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Abstract

Model based Predictive Control (MPC) is an automatic cdrparadigm that has
gained widespread acceptance in industry due to its uniquandages compared to
classic control methods. The main distinguishing featareghe ability to efficiently
control large scale interconnected systems and the integodity to cope with physical
and other constraints of the controlled system.

MPC controllers are designed on the basis of a dynamical hoddiee system that
has to be controlled (i.e., the plant) and apply mathemlatiggmization techniques
in order to obtain the optimal inputs to be applied to the plafrucial aspects
are hence the accuracy of the dynamical model and the cotignabburden of the
optimization that has to be performed. In this thesis thau$ois on robust MPC
algorithms, i.e., MPC algorithms that can take model uradety into account and can
guarantee stable behavior and acceptable performancitededgmatches between the
real plant behavior and the dynamical model that is used.eMpecifically, the main
aim of this thesis is the development of MPC algorithms witipfoved computational
efficiency and improved scaling behavior compared to exgstlgorithms, while
enabling less conservative constraint handling. Thess ai@ achieved in two ways:
by making mathematical and conceptual contributions teteg MPC algorithms
and by formulating improved algorithms for the construetiof invariant sets, a
mathematical concept used in the design phase of MPC clamtol

On the MPC-algorithmic level, contributions are made witspect to the type of
predictions that er made by the controller. Closed-looiot®ns are shown to be
preferrable above open-loop predictions. Existing athams are converted from the
latter to the former type of predictions in order to guarantgursive feasibility of the
optimization problems and new algorithms with closed-lpogdictions are presented,
resulting in significantly improved constraint handling.

On the level of invariant set synthesis a new class of polsdiddvariant sets is
introduced, that makes a trade-off between maximal volungenainimal complexity.
In this way the computational complexity of the construetad the invariant sets and
their application in MPC algorithms is reduced significgntlt is shown that under
certain conditions the exponential scaling behavior o$tinxg algorithms is reduced to
linear scaling behavior, enabling their application tg&arscale systems and enabling
the use of larger prediction horizons.

Several numerical examples and simulation on models of hdastrial processes
show the improved properties of the obtained algorithms.
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Korte Inhoud

Modelgebaseerde Predictieve Controle (MPC) is een rageliteche methode die
in een breed spectrum aan industriéle toepassingen gébvardt omwille van de
specifieke voordelen ten opzichte van klassieke technidkebelangrijkste voordelen
zijn de mogelijkheid om grootschalige systemen te regatame fysische beperkingen
expliciet in rekening te brengen.

MPC regelaars worden ontworpen op basis van een dynamisdelman het
te regelen systeem en gebruiken wiskundige optimalisatieoptimale ingangen te
bepalen die aan het systeem aangelegd worden. Crucialetasggerbij zijn de
nauwkeurigheid van het model en de rekenkundige compiexée de op te lossen op-
timalisatieproblemen. In deze thesis zal de nadruk liggembuuste MPC algoritmes,
dewelke modelonzekerheid in rekening kunnen brengen etabditeit en aanvaard-
baar regelgedrag kunnen garanderen ondanks verschifisertinet dynamisch gedrag
van het werkelijke systeem en het gebruikte model. Meerifipezullen nieuwe
MPC algoritmes ontwikkeld worden met verbeterde rekenkymcefficiéntie ten
opzichte van bestaande algoritmes, terwijl opgelegderkémeen minder conservatief
afgehandeld zullen kunnen worden. Deze doelen wordenkbateor wiskundige
en conceptuele bijdragen te leveren tot bestaande MPCitatgsr enerzijds en tot
algoritmes voor het opstellen van invariante verzamelhingen wiskundig concept
dat gebruikt wordt tijdens het ontwerp van MPC regelaardeazijds.

Op MPC-algorithmisch gebied zijn bijdragen geleverd metdiking tot het type
predicties dat gemaakt wordt door de regelaar. Er wordt etangd dat gesloten-
lus predicties de voorkeur genieten boven open-lus piedicBestaande algoritmes
worden aangepast naar gesloten-lus predicties om receigm@osbaarheid te kunnen
garanderen en bovendien worden nieuwe algoritmes gefesrditlie significant beter
kunnen omgaan met opgelegde beperkingen.

Anderzijds wordt een nieuwe klasse van polyhedrale inmégiaverzamelingen
geintroduceerd, die een afweging maakt tussen een maxinlame en een minimale
complexiteit. Op deze manier wordt de rekencomplexiteit zawel de constructie
van dergelijke verzamelingen als hun toepassing in MPCriilges gereduceerd.
Er wordt aangetoond dat onder bepaalde voorwaarden exfieeleschalingsgedrag
gereduceerd kan worden tot linear schalingsgedrag, wambgelijk maakt om de
robuuste MPC algoritmes op meer grootschalige systemetetpassen en om een
langere predictiehorizon te gebruiken.

Verscheidene numerieke voorbeelden en simulaties op heodeln twee industriéle
processen tonen de verbeterde eigenschappen van de beilgoeimes.
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Notation

Variables

o B,7eER
a,b,c e R”

A,B,C € Rm*n

Scalar sets

R,R*
7,77, 7§

N

Vector sets

A,B,C CR"
P CR"

ECR"

1

Greek symbols denote scalar variables
Lower case roman symbols denote
scalar or vector variables
Upper case roman symbols denote
matrix variables
Element at theé'® row and;** column of A
i*" row of a matrixA
4t column of a matrix4
Submatrix spanning rowisthroughy
and columnsg: through! of matrix A
Stacked vectordu™ bT ¢T|7
Enumeration:
.’L‘anO <~ xiZO,izl,...,n

Set of real numbers and positive real numbers

Set of integers, positive integers
and strictly positive integers respectively
Set of positive integers

Sets inn-dimensional space

Polyhedral set im-dimensional space
{SC S R”|A7>:v < bp}

Ellipsoidal set inn-dimensional space
{zeR"2TZ tr <1}withZ =ZT -0

Vector of appropriate dimensions
containing only onesl;. . .; 1]



Matrix sets

Sn
s
St

Operators

N
v

==

Inputs, states, outputs

u(k) € R
(k) € R
y(k) € R™

w(k) € R

uref(k)a xref(k)a yref(k)
u(k +ilk), z(k + i|k)

U C R™
X CR"
Y CR™
Mgy My

W C R

Set of symmetria: x n matrices
Set of symmetric positive semidefinitex n matrices
Set of symmetric positive definite x n matrices

Definition
Equivalence
Assignment

a := b < the value ob is assigned to variable
(Strict) scalar inequality

A > B < A — B has strictly positive elements
(Strict) matrix inequality

A >~ B & A — Bis strictly positive definite

n,-dimensional input vector at discrete tirhe
ng-dimensional state vector at discrete titne
ny-dimensional output vector at discrete tife
Additive state disturbance vector at discrete titne
Reference values for inputs, states and outputs
Input and state vectors at discrete tikne- ¢

as predicted / calculated at tinke
Constraint set to be imposed on the input vectors
Constraint set to be imposed on the state vectors
Constraint set to be imposed on the output vectors
Number of constraints definingj, U respectively
Constraint set bounding the disturbance vectors

Model based predictive control

N eZg

EN(-) : R — R™
XN - R™=

QN c RnIXnI

uy (k)

Ucl, N
xn (k)

Xy (k +ilk)
X (k +1lk)

Prediction horizon length

Terminal control law

Terminal constraint set

Terminal cost matrix

Open-loop input sequence
[u(k|k);...;u(k+ N —1|k)]

Closed-loop input sequence

Nominal state prediction sequence
[x(k 4+ 1|k);...;2(k + N|k)]

Open-loop state prediction set

Closed-loop state prediction set



Xi

Matrix operations
AT
Tr(A)
rows(A)
colg(A)

Norms

|z]|2, z € R™
2],z € R"
[z]l@,z € R"
A()

Optimization
ming
argmin,,

s.t.

Transpose of matrix

Trace of a matrix i.e. sum of its diagonal elements
number of rows in matrix4

number of columns in matrid

2-norm of a vectorvzTx

p-norm of a vector(> "7, |z;|P)*/P

Weighted 2-norm of a vector/2TQx with Q € S ,
Joint Spectral Radius (see Appendix C)

Function minimization over,
optimal function value is returned
Function minimization over,
optimal value ofr is returned
Subject to constraints

Convex functions, convex sets

Co{-} CR"
epi(f) C R™*!
dom(f) C R™

Geometric operations

U
n
5>
S
proj(P),P C R"
elim(P), P C R™

ekER",kE{l,...

Acronyms

APC
FIR
IR
JSR
LP
LPV
LMI

;n}

Convex hull of a set of points or setsif*
Epigraph of a functiory : R — R
Domain of a functionf : R — R™

Union of sets
Intersection of sets
Minkowski sum of sets
Minkowski (or Pontryagin) difference of two sets
Projection of a polytope along theth dimension
Elimination of a polytope along the-th dimension
k-th unit vector inR™:

[0;...;1;...;0] (k-th component)

Advanced Process Control
Finite Impulse Response
Infinite Impulse Response
Joint Spectral Radius
Linear Program(ming)
Linear Parameter-Varying
Linear Matrix Inequality



Xii

Acronyms (continued)

LTI
LTV
LOR
MAS
MIMO
MPC
NLP
PID
QP
RHC
SDP
SQP
SISO
SOCP

Linear Time-Invariant

Linear Time-Varying

Linear Quadratic Regulator
Maximal Admissible Set
Multiple-Input / Multiple-Output
Model based Predictive Control
Non-Linear Program(ming)
Proportional / Integral / Differential
Quadratic Program(ming)
Receding Horizon Control

Semi Definite Program(ming)
Sequential Quadratic Programming
Single-Input/ Single-Output
Second-Order Cone Program(ming)
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Robuuste modelgebaseerde
predictieve controle: ontwerp
via invariante verzamelingen

Hoofdstuk 1: Inleiding

Dit hoofdstuk geeft een algemene inleiding tot deze thesisteduceert
concepten zoals procescontrole, modelgebaseerde pgmdictontrole,
convexe optimalisatie, computationele geometrie, ...eBeanenvatting
beperkt zich tot het geven van een algemene inleiding tategmontrole
waarna de basisconcepten van Modelgebaseerde PredicGevdrole

(MPC) zullen toegelicht worden. Voor meer details hier@ntren

voor meer informatie wat betreft de specifieke wiskundigertieken die
gebruikt zullen worden in latere hoofdstukken, wordt velevenaar de
Engelstalige versie van dit hoofdstuk.

Procescontrole

In 1788 introduceerde James Watt emmtrifugale regelaaf“centrifugal governor”,
zie Figuur 1.1) voor het regelen van de rotatiesnelheid v@nszcoommachine. Dit
leidde tot een grotere betrouwbaarheid van zijn machin@rdeor deze algemene
ingang kon vinden in de industrie. Deze centrifugale reayekan dus gezien worden
als een belangrijke factor die de industriéle revolutie hat einde van de 18e eeuw
mogelijk maakte.

Tegelijkertijd kan de centrifugale regelaar gezien wordénhet eerste industrieel
toegepaste voorbeeld van stabilisatie door middel vani@ef@ terugkoppeling.
De stoomtoevoer naar de machine (ingang) wordt immers gktegp basis van
het toerental (uitgang) van de machine. De uitgang van hstesgn wordt dus
teruggekoppeld naar de ingang teneinde een stabieleesystebekomen. Dergelijke
technieken vallen onder de bredere noeprecesregelingf procescontrole

In de moderne procesindustrie wordt de techniek van temogiing veelvuldig
toegepast in de vorm van PID regelaars voor het aansturealdahande processen.
In de huidige praktijk dienen er echter veel grotere systemgeregeld te worden,

XiX
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waarbij meerdere ingangen moeten aangestuurd worden omt@nealitgangen een
bepaalde gewenste waarde te laten aannemen of een bepgedtl e laten volgen.

Hierbij treden er vaak interacties op tussen de verschiiengangen en uitgangen,
waardoor meer geavanceerde technieken, die deze ing=rdntirekening kunnen

brengen, gebruikt moeten worden.

Bovendien zijn er vaak fysische beperkingen aanwezig insisteem (een klep
kan bv. niet verder dan 100% open staan), dienen er vaalgheitisvoorschriften
in acht genomen te worden (bv. maximale druk binnen in eeotagaen gelden
er economische en logistieke beperkingen (maximale toemetheid van bepaalde
grondstoffen). Typisch opereren productieprocessent deden deze beperkingen
met het oog op het maximaliseren van het rendement, het essluvan de kost,
...Deze beperkingen moeten dus ook in rekening gebrachtidtumorden bij het
regelaarontwerp.

De enige techniek die aan deze voorwaarden voldoet, is jetlakeerde Predic-
tieve Controle (MPC), dewelke dan ook meer en meer gebruwkdlinn de industrie.

Modelgebaseerde predictieve controle

Modelgebaseerde Predictieve Controle (MPC) is een op afifaiie gebaseerde
techniek, die op elke discrete tijdstap (bv. elke minuut) eptimaal ingangstraject
bepaalt binnen een eindig toekomstig tijdsvenster, wazanalit traject enkel de eerste
waarden effectief worden aangelegd aan het systeem. Ofdgkende discrete tijdstap
wordt de procedure herhaald, gebaseerd op nieuwe metiragedestoestand van het
systeem. Deze werkwijze is weergegeven in Figuur 1.4.

Teneinde te kunnen voorspellen wat het effect zal zijn vanh damleggen van
bepaalde ingangen aan het te regelen systeem, wordt tyggectbgenaamd toestands-
ruimte-model gebruikt om dit dynamisch systeem (Figuujy tedeschrijven:

x(k+1) = Az(k) + Bu(k),
y(k) = Calk), et
waarbij u(k) € R™ x(k) € R" eny(k) € R™ respectievelijk de ingangen,
toestanden en uitgangen van het systeem voorstellen opewdistijdstapk. In
volgende hoofdstukken zal naar modellen van dit type veewarorden als lineaire,
tijdsinvariante (LT1) modellen. De beperkingen die bessten zijn in de vorige sectie,
worden wiskundig uitgedrukt als

u(k) €U, x(k) € X, y(k) €y, ke N,

waarbiji/ C R™ X C R" Y C R™ respectievelijk de ingangs-, toestands- en
uitgangsbeperkingen voorstellen.

Gegeven dit model en deze beperkingen kan nu het MPC algodmh geintro-
duceerd werd in [135], maar beter bekend staat onder de vesthbeven in [131],
geformuleerd worden. Dit algoritme, waarnaar vaak verweazerdt alsMPC met
quasi-oneindige horizgrlost op elk tijdstipk, gegeven de huidige toestandk) =
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x(k|k), het volgende optimalisatieprobleem op:

N—-1 N-1
i > flatk+ ikl + > e+ dk)lE + llz(k + Nk,
’ i=0 =0
st a(k+ilk) € X, i=1,...,N—1,
l‘(k+N|]€) € Xy,
u(k +ilk) e U, i=0,...,N—1,
x(k +1i+ 1|k) = Ax(k + ilk) + Bu(k +ilk), i=0,...,N—1,

waarnau®(k|k) aangelegd wordt aan het systeem. Hierin steflea S'”, , R € S’
gewichtsmatrices voor die het relatieve belang van de dodsh en de ingangen
voorstellen in de te minimaliseren regelkosty en Qy stellen respectievelijk de
zogenaamdeindbeperkingen eindkostvoor. x(k + i|k) stelt de toestand voor op
tijdstip £ + ¢ zoals voorspeld op tijdstiz. Een gelijkaardige definitie geldt voor
u(k + i|k).

Eenvoudig gezegd zorgt de eindbeperking ervoor dat de egdelbeperkingen
gerespecteerd worden op tijdstippen ‘voorbij de horizeerwijl de eindkost de
regelkost ‘voorbij’ de horizon in rekening brengt. Op dezamer wordt bij benadering
een optimaal regelprobleem met oneindige horizon opgelasaraan het algoritme
dan ook zijn naam te danken heeft.

Het resulterende algoritme leidt gegarandeerd tot eenestgdésloten lus systeem
indien aan voorwaarden (1.12) is voldaan. Voorwaarde €).E%st datXy een
invariante verzamelings ten opzichte van het gesloten lus systeem gevormd door het
te regelen dynamisch systeem en een lokaal stabiliseinde=gelaar Het bepalen
van een eindbeperkintjy is een cruciale factor in de uiteindelijke eigenschappen va
de resulterende MPC regelaar. De grootte van deze verzantsdipaalt de grootte
van het werkingsgebied waarbinnen de MPC regelaar geldigpes manier waarop
deze invariante verzameling beschreven wordt, is bepatend de computationele
vereisten van de regelaar. Dit is meteen de belangrijkdeEre/aarom onderzoek naar
algoritmes voor het opstellen van dergelijke verzamelingsor verschillende klassen
van dynamische systemen een groeiend onderzoeksveldlekgabn het afgelopen
decennium.
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Hoofdstuk 2: Polyhedrale Invariante Verzamelingen

In dit hoofdstuk wordt de stand van zaken wat betreft hetetlpst van
invariante verzamelingen voor lineaire, onzekere systetoegelicht.
Zoals uitgelegd in Hoofdstuk 1, vormen invariante verzamgeh een
essentieel element in het ontwerp van een MPC regelaar. Dagamste
algoritmes voor het construeren van invariante verzangelm worden
toegelicht alsook hun voornaamste eigenschappen, metdwebp het
verfijnen van deze algoritmes in Hoofdstuk 5. Deze samémydutperkt
zich tot het beschrijven van het belangrijkste algoritmeseimetst kort de
belangrijkste eigenschappen.

Model en definities

Zoals uitgelegd in Hoofdstuk 1, is het bepalen van invagavgrzamelingen van
cruciaal belang bij het ontwerp van een MPC regelaar. In dibpféhstuk wordt
aangetoond hoe polyhedrale invariante verzamelingendppgesteld worden voor
autonome lineaire, onzekere systemen, dewelke een bgkahgipmiddel zijn voor
het bekomen van verbeterde robuuste MPC algoritmes, waam® volgende 2
hoofdstukken zullen handelen.

In dit hoofdstuk beschouwen we autonome, lineaire, onzkgstemen van de
volgende vorm:;

w(k+1) = d(k)x(k), keN,

waarbij de matrice®(k) € R"=*"= tot een onzekerheidspolytodlf C R"=*"=
behoren, die gedefinieerd is als

D(k) € ¥ = Co{dy,...,P,}, k€N,

of equivalent

Op elk tijdstipk ligt de systeemmatri® (k) dus binnen een onzekerheidspolytégp
De exacte waarden van deze systeemmatrices liggen niatravarst, kunnen op elke
tijdstip verschillend zijn en zijn ook niet gekend door dgekar. In wat volgt zal
verwezen worden naar deze systemen als autonome LPV systérap verzameling
S wordt invariant genoemd met betrekking tot bovenvermetdmaom systeem als en
enkel als

dr e S, Ve eS, Vde(.
Bovendien voldoet een verzameli§gaan de opgelegde beperkingen als en enkel als

SCx.
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Er kunnen twee belangrijke klassen van invariante verzageh onderscheiden
worden, namelijlellipsaidaleenpolyhedralenvariante verzamelingen, respectievelijk
genoteerd al§ enP en gedefinieerd als:

E={zlz"Z 2 <1},
P = {z|Apz < 1},

metZ € S, en Ap € R™ "=, Ellipsoidale invariante verzamelingen kunnen
eenvoudig opgesteld worden door het oplossen van een coptiexalisatieprobleem
(zie [23]). Deze hebben echter als nadeel dat ze niet in gigatom te gaan
met asymmetrische beperkingen, dat ze typisch een kleiokme hebben dan
polyhedrale verzamelingen en dat ze leiden tot MPC regelaat een hogere reken-
complexiteit. Om deze redenen zijn polyhedrale invariaetzamelingen verkiesbaar
boven ellipsoidale. Polyhedrale verzamelingen kunnémeeaiet opgesteld worden
door het oplossen van een convex optimalisatieprobleengr meeten iteratief
geconstrueerd worden. Voor het gevak 1 zijn de technieken uit [52] algemeen
gekend, maar voor het meer algemene gevall zijn meer geavanceerde technieken
vereist.

Polyhedrale invariante verzamelingen voor LPV systemen

In deze sectie wordt de methode die beschreven wordt in $183198] kort behandeld,
met nadruk op de structuur die vervat ligt in de resultereratzameling.

Van het volgende algoritme kan aangetoond worden dat hetatesg mogelijke
invariante verzameling bepaalt die voldoet aan de opgeldzgberkingent =
{z|A,x <1}:

1. Initialiseerds := A,, i := 1.
2. Voer de volgende stappen iteratief uit totdat rijen(As):

(a) Stela := As(i,:).

(b) Controleer de redundantie van de beperkingénr < 1, i = 1,...,r
met betrekking to £ {z|Asx < 1}. Voorallei = 1,. .., r, voeg, indien
sigg(a®;) > 1, de beperking®;z < 1 toe aands doorAs := [As; a®;]
te stellen.

(c) Voer indien nodig vuilopruiminguit, m.a.w. controleer voor elke rij van
Ags of de overeenkomstige beperking redundant is ten opzicéwede
andere rijen vam s en zo ja, verwijder die rij uitds.

(d) Steli =i+ 1.
3. Geef de resulterende verzamel®ig {z|Asz < 1} terug als resultaat.

Doordat in elke iteratie enkel die beperkingen toegevoegien die significant
zijn, wordt een significante tijdswinst bekomen voor hetdlep van de invariante

1Als vuistregel kan vuilopruiming toegepast worden telkgjes(As) met50% is toegenomen.
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verzameling. Dit werd reeds aangekaart in [15]. Echtery gvootschalige systemen
kan empirisch worden vastgesteld dat het aantal redundmpgerkingen afneemt,
waardoor bovenstaand algoritme vooral zijn nut heeft vaget dimensionale sys-
temen. Hoofdstuk 5 beschrijft varianten van dit algoritelie, beter geschikt zijn voor
het bepalen van invariante verzamelingen voor grootsghalystemen.

De belangrijkste bijdrage van dit hoofdstuk, naast het lngsen van de basis-
principes wat betreft invariante verzamelingen. is tweigle Enerzijds wordt de
boomstructuur geanalyseerd die aanwezig is in invariagtzamelingen. Anderzijds
wordt convergentie van bovenstaand algoritme gekoppeldlagemeenschappelijke
spectrale radiugJoint Spectral Radius, JSR).

Sectie 2.3.2 beschrijft de boomstructuur waarin men dealireongelijkheids-
beperkingen van de polyhedrale invariante verzamelingdaterbrengen. Dit wordt
geillustreerd aan de hand van Figuren 2.2 en 2.4. De beypgnkidie aands
toegevoegd worden, worden toegekend aan een bepaaldealadg boom afhankelijk
van de iteratie waarin ze werden toegevoegd. De takken vhoata duiden aan welke
beperkingen van welke beperkingen werden afgeleid. Eeanbejk kenmerk is dat
indien een beperking redundant is, automatisch ook alldéken van de beperking
redundant zullen zijn. Het aantal kinderen dat een bepgrkam hebben, wordt
bepaald door het aantal hoekpuntem de onzekerheidspolytoop. Hoofdstuk 5 zal
technieken beschrijven die enerzijds het aantal kindeaarelke beperking rachten te
beperken en die anderzijds tot doel hebben de diepte vanaie teoverminderen.

Sectie 2.3.1 legt een verband tussen de convergentie vans@aand algoritme en
de JSR van de gesloten lus matrides.. .., ®,., die genoteerd wordt aj§(2"). Voor
meer uitleg wat betreft de JSR, verwijzen we naar AppendiXi@&@orema 2.2 toont
aan dat indien

pY) <1,

het bovenstaande algoritme convergeert in een eindig laidtaties. Aangezien
p(Q') < 1 een nodige en voldoende voorwaarde is voor asymptotisetilitit
van het autonome, lineaire, onzekere systeem dat hier dbeschwordt, garandeert
dit resultaat dat bovenstaand algoritme convergeert vberagymptotisch stabiele
autonome systemen die binnen deze klasse vallen. Boveralidit theorema toelaten
om in Hoofdstuk 5 kwantitatieve resultaten op te stellen betteft convergentie van
de nieuwe algoritmes die daar beschreven worden.
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Hoofdstuk 3: Robuuste Modelgebaseerde Predictieve
Controle

In dit hoofdstuk wordt een inleiding gegeven wat betrefurgie MPC,
waarna een overzicht gegeven wordt van verschillende rdethom met
opgelegde beperkingen om te gaan. Er wordt aangetoond dahzamde
gesloten lus predictiegebruikt moeten worden indien men recursieve
oplosbaarheid van de MPC optimalisatieproblemen wil kumbewijzen.
Tenslotte wordt aangetoond dat twee algoritmes uit dedttesr zoge-
naamdeopen-lus predictiegebruiken, ten gevolge waarvan recursieve
oplosbaarheid niet kan aangetoond worden. De algoritmesder
gecorrigeerd en er wordt aangetoond dat de nieuwe algostmel deze
eigenschap hebben.

Robuuste MPC

In Hoofdstuk 1 werd een introductie gegeven over MPC gebidsep lineaire,
tijdsinvariante (LT1) modellen. In de praktijk is het wetlee model van het te regelen
systeem echter nooit perfect gekend. Oorzaken hiervameigindigheid van de data
aan de hand waarvan de modellen opgesteld zijn, meetrutgineductietechnieken,
enz...Het feit dat er een verschil is tussen het gebruikezliptiemodel en het
werkelijke systeemnfismatch kan ertoe leiden dat de performantie van de regelaar
degradeert of dat er stabiliteitsproblemen optreden. Het ¥ban robuuste MPC is het

in rekening brengen van deze onzekerheid op het gebruiktehmon tot een goede
regeling te komen ondanks deze modelfouten. Dergelijlaalie, onzekere modellen
kunnen als volgt beschreven worden:

z(k+1) = A(k)z(k) + B(k)u(k), keN,
met

[A(k) B(k)] € Q = Co{[A, B1],...,[A, B,]}, k € N.

Het specifieke probleem dat robuuste MPC bemoeilijkt is le@t de werkelijke
waarden van de matricésl(k) B(k)] ongekend zijn voor de regelaar, dus er moet
rekening gehouden worden met alle mogelijke waarden. Giftganleiding tot een
boomvan toestandsvoorspellingen, zoals weergegeven in FigBiE en 3.2. Het
verschil tussen deze twee figuren is essentieel en worduidsiikt in de volgende
sectie.

Open-lus en gesloten-lus predicties

Bij robuuste MPC kan een onderscheid gemaakt worden tuggen-lus predicties
engesloten-lus predictiegfhankelijk van het soort ingangsequentie waarover geopt
maliseerd wordt.
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Figuur 3.1 stelt schematisch voor hoe open-lus predictesigstrueerd worden. Er
wordt nog steeds geoptimaliseerd over een unieke sequamtiagangen, net zoals bij
niet-robuuste MPC. De boom van toestandspredicties wqgitsteld door gebruik te
maken van de verschillende hoekpunten van de onzekerheidspolytoop.

Figuur 3.2 stelt schematisch voor hoe gesloten-lus priedigeconstrueerd worden.
Gesloten-lus predicties houden rekening met het feit datijdgtippenk + i,7 €
{1,..., N — 1} men bijkomende kennis zal hebben over de toestand van heesys
op dat moment (doordat er nieuwe metingen binnenkomen) erdunede aangelegde
ingang hier kan aan aanpassen. Dit wordt in rekening gebrdobr voor de
r* verschillende toestandspredicties op tijdskip+- i aparte ingangsvariabelen te
beschouwen waarover geoptimaliseerd kan worden.

In beide gevallen wordt de maximale waarde (over alle mggefiredicties) van
de regelkost geminimaliseerd met als beperking dat alleetijkg predicties aan
de opgelegde beperkingen moeten voldoen, hetgeen aaglejeieft tot min-max
optimalisatieproblemen.

Gesloten-lus predicties hebben als voordeel dat er mgheigsgraden beschikbaar
zijn om over te optimaliseren, waardoor een betere regatingelijk wordt. Ander-
zijds heeft deze methode als nadeel dat het aantal optatialiariabelen exponentieel
toeneemt in functie van de horizon lengte wat al snel voor problemen kan zorgen
wat betreft de rekencomplexiteit. Toch is het aangerademesioten-lus predicties
te gebruiken om redenen die verduidelijkt worden in de votgesectie. Bovendien
zal in Hoofdstuk 5 blijken dat het computationele nadeel gasloten-lus predicties
ongedaan kan gemaakt worden door gebruik te maken van nelgadtmes voor het
opstellen van invariante verzamelingen.

Correcties van bestaande algoritmes

In de laatste twee secties van Hoofdstuk 3 worden twee redWMPC algoritmes
uit de literatuur behandeld. Enerzijds gaat het om het @igerdat geintroduceerd
werd in [142]; anderzijds gaat het om het algoritme dat bes@n wordt in [31].
Beide algoritmes maken gebruik van open-lus predictied.z&igt er bij deze twee
specifieke algoritmes echter voor dat recursieve oploslea&hrvan de algoritmes
niet kan bewezen worden. Recursieve oplosbaarheid gaendigt als het MPC
optimalisatieprobleem oplosbaar is op tijdstiphet ook oplosbaar zal zijn op tijdstip
k + 1 en is een nodige voorwaarde voor het bekomen van MPC algesitmet
gegarandeerde stabiliteitseigenschappen. In beidertievindt zich een vergissing
in het bewijs van recursieve oplosbaarheid, waardoor diggnschap foutief wordt
geopperd.

Sectie 3.4 beschrijft hoe het MPC algoritme uit [142] geigarerd kan worden door
het gebruik van gesloten-lus predicties, terwijl Secti® Beschrijft hoe het MPC
algoritme uit [31] op een gelijkaardige manier gecorrigekan worden. Omwille
van plaatsgebrek kunnen hier geen verdere details gegewelewen wordt de lezer
doorverwezen naar de Engelstalige versie van Hoofdstukl8.alyemene conclusie
kan men zeggen dat het gebruik van gesloten-lus predictiesizakelijk is om
recursieve oplosbaarheid te kunnen garanderen bij deimggein onzekere systemen
met ingangs- en toestandsbeperkingen.
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Hoofdstuk 4: Robuuste MPC met Polyhedrale Invariante
Verzamelingen

De nadruk van dit hoofdstuk ligt op het uitbreiden van bestiarobu-
uste MPC algoritmes en aanverwante technieken tot het gebrwan
polyhedrale invariante verzamelingen. Op deze manier tvorthder
conservatief omgegaan met de opgelegde beperkingen en &an aantal
gevallen een significante reductie van de rekencomplexiekomen
worden. Er worden drie belangrijke nieuwe technieken beletth die
hier elk kort samengevat worden.

Synthese van robuuste lineaire terugkoppelwetten gebruiknakende
van LMIs en polyhedrale invariante verzamelingen

Zoals kort vermeld in Hoofdstuk 1, is het noodzakelijk bij BPnet quasi-oneindige
horizon om een stabiliseren@éndregelaarte ontwerpen, waarna men kan overgaan
tot het bepalen van een geldige eindkost en eindbeperkingze Rindregelaar is
typisch van de vormu(k) = —Kx(k), waardoor het ontwerp ervan neerkomt op het
vinden van een geschikte matiik, waardoor het gegeven LTI systeem gestabiliseerd
wordt. Men kan hiervoor eenvoudigweg een LQR regelaar omigre dewelke meteen
garandeert dat de uiteindelijke regelaar lokaal optimagklgedrag heeft. In het
geval van robuuste MPC moet er echter voor gezorgd wordem@atiteindelijke
regelaar robuust stabiliserend werkt voor het gegeven Ly@teem. Hiervoor wordt
typisch de methode van Kothare et al. [68] gebruikt, dewgleaseerd is opineaire
Matrix Ongelijkheder{Linear Matrix Inequalities, LMIs). Om te kunnen garandere
dat vanuit een bepaalde initiéle toestahde opgelegde beperkingen gerespecteerd
worden, maakt deze methode gebruik van ellipsoidale imnwtr verzamelingen,
hetgeen omwille van redenen die reeds in Hoofdstuk 2 aaadsbivarden, suboptimaal
is.

Sectie 4.1 breidt de methode uit [68] uit naar meer algemegelobjectieven en
beperkingen, waarbij kruistermen tussen toestanden emgen ook toegelaten zijn
(Algoritme 4.1). Ten tweede wordt de methode verder uitgebmaar het gebruik van
polyhedrale in plaats van ellipsoidale invariante verziémgen. Dit gebeurt op twee
manieren:

1. Een eerste nieuw algoritme (Algoritme 4.2) past eerst despvonkelijke
methode van [68] toe, waarna voor het resulterende geslosesysteem een
polyhedrale invariante verzameling wordt bepaald met lekan Algoritme
2.4. Op deze manier wordt een minder conservatieve karséterg bekomen
van het werkingsgebied van de bekomen regelaar.

2. Een tweede algoritme (Algoritme 4.3) gaat een stap vesdemert Algoritme
4.2 iteratief uit, telkens met herschaalde beperkingerelechniek zorgt ervoor
dat de initiele toestana@, waarvoor de regelaar optimaal moet zijn, exact op
de rand van de resulterende polyhedrale invariante velzagrterecht komt.
Hierdoor wordt de conservativiteit minimaal. Het nadeel @&eze techniek is
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de significant verhoogde rekencomplexiteit. Maar, aaragedit een techniek is
die typisch gebruikt wordt in de ontwerpfase van een MPCleggegis dit geen
significant nadeel.

Figuren 4.1 en 4.2 tonen duidelijk de verbeterde resultatam de twee nieuwe
algoritmes.

Interpolatie-gebaseerde robuuste MPC

Interpolatie-gebaseerde MPC algoritmes bieden een atiefivoor de meer klassieke
MPC algoritmes, zoals MPC met quasi-oneindige horizonerpulatie-gebaseerde
MPC werd initieel geintroduceerd in [3] en vertrekt vanverschillende lineaire
terugkoppelregelaais;,i = 1,...,n enn invariante verzamelingef;,i = 1,...,n
overeenkomstig de gesloten-lus systemen gevormd doog heggélen systeem en de
verschillende regelaars. In elke tijdstap wordt de huiddgestand: (k) opgesplitst in
n deelcomponentef;,i = 1,...,n als volgt:

— . "oN(k) =1, 0 >0,
x(k) = lel(k), waarbij { %Eg)le /\igk s,

Op basis van deze opsplitsing in deelcomponenten wordt&laimgang berekend, die
aangelegd wordt aan het systeem:

u(k) = — Z Kii(k).

De manier waarop de opsplitsing in componenten gebeurtit gegheidsgraden
waarover in elke tijdstap kan geoptimaliseerd worden, itefeeeen vooropgestelde
kwadratische kostfunctie te minimaliseren.

Deze methode wordt op twee manieren verbeterd:

1. Enerzijds wordt de methode uitgebreid naar polyhedralariante verzame-
lingen. In het robuuste geval [3] werd er in de literatuur apt heden enkel
ellipsoidale invariante verzamelingen beschouwd. Hbtyjk van polyhedrale
verzamelingen zorgt voor een reductie van de rekenkosgt aaror minder
conservatieve behandeling van beperkingen en laat ooknoefficient om te
gaan met asymmetrische beperkingen. Deze werkwijze wasithreven in
Algoritme 4.5. De voordelen worden geillustreerd in Feyud.5 en 4.6.

2. Anderzijds wordt de methode verder verbeterd door ooknteracties tussen
de verschillende regelaars in rekening te brengen. Hierdmodt het wer-
kingsgebied van de resulterende regelaar verder vergrDet.opsplitsing in
deelcomponenten, zoals beschreven hierboven, maaktgewtd geen gebruik
meer van de individuele invariante verzamelinggn maar maakt gebruik
van één enkele invariante verzameling voor het volgauntigebreide systeem
(augmented system):

Taug (i + 1) = Vaug (1) Taug (1), i €N,
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waarbij U, (1) € Qaug, Vi € N, met2,,, gedefinieerd als

Qaug £ CO{\I/aug.,la R \I/aug.,r}a

met
Aj— BiKn Bj(Kn—Ki) - Bj(Kn—Kn1)
A 0 A] _B_]Kl R 0
Vang.j = : : . : ’
0 0 Aj —Ban_l
g=1,...,n7

en hetwelke onderhevig is aan volgende beperkingen
Amrmxaug(i) S 17 Auruxdug(z) S 17 Vi € Na

metl’, = [0 ... 0],T, = [-K,, (K,—Ky) ... (K, — K,-1)]. Lemma
4.4 toont aan dat als de uitgebreide toestandsvegtor= [z(k); 21; . . . ; #—1]
binnen de resulterende invariante verzameling ligt, deemmkomstige trajecten
aan de opgelegde beperkingen voldoen, hetgeen deze wegkWlporitme 4.6)
rechtvaardigt. Figuren 4.8-4.11 illustreren de verbeteedultaten bekomen met
dit algoritme.

Het is belangrijk op te merken dat Algoritme 4.6 de opgeldugfgerkingen respecteert
door gebruik te maken van één enkele invariante verzagnebit toont het belang aan
van performante algoritmes voor het opstellen van dekgeliprzamelingen, alsook
het belang van efficiénte representaties voor zulke veglingen, aangezien deze in
grote mate de computationele efficiéntie bepalen van Isettexende algoritme.

Robuuste MPC met quasi-oneindige horizon

In deze sectie wordt de robuuste MPC methode uit [70] uitgjdlmaar het gebruik

van polyhedrale invariante verzamelingen. Deze methoéerisrobuuste versie van
het MPC algoritme met quasi-oneindige horizon beschravétoiofdstuk 1 en maakt

gebruik van gesloten-lus voorspellingen. Om het exporehtioenemend aantal
variabelen te vermijden, wordt echter een herparametisan de ingangsequentie
gebruikt[123]. Deze is schematisch weergegeven in Figu.AHierdoor wordt terug

een lineair opschalend aantal optimalisatievariabeléomen. Bovendien wordt het
hierdoor ook mogelijk, net zoals bij Algoritme 4.6, om de begngen van het MPC

optimalisatieprobleem te bepalen als een invariante weeling van een uitgebreid
systeem, namelijk:

(1 + 1)ang = Yaug(k + 9)2(7) aug, 1 €N,

MetWaug(k +14) € Qaug = Co{Wang 1+, Vaugr },4 € N, €0
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0 I O 0
A; — B;K [B;E | oot 0
i — B; E00...0 ..
B R e R L
0 0 O I
0 00 ... 0
j=1,...,7

waarbijSy ,, € RN-nexN-ne de N.n .-dimensionale doorschuifmatrix met doorschuif-
operaties van lengte. is. Het systeem is onderhevig aan beperkingen

AT Tang (1) < 1, ATy Tang (1) <1, Vi € N,
waarbijI'y = [[0 ... 0],T, = [-K E0 ... 0] enzayg(2) = [x(k + i|k); c(k +
ilk);...;e(k + i+ N — 1|k)]. Het resulterende algoritme (Algoritme 4.7) heeft
een significant groter werkingsgebied dan de bestaandeitaigs (bv. [70]) en kan
geformuleerd worden als eéfwadratisch ProgrammdQuadratic Program QP) in
plaats van eeBemi-Definiet ProgrammgSemi-Definite ProgramSDP). Het nadeel
is dat het aantal beperkingen van het resulterende QP nedssexponentieel kan
toenemen als een functie vah. Dit zal in Hoofdstuk 5 verholpen worden. Figuren
4.14-4.17 geven de performantie weer van het nieuwe afgeriffabel 4.3 toont aan
dat het aantal beperkingen exponentieel kan toenemenrasdwan de lengte van de
horizonN.

Het is belangrijk op te merken dat ook hier de beperkingen venMPC opti-
malisatieprobleem kunnen bepaald worden als een invariamzameling voor een
uitgebreid systeem. Het verschil met Algoritme 4.6 is de igramaarop het uitgebreide
systeem opgebouwd wordt en de definities VarenT',,. Dit toont enerzijds opnieuw
het belang aan van het bestaan van efficiente algoritmes weibopstellen van
invariante verzamelingen en suggereert anderzijds hebtdmes/an een unificerend
theoretisch raamwerk waarin beide methodes kunnen orgexgg worden.
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Hoofdstuk 5: Invariante Verzamelingen met Geredu-
ceerde Complexiteit voor Robuuste MPC

Hoofdstuk 2 introduceerde methodes voor het opstellen elrhedrale
invariante verzamelingen voor LPV systemen, dewelke infddtuk 4
gebruikt werden voor het verbeteren van de performantiestndrgroten
van het werkingsgebied van enkele robuuste MPC algoritnmiaseen
aantal gevallen bleek het aantal beperkingen dat nodig iervoet
beschrijven van de bekomen invariante verzameling ongumgt te
schalen. Dit hoofdstuk verkent twee belangrijke techmiekeor het
reduceren van de complexiteit van de bekomen verzamelirgreoeien
(pruning) entrimmen (trimming). Er wordt aangetoond dat op deze
manier onder bepaalde voorwaarden de complexiteit sigmfickan
gereduceerd worden. Deze samenvatting beperkt zich togéetn
van een korte beschrijving van de twee belangrijkste atgws en het
toelichten van de implicaties van deze algoritmes voor tietiuste MPC
algoritme met quasi-oneindige horizon beschreven in hegedoofdstuk
(Algoritme 4.7).

