifically, the principal
angles between Up and Uf are known to decrease with increasing coloredness of
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the input. Furthermore, if the colored inputs are generated by filtering a white
noise sequence through a known linear system, the expected principal angles can
be calculated exactly if the amount of measurements goes to infinity (j →∞).
From the definition of the principal angle between two spaces in Section 2.4 and
the fact that Wp contains the matrix Up it follows directly that θmin will be
smaller or equal to the smallest principal angle between Up and Uf . Hence, a
large amount of coloring in the input signal will give rise to a high condition
number (5.2) and an unreliable estimate for Γi and X̃i. This will in turn lead
to unreliable system matrix estimates, especially for the matrices A and C [25].
However, even if the principal angles between Up and Uf are relatively large,
the condition number of the oblique projection can still be high since the past
data matrix Yp can in principle also be correlated with Uf . In [26] it is shown
that for a given linear system, a set of probing inputs can always be designed
which generate data with minimal principal angles between Wp and Uf .

Correlations between stochastic contributions to the outputs and the
system inputs

Another possible source of ill-conditioning arises from correlations between
stochastic contributions to the outputs and the system inputs. Following the
notation from Subsection 3.5.1 and Subsection 3.5.2 it is easily verified that for
a combined deterministic system of the form (3.26), we have

yd
t = Dut +

∞∑

i=0

CAiBut−i, ys
t = vt +

∞∑

i=0

CAiwt−i, ∀t.

As vk and wk are uncorrelated with ul for all k, l, the following properties result:

E
{
ys

ku
T
l

}
= 0l×m, E

{
ys

ky
d
l

T
}

= 0l×n, ∀k, l. (5.3)

Equation (5.3) and especially the fact that the stochastic outputs ys
k are

orthogonal to the system inputs is what ultimately allows to separate the
stochastic and deterministic contributions to the outputs in system identifi-
cation procedures. In combined stochastic-deterministic subspace identification
algorithms the separation of the stochastic and the deterministic contributions
to the outputs is performed after estimation of the joint state sequences X̃i

and X̃i+1 and the extended observability matrix Γi using one of the procedures
described in Subsections 3.5.6 and 3.5.7, which typically amount to a regression
in the system inputs, whereby the residuals take up the role of the process- and
measurement noise. When using an unbiased algorithm to estimate the system
matrices, the estimated model is known to converge to the true system as the
amount of data goes to infinity.

Nevertheless, when dealing with finite amounts of data in an identification
context, block Hankel matrices filled with stochastic outputs such as Y s

f and Y s
p

are usually not entirely uncorrelated with input block Hankel matrices as Up

and Uf . As will be seen in the examples throughout this chapter, this regularly
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results in stochastic contributions to the measured outputs being incorrectly
introduced into the deterministic subsystem. This is known to result in bad
estimates for the system matrices B and D and the deterministic transfer
function as a whole, specifically in regions of the frequency band where the
input power is low [25].

It should be noted that this problem is in essence not limited to subspace
identification algorithms. In fact, it is found in one form or another in any
linear system identification approach, including non-parametric estimates for
the frequency response function (see Example 5.1). In the absence of any
known excitation for certain frequency bands, it is impossible to obtain a good
estimate for the deterministic transfer function in these frequency bands, as can
for instance be observed from the Cramer-Rao bound [26,32,126]. In this case,
even weak correlations between the stochastic contribution to the outputs and
the system inputs can lead to stochastic resonances being incorrectly attributed
to the deterministic subsystem.

Since this thesis is specifically oriented towards subspace system identifica-
tion algorithms, the discussion in this chapter will mainly focus on the subspace
specific first problem, namely the ill-conditioning in the oblique-projection.
Nevertheless, in Subsection 5.3.2 it will be shown that by actively removing the
stochastic components of the measured data, the estimate for the deterministic
subsystem can considerably be improved.

Example 5.1 The example that will be considered here was introduced in [24]
as a typical case of ill-conditioning in subspace identification algorithms.
The example consists of a deterministic system with transfer function

Hd(z) =
(z + 0.1− 0.8i)(z + 0.1 + 0.8i)(z − 0.5)

(z − 0.75− 0.55i)(z − 0.75 + 0.55i)(z − 0.9)
,

driven by a colored input which is obtained by filtering a zero mean,
unit variance, white Gaussian noise sequence with length 500 through the
system

Hu(z) =
(z + 0.6± 0.6i)(z + 0.1± 0.8i)(z − 0.7)

(z − 0.7± 0.4i)(z − 0.2± 0.7i)(z − 0.85)
.

10% of colored output noise is added, obtained by filtering a zero mean
white Gaussian noise sequence through the system

Hs(z) =
(z − 0.5)(z − 0.7)

(z + 0.2− 0.6i)(z + 0.2 + 0.6i)
.

The transfer functions of Hd(z), Hu(z) and Hs(z) are displayed in
Figure 5.3. The input and output spectra, and the experimental
frequency response function obtained from the constructed input and
output sequence are displayed in Figure 5.4 and reveal possible difficulties
with the estimation of the deterministic transfer function in the high
frequency regions. Results for the transfer function estimates of two
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Figure 5.3: Transfer function of the true deterministic subsystem Hd(z) (solid),
the stochastic subsystem Hs(z) (dashed) and the system generating the colored
input signal Hu(z) (dotted) in Example 5.1.
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Figure 5.4: Experimental input power spectrum (left), output power spectrum
(right) and the frequency response function (middle) in Example 5.1. A näıve
calculation of the experimental frequency response function yields large peaks
in certain regions of the spectrum were stochastic resonances are found together
with small inputs. Although subspace identification methods have an entirely
different nature than this näıve calculation, it is known that they too tend to
have difficulties in separating the stochastic and the deterministic subsystem,
specifically when the inputs are highly colored.

subspace identification algorithms, N4SID and PO-MOESP, performed
on these measured input and output samples are displayed in Figure 5.5.
During the identification, the order was fixed to 5, and the number of
block-rows, i in the Hankel matrices to 10. The algorithm that was
used is an unbiased combined state-based algorithm reported in [147].
It is obvious from the figure that both algorithms were unable to yield
perfect models. This is due to the presence of a stochastic resonance in
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the higher frequency regions where virtually no inputs are present, and
the strong coloring of the input signal resulting in θmin = 0.98 degrees as
the smallest principal angle between Wp and Uf for the given example.
Note however that the PO-MOESP algorithm performs better than the
N4SID algorithm. This phenomenon will be discussed in Subsection 5.3.1.

5.2.2 Some parallels with bad conditioning in ARX iden-
tification

It was shown in [98, 125] that the problem of ill-conditioning of a regression
problem in system identification is not limited to subspace algorithms. In fact,
the classical ARX identification approach is known to suffer from problems of a
similar nature. The polynomial coefficients ak, k = 1, . . . , n and bl, l = 1, . . . ,m
of a SISO ARX model

yt =
n∑

k=1

akyt−k +
m∑

l=1

blut−l,

are often obtained by solving a least squares problem of the following form:

(âk, b̂l) = arg min
ak,bl

∥∥∥∥Yn|n −
[
an . . . a1 bm . . . b1

] [ Y0|n−1

U0|m−1

]∥∥∥∥
2

F

,

(5.4)
which is ill-conditioned in case of a near parallelism of rows in the regression
matrix. As was seen in [98], this will typically be the case when inputs and/or
outputs are limited to a small portion of the frequency band. This can easily
be understood from the following lemma.

Lemma 5.1. Condition number and principal angles: Consider a matrix
A ∈ R

i×N with i ≤ N and two index vectors I1 ∈ R
i1 , I2 ∈ R

i2 so that i1+i2 ≤ i
and I1 and I2 completely disjunct. Then

Cond(A) ≥
1

sin (θmin (A(I1, :) ^A(I2, :)))
,

where θmin (A(I1, :) ^A(I2, :)) denotes the smallest principal angle between the
row spaces of A(I1, :) and A(I2, :).

Proof. See Appendix D.1.

Taking into account the relations between subspace angles and signal coloring
in [35–37], the link between ill-conditioning and coloring of the inputs and/or
outputs is now obvious.

The above also serves to highlight differences and similarities between ARX-
and subspace-identification algorithms. Both are to a certain extent built
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Figure 5.5: Estimated deterministic transfer function of the N4SID model
(dashed) and the PO-MOESP model (dotted) compared to the true transfer
function (solid). Both combined stochastic-deterministic subspace identification
algorithms are seen to suffer from ill-conditioning. The estimate of the N4SID
model is particularly bad in the high frequency regions.

around least-squares problems and therefore subject to possible bad conditioning
in the regression matrix. On the other hand, in subspace identification the result
L̂2 of the least squares estimate (5.1) is again multiplied with the past data in

Wp to obtain O = L̂2Wp. Hence, a possible near parallelism of rows within Wp

does not pose any problems. As a result subspace identification algorithms are
much more robust to highly colored outputs, but do suffer from coloring in the
input-signal.

Example 5.2 We consider the following SISO system:

A(z)y = B(z)u+ e, (5.5)

with A and B polynomials in the forward shift operator z where B(z) =
z6 + 0.8z5 + 0.3z4 + 0.4z3 and A(z) = (z − 0.98e±i)(z − 0.99e±1.6i)(z −
0.97e±0.4i). A dataset is generated from this system with u and e
zero mean white Gaussian noise sequences of length 1000 with standard
deviation 2 and 0.1 respectively. ARX identification using the least-
squares approach given in (5.4), with n = 6 and m = 4, was used to
obtain estimates for the polynomials A(z) and B(z). The true transfer
function together with the estimated one is shown in Figure 5.6.a. In
a second experiment, 1% of output noise was added to the outputs and
again estimates for A(z) and B(z) are obtained using (5.4). The result
is displayed in Figure 5.6.b. Note that the transfer function estimates



86 Ill-conditioning in subspace identification

have been gravely affected by the addition of the small amount of output-
noise. The reason for this is found in the condition number of the output
regression matrix at the right hand side of (5.4) which turns out to be
quite high for this example due to the fact that the output spectrum is
concentrated in the lower frequency bands of the spectrum. As a result,
the least-squares problem (5.4) is ill-conditioned. An N4SID and a PO-
MOESP subspace estimate based on the noisy dataset are displayed in
Figures 5.6.c and 5.6.d. The subspace identification algorithm that was
used for these estimates is the biased combined state-based algorithm
shown in Figure 3.7 with the proper N4SID and PO-MOESP weighting.
The order was chosen equal to 6 and the number of block rows equal to
10. From the figure, it is clear that subspace identification algorithms are
much more robust against a strong coloring of the output spectrum.

5.3 The orthogonal decomposition method

The two main components of the orthogonal decomposition method as proposed
in [21, 26] are the replacement of the oblique projection by an orthogonal
projection, and the use of a separately parameterized deterministic and
stochastic model. Both changes will be discussed in Subsections 5.3.1 and
5.3.2, respectively. In Subsection 5.3.2 it will also be seen that the orthogonal
decomposition method is very closely related to the existing PI-MOESP
algorithm described in Section 3.7.

5.3.1 Replacement of the oblique projection by an orthog-
onal projection

It was seen in Section 5.2 that under the presence of highly colored inputs,
the oblique projection, which is implicitly or explicitly present in combined
subspace identification algorithms is potentially ill-conditioned. However, it has
been known for some time [1,52] that the quality of combined subspace estimates
is strongly influenced by the choice of the weighting matrices W1 and W2 in the
unifying Theorem 3.4. In general, and especially under the presence of colored
inputs, algorithms employing the PO-MOESP or CVA weighting scheme are
known to outperform the N4SID on a large variety of examples [52, 147]. This
is largely due to the right multiplication of the oblique projection by the matrix
W2 = ΠUf

⊥ which removes the correlations with Uf from the past data Wp and
essentially replaces the oblique projection Yf/

Uf

Wp by an orthogonal projection

Yf/(Wp/U
⊥
f ) as also seen in Table 3.1. The orthogonal decomposition method

as proposed in [26] employs a PO-MOESP weighting scheme (see also Figure
5.1).

As will be shown in Example 5.3 the replacement of the oblique projection by
an orthogonal projection leads to a considerable improvement in the estimates
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Figure 5.6: True (solid) and estimated (dashed) transfer functions for Example
5.2 using different identification methods and different amounts of output noise.
In sub-figure (a), ARX was used on a dataset without output noise. In sub-
figure (b), ARX was used on a dataset with 1% of output noise. In subfigures
(c) and (d), N4SID and PO-MOESP were respectively used on the same dataset
with 1% of output noise. The ARX method is seen to be very sensitive to the
output noise due to the concentration of the output signal in the lower frequency
range. Subspace methods are seen to be more robust against this type of output
induced ill-conditioning.

of the system matrices A and C. In [145,147] the superior behavior of the PO-
MOESP and CVA algorithm was explained by noting that right multiplication of
the oblique projection by W2 = ΠUf

⊥ amounts to a form of frequency weighted
balancing where the highest weight is given to those regions in the frequency
spectrum where the input power is high. Nevertheless, the replacement of the
oblique projection by an orthogonal projection does not solve the problem of
stochastic components of the system which are incorrectly attributed to the
inputs. Hence, even when using an orthogonal projection, the estimates of B
and D are still known to be bad in certain experimental conditions.

Example 5.3 The presence of a stochastic resonance, combined with a large
amount of coloring in the inputs, was seen to lead to ill-conditioning in
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the earlier discussed Example 5.1. Following up on this example, we
generate 100 datasets with the same statistics as the dataset used to
obtain the results for Example 5.1. For each of these datasets, the poles of
the deterministic subsystem were estimated from the fifth order extended
observability matrix Γi following from the projection Yf/

Uf

Wp =
j→∞

ΓiX̃i

and Yf/(Wp/U
⊥
f ) =

j→∞
ΓiX̃i/U

⊥
f respectively. The results for both cases,

which correspond to the N4SID and the PO-MOESP algorithm, are shown
in Figure 5.7. Clearly, the replacement of the oblique projection Yf/

Uf

Wp
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Figure 5.7: Estimates N4SID and PO-MOESP poles (dots) for 100 trials using
datasets generated according to Example 5.1. The true poles are displayed using
a large ’+’ for poles of the deterministic subsystem and a ’X’ for poles of the
stochastic subsystem. It is clear that the PO-MOESP approach yields far better
estimates for the system poles due to the replacement of the oblique projection
by an orthogonal projection.

by an orthogonal projection Yf/(Wp/U
⊥
f ) leads to much better estimates

for the extended observability matrix, and consequently the system poles.
This largely explains the better overall performance for the PO-MOESP
algorithm in Example 5.1. Nevertheless, as was seen in the latter example,
even the PO-MOESP algorithm yields a suboptimal estimate for the
transfer function in the high frequency range due to the occurrence of
stochastic resonances in regions of the frequency spectrum where the
input power is low. Although the estimates for A and C using the PO-
MOESP algorithm are reliable, these resonances result in bad estimates
for the matrices B and D. In Subsection 5.3.2, it will be seen that
this remaining problem can be dealt with using separately parameterized
model structures.
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5.3.2 A separately parameterized model structure

Although most known subspace approaches are of the combined stochastic-
deterministic type, recently some renewed interest has emerged in subspace
identification algorithms that identify separately parameterized models (see
Section 3.7 for a description of this type of model structure). Arguments in favor
of the use of separately parameterized models largely center around the claim
that in most practical cases the stochastic and deterministic system have little
common dynamics anyway [26]. Furthermore, by decoupling the identification
of the deterministic and the stochastic subsystem, different state-space bases can
be chosen for the deterministic and the stochastic state. One could for instance
choose to identify the deterministic system in a deterministically balanced basis
and the stochastic system in a stochastically balanced one. A last advantage
of the decoupling of the identification of the deterministic and the stochastic
system is an increased robustness against stochastic system components ending
up in the deterministic model as will be seen below.

Practical implementation

The first step in generating seperately parameterized models is the decoupling
of the future output matrix Yf in a deterministic and a stochastic component,
which is performed as follows:

Y d
f = Yf/

[
Up

Uf

]
, Y s

f = Yf/

[
Up

Uf

]⊥
.

A seperate identification procedure is thereafter used for the deterministic
subsystem and the stochastic subsystem. As we will mainly be interested in the
performance of the deterministic model, we will limit ourselves in this chapter
to the analysis of Y d

f . For further reading on the identification of the stochastic
subsystem we refer the reader to [21,26]. When using the PO-MOESP weighting
scheme as it is present in the orthogonal decomposition method, estimates for
the extended observability matrix and the state of the deterministic subsystem
are obtained as follows:

Y d
f /(Wp/U

⊥
f ) =

j→∞
ΓiX̃i/U

⊥
f , (5.6)

where-after A, B, C and D are estimated using one of the algorithms presented
in Subsection 3.5.6.

Relation to the PI-MOESP algorithm

As reported in [26], the projection (5.6) is nothing else than the basic projection
behind the PI-MOESP identification algorithm introduced in Section 3.7. This
follows immediately from the following lemma.
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Lemma 5.2. With U =
[
UT

p UT
f

]T
and following the basic notation for

subspace block Hankel matrices introduced in Chapter 3, the following relations
hold:

Y d
f /(Wp/U

⊥
f ) = Yf/(Up/U

⊥
f ), (5.7)

Y d
f /(Wp/U

⊥
f ) = Yf/(Wp/U

⊥
f )/U. (5.8)

Proof. See appendix D.2.

Equation (5.8) offers another view on the PI-MOESP algorithm. Namely that
of a PO-MOESP algorithm where the result of the orthogonal projection is
again projected on the system inputs. Note that this removes most of the
stochastic contributions from Oi. Stochastic contributions which survive the
projection due to weak correlations with the system inputs (see Subsection 5.2.1)
are removed in the SVD step where the system order is chosen equal to the
order of the deterministic subsystem instead of that of the combined stochastic-
deterministic system. This is also seen in Example 5.4.

Example 5.4 The PI-MOESP method with n = 3 and i = 10 is applied to
the dataset that was used in Example 5.1. The resulting transfer function
estimate together with that of the N4SID and the PO-MOESP method
is displayed in Figure 5.8. Where the PO-MOESP was earlier seen to
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Figure 5.8: Estimated deterministic transfer function of the N4SID model
(dashed), the PO-MOESP model (dotted) and the PI-MOESP model (dash-
dotted) compared to the true transfer function (solid). The PI-MOESP method
clearly outperforms the N4SID and the PO-MOESP method on this dataset due
to the use of a separate parameterization.

yield better results than the N4SID due to the replacement of the oblique
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projection by an orthogonal projection, using a separate parameterization
as is done in the PI-MOESP clearly leads to a further improvement in
the estimate of the transfer function on this dataset. A full statistical
analysis of the performance of different subspace identification methods
using Monte-Carlo simulations will be presented in Section 5.5.

In Example 5.4 it is observed that the PI-MOESP algorithm leads to a much
better estimate for the deterministic component of the system introduced in
Example 5.1, where a highly colored input was present. Other examples reported
in [26] yield similar results. Furthermore, an asymptotic variance analysis
performed in [26] theoretically confirms that in the case of highly colored inputs,
the PI-MOESP algorithm tends to outperform combined approaches. and
that the difference with respect to combined approaches with an orthogonal
projection (such as the PO-MOESP) is largely found in the accuracy of the
estimates for B and D.

Note that the PI-MOESP algorithm does not fit in the unifying Theorem
3.4, since the projection on U does not necessarily conserve the order of the
system.

5.4 A new algorithm based on regularization

In Section 5.2 it was seen that the N4SID method performs very badly in the
presence of highly colored inputs. This is mostly due to strong correlations
between the past Wp and the future Uf , leading to an ill-conditioned oblique
projection Yf/

Uf

Wp. In Subsection 5.3.1 it was argued that by removing

the influence of the future inputs in Uf from the past by changing the
oblique projection in an orthogonal projection, the conditioning of subspace
identification algorithms, and especially the estimation accuracy of A and C
can be improved. In this section it will be seen that instead of the somewhat
drastic removal of the entire influence of the future inputs from Wp, combining
the oblique projection with a more subtle regularization approach leads to
estimates for A and C of the same or better quality as those obtained using the
PO-MOESP. The result of the oblique projection can thereafter be projected
on the inputs to avoid stochastic contributions ending up in the state and
obtain reliable estimates for B and D. The algorithm so obtained is a possible
alternative to the PI-MOESP algorithm. Its performance will be studied in
Section 5.5.

5.4.1 A regularized oblique projection

The oblique projection in the regularized N4SID algorithm is obtained by solving
the following regularized least-squares problem:

(L̂γ
1 , L̂

γ
2) = argmin

L1,L2

(∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

+ γ‖L2Wp‖
2
F

)
,
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with γ a positive regularization constant. The regularization term ‖L2Wp‖2F
is a non-increasing function of γ and serves to keep the norm of the obtained
projection low. As will be seen shortly, the regularization term ‖L2Wp‖

2
F will

mainly influence the result of the projection along the principal directons of
Row(Wp) corresponding to small principal angles between Uf and Wp. This

reduces the variance on the obtained estimates of Γi and X̃i at the expense of
the introduction of a small bias. The regularized oblique projection Oi is found
as

[
L̂γ

1 L̂γ
2

]
= Yf

[
UT

f W T
p

]([UfU
T
f UfW

T
p

WpU
T
f (1 + γ)WpW

T
p

])−1

,

Oi = L̂γ
2Wp.