Complexiteitsreductie door middel van snoeien

Zoals uiteengezet in Sectie 2.3.2 kunnen de beperkingeredigvariante verzameling
definieren ondergebrachtworden in een boomstructuurbélangrijke verschil tussen
LTI en LPV systemen is het feit dat bij LTI systemen geen \ditagen kunnen
voorkomen in deze boomstructuur. Bij LPV systemen kunnewrimaal » vertak-
kingen optreden per knoop. Dit is de belangrijkste oorzaakhet typisch significant
hogere aantal beperkingen dat nodig is om polyhedraleiamvi@ verzamelingen voor
LPV systemen te beschrijven. In deze sectie wordt Algoriiin2kort toegelicht. Dit
algoritme heeft als doel om het aantal vertakkingen per grieseduceren, zodat het
totaal aantal beperkingen daalt.

Figuur 5.1 toont deze structuur aan de hand van een numes@beeld en geeft
de geometrische interpretatie. Het is duidelijk dat bijdy@ireden van een splitsing in
de boomstructuur twee erg gelijkaardige beperkingen gergend worden. Bovendien
is het duidelijk dat indien een van beide beperkingen metkéeine factor strikter
genomen wordt (d.i. parallel verplaatst worden in de riziptvan de oorsprong), de
andere beperking redundant wordt en kan weggelaten woltdanma 5.2 toont aan
dat deze factor exact kan bepaald worden door het oplossezeval P. Algoritme 5.2
maakt hiervan gebruik om te komen tot polyhedrale invagaetzamelingen met een
gereduceerd aantal beperkingen. Een paramet@rdt gebruikt om aan te geven wat
de maximale factor is waarmee een beperking mag aangepainvdp deze manier
kan een afweging gemaakt worden tussen een maximaal volangere minimale
complexiteit.

Figuren 5.2a en 5.2b geven het resultaat weer van deze nigithednneer toegepast
op het numerieke voorbeeld van Figuur 5.1. Sectie 5.4.2rbekpde werking van dit
algoritme wanneer het toegepast wordt voor het bepalemvaniante verzamelingen
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voor de robuuste MPC algoritmes uit het vorige hoofdstuk dangrijke vaststelling
is het feit dat in bepaalde gevallen (zie Figuur 5.9) het @abéeperkingen dat
met Algoritme 5.2 bekomen wordt vodP-RMPC (Algoritme 4.7) asymptotisch
lineair toeneemt als een functie va¥, terwijl met Algoritme 2.4 uit Hoofdstuk 2
een exponentieel stijgend aantal beperkingen bekomentword P-RMPC. Later

in dit hoofdstuk wordt aangetoond onder welke voorwaardigrschalingsgedrag
gegarandeerd kan worden.

Complexiteitsreductie door middel van trimmen

Terwijl in de vorige sectie aangetoond werd hoe het aantstkéingen van polyhedrale
invariante verzamelingen voor LPV systemen kan gereddce&rden door het
verminderen van het aantal vertakkingen in de boomstructan de verzameling,
wordt in deze sectie uitgelegd hoe een gelijkaardig effact lkekomen worden door
het reduceren van de diepte van deze boomstructuur.

Lemma 5.4 toont aan dat, gegeven twee autonome LPV systeadefigjeerd door
de volgende onzekerheidspolytopen:

Ql é CO{(I)h . .,(I)r},
Qs 4L Co{(I)/l, .. .,(I);},

waarbij de matrice®’,i = 1,. .., r gedefinieerd zijn als

O = (1+¢)®; —cl, 1=1,...,m7,

metc € RT, elke verzamelingS € R"» die invariant is voor het LPV systeem
gedefinieerd dodn,, ook gegarandeerd invariantis voor het LPV systeem gedefidi
door(;.

Dit lemma laat dus toe, gegeven een LPV systeem gedefiniemod ahzeker-
heidspolytoopf2;, om een invariante verzameling voor dit systeem te bepaben d
Algoritme 2.4 of Algoritme 5.2 toe te passen op het systeemefigieerd door
onzekerheidspolytoof2,. Dit geeft een bijkomende vrijheidsgraad die door de
gebruiker vrij kan gekozen worden en die toelaat om de waeadede JSR van het
systeem te beinvloeden, dewelke door middel van TheoregeRoppeld kan worden
aan de diepte van de boomstructuur van de verzameling. Cmmgéerc kan dus
gebruikt worden om de diepte van de boomstructuur van derheRwerzameling aan
te passen en op die manier het aantal beperkingen dat denadizg beschrijft. Het
nadeel is dat het volume van de bekomen verzameling klesner i

Figuren 5.2c en 5.2d geven het resultaat weer van deze nmiekhagnneer toegepast
op het numerieke voorbeeld van Figuur 5.1. Sectie 5.4.2rbekpde werking van dit
algoritme wanneer het toegepast wordt voor het bepalenvamniante verzamelingen
voor de robuuste MPC algoritmes uit het vorige hoofdstuk.

Lineair opschalen van’P-RMPC (Algoritme 4.7)

Zoals reeds opgemerkt eerder in dit hoofdstuk, leidt hetrigkbvan Algoritme
5.2 voor het bepalen van invariante verzamelingen vBaRMPC tot significante
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complexiteitsreducties vergeleken met Algoritme 2.4. @empirische vaststelling kan
echter ook bewezen worden vanuit theoretisch standpuntbélang van dit resultaat
wordt weergegeven in Figuur 5.3. Deze figuur verduidelijdtdit resultaat ertoe leidt
dat zowel het aantal variabelen als het aantal beperkingemgt MPC optimalisatie
probleem variP-RMPC lineair opschaalt in functie vaN, wanneer Algoritme 5.2
gebruikt voor het bepalen van de nodige invariante verzageh.

Lemma 5.3 toont aan dat de factor waarmee beperkingenestgkimaakt worden
in Algoritme 5.2 begrensd is, indien dit algoritme toegepesrdt op het uitgebreide
autonome systeem dat gebruikt wordt tijdens de ontwerpfaseP-RMPC. Het
belangrijkste aspect is dat deze bovengrens wel onafhfinkalan NV, maar dat deze
bovengrens enkel geldt indien de onzekerheid die aanwitidhiet te regelen systeem
voldoende klein is en indien de JSR van de systeemmatridegaddoende klein is in
vergelijking met deze onzekerheid.

Theorema 5.5 maakt gebruik van Lemma 5.3 om daarna te bewdgehet aantal
beperkingen vaP-RMPC linear toeneemt in functie va.

Het dient vermeld te worden dat de bekomen voorwaarden ergeceatief zijn en
dat in vele gevallen ook lineair schalingsgedrag geobsedviean worden indien aan
deze voorwaarde niet voldaan is. Het nadeel is dat dit hetlisgfsgedrag van dit
algoritme in deze brede klasse van de gevallen erg onvdbesgramaakt.

De belangrijkste implicatie van dit resultaat is dat in vgévallen een significant
grotere horizon kan gebruikt worden, waardoor het werldegged van de regelaar
kan vergrootworden. Op deze manier wordt de volumereddigigepaard gaat met de
complexiteitsreductie van de invariante set gecompedssekan zelfs een significant
groter werkingsgebied bekomen worden dan wanneer geenlewitegisreductie zou
toegepast worden.
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Hoofdstuk 6: Controle-Invariante Verzamelingen met
Gereduceerde Complexiteit

Het doel van dit hoofdstuk is het uitbreiden van de algoriman

Hoofdstuk 5 naar het construeren van controle-invariargezamelingen.
Dergelijke verzamelingen kunnen gezien worden als eereidihg van

invariante verzamelingen naar systemen met ingangen, aatplvan

autonome systemen, dewelke geen ingangen hebben. Zoaiefidstuk
7 aangetoond wordt, kunnen controle-invariante verzangein ook ge-
bruikt worden in MPC algoritmes, wat de reden is voor het yegfi van

de bestaande algoritmes voor het opstellen van dergelgkeamelingen.
De moeilijkheid in het construeren van controle-invaraxerzamelingen
is dat er een projectiestap moet ingebouwd worden in de d#lges

waardoor de rekencomplexiteit opnieuw toeneemt. Naastitimeiden

van de algoritmes uit Hoofdstuk 5 naar deze probleemstgliial dan ook
getracht worden de rekencomplexiteit van deze bijkomerngegbiestap

te reduceren.

Definities

In dit hoofdstuk beschouwen we LPV modellen van dezelfdenals deze beschreven
in Hoofdstuk 3, onderhevig aan lineaire ingangs- en toestagperkingen respectie-
velijk beschreven door verzamelingéhen X. Een verzameling' is een controle-
invariante verzameling met betrekking tot dit systeemendian volgende voorwaarde
voldaan is:

Vee S, Ju(x)eUd: Az +BuesS, V[A B] € Q.

In woorden is een verzamelirgdus controle-invariant als voor elke huidige toestand
binnen deze verzameling er een overeenkomstige toeladtizgrangsvector bestaat die
de toestand binnen de verzameling houdt. In dit hoofdstuietsde bedoeling om,
gegeven een LPV systeem en ingangs- en toestandsbeperjdegaaximale controle-
invariante verzameling te vinden, waarvoor geldt d&t C X.

Dergelijke verzamelingen kunnen op gelijkaardige manigravariante verzame-
lingen iteratief geconstrueerd worden, met als verschilplat in elke iteratie een
projectiestap moet uitgevoerd worden die €en + n,,)-dimensionale verzameling
projecteert naar eem,-dimensionale verzameling. Deze methodologie is conesbtu
samengevat in Algoritme 6.1 en schematisch weergegeveaguuiFs.1. De methodes
van het snoeien en trimmen, die reeds uitgewerkt werden iofd$tuk 5, kunnen
gebruikt worden voor complexiteitsreducties tijdens hatereren van déuw,, + n,, )-
dimensionale verzamelingen vanuit dg-dimensionale verzamelingen uit de vorige
iteratie. Projecties met gereduceerde complexiteit worgiebruikt voor de andere
stappen van het algoritme afgebeeld in Figuur 6.1.
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Complexiteitsreductie door middel van snoeien

Alhoewel het niet meteen mogelijk is bij controle-invati@rverzamelingen om de
beperkingen onder te brengen in een boomstructuur, omwaitiele extra projectiestap,
is het nog steeds mogelijk om de methode van het snoeien passen. Het is immers
mogelijk om te detecteren wanneer een enkele beperkingriatie: aanleiding geeft
tot meerdere beperkingen in iteratie- 1. In dit geval kan identiek dezelfde methode
toegepast worden om beperkingen redundant te maken doocarelre beperking
strikter te maken. Hiervoor kan men opnieuw een beroep dpebheonma 5.2 om
de factor te bepalen waarmee een bepaalde beperking striket gemaakt worden.
Deze werkwijze is beschreven in Algoritme 6.3.

Een belangrijk verschilpunt met Algoritme 5.2 is dat hetiinggval minder voor de
hand ligt om een convergentiebewijs te geven. Simulatiesnlechter dat er zelden
convergentieproblemen optreden voor gangbare paransaseten.

Complexiteitsreductie door middel van trimmen

Naar analogie aan de vorige sectie kan ook de methode vamirhetdn uitgebreid
worden naar de constructie van controle-invariante veetiagen. Theorema 6.2,
dat een uitbreiding is van Theorema 5.4, toont aan dat, gegevee LPV systemen
gedefinieerd door de volgende onzekerheidspolytopen

Ql £ CO{[Al Bl], ey [AT BT]},
waarbij de matricefd, B!],i = 1,...,r gedefinieerd zijn als

metc € R™, elke verzamelingS die controle-invariant is voor het LPV systeem
gedefinieerd door onzekerheidspolytd@p, ook gegarandeerd controle-invariant is
voor het LPV systeem gedefinieerd déor.

Net zoals bij de constructie van invariante verzamelingan kier de parameter
¢ gebruikt worden voor het beinvioeden van de complexitait de resulterende
verzameling.

Projecties met gereduceerde complexiteit

Zoals eerder in dit hoofdstuk aangegeven, dient bij het tcoeen van controle-
invariante verzamelingen een bijkomende stap uitgevaemdarden in elke iteratie,
namelijk een projectiestap. In de praktijk blijkt dat dezapsde belangrijkste
factor is die de rekencomplexiteit bepaalt. De meest g&tgunethode voor het
berekenen van projecties van polyhedrale verzamelingereschreven zijn als de
doorsnede van halfruimten, Fourier-Motzkineliminatie. Deze methode projecteert
de opgegeven verzameling dimensie per dimensie en is lesrhin Appendix
B. De rekencomplexiteit stijgt exponentieel naargelangioleensionaliteit van de
verzamelingen toeneemt. Een alternatief is de ESP-metfifle Deze is in staat
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rechtstreeks meer-dimensionale projecties uit te voenaay heeft ook een ongunstig
schalingsgedrag.

Sectie 6.2.4 introduceert een methode om inwendige en nidtige benaderingen te
bepalen van projecties van polyhedrale verzamelingendbieltis om zowel de com-
plexiteit van de resulterende verzameling te reducereap&lom de rekencomplexiteit
van het bepalen van deze projecties te reduceren. In deansgatting gaan we enkel
in op het bepalen van inwendige benaderingen omdat dezedestennut hebben voor
het bepalen van controle-invariante verzamelingen.

Algoritme 6.5 beschrijft een methode voor het bepalen vareimdige benaderingen
van projecties door gebruik te maken van de methode van loatiesn Telkens
nieuwe beperkingen opgesteld worden, wordt gecontroleerdbehulp van Lemma
5.2 of deze beperking niet strikter kan gemaakt worden teleeandere beperkingen
redundant te maken. Simulaties tonen aan dat voor het bepale inwendige
benaderingen van willekeurige polytopen dit algoritmergsignificante voordelen
biedt ten opzichte van het bepalen van exacte projecties.

Algoritme 6.5 kan echter ook gebruikt worden voor het uitemevan de projec-
tiestap tijdens het bepalen van controle-invariante veetmgen, zoals Algoritme
6.2 beschrijft. Figuren 6.2 en 6.3 tonen aan dat in deze rbmhiet gebruik van
projecties met gereduceerde complexiteit nuttig kan ®fijkvoor hoger-dimensionale
systemen, zoals deze beschreven in Hoofdstuk 8, blijkenalave algoritmes echter
nog onvoldoende efficiént om praktisch bruikbaar te zijn.
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Hoofdstuk 7: Robuuste MPC met Controle-Invariante
Verzamelingen

In dit hoofdstuk wordt besproken op welke manier de corvirolariante

verzamelingen uit het vorige hoofdstuk kunnen gebruiktieowoor het
formuleren van verbeterde MPC algoritmes. In een eersté deelt

interpolatie-gebaseerde MPC uitgebreid naar niet-limeaiegelwetten,
wat toelaat om te interpoleren tussen regelaars diéndeceerd zijn
door controle-invariante verzamelingen en de MPC regeddagschreven
in Hoofdstuk 4. Hierdoor kan het werkingsgebied van de eaysl

significant uitgebreid worden, indien we beschikken over eantrole-

invariante verzameling voor het te regelen systeem. In eaede
deel wordt een eenvoudige methode voorgesteld om comtr@eante

verzamelingen te gebruiken voor het omgaan met opgelegukegen
bij regelproblemen met volgobjectief.

Veralgemeende interpolatie tussen niet-lineaire regelaa

De algoritmes voor veralgemeende interpolatie die tot ebschreven werden in de
literatuur (zie bv. [3,122]) gelden enkel voor lineaireteysen en lineaire regelwetten.
In Sectie 7.2 wordt echter aangetoond dat veralgemeenrelpaiatie ook mogelijk is
bij niet-lineaire regelwetten, zolang het te regelen sstdineair is. Deze techniek
kan gebruikt worden voor het vergroten van het werkingsgblan de robuuste MPC
algoritmes uit Hoofdstuk 4, omwille van de volgende twedsiadingen:

1. Enerzijds toont Sectie 7.3.1 aan dat voor elke contmlariante verzameling
een regelaar kan gedefinieerd worden ten opzichte waarzarvédezameling een
invariante verzameling is. Deze regelwet kan ook op een @edrand liggende
manier geconstrueerd worden en wordt de geinduceerdevetggenoemd. We
verwijzen naar Lemma 7.2 voor verdere details.

2. Anderzijds toont Sectie 7.3.2 aan dat de werkingsgehigda MPC regelaars,
waarvan recursieve oplosbaarheid gegarandeerd is,amianrerzamelingen zijn
voor deze regelaars. We verwijzen naar Lemma 7.3 voor vediails.

Deze twee resultaten tonen dus aan dat controle-invaris@rzmelingen en hun
geinduceerde regelaars enerzijds en recursief oplodd®€ algoritmes en hun
werkingsgebied anderzijds, bruikbaar zijn als invariardezameling en niet-lineaire
regelaar voor gebruik in veralgemeende interpolatie vaéet-lmeaire regelaars. Dit
wordt verder uitgewerkt in Sectie 7.3.1, waardoor een gnwezkingsgebied bekomen
wordt.

Dit resultaat toont aan hoe het werkingsgebied van redugiosbare MPC
regelaars kan uitgebreid worden tot het grootst mogelijleekimgsgebied dat kan
bekomen worden voor het te regelen systeem en de opgelegeekbeyen. Het
is echter wel duidelijk (zie Figuur 7.2) dat naarmate de ties$ van het systeem
zich verder van de oorsprong bevindt, men minder rekenimghauden met het te
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minimaliseren regelobjectief terwijl de opgelegde bepwgkn een steeds grotere rol
gaan spelen.

Controle-invariante verzamelingen voor regelproblemen net volg-
objectief

Deze sectie toont voor de volledigheid aan hoe met behulpceatrole-invariante

verzamelingen op een theoretisch onderbouwde manier kayegesman worden met
opgelegde beperkingen bij regelproblemen met volgolgéctiDe klassieke stabi-
liteitstheorie, die gebruik maakt van invariante verzanggn voor het garanderen
van recursieve oplosbaarheid, is enkel geldig voor regblpmen waar het systeem
naar een vast instelpunt geregeld wordt. Voor het geval marregelprobleem met
volgobjectief tracht op te lossen is het niet mogelijk om rhetzelfde theoretische
raamwerk recursieve oplosbaarheid te garanderen.

In Sectie 7.4 wordt aangetoond dat ongeacht de gebruiletaaghet mogelijk is om
met behulp van controle-invariante verzamelingen te giaeen dat aan alle opgelegde
beperkingen voldaan wordt, ook in het geval van regelpraoblemet volgobjectief. In
essentie zorgt de nieuwe methode (Algoritme 7.3) ervooedabkel ingangen kunnen
aangelegd worden aan het systeem die de toestand binnenntteleanvariante
verzameling houden, hetgeen garandeert dat aan alle isgam¢pestandsbeperkingen
voldaan wordt. Asymptotische stabiliteit is niet gegameerd in het algemeen en hangt
af van de specifieke regelaar die gebruikt wordt.

Figuren 7.9-7.12 tonen de goede werking van deze methodakemeen vergelijk-
ing met meer eenvoudige technieken. Bovendien heeft deveienethode slechts een
kleine verhoging in rekencomplexiteit tot gevolg. In elkeratie moet er een QP van
aanvaardbare afmetingen opgelost worden.

Het moet wel opgemerkt worden dat Algoritme 7.3 geen allesdtande methode
is en slechts een eerste aanzet vormt tot meer algemenedusthiie ook stabiliteit en
goed volggedrag garanderen.
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Hoofdstuk 8: Gevallenstudies

Dit hoofdstuk heeft als doel de verschillende algoritmes lasproken
worden in deze thesis te testen op meer realistische en ma@sghalige
voorbeelden. Twee voorbeelden worden beschouwd: een nischa
installatie voor het regelen van de spanning in staalplatigghens het
walsproces enerzijds en een chemische reactor voor de a@nwen
copolymeren anderzijds.

Regeling van de trekspanning in metaalplaten

Sectie 8.1 beschouwt het model van een mechanische itistalla gebruikt wordt
in staalwalserijen voor het regelen van de trekspanningstaalplaten tussen twee
opeenvolgende stadia van het walsproces. De spanning eeneiektrische motoren
kan aangepast worden met als doel een bepaalde gewensigaimeing te bekomen.
Figuren 8.1 en 8.2 geven dit systeem schematisch weer. Hagdespanning leidt
tot een onstabiele doorvoer van de staalplaten, terwijl teehoge spanning kan
leiden tot ongewenste afwijkingen in de dikte en breedte deuplaten. Bovendien
is het wenselijk om de hoek van de mechanische arnto@ger) die de trekspanning
helpt regelen rond een bepaalde vaste gewenste waardederhadet proces wordt
beschreven door een model met 2 ingangen, 6 toestanden tgagen. Afhankelijk
van de hoek van de mechanische arm heeft het systeem eendgnderisch gedrag.
Om dit op te vangen wordt een LPV model opgesteld gebaseelidegrisaties van
het systeemgedrag rond twee verschillende waarden varhdekesn wordt op basis
hiervan een regelaar ontworpen.

Een vergelijking tussen de algoritmes uit Hoofdstuk 4 tataiP-RMPC metN = 5
de laagste rekenkost, maar ook een relatief klein werkiglgisgl heeft en als gevolg
daarvan al snel problemen ondervindt wanneer het systeestoved wordt. GIMPC2
(Algoritme 4.6) leidt tot het beste resultaten en heeft Inolen een relatief lage
rekencomplexiteit vergeleken niBtRMPC metN = 25.

Het opstellen van controle-invariante verzamelingen vioetr te regelen systeem
bleek minder succesvol dan het opstellen van invariantzaveelingen. De controle-
invariante verzamelingen bleken immers kleiner dan de imekowerkingsgebieden
van de algoritmes uit Hoofdstuk 4. Deze konden dus niet defoworden voor het
verder uitbreiden van dit werkingsgebied.

Regeling van een copolymerisatie-reactor

Sectie 8.1 beschouwt het model van een copolymerisat@erea Het doel van
het proces is om vanuit twee monomeren A en B een copolymeproduceren.
De toevoersnelheid van de reagentia en enkele andere diemitoffen die de
copolymerisatie-reactor beinvioeden dient optimaaégeld te worden teneinde een
copolymeer met de gewenste eigenschappen te producergyuurF8.9 geeft dit
systeem schematisch weer. Het proces wordt beschrevenedmomodel met 6
ingangen, 12 toestanden en 4 uitgangen. Er wordt een LPVIrmapdesteld gebaseerd
op twee modellen van het systeem die geldig zijn voor tweschgifende samenstelling
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van de reactorinhoud. Op deze manier worden verschiller iytiamica ten gevolge
van verstoringen wat betreft deze samenstelling opgevange

Het belangrijkste resultaat van deze simulatie is BeRMPC in combinatie met
Algoritme 5.2 resulteert in een lineair toenemend aantpkbdng in functie vanv,
hetgeen toelaat een horizév = 25 te gebruiken. Wanneer Algoritme 2.4 gebruikt
wordt is een horizon vatv = 10 al een computationele uitdaging. Hierdoor kan een
erg groot werkingsgebied bekomen worden, hetgeen onnjlogeli zijn zonder het
gebruik van polyhedrale invariante verzamelingen metaygreerde complexiteit.

Het opstellen van controle-invariante verzamelingen lbieiet haalbaar voor een
systeem van deze afmetingen. Zelfs het opstellen van eg¢rotminvariante verzame-
ling voor het geval = 1 bleek reeds computationeel niet haalbaar. Dit illustrdatt
er verder onderzoek nodig is naar efficientere algoritnoes grootschalige systemen.
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Hoofdstuk 9: Besluiten en Toekomstig Onderzoek

Besluiten
Algemeen

In deze thesis werden verschillende wiskundige technieketerzocht om robuuste
MPC regelaars te bekomen met voordelig schalingsgedrage¢migt-conservatieve
behandeling van opgelegde beperkingen.

De nadruk lag op het gebruik van polyhedrale invariantearaedingen in plaats van
ellipsoidale verzamelingen, omdat deze laatste weinkipiléeit bieden en resulteren
in MPC optimalisatieproblemen met hoge rekencomplexiteitlyhedrale invariante
verzamelingen bieden maximale flexibiliteit maar hebbenrfeeleel dat ze leiden
tot algoritmes met exponentieel schalingsgedrag, watingeint om grootschalige
systemen te regelen of om goede regelperformantie te bakdowe een lange horizon
te gebruiken.

In deze thesis werden verschillende methodes beschrevéetinogelijk maken om
de flexibiliteit van polyhedrale invariante verzamelinggite buiten en die resulteren
in robuuste MPC algoritmes met verbeterde behandeling pgelegde beperkingen
en met verbeterd schalingsgedrag. Deze verbeteringerewdekomen op basis van
resultaten op twee gebieden: 1) op het niveau van het cemstrwvan invariante
verzamelingen voor gebruik in MPC, en 2) op het niveau vandpstellen van
algoritmes voor robuuste MPC. Deze twee gebieden wordert apgelicht in de
volgende secties.

Robuuste modelgebaseerde predictieve controle

In deze thesis werden verschillende algorithmische hijeinageleverd op het gebied
van robuuste MPC. Deze bijdragen moeten beschouwd wordéetiticht van de
conceptuele beschouwingen die in Hoofdstuk 3 besprokedemerin dit hoofdstuk
werd het belang besproken van terugkoppeling in de ingajugsdie over dewelke
de MPC optimalisaties worden uitgevoerd. Er werd aangetatat verschillende
robuuste MPC algoritmes uit de literatuur incorrect zijnvatte van de afwezigheid
van dit concept van terugkoppeling in de ingangsequenti@&eze aanpak, het
gesloten-lus paradigma genaamd, resulteert ook in vedeetegelperformantie en
impliceert, zoals werd aangetoond in Sectie 4.3, niet nakeljk een verhoogd aantal
optimalisatievariabelen. Hoofdstuk 5 ging nog een stagesegn toonde aan dat in het
geval van gesloten-lus MPC met quasi-oneindige horizorgriante verzamelingen
met gereduceerde complexiteit de rekencomplexiteit keifen verlagen vergeleken
met open-lus robuuste MPC. Dit werd mogelijk gemaakt dobfdiedat Algoritme 4.7
het mogelijk maakt om de beperkingen van het MPC optimadigetbleem te bepalen
als een invariante verzameling van een uitgebreid autorsysteem. Volgend kader
vat deze vaststellingen samen.
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Zoals wordt aangetoond in deze thesis, is het gesloten-RG kara-
digma van primair belang voor recursieve oploshaarheid &bititeit
van robuuste MPC algoritmes. In tegenstelling tot wat algem
gedacht wordt, impliceert het gebruik van gesloten-lugijmties niet
noodzakelijk een verhoging van de rekencomplexiteit varM&e
optimalisatieproblemen, maar zorgt de specifieke structuvoor dat
significante complexiteitsreducties kunnen bekomen worke wordt
aangetoond dat de resulterende algoritmes lineair sclysiedrag
vertonen in plaats van het exponéé schalingsgedrag van bestaande
algoritmes.

Andere algorithmische bijdragen kunnen gesitueerd womdemrschillende stadia
van het MPC ontwerpproces. Eerst werd in Sectie 4.1 getoaasd polyhedrale
invariante verzamelingen de synthese van robuuste Iméaingkoppelregelaars kun-
nen verbeteren. Deze kunnen later gebruikt worden als egetlkar of als lokale
regelaar in robuuste MPC algoritmes. In secties 4.2 en 4r8 werder aangetoond
hoe twee bestaande MPC paradigma’s (MPC met quasi-oneimdigzon (RMPC)
en interpolatie-gebaseerde MPC (GIMPC), beide geslaterphradigma’s) ook hun
voordeel kunnen halen uit het gebruik van polyhedrale iavée verzamelingen.
GIMPC werd bovendien verder verbeterd in Sectie 4.2.5 ombedgr kunnen omgaan
met opgelegde beperkingen. De auteur zou willen benadnutkkede synthese van de
RMPC- en GIMPC2-algoritmes op quasi indentieke manier gelem enkel bestaat uit
het construeren van een invariante verzameling en een kisachie Lyapunov functie
voor een speciaal geconstrueerd uitgebreid systeem. Bedtleodes verschillen in de
manier waarop dit systeem geconstrueerd wordt en hoe de é&sggen ingangsvector
afhangt van de uitgebreide toestandsvector.

De gemeenschappelijk structuur die aanwezig is in de omtwyer
procedures van RMPC en GIMPC2 suggereert rechtstreeksdsthdn
van een meer algemeen MPC raamwerk, waar de klasse| van
kandidaat ingangsequenties geparametriseerd is door ehidah eer
autonoom lineair systeem, waarvan de toestanden gebruoikten alg
optimalisatievariabelen in het MPC optimalisatieprobiee

Deze verschuiving van FIR-type naar |IR-type paramefdsavan de ingang-
sequenties is de theoretische projectie van het in de inélespraktijk gangbare
gebruik om de kandidaat ingangsequenties te parametriaéystuksgewijs constante
functies, met toenemende intervallengtes naarmate mhrveicler bevindt binnen de
controlehorizon.

De oorsprong van deze verschuiving gaat terug tot [131] ragbhebering van een
eindregelaar om de ingangsequentie voorbij de horizonrsmnpetriseren. De resultaten
in [123] vergrootten verder het belang van deze lokale esgeloor hem ook een rol te
laten spelen binnen de horizon. Meer recente bijdragers%1] tonen aan dat deze
trend zich verder doorzet.

Een laatste bijdrage die besproken werd in Hoofdstuk 7 istbesiding van GIMPC
naar niet-lineaire regelaars, wat toelaat om te interpolénssen MPC regelaars en
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regelaars die geinduceerd worden door een controleimtarverzameling. Dit laat
toe om het werkingsgebied van eender welke recursief optedlddPC regelaar uit te
breiden naar het theoretisch maximum zonder een signiéicaaerkost op gebied van
rekentijd. Het gebruik van controle-invariante verzamgdéin om te kunnen garanderen
dat voldaan wordt aan de opgelegde beperkingen bij redaireen met volgobjectief
werd ook kort behandeld. Hiermee werd verder het potentaelcontrole-invariante
verzamelingen geillustreerd voor een bredere klasse @galproblemen dan wat
mogelijk is met invariante verzamelingen.

Invariante verzamelingen

De centrale bijdrage van deze thesis op gebied van invariagizamelingen is de
introductie van wat metbijna maximalepolyhedrale invariante verzamelingen kan
noemen. De twee belangrijkste andere types van invariargmelingen binnen de
klasse van polyhedrale verzamelingen (maximale invagigatzamelingenMaximal
Admissible SefsMAS [52]) en invariante verzamelingen met lage compléixite
[75]) vormen twee extremen in het spectrum van afwegingeeetin een maximaal
volume en een minimale complexiteit. De klasse van bijnaimale invariante
verzamelingen die in deze thesis geintroduceerd wertlidagebruiker toe om deze
afweging te variéren tussen deze twee extremen. Meerfigheasierd er aangetoond
in deze thesis dat er typisch een verdedigbaar kleine vakohetie geobserveerd
wordt in combinatie met significante complexiteitsredesti waarbij exponentieel
schalingsgedrag in bepaalde gevallen gereduceerd walldteair schalingsgedrag.

De constructie van bijna-maximale invariante verzamemgverd aangepakt in
Hoofdstuk 5 door middel varsnoeienen trimmen terwijl in Hoofdstuk 6 deze
methodes werden uitgebreid naar de constructie van ceritrehriante verzamelingen
samen met de toevoeging van projecties met gereduceergdedteit. Een belangrijk
aspect is dat enkel de maximaliteit van de resulterendeaxeglingen opgeofferd
wordt, maar dat de invariantie-eigenschap nog steeds ey&ldt, waardoor de
resulterende MPC algoritmes nog steeds theoretisch ooderb kunnen worden.
Deze methode voor het opstellen van invariante verzamesiinglie gelijkaardig
is aan regularisatie, is een volledig nieuwe aanpak die dmugesr een extra
ontwerpparameter biedt tijdens het ontwerp van robuusté€C Megelaars. Deze
bevindingen kunnen als volgt worden samengevat.

De nieuwe regularisatie-achtige aanpak voor het consknevan
polyhedrale invariante verzamelingen laat de gebruikex ton ee
afweging te maken tussen een maximaal volume en een minimale
complexiteit.  De bekomen complexiteitsreducties late@ tmn
polyhedrale invariante verzamelingen op te stellen voomenp
dimensionale systemen dan voorheen mogelijk was. Dit |patijo
beurt toe om robuuste MPC algoritmes te ontwerpen met smgmv

grotere werkingsgebieden.

Tenslotte kan geconcludeerd worden dat de verschillendbades voor het con-
strueren van invariante verzamelingen met gereduceerdelesiteit slechts initiéle
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stappen zijn in het onbekende. Ongetwijfeld zijn er nog \ahelere, betere en
meer elegante oplossingen bedenkbaar binnen het raamwatik Hoofdstukken 5
en 6 werd geintroduceerd. Het is pas in het laatste decendat er in die mate
onderzoek verricht is naar invariante verzamelingen als\erdgeel het geval is en vele
inzichten moeten nog vergaard worden. Deze observatiedanan het volgende kader
samengevat.

Het raamwerk voor de constructie van (controle-)invaramerza-
melingen met gereduceerde complexiteit dangeduceerd werd in
Hoofdstukken 5 en 6 laat ruimte voor vele vrijheidsgradeaaman
vele slechts gedeeltelijk verkend zijn in deze thesis. @amked nog
vele eigenschappen van de nieuwe algoritmes uit deze thesier
onderzocht te worden. Het inbrengen van bijkomende iraichanuit
de computationele meetkunde zou potentieel kunnen leieneuwe
doorbraken in deze twee gebieden.

Een voorbeeld hiervan is het feit dat dembinatorische structureman polytopen
(gedefinieerd door de zogenaanfdee latticg of het concept vapolaire polytopen
[146] in geen enkel van de beschreven algoritmes gebrujkt zerwijl het niet
ondenkbeeldig is dat beschouwingen op basis van deze dencepuden kunnen
leiden tot belangrijke nieuwe inzichten in de theorie varaitante verzamelingen.

Toekomstig onderzoek

Er kunnen verschillende potentieel interessante ondeeveroor toekomstig on-

derzoek onderscheiden worden, zowel op gebied van robiiBt@ als op gebied

van invariante verzamelingen. Deze sectie licht enkele dammeest interessante
denkrichtingen toe.

Robuuste modelgebaseerde predictieve controle

1. Zoals reeds is aangegeven in de conclusies, kan er eem gewbserveerd
worden richting lIR-type parametrisaties van de ingangsatje waarover de
MPC regelaar optimaliseert. Het is ook duidelijk gewordantdvee algoritmes
uit deze thesis (RMPC en GIMPC2) in dit raamwerk passen, lijade
ingangsequenties bepaald worden door de dynamica vanresirlautonoom
systeem. Een voor de hand liggend en potentieel erg interessekomstig
onderzoeksonderwerp is daarom de ontwikkeling van eendtisch raamwerk
voor dergelijke algoritmes. Dit raamwerk zou bij voorkespacten omvatten als
robuustheid, uitgangsterugkoppeling, ISS stabilitaitmputationele vertragin-
gen, enz...

2. Hoofdstuk 7 bevat reeds enkel preliminaire resultatarbeataeft regelproblemen
met volgobjectief om te illustreren dat controle-invat@awerzamelingen nut
hebben in een dergelijke context. Belangrijke aspecterts zaambuuste sta-
biliteit, gegarandeerde volgperformantie, enz. .. wereemter nog niet behan-
deld. Een mogelijk toekomstig onderzoeksonderwerp is dwikkeling van
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een stabiliteitsraamwerk voor dergelijke regelproblenmgrbasis van controle-
invariante verzamelingen. De combinatie van dit raamweek het hierboven
beschreven onderzoeksonderwerp zou ook potentieel gs@mée resultaten
kunnen opleveren.

Invariante verzamelingen

1. Een van de problemen die beschouwd wordt in deze thesit iepalen van de
grootste invariante verzameling die binnen een opgegexaameling ligt. Uit-
breidingen naar systemen met begrensde verstoringen wioiteaangehaald,
maar worden niet in detail uitgewerkt. Een bijkomende cphaat relevant
wordt in de aanwezigheid van begrensde verstoringen is aatde kleinst
mogelijk invariante verzameling. De grootte van een irasate verzameling
is immers naar boven toe begrensd door de opgelegde tosbtgratkingen,
terwijl ze naar onder toe begrensd is door de grootte van gieehede verstorin-
gen. Wanneer echter gebruik gemaakt wordt van de polairivagnten van
deze drie verzamelingen, worden deze relaties omgekeetdndireert dat er
mogelijk interessante eigenschappen en verbanden beaktaaitgebuit kunnen
worden om op een meer efficiente manier maximale en mininmaigriante
verzamelingen te construeren. Het opstellen van deze meemaen het
formuleren van algoritmes voor het synthetiseren van iawée verzamelingen,
gebruik makende van deze verbanden is een potentieel sSetereonderwerp
voor toekomstig onderzoek.

2. In deze thesis werden de methodes voor het construeremvariante ver-
zamelingen met gereduceerde complexiteit uitgebreid inahrconstrueren
van controle-invariante verzamelingen. Er werden echtgr geen resultaten
besproken wat betreft convergentie van deze algoritmeslehet te verwachten
schalingsgedrag in functie van de dimensionaliteit varblesthouwde systeem
is nog slecht begrepen. Verder onderzoek op dit gebied idzad@lijk.

3. Een derde interessante richting voor toekomstig on@éri® het uitbreiden
van de bestaande resultaten naar meer algemene klassepsteimen, zoals
hybriede systemen of stuksgewijs affiene systemen. Ook tbeeiding naar
de context vargain schedulings potentieel interessant. Algoritmes voor deze
aanverwante problemen zijn reeds gekend, maar hun schgéidgag naar hoger
dimensionale systemen is in het algemeen ongunstig.
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Chapter 1

Introduction

“He who controls the past controls the future.
He who controls the present controls the past”

— George Orwell (1903-1950) —

Model based Predictive Control (MPC) is a control paradighat has
gained widespread acceptance in industry and has therefereived
increasing amounts of attention from the academic worldhia tast
few decades. As a result it is currently being regarded asphme
advanced process control (APC) method for a wide class afistil
processes. In this chapter the main reasons behind thiglgtdse are
explained as well as the basic characteristics of the maitogy. To
form the basis for future chapters the necessary matheaidtiondation
is put in place and the two most important mathematical teotonvex
optimization and computational geometry — are explainee Thapter
finishes by clarifying the structure of this thesis by givanghapter-by-
chapter overview.

1.1 Process control

In 1788 James Watt introduced the concept ofd¢betrifugal governor(Figure 1.1)

to improve the reliability of the steam engines he was camtirsly fine tuning. The
device consisted of two rotating weights connected to thenreeam valve of the
engine, thereby preventing runaways of the machine by @ibdalosing the valve
in case of excessive rotational speed. This improvemenbngnothers, resulted in
the widespread adoption of the Watt steam engine acrospEamd helped drive the
industrial revolution at the end of the 18th and the begigmifithe 19th century.

1



2 Introduction

Figure 1.1: Centrifugal governor invented by James Watt in 1788 for iiling the
rotary speed of a steam engine. (image taken from [127])

In this way Watt introduced the first well-known type of what now called a
proportional controller Indeed, the steam flow (Manipulated Variable, MV) was
adjusted proportional to the deviation of the rotary speftth® machine (Controlled
Variable, CV) from its desired value and as such stabilitedrhachine by means of
negative feedback. More generally, it can be consideredhtmtdogical breakthrough
that opened the path towards the widespread use of autoowticol methods in
industry.

This very concept of proportional negative feedback s lat the basis of most
control systems in use today, to which for example the widcemp use of PID
(Proportional, Integrational and Differential) conteas can testify. However, these
controllers only form a small part of a larger hierarchy timgtkes up modern types of
process control. In the next section this hierarchy will betfer explained and more
specifically the place that Model based Predictive Contritie-topic of this thesis —
has earned within this hierarchy.

1.2 The process control hierarchy

In this section we discuss the main rationale for the excstesf different levels in
the hierarchy of a process control system and the specifidgreagents that form the
raisons détreof Model based Predictive Control in this hierarchy.

1.2.1 Multiple-input / multiple-output control

Compared to the era of Watt’s steam engine, current indlistality has become much
more complicated. Nowadays, typically many different meadbal, chemical, electric
and electronic systems are interconnected and interaciiplex and dynamic ways.
As a result changing the position of one valve or switch tgflyanfluences a multitude
of other quantities instead of just a single quantity — spemthe case of Watt's steam
engine. Or, in more mathematical terms, changing the vdlaesingle MV typically
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Economic
Stock / plant optimization
management (Static optimization)
MPC
(Advanced) process control (MIMO control)
PID

Materials / flow control (SISO control)

Figure 1.2: Depiction of the process control hierarchy. The differemtgess control
levels have different control scopes, use different modetshave to satisfy different
requirements. See also Table 1.1.

affects multiple CVs and conversely a single CV typicallpdeds upon multiple MVs.
Therefore the pairing of CVs and MVs and controlling all ta@sairs with independent
control loops is often ineffective since in this way the maion between the different
loops is not taken into account.

While nowadays at the lowest level all valves, pumps, buagid motors are still
controlled by such SISO (Single-Input / Single-Output)trolters , at a higher level
(Figure 1.2) a supervisory controller is employed for atifgsthe different set-points
of the lower level controllers, taking into account the dymainteractions between the
different MVs and CVs.

The control paradigm used at this level hence has to be aapééfficiently tackling
MIMO (Multiple-Input/ Multiple-Output) control problems

1.2.2 Constraint handling

An additional complication is the presence of constrainiscertain of the plant
variables. These constraints can be either hard or softredms and can represent
inherent limitations of the controlled system (e.g., vghesitions are restricted to the
range 0%-100%), safety limitations (e.g., maximum tanksguee, maximum reactor
temperature, ...), environmental regulations (e.g., @ission restrictions), quality
constraints (e.g., produced goods have to satisfy certstomer specifications) or
economic constraints (e.g., maximum amount of energy tcsbd)u

Traditionally one would choose an operating point suffitiedar from these
imposed constraints in order to ensure constraint satisfa@t all times despite
disturbances in the controlled system. However, the gémenad of globalization
of the economy, increasingly tough competition and strictestomer demands have
forced companies to operate plants at their economicaldianid hence closer to the
economical, environmental, safety, ... constraints.

Therefore, it is important that the algorithms employedhat process level of the
control hierarchy allow for efficient, non-conservativenstraint handling, since this
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Level Model type Constr. Update freq. Algorithm

3 static yes ~ 1day! economic opt.
2 dynamic (MIMO) vyes ~ 1 min.~! MPC

1 dynamic (SISO) no ~ 1sec:! PID

Table 1.1: Different requirements for the different levels of the pEss control
hierarchy depicted in Figure 1.2.

can directly translate in financial, environmental, safetg quality benefits.

1.2.3 Pro-active plant operation

A third requirement for control at the process level is thiéitglio control pro-actively.
In many cases external disturbances to the system can beiredd®fore their actual
effect can be noticed, e.g. a change in composition of a ratenmabthat enters a series
of reactors, whose effect on the composition of the end prockn only be measured
when the first product leaves the reactor. In such casesqbn@ly counteracting
these disturbances can give significant performance bgnefitpared to pure feedback
control that would only start acting when the disturbanéeatfoecomes noticeable.

Secondly, when a plant has to make frequent transitionsdsstwlifferent operating
points (e.g., in order to produce different product gragesjactive behavior can also
lead to significant performance benefits, since these transiare typically known
hours in advance.

For these reasons, the ability to act pro-actively is a timmdortant requirement for
control algorithms at the process level.

1.2.4 Computational complexity

Since typically the components that have the fastest dycehehavior correspond to
those that are controlled directly by PID controllers at ltheest level of the control

hierarchy, i.e. valves, pumps, ...it is not necessary tatcontroller at the process
control level operates at a high sample frequency. As atrémiblgorithms employed
at this level can have a higher computational complexity garad to those at the
lowest levels, which makes it computationally possiblertoorporate the previous
requirements.

1.2.5 Summary

In order to cope with control problems of increasing comitexndustrial process
control has been built up hierarchically (see Figure 1.b|d4.1) and consists of three
levels. At the second level the most important requiremam@she ability to efficiently
control MIMO systems, to handle imposed constraints namseovatively and to be
able to act pro-actively. On the other hand, due to the lowenme frequency an
increased computational complexity is allowed.
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Model based Predictive Control fits perfectly in these resments, as will be
clarified in the next section.

1.3 Model based predictive control

In this section a general description of Model based Prizdi€ontrol (MPC) is given
for the case of Linear Time-Invariant (LTI) dynamical maslelLater chapters will
focus on more general settings, where the main contribsiedthis thesis are situated.
Many good books on MPC exist, such as e.g., [10, 26,69,79,117

1.3.1 Model, constraints, control objective

Dynamical System

inputs outputs
states

u(k) z(k) y(k)

Figure 1.3: Schematic depiction of a dynamical system.

Before being able to state the basic MPC formulation, it ipamtant to first discuss
the models used to describe the dynamical behavior of th filebe controlled and
the control objective. In this chapter we consider LTI madelstate space form:

z(k+1) = Az(k) + Bu(k),
y(k) = Cx(k),

u(k) € R™ denotes the vector of inputs at discrete titmand can be interpreted
as the vector of values describing the manipulated vasati¢he system at timeé.
y(k) € R™ denotes the vector of output at discrete tilnand can be interpreted as
the vector of controlled variables of the system at time (k) € R"= denotes the state
vector at discrete timé and acts as a memory containing all information about the
past of the system that is necessary to predict the futuraiimh A € R"=*"= B ¢
R™=xmw (' € R™*"= gre matrices defining the actual behavior of the system.

In this thesis we only consider state feedback MPC, which nedahaat exact
knowledge of the system state is assumed. From a practigdlgfoview this implies
that any errors introduced by a state estimator (used tmatdithe states based on
output measurements) are assumed to be sufficiently sndli@nhence neglected.
Consequently the control objective is formulated in terfithe system states instead
of the system outputs. The second equation of (1.1) is theredmitted in further
discussions. For a detailed discussion of this state-fegdassumption, the reader is
referred to [48,59, 60].

The aim of MPC is to implicitly construct a strategy(k) = rkmpc(z(k)) for
determining the inputs (%), given information about the current state of the system,
in order to steer the states of the system towards theireefervalues despite the

keN. (1.1)
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influence of any external disturbances, while guarantesatigfaction of constraints
imposed on the inputs, states and/or outputs:

u(k) €U, keN, (1.2a)
xz(k) € X, keN, (1.2b)
y(k) € Y, keN. (1.2¢)

Please note that, using (1.1), constraints on the outputsalveays be rewritten as
state constraint€'z(k) € Y, Vk. In further sections we will assume thdt X', ) are
convex, compact sets containing the origin in their interidhe control objective is to
minimize a quadratic cost objective:

D la(k) = 2ot (R)IG + llulk) = user (k) |, (1.3)
k=0

where@ € S}, , R € S}, are state and input weighting matrices respectively. The
choice of a quadratic cost objective has computational@tdges, as will be discussed
later, but also has the advantage of resulting in a more $mowmtrol behavior
compared to e.g. ah; or L., objective.

1.3.2 Basic algorithm formulation

For reasons of clarity only MPC with the aim of system stahtiion (i.e. z,.¢(k) =
0, uret(k) = 0, VE) will be considered. Tracking problems,(¢(k) # 0, uyet(k) # 0)
will be considered in Chapter 7.

Algorithm 1.1 (Model based Predictive Control). Given a mode(1.1), subject to

constrainty1.2a}(1.2b)and given a control objectivfl.3), solve at each time instant
k, given the value of the current statdk) = z(k|k), the following optimization
problem:

N N1

min z(k +i|k)||5 + u(k +1|k)||%, 1.4a
B el NG+ X s (1.49)
st a(k+ilk) € X, i=1,...,N, (L4b)

u(k + ilk) € U, i=0,...,N—1,
(1.4c)

z(k +1i+1|k) = Az(k + ilk) + Bu(k +i|k), i=0,...,N —1,
(1.4d)

with

uy (k) = [u(k|k);...;u(k + N —1]|k)], (1.5)
xn (k) = [x(k + 1|k);...;z(k + N|k)], (1.6)

and apply the input(k) = u(k|k) to the plant. Repeat this procedure at the next time
stepk + 1 based on updated state information.
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Figure 1.4: The principle of Receding Horizon Control (RHC). At evemyé instant:
an optimal control problem of lengtN is solved after which only the first input vector
is applied to the plant.

Model based Predictive Control hence consists of solvingiigefhorizon optimal
control problem at each time instahtafter which only the first input vector of the
optimal input sequence is applied to the system. This metlogg was first proposed
in the 60’s [73,109] and is depicted in Figure 1.4.

It is clear that this methodology is naturally capable ofliahgawith MIMO systems
and explicitly takes imposed constraints into account ftbmoutset, which classical
control algorithms [22, 47, 49] typically cannot. Furthema, due to the fact that an
optimal control problem is solved over a future time windaws straightforward to
incorporate knowledge about future events into the option problem, leading to
pro-active behavior. For these reasons MPC is considesethtist suitable algorithm
[111,112] for MIMO control of many practical applications.

1.4 Mathematical tools

Before moving on to some more theoretical aspects of MPCatteabf importance in
later chapters, it is useful to give an introduction on twgartant tools that are used
in this thesis:convex optimizatioandcomputational geometry

1.4.1 Convex optimization

Since MPC is an optimization-based control paradigm it &aclthat thought has

to be given to how these optimization problems are formdlateurthermore, these
optimization problems are to be solved on-line which resultcertain efficiency and

guaranteed solvability requirements. For these reasorsatways aims to pose the
on-line MPC optimization problem as a convex optimizatioolplem [24].

1.4.1.1 Definitions

Before defining convex optimization, we define some auxil@mncepts.
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Definition 1.1 (Convex set). A setS C R™ is convex iff for any two points;, 22 € S
all convex combinations of these points also lie within tteSs

(1-0)x1+0x9 €8, Vo € [0,1],Vx1, 22 € S.

Definition 1.2 (Affine function). A functionf : R™ — R is affine iff it can be written
in the following form:

f(x)=a"z +0b, aeR" beR.

A linear function can be defined as the special case of an affine funetiereb = 0.
In further sections the terdinear functionwill be used more loosely for referring to
any affine function.

Definition 1.3 (Convex function). A function f : R®™ — R is convex iff its
epigraphepi(f) £ {[z;c]lzr € dom(f), f(z) < c}, with dom(f) £ {x €
R™| f(z) is well-definedl the domain off, is a convex set. Equivalentlf,is convex iff
dom(f) is convex and

F((1=0)zy +60x2) < (1 —0)f(x1) +0f(x2), VO €[0,1],Vx1, 22 € dom(f).

In this thesis we consider optimization problems that cawtien in the following
standard form:

min  fo(z), (1.7a)
st. fi(z) <0, i=1,..., Mineqs (1.7b)
hi(z) =0, i=1,...,Meq (1.7¢)

x € R™ is called the vector of optimization variableg, : R — R is called the
objective function or cost functior; : R — R are called the inequality constraints
andh; : R™ — R the equality constraints.

Definition 1.4 (Feasible solution). A vectorz® € R” is a feasible solution t¢1.7)iff
it satisfies constraintEl.7b}(1.7c)

Optimization problem (1.7) is calletbasibleif there exists at least one feasible
solution, otherwise it is callethfeasible

Definition 1.5 ((Globally) optimal solution). The globally optimal solution® € R™
to (1.7)is defined as

inf{ fo(x)|z is a feasible solution t¢1.7)}. (1.8)

A feasible solutionz! is calledlocally optimalif there exists a value > 0 such
thatz! is the optimal solution to the optimization problem (1.7ymented with the
constraint|x — zf|| < r.

We can now define when optimization problem (1.7) is catledvexand what the
implications are of that property.
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Definition 1.6 (Convex optimization). An optimization problenf1.7) is convex if

its objective functionfy(z) is a convex function, the inequality constraint functions
fi(x),1 = 1,...,mineq are convex functions and the equality constraint functions
hi(z),i =1,...,meq are affine functions.

The latter two conditions imply that the set of feasible p®if, which is defined as
F £ {x|z is a feasible solution to (1.7)is a convex set.

There is an extensive amount of literature available on epmptimization, among
which [24] is a good starting point, covering many differespects, but the main
properties of convex optimization problems that are reieva this thesis can be
summarized as follows:

e Global / local optimality: It can easily be shown [24, p. 138] that any local
optimum of a convex optimization is also a global optimummc®iin this thesis
optimization is mostly used as an on-line tool, where ustgraction is not
possible, this property is of foremost importance.

e Computational efficiency: Several algorithms (e.g. interior point algorithms
[89]) exist that can efficiently solve convex optimizatioroplems with guar-
anteed precision. For most classes of convex optimizatioblems worst-case
bounds on the computational complexity can be obtainedatetpolynomial
functions of the problem sizey(mineq, Meq)-

e Tools for special subclassesvlany software packages (both free and commer-
cial) exist that are capable of solving certain classes ofver optimization
problems with specific problem structures (LP, QP, SOCP, )SDRerefore,
being able to formulate convex optimization problems inftren of one of these
specific subclasses can lead to substantial reductionsjirireel computational
complexity.

A few well known subclasses of convex optimization are dssedl next in order of
increasing generality and decreasing computational effayi.

1.4.1.2 Linear programming

A Linear Program (LP) can be written in the following stariform
min fla,
8.t Aineq” < bineq,

Acqx = beg,

with f € R”, Ajneq € R™*™ bineq € R™, Aeq € R™*™ beq € R™. It is clear from
the definition that LPs are convex optimization problems.réfer to [42, 78, 138] for
an overview of linear programming. Linear programming isdig this thesis, among
other things, to check redundancy of linear constraint$ watspect to other linear
constraints. See Chapters 2, 5 and 6 for details. Lineadiggoanstraints can always
be eliminated by a change of variables and will thereforeoeaxplicitly mentioned in
the following subclasses. In this thesis, where not expfionentioned, the MTLAB
toolbox Sedumi [133] is used to solve LPs.
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1.4.1.3 Quadratic programming
A Quadratic Program (QP) can be written in the following sl form

1
min -z Hz + fTz,
z 2
S.t. Aineqx < bineqa

with H € ST, f € R" Ajneq € R™ " bineq € R™. See [24] for more
information on Quadratic programming and its history. Tahly on-line MPC
optimization problems are cast as QPs since the quadratictobjective (1.3) cannot
be represented in the more restrictive form of LPs, while engeneral classes of
convex optimization are less favorable from a computatippant of view. Note that
optimization problem (1.4) can be written in the above staddorm of a QP.

1.4.1.4 Second-order cone programming

A Second-Order Cone Program (SOCP) has the following stdrfdem
min  fTz,
st || Az 4 bill2 < cfx + d;, i=1,...,m,

with A; € R"*" b, € R", ¢; € R",d; € R,n; € No,i = 1,...,m. The name of
this class of optimization problems refers to the fact thatihequality constraints are
equivalent to demanding that the affine functiddsz + b;; ¢}z + d;] lie in second-
order conesn R™*!, which are defined a§jz; ]|z € R",c € R, ||z|2 < c}. An
overview of the use of SOCPs can be found in e.g. [1,77]. SQ@Hsally arise in
robust MPC where a maximum of 2-norms has to be minimized. Gegpter 3 for
more details. For a computationally efficientalvLAB toolbox for solving SOCPs we
refer to [85].

1.4.1.5 Semi-definite programming

A Semi-Definite Program (SDP) can be written in the followfogm
min  fTz,
s.t. E,0+Fi71$1+...+ﬂ,nl'nj0, t1=1,...,m,

with f € R*, F;; € S",n; € No,i = 1,...,m,5 = 1,...,n. Note that the
inequality=< denotes a matrix inequality instead of a scalar inequatit/feence means
that the left hand-side of the above inequalities shoulddmative semi-definite. The
above inequalities are often referred toLasear Matrix Inequalities (LMIs) Linear
matrix inequalities arise in many applications of systemd eontrol theory [23] and
appear in this thesis often as off-line optimization proideto be used in the design
phase of robust MPC controllers. See Chapters 3 and 4 andnéippA for more
information. In this thesis, where not explicitly mentiahehe MATLAB toolbox
Sedumi [133] is used to solve SDPs.
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1.4.2 Computational geometry
1.4.2.1 Constraint set manipulation

In this thesis the emphasis is put on constraint handling PCVand as a result
several techniques and algorithms are described that démtwenstraint sets These
can either be the imposed constraint s&t¢/ or sets derived thereof. Furthermore,
since constraints in MPC typically are linear, these castisets can be described as
intersections of halfspaces asconvex hulls of pointd-inally, since we are interested
in scalability issues of constraint handling in MPC, thesis svill potentially behigh-
dimensionali.e. up to100-dimensional or more.

Due the high dimensionality of these objects it is obviole thperations on these
objects (e.g., projections) can be rather complex and finerdnave to be dealt with
using numerical algorithms. The field of computational getmdeals with these
kind of algorithms and therefore provides useful tools taldeith these constraint
sets. This discipline, that lies in the intersection betwesmthematics and computer
science, has applications in many different fields, amongvbomputer graphics,
fluid dynamics simulations, finite element modeling, robaition planning, ...and
can, for the reasons mentioned above, also be used in coesti@ntrol problems.

Therefore, in this section, we discuss several conceptscatsifrom computational
geometry that are used in later parts of this thesis. Morailéetinformation on
computational geometry can be found in [53,90, 107]. An wiesv on polytopes and
their properties can be found in [146].

1.4.2.2 Set representations

First, we define the geometric objects we will deal with andirtipossible repre-
sentations.

Definition 1.7 (Halfspace). Ann — dimensional halfspaceH is defined as
H = {z € R"|a"z < b},
witha € R",b € R.
Definition 1.8 ((Convex) polyhedron). A setS c R™ is a (convex) polyhedron if it
can be written as an intersection of halfspaces

S:ﬂHi, Hi={z cR"afz<b;}, i=1,...,m,

withm € Z .
Alternatively, one can writ& = {z € R"|Az < b}, with A € R™*"™ b € R™.

Definition 1.9 ((Convex) polytope). A setS C R is a (convex) polytope if it is a
polyhedron and bounded, with bounded defined as

By, 0 e R : zo+cy €S, Vee R,
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v4
V-polytope H-polytope

Figure 1.5: Left: Representation of a polytope by means of vertices (V-pplgto
Right: Representation of a polytope by means of halfspaces (Hqyusy.

In later sections of this thesis we will omit the term ‘convexurthermore, we will
assume that all polytopes contain the origin in their iterivhich is no restrictive
assumption in MPC and allows us to write polytopes in thedsdas form

S={reR"Asz <1}, (1.9)

with As € R™*", 1 denotes a vector of appropriate size containing only ones.

A polytope described as an intersection of halfplanes oivatpntly as the set of
solutions to a set of linear inequalities as in (1.9) is chlaH-polytope Alternatively,
one can represent a polytope as the convex hull of a set ofgiaiR™, in which case
the polytope is referred to as\&polytope See Figure 1.5 for an illustration of the
different representations.

Definition 1.10(Convex hull). The convex hull of a set af vectors is defined as

m

CO{Ul,...,Um}é{)\11}1—|—...—|—)\m’0m|)\1‘ 20,1:1,,m,2)\1:1}

i=1

The convex hull of a set of matrices can be defined similartihaifi be used in later
chapters to define polytopic model uncertainty sets.

Since in constrained control problems often only componésé constraints are
imposed, the corresponding constraint satsl/ are hypercubes. As a result,
representation as H-polytopes is preferrable compared-pml\¥opes, since the
number of vertices of a hypercube equats, with n the dimensionality. An
additional advantage is that H-polytopes can directly lmiiporated as constraints
in optimization problems.

1.4.2.3 Geometric operations

The first and most straightforward operations that can bee@fare the intersection of
sets and Minkowski sum and Minkowski (or Pontryagin) difiece, three operations
that preserve convexity and are used the most in the follpefrapters.
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Figure 1.6: The Minkowski sum and difference of two sets. The origins toé t
respective sets are indicated with dots.

Definition 1.11 (Intersection: N). The intersection of two polytope$, B C R™ is
defined as

ANBE{zeR" |z € Az € B}

If A andB5 are represented as H-polytopes in standard form (1.9), atingpthe
intersection is trivial : AN B = {xz|[A4; AsJx < 1}. Computing intersections
involving V-polytopes is less trivial and not used in thigsks.

Definition 1.12 (Minkowski sum: &, [146]). The Minkowksi sum of two sets B C
R™ is defined as

A®B = {a+blac Abec B}

If A and B are represented as V-polytopegs = Co{vi,...,vm,} and B =
Co{wz, ..., Wny}, then the Minkowski sum can be computed4s> B = Co{v; +
wj|z': 1,...,mA,j = 1,...,m5}.

If AandB are represented as H-polytopes in standard form (1.9)theeMinkowski
sum can be computed a6 & B = {z € R"|[A4; Al < 1+ [¢;d]}, with ¢ €
R™A d € R™5 computed as

ci =max Agli,:lx st Agx <1, 1=1,...,mu,
xT

d; = max Agli,:]xr s.t. Apx <1, i=1,....,mg.
x

Definition 1.13 (Minkowski (or Pontryagin) difference: ©, [146]). The Minkowksi
difference of two setd, B C R" is defined as

AcBE {z|{z}oBC A} ={alVbeB:a+be Al

If A is represented as an H-polytope, the Minkowski differerexe lse computed
similarly as the Minkowski sum. In the other case, the corafion is less trivial. Only
the case whentl is an H-polytope is needed in this thesis.

Note that, as opposed to the scalar sum and difference |gt®rship(AcB) & B =
Ais not true in general, whereas the following relationgtdpp B) © B = A istrue in
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Figure 1.7: lllustration of the projection and elimination of a two dingonal polytope
along the second dimension.

general, so care has to be taken when thinking about thesatimpes intuitively. See
Figure 1.6 for an illustration of the Minkowski sum and diftece.

Two other geometric tools used in this thesis are relateddfepting sets to lower-
dimensional spaces. They are further elaborated on in tit@pters and are hence
only mentioned briefly here. For the sake of simplicity ofatan we only consider
one-dimensional projection and eliminationretlimensional polytopes along theth
dimension.

Definition 1.14 (Projection). The one-dimensional projection of a polytopes R™
along then-th dimension is defined as

proj(P) £ {x e R* YIc € R : [x;¢] € P}.

Definition 1.15 (Elimination). The one-dimensional elimination of a polytopec
R™ along then-th dimension is defined as

elim(P) £ {x € R"|Ic € R: z + ce,, € P},
wheree,, is then-th unit vector ofR".

Both operations are clearly related and one can seetbgtelim(P)) = proj(P)
andelim(P) = proj(P) x R. Figure 1.7 further illustrates both operations.

In the case thaP is represented as a V-polytope these operations are frivid!
in the case thaP is represented as a H-polytope — which will mostly be the @ase
this thesis — these operations are computationally neiatand need to be performed
using Fourier-Motzkin elimination. This algorithm will ldiscussed and modified in
Chapter 6.
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1.5 Stability framework

1.5.1 Stability of MPC vs. linear control laws

Classical linear system theory extensively deals withiltaissues and performance
of linear systems. Therefore linear system theory and mpeeifically, analysis

of poles and zeros of closed-loop transfer functions is tioé of choice to analyze
properties of linear controllers.

However, due to the fact that imposed constraints are aftpltaken into account
in MPC controllers, the resulting control laws will not badiar and hence these tools
cannot be used. Therefore a new stability framework (seg&2g131]) emerged in
the previous decade, based on Lyapunov theory.

In the case of MPC algorithms for stabilization of disturbeiiree systems, one
typically aims at provingasymptotic stabilityfor a non-trivial (or loosely speaking a
'larger-thane’) region of initial states around the origin. This is dondwo steps. The
first step aims at characterizing the set of initial statesafoich the resulting closed
loop trajectories argvell-defined For this purpose one uses the conceptectirsive
feasibility.

Definition 1.16 (Recursive feasibility). An MPC optimization problem is said to be
recursively feasible, if feasibility at timeimplies feasibility at time: + 1.

If an MPC algorithm is shown to be recursively feasible, tliteis guaranteed by
induction that if it is feasible ak = 0, it will be feasibleVk € N and hence the
resulting trajectory is well-defined. In a second step ongsait proving asymptotic
stability for all these initial states that lead to a feasiMPC optimization problem,
which we will refer to asemi-global asymptotic stability

Definition 1.17 (Semi-global asymptotic stability). The closed-loop system formed
by a dynamical systeffi.1)and a controller is asymptotically stable for a given set of
initial statesAX iff

lim (k)] =0, Vz(0) € Xp. (1.10)

Semi-global asymptotical stability can be proven by medniefollowing lemma.

Lemma 1.1(Lyapunov stability). Anautonomous systemik+1) = g(z(k)), k € Ny
is asymptotically stable for all initial values(0) € X} if there exists a convex function
V : Xy — R (Lyapunov function) that satisfies the following condition

o V(g(z)) <V(x),Vx € X\0,
e V(g(0)) =V(0).
The following section describes how semi-global asymptetability can be ob-
tained.
1.5.2 Quasi-infinite horizon MPC

In order to be able to guarantee asymptotic stability of thesed-loop system,
Algorithm 1.1 has to be slightly modified. The following alifbm, that in essence
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was already presented in [135] but is more widely known inftven presented in
[131], leads to asymptotic stability under conditions thed stated below. Since the
modifications essentially are aimed at taking into acco@atdonstraints and control
objective beyond the horizon, it is often referred taassi-Infinite Horizon MPC

Algorithm 1.2 (Quasi-Infinite Horizon MPC). Given a model(1.1), subject to

constrainty1.2a}(1.2b)and given a control objectivil.3), solve at each time instant
k, given the value of the current stai€k) = x(k|k), the following optimization
problem:

N-1 N-1

i3 a0l + 3 ok + i)+ ok + N, (1112)
’ =0 1=0

st. x(k+ilk) € X, i=1,...,N—1,

(1.11b)

2(k + N|k) € Xy, (1.11¢)
u(k+ilk) €U, i=0,...,N—1,

(1.11d)

w(k+i+1k) = Az(k +ilk) + Bu(k +ilk), i=0,...,N—1, (1L.11e)

and apply the input.(k) = u(k|k) to the plant. Repeat this procedure at the next time
stepk + 1 based on updated state information.

Qn € S}, andXy C R™= are called the terminal cost matrix and the terminal
constraint set respectively. The latter is included in otd®btain recursive feasibility,
while the former is included in the optimization problem ier to obtain asymptotic
stability of the closed-loop system. Many conceptuallyiEimalgorithms exist [17,
32,74,75,80]. Most algorithms differ in the model classidrich the controller is
designed or the way the terminal cost and terminal constsetrare actually calculated.

The following lemma, discussed in much detail in [82], stateder which conditions
Algorithm 1.2 is recursively feasible and leads to a sembglly asymptotically stable
closed-loop system. We also give the proof since it providseghts in the role of
the terminal cost, terminal constraint set and the termgpaltroller, that are also of
importance in the following chapters.

Lemma 1.2 (Semi-global asymptotic stability). The closed-loop system formed by
system(1.1) and the MPC controller defined in Algorithm 1.2 leads to resiue
feasibility of the controller and asymptotic stability dfet closed-loop system for
all statesz(0) that lead to a feasible optimization proble(h.11) if a controller
u(k) = kn(z(k)) (terminal controller) exists such that the following cotials are
satisfied:

1. Xy CA, (1.12a)
2. kn(z)€el, Vo € Xy, (1.12b)
3. Ax + BIQN(I) S XN, Vo € XN, (112C)
4 2l — Az + Bry @)ldy = ol + lnv (@)}, Vo e Xy, (1120)
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Proof: Consider a feasible solutiat? (%), u®(k) to optimization problem (1.11) at
time k:

XO(k) = [2°(k + 1[k); ... ;2°(k + NIE)),
u®(k) = [u®(klk);. . ;u(k+ N — 1]k))].

It is now possible to construct a candidate feasible satutidk + 1), u(k + 1) for
the optimization problem at time + 1 as follows:

X (k+1) = [2°(k + 2|k); .. .;2°(k + N[k); o' (k + N + 1]k + 1)],
uf(k+1) = [w(k+ 1k); .. ;u(k + N = 1k);u' (k + Nk + 1)],

with
z'(k+ N+ 1]k + 1) = Az°(k + N|k) + Bry(2°(k + N|k)),
u'(k+ Nk +1) = sy (2°(k + N|k)).

If the real plant behavior is identical to the model used ia MPC controller this
candidate solution satisfies constraints (1.11e) atkimé. Conditions (1.12a)-(1.12c)
respectively guarantee that constraint (1.11b)ifer N — 1, constraint (1.11d) for
i = N — 1 and constraint (1.11c) are satisfied, which provesthgt + 1), uf(k + 1)
are feasible solutions to (1.11) at tirket 1. This proves recursive feasibility, which,
by induction onk, shows that (1.11) is feasible fare N.

In order to prove that the resulting closed-loop system ysnggotically stable for
all feasible initial states:(0) € X,, we show that/°(z(k)), the optimal objective
function value of (1.11) for current staték) is a valid Lyapunov function. Therefore,
it is sufficient to show that/!(z(k + 1)) < J°(z(k)), with J(z(k + 1)) the
objective function value corresponding to the feasibleugak® (k + 1),uf(k + 1).
Straightforward algebraic manipulation yields

Jo(x(k)) = I (@ (k +1)) = 2 (kK17 + [lulklk)F = l2°(k + NIk)]7
+lz°(k + NIk — Ik (@®(k + NIK))II
— || Az°(k + N|k) + By (z°(k + N|k:))||2QN.

Due to condition (1.12d) one can see that indeBdz(k + 1)) < J°(z(k))
and therefore, sincd®(z(k + 1)) < Ji(z(k + 1)), also thatJ°(z(k + 1)) <
J°(z(k)),Yx(k) # 0. It can also be shown that®(z) is a convex function and that
it hence satisfies all conditions of Lemma 1.1. This provesiggobal asymptotic
stability. O

Note that controllability of the given system is no explicdandition in the above
lemma. However, controllability is subsumed by conditi@rl@c), because a sé&ty
satisfying this condition can only be found+fy stabilizes the given system, which in
turn is only possible of the system is controllable.

Furthermore, it is also important to note that the termialtool law is not explicitly
used in the on-line algorithm, but only is a theoretical ttmlprove stability and
recursive feasibility.
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Chapter 3 will extend this stability theory to robust MPC embas later chapters will
introduce stability notions for other control settingslitkacking. In all cases the same
two-step procedure is to be followed: a) recursive feagjblh) stability.

1.6 Set Invariance

As mentioned in the previous section, the inclusion of a beatrconstraint set in the
MPC optimization problem is aimed at obtaining recursivesfbility. In summary, If
the terminal constraint set satisfies conditions (1.12d)2c) then recursive feasibility
of Algorithm 1.2 is guaranteed. However, it is not immedaatdear how to construct
such sets. The theory d@fvariant setsdeals with exactly this problem and plays an
important role in this thesis.

Definition 1.18(Positive invariance). A setS € R"= is positive invariant with respect
to the autonomous system

x(k+1) = g(z(k)), k eN, (1.13)
with 2(k) € R Vk andg : R"* — R"= iff
g(x) €S, vV € S. (1.14)

Hence, a positive invariant set with respect to some dynsnifithe dynamics are
guaranteed to keep the state inside the set once it has@niéreterm 'positive’ refers
to the fact that only forward predictions are considered waitidbe omitted in future
sections for reasons of brevity. We can now see that comdficl2c) is equivalent
to requiring thatXy is invariant with respect to the closed-loop terminal dyim
xz(k +1) = Az(k) + Ben(z(k)).

Definition 1.19 (Feasibility). SetS is feasible with respect to constraints.2b) iff
SCAX.

Conditions (1.12a)-(1.12b) are equivalent to demandira A}y is feasible with
respecttot’ £ X N {z € R"|ky(z) € U}.

Figure 1.8: Left: Polyhedral non-invariant setRight: Polyhedral invariant set.
Trajectories starting from the vertices of the sets areadegias dashed lines.
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In order to maximize the feasible region, it is obvious thaé avould like to find
the largest possible feasible invariant set. This set ieddhe Maximal Admissible
Setor MAS [52]. Different algorithms exist depending on the rebdlass for which
an invariant set has to be constructed and the type of seyhdtal, ellipsoidal,
parallellotopic, ...) one wants to obtain. This will be dissed in more detail in
Chapter 2.

The ability to construct feasible invariant sets for a giveystem and given
constraints is the determining factor whether a recurgifehsible MPC algorithm
can be constructed. As will become clear in later chaptevariant sets can be used in
MPC algorithms in several different ways, but the invarmeondition (1.14) always
plays a key role in proving recursive feasibility.

Furthermore, the representation of the set (ellipsoidapoWtope, H-polytope)
determines the computational efficiency of the resultingQvittgorithm and the size
of the set determines the feasible region of the MPC algorit€hapter 5 will show
how to make a trade-off between the complexity (of repregt@nt) and the volume of
an invariant set.

1.7 Design goals

This section is aimed at clarifying the different goals whassigning an MPC
controller or when constructing an MPC algorithm and hovséare influenced by the
different elements present in the quasi-infinite horizonQvieheme introduced in the
previous section. It will become clear that some of thesdsgar@ conflicting, which
will illustrate the need for improved algorithms and as starimns the main rationale
for this thesis.

1.7.1 Stability

One of the most important aims is obviously to obtain a cdigrehat stabilizes the
system according to some stability measure. In the casegufrahm 1.2 one obtains
semi-global asymptotic stability. However, one shouldertbiat conditions (1.12) are
sufficientconditions and therefore it is also possible that a staliérobier is obtained
if these conditions are not satisfied. Also in the case of Algm 1.1 one can obtain
stable behavior under certain conditions systems if thdigtien horizonN is chosen
sufficiently large, which is typically what is being done iraptice.

However, more or less since the appearance of the overvigsleaby Mayneet
al. [82], there is general agreement that newly proposed MP@Gritthgns should
incorporate measures that guarantee recursive feagikifitl stability in a sense
relevant to the control problem they aim to solve, i.e siahiion, tracking or
disturbance rejection.

1.7.2 Feasible region
An issue related to stability is tHfeasible region; that is defined as follows:

Xy £ {z(0) € R"*| the MPC optimization problem is feasibié}. (1.15)
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For MPC algorithms that are guaranteed to be recursivekilitsg this set is equal to
the set of initial states for which the optimization probleninitially feasible (i.e. at
time k = 0). Typically this is also the region for which stability is ganteed. As a
result another important aim is to obtain a feasible regiat is as large as possible.
However, e.g. incorporating stability measures, likeddtrcing a terminal constraint,
typically significantly reduces the size of the feasibleiwagOn the other hand, larger
values of N generally result in a larger feasible region.

1.7.3 Local optimality

MPC controllers are typically used when imposed constsgitay an important role in
the control problem and as such typically influence the olatale control performance
significantly compared to the unconstrained case. Howexegn operating in regions
further away from the imposed constraints, e.g. close totiggn, it is desirable that
the behavior of the MPC controller closely resembles thatodptimal unconstrained
controller, e.g. an LQR controller. This property is reéetto adocal optimality.

Two ways of improving local optimality of an MPC controllereaincreasing the
prediction horizonN or, if N is kept small, improving optimality of the terminal
control law k. However, typically more optimal terminal control lawsde.the
LQR-optimal) lead to relatively small terminal constragats, whereas large terminal
constraint sets typically correspond to suboptimal teahirontrollers. Therefore
increasingN seems to be the only compromise-free possibility for olgiriocal
optimality.

1.7.4 Computational complexity

As already explained MPC consists of on-line solving an rojzation problem at
every time instank. As a consequence the computational complexity of soluing t
optimization problem cannot exceed a certain thresholdesthe calculations have
to be finished within one sample interval. This is one of thénm@asons why convex
optimization problems are preferable in MPC, since manyesslfor such optimization
problems have known worst-case bounds on their computdtiamplexity.

Computational complexity is mainly determined by the nundd@ptimization vari-
ables, the number of constraints and the class of optinizg@tioblems. The number
of optimization variables typically increases proportbto NV, which obviously limits
the length of the horizon that one can choose. Thereforg,abvious that there is a
clear trade-off between computational complexity and the previous design goals:
feasibility and local optimality.

The number of constraints also increases proportionaNtdout is also partly
determined by the complexity of the description of the tewthiconstraint seftyy,
e.g. the number of inequality constraintsjf; is a polytopic set.

Finally, the optimization class greatly influences the cataponal complexity,
because the exponents of the polynomial scaling of the ctatipnal complexity as a
function of the problem size are class-dependent. Thexéfa preferable to limit the
on-line optimization to either LP or QP. SOCP and SDP are-sugtied for off-line use
during the design phase, but less appropriate for on-lipécgtion.
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1.7.5 Robustness

Finally, another important aim of MPC controller designtssriobustness with respect
to differences between the prediction model and the plamtahand robustness with
respect to external disturbances that act upon the systemwilbe shown in the next
chapter it is possible to incorporate measures to guaraobestness, but this goes at
a significant cost of the computational complexity.

1.7.6 Conclusion

The five main design goals for MPC controllers — stabilitgdiility, local optimality,
low complexity and robustness — can be obtained by changifigreht tuning
parameters in the MPC controller design. However, the diffe goals are often
not obtainable simultaneously, which is not necessarily@@rty of the problem
description, but a property of the classical MPC algorithié#ferent solutions will
be presented in the next chapters, in order to alleviate sditihese compromises.

1.8 General outline of this thesis

The main goal of this thesis is to develop new algorithms #adisfy all the design
goals explained in the previous section, or at least satiefge design goals better
than existing algorithms. This section therefore gives atfiree of this thesis and will
highlight how the aforementioned design goals are met.

First of all we restrict ourselves tmbust MPC algorithms, that have guaranteed
stability for a certainclassof systems rather than a single system. To this end Section
1.5 introduced the necessary concepts that are relevaheiednstruction of MPC
algorithms with recursive feasibility and guaranteed ifitstfor the nominal (i.e., non-
robust) case. Later in this thesis these concepts are thendad to the robust case.

In the robust case the issue of recursive feasibility (andciealso asymptotic
stability) becomes somewhat more complicated and additioreasures have to be
taken. A distinction betweenpen-loopand closed-looppredictions can be made.
In the nominal case both approaches result in identical \behand only lead to
numerical differences, but in the robust case the diffezsrmetween both methods
become crucial and have important implications on recarfasibility. Chapter 3
will give an assessment of the differences between bothoagpes and will show that
the use otlosed-looppredictions is essential for obtaining robust MPC alganistthat
satisfy the design goal of guaranteed stability.

Secondly, the aim is to construct MPC algorithms that mainthe property of
local optimality. To this end, we restrict ourselves to robust MPC algorittina
allow the incorporation of a local control law, such as theagjtinfinite horizon
MPC algorithm discussed in Section 1.5 or general intetfmigbased robust MPC.
Furthermore, the requirement of local optimality elimeaMPC algorithms based on
L, and L, norms, since these can result in non-optimal local conteblavior. This
eliminates algorithms based on linear programming (LP)¢clwvhas an implication on
the computational efficiency of the obtained algorithms.
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In the majority of cases, non-LP based robust MPC algorithrake use of semi-
definite programming (SDP) because typically ellipsoidsiariant sets are used to
ensure recursive feasibility. The computational comjexif such optimization
problems is often prohibitively high for practical applicams and therefore the aim
here is to obtain robust MPC algorithms that make use of gdprogramming
(QP). To this end we aim to usmlyhedral invariant sets instead of ellipsoidal ones.
Therefore,Chapter 2 will introduce the basic principles of invariant sets andnso
existing algorithms for the construction of these sets. &anportant properties, such
as the structure of the resulting sets will also be discyssade these insights will be
useful in later chapters, where further complexity redarddiwill be obtained based on
these insightsChapter 4 will then introduce several robust MPC algorithms that make
use of polyhedral invariant sets. In this way the design gbalbtaining algorithms
with a favorable computational complexity is met, at least for low-dimensional
systems.