(5.9)

Noticing that a change in basis in Wp and Uf will not influence the calculation
(5.4.1), we assume without loss of generality that Wp and Uf are formed by a
set of orthonormal basis vectors for Row(Uf ) and Row(Wp) such that

UfU
T
f = Iim, WpW

T
p = Ii(m+l), UfW

T
p =

[
Λ 0im×il

]
,

with Λ ∈ R
im a diagonal matrix containing the cosines of the principal angles

between Wp and Uf . With this choice of basis, (5.9) can be rewritten as:

[
L̂γ

1 L̂γ
2

]
= Yf

[
UT

f W T
p

]


Iim Λ 0
Λ (1 + γ)Iim 0
0 0 (1 + γ)Iil



−1

,

Oi = L̂γ
2Wp.

Furthermore, for any row t in Lγ
1 and Lγ

2 , we have:

‖L̂γ
1(t, :)‖F = ‖L̂γ

1(t, :)Uf‖F ,

‖L̂γ
2(t, :)‖F = ‖L̂γ

2(t, :)Wp‖F ,

which enables us to study the properties of the regularized oblique projection
through an analysis of the estimates L̂γ

1 and L̂γ
2 .

5.4.2 Influence on the obtained projection

It is instructive to study the influence of the introduction of the regularization
term ‖L2Wp‖2F on the obtained parameters L̂γ

1 and L̂γ
2 . This is done in the

following lemma:

Lemma 5.3 (Influence of regularization on L̂γ
1 and L̂γ

2). Adopting
the working assumption of exact knowledge of Yp and Uf and a zero mean
temporary and stationary white noise perturbation δYf on the data Yf such
that E

{
(δYf )T δYf

}
= σ2

yIj , and defining

[
δL̂γ

1 δL̂γ
2

]
= δYf

[
UT

f W T
p

]




Iim Λ 0
Λ (1 + γ)Iim 0
0 0 (1 + γ)Iil






−1

,

(5.10)
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we have for any t = 1, . . . , il:

E

{([
δL̂γ

1 (t, :) δL̂γ
2(t, :)

])T ([
δL̂γ

1(t, :) δL̂γ
2(t, :)

])}

= σ2
y




(1+γ)2Iim−(1+2γ)Λ2

((1+γ)Iim−Λ2)2
Λ3−Λ

((1+γ)Iim−Λ2)2 0
Λ3−Λ

((1+γ)Iim−Λ2)2
Iim−Λ2

((1+γ)Iim−Λ2)2 0

0 0 1
(1+γ)2 Iil


 ,

(5.11)

Proof. See Appendix D.3.

Under the assumptions stipulated in Lemma 5.3, it is easily seen that

E

{(
δL̂γ

2 (t, :)
)T (

δL̂γ
2 (t, :)

)}
= σ2

y

[
Iim−Λ2

((1+γ)Iim−Λ2)2 0

0 1
(1+γ)2 Iil

]
. (5.12)

Since we are only interested in the row-space of the oblique projection, (5.12)
can be scaled by a factor (1+γ)2 without affecting the qualitative interpretation
of the results. We have

(1 + γ)2E

{(
δL̂γ

2(t, :)
)T (

δL̂γ
2(t, :)

)}
=




Iim−Λ2

“
Iim− Λ2

1+γ

”2 0

0 Iil


 , (5.13)

It follows directly from (5.13) that

(1 + γ)2

√
E

{(
δL̂γ

2(t, k)
)T (

δL̂γ
2 (t, k)

)}
=

√√√√
1− cos2(θk)
(
1− cos2(θk)

1+γ

)2 , (5.14)

which decreases with increasing γ, especially when θk is small. This is also
seen in Figure 5.9, where (5.14) is depicted as a function of γ and θk. Hence,
based on this analysis we can conclude that using regularization allows to reduce
the variance on the obtained estimate for the oblique projection in the N4SID
algorithm. However, we remind the reader that the variance analysis of the
regularized oblique projection are only valid under the assumption of temporary
and stationary white noise on the data in Yf and exact knowledge of Wp and Uf .
The same goes for the definition of the unregularized condition number (2.15),
which is derived from a similar assumption. Although for Uf this assumption is
reasonable, perturbations on Yp need to be taken into account in principle. This
is certainly true given the fact that the statistical properties of any perturbation
on Yp are in essence the same as those of perturbations on Yf .

A variance analysis for the oblique projection with perturbations in Yp

could be derived, e.g. starting from expressions used in the derivation of a
condition number for least squares estimators with errors in the variables such
as reported in [46, 76, 133, 140, 141, 158]. However, the obtained expressions
would be significantly more complicated than the ones so far obtained. This
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Figure 5.9: Graphical interpretation of equation (5.14) as a function of cos(θk)
and γ.

while the simple expression (5.14) has the advantage that the expected variance
on a given estimate Lγ

2(t, k) is determined by exactly one principal angle, which
enables a quick interpretation of the effect of the regularization term on a given
component.

In the following section, the performance of the regularized N4SID algorithm
and the decrease in the variance of the estimates will be evaluated using a set
of Monte-Carlo simulations.

5.5 Performance of the regularized N4SID

5.5.1 Influence of regularization

We study the performance of the regularized N4SID algorithm using a Monte-
Carlo analysis on the system and data introduced in Example 5.1 and further
analyzed in Examples 5.3 and 5.4. For the entire analysis, subspace estimates
will be obtained using n = 5, and i = 10.

In a first step, 1000 datasets are generated with the same statistics as the
datasets used to obtain the results of Example 5.1. The estimated system
poles (deterministic and stochastic) using a PO-MOESP algorithm and the
regularized N4SID algorithm are displayed in Figure 5.10. The regularization
constant γ was chosen equal to 10, a choice which will be justified shortly.
Note that the pole estimates using N4SID have significantly been improved
with respect to the unregularized pole-estimates in Figure 5.7, to the extent
that hardly any difference in performance with respect to the PO-MOESP is
seen in Figure 5.10. A more quantitative comparison of the accuracy of the
pole-estimates using both techniques is found in Table 5.1, where the euclidean
distances between the estimated and the true poles averaged over the 1000
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Figure 5.10: Estimated poles (dots) using PO-MOESP and regularized N4SID
(γ = 10) for 1000 trials using datasets generated according to Example 5.1.
The true poles are displayed using a large ’+’ for poles of the deterministic
subsystem and an ’X’ for poles of the stochastic subsystem. In the latter case,
the ’X’ is hidden by the actual estimates. Note that the deterministic poles
are perfectly estimated using both techniques. The variance on the estimates
for the stochastic poles is high, but comparable for both techniques. A more
quantitative comparison is given in Table 5.2.

datasets are given for the classical N4SID, the PO-MOESP, and the regularized
N4SID. From the table it is clear that the regularization approach yields slightly
better pole-estimates than the PO-MOESP.

Poles 0.75± 0.55i 0.9 −0.2± 0.6i
Mean(dN4SID) 0.0071 0.0043 0.4680
Std(dN4SID) 0.0042 0.0028 0.1180
Mean(dMOESP) 0.0014 0.0009 0.2108
Std(dMOESP) 0.0009 0.0007 0.1700
Mean(dREG) 0.0011 0.0006 0.2100
Std(dREG) 0.0007 0.0005 0.1770

Table 5.1: Euclidean distances between the estimated and the true poles
averaged over 1000 datasets generated according to Example 5.1 for the classical
N4SID (dN4SID), the PO-MOESP (dMOESP), and the regularized N4SID (dREG)
with γ = 10.

In a second step, we study the effect on the estimated transfer function.
Defining d2 and d∞ as the 2-norm and infinity-norm of the difference between the
estimated and the true transfer function, the mean and standard deviations on
d2 and d∞ over all 1000 datasets, and for the classical N4SID, the PO-MOESP
and the regularized N4SID with various regularization constants are given in
Table 5.2. From the table it is seen that regularization significantly improves
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# Stable Mean(d2) Std(d2) Mean(d∞) Std(d∞)

N4SID 772 3.272 2.1294 16.97 65.44
PO-MOESP 987 0.4154 0.4351 1.127 6.305

REG (γ = 0.001) 777 3.134 1.931 14.07 30.50
REG (γ = 0.01) 984 0.7009 0.6761 1.785 4.185
REG (γ = 0.1) 986 0.4677 0.4119 1.037 1.674
REG (γ = 1) 986 0.3667 0.3976 0.9588 2.779
REG (γ = 10) 986 0.3378 0.3876 0.8766 2.437
REG (γ = 100) 986 0.3343 0.3855 0.8670 2.396
REG (γ = 500) 986 0.3340 0.3852 0.8661 2.393
REG (γ = 1000) 986 0.3339 0.3852 0.8660 2.392
REG (γ = 1500) 986 0.3339 0.3852 0.8659 2.392
REG (γ = 3000) 986 0.3339 0.3852 0.8659 2.392
REG (γ = 10000) 986 0.3339 0.3852 0.8659 2.392

Table 5.2: Mean and standard deviation of the distances between the true and
the estimated transfer functions over all 1000 datasets, and this for the classical
N4SID, the PO-MOESP and the regularized N4SID with various regularization
constants. Distances were only averaged over stable models. The number of
stable models is displayed in the table.

the quality of the N4SID subspace estimate. Furthermore, the regularized
N4SID is seen to outperform the PO-MOESP for a wide range of regularization
parameters. The table also provides justification for the choice of γ = 10
which was earlier made when reporting the performance on the pole-estimates,
although any γ in the range 1 . . . 10000 would have been appropriate. We note
that in practical applications, comparison with the true system is not possible
and γ needs to be tuned, for instance using validation on an independent dataset.
The average estimated transfer function and a 95% error region for the three
techniques mentioned in Table 5.2 are displayed in Figure 5.11. Again, the
PO-MOESP and the regularized N4SID are seen to outperform the classical
N4SID, with a slight advantage of the regularized N4SID over the PO-MOESP.
Nevertheless, as was also seen in Example 5.4, in the high frequency regions,
the estimates for the transfer function are still far from optimal. This issue will
be dealt with in the next section, where we will use a projection on the input
space in line with Subsection 5.3.2.

5.5.2 Projection on the input-space

In Subsection 5.3.2 it was seen that in the case of highly colored inputs, a
separate parameterization of the deterministic and the stochastic subsystem can
be preferable. Such a separate parameterization was obtained by projecting Oi

orthogonally onto
[
UT

p UT
f

]T
before calculating Γi and X̃i. The same approach

is followed to obtain separately parameterized estimates for the classical N4SID
and the regularized N4SID. Denoting the classical N4SID and the regularized
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Figure 5.11: Average transfer function (dashed) for the N4SID, the PO-MOESP,
and the regularized N4SID (γ = 10) estimates with 95% error region (dotted).
The solid line is the transfer function of the deterministic subsystem.
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N4SID, both with projection on the inputs, by PI-N4SID and PI-REG, the
resulting transfer functions and the difference between the estimated and the
true transfer functions are displayed in Table 5.3 and Figure 5.12. It is important
to note here that the estimation order in all subspace algorithms was set to
n = 3, the dimension of the deterministic subsystem. Note from the table
and the figure that the transfer function estimate of the PO-MOESP and the
regularized N4SID has significantly improved by projecting onto the input space.
For the classical N4SID, such a projection does not lead to any meaningful
results.

A surprising observation in Table 5.3 is that the regularized algorithm
performs very well for high regularization constants, even for γ = 10000, in
which case one would expect all dynamics to be destroyed. This phenomenon
will be discussed in 5.6, where it will be seen that the term γ‖L2Wp‖2F with
γ →∞ corresponds to a relatively moderate weighted regularization on a certain
subspace of Wp. Hence, even for γ →∞, the dynamics of the estimated model
will not be completely eliminated. In this sense, regularization on the result
of an oblique projection exhibits a completely different behavior as classical
Tikhonov regularization for least-squares problems where the dynamics are
indeed destroyed for γ →∞.

5.6 Weighted regularization

We prove that the regularization term γ‖L2Wp‖2F corresponds to a weighted
regularization on a certain subspace of Wp.

Lemma 5.4. Assume that Uf and Wp are formed by orthonormal basisses for
Row(Uf ) and Row(Wp) such that

UfU
T
f = Iim, WpW

T
p = Ii(m+l), UfW

T
p =

[
Λ 0im×il

]
,

with Λ ∈ R
im a diagonal matrix containing the cosines of the principal angles

between Wp and Uf . Under these assumptions, the spaces spanned by the rows
and columns of Oi, obtained from

(L̂γ
1 , L̂

γ
2) = arg min

L1,L2

(∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

+ γ‖L2Wp‖
2
F

)
,

Oi = L̂γ
2Wp,

are equal to those spanned by the rows and columns of Pi, obtained from

(L̃1, L̃2) = argmin
L1,L2

(∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

+ γ̃‖L2SWp‖
2
F

)
,

Pi = L̃2Wp,

with γ̃ = γ
1+γ and S =

[
Λ 0
0 0

]
.
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Figure 5.12: Average transfer function (dashed) for the PI-N4SID, the PI-
MOESP, and the regularized PI-N4SID (γ = 10) estimates with 95% error
region (dotted). The solid line is the transfer function of the deterministic
subsystem.
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Mean(d2) Std(d2) Mean(d∞) Std(d∞)

PI-N4SID 1.638 2.129 3.120 2.3776
PI-MOESP 0.0206 0.0141 0.0481 0.0311

PI-REG (γ = 0.001) 0.2375 0.2499 0.4975 0.4327
PI-REG (γ = 0.01) 0.0830 0.0595 0.1776 0.1215
PI-REG (γ = 0.1) 0.0217 0.0147 0.0486 0.0303
PI-REG (γ = 1) 0.0182 0.0119 0.0428 0.0263
PI-REG (γ = 10) 0.0173 0.0115 0.0420 0.0261
PI-REG (γ = 100) 0.0173 0.0115 0.0421 0.0262
PI-REG (γ = 500) 0.0173 0.0115 0.0421 0.0262
PI-REG (γ = 1000) 0.0173 0.0115 0.0421 0.0262
PI-REG (γ = 1500) 0.0173 0.0115 0.0421 0.0262
PI-REG (γ = 3000) 0.0173 0.0115 0.0421 0.0262
PI-REG (γ = 10000) 0.0173 0.0115 0.0421 0.0262

Table 5.3: Mean and standard deviation of the distances between the true and
the estimated transfer functions over all 1000 datasets, and this for PI-N4SID,
the PI-MOESP and the regularized PI-N4SID with various regularization
constants.

Proof. With L̂0
1 and L̂0

2 the unregularized oblique projection estimates (γ = 0),
we have (see 5.10):

[
L̂γ

1 L̂γ
2

]
=

[
L̂0

1 L̂0
2

]


Iim Λ 0
Λ Iim 0
0 0 Iil





I Λ 0
Λ (1 + γ)I 0
0 0 (1 + γ)I



−1

=
[
L̂0

1 L̂0
2

]


Iim Λ 0
Λ Iim 0
0 0 Iil







(1+γ)I
(1+γ)I−Λ2

−Λ
(1+γ)I−Λ2 0

−Λ
(1+γ)I−Λ2

I
(1+γ)I−Λ2 0

0 0 1
1+γ Iil




=
[
L̂0

1 L̂0
2

]



Iim 0 0
γΛ

(1+γ)Iim−Λ2
1−Λ2

(1+γ)Iim−Λ2 0

0 0 1
1+γ Iil




and

[
L̃1 L̃2

]
=

[
L̂0

1 L̂0
2

]


Iim Λ 0
Λ Iim 0
0 0 Iil





Iim Λ 0
Λ Iim + γ̃Λ2 0
0 0 Iil



−1

=
[
L̂0

1 L̂0
2

]


Iim Λ 0
Λ Iim 0
0 0 Iil







Iim+γ̃Λ2

Iim+γ̃Λ2−Λ2
−Λ

Iim+γ̃Λ2−Λ2 0
−Λ

Iim+γ̃Λ2−Λ2
Iim

Iim+γ̃Λ2−Λ2 0

0 0 Iil




=
[
L̂0

1 L̂0
2

]



Iim 0 0
γ̃Λ3

Iim+γ̃Λ2−Λ2
Iim−Λ2

Iim+γ̃Λ2−Λ2 0

0 0 Iil



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Hence, the projections Oi and Pi are given as

Oi =
[
L̂0

2(:, 1 : im) (I−Λ2)
(1+γ)I−Λ2

1
1+γ L̂

0
2(:, im+ 1 : i(m+ l))

]
Wp,

Pi =
[
L̂0

2(:, 1 : im) (I−Λ2)
I+γ̃Λ2−Λ2 L̂0

2(:, im+ 1 : i(m+ l))
]
Wp.

Substituting γ̃ = γ
1+γ in the expression for Pi, it is now easily seen that

Pi =
[
L̂0

2(:, 1 : im) (1+γ)(I−Λ2)
(1+γ)I−Λ2 L̂0

2(:, im+ 1 : i(m+ l))
]
Wp = (1 + γ)Oi,

and Pi and Oi are equivalent up to a scalar multiplication which ends the
proof.

Note from Lemma 5.4 that if γ → ∞, γ
1+γ → 1. Hence, in order to

be able to explore the range γ̃ = γ
1+γ > 1, it is recommended to replace

the regularized N4SID with a weighted regularized N4SID. The weighting

matrix S =

[
Λ 0
0 0

]
attributes the largest weights along principal directions

corresponding to small principal angles, and therefore directly acts on those
components of the projection which tend to suffer the most from ill-conditioning
problems. The projection Oi is then calculated as follows:

(L̃1, L̃2) = arg min
L1,L2

(∥∥∥∥Yf −
[
L1 L2

] [Uf

Wp

]∥∥∥∥
2

F

+ γ̃

∥∥∥∥L2

[
Λ 0
0 0

]
Wp

∥∥∥∥
2

F

)
,

Oi = L̃2Wp.

The performance of the weighted regularized N4SID algorithm, was evaluated
along the lines of the Monte-Carlo analysis in Section 5.5. Results, following the
same notations and definitions as in Section 5.5, are shown in Table 5.4. Note
that for γ̃ = 1

2 , we obtain exactly the same results as for γ = 1 in Table 5.3,
which is explained by Lemma 5.3. It is clear from Table 5.4 that the optimal
γ̃ satisfies γ̃ < 1. Hence, on this particular example it does not make any
difference whether one uses the regularized N4SID as discussed in Section 5.4
or the weighted regularized N4SID. However, there is no reason to assume that
this will be the case in all practical applications.

5.7 A real-life example

The orthogonal decomposition method and the weighted regularized N4SID were
tested on measurements from a flexible robot arm available from the online
database DaISy (Database for the Identification of Systems) [45]. The arm
is installed on an electrical motor. The input, the measured reaction torque
of the structure on the ground, is a band-limited signal which is displayed in
Figure 5.13. The output is the acceleration of the flexible arm. The entire
dataset consists of 1000 input/output measurements. The experimental transfer
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eγ γ Mean(d2) Std(d2) Mean(d∞) Std(d∞)

0.5 1.00 0.0178 0.0119 0.0429 0.0263
0.6 1.50 0.0176 0.0117 0.0424 0.0260
0.7 2.33 0.0174 0.0116 0.0421 0.0260
0.8 4.00 0.0173 0.0115 0.0420 0.0260
0.9 9.00 0.0173 0.0115 0.0420 0.0261
1.0 +∞ 0.0173 0.0115 0.0421 0.0262
1.1 - 0.0173 0.0115 0.0423 0.0264
1.2 - 0.0174 0.0116 0.0426 0.0266
1.3 - 0.0175 0.0116 0.0428 0.0269
1.4 - 0.0176 0.0117 0.0431 0.0271
1.5 - 0.0177 0.0117 0.0434 0.0274
1.6 - 0.0178 0.0118 0.0437 0.0276
1.7 - 0.0179 0.0119 0.0441 0.0279
1.8 - 0.0180 0.0120 0.0441 0.0282
1.9 - 0.0182 0.0121 0.0448 0.0285
2.0 - 0.0183 0.0121 0.0451 0.0288
3.0 - 0.0198 0.0132 0.0490 0.0319
4.0 - 0.0215 0.0142 0.0532 0.0349
5.0 - 0.0232 0.0154 0.0575 0.0380

Table 5.4: Mean and standard deviation of the distances between the true
and the estimated transfer functions over all 1000 datasets for the weighted
regularized PI-N4SID with various regularization constants.

function is also displayed in Figure 5.13 and consists of two clear peaks in the
frequency band which is excited by the input.

The first 500 points of the dataset were used to estimate a linear dynamical
model using the orthogonal decomposition method and the weighted regularized
N4SID. The remaining 500 points were divided in a validation set and a test set,
each with 250 datapoints. The validation set was used to determine the order
of the model [2], chosen equal to 4, and the regularization constant γ̃, chosen
equal to 1.

The resulting models were validated on the testset and resulted in a relatively
small mean squared error of 0.0257 for the orthogonal decomposition method
and 0.0254 for the weighted regularized N4SID. As a comparison, for the
unregularized N4SID, an unstable model was obtained. The true output on
the test-set and the estimated output using the regularized weighted N4SID are
displayed in Figure 5.7.