It is important to point out that the algorithms introducedSections 4.3 and
4.2 5allow the entire constraint structure of the on-line optation to be computed
by constructing a single polyhedral invariant set for anrappately constructed
augmented system. In this way, improving the algorithmsHerconstruction of such
invariant sets will have a more profound impact on the penfmice and efficiency of
these MPC algorithms, which can be seen as both an advantdgedisadvantage.

The algorithms discussed in Chapter 2 have some disadwmiaigh respect to
their scaling behavior. For high-dimensional systemssehalgorithms can result
in exponentially increasing computational requirememd aan return polyhedral
invariant sets with a prohibitively large number of ineqyatonstraints, which in
turn can lead to computationally inefficient MPC algorithm$herefore,Chapter
5 will introduce algorithms for the construction eéduced-complexity polyhedral
invariant sets. This will enable the construction of robust MPC algorithmith lower
computational complexity that are hence applicable to higher-dimensional systems.
More specifically, it can be proven that under certain céodg the scaling behavior of
the algorithm introduced in Section 4.3 will become lineaeadunction of the horizon
length instead of exponential.

This improved scaling behavior will enable the use of sigatfitly longer prediction
horizons. In this way the resulting algorithms will have blarged feasible regions
compared to the feasible regions of algorithms using fafhplexity polyhedral
invariant sets or ellipsoidal invariant sets.

In order to further enlarge the size of the operating regibthe obtainded MPC
controllers, without compromising other design goals sashlow computational
complexity, Chapters 6 and 7will investigate reduced complexity control-invariant
sets and their use in robust MPC algorithms. Chapter 7 withstihat control-invariant
sets allow thdeasible regionto beextended towards the theoretical maximum

Chapter 8finally shows that the obtained algorithms also give faviaadsults when
applied to models of a few real-life systems.



1.9 Chapter-by-chapter overview 23

Chapter 1
Introduction

Set Invariance Model Based Predictive Control

| Chapter 3
> Robust Model Based
| Predictive Control

Chapter 2
Polyhedral Invariant Sets

Robust MPC using

]
Chapter 4
Polyhedral Invariant Sets

Y

Chapter 5
Reduced-Complexity Invariant Sets in Robust MPC

¥ ¥
Chapter 6 | Chapter 7
Reduced-Complexity > Robust MPC using
Control Invariant Sets | Control Invariant Sets

Chapter 8 J
Case Studies

L]

Chapter 9
Conclusions

Figure 1.9: Overview and connection between the different chaptersisthesis.
Arrows suggest possible reading trajectories.

1.9 Chapter-by-chapter overview

Figure 1.9 gives an overview of the different chapters ia thesis and how they relate
to each other. We will now give an overview of the differenhtrdoutions of each
chapter:

Chapter 2: This chapter concerns the construction of invariant setslifiear
systems with polytopic uncertainty description. Thess san be used to formulate
several different MPC algorithms. Combining several eletsalready in literature
an algorithm is formulated that is able to efficiently constrpolytopic invariant sets
for such systems. These sets have the advantage that tketp Ieere efficient MPC
optimization problems and that the feasible region is tgiydncreased significantly.
The main contribution of the chapter, however, is the anslgé the structure of
polytopic invariant sets, which paves the way for the resptesented in Chapter 5.

Chapter 3: This chapter explains how Algorithm 1.2 can be extended aeor
to explicitly incorporate measures for guaranteeing roiess with respect to model
uncertainty or disturbances. Special attention is givethéopossible ways for com-
puting within-horizon predictions despite the uncertaimaind to how this influences
recursive feasibility. The chapter describes and correatsalgorithms presented in
recent publications that falsely claim to be recursivebsible. Counterexamples are
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also provided.

Chapter 4: In this chapter several MPC algorithms are presented thkémse of
the polytopic invariant sets discussed in the previous tnraA first set consists of
the interpolation-based algorithms, while the second tyfp@lgorithm presented is a
robust and improved version of the quasi-infinite horizon@/Htgorithm presented in
Chapter 1. Both types of algorithms are suited for diffeténtls of problems.

Chapter 5: The results presented in this chapter are an extension &¢ fn@sented
in Chapter 2. The polytopic invariant sets discussed thave lan impractically large
number of constraints under certain conditions which Entlite use of the algorithms
presented in Chapter 4 for larger-dimensional systems difapter analyzes the cause
of this problem and proposes a new algorithm for constrgctéduced-complexity
versions of such sets. In this way the use of polytopic se#RC algorithms becomes
more advantageous.

Chapter 6: This chapter forms a further extension of the results frorafEér 5. The
construction of control invariant sets is discussed. Types$ of sets are also potentially
useful in MPC algorithms. For the same reasons as in theqarewhapters, reduced-
complexity versions of these sets are investigated. Aseaxrgdult the construction of
reduced-complexity projections of polytopic sets is alszassed.

Chapter 7: In this chapter the use of controlled invariant sets in MPgbathms
is explored. It is shown that control invariant sets allow #xtension of the feasible
region to the theoretical limit. Another advantage of the ofscontrolled invariant sets
is that tracking problems can also be tackled.

Chapter 8: Whereas in the previous chapters the new methods are dtadtusing
simple numerical examples, this chapter demonstratesetiveatgorithms using more
real-life systems.

1.10 Specific contributions of this thesis

This thesis makes contributions in two main areas: set iamae theory and robust
model based predictive control. As indicated in Figure hé ¢ontributions in these
two areas are not discussed chronologically in this thésishere we will treat both
aspects separately.

Set invariance

A first contribution in this area is given in Chapter 2, whédre structure of polyhedral
invariant sets for LPV systems is discussed. It is obserratiredundant constraints
induce sparsity in the tree structure. Furthermore, thehdepthe tree is linked to

the Joint Spectral Radius (JSR) of the given autonomousmsysThese two insights
are crucial for the development of new algorithms in lateapthrs. References are
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[98,101].

The second and most important contribution of this thediserarea of set invariance
is the introduction in Chapter 5 of new algorithms for the stomction of reduced-
complexity polyhedral invariant sets, i.e. invariant bt are described by a reduced
number of linear inequality constraints. Two different hts are introduced:

e Pruning. This method reduces the number of constraints by meanshétigng
certain constraints with a small factor. The algorithm di&tewhen such
constraint tightening can make other constraints redundiad calculates the
exact tightening factor to accomplish this. For efficieneggons, this constraint
tightening is done during the construction of the invarsets.

e Trimming. This method is based on a new theorem that when modifying the
system matrices in a certain way, any invariant set for thdifieal system will
also be invariant for the original system. These additiatzgrees of freedom
can then be exploited in order to reduce the number of canttraf the resulting
polyhedral invariant sets.

Both algorithms can be interpreted in terms of the tree sireaiscussed in Chapter
2. The aim of pruning is the reduction of the number of paltdltanches in the tree
structure, while the aim of trimming is reducing the deptltef tree.

Both methods can also be linked to the JSR of the system. Inabe of pruning,
the JSR determines the amount of constraint tighteningcimabe performed without
loosing convergence of the algorithm, while in the caseiofriring, the JSR provides
a heuristic for optimally choosing the parameters involirednodifying the system
matrices.

In both methods a trade-off can be made between maximal kmd minimal
complexity. This regularization-like approach to the domstion of invariant sets is
novel and not found elsewhere in literature.

Finally, it is proven in Section 5.3 that pruning, when apglto the algorithm of
Section 4.3 can lead to lead to linear (rather than expoagsialing behavior as a
function of the horizon length. References are [94, 106].

A third contribution in the area of set invariance is theaafuction in Chapter 6 of
algorithms for the construction of reduced-complexitytcolinvariant sets. These sets
are similar to invariant sets but also allow inputs to be @nés the given systems. As
a result, algorithms for constructing such sets typicaliyolve additional steps where
projections of intermediate polytopic sets have to be dated.

First of all the methods of pruning and trimming are geneeali towards the
setting of computing control invariant sets. Secondly, ragorithms are proposed
for computing approximate reduced-complexity projectiai polytopic sets. The
obtained algorithms allow a trade-off to be made betweenimmaxvolume and
minimal complexity. At the time of writing, these resultseanot yet published
elsewhere.
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Model based predictive control

Several contributions have also been made in the area ofttiesis of robust MPC
algorithms. Some of these contributions are based on ingpnewnts in the area of set
invariance, as discussed above, others are not direckigdito such advances.

A first contribution in this area is the identification of thietical misconceptions
regarding some existing robust MPC algorithms. SectiodsaBd 3.5 highlight and
correct errors present in the algorithms discussed in [248][31] respectively. These
corrections have been published in [105, 143] and [94] retspdy.

A second contribution is the extension of several robust MiRfOrithms towards
the use of polyhedral invariant sets instead of ellipsaitariant sets. Three different
algorithms are extended to this setting:

e Section 4.1 extends the results from [68] and describes hog @an use
polyhedral invariant sets for obtaining robust linear fesck controllers with
improved optimality and less conservative constraint liagd These results
can either be used on-line in a receding horizon approacbamie used for
computing locally optimal controllers for use in other MPIQa&ithms. These
results are published in [93].

e Section 4.2 shows how robust interpolation based MPC campkemented us-
ing polyhedral invariant sets. These results are publighfgB], which received
the Student Best Paper Award of the 2005 American Controféence.

e Section 4.3 shows how one can use polyhedral invariant setsohstructing
robust MPC controllers with quasi-infinite horizon. Thessults are published
in [100].

A third contribution is the improvement of constraint handl in interpolation
based MPC algorithms on an algorithmic level. The new alboriis able to take
the interaction between the different linear control lawsiaccount and uses this
information to reduce the conservativeness of constrantling. These results are
published in [118, 120].

A fourth contribution consists of the extension of the aithons discussed in Chapter
4 towards the use of reduced-complexity polyhedral invarsts. This allows these
algorithms to be used for higher-order models and allowsiieeof longer prediction
horizons (if applicable). More specifically, it is shown thander certain conditions
when using the quasi-infinite horizon MPC algorithm disedsin Section 4.3 in
conjunction with reduced-complexity polyhedral invatisets, one obtains linear
scaling behavior as a function of the horizon length.

A fifth contribution is the extension of the concept of gehérderpolation to
interpolation between non-linear control laws, like e.gfedent MPC controllers, as
described in Section 7.2. At the time of writing, these ri=sate not yet published
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elsewhere.

A sixth and final contribution is a method to enlarge the ofyegaegion of any given
recursively feasible MPC controller to the maximal con&dinissible set for the given
system. This is discussed in Section 7.3. At the time of agitihese results are not
yet published elsewhere.
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Chapter 2

Polyhedral Invariant Sets

“When in doubt, predict that the present trend will contitiue

— Merkin’s Maxim —

This chapter extends the concept of invariant sets towandsrobust
case. Whereas previous chapters illustrated the use ofriaviasets,
this chapter focusses on how to construct such sets for aatous LPV
systems. A literature overview is given, after which aniefiicalgorithm
is presented for constructing the Maximal Admissible SeA$Musing
linear programming. Extensions to this algorithm are diseed and some
numerical examples are given. In the following chapters¢hi@variant
sets are then used in robust MPC algorithms and further elddn

2.1 Setinvariance

The basic concepts of set invariance were already discusséthapter 1, so we
will only briefly repeat the main definitions and properties the specific case
of autonomous LPV systems subject to bounded disturbanmsabject to linear
constraints.

2.1.1 Definitions

In this chapter we consider autonomous LPV systems sulgdxunded disturbances
x(k+1) = o(k)z(k) + w(k), keN, (2.1)
with (k) € R™=*"= pelonging to an uncertainty polytop¥ C R"=*"= defined as

(k) € U = Co{dy,...,D,}, k€N, (2.2)

29
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or equivalently

O(k) € Y N(R)D; [M(k) >0, A0 (k) 2 0,> Nj(k)=15, keN
j=1 j=1
(2.3)
The disturbance input(k) is bounded by a V-polytope
w(k) € W £ Co{wy,...,w}, keN, (2.4)

and the stater(k) is constrained to (1.2b). The reason for this specific uagest
representation will be explained in more detail in Chapter B/e now redefine
invariance for this class of systems.

Definition 2.1 (Robustly positive invariant set [14]). A setS € R™= is robustly
positive invariant with respect to the systéal)iff

dr+weS, Vo € S,V® € 0, Yw € W. (2.5)

In future sections, when appropriate, the téf\, WW)-invariant will be used. If the set
S is convex, then the following condition is equivalent to7(2.

O,z +w; €8, VeeS,i=1,...,r,5=1,...,1 (2.6)

A related concept is that of-contractive positive invariant sets and can be defined
as follows:

Definition 2.2 (A-contractive robustly positive invariant set, [13]). A setS € R"= is
a A-contractive (with\ € (0, 1]) robustly positive invariant set with respect to system
(2.2)iff

Or +w € NS, Vo € S,V® € Q' \Yw € W, (2.7)

with the scalar multiplication of sets defined 8S = {\z|z € S} as in [63,146]. In
future sections, when appropriate, the téfM, W, \)-invariant will be used.

The definition of geasible seis already given in Chapter 1 and is hence not repeated.
A related definition is that obutput admissible setsSince all output constraints
considered in this thesis can be mapped to equivalent statgtraints, we will use
the termadmissible sein this thesis:

Definition 2.3 (Admissible set). A setS is admissible with respect {@.1),(1.2b)iff
z(0) € S implies that all future states(k), k € N satisfy constrain{1.2b)

z(0)eS = z(i) e X, VO(k) e U, Vw(k) e W, k=1,...,i—1,

Please note that an admissible set is not necessarilyyeoisitiariant. Admissibility
is related to the size of a set (becau¥econtains the origin in its interior, any
sufficiently small neighborhood around the origin is an ashitile set) whereas positive
invariance is related to the shape of the set. Conversedycan see that all feasible
positive invariant sets are admissible.
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Definition 2.4 (Maximal Admissible Set (MAS, [52])). The maximal admissible s&t
for systen{2.1)and constraint¢1.2b)is defined as the set afl initial states for which
the corresponding trajectories under the autonomous dyceguarantee constraint
satisfaction:

S 2 {2(0)]z(i) € X,V®(k) € ', Yw(k) e W,k =0,...,i—1,i € Ng}. (2.9)

2.1.2 Properties

The properties given here will be used either explicitly mplicitly in the following
sections and are stated here as background material far hettlerstanding of the
following sections.

Property 2.1. If A, B € R™= are invariant sets with respect {@.1) then the following
sets are also positive invariant with respec{2o1)

a)ANB,
b) AU B,
c) Co{A, B}.

Please note that part a) states the opposite of [63, Rem3fk2owever, one can
clearly see that if:(k) € A andx(k) € B, positive invariance guarantees that +
1) e A,z(k+1) € Band hence(k + 1) € AN B, which proves part a) of the above
property.

The following fundamental property, the first reference toch can be found in [52],
validates the use of the MAS as a terminal constraint set i digorithms:

Property 2.2. The MAS for a given system is the largest positive invariatit® that
system, if it exists.

Due to the model class and type of constraints under coradidarin this thesis, the
following property also holds:

Property 2.3. The MAS for(2.1),(1.2b)is a convex set, if it exists.

These two properties form the main reasons why the MAS is thfeped type of
positive invariant set to be used as a terminal constraiktic.

2.2 State of the art

In this section we give a brief overview of the state of the @hcerning the
construction of the MAS or invariant inner approximatiorfstoe MAS for LPV
systems. We start off with the LTI case, since this technitseat the basis of what
is described in the latter part of this chapter. In the remairof this thesis we focus
on the case of polytopic input and state constraint setsagung the origin in their
interior:

z(k) € X & {z € R"™|A,z < 1}, k €N, (2.10)
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u(k) €U = {u € R™

Agu <1}, k€N, (2.11)

which is not a major restriction in the MPC setting. In futseetionsn,, m,, are used
to denote the number of rows i, and A, respectively.

2.2.1 Maximal admissible set for LTI systems

Although the concept of positive invariant sets was alrestdyglied in the 80's (e.g.
[11,12,56]), the link with admissible sets and more spealiffcmaximal admissible
sets was made in [52]. The paper presents both theoretidahlgorithmic results
concerning construction of the MAS for deterministic detertime non-linear systems
subject to a generic class of inequality constraints. Is sleiction we will describe the
results for the LTI case, whereas the following sectionsudis results for the case with
model uncertainty.

In this section we consider autonomous LTI systems, i.etesys of the form (2.1)
with » = 1 andQ = {®}, subject to constraints (1.2b). The results of [52] makeafise
setsO,, defined as

Op={zjlr e X, dxc X,... . ®"z c X}. (2.12)

Two important results of [52] that are of relevance in thisds can be summarized as
follows:

e The MAS for an LTI system subject to a constraint &eis equal toO ..

e If the eigenvalues ob satisfy|);| < 1, there existg* € Z* such thatO,, =
Ok*.

No explicit values folk* are given, but the following algorithm iteratively circuervs
this problem:

Algorithm 2.1 (MAS for LTI systems). Given an autonomous LTI systetfk +1) =
dx(k) subject to constraintg2.10) seti := 1 and perform the following steps:

1. ifO;41 = O, then go to step 3,
2. seti:=i+1landgotostepl
3. returnO4 = O; andk* = 3.

The variablek* is called theadmissibility indexand indicates how many time steps
ahead one has to enforce the constraints in order to enssi/panvariance of the
resulting set. The practicality of Algorithm 2.1 dependshom efficient the condition
in step 1 can be verified. The conceptsaamnstraint significanceand constraint
redundancy which were not used explicitly in [52] but are introducedéhalready
with further chapters in mind, are helpful in this respect:

Definition 2.5 (Constraint significance). The significance sigla™) of a constraint
aTx < 1 with respect to a sef containing the origin, is defined as

sigg(a™) & max atz. (2.13)
S
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Figure 2.1: lllustration of the significance of a constraint. Consttaifiz < 1 has a
significance larger thanh, while constraintlz < 1 has a significance smaller than
The optimale-vector resulting from (2.13) is indicated a8.

The redundance of a constraint is defined as the reciprotakdignificance:

Definition 2.6 (Constraint redundance). The redundances(a™) of a constraint

aTz < 1 with respect to a sef containing the origin, is defined as reth™) £

1
SIgs (aT)”

In order to make a distinction between vectors that reptegeimts in space or
vectors that represent constraint coefficients, we use dhee sconvention as used
in [146] and denote points in space by column vectors (e)gand denote constraint
coefficient vectors as row vectors (e ig").

The interpretation of the significance of a constraint igigttforward. If the
significance is strictly larger thah, thenS would decrease in size if it would be
intersected witha Tz < 1. A significance strictly smaller thah implies that the
constraint lies outside the s&t This is illustrated in Figure 2.1. In this way stép
of Algorithm 2.1 can be performed by calculating the sigmifice of the constraints
of 0,41 with respect toO;. If all significance values ar& 1, then the condition
0;41 = 0O, is satisfied and the algorithm can terminate. In Algorithrh 2l
intermediate sets are polytopes and hence the optimiz&2id3) reduces to an LP.
This indicates that Algorithm 2.1 can be implemented anaebesl efficiently.

Extensions towards the inclusion of bounded disturbaneega@ssible and are based
upon the same principles as those used in for the construatibPV systems shown
in Figures 2.5 and 2.6. We refer to [51, 63, 67] for more dstail

2.2.2 Ellipsoidal invariant sets for LPV systems

The construction of invariant sets for LPV systems is sonawore complex, since
for such systems the current state does not uniquely defenéutbre trajectory that
will be followed. All possible trajectories have to be guased to be feasible, which
seems to imply a significant increase in the number of coinsmacessary to describe
invariant sets for this class of systems. Therefore, in MgGrihms for LPV systems,
the use of ellipsoidal invariant sets prevailed until retef8, 31, 92, 142]. The main
advantages are the fact that the complexity of descripti@mellipsoidal set uniquely
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depends on its dimensionality and the fact that such setbeannstructed by solving
a single convex optimization problem. One can distinguistwieen two different
cases, depending on whether or not a feedback control lawofatrolling the open-
loop system is already known.

In the first case, no control law is known in advance and heeed#to be calculated
together with a corresponding invariant set. This probleas wolved in [68] and is
summarized in Appendix A.

In the second case, one would like to construct an invaribipseid for a given
closed loop system (2.1)-(2.2) subject to constraintsQ2.h this case the following
simpler method can be used [23]:

Algorithm 2.2 (Ellipsoidal invariant set for LPV systems). Given a systenf2.1)
(2.2)subject to constraint&2.10) solve the following optimization problem:

max det 771, (2.14a)
ZeshE,
s.t. [ @ZZ ; } =0, i=1,...1 (2.14b)
Z * )
{ A7 1 ] >0, j=1,...,myg. (2.14c¢)

Construct an ellipsoidal invariant sét £ {z|zZ 'z < 1}.

In the above optimization asterisks represent expresstmatsmake the matrices
symmetric. This avoids redundant notations, since LineatriM Inequalities (LMlIs,
[23, 24]) always need to consist of symmetric matrix expoess

The above optimization problem is a so callsterminant maximizatioproblem,
which can be shown to be convex and hence can be readily sf4gdin case the
main axes of the invariant ellipsoid can be expected to hexwvgths of the same order
of magnitude, the objective of (2.14) can be well approx'eddiyminZeSﬁ Tr(Z),
which allows the use of standard SDP optimization algorghm

Although the construction of ellipsoidal invariant setsigightforward, there are
several disadvantages associated with the use of elliglSoicariant sets

e computational complexity. due to the fact that an ellipsoidal set is defined by
a quadratic inequality, MPC algorithms that make use of sett automatically
have to make use of SOCP or SDP optimization. However, forpetgational
efficiency reasons, MPC algorithms are preferably fornadaas LP or QP
optimization problems.

e restricted shape Ellipsoidal invariant sets are rather restricted in shale to
the limited number of degrees of freedom associated witHixieel complexity
of representation. Therefore, these sets are sometieds/edy conservative
inner approximations of the real MAS of the system. This pgobincreases as
the dimensionality of the system increases.

¢ inherent symmetry: Ellipsoidal invariant sets are by definition centered au
the origin, since they are constructed as level sets of @tiadkyapunov
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functions. As a result they are point-symmetric with respgedhe origin and
can therefore only cope with asymmetric constraints in aeprative way.

These disadvantages can be eliminated by using polyhadratiant sets. This
problem is tackled in the next section.

2.2.3 Maximal admissible set for LPV systems

The main advantage of ellipsoidal invariant sets is thempgotability by means of
solving a single convex optimization problem. The disadaga is the fact that
ellipsoidal invariant sets are only inner approximatiofthe MAS. However, the MAS
typically cannot be constructed by solving a single optatign problem, but has to be
constructed iteratively.

All current algorithms for constructing the MAS make itévatuse of theone-step
controllability set Prei 4y (S):

Prequw)(S) £{z e R™|3u € U : Az + Bu+w € S,V[A B] € Q,Vw € W}.

In a more general setting also a contraction constraintbeamposed, similar to the
one imposed in Definition 2.2:

Definition 2.7 (A-contractive one-step controllability set [13,63]). TheA-contractive
controllability set @ € (0,1]) of S with respect to uncertain dynamid3, input
constraint set/ and disturbance sét) is defined as

Prewo.u,w 3 (S) =
{r eR™|FJueld: Az + Bu+w € A\S,V[A B] € Q,Yw € W}. (2.15)

In further sections this set will be referred to as {me-set In case no inputs
are present this set is denoted as % ) (S). This shortened notation can be
distinguished from the notation mentioned above, by chegckihe dimensions of2
for the presence of inputs. In case no contractivity is dededrii.e.A\ = 1) and in case
no disturbances are present, the shorthand notatiqn,P& will be used.

Based on this tool, a necessary and sufficient condition ffi@ariance can be
formulated:

Lemma 2.1 (Geometric condition for positive invariance, [63]). Given a system
(2.1) (2.2)and a setS € R"=, then the sef is (', W, A)-invariant iff

S C Prem/’WN (8) (216)

Proof: (Sufficient) If z(k) € S, it follows from (2.16) thate(k) € Preg: w5 (S).
Due to Definition (2.7) it is then guaranteed tdat(k) +w € AS,V® € Q' ,Yw € W,
which proves thas is (', W, A)-invariant.

(Necessary)if S ¢ Preqo w.a (S), then3z(k) € (S \ Preg yw \(S)). Due to
Definition (2.7) it is then guaranteed tha® € Q' w € W : z(k) + w ¢ XS,

1By some authors the one-step controllability set is alserrefl to as thene-step sei63], thepreimage
set[16] or thepre-set
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which shows that in that cas® cannot be()’, W, A)-invariant. Therefore (2.16) is
a necessary condition f@f2’, W, A)-invariance. O

Based on the above condition a straightforward iteratikegesgly can be formulated
for constructing the MAS:

Algorithm 2.3 ({2, W, A)-invariant set construction, [13]). Given a syster(2.1),(2.2)
subject to constraint¢2.10) and variables\, )’ € R* such that\ € (0,1],\ €
(0,1], N < A, perform the following steps:

1. Initialize Oy := X,i := 0.

2. Execute iteratively unt; C Pregg: vy, »)(0;):
(a) Seti:=i+1.
(b) Calculate®; := Preg: yy iy (Oi—1) N O; 1.

Return the sef £ O, and admissibility index* £ i.

Theorem 2.1(Maximal (', W, A)-invariant set, [13]). If Algorithm 2.3 terminates,
the resulting sef is (2, W, \)-invariant. Furthermore, if\ = ), the resulting set is
the maximakQ', W, A\}-invariant set.

Proof: The termination condition implies th&®,. C Prqg,,w7,\>(0k*). Due to
condition 2.16 it is directly guaranteed that the Sés$ (Q’, W, A)-invariant. If A = X/,
the resulting set can also be proven to be the max{falV, \)-invariant set, meaning
that every feasibléQ’, W, \)-invariant set is a subset &. Assume there exists a
(', W, N)-invariant setS” ¢ S. This implies that there exists a statec (S’ \ Oy+).
This in turn implies3® € Q' w € W : ®z + w ¢ NOk—1 = AOk+—1, While
at the same time, for the sande w it holds that®z + w € AS’. This means that
Px 4+ w € (AS'\ AOk+—_1), which meanslz’ € (S’ \ Ok _1). By induction one can
therefore see thatr € (S’ \ Op) which means thas’ ¢ X and hence is not feasible.
This proves thaF is the maximalQ’, W, \)-invariant set. O

Furthermore, one can show thatif — ), the resulting sef also approximates the
real maximak ', W, A)-invariant set with increasing accuracy.

The above algorithm can be used for the construction of (afimations to) the
MAS for a wide variety of model classes. The only requiremetite modification of
the definition of the pre-set according to the given modedgla

In the following section a reformulation of the above al¢fom is given, specifically
stating the operations on the different constraints diesagithe intermediate sets. This
will provide insight into the constraint structure of thetained sets, which will allow
us to reduce the complexity of the obtained sets in Chapter 5.

2.3 Efficient computation of the MAS for LPV systems

First we formulate a basic algorithm for the disturbanaeftase without contraction
constraints. Later we formulate both additions as exterssod this basic algorithm.
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2.3.1 Efficient algorithm formulation

First of all it should be noted that the pre-set BréS), with S = {z|Asz < 1}, can
easily be calculated, by virtue of the following lemma.

Lemma 2.2(Pre-set calculation [13]). Given an autonomous systégnl), (2.2)with
W = {0} and a polyhedral sef = {z|Asz < 1}, then the pre-set Pyg, (S) is given
by

Pre<9>(8) ={2|4sP1z <1,..., AsD,z < 1}. (2.17)

Proof: By making convex combinatior(szz;1 AAs®;)x < 1, of the different
constraintsds®,z < 1,7 =1,...,r, one can see that satisfaction4§®,x < 1,i =
1,...,rimplies thatAs®z < 1,V® € ', which, combined with the definition of the
pre-set, proves the lemma. O

On one hand, this lemma allows the straightforward iteeatialculation of the
sets©; in Algorithm 2.3, but also shows the exponential growth of ttumber of
constraints describing these sets for increasing valués of

However, one can see that the constraints describing tweesaive set®); and
0,_1 partly overlap, since all constraints describifdg are by construction present
in the description ofD,_;. Hence, when calculating the pre-set®f, only the non-
overlapping part of the constraints ©f has to be considered explicitly.

A second important aspect is the elimination of redundanstraints. As already
pointed out earlier, if- > 1 the number of constraints describing the ¥8{sncreases
exponentially as a function af However, especially for lower-dimensional systems,
typically a large fraction of these constraints will be radant and hence can be
omitted. Therefore, significant efficiency gains can be ioleh when only retaining
those constraints of Pggy (\'O;_1) that are non-redundant with respectig ;.

Finally, one should note that by iteratively adding corigtig constraints constructed
in earlier iterations can become redundant, even if theyewstially non-redundant.
Therefore, efficient implementations should also regulafeck the redundancy of
constraints constructing in earlier iterations, a procgeswill refer to asgarbage
collection

Given these considerations, Algorithm 2.3 can now be effibjeeformulated for
the caseV = {0}, A=\ =1:

Algorithm 2.4 (Efficient MAS-computation for LPV systems, [98]). Given an LPV
system(2.1),(2.2) subject to constraint&2.10)

1. Initialize As := A, i := 1.
2. Perform the following steps iteratively until> rows(As):

(@) Seta™ := As(i,:).

(b) Check the redundance of the constraiatsb;z < 1, i = 1,...,r with
respect taS £ {x|Asr < 1}. Foreachi = 1,...,r, if sigg(aT®;) > 1,
then add the constraint” ®;z < 1to As by settingAs := [As; aT®;].
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(c) If necessar¥; performgarbage collection.e. check for every row ol s
whether the corresponding constraint is redundant withpexs to the set
defined by the other rows dfs and if so, remove that row fromgs.

(d) Seti =i+ 1.

One can easily verify that Algorithm 2.4 is identical to Alghm 2.3 with\WW =
{0}, A = X =1, apart from the following aspects:

e Algorithm 2.4 makes no explicit distinction between thdafiént sets);,: > 0.
This is possible due to the fact that every égti > 0 is described by the
constraints of);_; supplemented with the constraints of !?ﬁ;(@i,l).

e The resulting invariant sets are geometrically identicalthe two algorithms,
but differ in their algebraic representation, since Altfum 2.4 eliminates all
redundant constraints.

Since Algorithms 2.3 and 2.4 are identical from a conceptoait of view, Theorem
2.1 also applies to Algorithm 2.4. Since Algorithm 2.4 alwayses\ = X' = 1, the
resulting set is therefore guaranteed to be the MAS for sy¢&1), (2.2) subject to
constraints (2.10). However, it is not guaranteed that thershm terminates after a
finite number of iterations. The following Theorem shows eindhat circumstances
Algorithm 2.4 terminates in a finite number of iterations.

Theorem 2.2. Consider the disturbance-free systénl), (2.2) subject to constraints
(2.10) If the following condition is satisfied

Jee R, a € (0,1):
[®(k)®(k—1)...2(0)|| < ca®, Y®(0),...,0(k) e, keN, (2.18)

then Algorithm 2.3 (withh = X’ = 1) and Algorithm 2.4 terminate in a finite number
of iterations.

Proof: First of all it should be noted that the s&¥s, i € N constructed in Algorithm
2.3 can be written as

0i =%, i €N, (2.19)

with &y = & and X, = Preq,(&;),7 € N. This can be proven by induction on
i. Expression (2.19) is trivially satisfied fer= 0. Furthermore, if it is guaranteed
for i it is also guaranteed for + 1, since Prgy,(0;) = Prem/)(ﬂzzo X)) =
m;’:o Pre«w (Xz) = ﬂ;:ll X; and hencé?iﬂ = (ﬂ;:ll Xz) n (ﬂ;’:() Xz) = ﬂ;:}) X;.
Due to the recursiomt;,; = Preg(&;), the setst;,i € N can be written as
X; = {z|Ax,x <1} with Ay, = Ay andAy, | = [Ax, Po;. .. ; Ax,®,]. This allows

i+1

2The necessity of garbage collection can only be evaluatesseegori. However, a rule of thumb that
experimentally has been proven to be adequate in a wide mingecumstances, is to perform garbage
collection with every50%-increase in rowAs ).
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us to construct an upper boundite) = max; .cx || Ax,(j,:)x| as a function of the
iteration numbet:

160) £ max |4, (7. )],

7>

< max [ Al max [ @(0)@( — 1) ... ®(0)]| ma ]
J T

I ®(0...i)€Q

< ca’ max || Ay (j, )| max [1z]. (2.20)
J reX

One can see thatifi) < 1, which is satisfied iibca’ < 1, with a = max; || Ax(j, )|
andb = max,cx x|, it is guaranteed that’ C X;. Because);_; C X andO; =
0,1 N &; itthen follows that®; _; = O;. Consequently, since Regy (O;—1) N O; 1

it can be concluded that the termination conditi®n.; C Pre<Q,>((’)i,1) used in
Algorithm 2.3 is satisfied for these values of This shows that Algorithm 2.3
terminates in at mogt}, . iterations, withk? .. defined as

max

(2.21)

max

P Ina+Inb+1Inc
Ina '

Since for every iteration executed in Algorithm 2.3, Algbm 2.4 only has to execute
a finite number of iterations (i.e., equal to the number ofsti@ints in the set;), also
the latter algorithm is proven to terminate in a finite numdfgterations. O

This result shows that the MAS of systems satisfying coadi{j2.18) is finitely
determined, meaning it can be described by a finite numbénedi inequalities, and
hence is a polytope.

Condition (2.18) is less strict than the one proven in [98]1@hich required the
given LPV system to be quadratically stable. Quadraticiliialbf the given system
ensures satisfaction of condition (2.18), but the oppasitet guaranteed. It can be
shown that (2.18) is satisfied for all systems where Jbiat Spectral Radiu¢JSR,
[137]) of the matricesb, ..., ®,. is strictly smaller thari. We refer to Appendix C
for more details.

Theorem 2.3. If for a given uncertainty polytop@’ the JSR5(QY') = A < 1, then
condition(2.18)is satisfiedva € (), 1).

Proof: If 5(2') = A < o then, due to the definition difin sup, there exists a positive
integern € Z* such thatmax 4;ycqri=1,....k A1) - ... - A(k)||* < a, Yk > n, or
equivalently thatmax (. gy |[A(0) - ... - A(k)|| < oFF1, V& > n. If we now
choose a positive scalar € R* such that

¢ >max | 1, max
k=0,...,n—1

A(R)EQ i=0,....k

k1

(IA(O)-----A(k)I) ’

_____ kJAO) - .- A(R)|| < daftt VE € N.
Condition (2.18) is hence satisfied > ¢'a. O
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Sincep(Y') < 1 is equivalent with asymptotic stability of the autonomouR\L
system [18] the above theorem extends the applicability @foAthm 2.4 from
guadratically stable systems (as proven in [98]) to all gstgriically stable autonomous
LPV systems of the form considered in this thesis. Similateshents can be made if
max; ||®;|| = A < 1, but the value of\ thus obtained will be equal or larger than
that obtained using the JSR [18] and therefore the upperdgfjn, will typically be
much more conservative. However, the main disadvantagsiofthe JSR, is that its
computation is an NP-hard problem. Even computing arligrelose approximations
to the JSR is an operation with a higher than polynomial woase computational
cost if there is no problem structure (e.g., matrix symmeton-negativity of matrix
elements, ...) that can be exploited [18, 137]. In generiitbe shown [20, 71] that
p < 1isalgorithmicallyundecidable. This seems to imply that using #teR might
not always be useful in this context, but in many cases sefftti close approximations
can be computed [18] in an acceptable amount of time in oodeithier confirm or rule
out thatp(-) < 1.

It should be noted that Theorem 2.2 cannot be applied if tmsteaintsX” is not
bounded, since in that casewill be infinite and no useful bound will be obtained.
However, the following corollary might be useful in that easd can be verified easily:

Corollary 2.1. Consider the disturbance-free systérl), (2.2) subject to constraints
(2.10) If condition(2.18)is satisfied and there exisfsc Z* such thaiO; is bounded,
then an upper bound to the number of iterations of Algorith&ig given by

(2.22)

max In o

ot {_lna—i—lnb—i—lncJ ’

wherea andb are calculated using s&?; instead ofY'.

Proof: The above upper bound can easily be verified by applying Hme@:2 to the
case when Algorithm 2.3 is applied to system (2.1),(2.2)estilio constraint sed;
instead ofY'. O

This corollary will prove insightful in Section 5.1, wherelghedral invariant sets
for systems with a specific structure are studied.

2.3.2 Structure of the MAS

Considering the results of the previous section, it is nogyda see that the MAS
S for a given LPV system has a specific structure since it canxipeessed as an
intersection of different set§ = ﬂf;o X}, and due to the recursive relationship,; =
Pregy (&;) between these sets.

The different setst; induce a hierarchical ordering of the constraints desugilsi
into different levels, depending on the valueiofThe recursion relationship between
successive sety; and.X; ; induces links between the constraints on levahd those
on leveli+1. As a result the structure of the MAS of an LPV system can béctipas
a tree of constraints. The following properties can be \atigasily and are illustrated
in the next section:
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LTI LPV

Figure 2.2: Left: Tree structure of the MAS of an LTI system with, = 3,k* = 3.
Right: Tree structure of the MAS of an LPV system wiify, = 3,7 = 2, k* = 3. All
constraints are assumed to be non-redundant.

e The tree structure has a depth of at miostayers.

e Every constraint at level will have at mostr childrenat level; + 1. Due to
redundance of constraints the number of children of a giversitaint can be
strictly smaller than-.

e Every constraint™z < 1 at an arbitrary level can be expressed a$ = vT®;
with j € {1,...,r} andb™z < 1 a constraint at level— 1. This can be verified
by analyzing the recursion betweghandX;_; and Lemma 2.2.

e The tree structure consists of at mest constraints. This is due to the fact that
all constraints at an arbitrary leveare constructed using exactly one constraint
at level: — 1 and hence all constraints can be ‘traced back’ to exactly one
constraint at level. Due to the initializationX; = X there are at most,
constraints at levdl.

e Every constraint in the tree structure hgsaaent except the constraints at level
0. This is equivalent with saying that if a constrairitz < 1 at an arbitrary level
i is redundant with respect to the invariant set, all its clifch T ®;z < 1,7 =
1,...,r will also be redundant. Indeed, if one constraidtd;.z < 1,i* €
{1,...,r} is non-redundant, whileTx < 1 is redundant, one can find a state
vectorz* € S such that,” ®,.2* = 1. The vector;. = hence lies exactly on the
constraint induced by™ which is redundant®; 2 therefore has to lie outside of
S which contradicts the invariance property®f Consequently, all constraints
aTd®,xz < 1,i=1,...,r have to be redundant.

A schematic depiction of a possible tree structure as destrabove, is shown in
Figure 2.2 and is compared to the structure presentin a pdhghset for an LTI system
(i.e.,r = 1). One can see that in the worst-case the number of constasatribing the
set can increase exponentially as a functiokgfwhile this increase is only linear in
the LTI case. Given values fon,, r, k*, the following expression gives the worst-case
number of constraints

rowsgAzg) = my Z r=my—————. (2.23)

=0
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Figure 2.3: The maximal admissible set computed using Algorithm 2.4idsand an
ellipsoidal invariant set computed using Algorithm 2.2glded and shaded) for system
(2.24), controlled by controllet(k) = [-0.5 — 0.3]z(k) and subject to constraints
(2.25). 50 trajectories starting from the leftmost vertéxhe MAS are depicted in
dotted lines.

In most cases the real number of constraints will typicalysignificantly lower, an
example of which is given in the next section.

2.3.3 Example

In this section a numerical example is given in order to flate the efficacy of

Algorithm 2.4,
We consider a system with, = 2,n,, = 1,r = 2, described by matrices
1 0.1 1 0.2
A1—|:0 1:|, A2—|:0 1:|, (2243)
0 0
5[] n-[ ] eam
subject to constraints (fdr =0, ..., c0)
—1 <u(k) <0.5, (2.25a)
—10 10
[ _10 } <ax(k) < [ 10 ] ) (2.25b)

A linear feedback controller(k) = — Kz(k) is chosen ag( = [0.5 0.3]. This results
in an autonomous LPV system wiff = Co{A; — B1K, Ay — B3;K} subject to
state constraints defined by, = [-2K; K;0.11; —0, 11]. The closed-loop system is
asymptotically stable and satisfies condition (2.18).