5.8 Conclusions

In this chapter, the problem of ill-conditioning in combined stochastic-deter-
ministic subspace identification algorithms was discussed. It was seen that
combined subspace identification algorithms can be ill-conditioned if the
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Figure 5.13: Input spectrum (left) and experimental frequency response function
(right) from a flexible robot arm discussed in 5.7.
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Figure 5.14: True (solid) and estimated (dashed) output on test-data from a
flexible robot arm discussed in Section 5.7. The estimated output was generated
using a weighted regularized N4SID model. The maximal error over the dataset
is 0.07m/s2. The mean squared error is 0.0254(m/s2)2.

smallest principal angle between Uf and Wp is close to zero, and/or stochastic
resonances in the system are incorrectly attributed to the inputs. The
orthogonal decomposition method, featuring an orthogonal projection in stead
of an oblique projection, and a separation of the deterministic and the stochastic
subsystem, was examined as a possible solution for the ill-conditioning problem.
Thereafter, it was shown that by using weighted regularization along the
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principal directions of Wp and Uf corresponding to small principal angles in
the N4SID algorithms, identification results could be obtained of the same, or
better quality as those obtained with the orthogonal decomposition method.
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Chapter 6

Hammerstein, Wiener and
Hammerstein-Wiener
systems

In this chapter, Hammerstein, Wiener and Hammerstein-Wiener
systems will be introduced. Existing identification algorithms for
these classes of systems will be discussed with a special emphasis
on the so-called overparameterization approach which will form the
basis for a set of new identification algorithms presented in Chapters
7, 8 and 9.

6.1 The need for structured non-linear models

Throughout the last few decades, the field of linear system identification has
been explored to the level that most linear identification problems can be solved
efficiently with fairly standard and well known tools. However, with the advance
in computer power, and considering that studied systems are often non-linear,
the interest in non-linear system identification algorithms has steadily increased.

Driven by this demand and thanks to theoretical breakthroughs as in the area
of splines [157], neural networks [18] and regularization networks [124], the field
of non-linear modeling in general, and system identification in particular has
steadily progressed over the last few years. Nevertheless, as the complexity of the
identified models increases, the variance on the obtained parameters will increase
as well (see e.g. [77, 100]). In extreme cases, this can lead to problems with
the so-called ‘curse of dimensionality’, which is an inherent modeling problem
closely associated with an explosion in the number of model parameters due to
the presence of large input-dimensions and/or a lack of structure in the studied
system and model. Hence, the interest in more structured model types, involving
fewer free parameters, such as the bilinear model [105], the Hammerstein model,

107
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the Wiener model, and the Hammerstein-Wiener model [100,160].
In part II of this thesis, a number of subspace identification algorithms

will be introduced for the identification of Hammerstein and Hammerstein-
Wiener systems using the theory of Least Squares Support Vector Machines
(LS-SVMs) [135] and the basic ideas behind the overparameterization approach.
After a discussion on the exact nature of Hammerstein and Hammerstein-Wiener
systems in this chapter, LS-SVMs will be reviewed in Chapter 7 and shown to
be suited for the identification of Hammerstein systems in the relatively simple
ARX form. Armed with knowledge obtained from Chapter 7, the more complex
N4SID subspace algorithm will be extended towards Hammerstein systems in
Chapter 8. In Chapter 9 finally, a subspace identification algorithm will be
proposed for the identification of Hammerstein-Wiener systems.

6.2 Hammerstein model identification

Hammerstein systems, in their most basic form, consist of a static memoryless
non-linearity, followed by a linear dynamical system as shown in Figure 6.1.
Due to their particularly simple structure, Hammerstein systems have been

f

static
nonlinearity

Linear system

Figure 6.1: A Hammerstein system consists of a memoryless static non-linearity
f followed by a linear dynamical system.

extensively studied in the context of system identification. Techniques for
Hammerstein identification mainly distinguish themselves in the way the static
non-linearity is represented and in the type of optimization problem that is
finally obtained. In parametric approaches, the static non-linearity is expressed
in terms of a finite number of parameters. Known approaches include the
expansion of the non-linearity as a sum of (orthogonal or non-orthogonal) basis
functions [104, 110, 114], the use of a finite number of cubic spline functions
as presented in [47], piecewise linear functions [149] and neural networks
[83]. Regardless of the parameterization scheme that is chosen, the final cost
function will involve cross products between parameters describing the static
non-linearity, and those describing the linear dynamical system. Employing
a maximum likelihood criterion results in a so-called bi-convex optimization
problem where global convergence is not guaranteed [131]. Hence, in order to
find a good optimum for these techniques, a proper initialization is necessary
[31].

Although lots of techniques have been proposed to solve the bi-convex opti-
mization problems typically encountered in Hammerstein system-identification,
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we will focus on three particular approaches that will turn out to be relevant in
the remaining part of this thesis. These are the iterative approach, the stochastic
approach, and the overparameterization approach. All three of them will briefly
be described below.

6.2.1 Iterative approach

When in the bi-convex problem described earlier, either the parameters
describing the linear system or the parameters describing the static non-
linearity are kept constant, the remaining problem is solvable using known linear
identification or non-linear regression algorithms. Based on this idea, one could
start with an initial guess for the linear model and/or the static non-linearity,
and estimate new linear models and static non-linearities in an iterative fashion.
An example of an implementation of this idea is found in [110]. However, a
drawback of such iterative techniques is that convergence is not guaranteed
and that in some cases even a divergent behavior can be observed [134]. The
iterative approach should therefore always be applied with caution, and at least
a decent initial estimate is required. Such an initial estimate can conveniently
be provided using the convex approaches that will be introduced in Subsections
6.2.2 and 6.2.3 below.

6.2.2 Stochastic approaches

It was shown in several publications that the typically bi-convex optimization
problems at the core of Hammerstein identification algorithms can be replaced
by convex optimization problems by assuming that certain statistical properties
are satisfied by the input sequence u [13, 72]. A typical assumption thereby is
whiteness of the inputs. This is easily understood by realizing that in this case
f(u) is also white, and the linear dynamical system can for instance be obtained
from an output-only identification. Once the linear system is known, estimation
of the static non-linearity is straightforward. More elaborate variations on this
theme using white or multi-sine inputs and non-parametric estimates for the
linear system are for instance found in [29–31]. Although these methods are
in general easy to implement and exhibit a reasonable performance, an obvious
drawback is the restrictions that are placed on the input. This limits their
applicability to those practical cases where the user has full control over the
experimental setup.

6.2.3 The overparameterization method

Another possibility to transform the bi-convex optimization problem into a
convex one is by using a process known as overparameterization [12, 20]. In
the latter, one replaces every crossproduct of unknowns by new independent
parameters resulting in a convex but overparameterized optimization problem.
In a second stage the obtained solution is projected onto the Hammerstein
model class. Some examples of overparameterization approaches applied to the
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Hammerstein identification problem are found in [12,104,104,110,114,156,159].
A classical problem with the overparameterization approach is the increased
variance of the estimates due to the increased number of unknowns in the first
stage. Nevertheless, due to their particularly attractive convexity property, and
the fact that no restrictive assumptions are necessary on the inputs u we will
mainly focus on overparameterization algorithms in this part of the thesis and
demonstrate that the key ideas behind the overparameterization approach can
conveniently be combined with the theory of LS-SVM regression to yield reliable
ARX and subspace identification algorithms for Hammerstein systems.

Derivation of overparameterization

Mathematically, the idea of overparameterization can be summarized as writing
the static non-linearity f as a linear combination of nf general non-linear basis
functions fk, each with a certain weight ck such that f(ut) =

∑nf

k=1 ckfk(ut).
The functions f1, f2, and fnf

are chosen beforehand. Assuming that the linear
dynamical system is of the ARX form, the resulting Hammerstein model is given
as follows:

yt =

n∑

i=1

aiyt−i +

m∑

j=0

bjf(ut−j) + et.

Substituting the expansion for f leads to:

yt =

n∑

i=1

aiyt−i +

m∑

j=0

nf∑

k=1

bjckfk(ut−j) + et (6.1)

=

n∑

i=1

aiyt−i +

m∑

j=0

nf∑

k=1

θj,kfk(ut−j) + et, (6.2)

which can be solved for θj,k = bjck, j = 0, . . . ,m, k = 1, . . . , nf using a least

squares algorithm. Denoting the estimates for θj,k by θ̂j,k, estimates for the bj
and ck are thereafter recovered from the SVD of:




θ̂0,1 θ̂0,2 . . . θ̂0,nf

θ̂1,1 θ̂1,2 . . . θ̂1,nf

...
...

...

θ̂m,1 θ̂m,2 . . . θ̂m,nf


 . (6.3)

Potential problems in overparameterization

Note that with Fj(·) =
∑nf

k=1 θj,kfk(·), equation (6.2) is rewritten as:

yt =
n∑

i=1

aiyt−i +
m∑

j=0

Fj(ut−j) + et.

Hence, another way to interpret the overparameterization method is as an
estimation procedure of individual components Fj in a sum of non-linearities.
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Estimating individual components in a sum of non-linearities is not without
risks. Suppose for instance that m = 1, then it is easily seen that

F0(ut) + F1(ut−1) = F0(ut) + δ + F1(ut−1)− δ

= F ′
0(ut) + F ′

1(ut−1)

with δ an arbitrary constant and F ′
0(ut) = F0(ut) + δ, F ′

1(ut−1) = F1(ut−1) −
δ. Similarly, note that for any set of variables εk, k = 1, . . . , nf with ∀u ∈
R,
∑nf

k=1 εkfk(u) = constant and any set αj , j = 0, . . . ,m such that
∑m

j=0 αj =
0, θ′j,k = θj,k + αjεk is also a solution to (6.2) [77].

Hence, given a sequence of input/output measurements, all non-linearities
estimated on these measurements will only be determined up to a set of
constants. This problem is often overlooked in existing overparameterization
techniques and may lead to conditioning problems and destroy the low-rank
property of (6.3). In fact, many published overparameterization approaches
applied to more complex Hammerstein systems lead to results which are far
from optimal if no measures are taken to overcome this problem [62]. One
possible solution is to use the estimates for θj,k, j = 0, . . . ,m, k = 1, . . . , nf

to calculate:

A =




θ̂0,1 θ̂0,2 . . . θ̂0,nf

θ̂1,1 θ̂1,2 . . . θ̂1,nf

...
...

...

θ̂m,1 θ̂m,2 . . . θ̂m,nf







f1(u1) . . . f1(uN )
f2(u1) . . . f2(uN )

...
...

fnf
(u1) . . . fnf

(uN )


 ,

with ut, t = 1, . . . , N the inputs of the system, subtract the mean of every row
in A and take the SVD of the remaining matrix, from which estimates for the bj

can be extracted. Estimates for the ck can then be found in a second round by
solving (6.1). It is this approach that will be used when results from classical
overparameterization approaches are discussed in the following chapters.

6.3 Wiener model identification

Wiener systems are very similar to Hammerstein systems. In their basic form,
Wiener systems consist of a linear system followed by a static non-linearity
g such as shown in Figure 6.2. If the linear system and the static non-
linearity are invertible, it is easily seen that Wiener systems can be identified
by using a Hammerstein identification algorithm with the role of the inputs-
and the outputs reversed. In a more general setting, but still assuming
invertibility of the output non-linearity, Wiener identification algorithms have
been derived along the lines of their Hammerstein counterparts. Hence, as in the
Hammerstein case, a distinction between convex and non-convex methods can
be made, and again as in the Hammerstein case iterative approaches, stochastic
approaches and overparameterization approaches are found as common solutions
for the bi-convex optimization problem [87, 112]. If the output non-linearity
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static
nonlinearity

Linear system g

Figure 6.2: A Wiener system consists of a linear dynamical system followed by
a memoryless static non-linearity g.

is not invertible, the main techniques used for Wiener model identification
are stochastic in nature [17, 29, 31, 161]. In this thesis we will not further
elaborate on Wiener model identification as most results which will be shown
for Hammerstein models can conveniently be extended to Wiener models with
invertible g. We will however treat the Hammerstein-Wiener case which is from
a research perspective a much more challenging problem.

6.4 Hammerstein-Wiener model identification

Hammerstein-Wiener models are obtained by placing a Hammerstein system
and a Wiener system in cascade, such as shown in Figure 6.3. In contrast to

f Linear system

static
nonlinearity

static
nonlinearity

g

Figure 6.3: A Hammerstein-Wiener system is obtained by putting a
Hammerstein- and a Wiener-system in cascade.

the literature on Hammerstein and Wiener systems, the available literature on
the identification of Hammerstein-Wiener systems is rather sparse and related
algorithms can not so easily be classified as their Hammerstein- and Wiener
counterparts. In [12], a scheme for the identification of SISO Hammerstein-
Wiener systems is developed based on the idea of overparameterization.
However, in this scheme a very specific model structure is assumed, limiting its
practical applicability. Based on [12], a more general so-called blind approach
for the identification of SISO systems was proposed in [14]. An identification
method for Hammerstein-Wiener MIMO systems was proposed in [29, 30] but
imposes strict restrictions on the inputs and is iterative in nature. Other
contributions such as [48, 166] are limited to SISO systems and/or iterative
in nature.

Hence, in general one can state that to date, no reliable MIMO identification
algorithm is present which is non-iterative in nature and does not rely on
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restrictive assumptions on the inputs. An attempt at such an algorithm,
using a combination of kernel canonical correlation analysis and the subspace
intersection algorithm, will be presented in Chapter 9.
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Chapter 7

Hammerstein ARX
identification

7.1 Introduction

In this chapter, we explore the use of Least Squares Support Vector Machines
(LS-SVMs) for Hammerstein ARX model identification. It will be shown
that the linear model parameters and the static non-linearity can be obtained
by solving a set of linear equations with size in the order of the number
of observations. Given the convexity and the large number of parameters
involved, the method may be regarded as an overparameterization approach.
However, due to the presence of a regularization framework [127, 135, 150],
the variance of the obtained estimates is significantly lower than in classical
overparameterization approaches discussed in Subsection 6.2.3. Due to this
decrease in variance, systems with several inputs and outputs can be estimated
conveniently with the presented technique. Another advantage of the proposed
derivation is the fact that additional ‘centering’-constraints and parametric
components of the linear dynamical system can naturally be included in the
LS-SVM framework, due to the fact that it is closely related to optimization
theory.

Furthermore, in contrast to classical parametric approaches, no specific
model structure is imposed on the non-linearity other than a certain shape
(e.g. a degree of smoothness). Hence, the presented technique combines
a nonparametric approach with parametric assumptions on the dynamical
system and on the noise model. The technique distinguishes itself from
existing nonparametric approaches [70, 72, 73, 78, 91, 114, 156] in the flexibility
to incorporate prior knowledge on the shape of the non-linearity by plug-in
of an appropriate kernel (e.g. linear, polynomial, RBF, spline). Moreover, no
restrictive assumptions on the inputs (as e.g. whiteness) need to be made.

The outline of this chapter is as follows: In Section 7.2, some basic aspects
of LS-SVMs applied to static function estimation are reviewed. In Sections 7.3

115
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and 7.4 a method for the identification of non-linear SISO Hammerstein systems
is proposed. In Section 7.5 the method is extended to MIMO Hammerstein
systems. In Section 7.6 a comparison is made with existing overparameterization
algorithms, and in Section 7.7 the method proposed in this chapter is tested and
compared to those existing methods on a number of SISO and MIMO examples.

7.2 Least Squares Support Vector Machines for
function approximation

In this section, we review some elements of Least Squares Support Vector
Machines for static function approximation. The theory introduced here will
be extended to the estimation of Hammerstein systems in Section 7.3.

Let {(xt, yt)}Nt=1 ⊂ R
d × R be a set of input/output training data with

input xt and output yt. Consider the regression model yt = f(xt) + et where
x1, . . . , xN are deterministic points, f : R

d → R is an unknown real-valued
smooth (i.e. Lipschitz continuous) function and e1, . . . , eN are uncorrelated
random errors with E [et] = 0, E

[
e2t
]

= σ2
e < ∞. In recent years, Support

Vector Machines (SVMs) [150] have been used for the purpose of estimating the
non-linear f . The following model is assumed:

f(x) = wTϕ(x) + b,

where ϕ(x) : R
d → R

nH denotes a potentially infinite (nH = ∞) dimensional
feature map, w ∈ R

nH , b ∈ R. The regularized cost function of the Least
Squares SVM (LS-SVM) [135] is given as

min
w,b,e
J (w, e) =

1

2
wTw +

γ

2

n∑

t=1

e2t ,

subject to : yt = wTϕ(xt) + b+ et, t = 1, . . . , N.

The relative importance between the smoothness of the solution and the data
fitting is governed by the scalar γ ∈ R

+
0 referred to as the regularization

constant. The optimization performed corresponds to ridge regression [68]
in feature space. In order to solve the constrained optimization problem, a
Lagrangian is constructed:

L(w, b, e;α) = J (w, e)−
N∑

t=1

αt{w
Tϕ(xt) + b+ et − yt},

with αt the Lagrange multipliers. The conditions for optimality are given by:

∂L

∂w
= 0 → w =

N∑

t=1

αtϕ(xt), (7.1)

∂L

∂b
= 0 →

N∑

t=1

αt = 0, (7.2)
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∂L

∂et
= 0 → αt = γet, t = 1, . . . , N, (7.3)

∂L

∂αt
= 0 → yt = wTϕ(xt) + b+ et, t = 1, . . . , N. (7.4)

Substituting (7.1)-(7.3) into (7.4) yields the following dual problem (i.e. the
problem in the Lagrange multipliers):

[
0 1N

T

1N Ω + γ−1IN

] [
b
α

]
=

[
0
y

]
, (7.5)

where y =
[
y1 . . . yN

]T
, 1N =

[
1 . . . 1

]T
, α =

[
α1 . . . αN

]T
, Ωij =

K(xi, xj) = ϕ(xi)
Tϕ(xj), ∀i, j = 1, . . . , N , with K the positive definite kernel

function. Note that in order to solve the set of equations (7.5), the feature map
ϕ does never have to be defined explicitly. Only its inner product, a positive
definite Mercer kernel, is needed. This is called the kernel trick [127, 150]. For
the choice of the kernel K(·, ·), see e.g. [127]. Typical examples are the use of a
linear kernel K(xi, xj) = xT

i xj , a polynomial kernel K(xi, xj) = (τ + xT
i xj)

d of
degree d or an RBF kernelK(xi, xj) = exp(−‖xi−xj‖22/σ

2) where σ denotes the
bandwidth of the kernel. The resulting LS-SVM model for function estimation
can be evaluated at a new point x∗ as

f̂(x∗) =

N∑

t=1

αtK(x∗, xt) + b,

where (b, α) is the solution to (7.5). Note that in the above, no indication is
given as to how to choose free parameters such as the regularization constant γ
and the bandwidth σ in an RBF kernel. These parameters, which are generally
referred to as hyper-parameters will have to be obtained from data, e.g. by tuning
on an independent validation dataset, or by using cross-validation [77].

Besides the function estimation case, the class of LS-SVMs also includes
classification, kernel PCA (principal component analysis), kernel CCA, kernel
PLS (partial least squares), recurrent networks and solutions to non-linear
optimal control problems. For an overview on applications of the LS-SVM
framework, the reader is referred to [80, 135–137].

7.3 Identification of ARX Hammerstein models

In the following derivation, we will restrict ourselves to SISO systems, but as
will be shown in Section 7.5, the presented method is applicable to the MIMO
case as well. For the linear dynamical part, we will assume a model structure
of the ARX form [100]:

yt =
n∑

i=1

aiyt−i +
m∑

j=0

bjut−j + et, (7.6)
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with ut, yt ∈ R, t ∈ Z and {ut, yt} a set of input and output measurements.
The so-called equation error et is assumed to be white with finite second order
moments, and m and n denote the order of the numerator and denominator in
the transfer function of the linear model. The model structure (7.6) is generally
known as the “AutoRegressive model with eXogenous inputs” (ARX) and is
one of the best known model structures in linear identification. Adding a static
non-linearity f : R→ R : u→ f(u) to (7.6) leads to:

yt =

n∑

i=1

aiyt−i +

m∑

j=0

bjf (ut−j) + et, (7.7)

which is the general model structure that is assumed in this chapter (see also
Figure 6.1).