2.3 Efficient computation of the MAS for LPV systems 43

(5,1) @ 6,1) ¢ Xo

(5,05) O (6,05) O X1

(5,92) O (6,92) O X,

(6,83) O Xs

(5, 23®,) (6, 33d,) O Xy
(5, ®3P1) (5,23) Xs

Figure 2.4: Tree structure of the polyhedral invariant set depicted igufe 2.3.
Shorthand notatiofi, C) is used to denote constraints; (i, :)Cz < 1. At the right
hand-side the set&; are indicated to which the constraints of that level of tleetr
belong.

Figure 2.3 shows the MAS obtained using Algorithm 2.4 and gares it to an
ellipsoidal invariant set computed using Algorithm 2.2. eTpolyhedral invariant set
clearly is significantly larger than the ellipsoidal set éndble to take the asymmetric
constraints into account. The ellipsoidal invariant setasable to efficiently deal with
the asymmetry in the imposed constraints since by congruittis centered around
the origin. The plotted trajectories show that both setsrateed invariant with respect
to the uncertain dynamics.

Figure 2.4 depicts the tree structure corresponding to ttghpdral invariant set
depicted in Figure 2.3. The structure consists of two treegesponding to imposed
constraints 5 and 6. Since in this example the 4 first comsgraiorrespond to the
state constraints, one can see that these constraints$ eeduaidant and only the input
constraints determine the size and shape of the MAS in tlsis.ca

One can also see that most constraints only haehiltl, whereas the theoretical
maximum isr = 2. These observations indicate that a massive reductioreafumber
of constraints is obtained by removing the redundant onés. tlieoretical maximum
number of constraints in this caseris, (r*"t1) — 1) = 6(26 — 1) = 378. Only 11
of those constraints are found to be non-redundant. It shioeinoted that during the
execution of Algorithm 2.4 the number of rows in matdx never exceedetb. Total
computation time on a.6GHz Pentium-M CPU wa§.4 seconds. MTLAB 6.5 and
the standard toolboxes were used.

More detailed examples and scalability analyses will bevshio Chapters 5 and 8.
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Figure 2.5: Schematic representation of condition (2.29) fdf4, W, \)-invariant set
Swithn, =2,r=3,l=4and)\ < 1.

2.4 Extensions

In this section we discuss two basic extensions to the bassulation of Algorithm
2.4, namely the extensions towart!s # {0} and A < 1. The basic structure
of the algorithm does not change, but the way the pre-setl@ileded has to be
updated accordingly. Also the conditions under which cogeece of the algorithm
is guaranteed, will have to be updated.

2.4.1 Contraction constraints

Often it is desired to construct invariant sets with a giveipaésed contraction rate,
i.e. (', {0}, N)-invariant sets, with\ € (0,1). This can then e.g. be used to obtain
constrained controllers with a certified rate of convergeoevards the origin. Given a
setS = {z|Asz < 1}, the pre-set can now be calculated as

Preq, (03,0 (S) = {z|As®ix < A1,..., As®,z < A1}, (2.26)
or if the standard formulation with right hand-sitleshould be maintained:

Preg, (o1, (S) = {2\ T As®rz < 1,... A As®a < 1} (2.27)
This way it can be seen that computing &', {0}, \)-invariant set actually cor-

responds to computing a2, {0}, 1)-invariant set withQ” defined asQ” 2
Co{A~1®y,..., \"1®,}. Condition (2.18) now becomes

Jee R, a € (0,)):
[®(k)®(k—1)...8(0)|| < ca®, V®(0),...,0(k)c Y, keN,zecX, (2.28)
which is guaranteed to be satisfiedhibix; |®,|| < A or more generally speaking if

p(€2) < A Again, the latter condition is less conservative, but isrendifficult to
check, since computing the joint spectral radius is an Nfé-peoblem.
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Figure 2.6: Schematic representation of condition (2.30) fdf24, W, \)-invariant set
Swithn, =2,r=3,l=4and)\ < 1.

2.4.2 Bounded disturbances

Computing(QY’, W, \)-invariant sets, withh € (0,1), can be done by making similar
adjustments to the calculation of the pre-set. The prefsStapnsists of all states
for which the following condition is satisfied:

Oz +w € NS, Yo c QO Yw e W, (2.29)

which, according to Definition (1.13) and due to the fact thatis a polytope, is
equivalent with

Dz e ASSW), Vi=1,...,n (2.30)

Figure 2.5 schematically depicts condition (2.29) fd%, W, \)-invariant setS with
ne = 2,7 = 3, = 4andX < 1. Figure 2.6 shows condition (2.30) for the same
situation.

Using the remarks in Chapter 1 regarding the computationhef Minkowski
difference of a H-polytope and a V-polytope, the pre-setroam be calculated as

1

_EnaXlAgwj, i—l,...,r}, (2.32)

Jj=1,...

Preq, (o3, (S) = {x

where the maximum oflsw; is calculated for each component separately. Conver-
gence of the accordingly modified Algorithm 2.4 is now guaead if
max; || D,

. <\ (2.32)
1 —max; [[As (4, ) || max; [[w;|

This expression can be very conservative and is not indegenaf linear state
transformationss’ = Mz, M € R"=*"=. However, a similar expression using the
JSR, which does not suffer from these drawbacks, is not plessue to the bounded
disturbances.

2.5 Conclusions

This section discussed the concept of set invariance, amd precisely the construc-
tion of polyhedral invariant sets for LPV systems. Relewdgfinitions and properties
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are given, as well as an overview of the state-of-the-arangigg algorithms for
constructing invariant sets.

The main contribution of this chapter is twofold. First of @lmore detailed
algorithm for the construction of the MAS for LPV systems igen, illustrating the
ability to achieve significant computational improvementonly retaining redundant
constraints during the computations. The new algorithm glises insight in the
structure present in the constraints describing the MA% Sthucture will be exploited
in Chapter 5 in order to obtain reduced-complexity polyla¢ohvariant sets.

Secondly, some attention is given to convergence progedfethe described
algorithm using the Joint Spectral Radius. The obtaineigliits in the convergence
behavior will also prove useful in Chapter 5 in order to asslkes convergence behavior
of the algorithms presented there.

The ability to construct polyhedral invariant sets will bsed extensively in Chapter
3 in order to improve several existing robust MPC algorithms



Chapter 3

Robust Model Based Predictive
Control

“In these matters the only certainty is that nothing is carta

— Caius Plinius Secundus (23-79) —

This chapter gives an overview on how to extend the staimlikiPC
framework of the previous chapter towards the robust corsetting. A
more general model class than the one used in the previoustehis
described, allowing the inclusion of uncertain dynamicsl d&rounded
disturbance input in the model description. This chaptescdibes
the modifications to the quasi-infinite horizon MPC algamitmeeded
for maintaining recursive feasibility and stability in thimore general
setting. Finally, two existing robust MPC algorithms aresdebed that
are incorrectly claimed to be recursively feasible and asigtically
stabilizing in literature. Counterexamples to these claare provided and
corrections are proposed, illustrating the need for catefonsideration
when designing robust MPC algorithms.

3.1 Introduction

The main aim of this chapter is to relax the assumption of tle®ipusly presented
guasi-infinite horizon MPC algorithm and its accompanyitapgity framework that
there is no mismatch between the predictions made by the NtiR@ithm and the real
plant behavior. In real applications it is unavoidable tperkence such mismatches for
two important reasons.

First of all the prediction model used in the MPC controllere- constraint (1.11e)
— typically only approximately describes the plant’s regha@mic behavior. There are

47
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multiple causes that contribute to this fact. In most situret prediction models used in
MPC areblack boxmodels, which means they are based on input/output measatem
of the real plant. These measurements are noisy and limitadmber, which in turn
limits the accuracy of the resulting model. Evennifiite boxmodels are used, it is
often difficult to exactly determine all involved physicarstants. Furthermore, due
to wear, maintenance, ... the behavior of a real plant caxjpeoted to change as a
function of time which also compromises the accuracy of ttegljgtion model.

Secondly, apart form limited accuracy of the prediction elpdften only a limited
number of inputs of a system can be manipulated by the céetroln reality a
multitude of inputs exist, calledisturbance inputsthat cannot be manipulated by
the controller, because they are governed by phenomenbetisyond the scope of
the plant. These phenomena include dynamics occurring imexted systems that
are controlled by other controllers, natural phenomeraiéin, outside temperature,

or other uncontrollable effects like fluctuations in tt@mposition of certain
reagents.

Two different approaches to robustness can be identifidueiMPC literature. One
aspect is the inherent robustnessominalMPC algorithms, i.e. algorithms that were
not designed for robustness from the outset. Examples sfaghproach are [43, 81],
but constrained MPC, the main focus of this thesis, is nosicared.

A second robustness aspect that has received attention @ IN#?ature is based
on the observation that, although the quantification of ttectcontribution of these
phenomena at every time instant is impossible due to theiemtain nature, it often
is possible to quantify the worst-case magnitude of these @hena, which allows
them to be taken into account during the controller desigms T typically done by
including this uncertainty information in the model uponigfhthe controller is based,
which is referred to as robust control (see e.g., [145]) sThialso the approach taken
in this thesis.

3.2 Model class

3.2.1 Uncertain dynamics

Before being able to start the robust controller design ggscsome information is
needed about the model uncertainty. Early results [2, 44,44 considered impulse
response models with bounded uncertainty on the coeffgiétdwever, for reasons of
computational efficiency, flexibility and compactness giresentation, recent MPC
algorithms typically makes use of state space models. Tlemwost well-known
uncertainty classes that are able to represent uncertaiantigs in the state-space
framework are those aform-bounded uncertaintpr structured uncertainty{91]) and
polytopic uncertainty68]. For use in MPC it is computationally convenient to have
explicit expressions for the extremal values of the un@edgnamics, so one typically
uses linear state space models with polytopic uncertairtgre the uncertainty region
is described as a V-polytope ( [146], see Figure 1.5):

a(k+ 1) = A(k)x(k) + B(k)u(k), keN, (3.1)
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with
[A(k) B(k)] € Q = Co{[A; B1],...,[A, B,]}, keN, (3.2)

or equivalently

[A(k) B(k)] € {XT:AJ-(/{)[AJ- Bjl|Ai(k) > 0,..., A (k) > O,ZT:Aj(k) =1 } :
keN. (3.3)

In further sections we will use the shorthand notatidit) = [Ai(k);...; A (k)]
Depending on the allowed variation in time xf%) and the availability of information
regarding this variation a distinction can be made betwikedllowing model classes:

Linear Time-Invariant (LTI): A(k) is constant (i.e. independent of timag
and known a priori.

Linear Time-Varying (LTV): A(k) is time-dependent
and known a priori.

Linear Parameter-Varying (LPV): A(k) is time-dependent
but unknown a priori.

Note that in MPC literature the term LTV is sometimes useckferrto LPV systems.
Most existing MPC algorithms are designed for the latter ed@thss and hence also
in this thesis only LPV systems are considered.

Also note that from a control point of view LPV systems are engeneral than LTV
or LTI systems in the sense that beyond the bounding plyibpe further information
is known about\(k) and hence the controller has to be designed for the worst-cas
variations. A controller that is designed for an LPV systeithwincertainty regiorf)
will therefore also stabilize any LTV system with the sameentainty region or any
LTI system with dynamics insid@.

Strictly speaking, the se® only represents anncertaintyin the system matrices
in the LPV case, while in the other cases the Qesimply represents bounds on
the (known) value(s) ofA(k) B(k)]. However, in this thesis we will always build
controllers for the LPV case and therefore, even if the rgstiesn is LTI or LTV, the
real values of A(k) B(k)] are not known to the controller. Therefore, with some slight
abuse of terminology, the s@tis always referred to as thancertainty polytopén the
rest of this thesis.

Finally, it should also be noted that we do not consider bsuod the speed
of variation of the variables\(k), which is typically the case imain scheduling
[76, 128, 134] and which is often implied when using the terfVL The robust
controllers discusses in this thesis allow for arbitrafdgt changes of(k) (within
) and therefore should also work if the real values\¢k) have a limited rate of
change. Admittedly, taking into account such bounds on #te of change, if they
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are known, could improve control performance significardip examples of such an
approach can be found in e.g., [134].

3.2.2 Disturbance inputs

A second source for mismatches between the predicted aratthal plant behavior,
is the existence of inputs that cannot be manipulated bydh&aller and are typically
impossible to measure. In the MPC framework these distwdmrare typically
modeled as bounded state disturbances denotedids

xz(k+1) = A(k)x(k) + B(k)u(k) + w(k), ke N, (3.4)

with [A(k) B(k)] satisfying (3.2) andv (k) satisfying (2.4)V is typically represented
as a V-polytope, since for computational reasons it is fabler to have an explicit
expression for the extremal valueswofk). However, an H-polytope representation
for WW would only mildly complicate the way disturbances can betaiato account.
Therefore, in further chapters, MPC algorithms that taletudbances into account in
general can be extended to this setting with only relatighall implementational
modifications.

To make the distinction between system (3.1)-(3.2) andesygR.4),(3.2),(3.4) in
future sections the former will be referred to as tlisturbance-free systemhile the
latter will be referred to as théisturbed systemwWhen not explicitly mentioned, the
disturbance-free system (3.1)-(3.2) is being referredsgstem (1.1) will be referred
to as thenominal system

3.3 Constraint handling in robust MPC

The aim of this section is not to give an exhaustive overviéwhe state-of-the-art
of robust MPC. An overview of related algorithms and necgssackground will
be given when new algorithms will be introduced in furthectgns. The aim of
this section is rather to give a more fundamental idea of hobustness can be
incorporated into the MPC design and how it influences réeaifeasibility. Two
important methodologies are explained, after which agaitassessment is given about
the advantages of each of both methods. The main idea bebthdhethods is the
optimization of theworst case(over all possible values of the uncertainty) control
cost [2,27]. Special attention will be given to feasibiligsues, since this is an
important area in which both methods differ.

In order to improve clarity we only discuss disturbanceeft®V systems in further
sections of this chapter, although some of the algorithnssriteed here were initially
proposed for LTI systems subject to bounded disturbanceswyeMer, conceptually
there are no significant differences between both settings negards to recursive
feasibility. Therefore the conclusions of this chapterlgpprobustness with respect to
polytopic model uncertainty, polytopically bounded distances and the combination
of both. The next two sections describe results publishdd4d] and [129], which
still lie at the basis of many recently published robust MRgbathms, either directly
or indirectly.
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3.3.1 Open-loop min-max MPC

One of the first well-known stability results for robust MP@orporating worst-case
predictions is the paper by Zheng and Morari published ir3]284]. A modification
to the standard finite-horizon MPC Algorithm 1.1 is propo#eat allows uncertainty
in the future output/state evolutions to be taken into antdor a class of uncertain
FIR-models. However, the absence of output/state consérand the rather restrictive
class of models considered there, did not necessitate tteparation of specific
stability measures as in Algorithm 1.2. Therefore the tssuhly have limited general
applicability. In what follows we briefly describe the methaf [144] applied to model
class (3.1) and objective function (1.3).

3.3.1.1 Open-loop predictions

In Algorithm 1.1, at every time instant an optimal input seqoeu® (k) is optimized
by solving a finite-horizon optimal control problem. Withime optimization problem
the corresponding within-horizon state sequexfaé ) is computed by means of model
equations (1.1) and both input and state constraints alesdpplowever, when using
model (3.1), this state sequence cannot be computed detstically. The method
described in [144] tackles this by computing set-valuetegteedictionsy,, , (k + i|k)
corresponding to input sequenag (see (1.5)):

Xaw k) (k+i4+1k) £ {Az + Bu(k +i|k)|[A B] € Q,2 € Xy, (1) (k + i|k)},
i=0,...,N—1, (3.5)
with Xy (k) (k|k) = {x(k|k)}. However, due to the fact thét is a V-polytope and

due to linearity of the prediction equations the predicsets can also be represented
as V-polytopes:

KXaw ey (k +ilk) £ Co{ajy,..ji (k+ilk)jm =1,...,r,m=0,...,i— 1},
i1=1,...,N, (3.6a)

with
IJO(/{—FHI{?):AJOI(/{“{?)—FBJOU(]{Z“{), j(): 1,...,7‘, (36b)
Ljo,....ji—1,Ji (k +i+ 1|k) = Aji‘rjO;---;ji—l (k + Z|k) + iju(k + Z|k)7

i=1,...,N—1,
Jm=1,...,7 (3.60)
m=20,...,1.

This prediction methodology is depicted in Figure 3.1. Itlisar that for anyA(k +
i)Bk+14)]e€Ni=0,....,5—1,7=1,..., N itis guaranteed that(k + j|k) €
Xun (k) (k + jlk) and that hence the sefs, , ) (k + j|k) capture all possible state
evolutions within the prediction horizon. Due to the facitth deterministic sequence
of inputs is considered, ignoring the fact that at titng- 1 a different input can be
applied depending on the measured valuec@f + 1|k), the setst,, , () (k + 1[k)
defined in (3.6) are calledpen-loop predictionsOther examples of this approach can
be foundin e.g., [31,33,84,110, 142, 143].
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Figure 3.1: Schematic representation of the computation of open-l¢aie predictions with a horizon lengti = 3 using an LPV
model (3.1)-(3.2) with- = 2. For clarity reasons, symbols for the state predictionsra t + 3 are omitted.
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3.3.1.2 Algorithm formulation

We can now formulate th®bust open-loop min-max MPC algoritHg imposing state
constraints to all vertices of the state prediction $&ts ) (k+i|k),i = 1,..., N and
by minimizing the worst-case cost by means of a min-max opttion problem:

Algorithm 3.1 (Robust open-loop min-max MPC). Given a system described by
(3.1)}(3.2), subject to constraint§1.2a}(1.2b) and given a control objectivél.3),
solve at each time instai, given the value of the current staték) = z(k|k), the
following optimization problem:

N N
min - max <Z||Ijo ..... ji1(k+i|k)||2g+ZIU(/ﬂJriIk)II%), (3.7a)

1=0 i=1

]m:17""r’

St Tjo,.gia (kE+ilk) € X, m=20,...,1—1, (3.7b)
i=1,...,N,

u(k +ik) € U, i=0,...,N—1, (3.7¢)

and subject td3.6b}(3.6c) Apply the inputu(k) = u(k|k) to the plant. Repeat this
procedure at the next time stépt 1 based on updated state information.

Due to convexity of the state constraint 4&and the fact that the state prediction sets
X (k + i|k) are polytopic, it is clear that imposing the state constsdio the vertices
of Xy, k) (k + i|k), guarantees thak,, , () (k + ilk) C X.

It should be noted that the original algorithm presentedld#¥] used FIR-models
with uncertain coefficients and an..- and L;-based cost expressed in termsgy0k)
andAu(k) £ u(k) — u(k — 1). However, the idea of making open-loop worst-case
predictions as explained above is conceptually identical.

If X, Xy andl{ are polyhedral the above optimization problem can be cdfigex
by reformulation as an SOCP. Due to the choice of a differest objective and a
more restrictive model class, the original algorithm carsblred by means of an LP
whose dimensions increase polynomially in terms of therobptoblem size, whereas
the above algorithm would require an exponentially indregaumber of optimization
variables.

3.3.1.3 Recursive feasibility and stability

Due to the fact that only input constraints are considerdti4d], recursive feasibility
is not an issue, since one can always choose the trivial sequience(k + ilk) =
0,i=0,...,N —1orAu(k+ilk) =0,i =0,...,N — 1. Therefore, no terminal
constraint is considered. Furthermore, due to the choidelRfmodels, which are
stable by construction and have finite settling-behaviorspecific measures need to
be included for asymptotic stability.

However, when extended to a more general setting, like Atlgor3.1, where state
constraints are also included, recursive feasibitibesbecome an issue, as is also
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Figure 3.2: Schematic representation of the computation of closeg-ttate predictions with a horizon length = 3 using an LPV
model (3.1)-(3.2) with- = 2. For clarity reasons, symbols for the state predictionsra & + 3 are omitted.
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pointed out in [144, Remark 2]. Also, when applied to the mgeaeral model class
(3.1)-(3.2), stability is not guaranteed without incluglsn appropriate terminal cost.

3.3.2 Closed-loop min-max MPC

In order to cope with the recursive feasibility issues founthe min-max MPC using
open-loop predictions, [129] introduced the notiomdthin-horizon feedbacleading

to closed-looppredictions. This paradigm explicitly makes of the fact thigimek + 1
additional information will be available in the form of netate measurements that can
then be used to adjust the control strategy.

3.3.2.1 Closed-loop predictions

Instead of optimizing a deterministic sequence of contctibas (inputs), the closed-
loop MPC paradigm optimizes over a strategy of control atithat is ordered in a
tree structure similar to the state predictions. While thersloop paradigm employs
a single inputu(k + i|k) at every time instant within the horizon, the closed-loop
paradigm employs different inputs;, . ;_, for every state prediction;, . ;,_,
within the horizon. In this way a different control stratetgyproposed for every
possible realization of the dynamic uncertaiptyk + ) B(k +¢)],i=0,..., N — 1.
As such the inputs over which the optimization takes plaeedapendent of the actual
state evolution within the horizon, which corresponds @ 1tbtion of feedback. This
concept is depicted schematically in Figure 3.2.

Mathematically, the new input sequence parametrizatiatersted asicy y (k) =
[ua(klk); ... ;ua(k + N — 1]k)], with

w1, 1(k +ilk)
w1, 2(k +ilk)

uq(k +ilk) = , i=0,...,N—1. (3.8)

U, (k4 ilk)
~

uc, v (k) is referred to as elosed-loop input sequencehe correspondingosed-loop
state prediction setsow become:

KXo () (k +ilk) 2 Coljo, . ji s (k+ilk)|jm = 1,...,r;m =0,...,0 =1},
i1=1,...,N, (3.93)

with

.Ijo(k+1|/€) :AJOI(/{|]€)+BJOU(/€|]€), jo = 1,...,’[”, (39b)
ijv"'ajiflJi(k +i+ 1|k) = Ajix.j07~~~;ji—1(k + Zlk) + B.jiuj();---Ji—l(k + Z|k)’
i=1,...,N —1,
Jm=1,...,1 (3.90)
m=0,...,1.
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Apart from being a solution to ensure recursive feasihilibe additional degrees
of freedom resulting from the within-horizon feedback atsmables the controller
to reduce the spread in the state predictions. As a resuletmble region can be
significantly larger compared to open-loop min-max MPC. $ame principle is used
ine.g., [68,104,129,142].

3.3.2.2 Algorithm formulation

The algorithm described in [129] was initially formulateat LTI systems subject to
bounded disturbances and was formulated for a generic ofassst objectives. Here
we give the equivalent formulation for disturbance-freé/$ystems (3.1)-(3.2) and
guadratic control objectives (1.3):

Algorithm 3.2 (Robust closed-loop min-max MPC). Given a system described by
(3.1)}(3.2), subject to constraint$1.2a}(1.2b) and given a control objectivé€l.3),
solve at each time instart, given the value of the current stat¢k) = z(k|k), the
following optimization problem:

uc,n (k) Jo..n-1=1,...,

N-1
min max (lejo,...,jil(kﬂlk)lé
=0

N

+Hx.7'07~~,j1\771(k + le)”?;)N + Z Hujo,--~7j1:(k + llk)”%) ) (310&)
=1

Jm=1,...,m
s.t. Tjo,..., ji—l(k + ’L|/€) e X, m=20,...,1—1, (310b)
i=1,...,N—1,
i = 1, ...y
Tjo,....jn-1 (F + NIk) € X, {‘ano TN (3100
Jm=1,...,m,
Ujo,....j; (k +ilk) € U, m=0,...,1i, (3.10d)
i=0,...,N—1,

and subject td3.9b}(3.9c) Apply the inputu(k) = u(k|k) to the plant. Repeat this
procedure at the next time stépt 1 based on updated state information.

It is clear that compared to Algorithm 3.1, the above aldponitis computationally
even more demanding. However, A, Xy and i/ are polyhedral it still can be
converted to an SOCP and therefore for small valuesvott is still practically
implementable.

3.3.2.3 Recursive feasibility and stability

One can show that recursive feasibility and asymptoticilgtalof Algorithm 3.2 is
guaranteed ifty is convex and there exists a feedback controlldw) = — Kz (k)
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such that the following modified stability conditions hold:

1. Xy C&, (3.11a)
2. —Kzel, Vo € X, (3.11b)
3. (A—BK)z € Xy, Vo € Xy V[A Bl €Q, (3.11c)
4. Qn — (A-BK)"Qn(A - BK) = Q + K'RK, V[A Bl € Q. (3.11d)

Condition (3.11c) means thafy should be chosen such that it is robustly positive
invariant with respect to the closed loop system formed leydisturbance-free LPV
system and the terminal controller. More details on how tostrmict such sets will be
given in Chapter 2.

Condition (3.11d) implies that the terminal c@gf; should be an upper bound to the
worst-case cost beyond the horizon if the terminal cordrellould be applied? ; can
be calculated by solving an SDP imposing (3.11d) for allices of2. More details
can be found in Chapter 4, where similar optimization protdeare discussed.

Lemma 3.1 (Robust semi-global asymptotic stability). The closed-loop system
formed by syster8.1)(3.2)and the MPC controller defined in Algorithm 3.2 leads to
recursive feasibility of the controller and asymptoticlstiy of the closed-loop system
for all statesz(0) that lead to a feasible optimization problei®.7), if X is convex
and a controlleru(k) = — Kz (k) exists such that conditior{8.11)are satisfied.

Proof. We only give the proof of recursive feasibility. Assume arim@l solution
exists at timek:

i = 1,...,1,
w0 (k[k), ul, (k + 1K), .. uS, o (k+ N —1]k), {fn—(),...,N—Q, (3.12)
k+ 1|k 20 k+ Nk Jm =1, 3.13
a$ (k+11k), .. a5 iy, (k+ NK), m=o,.. N_1 @13

and a new state measuremef + 1) = z(k|k) is obtained. Since it is assumed that
the real system is described by (3.1)-(3.2), it is possiblerite

z(k+1) Z/\ 29k +1k),  with  Xj(k) >0, \j(k) =1. (3.14)

Using these uncertainty coefficiemts = X;(k) it is possible to construct a feasible
input sequence at time+ 1:

]m:17---,r,
ub o (k+ilk+1) = Z/\JO UG gy (kilk), dm=1,..i-1,
Jo=1 i1=1,...,N —1,
(3.15)
u.t7177]N71(k+N|k+1 :_KZAJU 705715 7N71(k+N|k)?

Jo=1
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jm:]‘7"'7/r7
{m—l,...,N—l, (3.16)

with a corresponding feasible state sequence

T ]m = 1,...,’{‘,
af kil 1) = Nad s o (B+ilk), (m=1,...i—1,
Jo=1 1=2,...,N,
(3.17)

zt jN(k+N+1|k+1):(AjN—BjNK)Z)\ij;?wl vvvvv in o (E+ Nk),

Jo=1
= (AjN - BjNK)xg’h...,jN,Jk + le + 1)7
jm = 1’ AR 77’.7
{m=1,...,N. (3.18)

Due to convexity of/ and X and condition (3.11a) it is guaranteed that the inputs
and states constructed in (3.15) and (3.17) respectivébfisaonstraints (3.10d) and
(3.10b) in the optimization problem at tinke-1. Due to convexity ofty and condition
(3.11b) itis also guaranteed that inputs (3.16) satisf{(q8) at timek + 1. Finally, due
to condition (3.11c) and convexity dfy the states (3.18) satisfy (3.10c). Finally, by
construction the above proposed inputs and states alsfysatinditions (3.9), which
shows that the proposed input and state sequence is indesbléfor the optimization
problem at time: + 1, which proves recursive feasibility.

Once the feasible solution at tinket- 1 is constructed, the proof of robust asymptotic
stability is similar to the proof of Lemma 1.2 and is hence tbeqi. O

3.3.3 Assessment

As shown by Lemma 3.1, Algorithm 3.2 guarantees recursiasilidity, whereas
Algorithm 3.1 in its present form does not guarantee reear$easibility in the
presence of state constraints. The main reason for thig ihe@bsence of a terminal
contraint in Algorithm 3.1, but the fact that no feedback asidered within the
horizon. Even if a terminal constraint would be added to Ailjpon 3.1, recursive
feasibility would still not be guaranteed.

Insight into this issue can be gathered by looking at equg8d.6), where it becomes
clear that the MPC algorithm has enough degrees of freedochdose a different
input vector for each terminal state obtained at timeAs a result the corresponding
new terminal states (3.18) are kept within the terminal trast by the closed-loop
dynamicsd4;, — B;, K of the terminal controller and the LPV system.

When doing open-loop predictions only one control actioawvgilable, which is in
general not sufficient to keep all the terminal states withaterminal constraint. It is
hence due to the use of an open-loop input sequence thasnexteasibility typically
cannot be guaranteed in open-loop min-max MPC algorithms.eXception to this
observation is the combination of an open-loop input seqgeievith a time-varying
horizon length, as is described in [143].
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On the other hand, open-loop min-max MPC exhibits a lower maational
cost because a significantly smaller number of optimizatiariables is involved.
Furthermore, the open-loop input sequence parametnzatiootationally somewhat
more transparent, whickeemdo facilitate analysis of the algorithm.

Mainly due to the computational advantage and despite tbetfeat open-loop
input sequences typically do not lead to recursively fdaslgorithms, some recently
published algorithms still aim to obtain recursive fedgipiwhile employing open-
loop input sequence parameterizations. The next two secsbow that this is not
always done successfully.

3.4 Corrections to [Wanet al., 2003]

In this section we treat the robust MPC algorithm introduefiL42]. Despite the

use of an open-loop input parametrization, the algorithelagned to be recursively
feasible. The contribution of this section is the detectibran error in the recursive
feasibility of this algorithm. By means of a counterexamble algorithm is shown

not to be recursively feasible in general. A correction ®algorithm is proposed and
illustrated by means of the same numerical example.

3.4.1 Introduction

The problem considered in [142] is that of controlling a dlibaince-free LPV system
(3.1)-(3.2) subject to input constraintg(k)| < wumax,k € N. A nominal model
[/1 B] € , representing the most likely model of the true system is alssumed
to be known. The aim is to construct a model predictive cdietrdo robustly,
asymptotically, stabilize the system with (1.3) and¢(k) = 0,ut(k) = 0 @s a
control objective.

The algorithm proposed in [142] addresses this issue bygasfimite horizon length,
within which an open-loop input sequence is employed, cogbivith a time-varying
terminal constraint set that is imposed on the terminakstaf the state prediction
tree. The stability proof of the algorithm is based on theeggm that, due to the
fact that the terminal constraint set is invariant with exstpto a robustly stabilizing
terminal controller, each terminal state is driven furtimside the terminal constraint
set. However, due to the choice of a deterministic input sage, proving stability
requires the construction of a single input vector that #iameously drives all terminal
states further inside the terminal constraint set. Forabistsystems this cannot be
guaranteed based upon the invariance property, that oalsagtees that such an input
vector exists for each terminal state individually. Fostldason the algorithm proposed
in [142] cannot be proven to be asymptotically stabilizingither can it be guaranteed
to be feasible if it is initially feasible.

In this section we present a new algorithm with a time-vagytierminal constraint
set that optimizes over a closed-loop input sequence ratiagr an open-loop input
sequence, similar to Algorithm 3.2. Due to this modificafithe invariance property
of the terminal constraint becomes a sufficient conditiarstability of the controller.
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This section [105] [142]
Ny, Ny n,m n,m state and input dimensionality
Q,R Q,R 2 % state and input weights
XN, Fn(+) Zi, Z () 2, F () terminal constraint and cost
kN () ke(+) e () terminal controller
Z; Qi Q; terminal constraint parameter
Yiy X5, Y; Yiy X5, Y; Yi» Xi, Y5 terminal cost, controller param.
r L L number of vertices describir{g
Pi T4 T radius of ball inscribed
in ¢-th terminal constraint set
uy (k) U(k) U(k) open-loop input sequence
uq, (k) up (k) / closed-loop input sequence
Xuy (K +ilk) Z(k+ik) Z(k+ilk) state prediction sets
Wioofpea ) Mjo_g,olc) closed-loop input vector
A (k+1) @1l fan Citl,jipr model uncertainty coefficients
attimek + i

Table 3.1: Notational differences and similarities between this ise¢t[105] and
[142].

3.4.2 Time-varying terminal constraint set

In this section a brief description is given of the off-lin@rpof the corrected algorithm,
which is identical to that of the original algorithm. For teaeke of brevity in this
section we refer to equations of the original paper [142hwlie notatior(-)*. Similar
notations will be used to refer to theorems, corollariesagdrithms. For the sake of
uniformity with other parts of this thesis, some notatiossdiin this section deviate
from the notations used [105, 142]. Table 3.1 gives an oearaf differing notations.

We make use of the classical ingredieajsa terminal controllersy (-) : R™ —
R™, b) a terminal costFy () : R — R and c) a terminal constraint’y C R"=.
The latter two elements can be interpreted as an upper bauttet(in this case
nominal) control cost of the terminal controller, when apglat the end of the
control horizon of the MPC controller. The terminal consttaepresents a feasible
invariant set associated with the terminal controlleregithe aforementioned input
constraints. See [82, 142] for details. Theorémallows the construction of a
triplet (Xn,sxn(-), Fn(-)) parameterized by variableg X,Y,Z as Xy = {z €
R zTZ e < 1}, kn(z) = YZ 7z andFy(z) = 2Ty Z 12, with (v, X, Y, Z)
satisfying (5)*, (6)*, (9)* and (11)* for a givenp > 0, denoting the radius of a
hyperball inscribed ifty. X is an invariant ellipsoid with respect toy (), meaning
that

x € Xy = A(k)x + B(k)kn(z) € Xn, V[A(k) B(k)] € Q. (3.19)

Corollary1* then allows the construction of a continudiy (0), kn (6, ), Fn (0, -))
based on two sets of parametéss, X1, Y1, Z1) and(vo, Xo, Yo, Zo), obtained with
Theorem1* for two valuesp, and p; with p; > po, by considering the convex
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combination
(v(9),X(0),Y(0),Z(0)) = 0(v1, X1, Y1, Z1) + (1 = 0) (70, X0, Yo, Zo), (3.20)

with € [0,1] and constructing the correspondi@n (9), xn (6, -), Fn(6,-)) as
in Theorem1*. See also Appendix A for more details. Algorithif makes
use of Theoreml* and Corollariesl* and 2* to construct(~o, Xo, Yo, Zo) and
(71, X1,Y1,71) and the corresponding continuum of terminal constraing seta
practical way.

3.4.3 Recursive feasibility

The proof of Theorer@* asserts that, given optimal solution%(k), X° (k+:|k), 6° (k)
at timek, one can find a feasible input sequence

uly(k+1) = [u(k +1[k); ... ;u°(k+ N — 1]k); «'(k+ N[k +1)], (3.21)

for the optimization problem at timee+ 1, such that the corresponding state prediction
setXye w41y (k+ N + 1]k + 1) satisfiesXys (1) (k+ N + 1]k +1) C An(6°(k)),
by applying the terminal controllesry (6°(k), -) to the terminal state(k + N k).
However, this terminal state is not uniquely determined dmethe unknown
coefficientsh;, (k + ¢),5, = 1,...,r,4 = 0,..., N — 1 (cfr. expressions between
(3)* and (4)*). It is therefore unclear what value to choose btk + N|k + 1).
Neither can it be guaranteed that there exists any value' fér+ N |k + 1), such that
Xut, (k+1) (K + N + 1]k + 1) € Xy (6°(k)). This would require that

Az + Bul(k+ Nk +1) € Xy (0°(k)), V[AB] e Q,Vae Xn(6°(k)), (3.22)
while set invariance afty (6°(k)) only guarantees that
Az + Ben(0°(k),z) € Xn(0°(k)), V][AB] e Q,Vee Xn(0°(k)), (3.23)

which means that a different input vector is used for each Xy (6°(k)), which
conflicts with condition (3.22). Therefore, it is not alwapessible to find an
appropriate value fou!(k + N|k + 1) and hencef°(k) is not necessarily non-
decreasing, neither is recursive feasibility guaranteed.

However, in the case thaty (6°(k)) is invariant with respect to the open-loop model
Te1 = A(k)zy with A(k) € Co{Ay, ..., A}, one can choosé (k+ N|k+1) = 0.
This suggests an explanation why the example in [142] do¢sesnlt in unstable
closed-loop behavior. This also suggests the possibleessfid application of the
original algorithm to certain classes of stable systems.

3.4.4 Feedback MPC formulation

In this section we present the on-line part of the new algoriand the different modes
of operation that are employed. The focus is on the intradoatf feedback within the
horizon as in Algorithm 3.2, in order to be able to guarangsairsive feasibility.
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The modified algorithm uses a closed-loop input sequence instead of an open-
loop input sequencey . For notational simplicity we definesub-sequencas, ;(k+
plk) of ua(k + plk):

ujn,..1(k+ plk)
R ujn,..2(k+plk)
uc;(k+plk) = . , p=0,...,N—1, (3.24)

Uj,r,...,r(k +p|k)
N———
p

such thatue(k + plk) = [ua,1(k + plk);...;ua,r(k + plk)]. Please note that a
slightly different notation as in [105] is used in order todmnsistent with the notation
of Algorithm 3.2. This tree of inputs implicitly defines a dami policy for all possible
combinations of A(k + p) B(k + p)] € Q,p = 0,..., N — 1, since these can be
described as convex combinations of the nodes of the paydp!. A corresponding
state prediction tree;, ... ;,_,(k + p|k) with jo._,—1 = 1,...,randp = 1,...,N
is constructed as in (3.9¢). Similar notatiaagk + p|k) andx(k + p|k) with p =
0,..., N andxy (k) will be used in the remainder of this section.

In an initial phaserfiode J, an optimization is performed over the inputg x (k) in
order to minimize the size of the terminal constraint sedrahterized by the parameter
0:

min 6, (3.25a)
ucl,N(k),G
subject to
.]m = 17 7T7
|ujoa-~~7jp—1(k+p|k)| < Umax; mZO,---,p—l, (325b)
p= 07 L) N — 17
m = 1,...,71,
Tjg,...jn—1 € AN(0), {in o N1 (3.25¢)
0<6<1. (3.25d)

The optimal value ofl at timek is denoted ag° (k).

A second phaserfode 2 is initiated when at the previous time step 1 the smallest
terminal constraint°(k — 1) = 0 is obtained. In this phase the horizon length is
reduced with 1 at each time stey (= N — 1) and an MPC problem with a nominal
cost objective is solved. For the sake of clarity and withlegs of generality, we
assume that the nominal system model is givefvb§g] = [A; B;]. The nominal state
and input predictions now becomi¢k + p|k) = z1,..1(k + p|k) anda(k + p|k) =
u1,...1(k + p|k). The following optimization problem is obtained:

N-1 N-1

min S [tk -+ iR) a3 [k + K)o + 60k + NIB,, 0. (326)
1=0 1=0
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wherety (k) = [a(k|k);...;a(k + N — 1]k)], subject to (3.25b) and (3.25c) with
6 =0.

If at the previous time step — 1 a mode 2 optimization problem was solved with
N =1, a third and final phaser(ode 3 is initiated. In this mode, the current state
x(k) is guaranteed to be positioned within the smallest terntioatraint¥y (0) and
therefore the corresponding terminal control lagk) = xx (0, z(k)) = YoZ, 'z (k)
is applied to further drive the system to the origin.

These 3 modes of operation can be summarized in the folloaémgalgorithm:

Algorithm 3.3. Initialize N := Ny andmode := 1. Given a system described@s1)
(3.2), input constraintsu,,.x, state and input weighting matric€g € S"*_ andR €
Sh_ and two set$yo, Xo, Yo, Zo) and(y1, X1, Y1, Z1) calculated using Algorithn*
and given the current state(k), perform at each time stepthe following steps:

e If mode = 1, solve optimization probleif8.25)and applyu(k|k) to the system.
If 6°(k) = 0 setmode := 2. Wait until time stegk + 1.

e If mode = 2, setN := N — 1, solve optimization probler(8.26) subject to
(3.25b)and (3.25c)with 6 = 0 and applyu(k|k) to the system. IV = 1, set
mode := 3. Wait until time stegk + 1.

e If mode = 3, applyu(k) = Yy Z; ' =(k) to the system. Wait until time stép- 1.