Applying LS-SVM function estimation outlined in the previous section, we
assume the following structure for the static non-linearity f :

f(u) = wTϕ(u) + d0.

with Ωij = K(ui, uj) = ϕ(ui)
Tϕ(uj) a kernel of choice. Hence, equation (7.7)

can be rewritten as follows:

yt =
n∑

i=1

aiyt−i +
m∑

j=0

bj
(
wTϕ (ut−j) + d0

)
+ et. (7.8)

We focus on finding estimates for the linear parameters ai, i = 1, . . . , n and
bj , j = 0, . . . ,m and the static non-linearity f , parameterized by w and d0, from
a finite set of measurements {ut, yt}, t = 1, . . . , N . With r = max(m,n) + 1,
the resulting optimization problem is:

min
w,a,b,d0,e

J (w, e) = min
w,a,b,d0,e

1

2
wTw + γ

1

2

T∑

t=r

e2t ,

subject to (7.8). The Lagrangian of the resulting estimation problem is given
by

L(w, d0, b, e, a;α) = J (w, e)−
N∑

t=r

αt{
n∑

i=1

aiyt−i

+

m∑

j=0

bj
(
wTϕ (ut−j) + d0)

)
+ et − yt}. (7.9)

The conditions for optimality are given by:

∂L

∂w
= 0 → w =

N∑

t=r

m∑

j=0

αtbjϕ(ut−j), (7.10)
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∂L

∂d0
= 0 →

N∑

t=r

m∑

j=0

αtbj = 0,

∂L

∂ai
= 0 →

N∑

t=r

αtyt−i = 0, i = 1, . . . , n,

∂L

∂bj
= 0 →

N∑

t=r

αt

(
wTϕ(ut−j) + d0

)
= 0,

∂L

∂et
= 0 → αt = γet, t = r, . . . , N, (7.11)

∂L

∂αt
= 0 → (7.8), t = r, . . . , N. (7.12)

Substituting (7.10) and (7.11) in (7.12) leads to:

m∑

j=0

N∑

q=r

m∑

p=0

bj

(
bpαqϕ (uq−p)

T
ϕ (ut−j) + d0

)

+

n∑

i=1

aiyt−i + et − yt = 0, t = r, . . . , N. (7.13)

If the bj values were known, the resulting problem would be linear in the
unknowns and easy to solve as:




0 0 b̃ · 1T
N−r+1

0 0 Yp

b̃ · 1N−r+1 YT
p K + γ−1I





d0

a
α


 =




0
0
Yf


 , (7.14)

with

α =
[
αr . . . αN

]T
, b̃ =

m∑

j=0

bj ,

a =
[
a1 . . . an

]T
, Yf =

[
yr+1 . . . yN

]T
,

Yp =




yr−1 yr . . . yN−1

yr−2 yr−1 . . . yN−2

...
...

...
yr−n yr−n+1 . . . yN−n


 ,

K(p, q) =

m∑

j=0

m∑

l=0

bjblΩp+r−j−1,q+r−l−1,

Ωk,l = ϕ(uk)Tϕ(ul), k, l = 1, . . . , N.

Since the bj values are in general not known and the solution to the resulting
third order estimation problem (7.13) is by no means trivial, we will use an
approximative method to obtain models of the form (7.7).
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7.4 An approximative method

7.4.1 Optimization using collinearity constraints

In order to avoid solving the problem (7.13), we rewrite (7.8) as follows:

yt =
n∑

i=1

aiyt−i +
m∑

j=0

wT
j ϕ(ut−j) + d+ et, (7.15)

which can conveniently be solved using LS-SVM’s. Note, however, that the
resulting model class is wider than (7.8) due to the replacement of one single
w by several vectors wj , j = 0, . . . ,m. The model class (7.15) is therefore not
necessarily limited to the description of Hammerstein systems. A sufficient
condition for the estimated model to belong to this class of systems is that the
obtained wj must be collinear in which case wj is seen as a replacement for
bjw. Taking this into account during the estimation leads to extra constraints
requiring the angles between any pair {wj , wk}, j, k = 0, . . . ,m to be zero, or
(
wT

j wk

)2
=
√
wT

j wj

√
wT

k wk. Alternatively, the collinearity constraint can be

written as: rank
[
w0 . . . wm

]
= 1, which is equivalent to ensuring that a set

of m(m+1)nH (nH−1)
4 2× 2 determinants are zero. As nH (the dimension of w) is

unknown and possibly very high, it is obvious that including such constraints
in the Lagrangian would again lead to a non-convex optimization problem.

Considering that ARX Hammerstein models are contained in the set of
models of the form (7.15), we therefore propose to remove the collinearity
constraints from the Lagrangian altogether, solve the more general problem
(7.15), and project the obtained model onto the model-set (7.8) later. Hereby,
we assume that even though collinearity was not explicitly imposed, it will
automatically be nearly satisfied in the estimated model of the form (7.15).
Although this approach may seem ad-hoc at first, it is essentially an application
of Bai’s overparameterization approach [12] to LS-SVMs. As was seen in
Subsection 6.2.3, in essence, in overparameterization approaches the static non-
linearity is written as a linear combination of general non-linear basis-functions
fi, each with a certain weight ci, e.g.

f(ut) =
[
c1 . . . cnf

] [
f1(ut) . . . fnf

(ut)
]T
,

where f1, f2, and fnf
are chosen beforehand. This substitution was seen to

lead to a classical linear identification algorithm where linear model parameters
p1, p2, . . . are replaced by vectors p1

[
c1 . . . cnf

]
, p2

[
c1 . . . cnf

]
, . . .. Af-

terwards, collinearity of these vectors is imposed, e.g. by applying an SVD and
taking a rank one approximation, and the original model parameters p1, p2, . . .
are recovered.
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7.4.2 Optimization without collinearity constraints

Disregarding the collinearity constraints, the optimization problem that is
ultimately solved is the following:

min
wj ,a,d,e

J (wj , e) = min
wj ,a,d,e

1

2

m∑

j=0

wT
j wj + γ

1

2

N∑

t=r

e2t , (7.16)

subject to

m∑

j=0

wT
j ϕ(ut−j) +

n∑

i=1

aiyt−i + d+ et − yt = 0, t = r, . . . , N, (7.17)

N∑

t=1

wT
j ϕ(ut) = 0, j = 0, . . . ,m. (7.18)

The problem (7.16)-(7.18), is known as a component-wise LS-SVM regression
problem and was first introduced in [118]. The term component-wise refers to
the fact that the output is ultimately written as the sum of a set of linear and
non-linear components. As will be seen shortly, the derivation of a solution
to a component-wise LS-SVM problem follows the same kind of reasoning as
that of an ordinary LS-SVM regression problems. Also note the additional
constraints (7.18) to center the non-linear functions wT

j ϕ(·), j = 0, . . . ,m around
their average over the training set. This removes the uncertainty resulting from
the fact that any set of constants can be added to the terms of the additive
non-linear function (7.15), as long as the sum of the constants is zero (see 6.2.3
for the equivalent in classical overparameterization approaches). Removing this
uncertainty will facilitate the extraction of the parameters bj in (7.7) later.
Furthermore, this constraint enables us to give a clear meaning to the bias

parameter d, namely d =
∑m

j=0 bj

(
1
N

∑N
k=1 f(uk)

)
. An extra advantage of

the LS-SVM approach is that constraints of the form (7.18) can naturally be
included in the Lagrangian.

Lemma 7.1. Given the system (7.15), the LS-SVM estimates for the non-linear
functions wT

j ϕ : R→ R, j = 0, . . . ,m, are given as:

wT
j ϕ(u∗) =

N∑

t=r

αtK(ut−j , u∗) + βj

N∑

t=1

K(ut, u∗) (7.19)

where the parameters αt, t = r, . . . , N , βj , j = 0, . . . ,m, as well as the linear
model parameters ai, i = 1, . . . , n and d are obtained from the following set of
linear equations:




0 0 1T 0
0 0 Yp 0
1 YT

p K + γ−1I K0

0 0 K0T
1T

NΩ1N · Im+1







d
a
α
β


 =




0
0
Yf

0


 , (7.20)
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with
β =

[
β0 . . . βm

]T
,K0(p, q) =

∑N
t=1 Ωt,r+p−q,

K(p, q) =
∑m

j=0 Ωp+r−j−1,q+r−j−1,

and 1N is a column vector of length N with elements 1.

Proof. This follows directly from the Lagrangian:

L(wj , d, a, e;α, β) = J (wj , e)−
m∑

j=0

βj{
N∑

t=1

wT
j ϕ(ut)}−

N∑

t=r

αt{
n∑

i=1

aiyt−i +

m∑

j=0

wT
j ϕ (ut−j) + d+ et − yt}, (7.21)

by taking the conditions for optimality: ∂L
∂wj

= 0, ∂L
∂ai

= 0, ∂L
∂d = 0, ∂L

∂et
= 0,

∂L
∂αt

= 0, ∂L
∂βj

= 0.

Note that the martix K, which figures at the left hand side of (7.20) and plays a
similar role as the kernel matrix Ω in (7.5), actually represents a sum of kernels
in (7.20). This follows as a typical property of the solution of component-wise
LS-SVM problems [118].

7.4.3 Projecting the unconstrained solution onto the class
of ARX Hammerstein models

The projection of the obtained model onto (7.7) goes as follows. Estimates for
the autoregressive parameters ai, i = 1, . . . , n are directly obtained from (7.20).
Furthermore, for the training input sequence

[
u1 . . . uN

]
, we have:



b0
...
bm






f̂(u1)

...

f̂(uN )




T

=




αN . . . αr 0
αN . . . αr

. . .
. . .

0 αN . . . αr




×




ΩN,1 ΩN,2 . . . ΩN,N

ΩN−1,1 ΩN−1,2 . . . ΩN−1,N

...
...

...
Ωr−m,1 Ωr−m,2 . . . Ωr−m,N


+



β0

...
βm




N∑

t=1




Ωt,1

...
Ωt,N




T

, (7.22)

with f̂(u) an estimate for

f(u) = f(u)−
1

N

N∑

t=1

f(ut).

Hence, estimates for bj and the static non-linearity f can be obtained from
a rank 1 approximation of the right hand side of (7.22), for instance using a
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singular value decomposition. Again, this is the equivalent of the SVD-step that
is generally encountered in overparameterization methods [12,20]. Once all the

elements bj are known,
∑N

t=1 f(uk) can be obtained as
∑N

t=1 f(ut) = NdP
m
j=0 bj

.

7.4.4 Further comments

Persistency of excitation

Given the fact that regularization is inherently present in the proposed
identification technique, lack of persistency of excitation will not lead to any
numerical problems. However, to ensure that all aspects of the linear system
are properly identified, persistency of excitation of f(u) of at least order n+m+1
is desired [100]. For some non-linear functions f , persistency of excitation of
f(u) can be guaranteed if u is persistently exciting (see [156] for a discussion on
this issue).

Iterative identification

Though outside the scope of the present chapter, one possible extension to the
algorithm presented in this section would be to use the algorithm described in
the former subsection as an initialization to the biconvex problem encountered
in Section 7.3. Given a good initialization, the latter could be solved using
iterative techniques such as presented in Subsection 6.2.1, where the linear and
non-linear parameters are alternatively kept constant, while an optimization is
performed over the remaining parameters, using for instance the linear set of
equations (7.14).

7.5 Extension to the MIMO case

Technically, an extension of the algorithms presented in the former section to the
MIMO case is straightforward, but the calculations involved are quite extensive.
Assuming a MIMO Hammerstein system of the form:

yt =

n∑

i=1

Aiyt−i +

m∑

j=0

Bjf (ut−j) + et, (7.23)

with yt, et ∈ R
ny , ut ∈ R

nu , Ai ∈ R
ny×ny , Bj ∈ R

ny×nu , t = 1, . . . , N , i =

1, . . . , n, j = 0, . . . ,m, and f : R
nu → R

nu : u→ f(u) =
[
f1(u) . . . fnu(u)

]T
,

we have for every row s in (7.23), that

yt(s) =

n∑

i=1

Ai(s, :)yt−i +

m∑

j=0

Bj(s, :)f (ut−j) + et(s). (7.24)

Note that for every non-singular matrix V ∈ R
nu×nu , and for any j = 0, . . . ,m:

Bj(s, :)f (ut−j) = Bj(s, :)V V
−1f (ut−j) . (7.25)
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Hence, any model of the form (7.23) can be replaced with an equivalent model
by applying a linear transformation on the components of f and the columns
of Bj . This will have to be taken into account when identifying models of the
form (7.23) without any prior knowledge of the non-linearity involved.

Substituting f(u) =
[
f1(u) . . . fnu(u)

]T
in (7.24) leads to:

yt(s) =

n∑

i=1

Ai(s, :)yt−i +

m∑

j=0

nu∑

k=1

Bj(s, k)fk (ut−j) + et(s). (7.26)

By replacing
∑nu

k=1Bj(s, k)fk(ut−j) by wT
j,sϕ(ut−j) + ds,j this reduces to

yt(s) =
n∑

i=1

Ai(s, :)yt−i +
m∑

j=0

ωT
j,sϕ (ut−j) + ds + et(s). (7.27)

where

ds =

m∑

j=0

ds,j . (7.28)

The primal problem that is subsequently obtained is the following:

min
ωj,s,e

J (ωj,s, e) =

m∑

j=0

ny∑

s=1

1

2
ωT

j,sωj,s +

ny∑

s=1

N∑

t=r

γs

2
et(s)

2. (7.29)

subject to (7.27) and
∑N

t=1 w
T
j,sϕ(ut) = 0, j = 0, . . . ,m, s = 1, . . . , ny.

Lemma 7.2. Given the primal problem (7.29), the LS-SVM estimates for the
non-linear functions wT

j,sϕ : R→ R, j = 0, . . . ,m, s = 1, . . . , ny, are given as:

wT
j,sϕ(u∗) =

N∑

t=r

αt,sK(ut−j , u∗) + βj,s

N∑

t=1

K(ut, u∗) (7.30)

where the parameters αt,s, t = r, . . . , N , s = 1, . . . , ny, βj,s, j = 0, . . . ,m, s =
1, . . . , ny as well as the linear model parameters Ai, i = 1, . . . , n and ds, s =
1, . . . , ny are obtained from the following set of linear equations:



L1

. . .

Lny






X1

...
Xny


 =



R1

...
Rny


 , (7.31)

where

Ls =




0 0 1T 0
0 0 Yp 0
1 YT

p K + γ−1
s I S

0 0 ST T


 , Xs =




ds

As

αs

βs


 ,
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Rs =
[

0 0 YT
f,s 0

]T
, Yf,s =

[
yr(s)

T . . . yN (s)T
]T
,

As =



A1(s, :)

T

...
Am(s, :)T


 , αs =



αr,s

...
αN,s


 , S(p, q) =

N∑

t=1

Ωt,r+p−q,

βs =
[
β0,s . . . βm,s

]T
, Ωp,q = ϕ(up)

Tϕ(uq),

K(p, q) =

m∑

j=0

Ωp+r−j−1,q+r−j−1, T = 1T
NΩ1N · Im+1.

Proof. This directly follows from the Lagrangian:

L(ωj,s, ds, A, e;α, β) = J (ωj,s, e)−
N∑

t=r

ny∑

s=1

αt,s

{
n∑

i=1

Ai(s, :)yt−i+

m∑

j=0

ωT
j,sϕ (ut−j) + ds + et(s)− yt(s)



−

m∑

j=0

ny∑

s=1

βj,s

{
N∑

t=1

ωT
j,sϕ(ut)

}
, (7.32)

by taking the conditions for optimality: ∂L
∂ωj,s

= 0, ∂L
∂Ai(s,:) = 0, ∂L

∂ds
= 0,

∂L
∂et(s)

= 0, ∂L
∂αt,s

= 0, ∂L
∂βj,s

= 0.

Note that the matrices Ls, s = 1, . . . , ny in (7.31) are almost identical, except
for the different regularization constants γs. In many practical cases, however,
and if there is no reason to assume that a certain output is more important than
another, it is recommended to set γ1 = γ2 = . . . = γny . This will speed up the
estimation algorithm since L1 = L2 = . . . = Lny needs to be calculated only
once, but most importantly, it will reduce the number of hyper-parameters to
be tuned.

The projection of the obtained model onto (7.26) is similar as in the SISO
case. Estimates for the autoregressive matrices Ai, i = 1, . . . , n are directly
obtained from (7.31). For the training input sequence [ u1 . . . uN ] and
every k = 1, . . . , nu, we have:




B0(1, :)
...

Bm(1, :)
...

B0(ny, :)
...

Bm(ny, :)







f̂
T
(u1)
...

f̂
T
(uN )




T

=




β0,1

...
βm,1

...
β0,ny

...
βm,ny




N∑

t=1




Ωt,1

...
Ωt,N




T

+



A1

...
Any


×




ΩN,1 ΩN,2 . . . ΩN,N

ΩN−1,1 ΩN−1,2 . . . ΩN−1,N

...
...

...
Ωr−m,1 Ωr−m,2 . . . Ωr−m,N


 (7.33)
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with f̂(u) an estimate for
f(u) = f(u)− g, (7.34)

and g a constant vector such that:

m∑

j=0

Bjg =



d1

...
dny


 . (7.35)

Estimates for f and the Bj , j = 0, . . . ,m, can be obtained through a rank-nu

approximation of the right hand side of (7.33). If a singular value decomposition
is used, the resulting columns of the left hand side matrix of (7.33) containing
the elements of Bj , j = 0, . . . ,m, can be made orthonormal, effectively fixing
the choice of V in (7.25).

From estimates for f in (7.34) and g in (7.35), finally, an estimate for the
non-linear function f can be obtained. Note that if the row-rank of

∑m
j=0 Bj is

smaller than the column-rank, multiple choices for g are possible. This results
as an inherent property of blind MIMO Hammerstein identification. The choice
of a particular g is left to the user.

7.6 Comparison with existing overparameteri-

zation algorithms

As was mentioned in Subsection 7.4.1, the presented technique is closely related
to the overparameterization approach [12,20]. Remember from Subsection 6.2.3
that the idea of overparameterization can be summarized as writing the static
non-linearity f as a linear combination of general non-linear basis functions fk,
f(ut) =

∑nf

k=1 ckfk(ut), where-after a least squares regression problem is solved
in parameters θj,k = bjck. The original system parameters are then recovered
by means of an SVD of the matrix (6.3). It was also seen in Subsection 6.2.3
that in principle, some additional measures need to be taken in order to avoid
loosing the rank-one property of (6.3). The approach proposed in Subsection
6.2.3 is to first calculate:

A =




θ̂0,1 θ̂0,2 . . . θ̂0,nf

θ̂1,1 θ̂1,2 . . . θ̂1,nf

...
...

...

θ̂m,1 θ̂m,2 . . . θ̂m,nf







f1(u1) . . . f1(uN )
f2(u1) . . . f2(uN )

...
...

fnf
(u1) . . . fnf

(uN )


 ,

with ut, t = 1, . . . , N the inputs of the system. Then we subtract the mean
of every row in A and take the SVD of the remaining matrix. From the SVD
estimates for the bj can be extracted. Estimates for the ck can then be found
in a second round by solving (6.1). It is this approach that will be used for the
implementation of the classical overparameterization methods in the following
section. Note that this approach amounts to setting the mean of f̂ =

∑N
k=1 f̂k
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over the inputs u1, . . . , uN to zero, which is similar to what was done for the
LS-SVM, with the exception that in the latter case this constraint was explicitly
introduced in the Lagrangian (7.21).

7.7 Illustrative examples

7.7.1 SISO system

The algorithm proposed in Section 7.4 was used for identification on the
following SISO Hammerstein system:

A(z)y = B(z)f(u) + e, (7.36)

with A and B polynomials in the forward shift operator z where B(z) = z6 +
0.8z5 + 0.3z4 + 0.4z3, A(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i), and
f : R→ R : f(u) = sinc(u)u2 the static non-linearity.

A white Gaussian input sequence u with length 400, zero mean and standard
deviation 2 was generated and fed into the system (7.36). During the simulation
the equation noise e was chosen white Gaussian with zero mean and as standard
deviation 10% of the standard deviation of the sequence f(u). The last 200 data-
points of u and the generated output y were used for identification using the
following three techniques:

• LS-SVM: The LS-SVM estimation procedure as described in Section 7.4:
The linear system (7.20) is solved for d, a, α, β. An SVD of the right
hand side of (7.22) is thereafter performed to obtain estimates for the
linear system and the static non-linearity. For the example, an RBF-kernel
with σ = 1 was used. Different values for the regularization parameter γ
were tested by applying the obtained model to an independent validation
sequence. From these tests γ = 500 was selected as the best candidate.

• Hermite: The overparameterization algorithm described in Subsection
6.2.3 with fk(u) = eu2(dk−1/duk−1)e−u2

, the Hermite polynomial of order
k − 1. This expansion was used in [70] for Hammerstein and in [71] for
Wiener systems.

• RBF network (Gaussian): The general algorithm described in Subsec-
tion 6.2.3 with fk(·), k = 1, . . . , nf localized Gaussian density functions
with mean depending on the value of k. As no prior information about
the nature of the static non-linearity is assumed during the identification
step, the means of the Gaussian non-linearities were chosen equidistantly
spread between -4 and 4. The variance of the density functions was chosen
to be 1, in line with the σ = 1 choice for LS-SVM. The main reason for
considering this algorithm is that it is a parametric counterpart to the LS-
SVM approach with an RBF-kernel, where the final solution is expressed
as a sum of Gaussian density functions around the training data-points.
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100 Monte-Carlo experiments were performed following the description above
with n = 6,m = 3. For each experiment and each obtained estimate f̂ for the

static non-linearity f , the distance d =
∫ 4

−4
‖f(x)− f̂(x)‖dx was calculated. The

mean and variance of the distances so obtained using the LS-SVM technique
are compared to those obtained from the Hermite and Gaussian approach using
different values for nf . The results are displayed in Table 7.1. Note that the LS-

Method mean(d) std(d)
LS-SVM γ = 500 0.0064 0.0041
Hermite nf = 15 0.2203 0.7842
Hermite nf = 20 0.7241 2.3065
Hermite nf = 25 1.1217 2.9660
Hermite nf = 30 1.0118 2.9169
Gaussian nf = 18 0.0142 0.0141
Gaussian nf = 24 0.0193 0.1055
Gaussian nf = 30 0.0168 0.0693
Gaussian nf = 36 0.0188 0.0764

Table 7.1: Mean and standard deviation of obtained distances between
estimated and true non-linearities in a SISO example.