3.4.5 Feasibility and asymptotic stability
The following theorem is proven as a corrected version toofém 2.

Theorem 3.1. Given a system described €& 1)(3.2), input constraintsu,, .., state
and input weighting matrice@ and R and an initial horizon lengttiVy. If optimization
problem(3.25)is feasible at timé: = 0 for the initial statez(0) and N = Ny, then
Algorithm 3.3 is also feasible fot > 0 and robustly, asymptotically stabilizé3.1)
(3.2)

Proof: We prove that under the given assumptions modes 1 and 2 aibléeand
terminate in a finite number of time steps. Therefore robagtmptotic stability is
proven if mode 3 is robustly asymptotically stable.

First, we prove by induction that mode 1 is feasible and teatgs in a finite amount
of time. By assumption a feasible mode 1 solutiaf \(k — 1),x%(k — 1) and
6°(k — 1) exists for eachk > 0. We will now construct a feasible mode 1 solution
uf) v (k),x! (k) and 6 (k) with 6°(k) < 6°(k — 1). Since[A(k) B(k)] € Q, itis
possible to find values; (k),..., A\.(k), with \;(k) > 0 and)_;_, \i(k) = 1, such
thatxz(klk) = >°._; \i(k)z9(k|k — 1). Using these values;. (k) it is possible to
construct a new set of feasible inputs

uly v (k+plk) = Z/\ ug;(k+plk—1), p=0,...,N-2, (3.27a)

and

ut o (k+ N —1lk) = kn(0°(k — 1), 2t

05 JN—2 ) Jo7~~~,jN72(

k+ N —1]k), (3.27b)
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with j,, = 1,...,r, m = 0,..., N — 2. A set of feasible states can be constructed
likewise:

xt (k4 plk) = Z)\ x(k+pk—1), p=0,...,N—1, (3.28)
andxg-o VVVVV jn_, (k+N|k) defined using (3.9¢). Itis clear that through constructimse

sets of inputs and states satisfy (3.9¢). Due to the corwekihe terminal constraint
set, it is also clear that by construction all the states fsdik + N — 1|k) also lie
within the terminal constraint séfy (6°(k —1)). Due to the invariance of this terminal
constraint set, the strict inequality in (8nd the construction off, \ (k+N —1k), all
terminal states fronx! (k + N |k) lie in the strict interior of¥'x (6°(k — 1)). Therefore
infy(0°(k — 1) — 6°(k)) > 0, which proves the fact that mode 1 terminates in a finite
amount of time.

In mode 2 the horizon length is decreased by 1 in each time stej is trivial to
prove that the conditio®V = 1 will be satisfied in a finite number (i.€Vy — 1) of time
steps. By constructing a feasible mode 2 solutidp , (k),x%,_, (k) using (3.27a)
and (3.28) feasibility is also trivially guaranteed.

By means of a similar argument one can easily see th¥t# 1 at timek — 1, the
current state:(k) will lie in the terminal constraint sety (0), which legitimates the
use of the terminal controlletx (0, -) in this mode, since it robustly asymptotically
stabilizes (3.1)-(3.2) for all initial states that belongts invariant sef'y (0). See [68,
142] for details. This, combined with the above argumenisygs robust asymptotic
stability of Algorithm 3.3. O

3.4.6 Example

In this section we present a numerical example that cledldgtiates the flaw in
Algorithm 2* and shows the improvement obtained with Algorithm 3.3. @Giersa
system withl. = 2,m = 1,n = 2, described by

10 10
A= [ ~0.3 1.3 } ! Az = { ~0.1 1.1 ] (3.292)
B =[02 0", By=[1 0], (3.29b)

with input constrainfu| < 1. Initial horizonsNy € {4,5} and input and state cost
matricesQ) = diag(1,0.1) and R = 0.001 were chosen. The radius of the largest
inscribed ball was chosen as € {0.34,0.35}. The radius of the smallest inscribed
ball was found to bey = 0.27411. Simulations were performed on a time-invariant
system described b4, Bs] with initial statexy = [1 1]T. The resulting total
simulation control costs and computation times are giveTaible 3.2, the sequence
of #°(k)-values forNy = 4 is depicted in Figure 3.3. Algorithm*2exhibits non-
monotonically decreasing values @&f(k) in mode 1 for all aforementioned values of
p1 andNy and becomes infeasible in mode 1 far= 0.34, Ny = 4 due to (3.25d) and
infeasible in mode 2 folNy = 5 due to (3.25c¢). Algorithm 3.3 exhibits monotonically
decreasing values @P (k) in mode 1 and is feasible and asymptotically stable for all
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p1=0.34 p1=0.35
Alg. 2*, No = 4 inf. atk = 2 42.58 (0.39s)
Alg. 2*, No =5 inf.atk =29 inf.atk =27 (0.83s)
Alg. 3.3,Np =4 30.74 30.73 (0.59s)
Alg. 3.3,Np =5 30.79 30.78 (2.08s)

Table 3.2: Total simulation control cost for Algorithm*2and Algorithm 3.3 forp;, €
{0.34,0.34} and Ny, € {4,5}. The maximum computation time per iteration (P4-
2GHz, MATLAB 6.5, LMI LAB 1.0.8) forp; = 0.35 is indicated between brackets.

0]

Figure 3.3: Values ofzq(k),u(k) and 6°(k) for Algorithm 2* (dotted), the new
Algorithm 3.3 (solid) and the alternative Algorithm projasin [143] (dash-dotted)
for p; = 0.34 (larger6@-values) andh; = 0.35 (smallerg-values) andV, = 4. Note
that Algorithm 2 becomes infeasible for, = 0.34 at timek = 2.
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aforementioned values @f, and Ny, but at the cost of an increase in computational
complexity.

3.4.7 Conclusion

In this section an existing algorithm [142] is successfailydified in order to guarantee
recursive feasibility. A counterexample is provided irading that the original
algorithm was falsely claimed to be recursively feasibld #mat the new algorithm
indeed solves the problem. No attempts have been made towmpther apparent
deficiencies of the original algorithm, among which possglboptimal behavior i
is given a relatively large value and the large maximum cdiajmnal complexity per
iteration.

The next section shows that a similar issue was already qrése less recently
published algorithm, on which Algoritht is partly based.

3.5 Corrections to [Casavoleet al., 2000]

3.5.1 Introduction

This section discusses an error present in [31] that is airtolthe one discussed in the
previous section. The paper is slightly less recent thag][Iut no other publications
appear to hint at possible errorsin the paper under coraider so it still is worthwhile
to give an account of the misconceptions present in thisrpape

The algorithms introduced in [31] are developed specifycil input-constrained
linear systems with polytopic uncertainty description. eTauthors state that the
algorithms are recursively feasible and asymptoticalipls. In order to obtain these
two properties, the authors make use of a terminal cost andrasponding constraint
set [82] that is recalculated at each time step using thdtsesi{68]. Due to the lack
of imposing the terminal constraint on the set of terminatext in the optimization
problem of Algorithm 1 of [31] (in further sections referremlas Algorithm I, with
similar notation for Algorithm 2 of [31]) and the fact that apen-loop input sequence
is used, it is not guaranteed that the algorithm is reculssifeasible. Algorithm 2
suffers from a similar deficiency, but for reasons of brewigywill focus on Algorithm
1* in this section.

In the rest of this sectiori-notation is used to denote theorems, equations and
algorithms of the original article [31]. We refer to tabled3and the original article
for further details about other notations.

3.5.2 Deficiencies in original algorithm

Algorithm 1* extends the results of [68] by addidg free control moves(k|k), ...,
u(k + N — 1]k) to the formulation. These control moves are meant to driee th
system inside the time-dependent terminal constrainttsgtk), which is taken to
be the invariant ellipsoid corresponding to a time-depeahtkrminal controller gain
—K (k) constructed using [68]. At each time step> 0, the terminal controller and
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This section  [94] [31]

k t t discrete time

i k k within-horizon time index
Ny, Ny n,m n,m state and input dimensionality
A;, B; P,;,G; P;,G; system matrices

Q,R v, U, v, v, state and input weights
u Q. Q. input constraint set

Qn Q Q terminal cost matrix

-K F F terminal controller gain
Xn & & terminal constraint set

v, Y, Z p, Y. P p, Y, P terminal cost, constraint

and controller parameters
l number of vertices describir{g

u(k) u(-|t) u(-[t) open-loop input sequence
u (k) u(t) / closed-loop input sequence
Wjo,ooiper ) Uip_1,go () ] closed-loop input vector
uf(k+ilk)  a*(t+klt) @ (t+klt) candidate feasible input
A (k+1) Bl o pj, (1) model uncertainty coefficients

attimek + ¢

—~
~—

Table 3.3: Notational differences and similarities between thisisac{94] and [31].

its invariant ellipsoid, are recomputed to take into acc¢dba (assumed) fact that the
system has been driven closer to the origin. For reasonsevithrwe refrain from
entirely restating the algorithm, but refer to [31] for thetails.

Two main deficiencies exist in Algorithm1

e The terminal constraint’y (k) is not explicitly imposed on the terminal states in
optimization problem (28}(29)*, which corresponds to step 1 of Algorithm 1
and as a result feasibility of the terminal controller is goaranteed.

e An open-loop sequence is employed and for reasons alreadiydsin the
previous sections, this in general does not guaranteesigedeasibility, even in
the presence of an appropriate terminal constraint.

As a result of these deficiencies, Lemmades not hold in general. Given an
optimal input sequenca; (k) to (28)-(29)* at timek, expression (37)is used as a
candidate feasible input sequence to {2@9)* at timek + 1. However, due to the
fact that the terminal constraint € Xn(k),Vz € vert{Xy,s a)(k + N|k)} is not
explicitly imposed in (28)-(29)*, this input sequencal, (k + 1) is not guaranteed to
be feasible, since K (k)x°(k 4+ N|k) is not guaranteed to be feasible® (k + N k) €
Xus, (k) (k + N|k), which contradicts with the paragraph between {36)d (38).

Assume that it would be guaranteédthat X, () (k+N|k) C Xn (k) and therefore
that — K (k)z°(k + N|k) € U, even then monotonicity of the cost is not guaranteed.
The expression right after (38assumes that the terminal cost value at titne 1
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resulting from input sequenasy, (k + 1) can be upper bounded by

A; — B;K(k))z||? , 3.30
RU.... SO I (EDz[1G 0 (ks1) (3.30)

which in turn is based on the incorrect assumption that ireggin

Kot oy (B + N +1[k + 1)
C{(A; — BiK(k))zli e {1,...,7},z € Xus, (k) (K + N|k)}. (3.31)

Due to invariance ofty (k) it can be shown that the rhs of the above expression is a
subset ofty (k). On the other hand, due the specific choicaibfk + 1), it can be
seen that

Xyt eyy (b + N+ 1]k +1)
— {Aiz = BIK(1)2°(k + N k)i € {1,...,7},2 € Xug oy (k+ N|K)}, (3.32)

which, in general, is not a subset &% (k), since one cannot necessarily find a fixed
control move (i.e.—K (t)z°(k + N|k)), that steers all terminal states further into the
invariant ellipsoidX’x (k). This wrong assumption is similar to the error discussed
in the previous section. The main consequence is that thesina (3.31) does not
hold in general, that the terminal cost at tife- 1 in general cannot be bounded by
(3.30) and that therefore monotonicity ¥f (k) is not guaranteed. Similarly, recursive
feasibility cannot be guaranteed anymore, since in gereiginot guaranteed that
Xn(k+1) C Xn(k).

By means of similar arguments one can also invalidate baimesl of Lemma 2.

3.5.3 Counterexample

In order to illustrate these findings, we consider a systeth®form (1)-(3)*, with
r = 2, defined as follows:

10 1 0
A= { ~0.3 1.3 } : Az = { —0.1 1146 } ! (3.332)
B =[02 0], By=[1 0], (3.33h)

with § € [0,1] a parameter that is fixed in time and known during the corgroll
synthesis. Fopv = 0, this system is identical to (3.29). The system is subject to
input constraintu(k)| < 1,Vk > 0. Cost matrices are chosen@s= diag(1,0.1) and

R = 0.001. The controller horizon is chosen 35= 2.

Figure 3.4 shows simulation results starting from initigts [1; 1] for 4 different
values ofy. The algorithmis initially feasible for all values 6f but becomes infeasible
after a few time steps for the two largest valuessof Also the functionW (k) is
not monotonically decreasing. The original example in [8&gs not exhibit these
problems because the system is already stable in open-loop.
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3.5.4 Corrected algorithm
In order to correct the deficiencies of Algorithrh, Two modifications are proposed:

o explicitly impose the terminal constraint set in the optiation problem (28}
(29),

e use a closed-loop input sequenag (k) instead of an open-loop input
sequence.

As in the previous sections the closed-loop input sequange (k) and closed-
loop state prediction set&, . )(k + N|k) are defined as (3.8),(3.24) and (3.9)
respectively.

We can now state the corrected algorithm in a straightfodwaay:

Algorithm 3.4. Attimek = 0, givenz(0) solve the initialization step of Algorithni 1
with the closed-loop input sequenag y (k) (instead ofuy (k)) and state prediction
polytope(3.9). At every timek > 0 execute the following steps:

1. Givenz(k), Z(k),~(k), solve the following optimization:

N
u y(k) = argmin > J;, (3.34)
JO...N-,ucl,N(k) i=0
subject to
JN * .
s k) Z(k) >0, Vzevert{Xy, y(k+ilk)}, (3.35)
In < (k) (3.36)
jm = 1’ A 77’.7
uj(),---;ji—l(k—’—i'k) eu, m=20,...,1—1, (337)
i=0,...,N—1,
1 * * IJm=1,...,m7
Qzxjy. i, (k+ilk) JI « | >0, m=0,...,i—1, (3.38)
Riuj, i (k+ilk) 0 I i=0,...,N—1.

2. Applyu°(k|k) to the plant.
3. Calculate]Z(k +1),Y (k +1),v(k + 1)] using step 3 of Algorithm*1 with the
closed-loop definition of the state prediction polyt¢pe).
Theorem 3.2(Feasibility and Stability). Algorithm 3.4 is recursively feasible if the

initialization step is feasible, in which case it also asyatigally stabilizes the system.

Proof: Since step 1 is identical to the initialization step, exdepthe fixation of the
terminal constraint and cost, it is straightforward that thrmer is feasible if the latter
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Figure 3.4: Application of Algorithm I* to system (3.33) for initial statg; 1] ando €
{0,0.016,0.018,0.020}. The algorithm does not result in a monotonically decregsin
Lyapunov functiori? (k) and becomes infeasible for the latter two values af time
stepsk = 3 andk = 6 respectively.
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Figure 3.5: Application of Algorithm 3.4 to system (3.33) for initialate [1; 1] and
d € {0,0.016,0.018,0.020}. The algorithm results in a monotonically decreasing
Lyapunov functiod¥ (k) and results in stable behavior for all 4 values of
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is feasible. This shows that step 1 is feasiblé at 0. If step 1 is feasible at timg,
then step 3 is also feasible at tirhe This is due to the fact that all terminal states lie
insideX,, (k), since this is imposed by constraint (3.36). Thereforedtss guaranteed,
due to invariance, that all statéd; — B; K (k))z used in step 3 of Algorithm 1 also
lie within X (k), which indicates thaZ (k), Y (k),~(k) are feasible solutions to the
optimization in this step. As a consequence the propgity+ 1) < (k) also holds.
We now show that it is possible to construct a feasible smiitih step 1 at timé + 1.
Because of (2), itis possible to find values; (k), ..., \.(k), such thate(k + 1) =
Yoi_i Ar(k)xp (k + 1|k). Afeasible solutiomf:l_’N(k + 1) can now be constructed as

T

ul(k+ilk+1) = cjul;(k+ilk), i=1,...,N—1,
j=1
and
ul ook Nk+1) =Kkl . (k+ Nk+1)),

jm:]‘""7/r.7
m=0,...,N —2.

The corresponding state predictions can be expressedsyrak

X (k4 ilk+1) =Y A (k)x2; (k + ilk), i=1,...,N,
j=1
and
af ik N+1k+1)=(Aj, — By K(k)ah, . (k+Nlk+1),
jm = 17 et l7
m=1,...,N.
One can see that this input sequence satisfiesf¢ry = 1,..., N — 1 and, because

all possible states(k + N|k + 1) € Xn(k), also fori = N. Due to the specific
choice oful,(k + N |k + 1) and the wayty (k + 1) is calculated, one can see that the
terminal constraint is also satisfied for the candidate trggguence proposed above.
Therefore step 1 of Algorithm 1 is also feasible at titae- 1, which then proves
recursive feasibility. Furthermore, due to convexity amedduse the state predictions
corresponding tcmf:l,N(k + 1) can be expressed as convex combinations, one can see
that

Xuil,N(kH)(kJF“kJ“ 1) C XuglyN(k)(k‘F ilk), i=1,...,N.

Combined with the observation th@ty (k) satisfies (19) and thaty(k + 1) < (k)
this then shows thdl’(k + 1) < W (k), which proves asymptotic stability, along the
lines presented in [82]. O

Figure 3.5 shows the same simulation shown in Figure 3.4 ,usimg Algorithm 3.4.
Recursive feasibility is now obtained for all 4 valuessofAlso, W (k) now behaves
monotonically.
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3.6 Conclusions

In this chapter the important issue of recursive feasiblias been discussed in the
context of robust MPC. Compared to nominal MPC, this issusoisiewhat more
delicate and subtle and requires special attention wheigrdag MPC algorithms.
The use of open-loop input sequences, although attractive & computational point
of view, often does not lead to recursive feasibility. Thiglustrated using two recently
published papers [31, 142] that make errors in this respect.

An important observation that can be made is that recursiasilbility and compu-
tational simplicity seem to be incompatible design objexti One of the aims of the
following chapters is to provide methods to eliminate oewkte this problem.



Chapter 4

Robust MPC using Polyhedral
Invariant Sets

“Prediction is very difficult, especially about the futtire.

— Niels Bohr (1885-1962) —

This chapter discusses and extends three different typesbost MPC
algorithms. First the MPC algorithm introduced by Kothatea¢ [68] is
discussed. Secondly, interpolation-based MPC algorithresdiscussed
and finally a robust quasi-infinite horizon algorithm is dissed. All
three classes of algorithms are extended towards the uselghedral
invariant sets instead of ellipsoidal invariant sets, leayto either
reduced computational complexity, less conservativetcaing handling
or a combination of both. The first two classes are also exdmoh an al-
gorithmic level towards more general cost objectives anast@ints and
to further enlarge the feasible region respectively. Nuoarexamples
are provided, illustrating the obtained improvements.

4.1 Robust constrained linear state feedback synthesis

4.1.1 Introduction

This section combines and improves two complementary glhgos in order to obtain
a computationally tractable control algorithm with impealvcontrol characteristics.
On the one hand the robust MPC method introduced by Kotbhed. [68] is used.

This algorithm is able to construct linear robust lineadtegck laws for LPV systems
subject to input and state constraints, but has the dissalyarthat it uses ellipsoidal
invariant sets. This can lead to conservative constraiatglling, even when the

73
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algorithm is applied in a receding horizon fashion, i.e. whse feedback law is
recomputed at each time instant based on new state measusem@n the other
hand the algorithm to construct polyhedral invariant setsLPV systems, which is
described in the previous chapter is used to obtain an inggiolaaracterization of the
feasible region of the resulting controller. The downsifléhe latter algorithm is that
it does not allow the simultaneous construction of a colgr@nd the corresponding
polyhedral invariant set, as does the algorithm discuss§eBi.

This chapter extends these algorithms in two important wédgnst the method of
[68] is extended to also include mixed state/input constsaand cross-terms between
states and inputs in the quadratic objective function. Belgpthe use of polyhedral
invariant sets is introduced in the controller synthesiadeess the conservativeness
of the constraint handling of the resulting controller anditeratively recompute
the feedback gain of this controller in order to improve thongtraint handling.
The resulting algorithm consists of the sequential sofutib several SDPs. Both
improvements were published in [93].

The method described in this section is related to MPC in re¢weays. First
of all it also provides a method for off-line controller shesis for systems subject
to input/state constraints. It can be verified that the tawplcontroller, Lyapunov
function and invariant sets satisfy the stability condiidq3.11) and as such can be
used as terminal controller, cost and constraint respagtivOn the other hand, the
method can also be applied on-line in a receding horizoridagby recalculating the
feedback gain at every time step in order to further impramestraint handling. As
such this method is also an MPC method in itself.

4.1.2 Problem formulation
This paper considers LPV systems (3.1) with polytopic utadety description (3.2),
subject to state and input constraints (2.10)-(2.11). Laten this section also mixed
state and input constraints will be considered:

[x(k);u(k)] € Y = {y|lAzuy < 1}, ke N. (4.1)
The aim is to find a linear feedback controller

u(k) = —Kuz(k), keN, (4.2)

that robustly asymptotically stabilizes (3.1)-(3.2) waith violating constraints (2.10)-

(2.11) and/or (4.1) for a given initial state € R”. Optimality of the controller is
defined using the following cost function, which is a slighthgralization of (1.3):

cE[BI LRI e

with N € R™=>"u,
The problem discussed in this paper can more formally be sanmed as follows:



4.1 Robust constrained linear state feedback synthesis 75

Problem 4.1(P4.1) Given a systeni3.1)(3.2) subject to constraint§2.10) (2.11)
(4.1), an optimality criterion defined a§.3) and an initial statez € R"-, find a
feedback gaink such that the controllef4.2) results in a minimal worst-case (over
all possible trajectories starting from the initial statg§ control cost(4.3)and without
violating constraintg2.10)(2.11)(4.1)for any of the possible trajectories.

The initial statez can be a state chosen off-line by the user in order to obtain a
feedback controller with a desired feasible region. Alégrrely P4.1 can be solved
on-line at each time instait wherez is then chosen as the current state measurement

No exact solution to P4.1 exists, but a the following releo@to P4.1 was solved
in [68]:

Problem 4.2(P4.2) Given a syster(8.1)(3.2)subject to constraint€2.10}(2.11) an
optimality criterion defined a$4.3)with N = 0 and an initial statez € R"~, find a
feedback gairf{ such that

e the worst-case cost functidn(z) = z* Pz > J(z) is minimal withP € S,
satisfying the Lyapunov inequality

P—(A; - BiK)"P(A; - BiK) - Q+ KTRK, i=1,...,r, (4.4)

e the given initial stater lies within a feasible invariant ellipsoiél of the form
£ = {z|z" Pz <A}, (4.5)

with P € §'}7, and~y > 0.

Appendix A describes the solution method to this relaxatidore details can be
found in [68, 93].

4.1.3 Mixed state/input cost and constraints

This section eliminates the assumptions of P4.2 tNat= 0 and that no mixed
constraints (4.1) are present and shows how these moreajesiteiations still lead
to a convex optimization problem.

4.1.3.1 Mixed state/input cost terms

In order to allow forN # 0 the Lyapunov inequality (4.4) needs to be adapted and
reformulated in an LMI similar to (A.3c). By substitution efk) = —Kz(k), the
objective function (4.3) can be rewritten as

J@(O));ki:x(m Lk r R ]| e

which then results in the following Lyapunov inequalities:

P — (A; — B;K)"P(A; — BiK) »



76 Robust MPC using Polyhedral Invariant Sets

{—IK}T[J\?T JEH_{K} i=1,...,r. (4.6)

After substitution ofK = —YZ~!' andP = vZ~!, left and right multiplication with
Z € S'}7, and division byy > 0, these inequalities become

Z—(AZ +BY)Y'Z Y (A Z + B)Y) -

T
218 A][2) it @

By applying the Schur complement this can be formulated e ki

Z * %

AiIZJrlZ?iY z -0, i=1,....r, (4.8)
QEH[Y] 0 ’7]

with Qy, = [ ]\?T ]; } This LMI replaces (A.3c) in cas® # 0. If N = 0, both

LMis are easily shown to be equivalent.
4.1.3.2 Mixed state/input constraints

The aim of this subsection is to reformulate (4.1) into sidfit LMI conditions in the
optimization variables, Y, Z. First, we rewrite (4.1) as

Aguor(k) + Aguuu(k) < 1o, k€N,
where A, = [Agur Asuw]. After substitution ofu(k) = —Kaz(k) this can be
rewritten as
[Avue — Aguul]z(k) < 1o, k€N,
which, for each row ofd,,,, separately, is satisfied if:
max [|[(Asua)pi) = Asuak]zl <1, J=1 s,

with m,, denoting the number of rows iA,.,,. This is equivalent with
6'([(Amu,z)[j,:] _Azu,uK]Z%) S 17 .] = 17'--;mmu7

with &(-) denoting the largest singular value, which (similar to tleeivhtion of the
state constraint LMI in [68]) is satisfied if

Z *

Z = 0, =1,...,Mgy. 4.9
(Amu)[j,:] |: )% :| 1 J ( )

This LMI can be added as an additional constraint to (A.3)asecconstraints of the
form (4.1) are present.
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4.1.3.3 Algorithm formulation
The two extensions described above are now summarized foltbeing algorithm:

Algorithm 4.1 (Constrained controller synthesis for LPV systems, [93]).Given a
system(3.1)}(3.2) subject to constraint§?.10)(2.11)(4.1), optimality criterion(4.3)
and an initial statez € R"=, solve optimization problerfA.3), with (A.3c) replaced
with (4.8) and with additional constraint4.9). Return feedback gaif = —Y Z .

4.1.4 Controller synthesis using polyhedral invariant set

This section discusses how polyhedral invariant sets cantbgrated in the synthesis
process to reduce conservative constraint handling aradrofoiore optimal controllers.
Two algorithms are formulated:

e An algorithm that consists of first applying Algorithm 4.1tef which a
polyhedral invariant set is computed using Algorithm 2.duféng in an exact
characterization of the feasible region of the closed loabesn.

e An algorithm that consists of iteratively recomputihg using Algorithm 4.1
and?P using Algorithm 2.4 in order to increase the optimalityfofsubject to the
feasibility requirement € P.

The first algorithm obviously results in the same controdsrAlgorithm A.1, but

returns a more exact characterization of the feasible negichereas the second
algorithm exploits the improved characterization of thasible region to improve
optimality of the controller.

Algorithm 4.2. Given a systen3.1)(3.2) subject to constraint2.10) (2.11) (4.1),
optimality criterion(4.3)and an initial statez € R"=, perform the following steps:

e Apply Algorithm 4.1 to obtain a feedback gai and a Lyapunov function
V(r) = 2T Px.

o Apply Algorithm 2.4 to obtain the MAB for the closed-loop syste(8.1), (3.2),
(4.2)subject to constrainte2.10) (2.11) (4.1).

Although Algorithm 4.2 is rather straightforward, there @ few interesting points
to make:

e Since by constructiom € £, it is also guaranteed thate P,

e The Lyapunov functiorV (z) = 2™ P, that is proven in [68] to be valid within
£ is also valid for all states € P, since all the imposed constraints are satisfied
for trajectories starting from such states.

e An upper bound to the control cod{z) is given by~°. This is due to the fact
that in the optimum equation (A.3b) is satisfied with eqyalie. 7° = 2T Pz =
V(z). SinceV (x) is an upper bound to the worst case valud @f), v serves as
an upper bound to the control cost of trajectories startingfthe initial value
xZ.
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Based on these observations we can now formulate an algotitat iteratively
applies Algorithm 4.2 in order to find an optimal feedbackng&i over all feedback
gains for whichz € P (instead oft € £ in case of Algorithm 4.1).

Algorithm 4.3. Given a systen3.1}(3.2) subject to constraint§2.10) (2.11) (4.1),
an optimality criterion(4.3) and an initial statez € R"= such that Algorithm 4.1 is
feasible, solve the following optimization problem:

min  y(c), (4.10a)
st T € P, (4.10b)

wherey(c) and K (c) are the values obtained with Algorithm 4.1 for relaxed comists
XU Y

X' = cX, U = cd, V=Y, (4.11)

with c a positive scalarP . is the MAS for the closed loop systésnl), (3.2), (4.2)
(with K = K (c)) subjectto constraint2.10) (2.11) (4.1). Returnk (c°) andP (o),
with ¢° denoting the optimal solution ¢#.10)

Optimization problem (4.10) is a scalar optimization pesblwith a monotonically
decreasing objective function(c). Therefore the problem is reduced to finding the
largest value ot for which (4.10b) is still satisfied. Since in typical sitioats the set
C2{cze Pk (c)} is convex, one can solve optimization problem (4.10) by rsexn
interval reduction techniques, e.g. bisection searchegederate cases whetés not
convex, one can still easily find a feasible solution due &fthlowing lemma.

Lemma 4.1. Optimization problent4.10)is feasible forc = 1.

Proof: One can see that far = 1 the obtained values foy(c), K (c), Pk () are
identical to the values, K, P obtained with Algorithm 4.3. Sinceé C P = Pk,
this implies that (4.10b) is satisfied for= 1. O

Lemma 4.1 indicates that an interval reduction methodailizged with the interval
[1,¢],¢ > 1 will always find a feasible solution to (4.10). Standard noeihcan find
sufficiently accurate solutions«( 10~1°) in 10 to 20 iterations, with each iteration
consisting of the computation df (c) and the correspondir@ ).

Theorem 4.1. Consider the optimal valug(c®) of Algorithm 4.3 and the optimal value
~° of Algorithm 4.1, then the following property holds:

V() <7°. (4.12)

Proof: Sincec = 1 is always a feasible solution to (4.10) by virtue of Lemma 4.1
and~(1) = ~° the theorem is trivially proven. O

Theorem 4.2. The feedback gairk'(c°) obtained with Algorithm 4.3 robustly as-
ymptotically stabilizeq3.1)}(3.2) and satisfies constraint®.10) (2.11) (4.1) for
trajectories starting from initial state.
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Proof: Since K(c°) is essentially calculated using Algorithm 4.1, it robustly
asymptotically stabilizes (3.1)-(3.2) with Lyapunov ftioa V (z) = 2T P(c°)x, with
P(c°) defined in a similar way a®(¢°). Sincez € P(c°) andP(c°) is a robust
feasible invariant set with respect to the closed loop syqt&.1), (3.2), (4.2) (with
K = K(c°)) subject to constraints (2.10), (2.11), (4.1), it is alsam@unteed by
construction that all trajectories starting fransatisfy the imposed constraints. [

As is done in [68], it is also possible to apply Algorithms 4412 and 4.3 on-line
in a receding-horizon fashion, i.e. applying the algoriththevery time instant € N
with z = z(k) and applyingu(k) = —Kz(k) to the system. We will refer to these
algorithms as Algorithms 4.1b, 4.2b and 4.3b.

4.1.5 Example

We consider a numerical example describing a double intexgrath polytopic model
uncertainty described by

Alz[(l) Oil}, Blz[ﬂ, (4.13)
Ay = [ (1) Of } , B, = { 1(_)5 ] (4.13b)

The system is subject to constraints (2.10), (2.11), (4etipdd as

A, =[0.011; —0.11], (4.14a)
A, =1; 2], (4.14b)
Ay =010 —2]. (4.14¢)

The control objective (4.3) is defined as
Q=1, R =0.01, N =1[0.05;0]. (4.15)

Figure 4.1 depicts the resulting invariant sets and trajezd corresponding to
controllers computed using Algorithms 4.2 and 4.3. Alduorit4.2 computes identical
controllers for symmetrically positioned initial statatthough the imposed constraints
are non-symmetrical, which illustrates that it cannot éffitly deal with this setting.
The depicted polyhedral invariant sets (dashed) also shatithe initial state in some
cases lies well within the feasible region, which indicétes the feedback controller
will not reach any of the imposed constraints for this ihigtate. Algorithm 4.3 results
in controllers whose feasible region exactly contain thpased initial states. Table
4.1 indicates that this improved constraint handling lead®iore optimal controllers
at the expense of an increased computation time.

Figure 4.2 shows trajectories using Algorithms 4.1b ant.4The system behavior
was chosen to be alternating betwédn B;] and[A, Bs]. Both algorithms lead to
stable behavior and satisfy all imposed constraints, dinly the mixed state/input
constraint. Algorithm 4.3b leads to more complex contrdhdagor and has non-
conservative constraint handling, as can be verified in féigu2. This leads to
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Figure 4.1: Top: Ellipsoidal (solid) and polyhedral (dashed) invariantssand
trajectories (dash-dotted) corresponding to feedbackralbers computed using
Algorithm 4.2 for different initial stater (depicted as circles) for the LPV system
defined by (4.13) subject to constraints defined by (4.14)andost matrices (4.15).
Bottom: Polyhedral invariant sets (solid) and trajectories (déstied) corresponding
to feedback controllers computed using Algorithm 4.3.

increased optimality, with Algorithm 4.1b resulting in antml cost of 1150.4 for both
initial states and Algorithm 4.3b leading to a control cd€8@6.3 and 1104.5 for initial
state[—8; 0] and([8; 0] respectively.

4.1.6 Conclusions

This section extends the results of [68] in two ways. First dfigorithm is extended
to also deal with mixed state/input constraints and coshgerSecondly Algorithm

2.4 is combined with this method to improve the constraimtdhiag in the controller

synthesis. The obtained algorithms can be applied eittidinefto compute robustly

stabilizing linear feedback controllers with guarantesakibility or can be applied on-
line in a receding horizon fashion.
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discrete time (k) discrete time (k)
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Figure 4.2: Input and state trajectories resulting from Algorithmsb4(tlashed) and
4.3b (solid) for initial state§—8;0] (thin lines) and[8;0] (thick lines). The same
system, constraints and cost matrices as in Figure 4.1 wsad. uThe lower right
subfigure illustrates that the imposed mixed state/inpostaint is successfully taken

into account.

X [-4;0] [-2;0] [2;0] [40 T
~ for Algorithm 4.2  282.78 58.70 58.70 282.78 0.41s
207.70 48.41 53.82 270.58 101s

~ for Algorithm 4.3
Table 4.1: Upper bounds for the total control cost (4.3) and for différealues oft and
average computation time using two different algorithnrscimmputing the feedback
controller. The same system, constraints and cost maagasFigure 4.1 were used.
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4.2 Interpolation based robust MPC

4.2.1 Introduction

In this section a specific class of MPC algorithms with gutead stability is discussed,
that is able to obtain large feasible regions in a markedfeidint way than the quasi-
infinite horizon MPC Algorithms 1.2 and 3.2. With this latteass of quasi-infinite
horizon algorithms, the feasible region can be enlarged bgma of increasing the
horizon length. However, when controlling systems wittwsldynamics, or when
relatively strict input constraints are applied, a larggé@ase in horizon length might be
needed in order to obtain a moderate enlargement of thédfeasgion. As a result, the
maximum obtainable feasible region under given computaticomplexity constraints
might be relatively small in these circumstances. A largasifele region can also
be obtained by choosing a sub-optimal terminal controlligh & large corresponding
invariant set. However, local optimality is sacrificed isthase.

The class of interpolation-based MPC algorithms is ablectuexe large feasible
regions while maintaining local optimality and a relatiwébw computational com-
plexity. Interpolation-based algorithms do not explicithake use of a finite horizon,
but rather interpolate between trajectories resultingifeopriori fixed linear feedback
laws. One of these linear feedback laws is typically chosdretiocally optimal, which
then guarantees local optimality of the resulting integtioh-based control law. The
other feedback laws are typically chosen such that the gporeding invariant sets are
large in one or more dimensions of state space. In this wafetisble region of the
resulting control law is guaranteed to be large, since itamproven to be equal to the
convex hull of the invariant sets corresponding to the difife linear feedback laws.

General interpolation in MPC was initially introduced ir] f8r LPV systems and
made use of ellipsoidal invariant sets. [122] investigakedL Tl case and made use of
polyhedral invariant sets. However, the use of polyhednahiiant sets for the LPV
case had not been investigated until recently. Based orethudts presented in Chapter
2, this section describes this extension. This leads todrga constraint handling,
reduced computational complexity — especially for low-dimsional systems — and a
guaranteed enlargement of the feasible region. This darioin was discussed in [99].

A second contribution of this section is the extension of fbasible region of
interpolation-based MPC algorithms beyond the convex bfilthe invariant sets
corresponding to the different linear feedback laws. Thigmsion is applicable any
general interpolation based algorithm regardless of tpe ©f invariant sets that is
used, but in the latter case of polyhedral sets, the enlageof the feasible region
typically is more significant. The disadvantage is the ptigdlg large increase in the
number of constraints, compared to the standard algoritbngeneral interpolation.
This contribution was introduced in [118, 120].

First we introduce the concept of general interpolationlfbir systems. Then, the
concept is generalized to the robust control setting, aftech the use of polyhedral
invariant sets is introduced. Finally, a new method is dbsdrto further enlarge the
feasible region of interpolation based MPC.
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S\ AN

Figure 4.3: Depiction of the state decomposition used in general iolatipn based
MPC for the case, = 2 andn = 2.

4.2.2 General interpolation for LTI systems

In this section we consider the LTI systems of the form (1T)e aim is to steer the
system state towards the origin without violating state ampait constraints (2.10)-
(2.11). General interpolation combines large feasibléoregyand local optimality by
interpolating the behavior of different linear feedbackda

u(k) = —K;z(k), t=1,...,n, (4.16)

with 2 < n € N denoting the number of linear control laws between which the
interpolation is performed. The controllers are constdaiff-line during the design
phase together with feasible invariant séts. .., S, for the corresponding closed-
loop system$A — BK3),...,(A— BK,). Atevery time instank, the current system
statex(k) is written as a convex combinationofvectorsey (k), . .., z, (k) € R™=:

z(k) = Xn: Ai(k)zi(k), AL.n(k) >0, Xn: Ai(k) =1, (4.17)

where every vectorr; has to lie within the corresponding invariant set; €
Si,i = 1,...,n. By introducing variables;(k) = X\;(k)zi(k),i = 1,...,n, this
decomposition can also be written as

n

o(k) =Y #i(k), with {g@; ggkzk:; A 20, (4.18)
=1

This decomposition is depicted in Figure 4.3. Note that tlisomposition can only

be carried out ifz(k) € Co{S1,...,S,}. Based on this state decomposition a control
action is calculated as follows:

u(k) = — Z K (k). (4.19)
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This control action is by construction feasible with redpged/. Due to the fact that
z;(k) € Xi(k)S;, one can see that K,;%;(k) € \;(k)U and thereforei(k) € U is
satisfied. One can also see that this control action resulisel following next state
z(k + 1):

x(k+1) = Az(k) + Bu(k), (4.20a)
= Ai:ﬁi(/{) -B iKi:%i(k), (4.20b)

- i=1
2": A — BK;)z;(k). (4.20c)

At time k + 1 one can therefore make a decomposition into vecig(s + 1) =

(A — BK;)#;(k) with coefficients\; (k + 1) = A\;(k),i = 1,...,n. Because the sets
S; are invariant with respect to their respective closed-lsygiems, one can see that
(A — BK;)%;(k) € Mi(k + 1)S; and that this decomposition at tinke+ 1 is indeed
valid. By applying this reasoning recursively the follogimput and state sequences
are obtained:

n

ulk +ilk) = =Y K;(A— BK;)'#;(k), i€N, (4.21a)
j=1
o(k+ilk) = > (A— BK;)'&;(k), i € N. (4.21b)
j=1

The control cost corresponding to these input and stateesegs can now be calculated
as a function of the variables;(k),i = 1,...,n by applying standard Lyapunov
theory. By introducing the stacked vectofk) = [21(k);...; 2, (k)] an upper bound
2T (k)Px(k) to this cost can be calculated as

P>=9"PU 4+ T R, +TQT,, (4.22)

with P ¢ ST and¥ = diag((A — BK1),...,(A - BK,)), 'y = [I,...,1],
r, =[Ky,...,K,]. One can calculat® by solving the SDP

min tr(P), subjectto (4.22) (4.23)
pesy e

This optimization problem is an SDP and can hence be solfadeetly. In the LTI
case this optimization yields an exact expression for tipeeted control cost, and the
condition (4.22) will be satisfied with equality.

General interpolation based MPC consists of calculating@imal state decompo-
sition at every time instant and applying the correspondargrol action to the system.
This can be formalized as follows:

Algorithm 4.4 (MPC using general interpolation (GIMPC)). Given a systerfil.1),
constraints(2.10)}(2.11) cost weighting matrice® < S’*,, R € S’ , controllersK;
and invariant setsS;, perform the following steps.
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Off-line: CalculateP by solving(4.23)
On-line: At every time instank, given the current state(k), perform the following
steps

e Solve the optimization problem

min #T(k)P#(k), subjectta4.18 4.94
21 n (k) A1. . n(K) (k) P (k) | of ) ( )

in order to obtain an optimal state decomposition.
o Apply the inputu(k) = — 37 | K;i;(k).

Lemma 4.2 (Recursive feasibility and asymptotic stability). Algorithm 4.4 is
recursively feasible and is asymptotically stabilizing.

Proof: The proof is straightforward based on the above argumerntsisaionly
sketched briefly. Calculation (4.20) suggests a possilderdgosition at timé: + 1
based on the decomposition at tiaeBased on invariance and feasibility of the sets
Si, this suggested decomposition can be verified to be feasiileh proves recursive
feasibility. This feasible solution results in a reducetlieaof the cost function of the
on-line optimization problem, which then shows asymptstability. O

This methodology was initially introduced in [3] for the LRMse, after which [122]
described the LTI case together with several variants ofrtethod that aim to further
alleviate the computational complexity.

4.2.3 General interpolation for LPV systems

General interpolation can be extended to the LPV case inaagktforward way.

In this section the main differences with the LTI case arehljgnted. For more

details we refer to [3] and to Section 4.2.4, where the smecidse of interpolation
based MPC using polyhedral invariant sets is discussed. #& general overview of
interpolation based MPC algorithms can be found in [124]1123he LPV case a state
decomposition is performed in the same way as described.bg)4Due to the model
uncertainty the input and state sequences induced by tb@@osition now become:

u(k 4 ilk) = ZK ch k+i—p)i;(k), i €N, (4.25a)
w(k 4 ilk) = ZH@ k+i—p)ij(k), i €N, (4.25b)
j=1p=1

with ®;(k + i) = A(k +1i) — B(k+ ¢)K;,i € N,j = 1,...,n. One can see
that not only the state but also the input sequence dependseofuture values of
A(k), B(k), which indicates that within-horizon feedback is presenthis type of
MPC. Also note that the input and state sequence under @masioh cover an infinite
horizon and hence the notion of a terminal cost and consisaimot applicable in this
setting. In order to obtain recursive feasibility the feadbcontrollersk; ,, need to
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be robustly stabilizing and the corresponding invariatd §¢.. ,, need to be robustly
positive invariant:

(Aj—BjKi)IGSi, \V/IESi, j=1...,r, 1=1,...,n. (426)

In the LTI case these different controlleks . ,, can be constructed as LQR controllers
calculated for different cost weighting matrices. In theM_.Pase the construction
of these controllers is somewhat more complicated, buttstittable, since here the
methods described in Section 4.1 can be used. This can belookoosingn
different values oft resulting inn different feedback gain&’;. This already gives
an indication of how the improvements obtained there infteethe performance of
other MPC algorithms.

An upper bound:™ (k) Pz(k) to the corresponding worst-case control cost can be
obtained by solving the following modified optimization ptem:

min  Tr(P), (4.27a)
pestie
subjectto P = WIPW,; + '"Rl, +TTQT,, i=1,...,7 (4.27b)

Note that this optimization problem is still an SDP, simitarthe LTI case, but with
an increased number of LMI constraints. Typically, not dltleese constraints can
be satisfied with equality and hence the obtained upper batitd) Pz (k) will be an
over-estimate of the real worst-case control cost. Thisésdacrifice that has to be
made in order to obtain a quadratic function as an upper btutiee control cost and
hence obtain a more efficient on-line optimization problem.

Although the off-line computations become visibly more gdex in the LPV case,
the on-line optimization problem remains identical to tfié tase. However, a second
look also reveals an increase in computational complerithé on-line optimization
problem. This is due to the fact that invariant sets for LP¢tegns typically are
more complex than those for LTI systems. In [3] ellipsoidaldriant sets are used,
leading to an SDP formulation for the on-line computation.[96] it is shown that
this optimization problem can also be formulated as an SQC#e LTI case [122]
polyhedral invariant sets are typically used, which resulta QP.

The next section describes in more detail the case when adtghinvariant sets are
used in the LPV case. This leads to a QP optimization probbgmtch is significantly
easier to solve than the SDP presented in [3] and also leadsignificant improvement
in the control performance.

4.2.4 General interpolation using polyhedral invariant s¢s

This section restates Algorithm 4.4 for the LPV case conmtimgéth the use of
polyhedral invariant sets. A detailed proof of recursivasibility and asymptotic
stability are given. These results were initially desadibe[99].

Algorithm 4.5 (Robust GIMPC using polyhedral sets P-GIMPC)). Given a system
(1.1) constraints(2.10}(2.11) cost weighting matrice) < S} ,R € Siv,
controllers K; and polyhedral invariant sets; = {z|As,z < 1}, solve on-line at
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each time instant, given the current state(k), the following problem:

ilmn(glﬂiﬁmn(k) T (k) Pi(k), (4.28a)
subjectto z(k) = zn::%i(k), (4.28b)
Agiii(/;):; i (k)1 i=1,...,n, (4.28c)

Zn: Ai(k) =1, (4.28d)

;Z—:(lk) >0, i=1,...,n, (4.28e)

and implementinput(k) = — Y7 | K;#;(k).
Itis obvious that this optimization problem is a QP and camceebe solved efficiently.

Lemma 4.3. Algorithm 4.5 guarantees robust satisfaction (£.10}(2.11) and is
recursively feasible and asymptotically stable for alltimli states z(0) € S £

CO{Sl, v ,Sn}

Proof: It is clear from (4.18) that (4.28) is feasible for allc S. Given the current
statez(k), components; (k) and factors\; (k), it is possible to calculate the next state
tobex(k+1)=>"", ®;(k)z;(k). Since the components(k) lie in their respective
invariant setsS;, this will also be the case for the component§: + 1) = ®,(k)x; (k),
which shows that(k+ 1) will also lie within S. By recursively applying this argument
it is proven thatz(k +4) € S,i = 1,...,00. Since allS; are subsets ot and X is
convex,S will also be a subset ot’, which then proves robust satisfaction of the state
constraints. Furthermore, sinég(k) € \;(k)S;, itis clear thati; (k) £ — K, (k) €
A (k)U. Therefore (sincé/ is a convex setu(k) = >, i, (k) € U, which proves
robust satisfaction of the input constraints.

Asymptotic stability can be proven by considering compdsén(k), which are
shown above to provide a feasible candidate decompositign+ 1) = ®;(k)z; (k)
fortimek + 1. Itis now easy to see, based on satisfaction of (4.27b)ietandidate
decomposition already provides a lower value of the costtian of (4.28) than the
optimal cost value at tim&, which proves that the optimal value of the cost at time
k + 1 will also be lower than the optimal value at tifke This consequently proves
that the optimal value of the cost function of (4.28) acts agapunov function of the
closed-loop system, which proves asymptotic stability. O

In the sequel we refer to algorithm 4.5 sGIMPC, whereas the same algorithm
using ellipsoidal invariant sets will be referred to&&IMPC. The former algorithm
has several advantages compared to the latter. First dffalis an enlarged feasibility
region, since the individual invariant sets are larger tthegir ellipsoidal counterparts
used in€-GIMPC. Furthermore, the polyhedral invariant sets carieffitly cope with
non-symmetrical constraints, which ellipsoids cannote Bathe invariant sets being
larger, less conservative satisfaction of the imposedtiapd state constraints can be
expected, potentially leading to a reduction in controltcoBinally, the algorithm
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is formulated as a QP, which is significantly less expensivedlve than the SDP
formulation of £-GIMPC. Section 4.2.7 clearly illustrates these advargage

4.2.5 Improved general interpolation

This section discusses a further improvement of the GIMBGra¢hm discussed in the
previous section. Section 4.2.5.1 first shows that the cansthandling in GIMPC
algorithms can still be conservative in many cases due tofdbethat constraint
handling is only done explicitly for each linear control laaparately. Section 4.2.5.2
then shows how improved constraint handling can be obtdipednstructing a mutual
invariant set for an augmented autonomous system desgtiéndynamic behavior of
the state decomposition vectarg k). The improved constraint handling is applicable
to bothP-GIMPC andé-GIMPC leading to respectivel?-GIMPC2 and€-GIMPC2.
These results are published in [118,120, 121].

4.2.5.1 Conservative constraint handling in GIMPC

This section explains a shortcoming in GIMPC that can leatbttservative constraint
handling. For reasons of simplicity only the LTI case is édesed, but the same
arguments can be formulated for the LPV case.

Constraint handling in GIMPC is done by means of invariatg ¢ corresponding
to the different linear control lawg(;. By imposing thatz;(k) € \;(k)S; it is
guaranteed that the corresponding input and state sequemq:mnents I|e within their
correspondingly scaled state and input constraint sets:

#;(k +ilk) = (A — BK;)"3;(k) eN(k)X, ieNj=1,...,n, (4.29a)
a;(k +ilk) £ —K;(A— BK;)'2;(k) € \j(b)U, i€N,j=1,...,n. (4.29b)

As a result, the corresponding state and input sequencealadlsatisfy the input and
state constraints:

x(k +ilk) = ZIJ k+ilk) i €N, (4.30a)
u(k + i|k) = Zuj (k +i|k) i€ N. (4.30b)

If a state component vectdr; (k) lies close to the edge of its correspondingly scaled
invariant set\;(k)S; this WI|| mean that either (4.29a) or (4.29b) will only be
marginally satlsf|ed for one or more valuesiof Consequently ifc(k) lies close to
the edge ofS, all state component vectoss (k) will lie close to the edge of their
correspondingly scaled invariant sef(k)S; and hence for each = 1,...,n there
will exist one or more values of for which either (4.29a) or (4.29b) will only be
marginally satisfied. However, this does not necessariplyrthat the same will hold
for either (4.30a) or (4.30b). Possible reasons for thigtezdollowing:
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e (4.29a) or (4.29b) might have extremal values with difféisgns for different
values of j, whose effect will be annihilated by summing these différen
sequences (over aftvalues) intox(k + i|k) andu(k + i|k).

e (4.29a) or (4.29b) might achieve their extremal values fiffecent values of
i depending ory. (e.g.,Z1(k + i|k) might be maximal fori = 2, whereas
#2(k + i|k) might be maximal for = 5)

e Possibly some values of might only have state component sequences that
lie close to the constraints, whereas other valueg ofight only have input
sequences that lie close to the constraints. (e.g.j fer 1 only &, (k + i|k)
might reach values close to the constraints, whereag for2 only 4y (k + i|k)
might reach values close to the constraints)

For any of these reasons the resulting state and input segsiéh 30a), (4.30b) might
lie well within the imposed constraints even for values @) lying close to edge aof.
This implies that there exist stategk) outside ofS for which a state decomposition
exists that results in a feasible corresponding input aatk equence. This effect
is illustrated in Section 4.2.7. The aim of the next sect®toiimprove the GIMPC
algorithm to better cope with these effects.

4.2.5.2 Improved constraint handling (GIMPC2)

This section improves the constraint handling of the GIMRf®@thm by allowing all
possible decompositions (also those with¢ A; (k)S; for somey) that lead to feasible
input and state sequence§: + i|k), z(k + i|k),7 € N. This is done by constructing
an augmented system describing the dynamics of the coesidéate decomposition
components; (k +i|k),j = 1,...,n,i € N. Two different methods are possible,
based on the definition state veciqr,. (k+¢|k) of this augmented system. This vector
can either be defined as,g(i) = [#1(k + i|k);...;Zn(k + i|k)] OF @STang(i) =
[x(k + i|k); 21 (k + i|k);...;&,—1(k + i]k)]. We first describe the former method.
Afterwards the latter choice, which has some advantagegioedormer, is described.

4.25.2.1 Method 1. If we definerauy(i) = [#1(k+ilk);...; %, (k+i|k)] the state
sequence (4.25b) can be described by the following autonssystem:
Dy (k+1)
Taug (i + 1) = Taug (1), ieN, (4.31)
@, (k+1)
where againb; (k + i) = A(k + i) — B(k + i) K. The state and input sequences can
be easily expressed in termsaf,q (i):
z(k+ilk) = (I ... [xaug (i), i €N, (4.32)
ulk +ilk) = —[K1 ... Kpl|Taug(i), ieN. (4.33)

We now want to characterize all state decompositions defiyed, . (0), for which
the corresponding state and input sequences satisfy tretraois. In other words,



20 Robust MPC using Polyhedral Invariant Sets

we want to characterize all augmented statgs (0), that guarantee that the following
constraints are satisfied:

[1,... . zag(d) € X,  V[A(k+i)B(k+i)] e QVieN, (4.34)
(K1, .. Kplzag(i) €U, V[A(k+i) Bk+i)] € Q,VieN.  (4.35)

This can be done by calculating the MAS,,; for the following autonomous LPV
system:

Taug (i + 1) = Vaug (1) Tang (i), 1 €N, (4.36)
whereV ,,4(i) € Qayg, Vi € N, with Q,,,, defined as

Qang = Co{Warg 1, -, Yaugi}, (4.37)
\I}aug,j édiag(Aj —Blel,...,Aj —Ban), j = 1,...,7‘, (438)

subject to constraints

Az .. Ag)Tang(i)
(A Ky ... — AuKn]Tang (i)

Vi €N, (4.39)

1,
1, Vi e N. (4.40)

IAINA

It is clear that ifz,,s(0) € Saug, cOnstraints (4.34),(4.35) are automatically satisfied.
The following on-line optimization problem can now be forated:

Amn(lk) T (k)Pi(k), (4.41)

subjectto z(k) =Y _ &;(k), (4.42)
=1

iT(k) € Saug- (4.43)

Compared to GIMPC this optimization problem has a reducedb®ar of optimization
variables and ifS,., iS polyhedral, the resulting optimization problem is a QP.
However, this formulation has two disadvantages. Firstliothare are still equality
constraints present in this formulation in order to makesghiat the different state
component vectors:; (k) sum up toz(k). Second of all, finding an explicit
description of the feasible region (in terms«(fk)), requires the computation of an
oblique projection ofS,.,. These two disadvantages are eliminated in the second
method, at the cost of a slightly more complicated constonaf ¥ ., (k).

4.2.5.2.2 Method 2. Ifwe definer,ug(i) = [z(k+ilk); &1 (k+i|k);...;2n—1(k+
i|k)], the following autonomous LPV system is obtained:

Taug (1 + 1) = Waug (i) Taug (1), 1 €N, (4.44a)
wherev ,,4(i) € Qayg, Vi € N, with Q,,,, defined as

Qaug = CO{\IJaug,lv ) \I/aug,r}a (444b)
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with
A; — BjK, Bj(K, - K)) Bj(K, — K1)
0 A; — BjK; 0
\Ijaug,j = . . )
0 0 Aj = BjKn—1

j=1,...,r, (4.44c)

subject to constraints

AT pang (i) < 1, Vi € N, (4.45a)
AyTyang (i) <1 Vi € N, (4.45b)
withT, = [0 ... 0, = [-K, (K,-Ki) ... (K, — K,_1)]. Similar to

method 1, characterization of all state decompositionsl#zal to feasible input and
state sequences can be done by calculating the BlASfor system (4.44)-(4.45) and
demanding that,ug(0) € Saug.

An upper bound to the worst-case control cost in terms of tingmeented state
VECtOr ,,4(0) can now be obtained as,ug(0)* P'x,,4(0) by solving the following
optimization problem:

min  Tr(P'), (4.46a)
Presiye
subjectto P’ = Wl P+ T R, +T1Q0,, j=1,...,r, (4.46b)

with ¥, ; defined as in (4.44). It should be noted ttRitcan also be obtained by
means of simple algebraic manipulations of the solutidoof (4.27). We can now
formulate the following improved improved interpolatioased MPC algorithm:

Algorithm 4.6 (Improved general interpolation (GIMPC?2)). Given a syster(3.1),
(3.2), constrainty(2.10}(2.11) cost weighting matrice®, R and robustly stabilizing
controllersK . ,,, perform the following steps:

Off-line:

e Construct the augmented systéhd4}(4.45)and calculate a feasible positive
invariant setS,, for this system.

e CalculateP’ by solving(4.46)

On-line:
At every time instant, given the current state(k), perform the following steps:

e Solve the optimization problem

min : Tong (0) P Tang(0),  SUDJECttO Zayg(0) € Sang, (4.47)

1. n-1(k

in order to obtain an optimal state decomposition.
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e Calculatei, (k) = (k) — S0 & (k).

j=1 Lj

o Apply the inputu(k) = — >, K;@;(k).

If the setS, ., is chosen to be a polyhedral invariant set the above algonitiil be
referred to asP — GIM PC?2, whereas it will be referred to & — GIM PC2 if an
ellipsoidal invariant set is used.

Note that due to the specific choice ©fi).,s the constraint:(k) = 2?21 z;(k)
is already eliminated from the formulation and thereforgétisicluded in the on-line
optimization problem. Furthermore, the feasible regiothefalgorithm can be defined
as

FE2{2|321 o1 [r3 81, Bp] € Saug }- (4.48)

The feasible region hence is the projectiorSgf, onto the firstu,, dimensions, which
can be done using standard techniques like e.g. Fourieriifoelimination [146] in
the polyhedral case, or using the Schur complement in tiygseltlal case. The two
disadvantages of method 1 are hence eliminated in method 2.

GIMPC2 maintains the properties of GIMPC regarding remer&asibility, guaran-
teed robust constraint satisfaction and asymptotic stglak is shown by the following
lemmas.

Lemma 4.4. Algorithm 4.6 is recursively feasible.

Proof: Given a state decompositiafy (k) at time k satisfying z,,,(0) =
[z(k);21(k);...; &n—1(k)] € Saug, the corresponding state at tinke+ 1 is given
by

(k+1) = Y (A(k) — B(k)K;)a;(k), (4.49)

j=1

which suggests a possible decompositigtk + 1) = (A(k) — B(k)K;)&;(k),j =
1,...,n attimek + 1. This candidate decomposition at tirhe- 1 can be verified to
be feasible, since some straightforward algebraic maaijoul yields that

Yom=1(Aj = BjKp)&m(k)
(A; — BjK1)31(k)

\I/aug,jxaug(o) = s j=1...,r (450)

(Aj — BjKn 1)in1(k)

Since S, is @ positive invariant set with respect to these dynamiog, @nvex
combination of these right hand-sides will still lie insifig,;. Since[z(k+1); &1 (k+
1);...;2n,-1(k + 1)] can indeed be written as such a convex combination (because
[A(k) B(k)] can be written as a convex combination of fHe B;]) the above proposed
state decomposition at tinke+ 1 is indeed feasible, which proves recursive feasibility.

O
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Lemma 4.5. Algorithm 4.6 guarantees robust satisfaction @.10)}(2.11) if it is
initially feasible.

Proof: Due to recursive feasibility it is guaranteed that, if theliokle optimization
(4.47) is initially feasible[z(k); #1(k); .. . ; En—1(k)] € Saug, Vk € N. BecauseS,,,
is also feasible with respect to (4.45), it is guaranteetl tha

Azz(k) <1, Vk € N, (4.51)
which proves that the state constraints are satisfiednd it is also guaranteed that

n—1

—A, (Knx(k) +) (K1 - Kn):ej(k)) <1, VE € N, (4.52)

j=1
which is equivalent with

Agu(k) <1, Vk €N, (4.53)

which guarantees that also the input constraint are satisfie which proves the
lemma. O

Lemma 4.6. Algorithm 4.6 robustly asymptotically stabiliz€s1),(3.2)if it is initially
feasible.

Proof: Condition (4.46b) guarantees that

Zang(0) " P'Zaug(0) — (Vaug,j@aug (0)) " P’ (Yaug,jZaug (0)) =
(k)T Qx(k) + u(k)T Ru(k), VZaug(0) # 0 € Sang,j = 1,...,7, (4.54)

and, after making appropriate convex combinations, that

Zaug (0)" P'aug (0) > Zaug(1) " Pzang(1),
Veaug(0) # 0 € Saug, V[A(k) B(k)] € Q. (4.55)

This shows that the feasible solution constructed in Lemmaafteady results in a
lower value of the objective function of the on-line optimtion problem ifz(k) #
0. Hence the optimal value of the optimization problem at time 1 will also be
strictly lower than that obtained at tinieif (k) # 0, which shows that this value is
monotonically decreasing as a functionkgfwhich proves asymptotic stability. [

Lemma 4.7. Algorithm 4.6 has a larger feasible region th@3GIMPC if S,,4 is taken
to be the MAS for the augmented system.

Proof: If S, is taken to be the MAS, the maximality of the set guaranteas th
all possible state decompositions that lead to feasibke stad input sequences are
captured withinS,,,. Hence, also all decompositions allowed ByGIMPC are
captured, which proves the lemma. O
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Calculate locally optimal controller K4
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Figure 4.4: Flow chart of the design process of an interpolation base@ kbhtroller.
At first sight the design process is largely independent ftieentype of interpolation
that is used, apart from the determination of the conssdmbe used in the on-line
optimization problem. However, as a result the computali@momplexity and the
feasible region will be interpolation type dependent, iaficing the decisions made
during the design process. Still, the tuning parametersifadifying both aspects are
identical for both types of interpolation.
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4.2.6 Controller design

The design process of interpolation based MPC algorithwih IMPC and GIMPC?2)
is somewhat different than that of more standard MPC cdetol This process is
depicted as a flow chart in Figure 4.4.

In the following subsections the 4 most important designapeaters will be
discussed: choice of, choice ofK; . ,, choice of the invariant set type and choice
of the interpolation type (GIMPC vs. GIMPC2).

4.2.6.1 Number of controllersn

The choice ofn influences two important properties of the resulting cdfero the
feasible region and the computational complexity.

Larger values of: allow interpolation between a larger number of control lans
can therefore lead to larger feasible regions. Especiatliiifjher-dimensional systems
(largen,), it might be necessary to choose larger values @broportional ton,) in
order to obtain a feasible region that is large in all dimensi

On the other hand larger valuesroflso lead to more complex on-line optimization
problems as is shown in Table 4.2. The computational contglalso depends on the
type of invariant sets that is used, as well as the type ofpiotation, as is explained in
the following subsections.

4.2.6.2 Choice of feedback law&;

Since the aim is to obtain an MPC controller with local opfiityaat least one of the
controllers should be chosen as the locally optimal coletroT his is also depicted in
Figure 4.4. In the LTI case this can be done by calculatind R controller for the
given system, in the LPV case, Algorithm 4.2 with a valug @lose to) can be used.
The other control law#(s . ,, should be chosen to obtain a large feasible region. One
can either chose these controllers as manually detunesbrersf the locally optimal

#variables #constraints class
P-GIMPC n.(1+ng) n +Z?:1 m; QP
E-GIMPC n.(l+ng)+1 n linear constr. SDP
n + 1 LMIs
2n.n, LMI rows
P-GIMPC2  (n—1).n, m QP
E-GIMPC2 (n—1)m, +1 0 linear constr. SDP
2 LMls

2n.n, LMI rows

Table 4.2: Computational complexity of the on-line optimization plkedns of GIMPC
and GIMPC2 in terms of the number of optimization variablése number of
inequality constraints and the optimization class. Theiatdes m; denote the
number of constraint describing the invariant s€fs while m denotes the number
of constraints describing,.,.
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controller [116] or one can use Algorithm 4.3 with largerues ofz in order to obtain
control laws with feasible regions that are large in spedifiections. Figure 4.4 also
shows that the choice of these controllers is an iteratieeqss in order to achieve a
desired resulting feasible region for the interpolatiosdshcontroller.

4.2.6.3 Type of invariant sets

The choice of invariant set type (polyhedral vs. ellipstidalargely determined by

the computational complexity and the resulting feasibtgae. Polyhedral invariant

sets lead to feasible regions that are guaranteed to be t@ethose obtained with

their ellipsoidal counterparts and lead to an on-line ojz#tion class (QP) that can
be solved efficiently. However, the number of constraintthefoptimization problem

is less predictable when using polyhedral invariant seds tithen usign ellipsoidal

invariant sets. In those cases when this number of conttrlagtomes too large, one
can revert to using ellipsoidal invariant sets, otherwise should stick with polyhedral

invariant sets.

4.2.6.4 Choice of interpolation type

As shown by Lemma 4.7 the feasible region of GIMPC2 is largantthat of GIMPC.
Simultaneously, GIMPC2 needs a smaller number of on-lin@ropation variables
than GIMPC. Hence, from both points of view GIMPC2 is favdealirhe downside,
however, is that in the case polyhedral invariant sets ard, e number of constraints
m can increase exponentially as a functionnof,,. As a result, when controlling

sl ] P-GIMPC |
[ &-GIMPC

6 L B
4 -
2 L
0 L

N
X
_2 L
_4 L
_6 L
_8 L
_10 L
-10 -5 0 5
X
1

Figure 4.5: Comparison o£-GIMPC andP-GIMPC for system (4.56)-(4.57) using
controllers (4.58). The invariant sets are depicted indsliies, the convex hulls are
depicted in dotted lines.
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higher-dimensional systems, GIMPC should be favored aG&WPC2. In the other
case GIMPC should be favored.

4.2.7 Example

In this section we use a numerical example with the same dantaglgrator dynamics as
the one used in Section 4.1.5 in order to illustrate the cptsabescribed in the previous
sections. We consider a model of the form (3.1),(3.2) with 2 and dynamics defined

by
1 0.1 0
AIZ[O 1 :|, Blz|:1:|, (456&)
1 0.2 0
A?‘[o 1 } 32_{1.5]. (4.56b)
The system is subject to constraints (2.10), (2.11), with
A, = [I/8; —1/10], (4.57a)
A, =[1; —2]. (4.57b)

The control objective is defined by weighting matri¢gs= diag(1,0.01), R = 3. In
this section we construct and compare different interpmiabased MPC controllers.
In all cases = 2 is used with

K, = [0.4858 0.3407], (the LQR-optimal fof4; Bi]) (4.58a)
K =1[0.3 0.4]. (4.58b)

Both controllers are locally robustly asymptotically staing for the given LPV
system (4.56).

We first compareg€-GIMPC to P-GIMPC. A depiction of the resulting feasible
regions can be found in Figure 4.5. Itis clear tRaGIMPC has a significantly larger
feasible region tha&-GIMPC, which is partly due to the fact that polyhedral inaat
sets can efficiently cope with asymmetric constraints.

Figure 4.6 shows trajectories for both controllers stgrfiom initial state§—5.5; 5]
and[5.5; —5]. £-GIMPC results in symmetrical trajectories for the two eifnt initial
states and achieves a control cos8®5, while P-GIMPC is able to take advantage
of the asymmetrical constraints and achieves a controlafast.37 and78.74 for the
two initial states respectively.

Figure 4.7 shows the difference in feasible region betweeonainal and robusp-
GIMPC controller. The nominal controller is designed fd; B, ], whereas the robust
controller is designed fafo{[A; B, [A2 Bs|}. The right subfigure shows trajectories
for both controllers for initial conditiofi—8; 4], when the real system behavior is taken
to be the LTI system defined Byl B>]. The nominal controller first steers the system
outside the feasible region of the robust controller anérafards even outside its
own feasible region, after which an infeasibility occunsdfcated with a circle). As
expected, the robust controller steers the system to thmofihis clearly indicates that
model mismatch can cause unwanted control behavior whag nsiminal controllers,
which can be avoided when including robustness measurbs icontroller design.
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8r — P-GIMPC [

— - £-GIMPC

Figure 4.6: Comparison o€-GIMPC andP-GIMPC for system (4.56)-(4.57) using
controllers (4.58). Trajectories from two symmetricallppmsed initial states are
depicted.
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Figure 4.7: Comparison of robust and nomingP-GIMPC. The nominal
controller is designed fofA4; B;], whereas the robust controller is designed for
Co{[A1 B1],[A2 Bs]}. Left: The invariant sets are depicted in solid lines, the convex
hulls are depicted in dotted lineRight: Trajectories starting from initial stafe-8; 4]

are depicted in solid (robu$t-GIMPC) and dashed (nomin&-GIMPC) lines.
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] P-GIMPC
S~ — — P-GIMPC2

Figure 4.8: Comparison ofP-GIMPC andP-GIMPC2 for system (4.56)-(4.57) using
controllers (4.58)P-GIMPC2 clearly extends the feasible region significandydnd
the convex hull of the individual invariant sets.
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Figure 4.9: Comparison of the state decompositions obtained®b8IMPC andP-
GIMPC2 for system (4.56)-(4.57) using controllers (4.58) @urrent state:(k) =
[—4;0]. The values oft;(k), Z2(k) obtained withP-GIMPC are indicated withx-
symbols, those obtained witR-GIMPC2 with o-symbols. z(k) is indicated with a
O-symbol.
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Figure 4.10: Comparison of the input sequences corresponding to the stat
decompositions depicted in Figure 4.9. Both input sequesatsfy the imposed input
constraints, but the sequence obtainedBIMPC2 comes closer to the imposed
constraints, which is an indication of less conservativest@int handling. The real
system behavior was taken as the LTI system defingdibyB,].

We now compare GIMPC and GIMPC2. Figure 4.8 shows the feasdgion for
P-GIMPC andP-GIMPC2. The second algorithm clearly has a significantigda
feasible region. Figure 4.9 shows the decomposition obthby both algorithms for
the stater(k) = [—4;0], which lies close to the border of the feasible regiorPof
GIMPC. P-GIMPC2 clearly obtains a state decomposition that is nlowedd by P-
GIMPC, since the state component vectors lie outside bothriant sets. However,
Figure 4.10 shows that the corresponding input sequenc2sasatisfy the imposed
input constraints. The same can be verified for the stateesegs (4.25b).

Finally we comparé?-GIMPC2 to £-GIMPC2 in terms of the obtainable feasible
region. This is depicted in Figure 4.11. Similar ®-GIMPC2, £-GIMPC2 is
also able to enlarge the feasible regionSeGGIMPC, but is less successful thémn
GIMPC2. Furthermore, it should be noted that the feasitd@reof £-GIMPC2 does
not completely enclose that 6¢GIMPC.

4.3 Quasi-infinite horizon robust MPC

In this section we extend results presented in [123] and [V8¢ common part of both
methods is the use of a reparameterization of the input seguever which the on-line
optimization takes place. This reparameterization waglhji introduced in [123] for
LTI systems in order to improve numerical stability in MPGiim. The results in [70]
are presented in a different angle and emphasize the fadhisaeparameterization
allows the controller design to take place by calculatinggariant set and a Lyapunov
function for an augmented system, very similar to the methm@sented in Section
4.2.5.2. The latter method was introduced for LPV systenrguallipsoidal invariant
sets.

In this section we modify the results from [70] towards the o$ polyhedral sets.
This allows the resulting controller to handle asymmetdnstraints more efficiently,
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— — &IP-GIMPC
— EIP-GIMPC2
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Figure 4.11: Comparison of the feasible regions &P-GIMPC and&/P-GIMPC2.
The latter are depicted using solid lines, the former usaghed lines.

and results in a significantly larger feasible region forniigal values of N. The
downside is the fact that the number of constraints of thér@eptimization problem
typically increases exponentially as a function of the hammilengthN. Methods for
tackling this disadvantage are presented in Chapter 5. henatontribution of this
section is the discussion of the relationship of the use ateth the open-loop and
closed-loop quasi-infinite horizon MPC algorithms disatsén Sections 3.3.1 and
3.3.2.

The results presented in this section were published in][180different version
of this algorithm using multi-parametric programming (geg., [4, 6, 7,21, 139]) was
published in [119].

4.3.1 Input sequence parameterization

While in open-loop quasi-infinite horizon MPC controllees) on-line optimization
over the following input sequence takes place

(4.59)

u(k + i|k) = free control moves t=0,...,N—1,
u(k +ilk) = —Kx(k +i|k), i> N.

In this section the following parameterization of the inpaetiuence is used [106]:

{U(k+z|k) = —Ku(k +ilk) + Ee(k + ilk), P=0 N =L g 60)

u(k +ilk) = —Kz(k +i|k), i > N,

with E € R™*" and the optimization taking place over the variahiés+ i|k) €
R™=. This was originally proposed in [123] for the LTI case andhwi; = I and later
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Figure 4.12: Schematic representation of the reparameterization afltsed-loop input sequence used in this section. In
this schematic example, a horizon length= 3 and an LPV model (3.1)-(3.2) with = 2 is used. For clarity reasons,
symbols for the state predictions at tirhet 3 are omitted. Implicitly a closed-loop input sequence isdysehile the
on-line optimization only has to be performed over the seqa@®fc(k + i|k)-variables.
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used for the LPV case in e.g., [34, 70] and the LTI case subgeatisturbances [83]. A
recent generalization of this reparameterization can badan [54]. The introduction
of the matrixE allows for additional degrees of freedom during the cotgralesign.

In both caseds is chosen to be a stabilizing feedback gain. One can seehisat t
corresponds to actually controlling a pre-stabilizedesystd’ B'] £ [A — BK BE],
with accordingly modified input constraints. Due to the fttat, opposed t,
the eigenvalues ofA’ are guaranteed to lie within the unity circle, the numerical
conditioning of the resulting optimization problem is imoged significantly, especially
for large values ofV. We refer to [123] for further details.

One can show [123] that in the LTI case, if one chooBes: I, the class of input
sequences over which the optimization takes place is iclnti (4.59) and (4.60).
However, in the LPV case, the reparameterization (4.61jltem a different class of
input sequences since the notion of feedback is introdu€iggire 4.12 shows that in
the LPV case (4.60) actually induces the following paramiedtion of the closed-loop
input sequence:

WUso,....ji—1 (k + Zlk) = _K‘TjOV";jifl(k + Zlk) + EC(/{ + Z|k)a 1=0,...,N -1,
WUso,....ji—1 (k + Zlk) = _K‘TjOV";jifl(k + Z|k)7 i > N.
(4.61)

In this way one can see that by using the above parameterizathe on-line
optimization actually takes place over a subset of fily parameterizedclosed-
loop input sequence introduced in Section 3.3.2. Howelierntain advantage is the
fact that the notion of feedback is maintained while acyually needing the same
number of optimization variables as the open-loop inpuusage used in Section
3.3.1. A second advantage, which will become even more Lisettoe next chapter, is
highlighted in the following section.

4.3.2 Controller synthesis using an augmented autonomougstem

Similar to Section 4.2.5.2, this sections aims to constamcaugmented autonomous
system that modela) the closed-loop dynamics of the LPV system controlled by
the MPC controller using input sequence (4.61) &dhe dynamics involving the
construction of a feasible solution at tinfte+ 1 given a feasible solution at time
This will allow us to construct the on-line objective furariand inequality constraints
in a straightforward way.

A straightforward choice for the augmented state vectog.s, (i) = [z(k +
ilk);c(k + ilk);...;e(k + i + N — 1]|k)]. As suggested in [70] one can see
that the following augmented system successfully modedsctbsed-loop dynamics
corresponding to the closed-loop input sequence (4.61):

26+ 1ang = Vaug(k + 1)2(1) aug, i €N, (4.62)
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With Waue(k + ) € Qang = Co{Wang 1, -+, Vaugr 1,7 € N, where

0 I 0 ... 0
A BK [BE ] 00 rI ... 0
i — B £00...0 I
Yausi =™ Sw |7 Swee= D e ] (469)
0 0 0 1
0 0 0 0

whereSy ,,, € RN-mexN-ne s the N.n.-dimensional shift matrix with length,. shifts.
Given an augmented state vectgy,.(7), the corresponding state vectefk + i|k)
can be expressed agk + ilk) = T'yzaug(i), with Ty, = [I 0 ... 0], while the
corresponding input vectar(k+i|k) can be expressed agk+i|k) = 'y Taug(2) With
I, =[-K EO0 ... 0]. State and input constraints (2.10)-(2.11) can now be sgpce
in terms ofzayg (7):

Taug (1) € Xaug = {z]|Aaugzr < 1}, i eN, (4.64a)
Aaug = [Ty (4.64b)
In order to guarantee that, given a set of feasible contt@rgc(k|k), ..., c(k+ N —

1]k) at timek, the set of control actions at tinke+ 1 generated by the dynamics (4.64)
also will be feasible, we construct a s&f,, that is positive invariant with respect to
(4.63) and feasible with respect to (4.64). In [70] this isddy means of ellipsoidal
invariant sets. In this sectiofi., is constructed using Algorithm 2.4 resulting in a
polyhedral set.

An objective functionz] . (i) Px.ug (i) that serves as an upper bound to the real
worst-case value of the control cost and is guaranteed todmotanically decreasing
under the dynamics given by (4.63), can now be constructesblwng the following
SDP:

min  Tr(P), (4.65a)
pesy e
subjectto P = W), PV + o RT, +T,Q ., j=1,....r, (4.65h)

4.3.3 Algorithm formulation and properties

We can now formulate the following algorithm, by summarggthe previous section:

Algorithm 4.7 (Robust MPC using polyhedral sets P-RMPC)). Given a system
(3.1),(3.2), constraints(2.10}(2.11) cost weighting matrices), R and a horizon
lengthN € Z;, perform the following steps:

Off-line:

e Construct the augmented systéi63)(4.64)and calculate a feasible positive
invariant setS,,, for this system using Algorithm 2.4.

e CalculateP by solving(4.65)
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On-line:
At every time instant, given the current state(k), perform the following steps:

e Solve the optimization problem

. T 1
0)Px,ug(0), subjectto z,ug(0) € Saug, (4.66
c(k\k),...,ril(lkn-ﬁ-N—1|k) Zaug (0)Paug (0) ) 7aus(0) o )

in order to obtain optimal control actiongk|k), ..., c(k + N — 1]k).

e Apply the inputu(k) = —Kx(k) + c(k|k).

This algorithm extends the algorithm introduced in [70]wotways. First of all
polyhedral invariant sets are used instead of ellipsoidkadriant sets. Secondly, an
objective function is used that is more representative @féal control objective. The
algorithm in [70] essentially use’ = I.

Theorem 4.3. Algorithm 4.7 is recursively feasible and, if it is initiglifeasible,
guarantees robust satisfaction (2.10)(2.11)and asymptotic stability of the closed-
loop system.

Proof: The proof is similar to the proofs of Lemma’s 4.4, 4.5 and 4@ & hence
omitted. For more details we refer to [100]. O

The following lemma establishes a link with the stabilitarfrework discussed in
Section 3.3.2.

Lemma 4.8. The control moves:(k|k),...,c(k + N — 1]k) determined using
optimization problen{4.66)for a given stater(k) guarantee that the input sequence
(4.60)drives the system iV time steps into a feasible invariant set for the closed-loop
system{A; — B1 K, ..., A, — B, K} subject to constraint&.10)(2.11)

Proof: By applying dynamics (4.63) one can see that,(N) = [z(k +
ilk);0;...;0]. This shows that:(k + i|k) lies inside an intersection &.,, along
the firstn, dimensions, which we will denote &, »,. By inspecting the first,,
dimensions of constraints (4.64) and dynamics (4.63) yoitaily by filling in z,ue (V)
in these expressions, and by observing $iat is a feasible positive invariant set for
(4.63),(4.64), it is clear that,., », is a feasible positive invariant set for the system
mentioned in the formulation of this lemma. O

Lemma 4.8 shows that the notion of a terminal controller atedrainal constraint is
also present in Algorithm 4.7. A similar observation can kedmabout a link with a
terminal cost by inspecting the upper left x n, submatrix of P and by writing out
the same submatrix part of inequalities (4.65b).

4.3.4 Controller design

Figure 4.13 shows a possible design approach for a contiodised on Algorithm
4.7. The three important tuning parameters &te:. and E. The influence of these
parameters is discussed in the following sections.
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Figure 4.13: Flow chart of a possible design process of an interpolatasetd MPC
controller. The main design choices consisi\afn. andE. LargerN and largem,. €
{1,...,n,} typically lead to enlarged feasible regions and computaticomplexity
increases.

4.3.4.1 Choice ofV

As is also illustrated in Section 4.3.5, an increasing valtieV leads to a larger
feasible region. However, also the on-line computatiorathglexity can increase
dramatically. Although the number of optimization varieblis equal taV.n,. and
hence only increases as a linear functiom\afthe number of inequality constraints
describingS.., typically increases exponentially as a function/of As a result, in
typical situations only small values &f can be chosen. This problem is tackled in the
next chapter.

4.3.4.2 Choice oh., E

The introduction of variablé” is aimed at introducing additional degrees of freedom
in the controller design. The algorithms described in [ZB]Mo not use this variable
and hence implicitly make the choide = 1. In many cases this is often also a good
initial choice when designing the controller.

However, if a given MIMO system has several inputs that aménportantfor
the given control problem it might not be needed to spend naffdrt to optimally
choose control actions for these inputs. One can use thisniation to obtain a
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decreased on-line computational complexity by decreasingnd omitting the rows
of E corresponding to these inputs.

For example, when the second input of-input system is considered unimportant
one might want to choose. = 2 andE = [1 0;0 0; 0 1]. Similarly, when the effect
of the two first inputs is considered to be highly correlatate might want to choose
E=1[10;10;01].