SVM technique clearly performs better than the Hermite-approach and about
3 times better than the Gaussian approach. The Gaussian and the LS-SVM
technique are similar in nature as in both cases the estimated non-linearity is
written as a sum of Gaussian basis functions with fixed bandwidth 1. However,
it should be noted at this point that the RBF-kernel is but one possible choice
in the LS-SVM algorithm, and that in principle any positive definite kernel can
be chosen. A big disadvantage for the Gaussian approach is that it suffers from
over-fitting once the parameter nf is chosen too high, even though with the
200 data-points available and n = 6,m = 3, one could easily go to nf = 46
before the resulting set of linear equations becomes under-determined. To avoid
the increased variance, an extra regularization term γ−1

∑nf

k=1

∑n
j=0 θ

2
j,k can

be applied to the estimation problem (6.2). Results for the Gaussian approach
including such a regularization term, and with nf = 46, are displayed in Table
7.2. Note that the performance of the Gaussian estimator has drastically
improved, but is still about 50% worse than the LS-SVM estimator. The same
observation can be made by looking at Figure 7.1, where the true non-linearity
is displayed together with the estimated non-linearities for the 3 alternative
methods described in this section. 90% error bounds following from the Monte
Carlo simulation are also displayed. The estimated linear systems for the LS-

SVM and the Gaussian case with regularization (with γ = 1011 obtained using
validation on an independent dataset) are compared in Figure 7.2. Again, LS-
SVM is seen to perform better than the Gaussian approach.
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Method mean(d) std(d)
LS-SVM γ = 500 0.0064 0.0041
Gaussian γ = 1013 0.0457 0.1028
Gaussian γ = 1012 0.0089 0.0071
Gaussian γ = 1011 0.0088 0.0060
Gaussian γ = 1010 0.0112 0.0086

Table 7.2: Mean and variances of obtained distances between estimated and
true non-linearities in a SISO example.

7.7.2 MIMO system

In a second example, the MIMO identification method proposed in Section
7.5 was applied to a 2 × 2 MIMO system with a static non-linearity involving
saturation and a saddle point. The MIMO system used is:

y =

[
b1(z)
a1(z)

b2(z)
a1(z)

b1(z)
a2(z)

b2(z)
a2(z)

]
f(u) +

[
1

a1(z)
1

a2(z)

]
e (7.37)

with

a1(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i),

a2(z) = (z − 0.97e±0.7i)(z − 0.98e±1.4i)(z − 0.97e±2.3i),

b1(z) = z6 + 0.8z5 + 0.3z4 + 0.4z3,

b2(z) = z6 + 0.9z5 + 0.7z4 + 0.2z3,

f(u) =

[
− arctan(u(1)) arctan(u(2))
arctan(u(1))− arctan(u(2))

]
.

A two-component zero mean white Gaussian input sequence u with length 500
and standard deviation 1 was generated and fed into the system (7.37). During
the simulation the two components of the equation noise were chosen mutually
uncorrelated white Gaussian with zero mean and standard deviation 0.1. Based
on u and the obtained output y, estimates for a1(z), a2(z), b1(z), b2(z) and f are
obtained using the MIMO Hammerstein identification algorithm as described in
Subsection 7.7.2, whereby n = 6,m = 3, and a classical linear ARX algorithm
with the same orders for the numerator and the denominator. The hyper-
parameters in the LS-SVM approach were chosen as σ = 1, γ1 = γ2 = 300,
using 10-fold cross-validation.

The results of a simulation on an independent test-set using the obtained
linear and Hammerstein model is shown in Figure 7.3. The results for the LS-
SVM Hammerstein estimator are clearly better than those for the linear ARX
estimator.

Note further that in the examples shown, m and n were considered to
be known. In practical applications this will often not be the case. As in
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Figure 7.1: True non-linearity (solid) and mean estimated non-linearity (dashed)
for the different techniques compared in a Monte-carlo simulation of a SISO
system. Results for the LS-SVM algorithm with γ = 500 are displayed in
the top-left figure, those for the Gaussian approach with nf = 18 and without
regularization in the top-right figure. The bottom-left figure displays the results
for the Gaussian algorithm with nf = 46 and constant γ = 1011 tuned using
validation on an independent dataset. The bottom-right figure displays the
results for the Hermitian algorithm with nf = 15. 90% error bounds on
the estimated non-linearities, following from the Monte Carlo simulation, are
included in each plot (dotted). The Hermite-approach is obviously inferior to
the Gaussian and the LS-SVM technique. The best performance is obtained by
using the LS-SVM algorithm.

linear identification problems, several identification runs followed by a selection
of the best performing model (e.g. on a validation set) might therefore be
necessary to obtain the best possible model. As a general rule, however, a slight
overestimation of m and n is, as in the linear case, not a problem.

7.8 Conclusions

In this chapter, a technique for the identification of MIMO Hammerstein ARX
systems was proposed. The method is based on Least Squares Support Vector
Machines function approximation and allows to determine the memoryless
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Figure 7.2: True transfer function (solid) and mean estimated ones for the LS-
SVM estimator (dashed) and the Gaussian estimator with regularization (dash-
dotted) in a Monte-carlo simulation of a SISO system (top-figure). The width
of the 90% error bounds on the estimated transfer function (in log norm and
obtained from the Monte Carlo simulations) is included in the plot below. Note
that the transfer functions are visually indistinguishable in the top-figure, but
the width of the error bounds clearly shows the significantly improved behavior
of the LS-SVM approach.

static non-linearity as well as the linear model parameters from a linear set
of equations. The method was compared to results of two other Hammerstein
identification algorithms to illustrate its performance. This combined with
the straightforward derivation of the results, the availability of a strong
regularization framework [127, 135, 150], and the freedom that one gets in
modeling the non-linearity by the design of an appropriate positive definite
kernel makes the proposed technique an excellent candidate for Hammerstein
model identification.
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Figure 7.3: Simulation on an independent test-set (full line) using an LS-SVM
Hammerstein estimator (dashed line) and a linear ARX estimator (dash-dotted
line), identified on a MIMO example. The first component of the output is
displayed in (a), the second component in (b). All simulations are initialized
using the first 6 input/output measurements on the test set (at the left of the
dashed vertical line).



Chapter 8

Hammerstein N4SID
identification

In this chapter, a method for the identification of multi-input/multi-
output Hammerstein systems is presented. The method extends the
N4SID linear subspace identification algorithm, mainly by rewriting
the oblique projection in the N4SID algorithm as a set of component-
wise LS-SVM regression problems. The linear model and static non-
linearities are obtained from a low rank approximation of a matrix
produced by this regression problem.

8.1 Introduction

The primal-dual optimization framework characterizing LS-SVMs and the
particularly simple (analytical) form of the solution have been shown to be
well suited for the estimation of ARX Hammerstein models in Chapter 7
because linear structure and constraints can be incorporated easily in the
optimization framework. However, ARX models are not suited for identification
of linear dynamical systems under certain experimental conditions, such as the
ones discussed in Subsection 5.2.2. Furthermore, the ARX model class is by
construction a restricted one. To this extent it would be preferable to extend
the use of subspace identification methods to Hammerstein systems. In this
chapter, we investigate the use of LS-SVMs for the estimation of Hammerstein
models using extended versions of the classical N4SID subspace algorithm as
presented in [146,147].

Following the notation and definitions in Chapter 3, we recall that the basic
projection at the heart of the N4SID algorithm is the oblique projection of the
future outputs along the future inputs onto the past.

{
Oi = Yf/Uf

Wp,
Oi+1 = Y −

f /U−

f
W+

p ,
(8.1)

133
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As was seen in Section 5.2, this projection can be implemented using a least
squares algorithm of the following form:

(L̂u, L̂y) = argmin
Lu,Ly

∥∥∥∥∥∥
[
Lu Ly

]


Up

Uf

Yp


− Yf

∥∥∥∥∥∥

2

F

,

(L̂−
u , L̂

−
y ) = argmin

L−
u ,L−

y

∥∥∥∥∥∥
[
L−

u L−
y

]


U+

p

U−
f

Y +
p


− Y −

f

∥∥∥∥∥∥

2

F

,

Oi = L̂u(:, 1 : im)Up + LyYp,

Oi+1 = L̂−
u (:, 1 : (i+ 1)m)U+

p + L−
y Y

+
p ,

where a slightly different notation and ordering in the regression matrix was used
as in Section 5.2 to facilitate the derivations in the following sections. Once Oi

and Oi+1 are known, the system matrices A, B, C and D can be obtained using
any of the algorithms described in Subsection 3.5.6. In this chapter, we will
consider the biased state-space algorithm summarized in Figure 3.7, and show
that it can conveniently be extended towards the identification of Hammerstein
systems. The reason for choosing the biased algorithm is its straightforward
form, keeping the derivations both focused and insightful. We note that the
principles of the derivations given in this chapter can equally well be applied to
any other N4SID subspace identification algorithm, such as the unbiased version
presented in [144,147].

8.2 Extending the N4SID algorithm towards

identification of Hammerstein systems

A linear system is transformed into a Hammerstein system by introducing a
static non-linearity f : R

m → R
m which is applied to the inputs u. With the

introduction of the non-linearity f , the following state-space model is obtained:
{
xt+1 = Axt +Bf(ut) + wt,
yt = Cxt +Df(ut) + vt.

(8.2)

Inputs and outputs {(ut, yt)}
N−1
t=0 , are assumed to be available. The process and

measurement noise wt and vt follow the same statistics as in Chapter 3. We
define the matrix operator Φ as an operator on a block Hankel matrix and a
nonlinear function ρ on R

m which applies ρ(·) to every block matrix Zi in Z
and stacks the results in the original Hankel configuration:

Φρ







Z1 Z2 . . . Zp

Z2 Z3 . . . Zp+1

...
...

...
Zq Zq + 1 . . . Zp+q−1





 =




ρ(Z1) ρ(Z2) . . . ρ(Zp)
ρ(Z2) ρ(Z3) . . . ρ(Zp+1)

...
...

...
ρ(Zq) ρ(Zq + 1) . . . ρ(Zp+q−1)


 .



8.2 Extending the N4SID algorithm towards identification of
Hammerstein systems 135

8.2.1 Overparameterization for the oblique projection Oi

The oblique projection Oi = Yf/Uf
Wp can be calculated from estimates for Lu,

Ly and f obtained by minimizing the residuals E of the following equation [147]:

Yf =
[
Lu Ly

] [Φf (U0|2i−1)
Yp

]
+E, (8.3)

in a least-squares sense. This can be rewritten as

Yf (s, t) = Ly(s, :)Yp(:, t)+

2i∑

h=1

Lu(s, (h−1)m+1 : hm)f(uh+t−2)+E(s, t), (8.4)

for s = 1, . . . , il and t = 1, . . . , j. Once estimates for L̂u, L̂y and f̂ occuring in
equations (8.3) and (8.4) are obtained, the oblique projection is calculated as:

Oi(s, t) = L̂y(s, :)Yp(:, t) +

i∑

h=1

L̂u(s, (h− 1)m+ 1 : hm)f̂(uh+t−2), (8.5)

for s = 1, . . . , il and t = 1, . . . , j. Note that in (8.4) and (8.5), products between
parameter matrices Lu and Ly and the static non-linearity f appear which
were already seen to lead to a difficult non-convex optimization problem in
Chapter 7. Again we will use an LS-SVM approach, combined with ideas
from the overparameterization technique by introducing a set of functions
gh,s : R

m → R such that [12]:

gh,s , cTh,sf, s.t. cTh,s = Lu(s, (h− 1)m+ 1 : hm), (8.6)

∀h = 1, . . . , 2i, s = 1, . . . , il.

With these new functions we obtain a generalization to (8.4) and (8.5):

Yf (s, t) = Ly(s, :)Yp(:, t) +
2i∑

h=1

gh,s(uh+t−2) +E(s, t), (8.7)

Oi(s, t) = L̂y(s, :)Yp(:, t) +

i∑

h=1

ĝh,s(uh+t−2), (8.8)

for s = 1, . . . , il and t = 1, . . . , j. Note that (8.7) is now linear in the functions
gh,s : R

m → R. In line with the approach in Chapter 7, the central idea behind
the algorithm presented in this chapter is that the functions gh,s in (8.7) can be
determined from data using the concept of component-wise LS-SVM regression
as presented in [117]. Once estimates for the gh,s are obtained, Equation (8.6)
will be used in combination with a rank reduction technique such as the singular
value decomposition to obtain estimates for the non-linear functions f and the
elements in Lu, similar to the singular value decomposition step in classical
overparameterization algorithms (see Subsection 6.2.3).
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Let the kernel function be defined as K : R
m ×R

m → R such that K(up, uq) =
ϕ(up)

Tϕk(uq) for all p, q = 0, . . . , N − 1 and the kernel matrix Ω ∈ R
N×N such

that Ω(i, j) = K(ui−1, uj−1) for all i = 1, . . . , N, j = 1, . . . , N . Substituting
gh,s for the primal model wT

h,sϕ in (8.7) results in

Yf (s, t) = Ly(s, :)Yp(:, t) +
2i∑

h=1

wT
h,sϕ(uh+t−2) +E(s, t), (8.9)

∀s = 1, . . . , li, t = 1, . . . , j.

Introducing centering

As argued in 6.2.3, the expansion of a non-linear function as the sum of a set of
non-linear functions is not unique, e.g.

(
wT

1 ϕ1(u)
)

+
(
wT

2 ϕ2(u)
)

=
(
wT

1 ϕ1(u) + δ
)

+
(
wT

2 ϕ2(u)− δ
)
,

for all δ ∈ R. It was seen in Chapter 7 that this problem can be avoided by
including a centering constraint of the form

N−1∑

t=0

f(ut) = 0. (8.10)

This constraint can always be applied since for any constant δu, and any function
f : R

m → R
m such that f = f+δu there exists a state transformation ξt = Ψ(xt)

with Ψ : R
n → R

n and a constant δy such that (8.2) is transformed as follows:

{
ξt+1 = Aξt +Bf(ut) + νt,

yt − δy = Cξt +Df(ut) + vt,
(8.11)

with ξt ∈ R
n and δy ∈ R

l defined as

{
ξt = Ψ(xt) = xt − (I −A)−1Bδu,
δy =

(
C(I −A)−1B +D

)
δu.

Hence, the constraint (8.10) can be applied provided that a new parameter δy

is added to the model, transforming (8.9) into

Yf (s, t) + [1i ⊗ δy](s) = Ly(s, :)(Yp(:, t) + 1i ⊗ δy) +
2i∑

h=1

wT
h,sϕ(uh+t−2)

+ E(s, t), ∀s = 1, . . . , li, t = 1, . . . , j,

where ⊗ denotes the matrix kronecker product. Through the equality wT
h,sϕ =

gh,s = cTh,sf for all h = 1, . . . , 2i, s = 1, . . . , il, the constraint (8.10) amounts
to

N−1∑

t=0

wT
h,sϕ(ut) = 0, ∀h, s.
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The LS-SVM primal problem is then formulated as a constrained optimization
problem:

min
wh,s,Ly,E,δy

J (wh,s, Ly, E, δy) =
1

2

il∑

s=1

2i∑

h=1

wT
h,swh,s +

γ

2

il∑

s=1

j∑

t=1

E(s, t)2,

s.t.





Yf (s, t) + [1i ⊗ δy](s) = Ly(s, :)(Yp(:, t) + 1i ⊗ δy) (a)

+
∑2i

h=1 w
T
h,sϕ(uh+t−2) +E(s, t),

∀s = 1, . . . , il, t = 1, . . . , j,∑N−1
t=0 wT

h,sϕ(ut) = 0, (b)

∀h = 1, . . . , 2i, s = 1, . . . , li.

(8.12)

Solving the componentwise LS-SVM regression problem

Lemma 8.1. Given the primal problem (8.12), estimates for Ly and δy follow
from the dual system:




0 0 1T 0
0 0 Yp 0
1 Y T

p Kp +Kf + γ−1I S
0 0 ST T







d

LT
y

A
B


 =




0
0
Y T

f

0


 ,

where d = (1i ⊗ Il − Ly(1i ⊗ Il)) δy, 1j is a column vector of length j with

elements 1, T = I2i × 1T
NΩ11N , Sq =

∑N
t=1 Ω(t, q) and

A =




α1,1 α2,1 . . . αli,1

α1,2 α2,2 . . . αli,2

...
...

...
α1,j α2,j . . . αli,j


 ,B =




β1,1 β1,2 . . . β1,li

β2,1 β2,2 . . . β2,li

...
...

...
β2i,1 β2i,2 . . . β2i,li


 ,

S =




S1 S2 . . . S2i

S2 S3 . . . S2i+1

...
...

...
Sj Sj+1 . . . SN


 .

The matrices Kp ∈ R
j×j and Kf ∈ R

j×j have elements:

Kp(p, q) =

i∑

h=1

K(uh+p−2, uh+q−2), Kf (p, q) =

2i∑

h=i+1

K(uh+p−2, uh+q−2),

for all p, q = 1, . . . , j. Estimates for the gh,s in (8.7) for all h, s are given as:

ĝh,s : R
m → R : u∗ →

j∑

t=1

αs,tK(uh+t−2, u
∗) + βh,s

N−1∑

t=0

K(ut, u
∗). (8.13)
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Proof. This directly follows from the Lagrangian

L(w, d, Ly, E; α, β, ds) = J (w, E) −
2iX

h=1

liX

s=1

βh,s

(
N−1X

t=0

wT
h,sϕ(ut)

)
−

liX

s=1

jX

t=1

αs,t

(
Ly(s, :)Yp(:, t) +

2iX

h=1

wT
h,sϕ(uh+t−2) + ds + E(s, t) − Yf (s, t)

)
,

with d =
[
dT
1 . . . dT

l

]T
by taking the conditions for optimality ∂L

∂wh,s
= 0,

∂L
∂Ly(s,:) = 0, ∂L

∂E(s,t) = 0, ∂L
∂ds

= 0, ∂L
∂αs,t

= 0, ∂L
∂βh,s,k

= 0, ∂L
∂ds

= 0 and after

elimination of the primal variables wh,s and E.

Combining the results from Lemma (8.1) with equation (8.8), we have

Oi =

i∑

h=1







Φĝh,1
Uh|h

Φĝh,2
Uh|h
...

Φĝh,2li
Uh|h





+ L̂y

(
Yp − 1li1

T
li ⊗ δ̂y

)

= ATKp + BT
p S

T
p + L̂y

(
Yp − (1i1

T
j )⊗ δ̂y

)
, (8.14)

with Bp = B(1 : i, :) and Sp = S(:, 1 : i).

8.2.2 Calculating the oblique projection Oi+1

The calculation of Oi+1 is entirely equivalent to that of Oi. Without further
proof, we state that Oi+1 is obtained as:

Oi+1 = (A−)
T
(K+

p )
T

+ (B−
p )

T
(S−p )

T
+ L̂−

y

(
Y +

p − 1(i+1)1
T
j ⊗ δy

)
(8.15)

with K+
p (p, q) =

∑i+1
h=1K(uh+p−2, uh+q−2) for all p, q = 1, . . . , j, and

B−
p = B−(1 : i+ 1, :),

S−p = S−(:, 1 : i+ 1).

A−,B− and L̂−
y follow from:




0 0 1T 0
0 0 Y +

p 0

1 (Y +
p )

T
Kp +Kf + γ−1I S

0 0 ST T







d−

(L−
y )

T

A−

B−


 =




0
0

(Y −
f )

T

0


 ,

with

d− =
(
(1(i−1) ⊗ Il)− L

−
y (1(i+1) ⊗ Il)

)
δy.
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8.2.3 Obtaining estimates for the states

The state sequences X̃i and X̃i+1 can now be determined from Oi and Oi+1

in line with what is done in linear subspace algorithms (see for instance Figure
3.7). These state sequences will be used in a second step of the algorithm to
obtain estimates for the system matrices and the non-linearity f . Note that
in the linear case, it is well known that the obtained state sequences X̃i and
X̃i+1 can be considered as the result of a bank of non steady state Kalman
filters working in parallel on the columns of the block-Hankel matrix Wp [147].
In the Hammerstein case, and if f were known, this relation would still hold

provided that Wp is replaced by
[
Φf (Up)

T Y T
p

]T
. However, an estimate f̂ for

f based on a finite amount of data will in general be subject to approximation
errors [150]. As the classical results for the bank of linear Kalman filters are

not applicable if the inputs f̂(ut) to the linear model are not exact the obtained

states X̃i and X̃i+1 can no longer be seen as the result of a bank of Kalman

filters working on
[
Φf̂ (Up)

T Y T
p

]T
. Despite the loss of this property, it will

be illustrated in the examples that the proposed method outperforms existing
Hammerstein approaches such as approaches based on ARX models and N4SID
identification algorithms with an expansion in Hermite polynomials.

8.2.4 Extraction of the system matrices and the non-
linearity f

The linear model and static non-linearity are estimated from:

(Â, B̂, Ĉ, D̂, f̂) = argmin
A,B,C,D,f

∥∥∥∥
[
X̃i+1

Yi|i − δy

]
−

[
A B
C D

] [
X̃i

Φf

(
Ui|i
)
]∥∥∥∥

2

F

. (8.16)

It will be shown in this subsection that this least-squares problem can again be
written as an LS-SVM regression problem. Denoting

Xi+1 =

[
X̃i+1

Yi|i − δy

]
, ΘAC =

[
A
C

]
, ΘBD =

[
B
D

]
, (8.17)

and replacing ΘBD(s, :)f by ωT
s ϕ, where again an expansion of a product of

scalars and non-linear functions is written as a linear combination of non-linear
functions, we have:

Xi+1 = ΘACX̃i +




ωT
1

ωT
2
...

ωT
n+l


Φϕ(Ui|i) +E,

with E the residuals of (8.16). The resulting LS-SVM primal problem can be
written as
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min
ωs,E,ΘAC

J (ω,E) =
1

2

n+l∑

s=1

ωT
s ωs +

γBD

2

n+l∑

s=1

j∑

t=1

E(s, t)2,

s.t.





Xi+1(s, t) = ΘAC(s, :)X̃i(:, t) + ωT
s ϕ(ui+t−1), (a)

∀s = 1, . . . , li, t = 1, . . . , j,∑N−1
t=0 ωT

s ϕ(ut) = 0, ∀s = 1, . . . , li, (b)

where γBD denotes a regularization constant which can be different from the γ
used in Subsection 8.2.1.

Lemma 8.2. Estimates for A and C in ΘAC are obtained from the following
dual problem




0 X̃i 0

X̃T
i KBD + γ−1

BDI SBD

0 ST
BD TBD






ΘT
AC

ABD

BBD


 =




0
X T

i+1

0


 , (8.18)

whereby ωs =
∑j

t=1 αs,tϕ(ui+t−1) + βs

∑N−1
t=0 ϕ(ut) for all s = 1, . . . , n + l,

KBD(p, q) = K(ui+p−1, ui+q−1) for all p, q = 1, . . . , j, BBD =
[
β1 β2 . . . βn+l

]
,

TBD = 1T
NK1N , and

ABD =




α1,1 α2,1 . . . αn+l,1

α1,2 α2,2 . . . αn+l,2

...
...

...
α1,j α2,j . . . αn+l,j


 ,SBD =




Si+1

Si+2

...
Si+j


 .

Proof. This follows directly from the Lagrangian

L = J (ω,E)−
n+l∑

s=1

βs

{
N−1∑

t=0

ωsϕ(ut)

}

−
n+l∑

s=1

αs,t

{
Xi+1(s, t)−ΘAC(s, :)X̃i(:, t)− ω

T
s ϕ(ui+t−1)

}
,

by taking the conditions for optimality ∂L
∂ωs

= 0, ∂L
∂E = 0, ∂L

∂ΘAC
= 0, ∂L

∂αs,t
= 0,

∂L
∂βs

= 0, and after elimination of the primal variables ωs and E.

By combining the results from Lemma 8.2 with (8.16) and (8.17), we have:

ΘBD

[
f(u0) . . . f(uN−1)

]
= AT

BDΩ(i+1 : i+j, :)+BT
BD

N∑

t=1

Ω(t, :). (8.19)

Hence, estimates for B, D in ΘBD and the non-linearity f can be obtained
from a rank m approximation of the right hand side of (8.19), for instance using
a singular value decomposition. This is a typical step in overparameterization
approaches [12] and amounts to projecting the results for the overparameterized
model as used in the estimation onto the class of Hammerstein models.
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8.2.5 Practical implementation

Following the discussion in the previous sections, the final algorithm for
Hammerstein N4SID subspace identification can be summarized as follows:

1. Find estimates for the oblique projections Oi and Oi+1 from (8.14) and
(8.15).

2. Find estimates for the state following the procedure outlined in Subsection
8.2.3.

3. Obtain estimates for A, C, ABD and BBD following the procedure outlined
in Subsection 8.2.4.

4. Obtain estimates for B, D en f from a rank-m approximation of (8.19).

It should be noted at this point that given the fact that regularization is
inherently present in the proposed identification technique, lack of persistency
of excitation will not lead to any numerical problems. However, in order to
ensure that all aspects of the linear system are properly identified, persistency
of excitation of f(u) of at least order 2i is desired (see also Subsection 3.5.5).
Persistency of excitation of f(u) can for some nonlinear functions f be expressed
as a condition on the original inputs u but the relation is certainly not always
straightforward (see for instance [156] for a discussion on this issue).

Furthermore, it is important to remark that the estimate of the static
nonlinearity will only be reliable in regions where the input density is sufficiently
high.

8.3 Illustrative examples

We consider the SISO system presented in Subsection 7.7.2, augmented with an
output noise term ν:

A(z)(y + ν) = B(z)f(u) + e. (8.20)

As in Subsection 7.7.2, A and B are polynomials in the forward shift operator z
where B(z) = z6+0.8z5+0.3z4+0.4z3, A(z) = (z−0.98e±i)(z−0.98e±1.6i)(z−
0.97e±0.4i), and f : R→ R : f(u) = sinc(u)u2 the static non-linearity. A dataset
was generated from this system where ut ∼ N (0, 2) is a white Gaussian noise
sequence for t = 0, . . . , N − 1 with N = 1000 and et is a sequence of Gaussian
white noise with a level of 10% of the level of the non-linearity f(u).

8.3.1 Comparison with the Hammerstein ARX approach
in Chapter 7

Without measurement noise

The measurement noise terms νt were chosen to be zero for t = 0, . . . , N −
1, in which case the system (8.20) belongs to the class of Hammerstein ARX
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systems, identical to the one used as the primary example for the LS-SVM based
Hammerstein ARX identification algorithm derived in Chapter 7. The latter was
shown to outperform classical Hammerstein ARX identification methods based
on orthogonal and non-orthogonal basis functions.

The Hammerstein N4SID subspace identification algorithm as derived in
Section 8.2 was used to extract the linear model and the static non-linearity
f from the dataset described above. The number of block-rows i in the block
Hankel matrices was set to 10. An advantage of the N4SID algorithm is that
the model order, 6, automatically follows from the SVD of Oi. The hyper-
parameters in the LS-SVM N4SID algorithm were selected as σ = 0.1, γ = 1000,
γBD = 10 by validation on an independent validation set. The resulting linear
system and static non-linearity are displayed in Figure 8.1.

As a comparison, the results of the LS-SVM ARX estimator from Chapter
7 are also displayed in Figure 8.1. For the ARX-estimator, the number of
poles and zeros were assumed to be fixed a priori. Two hyper-parameters (the
regularization constant and the bandwidth of the RBF kernel) which need to
be set in this method were chosen in accordance with the choices reported in
Chapter 7. One observes that in this particular case of no output noise, the
ARX algorithm outperforms the N4SID. This can be attributed to the fact
that a linear system without output noise belongs to the ARX class of models,
which features less parameters than the wider class of models which can be
identified using N4SID methods. Hence, the variance on the model parameters
obtained using N4SID identification can be expected to be larger than those on
the parameters obtained using ARX identification.

including measurement noise

In order to highlight the advantages of the N4SID algorithm, in a second
example, a noise sequence νt ∼ N was added to the output such that a signal
to noise ratio of 10 was obtained on the output signal. Again results for the
N4SID and the Hammerstein ARX algorithm are reported. For the N4SID case,
the hyper-parameters were now selected as σ = 1, γ = 10, γBD = 1, again via
validation on an independent validation set. For the ARX case, the obtained
optimal hyper-parameters were as in the previous subsection. The results are
displayed in Figure 8.2. Note that the addition of output noise has had little
impact on the performance of the N4SID-algorithm. The ARX algorithm on the
other hand suffers from a bias due to the true model not belonging to the ARX
model class and performs very badly in this case. This serves to highlight one
of the main advantages of the use of subspace identification methods [147] over
more classical ARX procedures, namely that they are not limited to a restricted
class of linear models.
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Figure 8.1: True transfer function (solid) and mean estimated ones (dashed)
for the LS-SVM N4SID subspace algorithm (top-left) and the LS-SVM ARX
algorithm (top-right), as estimated from a sequence of 1000 input/output
measurements on a simulated system, without addition of output noise. The
true non-linearities (solid) and estimated ones (dashed) are displayed below the
transfer functions, for the N4SID case (lower-left), and the ARX-case (lower-
right).

8.3.2 Comparison with classical subspace over-paramete-
rization approaches

As mentioned before, a classical approach to Hammerstein system identification
is to expand the static nonlinearity in a set of orthogonal or non-orthogonal
basis-functions [114]. The same idea can be applied to subspace algorithms
[104]. Once a set of basis-functions is considered, the one-dimensional input
is transformed into a higher-dimensional input vector which contains the
coefficients of the expansion of f(u) in its basis. The classical N4SID subspace
algorithm presented in Figure 3.7 is thereafter applied. The linear system
and static nonlinearities can be obtained from the obtained matrices B and
D (see [104] for a detailed procedure).

This example will adopt the common choice of the Hermite polynomials as
a basis. The best results on the dataset with output noise were obtained when
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Figure 8.2: True transfer function (solid) and estimated one (dashed) for the
LS-SVM N4SID subspace algorithm (top-left) and the LS-SVM ARX algorithm
(top-right), as estimated from a sequence of 1000 input/output measurements
on a simulated system, with the addition of 10% output noise. The true non-
linearities (solid) and estimated ones (dashed) are displayed below the transfer
functions, for the N4SID case (lower-left), and the ARX-case (lower-right).

selecting 7 Hermite polynomials with orders ranging from 0 to 6. The obtained
linear system corresponding to this choice of basis functions is displayed in
Figure 8.3. Note the rather poor performance of this method, compared to the
LS-SVM N4SID algorithm. This can largely be attributed to the fact that the
performance of subspace algorithms degrades as the number of inputs increases,
certainly if these inputs are highly correlated (see [25] and Chapter 5). This
as a result of a bad conditioning of the matrices Up and Uf as the number of

rows increases and these rows get more correlated. For the 0th order Hermite
polynomial (which is a constant) this is certainly the case but also when leaving
out this polynomial, condition numbers of 105 and higher are encountered. This
problem does not occur in the N4SID LS-SVM algorithm as the latter features
an inherently available regularization framework. An additional advantage is
the flexibility one gets by plugging in an appropriate kernel and the fact that if
localized kernels are used, no specific choices have to be made for their locations.
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The locations follow directly from the formulation of costfunctions as (8.12).

8.4 Conclusions

In this chapter, a method for the identification of Hammerstein systems was
presented based on the well-known N4SID subspace identification algorithm.
The basic framework of the N4SID algorithm is largely left untouched, except
for the ordinary least squares steps which is replaced by a set of component-
wise LS-SVM regressions. The proposed algorithm was observed to be able to
extract the linear system and the non-linearity from data, even in the presence
of output noise.
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Figure 8.3: True transfer function (solid) and the estimated one (dashed) for
the Hermite N4SID subspace algorithm as estimated from a sequence of 1000
input/output measurements on a simulated system, with the addition of 10%
output noise.



Chapter 9

Hammerstein-Wiener
identification using
subspace intersection

In this chapter, a method for the identification of Hammerstein-
Wiener systems is presented. The method extends the linear
subspace intersection algorithm, mainly by introducing a Kernel
Canonical Correlation Analysis (KCCA) to calculate the state as
the intersection of past and future, in stead of the more classical
CCA approach. The linear model and static non-linearities on input
and output are readily obtained once the state is known using Least
Squares Support Vector Machines (LS-SVM)-regression.

9.1 Introduction

Following the approach set out in the former chapters for the extension of
ARX and N4SID identification algorithms to the identification of Hammerstein
systems, in this chapter we will consider the extension of the classical subspace
intersection algorithm (see 3.4.2) to Hammerstein-Wiener systems in state-space
form: {

xt+1 = Axt +Bf(ut),
g−1(yt) = Cxt +Dut.

(9.1)

Hereby ut ∈ R
m and yt ∈ R

l are the input and output at time t and xt ∈ R
n

denotes the state. f : R
m → R

m and g : R
l → R

l are static non-linear mappings
with g such that g−1 exists for all possible outputs of the system. The extension
will be obtained by replacing the linear CCA-step, used for the estimation of the
state by a non-linear kernel CCA (KCCA) approximator. In a second step, the
system matrices A, B, C and D and the non-linearities f and g will be obtained
from the solution of an LS-SVM regression problem, similarly to what was done

147
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in the extension of the N4SID identification algorithm towards Hammerstein
systems in Chapter 8.

A clear advantage of the proposed technique in this chapter is that it does not
rely on restrictive assumptions on the inputs such as white noise or periodicity,
that it is non-iterative in nature, and that it can conveniently be applied to
MIMO systems. This in contrast to existing algorithms for the identification of
Hammerstein-Wiener systems described in Section 6.4. Furthermore, other than
the invertibility of g and a certain degree of smoothness, no specific restrictions
are imposed on the non-linear maps f and g.

The outline of this chapter is as follows: In Section 9.2 the basic ingredients
of the subspace intersection algorithm for linear systems are reviewed briefly.
Section 9.3 extends the linear intersection algorithm towards a non-linear setting
using a variation on the theme of LS-SVMs and kernel CCA. Section 9.4, finally,
presents some illustrative examples.

9.2 Brief review of the subspace intersection

algorithm

The subspace intersection algorithm was originally proposed in [38, 107] and is
largely based on the idea that the state of a linear or non-linear model can be
considered as the minimal intersection between past and future measurement
data [94].

Following the notations and definitions of Chapter 3, and assuming a finite
set of training data {(ut, yy)}N−1

t=0 , the main reasoning behind the subspace
intersection algorithm for linear systems follows from the fact that under the
assumptions that:

1. the input ut is persistently exciting of order 2i, i.e. the input block Hankel
matrix U0|2i−1 is of full rank,

2. the intersection of the row space of Uf (the future inputs) and the row
space of Xp (the past states) is empty,

the following relation holds:

Row(Xf ) = Row(Wp) ∩ Row(Wf ).

Hence, the order of the system and a realization of the state can be obtained
from the intersection of past and future. Mathematically, this step is typically
performed using a CCA algorithm, and retaining the canonical variates
corresponding to canonical correlations equal to 1. Once the state is known,
extraction of A,B,C and D is straightforward.

Without going into further theoretical details of the subspace intersection
algorithm (interested readers are referred to [38, 107]), we summarize here a
practical implementation that will be used towards the Hammerstein-Wiener
model extension:
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1. Perform Canonical Correlation analysis on Wp and Wf :

WpW
T
f Vf = WpW

T
p VpΛ,

WfW
T
p Vp = WfW

T
f Vf Λ,

(9.2)

with Λ a diagonal matrix containing the canonical correlations.

2. Determine the order n from the number of canonical correlations equal to
1. Retain Xf as the n corresponding canonical variates in Wp.

Xf = Vp(:, 1 : n)TWp.

3. Extract A, B, C and D from:

[
Xf (:, 2 : j)

Yi|i(:, 1 : j − 1)

]
=

[
A B
C D

] [
Xf (:, 1 : j − 1)
Ui|i(:, 1 : j − 1)

]
. (9.3)

The algorithm so obtained is mostly used for identification of purely determin-
istic systems, and therefore generally referred to as a deterministic subspace
identification algorithm. Nevertheless, it was proven in [107] that when both
the inputs and outputs are corrupted by additive spatially and temporary white
noise sequences of equal covariance, a consistent estimate X̂f for the state
sequence Xf is still obtained when using the algorithm described above. When
this assumption is violated, it is possible to alter the algorithm by introducing
weights based on the knowledge of the noise correlation [109]. For instructive
purposes, we will however only consider the deterministic case in this chapter.

Note that in the third step of the subspace intersection algorithm as
presented above, the same state sequence, up to a shift in time, is used at the left
and right hand side of (9.3). This in contrast to most subspace identification

algorithms described in Chapter 3 which feature two state sequences X̃i and
X̃i+1 obtained from two different projection steps with shifted block Hankel
matrices. However, in the latter case, a trick involving the observability matrix
(see Subsection 3.5.7) was needed to ensure that both states were estimated
in the same basis. As the observability matrix is not immediately accessible
in the intersection algorithm as introduced above, such an approach can not
be followed and we are forced to use the same state sequence at both sides of
(9.3). As mentioned earlier, the drawback of this strategy is that the subspace
intersection algorithm is mostly limited to deterministic systems.

9.3 Hammerstein-Wiener subspace intersection

9.3.1 Introducing the static non-linearities

A classical state space system is transformed into a Hammerstein-Wiener system
by introducing two static non-linearities f : R

m → R
m and g : R

l → R
l. With

this definition for the non-linearities, and assuming that g : R
l → R

l is such
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that g−1 exists for all possible outputs of the system, the following state-space
model will be studied in this chapter:

{
xt+1 = Axt +Bf(ut),

g−1(yt) = Cxt +Df(ut).

As mentioned in 9.2, a CCA algorithm could be used to extract the state x if
f(u) and g−1(y) were known. The state is then obtained from

F(Wp)F(Wf )TVf = F(Wp)F(Wp)
TVpΛ,

F(Wf )F(Wp)
TVp = F(Wf )F(Wf )TVf Λ,

where F(Wp) is defined as follows

F(Wp) ,




f(u0) f(u1) . . . f(uj−1)
...

...
...

f(ui−1) f(ui) f(ui+j−2)
g−1(y0) g−1(y1) . . . g−1(yj−1)

...
...

...
g−1(yi−1) g−1(yi) g−1(yi+j−2)




,

with an equivalent definition for F(Wf ). However, because f(u) and g−1(y)
are unknown, another approach is required to extract the state. A well-suited
technique to fulfill this task is kernel CCA, a non-linear extension of CCA, which
will be treated in Subsection 9.3.2. Once the state is known, f(u) and g−1(y)
will be estimated using a second step described in Subsections 9.3.4 and 9.3.5.

9.3.2 Introducing the kernel

To extract a state of a non-linear dynamical system, a non-linear extension of
CCA is employed, known as kernel CCA or KCCA [10, 93]. In kernel methods
[135] the available data are mapped into a high-dimensional feature space of
dimension nH , where classical CCA is applied. As was also seen in the former
chapters, the non-linearity is thereby condensed in the transformation, which is
represented by feature maps ϕu : R

m → R
nH and ϕy : R

l → R
nH . Using the

mapped past data points ϕu(ut) and ϕy(yt), ∀t, one constructs a feature matrix

Φp , Φ(Wp) ,




ϕu(u0) ϕu(u1) . . . ϕu(uj−1)
...

...
...

ϕu(ui−1) ϕu(ui) ϕu(ui+j−2)
ϕy(y0) ϕy(y1) . . . ϕy(yj−1)

...
...

...
ϕy(yi−1) ϕy(yi) ϕy(yi+j−2)




∈ R
2i(m+l)nH×j , (9.4)

with a similar definition for Φf , Φ(Wf ).
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The kernels associated to ϕu and ϕy will be denoted by Ku and Ky

respectively:

ϕu(us)
Tϕu(ut) = Ku(us, ut),

ϕy(ys)
Tϕy(yt) = Ky(ys, yt).

For further reference, we also define Kp , ΦT
p Φp and Kf , ΦT

f Φf .

9.3.3 From CCA to KCCA: the state estimate

For reasons of clarity of presentation we adopt here a formal introduction into
the KCCA algorithm as it was initially presented in [10,93]. For a more rigorous
description of the main concepts behind KCCA, the reader is kindly referred to
the latter references.

By mapping the elements of Wp and Wf the CCA problem in feature space
becomes:

ΦpΦ
T
f Vf = ΦpΦ

T
p VpΛ,

ΦfΦT
p Vp = ΦfΦT

f VfΛ,
(9.5)

Remark that the coefficient matrices Vp, Vf are elements of R
2i(m+l)nH×2i(m+l)nH

where nH can be potentially infinite-dimensional, which is not practical. If
however these matrices are restricted to the subspace spanned by the mapped
data by defining:

Vp = ΦpVp, Vf = ΦfVf , (9.6)

and the first and second equation of (9.5) are left multiplied by ΦT
p and ΦT

f ,
respectively, we obtain:

KpKf Vf = KpKp VpΛ,

KfKp Vp = KfKf VfΛ.
(9.7)

Assuming that Kp and Kf are invertible, which can be shown to be automati-
cally satisfied if complex non-linear kernels such as the RBF are involved, this
can further be reduced to

Kf Vf = Kp Vp Λ

Kp Vp = Kf Vf Λ,
(9.8)

which is the classical form for of the KCCA algorithm as presented in [10,93]. A
disadvantage of this KCCA version is the fact that the used kernel derivations
do not contain regularization leaving the possibility of a severe over-fitting of
the non-linearities involved.

The KCCA version proposed in [135] is formulated using a least squares
support vector machine approach [150] with primal-dual optimization problems
and an additional centering of the data-points in feature space. Regularization is
thereby incorporated within the primal formulation in a well-established manner



152 Hammerstein-Wiener identification using subspace intersection

leading to numerically better conditioned solutions. Without going into the
details of this algorithm (the interested reader is kindly referred to [135]), we
state here the final generalized eigenvalue problem:

Kc
f Vf =

(
Kc

p +
1

γ
Ij

)
Vp Λ,

Kc
p Vp =

(
Kc

f +
1

γ
Ij

)
Vf Λ,

where

Kc
p = (Φp − 1T

j ⊗ µp)
T (Φp − 1T

j ⊗ µp),

Kc
f = (Φf − 1T

j ⊗ µf )T (Φf − 1T
j ⊗ µf ),

are the so–called centered kernels and µp = (1/j)
∑j

s=1 Φp(:, s) and µf =

(1/j)
∑j

s=1 Φf (:, s) are the mean centers of the mapped past and future. The
tuning parameter γ controls the amount of regularization. A comparison
with the derived result without centering yields that Kc

f = McKfMc with

Mc = (Ij − (1/j)11T
j ) [128].

Thus by solving a generalized eigenvalue problem in the dual space, one can
find the canonical correlations and the non-linear canonical variates, gathered
respectively in the KCCA estimates Λ̂, V̂p and V̂f . From the number of canonical
correlations equal to one, we determine the order n. The estimated state is
obtained as the n corresponding linear combinations of the centered variates in
Φp, which comes down to:

X̂f = V̂p(1 : n, :)TKc
p. (9.9)

9.3.4 Estimation of A, B and the non-linear function f

After the estimation of the state, the system matrices A and B and the non-
linear function f are estimated in a second step as follows:

(Â, B̂, f̂) = arg min
A,B,f

∥∥∥∥X̂i+1 −
[
A B

] [X̂i

Uf

]∥∥∥∥
2

F

, (9.10)

with
Uf ,

[
f(ui) f(ui+1) . . . f(ui+j−2)

]
,

and where we have conveniently redefined X̂i and X̂i+1 as follows

X̂i , X̂f (:, 1 : j − 1), (9.11)

X̂i+1 , X̂f (:, 2 : j), (9.12)

to ensure some continuity in notation with respect to Chapter 8 on Hammerstein
N4SID identification. Again this least-squares problem will be written as a
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classical LS-SVM regression problem. The first step towards such a regression
problem is to make the replacement

Bf =




wT
f,1

wT
f,2
...

wT
f,n


ϕ

u, (9.13)

with ϕu the feature-map introduced in 9.3. With this replacement, equation
(9.10) is rewritten as

(Â, B̂, ŵ) = arg min
A,B,f

∥∥∥∥∥∥∥∥∥
X̂i+1 −AX̂i −




wT
f,1

wT
f,2
...

wT
f,n


Uϕ

∥∥∥∥∥∥∥∥∥

2

F

,

with

Uϕ ,
[
ϕu(ui) ϕu(ui+1) . . . ϕu(ui+j−2)

]
.

The resulting LS-SVM primal problem is as follows:

min
w,E,A

J (w,E) = 1
2

∑n
s=1 w

T
f,swf,s + γu

2

∑n
s=1

∑j−1
t=1 E(s, t)2,

subject to X̂i+1(s, t) = AX̂i(:, t) + wT
f,sUϕ(:, t) +E(s, t),

∀s = 1, . . . , n, t = 1, . . . , j − 1.

(9.14)

Unlike in the chapters on Hammerstein ARX and Hammerstein N4SID identi-
fication, no extra constraints are added to the primal problem to ensure that
the estimated non-linearities are centered around zero. These constraints were
necessary in the ARX and N4SID case as sums of non-linear functions were
estimated in a least-squares sense with the possibility of random constants being
added to each of the non-linearities as long as the sum of these constants was
zero. Hence, by retaining only those non-linearities associated with the past
data in the oblique projection in the N4SID case for instance, unwanted offsets
which do not necessarily sum to zero (as the future constants are removed) were
inserted into the obtained models. In the proposed intersection algorithm, this
is no longer a concern as after the KCCA step no specific set of non-linearities
is removed when calculating the state estimate in (9.9). Hence, we can safely
continue without the centering constraint.

Lemma 9.1. Primal-dual characterization: Given the least squares
problem (9.10) and related primal problem (9.14), LS-SVM estimates for B
and the transformed inputs Uf can be obtained from a rank m approximation of
ATKu. A and A are obtained from the following set of linear equations:

[
0 X̂i

X̂T
i Ku + γ−1

u Ij−1

] [
AT

A

]
=

[
0

X̂T
i+1

]
, (9.15)
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with

A =




α1,1 α2,1 . . . αn,1

α1,2 α2,2 . . . αn,2

...
...

...
α1,j−1 α2,j−1 . . . αn,j−1


 ,

wf,s =
∑j−1

t=1 αs,tϕ
u(ui+t−1), s = 1, . . . , n,

Ku(p, q) = Ku(ui+p−1, ui+q−1), p, q = 1, . . . , j − 1.

Proof. This directly follows from the Lagrangian:

L(w,A,E;α) = J (w,E)

−
n∑

s=1

j−1∑

t=1

αs,t

(
X̂i+1(s, t)−AX̂i(:, t)− w

T
f,sUϕ(:, t)−E(s, t)

)
,

by taking the conditions for optimality: ∂L
∂wf,s

= 0, ∂L
∂A = 0, ∂L

∂E(s,t) = 0, ∂L
∂αs,t

=

0 and by observing that:

BUf =




wT
f,1

wT
f,2
...

wT
f,n


Uϕ = ATKu. (9.16)

Note that the estimates obtained in Lemma 9.1 will in general not be uniquely
defined, especially if n ≤ m. This is an intrinsic property of Hammerstein-
Wiener models and the choice of the actual representation is left to the user.
From Uf and the inputs ut, t = i, . . . , i+ j − 2, obtaining an estimate for f is
a straightforward matter.

9.3.5 Estimation of C, D and the non-linear function g

Once an estimate Ûf for Uf has been found, estimates for the system matrices
C and D and the non-linearity g−1 are obtained from:

(Ĉ, D̂, ĝ−1) = argmin
C,D,g−1

∥∥∥∥∥Yg −
[
C D

]
[
X̂i

Ûf

]∥∥∥∥∥

2

F

, (9.17)

with

Yg ,
[
g−1(yi) g−1(yi+1) . . . g−1(yi+j−2)

]
.

Remark that C,D and g−1 in (9.17) are only defined up to a constant scaling
factor. To avoid conditioning problems, we therefore fix C(:, 1) = 1l, which is
a feasible assumption for SISO systems given that the first component of the
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state is generally observable in subspace models [145,147]. For MIMO systems,
it is possible that certain outputs are unexcited by the first state component,
in which case a more complicated constraint (such as

∑n
k=1 C(:, k) = 1l) might

be more appropriate. Although such constraints can easily be incorporated into
the LS-SVM framework [19, 135], we will further assume that C(:, 1) = 1l for
simplicity. Derivations involving other constraints can easily be derived along
the lines of the calculations below. With C(:, 1) = 1l, the resulting LS-SVM
problem is as follows:

min
w,E,C,D

J (w,E) = 1
2

∑l
s=1 w

T
g,swg,s +

γy

2

∑n
s=1

∑j−1
t=1 E(s, t)2,

subject to X̂i(1, t) = wT
g,sYϕ(:, t)− C(s, 2 : n)X̂i(2 : n, t)

−D(s, :)Uf (:, t)−E(s, t),
∀s = 1, . . . , l, t = 1, . . . , j − 1.

(9.18)

with

Yϕ =
[
ϕy(yi) ϕy(yi+1) . . . ϕy(yi+j−2)

]
,

whereby ϕy is as in Section 9.3.

Lemma 9.2. Primal-dual characterization: Given the least squares
problem (9.17), and the related primal problem (9.18), LS-SVM estimates for
the transformed outputs Yg are obtained as ATKy. A, C and D are obtained
from the following set of linear equations:




0 0 Xi

0 0 Ûf

X
T

i ÛT
f Ky + γ−1

y Ij−1






−C(:, 2 : n)T

−DT

A


 =




0
0

1T
l ⊗ X̂i(1, :)

T


 ,

(9.19)
whereby

A =




α1,1 α2,1 . . . αl,1

α1,2 α2,2 . . . αl,2

...
...

...
α1,j−1 α2,j−1 . . . αl,j−1


 ,

X i = X̂i(2 : n, :),

wg,s =
∑j−1

t=1 αs,tϕ
y(yi+t−1), s = 1, . . . , l,

Ky(p, q) = Ky(yi+p−1, yi+q−1), p, q = 1, . . . , j − 1.

Proof. This directly follows from the Lagrangian:

L(w,E,C,D;α) = J (w,E) −
l∑

s=1

j−1∑

t=1

αs,t

(
wT

g,sYϕ(:, t)− X̂i(1, t)

− C(s, 2 : n)X̂i(2 : n, t)−D(s, :)Uf (:, t)−E(s, t)
)
.
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by taking the conditions for optimality: ∂L
∂wg,s

= 0, ∂L
∂C = 0, ∂L

∂D = 0, ∂L
∂E(s,t) = 0,

∂L
∂αs,t

= 0 and by observing that:

Yg =




wT
g,1

wT
g,2
...

wT
g,n


Yϕ = ATKy. (9.20)

Again, from Yg in Lemma 9.2 and the outputs yt, t = i, . . . , i+ j − 2, obtaining
an estimate for g is a trivial matter.

9.3.6 Practical implementation

Following the discussion in the former sections, the final algorithm for the
estimation of Hammerstein-Wiener systems can be summarized as follows:

1. Find estimates for the state sequences X̂i and X̂i+1 from (9.9), (9.11) and
(9.12).

2. Obtain estimates for A, B and f following the procedure outlined in
Subsection 9.3.4.

3. Obtain estimates for C, D and g following the procedure outlined in
Subsection 9.3.5.

Some practical issues remain, regarding the tuning of the hyper-parameters, the
need for persistently exciting inputs, and the behavior of the presented algorithm
under the presence of process and/or measurement-noise.

Tuning of the hyper-parameters

Many tunable parameters, the so-called hyper-parameters, are present in the
proposed algorithm such as the system order n, the number of block rows, i, in
the block Hankel matrices, the regularization parameters γ, γu and γy in the
KCCA- and LS-SVM estimation steps, and other potential kernel parameters
such as the bandwidths σu and/or σy when RBF-kernels are used. In principle,
these parameters could be tuned by validating the performance of the obtained
Hammerstein-Wiener model on an independent validation dataset. However,
as this would constitute a highly non-convex high-dimensional search, the
resulting identification algorithm would computationally be too extensive for
most modern computers.

Fortunately, it can be shown that the tuning problem can be split up in
several sub-problems. From the resulting Vp and Vf from the KCCA step in
Section 9.3, for instance, a validation state based on past data can be calculated
as follows:

X̂val
f = V̂p(1 : n, :)TKval

p ,
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with
Kval

p = (Φp − 1T
j ⊗ µp)

T (Φval
p − 1T

j ⊗ µp),

and the superscript ·val denoting that inputs and outputs from the validation
dataset, rather than the training-dataset are considered. If the KCCA-step is
well tuned, the following relation should hold:

Row
(
X̂val

f

)
= Row

(
V̂f (1 : n, :)TKval

f

)
, (9.21)

with
Kval

f = (Φf − 1T
j ⊗ µf )T (Φval

f − 1T
j ⊗ µf ),

the equivalent validation state based on future data. The extent to which
relation (9.21) holds can easily be checked by calculating the largest canonical
angle between both row-spaces. Hence, the hyper-parameters necessary for the
KCCA step can be obtained without having to estimate the full Hammerstein-
Wiener model. A similar reasoning can be used for the other steps in the
proposed algorithm such as the estimation of A, B and f in Subsection 9.3.4.

Persistency of excitation

Given the fact that regularization is inherently present in the proposed
identification algorithm, in line with the results obtained in Chapter 8 lack
of persistency of excitation will not lead to any numerical problems. However,
to ensure that all aspects of the linear system are properly identified, persistency
of excitation of f(u) of at least order 2im is necessary. As was noted in Chapter
8, for some non-linear functions f , persistency of excitation of f(u) can be
guaranteed if u is persistently exciting (see [156] for a discussion on this issue).

Behavior in noisy circumstances

As noted in the introduction to the linear subspace intersection algorithm in
Section 9.2, the intersection algorithm is mostly limited to noiseless systems.
Nevertheless, the intersection algorithm is known to perform adequately, even
if small amounts of noise are present on the inputs and/or outputs. To further
illustrate this point, a modest amount of output-noise will be added to some of
the simulations in Section 9.4.

Re-estimation of the linear model

Following the discussion on the behavior of the intersection algorithm in noisy
circumstances, it is in principle possible to use the estimates for f and g−1 in the
proposed intersection algorithm to generate the inputs f(u) and outputs g−1(y)
to the linear system. Based on these data-sequences a more robust subspace
identification such as the PO-MOESP algorithm [155] can be used in a second
step to replace the original model obtained using the intersection algorithm.
It will be shown in the examples in Section 9.4 that such a second step can
indeed improve upon the accuracy of the obtained linear model, certainly in
noisy conditions.
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9.4 Illustrative examples

9.4.1 A SISO system

Consider the following artificial linear system which belongs to the class of
Hammerstein-Wiener models:

y = g

(
B(z)

A(z)
f(u)

)
, (9.22)

with A and B polynomials in the forward shift operator z where B(z) = z6 +
0.8z5 + 0.3z4 + 0.4z3 and A(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i),
The input- and output-non-linearities are given by f : R → R : f(u) = sinc(u)
and

g : R→ R : g(y) =

{
y/12, y ≤ 0,
tanh(y/4), y > 0.

(9.23)

Two datasets were generated from this system with the inputs ut ∼ N (0, 2)
white Gaussian noise sequences for t = 0, . . . , N − 1 with N = 500. Although
the intersection algorithm is in principle only designed for deterministic systems,
5% of zero mean white Gaussian noise was added to the outputs in both datasets.
The first dataset so obtained was used to train the model, the second one was
used to tune the model. Only the less critical number of block-rows in the Hankel
matrices was fixed beforehand at 10, a common choice in subspace algorithms.

For Ku and Ky, RBF kernels were chosen with σu = 1 and σy = 0.5
respectively. These kernel bandwidth parameters, together with the hyper-
parameter γ = 1 and the obtained Vp and Vf from the KCCA estimation step
outlined in Subsection 9.3.3, were validated on the validation dataset according
to the procedure explained in Subsection 9.3.6. In a second step, estimates for A,
B and the non-linear function fu were obtained using the procedure presented
in Subsection 9.3.4 where γu = 1 was chosen after validation of the relation
(9.15) on the validation dataset. Finally C, D and the non-linear function fy

were obtained following the procedure presented in 9.3.5 with γy = 315, again
chosen by validation on the validation dataset.

The obtained non-linear functions f̂ and ĝ evaluated on the validation inputs
and outputs, are compared with the true functions f and g in Figure 9.1. As can
be seen in the figure, the obtained estimates are quite reliable. The obtained
linear system is compared with the true system in Figure 9.2. Note that the first
two resonances are nicely caught by the model, whereas the less energetic third
resonance is not found. In itself not a bad result considering that it has already
been shown in Subsection 5.2.2 that the used system is a difficult one to estimate
with classical techniques such as ARX, and that the intersection algorithm is
in essence a deterministic algorithm. Nevertheless, as mentioned in Subsection
9.3.6 a further improvement is possible by rerunning a linear subspace algorithm
such as the PO-MOESP [155] on the estimated inputs f̂(u) and outputs ĝ−1(y)
of the linear system. That such a second step indeed improves the accuracy of
the estimate of the linear model is shown in Figure 9.3.
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Figure 9.1: Estimated input non-linearity f and output non-linearity g evaluated
on the validation inputs and outputs (dots) compared with the true non-
linearities (solid line) for the SISO example described in Section 9.4.

9.4.2 A MIMO system

To illustrate the freedom one gets by plug-in of an appropriate kernel, in a
second example, the proposed identification method was applied to the MIMO
Hammerstein system presented in Subsection 7.7.2. We recall that the system
is given as:

y =

[
b1(z)
a1(z)

b2(z)
a1(z)

b1(z)
a2(z)

b2(z)
a2(z)

]
f(u) +

[
1

a1(z)
1

a2(z)

]
e (9.24)

with

a1(z) = (z − 0.98e±i)(z − 0.98e±1.6i)(z − 0.97e±0.4i),

a2(z) = (z − 0.97e±0.7i)(z − 0.98e±1.4i)(z − 0.97e±2.3i),

b1(z) = z6 + 0.8z5 + 0.3z4 + 0.4z3,
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Figure 9.2: Estimated transfer functions (dashed) for the SISO example
described in Section 9.4 using the intersection-algorithm. The true transfer
function is displayed in solid.

b2(z) = z6 + 0.9z5 + 0.7z4 + 0.2z3,

and

f(u) =

[
− arctan(u(1)) arctan(u(2))
arctan(u(1))− arctan(u(2))

]
.

A two-component zero mean white Gaussian input sequence u with length 500
and standard deviation 1 was generated and fed into the system (9.24). Based
on u and the obtained output y, estimates for the linear system and f are
obtained using the Hammerstein-Wiener identification algorithm proposed in
this chapter, whereby an RBF kernel was chosen for Ku and a linear kernel
for Ky. The latter is necessary to effectively limit the Hammerstein-Wiener
algorithm to Hammerstein systems.

As in the SISO example, the number of block-rows in the Hankel matrices
was chosen equal to 10. The hyper-parameters were again obtained by
evaluation on a validation set and chosen as σu = 1, γ = 0.1 and γu = γy = 1.
The order was easily found to be 12 from an inspection of the canonical
correlations in the kernel CCA step (see Figure 9.4). The results from a
simulation on an independent test-set using the obtained model is shown in
Figure 9.5 for the first component of the output and Figure 9.6 for the second
component of the output. Also available in the figure are the results of a classical
linear PO-MOESP subspace estimator (same order) which are clearly inferior
to those obtained using the Hammerstein-Wiener approach.
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Figure 9.3: Estimated transfer functions (dashed) for the SISO example
described in Section 9.4 using a PO-MOESP after estimation of the functions
f and g. The true transfer function is displayed in solid.

9.5 Conclusions

In this chapter, a method for the identification of Hammerstein-Wiener systems
was presented based on the method of kernel canonical correlation analysis and
Least Squares Support Vector Machines. The proposed algorithm is applicable
to SISO and MIMO systems and does not impose restrictive assumptions on the
input sequence, in contrast to most existing Hammerstein-Wiener approaches.
Furthermore, the algorithm was seen to work well on a set of examples.
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Figure 9.4: Canonical correlations obtained using kernel CCA on a twelfth
order MIMO Hammerstein system described in 9.4.2. The order of the system
is clearly seen to be equal to 12.
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Figure 9.5: Simulation on an independent test-set of the first output y(1) of
a twelfth order MIMO Hammerstein model described in 9.4.2 using an LS-
SVM Hammerstein-Wiener estimator (dashed line) and a linear PO-MOESP
subspace estimator (dotted line). The true output is depicted with a solid line.
All simulations are initialized with x0 = 0. The error between the estimated
and the true output is shown in the lower figure.
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Figure 9.6: Simulation on an independent test-set of the second output y(2)
of a twelfth order MIMO Hammerstein model described in 9.4.2 using an LS-
SVM Hammerstein-Wiener estimator (dashed line) and a linear PO-MOESP
subspace estimator (dotted line). The true output is depicted with a solid line.
All simulations are initialized with x0 = 0. The error between the estimated
and the true output is shown in the lower figure.
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Chapter 10

Conclusions, future
research, and open
problems

General conclusions

In this thesis, we have studied subspace identification for linear, Hammerstein
and Hammerstein-Wiener systems. For linear systems it was seen that despite
the widely perceived robustness of subspace identification algorithms, under
some specific experimental conditions, they may fail or yield unreliable results.
Several solutions were proposed and tested in this thesis.

For Hammerstein and Hammerstein-Wiener systems, reliable subspace iden-
tification algorithms were obtained by combining ideas from LS-SVM function
regression with the principal projections underlying subspace identification
algorithms. More detailed conclusions are found below.

Conclusions for Part I

The first issue which was treated in Part I of this thesis is the so-called
positive-realness problem. In Chapter 4, it was seen that positive-realness of
the covariance model, obtained as an intermediate step in stochastic subspace
identification, is essential if one wants to obtain statistical information regarding
the noise acting on the system.

Several existing techniques to deal with a possible lack of positive realness
were discussed, and it was seen that some of these techniques were limited to
stable systems while others were applicable to stable as well as unstable systems.
A new algorithm based on Tikhonov regularization was thereafter proposed. It
was proven that using this new approach, positive-realness can be guaranteed
provided the amount of regularization that is applied is chosen sufficiently high.
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Furthermore, the newly proposed algorithm was seen to outperform existing
approaches on a set of examples.

A second issue which was treated in Part I of this thesis is the possible
ill-conditioning of combined stochastic-deterministic subspace identification
algorithms, and especially the N4SID, under the presence of highly colored
inputs. In Chapter 5, two reasons were given for this ill-conditioning. First of all,
the oblique projection present in N4SID subspace identification algorithms was
seen to be badly conditioned if the input coloring is high. Secondly, all subspace
identification algorithms of the combined stochastic-deterministic kind suffer
from possible weak correlations between the stochastic state and the system
inputs, with grave consequences if highly colored inputs are involved.

It was seen that the orthogonal decomposition method presented in [26]
behaves much better than classical approaches such as the N4SID under the
presence of highly colored inputs. Two reasons were given for this behavior.
First of all, the orthogonal decomposition method features an orthogonal
projection to obtain the state instead of an oblique projection as is commonly
found in N4SID algorithms. This alone led to a considerable improvement
in the estimates for the system poles. Secondly, and especially important for
the estimation of B and D, the orthogonal projection is based on a separate
parameterization of the stochastic and the deterministic subsystem, preventing
problems associated with weak correlations between the stochastic state and the
system inputs.

In order to maintain the oblique projection, it was thereafter shown that
when using weighted Tikhonov regularization, a considerable improvement in
the accuracy of the system pole estimates was obtained. This, combined with a
separate parameterization for the stochastic and the deterministic subsystem led
to a regularized N4SID algorithm that outperforms the orthogonal projection on
a set of examples and serves to highlight the possibilities of using regularization
in subspace identification.

Conclusions for part II

In part II of this thesis, we have mainly focused on extending linear subspace
identification techniques to Hammerstein and Hammerstein-Wiener systems.
These extensions were obtained by combining the idea of over-parameterization
with LS-SVM function regression.

A first conclusion that could be drawn from the discussion on existing over-
parameterization techniques in Chapter 6 is the need for centering to avoid
the appearance of random constants in the estimates for the different non-
linearities. Centering measures were therefore included in the derivations of
the Hammerstein ARX identification algorithm in Chapter 7, the Hammerstein
N4SID identification algorithm in Chapter 8 and the Hammerstein-Wiener
subspace intersection algorithm in Chapter 9.

With the introduction of the MIMO ARX Hammerstein identification
algorithm based on component-wise LS-SVM regression in Chapter 7, it was
seen that a considerable improvement in accuracy can be obtained with respect
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to existing over-parameterization approaches. A reason for this increase in
accuracy was found in the use of regularization, which is inherently present in
LS-SVM algorithms. However, even if regularization is applied to classical over-
parameterization approaches, the superior performance of the LS-SVM based
algorithm remains. Furthermore, LS-SVM algorithms have the advantage that
constraints such as the centering of the static non-linearities can conveniently
be included in the primal-dual framework. These results offer a strong
indication that the use of LS-SVM regression and the related primal-dual
framework is a viable, and in many cases preferable, alternative to classical
over-parameterization approaches.

In Chapter 8, and based on the results for ARX Hammerstein identification,
a MIMO N4SID Hammerstein identification algorithm was developed. Again
LS-SVM function regression is at the core of the obtained algorithm. The
advantage of the presented N4SID algorithms over the in Chapter 7 presented
ARX Hammerstein algorithm is the greater flexibility in the linear model
structures that can be handled. While the ARX Hammerstein identification
algorithm is limited to Hammerstein systems with a linear part that can be
written in ARX form, the state-space models that are obtained using N4SID
algorithms cover the entire field of linear systems. Hence, if the true system has
a linear part which is outside the ARX-class, the N4SID Hammerstein algorithm
can be expected to outperform the ARX Hammerstein algorithm. If the true
system lies within the ARX-class the greater flexibility that comes with the use
of subspace identification and state-space models only leads to an unnecessarily
high number of parameters and consequently a higher variance on the model
estimates than what would be obtained when using the ARX Hammerstein
algorithm.

In Chapter 9, finally, an algorithm was proposed for the identification of
Hammerstein-Wiener systems based on kernel Canonical Correlation Analysis
and LS-SVM regression. In contrast to existing methods, the proposed
algorithm does not rely on restrictive assumptions on the inputs and can be
applied to SISO as well as MIMO models. Again, the use of kernels in a primal-
dual framework was seen to lead to a reliable identification algorithm.

Future research

Future research for Part I

The results on using regularization to deal with possible ill-conditioning in
combined stochastic-deterministic subspace identification can and should be
studied further. The following is a non-exhaustive list of possibilities:

1. Study the effect of regularization in the oblique projection on the obtained
state. Is the unifying theorem still valid? Does the use of regularization
simply lead to a change in basis? If so, what is the corresponding W2.

2. Use regularization in the oblique projection but try to avoid using the
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separate parameterization. Is it possible to use a second regularization
step to deal with stochastic components of the system being incorrectly
attributed to the system inputs?

Future research for Part II

In the second part of this thesis it was shown that using combinations of classical
linear identification techniques and LS-SVM regression, a set of structured
non-linear systems could conveniently be identified. It is clear that not all
possibilities for the extension of linear subspace identification techniques to non-
linear systems are hereby exhausted. Three clear possibilities for future work
emerge:

1. In Chapter 7 on Hammerstein ARX identification it was seen that
collinearity constraints on different vectors wj , j = 0, . . . ,m should in
principle be imposed to ensure that the estimated model in the first step is
in fact a Hammerstein model. It was there-after argued that adding these
constraints would lead to a difficult to solve optimization problem. Hence,
the constraints were dropped and it was hoped that collinearity would
automatically be preserved when over-parameterizing the Hammerstein
model in the first step. Although the resulting approach was seen to yield
good results throughout part II of the thesis, it would still be preferable
to find a way to impose the collinearity constraints directly.

2. In [151] some preliminary results were presented extending the ideas
surrounding Hammerstein-Wiener identification in part II of the thesis
to general non-linear models. This is a promising research area as it
would enable the use of subspace identification algorithms for virtually
any non-linear system. On the other hand, with the decrease in structure
when moving from Hammerstein-Wiener systems to general non-linear
systems, the variance on the obtained models can be expected to increase
considerably. Hence, it remains to be seen whether subspace identification
algorithms for general non-linear systems are useful in practice.

3. Instead of extending some of the presented results to general non-linear
systems, it is worthwhile to examine whether the algorithms presented in
part II of this thesis can be extended to other structured non-linear model
classes, such as the Wiener-Hammerstein class, characterized by a Wiener
model, followed by a Hammerstein model. Instead of only allowing an
additive structure in the estimated non-linearities, one could investigate
more complicated structures allowing for instance certain multiplications
between inputs at various time-instances.



Appendix A

About the alternative form
of the Kalman filter

In this appendix, two different forms of the recursive Kalman filter are discussed.
The first is the classical form as for instance found in [9]. This form is
transformed into the form of (3.33-3.35) which is more useful in the derivation
of subspace identification algorithms.

A.1 Derivation of the special form

Consider the system (3.26), where we assume that A,C,Q,R and S are known.

Given x̂0, P̃0 and u0, . . . , ut−1, y0, . . . , yt−1 the non-steady state Kalman filter
state estimate x̂t is given by the following set of recursive formulas [9]:

x̂t = Ax̂t−1 +But−1 +Kt−1(yt−1 − Cx̂t−1 −Dut−1),

with:

Kt−1 = (AP̃t−1C
T + S)(CP̃t−1C

T +R)−1, (A.1)

P̃k = AP̃−1A
T +Q

− (AP̃t−1C
T +R)(CP̃t−1C

T + S)(AP̃t−1C
T +R)T . (A.2)

and P̃t the error covariance matrix:

P̃t = E
{
(xt − x̂t)(xt − x̂t)

T
}
.

In the derivations of subspace identification, a different form of these recursive
Kalman filter equations is more useful. With A,C,Q,R, S given, the matrices
P s = E

{
xs

tx
s
t
T
}
, G = E

{
xs

t+1y
s
t

}
and Λ0 = E

{
ys

t y
s
t

T
}

can be computed as:

P s = AP sAT +Q,
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G = AP sCT +R,

Λ0 = CP sCT + S.

Defining
Pt = P s − P̃t

this leads to

Kt−1 = ((AP sCT +R)−APt−1C
T )((CP sCT + S)− CPt−1C

T )−1

= (G−APt−1C
T )(Λ0 − CPt−1C

T )−1.

For the Riccati equation (from (A.2)) we have:

P s − Pt = AP sAT −APt−1A
T + (P s −AP sAT ) (A.3)

− ((AP sCT +R)−APt−1C
T )

((CP sCT + S)− CPt−1C
T )−1

((AP sCT +R)−APt−1C
T )T ,

Pt = APt−1A
T (A.4)

− (G−APt−1C
T )(Λ0 − CPt−1C

T )−1(G−APt−1C
T )T .

Hence, the Kalman filter (A.3-A.4) calculates the same state estimate x̂t as the

original Kalman filter (A.1-A.2) with P̃0 = P s − P0.



Appendix B

The Schur complement

In this appendix, we introduce the Schur complement of a matrix and introduce
an interesting property related to the conservation of positive definiteness when
applying the Schur complement.

B.1 The Schur complement of a matrix

Suppose we partition a matrix A ∈ R
n×n

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ R
r×r. Assuming that A11 is non-singular,

S = A22 −A21A
−1
11 A12

is called the Schur complement of A11 in A. Likewise if A22 is non-singular,

T = A11 −A12A
−1
22 A21

is called the Schur complement of A22 in A.

B.2 Relation to positive definiteness of a matrix

It can be shown that if A is positive (semi)-definite, so are the Schur
complements S and T [81]. Alternatively, if S and A11 are positive (semi)-
definite, so is A [81]. Likewise, if T and A22 are positive (semi)-definite, the
same goes for A [81]. These relations are commonly used when trying to proof
(semi)-positive definiteness of a matrix and are essential in the proof of Theorem
4.1 in this thesis.
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Appendix C

Tikhonov regularization

In this appendix, we will briefly discuss the idea of Tikhonov regularization.
Tikhonov regularization is mostly used as a means to deal with ill-conditioned
least-squares regression problems by penalizing solutions with large norms. It
will be shown in the following sections that the variance on the estimated param-
eters in an ill-conditioned least-squares regression problems can considerably be
decreased when using Tikhonov regularization. This however, at the expense
of the introduction of a small bias. Finding a good balance between variance
reduction and increase in bias is known as the bias-variance trade-off, and is the
key idea behind any type of regularization approach.

C.1 Tikhonov regularization and its effect on

the Hessian

Given A ∈ R
N×n with N ≥ n and b ∈ R

N , the aim of linear least-squares is to
find an estimate x ∈ R

n such that:

xLS = argmin
x
‖Ax− b‖22.

A well known drawback with least-squares problems is that they yield large
variances on the coefficients of the obtained solution x in case of a near
collinearity in the columns of A. In this case, the condition number of A is
known to be high, and the problem is said to be ill-conditioned. To deal with
this ill-conditioning, and reduce the variance on the obtained parameters, in
Tikhonov regularization the least-squares cost function is replaced by

‖Ax− b‖22 + γ‖x‖22, (C.1)

with ‖x‖22 the so-called regularization term and γ > 0 the regularization
constant. The extra regularization term reduces the effects of near collinearity
in the columns of A by effectively favoring solutions x with a small 2-norm over
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those with larger norms. The resulting problem (C.1) is referred to as a ridge
regression problem and its solution is given by

xRR = (ATA+ γIn)−1AT b.

The positive effect of adding a regularization term is apparent from the Hessian
H = ATA + γIn. In 2.1.3, it was argued that H offers insight into the shape
of the cost-function close to its minimum, with Cond(H) a measure for the
conditioning of the optimization problem. In the ridge regression case we have

Cond(H) =
σmax(A

TA+ γIn)

σmin(ATA+ γIn)
=
σ2

max(A) + γ

σ2
min(A) + γ

.

Clearly, for σmin(A) small, a limited amount of regularization is sufficient to
significantly decrease the condition number of H .

C.2 Variance on the obtained solution

As in the unregularized least-squares case, one can calculate the expected
sensitivity of the solution xRR to a perturbation δb in b with δb(δb)T = σ2

b IN .
Assuming that xRR = (ATA + γIn)−1AT b and xRR + δxRR = (ATA +
γIn)−1AT (b+ δb), it follows that:

δxRR = (ATA+ γIn)−1AT δb,

from which

E
{
δxRR(δxRR)T

}
= σ2

b (ATA+ γIn)−1ATA(ATA+ γIn)−1

With A = USV T the singular value decomposition of A, we have:

(ATA+ γIn)−1ATA(ATA+ γIn)−1 =

(V (S2 + γIn)V T )−1V S2V T (V (S2 + γIn)V T )−1 = V
S2

(S2 + γIn)2
V T .

For any singular value σ of A, the function σ → (σ2+γ)
σ is strictly increasing.

Furthermore, the effect of Tikhonov regularization is larger for the smaller
singular values. Hence, adding a regularization term decreases the variance
on the obtained parameters.

C.3 Weighted Tikhonov regularization

Weighted Tikhonov regularization is in essence the same as Tikhonov regulariza-
tion with the exception that a weighting matrix is used to penalize the elements
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of x. The resulting optimization problem, which is also known as a generalized
ridge regression problem is given as

xGRR = argmin
x

‖Ax− b‖22 + γxTWx,

with W ∈ R
n×n a positive semi-definite weighting matrix. The solution is given

as
xGRR = (ATA+ γW )−1AT b, (C.2)

with Hessian
H = ATA+ γW. (C.3)

Note that for W = In, generalized ridge regression reduces to ordinary ridge
regression. However, the addition of an extra weighting matrix allows to
specifically focus the regularization effort on those components of x which
exhibit large variances or which are preferably kept small (in absolute value)
for any other reason. Hence, weighted Tikhonov regularization is particularly
useful in the case of available prior knowledge.

Unlike for ordinary ridge regression, the resulting condition number for the
Hessian H = ATA+ γW and the error covariance matrix E

{
δxGRR(δxGRR)T

}

can in general not straightforwardly be derived in terms of the singular values
of A and the elements of W . However, for some choices of A and W easily
interpretable results can be obtained. An example is found when analyzing the
oblique projection in Chapter 5.
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Appendix D

Proofs

D.1 Proof of Lemma 5.1

Without loss of generality, we assume i1 ≤ i2. ForA rank deficient, the condition
number will go to infinity, and the proof is obvious. For A of full rank, it is
easily seen that for any matrix B ∈ R

i×N with rank(B) < i ≤ N , we have

‖A−B‖2 = max
x,‖x‖2=1

‖ATx−BTx‖2 ≥ ‖A
Tx2−B

Tx2‖2 = ‖ATx2‖2 ≥ σi(A),

where x, x2 ∈ R
i, x2 ∈ null(BT), ‖x2‖2 = 1. Hence, the following inequality

holds:

Cond(A) =
σ1(A)

σi(A)
≥

‖A‖2
‖A−B‖2

, ∀B : rank(B) < i.

Assume that the rows of V (1) ∈ R
i1×N and V (2) ∈ R

i2×N for orthonormal
basisses for Row(A(I1, :)) and Row(A(I2, :)), respectively, so that

A(I1, :) = S1V
(1),

A(I2, :) = S2V
(2),

V (1)V (2)T
=

[
Λ 0i1×(i2−i1)

]
,

V (1)V (1)
T

= Ii1 ,

V (2)V (2)
T

= Ii2 ,

where S1, S2 are of full rank and Λ is a i1 × i1 diagonal matrix containing the
cosines of the principal angles between Row(A(I1, :)) and Row(A(I2, :)). Define
for k = 1, . . . , i1

V
(2)
L,k = V (2)(1 : k − 1, :),

V
(2)
M,k = V (2)(k, :)/V (1)(k, :) = V (2)(k, :)V (1)(k, :)TV (1)(k, :),

V
(2)
R,k = V (2)(k + 1 : i2, :).
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We have:

Cond(A) ≥ Cond

([
A(I1, :)
A(I2, :)

])
,

≥

∥∥∥∥
[
S1 0i1×i2

0i2×i1 S2

] [
V (1)

V (2)

]∥∥∥∥
2∥∥∥∥∥∥∥∥∥

[
S1 0i1×i2

0i2×i1 S2

]



[
V (1)

V (2)

]
−




V (1)

V
(2)
L,k

V
(2)
M,k

V
(2)
R,k







∥∥∥∥∥∥∥∥∥
2

,

=

∥∥∥∥
[
S1 0i1×i2

0i2×i1 S2

] [
V (1)

V (2)

]∥∥∥∥
2∥∥∥∥∥∥

[
S1 0i1×i2

0i2×i1 S2

]


0i1+k−1,N

V (2)(k, :)/V (1)(k, :)⊥

0i2−k,N



∥∥∥∥∥∥

2

,

≥
‖S2‖2

‖V (2)(k, :)/V (1)(k, :)⊥‖‖S2‖2
,

=
‖S2‖2

sin
(
V (1)(k, :) ^V (2)(k, :)

)
‖S2‖2

,

=
1

sin
(
V (1)(k, :) ^V (2)(k, :)

) ,

which is valid for any principal angle between A(I1, :) and A(I2, :), and hence
also for the smallest one.
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D.2 Proof of Lemma 5.2

Denoting for convenience U =

[
Up

Uf

]
, we have

Y d
f /(Wp/U

⊥
f ) = (Yf/U) /(Wp/U

⊥
f )

=
(
Yf/(U/U

⊥
f ) + Yf/(U/Uf )

)
/(Wp/U

⊥
f )

=
(
Yf/(Up/U

⊥
f ) + Yf/(U/Uf )

)
/(Wp/U

⊥
f )

=
(
Yf/(Up/U

⊥
f )
)
/(Wp/U

⊥
f )

= Yf/(Up/U
⊥
f ),

where the following properties were used:

• A/

[
B
C

]
= A/B +A/C if B ⊥ C.

• Row(Up) ⊂ Row(Wp)⇒ Row(Up/U
⊥
f ) ⊂ Row(Wp/U

⊥
f )

• Row(U/U⊥
f ) = Row

([
Up

Uf

]
/U⊥

f

)
= Row(Up/U

⊥
f ).

Furthermore, we have:

row(Up/U
⊥
f ) = Row

([
Up/U

⊥
f

Yp/(Up/U
⊥
f )

])

= Row

([
Up/U

⊥
f

Yp/(U/Uf ) + Yp/(U/U
⊥
f )− Yp/(U/Uf )

])

= Row

([
Up − Up/Uf

Yp/U − Yp/(U/Uf )

])

= Row((Wp −Wp/Uf )/U)

= Row
(
(Wp/U

⊥
f )/U

)
.

Hence, finally we obtain the relation:

Y d
f /(Wp/U

⊥
f ) = Yf/(Up/U

⊥
f )

= Yf/
(
(Wp/U

⊥
f )/U

)

=
(
Yf/

(
(Wp/U

⊥
f )/U

))
/U

=
(
Yf/(Wp/U

⊥
f )− Yf/

(
(Wp/U

⊥
f )/U⊥)) /U

=
(
Yf/(Wp/U

⊥
f )
)
/U,

which proofs the Lemma.
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D.3 Proof of Lemma 5.3

E
{(
δ
[
Lγ

1(t, :) Lγ
2(t, :)

])T (
δ
[
Lγ

1 (t, :) Lγ
2(t, :)

])}

= σ2
y





Iim Λ 0
Λ (1 + γ)Iim 0
0 0 (1 + γ)Iil






−1 

Iim Λ 0
Λ Iim 0
0 0 Iil








Iim Λ 0
Λ (1 + γ)Iim 0
0 0 (1 + γ)Iil






−1

= σ2
y




(1+γ)Iim

(1+γ)Iim−Λ2
−Λ

(1+γ)Iim−Λ2 0
−Λ

(1+γ)Iim−Λ2
Iim

(1+γ)Iim−Λ2 0

0 0 1
1+γ Iil






Iim Λ 0
Λ Im 0
0 0 Iil







(1+γ)Iim

(1+γ)Iim−Λ2
−Λ

(1+γ)Iim−Λ2 0
−Λ

(1+γ)Iim−Λ2
Iim

(1+γ)Iim−Λ2 0

0 0 1
1+γ Iil




= σ2
y




(1+γ)Iim

(1+γ)Iim−Λ2
−Λ

(1+γ)Iim−Λ2 0
−Λ

(1+γ)Iim−Λ2
Iim

(1+γ)Iim−Λ2 0

0 0 1
1+γ Iil







Iim 0 0
γΛ

(1+γ)Iim−Λ2
I−Λ2

(1+γ)Iim−Λ2 0

0 0 1
1+γ Iil




= σ2
y




(1+γ)2Iim−(1+2γ)Λ2

((1+γ)Iim−Λ2)2
Λ3−Λ

((1+γ)Iim−Λ2)2 0
Λ3−Λ

((1+γ)Iim−Λ2)2
Iim−Λ2

((1+γ)Iim−Λ2)2 0

0 0 1
(1+γ)2 Iil


 .
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[101] J. Maŕı and A. Dahlén. A covariance extension approach to identification
of time series. Automatica, 36:379–398, 2000.
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