4.3.5 Example

We retake the examples given in Section 4.2.7 and asseséftérent dimensions of
performance of Algorithm 4.7. In order to make a fair compamniwe choos& = K.
Since there’s only 1 input, we chooge= 1.

Figure 4.14 shows the feasible regions f&fRMPC for increasing values a¥.
Larger values ofV resultin larger feasible regions, but the increase is nsigasficant
as the increase obtained when increasinip P-GIMPC(2). However, the on-line
computational complexity does increase significantly whremeasingn, as can be
observed in Table 4.3. In this example interpolation basgarithms seem to result in
a better trade-off between computational complexity artdiobd feasible region.

Figure 4.15 shows trajectories f®-RMPC (N = 6), P-GIMPC andP-GIMPC2.
The real plant behavior is chosen [ak Bs|. The different initial states are chosen
inside the intersection of the feasible regions of the diffe algorithms. Control
behavior can be observed to be qualitatively identical. aberage control cost per
initial state was51.41, 51.73 and51.42 respectively. Hence, from an optimality point
of view the three algorithms behave equally well in this epéam Figure 4.16 shows
the obtained input signals for the different algorithms #mel different initial states.
Also here no significant differences can be observed.

Finally, for the sake of completeness, Figure 4.17 shovjsdi@ries starting close to
the boundaries of the feasible regions of the differentrigms, in order to show that
the algorithms are indeed stabilizing in the entire feasibbion.

4.4 Conclusions

In this chapter several robust control techniques are dioited that make use of
polyhedral invariant sets in order to handle constraints.

Both interpolation based and quasi-infinite horizon MPGé&thms are discussed
and extended towards the use of polyhedral invariant seles& extensions result
in enlarged feasible regions, less conservative consthaindling in general and the
ability to efficiently cope with asymmetric constraints iarpcular. Another advantage
is that the on-line optimization reduces to solving a QP,avhian be solved more
efficiently than an SDP. The main disadvantage of the obdaaigorithms is the
guestionable scalability properties towards large-disiemal systems or algorithms
using many degrees of freedom. This is the main concernsigclin the next chapter.

Finally, the seminal robust constrained controller sysiheesults introduced in [68]
are extended towards using polyhedral instead of elligdditvariant sets, leading to
feedback laws with improved optimality. These results ceove to be useful when
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Figure 4.14: Comparison of the feasible region BFRMPC (solid) forvV = 0,...,6
applied to system (4.56)-(4.57) using terminal controllér= K; and the feasible
regions ofP-GIMPC (dark grey) an®-GIMPC2 (light grey).

#variables #constraints vol.

P-RMPC, N =0 0 12 27.94
P-RMPC, N =1 1 21 39.42
P-RMPC, N =2 2 40 51.26
P-RMPC, N =3 3 73 63.73
P-RMPC, N =4 4 135 76.59
P-RMPC, N =5 5 259 87.34
P-RMPC, N =6 6 506 96.88
P-GIMPC 6 24 79.13
P-GIMPC2 2 63 181.82

Table 4.3: Computational complexity of the on-line optimization pleins and volume
of the feasible regions dP-RMPC for system (4.56)-(4.57) using terminal controller
K = K; andP-GIMPC(2) using controllers (4.58). Complexity is expeda terms
of the number of optimization variables and the number ofjiradity constraints.
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Figure 4.15: Comparison of the control behavior #-RMPC (N = 6) applied to
system (4.56)-(4.57) using terminal controllér= K; and the control behavior ¢?-
GIMPC andP-GIMPC2 for different initial states inside the intersectiof the feasible

regions of the three controllers.
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Figure 4.16: Comparison of the input sequences corresponding to thectoajes
depicted in Figure 4.15. No significant differences can teeoled.
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(c) Trajectories fofP-RMPC.

Figure 4.17: Trajectories fofP-GIMPC (a),P-GIMPC2 (b) and®-RMPC withN = 6
(c) applied to system (4.56)-(4.57) for different initidhtes inside their respective
feasible regions.



4.4 Conclusions 111

constructing linear feedback laws for use in the interpotabased or quasi-infinite
horizon MPC algorithms discussed in this and next chapters.
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Chapter 5

Reduced-Complexity Invariant
Sets in Robust MPC

“Any intelligent fool can make things
bigger and more complex...”

— Albert Einstein (1879-1955) —

The contribution of this chapter is the formulation of newaithms for
the construction of invariant inner approximations of thé&® for LPV
systems. The main aim is to obtain invariant sets descriligdaveduced
number of constraints compared to the real MAS. Several pkem
show that the complexity of the obtained invariant sets lgsificantly
improved scaling behavior as a function of the dimensiapnalihese sets
are then used in the MPC algorithms presented in Chapter dltieg in
an improved trade-off between the volume of the feasibliemegnd the
on-line computational complexity.

5.1 Scalability analysis

Chapter 2 showed that the computation of the MAS for low-digienal LPV systems
is computationally tractable, due to the fact that typicall large fraction of the
constraints under consideration is redundant. The exangplthe end of Chapter 4,
however, seem to indicate that the number of constraintsritdézy the MAS seems
to increase exponentially as a function of the dimensitnali the system for which

the invariant set is calculated. This can clearly be obskemwelable 4.3: in case of
the P-RMPC algorithms, the number of constraints of the on-lipgroization, which

in turn is determined by the number of constraints desagiltire invariant set for the

113
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augmented system (4.63), roughly doubles with every irered/N. Whether this is
due to the specific structure that is present in (4.63) or kdrethis phenomenon is
generally valid is not immediately clear. This section atmshed light on this issue.

5.1.1 Monte-Carlo experiment

In this section we take a look at this scaling behavior forasslof LPV systems that
do not exhibit the specific structure of the augmented systonstructed in Chapter
4. We randomly generate LPV systems witk- 2 as follows:

& = a(l +0.1R,), By = a(I + 0.1(Ry + 0.1Ry)), (5.1)

with Ry, R, € R"=*"= gquare matrices whose entries are picked from a normal
distribution with p = 0,0 = ,/ng . In this way the norms of the?;-matrices
do not increase as, increases. The scalaris chosen such thai({®,, ®2}) <
0.9. This is done by calculating an upper boupdto p({®1,P2}) asp =
Maxg(1.. k)ye{d;, o} [P(1) ... ®(k)||* with k = 15 (see [71]) and setting = %.
Constraints are chosen ds = [W; —2W], with W € R"=*"= randomly generated
in the same way a®; and R;. These randomly generated systems can be seen as
discretized versions (with sample time equal to 0.1 timés)mif random continuous-
time LPV systems with 0% uncertainty.

Table 5.1 shows that also in this case, the number of con&triaicreases exponen-
tially as a function of the system dimensionality. Non-sigipgly the time needed
to construct the sets also increases exponentially as gidanaf the dimensionality.
This shows that the scaling behavior observed in the prewibapter is not a result of
the specific structure of the augmented sets considereg, thietr that this behavior is
inherent to polyhedral invariant sets for LPV systems.

Taking Theorem 2.2 into consideration as well as the fadtiththese examples:,
only increases linearly with the dimensionality, only acrgase in the admissibility
index k* can be the cause of this exponential increase. Furthernsimee by
constructions(Q)') < 0.9 for all randomly generated systems, we can conclude that
the variables:, b, ¢ (see the proof of Theorem 2.2) are the determining factotBig
case.

One insight that we would like to emphasize here is the faadttthe product.b can
be interpreted in terms of the shapeXf One can verify that..b ~ 1 if the shape of
X is very close to a hyper-sphere, and thdt= ,/n, if X is taken as a hyper-cube.
Since in reality typically component-wise constraintsianposed, which corresponds
to a hyper-box shaped constraint sétwhere similarlya.b ~ ,/n,, one can now
directly find a plausible cause for the observed scalingeha

Secondly, it can also be observed that the fraction of redoincbnstraints decreases
as the dimensionality increases. A useful measure to intipe@ffect is theequivalent
branching factorr.quiv, Which is defined by means of the following equation:

1— ,’,k*-ﬁjl
my ——% = rows(Az), (5.2)

1- Tequiv
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rows(Az) k* CPU-t. (S) requiv
ny =2 10.93 4.22 10.78 0.49
ny =3 29.82 6.33 19.09 0.70
ny, =4 53.04 7.21 29.42 0.86
ny=>5 94.76 7.95 53.58 0.95
n,==~6 154.91 8.76 98.87 1.03
n,=17 257.25 9.06 204.59 1.10
n, =8 363.12 9.00 336.81 1.16
ny=29 469.30 9.70 513.78 1.17

ny =10 556.90 9.10 671.87 1.21

Table 5.1: Results of the Monte-Carlo experiment discussed in Seétibrl. Average
number of constraints, average tree depth and average ¢atigoutime of invariant
sets for 100 randomly generated systems are reported,fer2, ..., 10. Due to time
constraints the results for, = 8 were obtained with a sample size &if, the results
for n, = 9,10 were obtained with a sample sizeldf.

and that can be interpreted as the value thfat, according to expression (2.23), would
explain the observed number of constraints. Since exmme$8i23) gives a worst-case
value for row$Ag), one can see that.;, < r by definition. Larger values of.quiv
indicate that a larger fraction of all possible constraiataon-redundant. Table 5.1
shows that.quiv inCreases as a function of the dimensionality.

5.1.2 Theoretical considerations

The Monte-Carlo experiment discussed in the previous@ediearly shows that for
randomly generated systems with a fixed value of the JSR, dh#lexity of the
resulting invariant sets increases exponentially as theedsionality of the system
increases. We now state a few properties regarding?@MPC2 andP-RMPC
algorithms discussed in Chapter 4 that relate the abovenddigmns to the specific
structure present in these two algorithms, both of which ogl the construction of a
polyhedral invariant set for an augmented system. We fiase she following Lemma
that directly proves the corollaries below.

Lemma 5.1(JSR of upper block triangular matrices). Given a setM = {M;, ...,
M.}, with everyM; an upper block triangular matrix with diagonal blockd; ; ;.
then

pM) = m?X[’({Ml,(j,j)v s MG} (5.3)

Proof: This property directly follows from the fact that the diagbrblocks of
products of such matrices are equal to the products of theecgise diagonal blocks
and from the fact that the norm of an upper block triangulatrixés given by the
maximum of the norms of the diagonal blocks. O

It goes without saying that the same can be proven for loweckbtriangular
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matrices. The following two corollaries follow directly drare of more importance
in this context.

Corollary 5.1 (Joint spectral radius and P-GIMPC2). The joint spectral radiugayg
of augmented systefd.44)and the JSR; of the autonomous systems formed by LPV
system(3.1),(3.2)and feedback gaink; satisfy the following relation:

Proof: Applying Lemma 5.1 to (4.44) directly yields (5.4). O

The JSR of the augmented system (4.44) hence depends orrgbstlaSR of the
closed loop systems corresponding to the individual cdtdxes between which the
interpolation is performed. The disadvantage is that Igssssive controllers typically
result in slower convergence (and hence a larger JSR) wittiie @ame time providing
a larger feasible region.

Furthermore, the constraints (4.45) that are imposed drewnded along the last
(n — 1)n, dimensions of the augmented system, which prevents the fug& dgo
be used in order to determiri& .. However, it can be verified that if the different
controllersk, . . ., K, are unique, Corollary 2.1 can be applied with= n — 1. This
shows thak .. further increases as more different controllers are used.

These two observations show theoretically that there isyaarent trade-off inP-
GIMPC2 between the complexity of the obtained invarianb$éte augmented system
and the size of the feasible region, both of which increase asreases or more
detuned controllers are used.

Corollary 5.2 (Joint spectral radius and P-RMPC). The joint spectral radiug.s
of augmented syste®.63)and the JSR.; of the closed-loop system formed by LPV
system(3.1),(3.2)and the feedback gaiR™ are equal:

ﬁaug = /301- (55)
Proof: SinceSy .. is a nil-potent matrix and hence its spectral radius ispplying
Lemma 5.1 to (4.63) directly yields (5.5). O

Similar toP-GIMPC2, it can be verified that Corollary 2.1 can be appligthy =
N — 1in order to assess the complexity of the resulting invasahused to construct
a P-RMPC controller. Hence, although the JSR of the augmentstés (4.63) is
independent ofV, the value oft} ... still increases a#/ is increased.

This shows that from a theoretical point of view also with (HrRMPC algorithm a
trade-off has to be made between the number of on-line ainstrand the size of the

feasible region of the controller, both of which increasévais increased.

5.1.3 Conclusion

This section makes an analysis of the scaling behavior afriant sets for randomly
generated systems on the one hand, and of invariant setsdarlasses of structured
systems on the other hand. In both cases an exponentiaigtehavior is observed
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as a function of the dimensionality of the (augmented) syst€his scaling behavior
is due to the fact that we construct the MAS for the given systexactly. The
maximality of the volume of the invariant set seems to conthaexpense of a high
complexity.

Therefore in the following section new algorithms are dgsad for constructing
reduced-complexity invariant sets, in order to improve $iealing behavior of the
resulting invariant sets. These sets are inner approxamatio the MAS and hence
represent a different trade-off between volume and conitylex

5.2 Reduced-complexity invariant sets

5.2.1 State of the art

Three different approaches for the construction of inversats can be identified based
on the assumptions that are made from the outset or thectests that are imposed
during the construction of the sets.

A first approach consists of imposing a fixed low complexitsusture on the
invariant set after which the aim is to maximize the volumeaheiit losing the
invariance property. The results discussed in [28, 30,5B¢@n be classified in this
category. The method proposed in [68], which is alreadyudised in Chapter 2,
imposes an ellipsoidal structure, whereas the methodpeabin [28, 30, 75] impose
a parallellotopic structure. Both structures can be exg@sas|Wz|, < 1 with
W e Rm=>n"= wherep = 2 for the ellipsoidal case angd= o for the parallellotopic
case. Imposing an ellipsoidal structure has some impotiaativantages as is already
discussed in Chapter 2, but leads to a formulation based owegooptimization.
Parallellotopic invariant sets on the other hand have thitiadal disadvantages that
they can only be constructed for a limited class of stabldesys and that their
construction is not based on convex optimization. Theiraatlwge lies in the fact
that they can be decribed by linear inequality constraimtéch facilitates the on-line
optimization. Recent results [30] use partial invariareebtain larger invariant sets
of low complexity but are still restricted to the same claksystems.

A different diametrically opposed approach is the constomcof the MAS, where
essentially the a maximal volume is imposed. Within thisrfesvork of maximality of
the volume, the only degree of freedom for reducing the cemipl of the resulting
invariant set is the removal of redundant constraints. @pisroach hence leaves no
degrees of freedom to the user.

A third approach, which is the approach pursued in this @drap that of making
a trade-off between maximal volume and minimal complexitye methods proposed
here start from the MAS which is then approximated in orderebuce the number
of constraints. The methods proposed here make these amaitions either during
(pruning) or before {rimming) the actual construction of the invariant set. In this way
the real MAS is never explicitly constructed, which resulftssignificant efficiency
gains. By means of a few tuning parameters the trade-off detwnaximal volume
and minimal complexity can be adjusted according to the'sipeeferences. These
results are also discussed in [102].
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Based on expression (2.23) two possible strategies caridbeuawithin this third
class of methods. A first strategy is trying to reduce the nemalp parallel branches
present in the tree, in order to reduced the effective vafuein expression (2.23).
This method is callegruningand is discussed in Section 5.2.2. A second strategy is
reducing the tree depth, in order to reduce the exponentpras(2.23). This method
is calledtrimmingand is discussed in Section 5.2.3.

5.2.2 Reducing branching: pruning

In this section an algorithm is introduced that constructsnaariant set in a similar

way to Algorithm 2.4 but uses constraint tightening in orttereduce the number of
constraints describing the invariant set. The first sulisectescribes how constraints
can be tightened without losing the invariance propertythensecond subsection we
then formulate an algorithm that makes use of these instghtsduce the number of
inequalities describing the invariant sets. A third sulisecgives rules of thumb for

parameter tuning.

5.2.2.1 Constraint tightening

First, we rephrase Algorithm 2.3 in terms of the s&tsnstead of0; in order to create
a theoretical framework within which we can formulate the@ept ofpruning

Algorithm 5.1 (Approximate maximal (€))-invariant set construction). Given a
system(2.1),(2.2) subject to constraint&.10) perform the following steps:

1. Initialize Xy := X,i := 0.

2. Execute iteratively untm;:0 X C Pregn (X)):
(a) Seti:=i+1.
(b) CalculateX’ such that¥; C Pregg (X;—1).

Return the se§ 2 '_, &; and admissibility index* 2 ;.
j=0 ‘i y

Note that the equality in step 2b) of Algorithm 2.3 has begraeed with the above
inclusion. It can be shown that the above algorithm, if itrtgrates still produces a
valid (©')-invariant set, but maximality is not guaranteed anymore:

Theorem 5.1 (Correctness of Algorithm 5.1). If Algorithm 5.1 terminates, the
resulting setS is (Q')-invariant.

Proof: One can see that by construction at the end of every iterdfidhe set
0, = ﬂ;-:o X; satisfiesO; C Preqy(0;-1). If the termination condition is
satisfied, then one has thé@;, C Preq,y (O;-1) N Preg.y (X;) which is equivalent
with O; C Pregy (0;-1 N &;), which in turn is equivalent wittD; C Preqy (0;).
Due to Lemma 2.1 this guarantees tBat O; is (Q')-invariant. O

The aim is now, in every iteration, to construd} such that it approximates

Preq (X;_1) as close as possible, but with a reduced number of inequalitgtraints.
How this is done exactly is explained by means of Figure 5.1.
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Figure 5.1: lllustration of the structure of the Maximal Admissible Setr an
example system defined by, = 2, = 2,®; = [1 0.2; —0.5 0.55] and @, =
[10.2; —0.55 0.45], subject to constraintd,« < 1 with A, = [-10;0 —1;0.50.5].
Left: the tree structure of the MAS, where the nodes of the treesenit the different
constraints of the MAS, with the constraints of the diffdrepts X; appearing at
different depths of the trees as indicated on the figure. Tdiation (i, M) denotes
the constraint} Mz < 1, with a denoting the-th row of A,.. Right: a depiction of
the MAS. The constraintdl, x) bound the MAS from the left; constraint, «) bound
the MAS from the lower right; constraiti8, /) is the diagonal constraint bounding the
MAS from above. Constraint?, ®%) and(2, ®;®,) are depicted as dotted lines.

When inspecting Figure 5.1 one can notice that two sepanataches appear
below constraint2, ®,), corresponding to the two verticds , , of the uncertainty
polytope. Thisbranching effegtwhich becomes more frequent with increasing state
dimension, is the primary reason why polyhedral invariats $or LPV systems can
be dramatically more complex than invariant sets for LTksgss. Therefore, the main
purpose of this section is to find a way to efficiently redude tinanching effect.

Eliminating the branching effect observed in Figure 5.1dsgible by tightening one
of the two constraint§2, 2) and (2, ®;®,). When comparing the two dotted lines it
is clear that by tightening either of both constraints witthyaa small factor, the other
becomes redundant. This actually corresponds to choakinglightly smaller than
Preqn (A1), which fits within the framework of Algorithm 5.1. Thereforehoosing
some constraints slightly tighter than necessary can fiatigrresult in a complexity
reduction of the invariant set, while still guarantee{fj)-invariance of the resulting
setS.

The problem of finding how much a constraint should be tigltkein order to make
another constraint redundant can be formulated as follows:

Problem 5.1 (Constraint tightening). Given real matricesA € R™*™ a1 €
R™ as € R™ withv > 1,

V=max as = S.t. [ ;}f } x <1, (5.6)
z 1
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find a scalam > 1 such that’ = 1, with

vV =max ajz s.t. [ AT } z < 1. (5.7)
x naq

Note that the property > 1 indicates thatil = < 1 is not redundant with respect to
[4; af]x < 1. The scala is the factor with whichu{ 2 < 1 should be made stricter
in order to makeng:c < 1 redundant.

The following lemma allows this problem to be solved by sedya single LP:

Lemma 5.2. Given Problem 5.1, and given the optimal solutién£° of the following
optimization problem

ringlg s.t.[;}f Bl]{z]g[é},a;rz—l, (5.8)

1
thenn = Eio is a solution to Problem 5.1 §° > 0.

Proof: Due to the assumption of Problem 5.1 thvat- 1 it is guaranteed that there
exists a vector' such thatlz; ¢] = [«f; 1] is strictly feasible for (5.8) and hence
&° < 1. By rewriting the constraints of (5.8) into the form of (5iis clear that:° is a
feasible solution to (5.7) foy = élo if £° > 0. Furthermore, by writing the optimality

conditions of (5.8), it can be seen th&talso is an optimal solution to (5.7) fgr= 2.

fo
Due to the constraint] = = 1 of (5.8) it is clear that’ = 1, which proves correctness
of the lemma if¢° > 0. |

The above lemma provides an efficient method for checkingthdreightening a
given constraint, can eliminate a branch in the constreaet tin the following sections
this method will be referred to gguning

5.2.2.2 Algorithm formulation using pruning

In this section constraint tightening is incorporated idtigorithm 2.4 in order to

construct invariant sets with a reduced number of conggaiompared to the MAS
constructed using Algorithm 2.4. For simplicity the Algirin will only be given for

the case = 2, but extensions to > 2 are straightforward.

Algorithm 5.2 ({(Q')-invariant set construction using pruning). Given a system
(2.1),(2.2) subject to constrainté2.10) satisfying(2.18)for valuesc = ¢*,a = a*.
Consider user-defined scalatls > c¢*,ds € [o*,1) andy > 0. Execute Algorithm
5.1 with the following implementation of step 2b):

1. SetX; := Prem/)()(i_l) and defineY; = {.I'|AX1 < 1}

2. Check whether anyranching evenhas occurred, meaning that two non-
redundant constraints of; have the same parent constraintd_;. For every
branching event involving constraint rows and j» of Ax,, check whether
constraint tightening can make one of both redundant:
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(a) Use Lemma 5.2 to calculate the scalays > 1,7, > 1 (if both exist)
needed to make one of the constraints redundant (with reap)ﬂszo A;)
by tightening the other. Assume without lack of generatiit; < 7s.

(0) < 1+ and ]| A, ()| < maxy | A (k, 9)lldrds, then set
Ax,(J1,2) == mAx, (J1,2)-

Convergence and correctness can be proven in a straigatibmay.

Theorem 5.2(Convergence of Algorithm 5.2). Algorithm 5.2 terminates in a finite
number of iterations.

Proof: Due to the safeguards built into step 2b) of Algorithm 5.2 dne to the
choice ofd; andd,, it is guaranteed thatax, || Ax, (k,:)|| < maxy || Az (k,:)||d1db.
By means of a similar argumentation as used in the proof obfiéra 2.2 it can now
be proven that Algorithm 5.2 terminates in a finite numbetefaitions. For details we
refer to this proof. O

Theorem 5.3(Correctness of Algorithm 5.2). The setS constructed using Algorithm
5.2 is(QY')-invariant.

Proof: Due to the fact that Algorithm 5.2 is a specific implementatd Algorithm
5.1, itis guaranteed th&tis (Q')-invariantif in every iteratior; is indeed constructed
such thatt; C Preq (X;—1). This is guaranteed sincE; is initially constructed as
X; = Prem,)()(i,l), after which;; is only made smaller, which proves the theorem.

O

Figure 5.2b) shows how Algorithm 5.2 is able to construct duoed complexity
invariant set for the system depicted in Figure 5.1.

5.2.2.3 Parameter tuning

Parameterd; andd, are primarily used to impose convergence of the algorithch an
need to satisfyly > ¢* andds € [a*,1) in order to do so. Mostly they can be given
the following default values:

dy = mlc*, (593)
do = (1—m2).a+m2.1, (59b)

with m; = 1.5 andms = 0.5. Unless stated otherwise these will be the values used
in all the following examples. An interesting property isthhe worst-case volume
reduction to be expected is proportionalitd=, wheren,, is the state dimension of
the system. Therefore, in cases where large volume redisatan be tolerated, larger
values ofm, can be chosen and vice-versa.

The parametety > 0 is the main parameter influencing the trade-off between low
complexity and high volume since it defines an upper boundheriactor with which
constraints can be tightened in every iteration. Largeueslof~ lead to lower
complexity invariant sets, while smaller values fotead to larger invariant sets. A
good starting point usually is ~ 0.1. Systems with a larger amount of uncertainty
typically require larger values for to obtain equally large complexity reductions.
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Figure 5.2: Results of pruning and trimming when applied to the systeseudised

in Figure 5.1.Top subfigures: Constraint trees of the resulting invariant sets. Solid
circles depict constraints that are modified with respe¢heoMAS (i.e. figure a)).
Bottom subfigures: Invariant sets along with trajectories starting near therlaries

of the sets. Top left to bottom right: a) the MAS of the systemb) invariant set
obtained usingpruning(cfr. Algorithm 5.2) withy = 0.1, c) the MAS obtained using
trimming (cfr. Section 5.2.3) witle = 0.5, d) result obtained using both pruning and
trimming using identical parameters as in figures b) and c).
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5.2.3 Reducing tree depth: trimming

In this section a new theorem is introduced that adds aniaddlttuning parameter
to the algorithm for constructing reduced complexity inaat sets. It is shown that,
given an LPV system, it is allowed to modify the system in ecHfpeway and calculate
the invariant set for the modified system. Under certain ¢ the invariant set for
the modified system is also invariant with respect to theinaigystem. By tuning the
involved parameter, one can potentially obtain invariais svith a lower admissibility
indexk*. In the following sections this method will be referred ta@sming

Theorem 5.4(Invariant sets for modified system matrices).Given a setS € R"=
and two autonomous LPV systems defined by uncertainty pekfia and(2, that are
defined as

0 2 Co{®y,...,2,}, (5.10a)
Qy £ Co{d,..., "}, (5.10Db)

with
P, = (1+c)®; —cl, i=1,...,m7, (5.11)

wherec € R*. If S is convex and(2.)-invariant, then it is alsq; )-invariant.

Proof: If S is (€2;)-invariant then
dlre S, VeeS,i=1,...,r,
or equivalently
(1+e)Px —cx) €S, VeeS,i=1,...,r

Due to convexity ofS and the fact that > 0 it is therefore also guaranteed that

1 c
(1 oz —
(1+c(( + )Pz cx)+1+c

which, after some algebraic manipulation, is equivalent to

x) eSVeeS,i=1,...,r,

d,x eS8, VeeS,i=1,...,r,
which proves thas is (2, )-invariant. O

The above theorem indicates that, given a system defined dgrtamty polytope
1, one can calculate an invariant sefor the system defined b§s, which is then
invariant for both systems. The s&twill be a subset of the MAS for the original
system. The parametercan be used to reduce the number of constraints of the
resulting setS.

The theorem can be further generalized by, among otherghadtpwing different
values ofc for each®;-matrix.

Figure 5.2c) shows how Theorem 5.4 allows the construcfian@duced complexity
invariant set for the system depicted in Figure 5.1. FiguPe bshows the results when
combining this theorem with Algorithm 5.2.
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5.2.3.1 Parameter tuning

The above described method for computing reduced complexiriant sets based on
modified system matrices is especially useful for systemerathe eigenvalues of the
d; matrices lie close to the poitt+-0: on the unit circle, which is often the case in real-
life examples. One can see that increasing the valuendves the eigenvalues of the
®’-matrices away from the unity point, which can intuitivelg been as accelerating
the dynamics of the system. As a result one can seethfitiences the JSR which in
turn influences:*. In this way the number of constraints of the resulting ireatrset
can be reduced at the cost of a decrease in volume.

In order to reduce the number of constraints without takirg#olume reduction into
account one can obtain a value foas

min ().

However, since the computation pfQ2;) for a single value ot is already an NP-
hard problem, the above optimization problem cannot beesbin polynomial time.
However, it is possible to minimize the ellipsoid norm appneation [19, 137] of the
JSR instead:

min v,
c,PESi“‘+

s.t. || Plp <7, i=1,...,m

The ellipsoid norm can be computed by solving an SDP [24], latte the optimal
value ofc can be found by means of an interval reduction method.

5.3 Linear scaling of P-RMPC

This section shows that under certain conditions, the nuwitsonstraints ofP-RMPC
can be reduced from an exponentially increasing number fasaion of N) to a
linearly increasing number, when using Algorithm 5.2 iastef Algorithm 2.4 for
computing the invariant set for the augmented system (448)), used in the design
phase of Algorithm 4.7R-RMPC). These conditions essentially come down to the fact
that the amount of model uncertainty must be sufficientlylsamal that the parameters
of Algorithm 5.2 should be chosen appropriately.

In order to

We first derive bounds on the tightening factors obtainedgisemma 5.2 by making
use of the structure present in (4.63)-(4.64) in order toetoa quantification of the
performance of Algorithm 5.2 in this context. This chapteof high importance in
this thesis, because it combines results from Chapters 2 @amdl Sections 5.1.2 and
5.2.2 and gives insight into the factors determining theiefficy of Algorithm 5.2

Lemma 5.3. Given an LPV systel8.1)(3.2) subject to constraint&2.10}(2.11)and

a stabilizing feedback gai&k’. Consider the application of Lemma 5.2 for tightening
a constrainta]z > 1 in order to make a constraint » < 1 redundant during an
arbitrary iteration 7 of Algorithm 5.2 when applied t¢4.63)(4.64) Furthermore
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Figure 5.3: Evolution of the computational complexity of different MR@orithms.
In the LTI case one automatically has linear scaling belravio the LPV case one
obtains exponential scaling behavior if no special coniptexeduction measures are
taken. Using reparameterized inputs (see Figure 4.12) aneeduce the number of
optimization variables to a linearly scaling number, whiking reduced-complexity
invariant sets results in a linearly scaling number of caists.

consider the fact that both constraints achildren of constraintbTz < 1, with
b = [b; b],b € R b € RN« In that case the tightening facter obtained with
Lemma 5.2 is upper bounded by

1

< — —, (5.12)
1= v (14 s ) et
if the denominator is strictly positive, with
[ AT _KTAT [ (@ — )"
c_[ e K } U_[(BQ_Bl)T , (5.13)

A+ a strictly positive vector satisfying \() = Ub, m denoting the number of rows
of ¢ and@i = Az — B, K.

Proof: See Appendix D. O

Expression (5.12) can be expected to be very conservatiweéalthe many approxi-
mations made in Section D.1 when constructing this bouné.réhl tightening factor
found using Lemma 5.2 is in most cases significantly smallérerefore, this upper
bound only is of limited practical use, but shows tA@ilound exists that is independent
of N. This property is used in the following theorem.

Theorem 5.5. Given an LPV syster(8.1)(3.2) subject to constraint$2.10}(2.11)
and a stabilizing feedback gaifd. If v is chosen such that

ye(e—1,dy"' 1), (5.14)
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with ¢ equal to the RHS 0of5.12) then the following property holds:
rowgAs) = O(N), (5.15)

with § = {z|Asx < 1} an invariant set for systert4.63}(4.64) computed using
Algorithm 5.2.

Proof: See Appendix D. O

The above theorem shows that if the amount of uncertaintyfficently small, the
parameters of Algorithm 5.2 are chosen appropriately amditierval given by (5.14) is
non-empty, the number of constraints”PfRMPC increases as a linear function/éf
Figure 5.3 sketches the broader context within which thesilteshould be interpreted.

It is important to emphasize that if the above conditionsrentesatisfied (e.g., if the
interval (5.14) is empty) one can still observe linear saalbehavior, or exponential
scaling behavior with a lower base number. In most situatias illustrated in the next
section, the additional computational cost of verifyingattier constraint tightening
can be applied is relatively small.

Therefore, the main conclusion of this section is that inteases there is no reason
why not to use Algorithm 5.2 instead of Algorithm 2.4, espdlgiwhen computing
constraints fofP-RMPC.

5.4 Examples

Two sets of examples are provided. First the Monte-Carleegrent discussed in
Section 5.1.1 is repeated using Algorithm 5.2 (pruning) tmedmethod described in
Section 5.2.3 (trimming). Secondly, the examples disaliss8ections 4.2.7 and 4.3.5
are also repeated using the new algorithms in order to etealdaether an improved
trade-off is obtained between the number of on-line comgsaand the obtained
feasible regions.

5.4.1 Monte-Carlo experiment

For easy reference, we first summarize the results of the éGarlo experiment
discussed in Section 5.1.1. The experiment showed thaafatam LPV systems the
number of constraints describing polyhedral invariarg senstructed using Algorithm
2.4 increases exponentially as a function of the dimengignaf the system, even
if the convergence rate of the systems is kept fixed by coctsdru This was
shown to be due to an increase of the admissibility inéi&xas a function of the
dimensionality. Expression (2.23) shows that the worsecaumber of constraints
describing polyhedral invariant sets increases expoalnéis a function ok*, which
explains the observed scaling behavior.

First, we recompute invariant sets using Algorithm 5.2 (pmg) with v = 0.1.
Results are presented in Table 5.2 and can be compared teshlésrshown in Table
5.1. A significant reduction of the number of constraintsbtained. Also the average
computation time needed for the construction of the seteduiged significantly,
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enabling the construction of invariant sets for higher-efisional systems is reasonable
amounts of time.

Table 5.3 shows results obtained when using trimming. Tharpaterc was
optimally chosen from{0,0.1,0.3,1, 3,10} in order to minimize the JSR of the
resulting modified systems. Also in this case significantguced numbers of
constraints and significantly lower computation times web¢éained. As expected
trimming significantly reduces the admissibility index

Table 5.4 finally shows results obtained when combining mmiand trimming.
As expected this results in the lowest complexity invarigets, but due to the small
average values df* the further reduction is relatively small.

A volume comparison is not given here, since computing velsiim high-dimen-
sional spaces is non-trivial, and volumes in different disiens are difficult to
compare. The next example lends itself better for volumepariaons because there
the volume of the resulting feasible regions can be companezh for different state
dimensions of the involved augmented systems.

5.4.2 Robust MPC using reduced-complexity invariant sets

In this section we reconsider the example discussed in@e4tB.5 and now compute
the invariant sets using the new algorithms introduced is ¢thapter. The aim is
to investigate whether the new algorithms can provide aebetade-off between
the obtained feasible region and the number of constraintsetused in the on-line
optimization problems.

Figure 5.4 compares the feasible regions reported in Figgdrewith those obtained
using Algorithm 5.2 withy = 0.1. The feasible regions obtained with the new
algorithm are slightly smaller and are not nested for desingavalues ofV. However,

rows(Ag) k* CPU-t. (S) requiv
ny =2 10.36 4.21 10.57 0.48
ny=3 19.29 6.38 14.67 0.62
ny=—4 29.13 7.35 19.22 0.71
ngy=>5 42.57 8.15 26.90 0.76
ny =6 57.21 9.12 37.85 0.80
ne=717 76.88 9.43 52.47 0.84
ny =8 95.70 9.69 67.84 0.87
ngy=29 116.59 10.17 87.26 0.88
n, =10 141.84 10.22 114.94 0.90
ny, =11 171.95 10.79 151.38 0.92
ny, =12 197.61 10.73 183.84 0.93

Table 5.2: Results of the application of Algorithm 5.2 (pruning) with= 0.1 to the
sets used in the Monte-Carlo experiment discussed in $e6tiol. Average number
of constraints, average tree depth, average computati@dind average equivalent
branching factor of invariant sets for 100 randomly gerextalystems are reported for
ne=2,...,12.
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rows(Azg) k* CPU-t. (S) requiv
ny =2 5.36 1.08 9.03 0.28
ny =3 9.47 1.37 10.52 0.47
ny =4 14.65 1.56 11.84 0.61
ny=>5 21.32 1.74 14.08 0.75
ny =6 27.15 1.82 16.68 0.79
ny="17 35.39 1.95 20.00 0.88
ny =8 43.82 2.08 24.10 0.90
ny=29 51.10 2.00 27.16 0.94
n, = 10 64.70 2.30 32.71 1.00

Table 5.3: Results of the application of trimming (with optimally chosen from
{0,0.1,0.3,1,3,10}) to the sets used in the Monte-Carlo experiment discussed in
Section 5.1.1. Average number of constraints, averagelapth, average computation
time and average equivalent branching factors of invarsats for 100 randomly

generated systems are reportedrfor= 2, ..., 10.

rows(Ag) k* CPU-t. (S) requiv
n, =2 5.19 1.08 9.03 0.26
ny =3 8.65 1.35 10.48 0.37
n, =4 13.07 1.59 11.80 0.48
ny =5 18.39 1.73 13.93 0.59
ny, =6 23.24 1.84 16.50 0.63
ny =17 29.73 1.96 19.69 0.70
ny =8 36.02 2.04 23.29 0.73
n,=29 43.69 2.15 27.78 0.78
ny =10 52.27 2.28 32.36 0.82
ny =11 59.52 2.20 36.71 0.86
ny =12 67.28 2.22 42.00 0.89

Table 5.4: Results of the application of trimming (with optimally chosen from
{0,0.1,0.3,1,3,10}) and pruning (using = 0.1) to the sets used in the Monte-Carlo
experiment discussed in Section 5.1.1. Average number mdtcaints, average tree
depth, average computation time and average equivalemthireg factors of invariant
sets for 100 randomly generated systems are reported.fer2, ..., 12.
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P-RMPC, N =0
P-RMPC, N =1
P-RMPC, N =2
P-RMPC, N =3
P-RMPC, N =4
P-RMPC, N =5
P-RMPC, N =6
P-GIMPC
P-GIMPC2

#constr.

10
16
26
47
74
120
171
19
28

\ol.

27.81
37.42
46.41
59.58
68.00
78.24
87.25
78.85
176.06

Table 5.5: Number of constraints and volume of the feasible regioniobthfor the
same example described in Section 4.3.5 and Table 4.3. Bhaéisén this table are
obtained by using Algorithm 5.2 (with = 0.1) for computing the invariant sets.

as Table 5.5 shows, the number of constraints is also signtficreduced compared
to those reported in Table 4.3. By comparing both tablesedoimes clear that with
Algorithm 5.2 andN = 6 a similar feasible region is obtained as with Algorithm 2.4
and N = 5, but the former results in a lower number of constraints. difference
is not dramatic in this case because there is a significantanod model uncertainty,
with up to 100% uncertainty on some coefficients. Table SdFRigure 5.5 show the
results obtained is also trimming is applied with= 0.25. The number of constraints
is further reduced, but the trade-off between complexitg @olume of the feasible
region is not further improved for tHB-RMPC algorithm.
It should be noted that, although Section 5.3 only givesaputaes for the complexity
of P-RMPC, the algorithms described in this chapter also seem eféective when

[] P-GIMPC2
— P-RMPC

[ P-GIMPC |5

[ P-GIMPC |5
[] P-GIMPC2
— P-RMPC

-10

-10

Figure 5.4: Left: Feasible regions of the different algorithms presentedhap@er
4 with invariant sets computed using Algorithm 2.4 as alspiced in Figure 4.14.
Right: Feasible regions of the same algorithms using invariast s@tnputed using

Algorithm 5.2 withy = 0.1.

constraints and the volume of the feasible regions.

Table 5.5 shows the number of on-line inequality
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used for constructing invariant sets BrGIMPC2. In this example the number of on-
line constraints is reduced froé3 to 23, while the volume of the feasible region is only
slightly reduced (from 81.82 to 165.56). Figure 5.6 shows the constraint structures of
the invariant sets oP-GIMPC2 obtained using three different methods. This shows
clearly that pruning reduces the number of parallel brasdi¢he constraint tree and
that trimming reduces the tree depth, as already explained.

Finally, we investigate the behavior of Algorithm 5.2 foffdrent values ofy and
for different amounts of uncertainty. Figure 5.7 shows tHative number of on-line
constraints and the relative volume of the feasible regia function ofy for the P-
RMPC algorithm withV = 6. As expected, increasing values-pfead to a reduced
number of constraints and a lower volume of the correspanféiasible region. For
two different values ofy the constraints structures are depicted, showing thathigh
~-values result in less parallel branches.

Figure 5.8 shows the behavior of Algorithm 5.2 (withe {0,0.1}) for different
amounts of model uncertainty. The amount of model uncdstain varied by
considering a modified system with; = ®; and®, = (1 — a)®; + a®,, with
a € [0,2]. The number of constraints and the volume of the feasiblénegre
normalized with respect to = 0. The figure shows that for smaller amounts of model
uncertainty Algorithm 5.2 becomes increasingly efficientéducing the number of
constraints ify > 0. Also, as the amount of model uncertainty approadhethe
number of constraints approach#g which is identical to the number of constraints
describing the MAS in the LTI case. This observation is irelwith the general
intuition that small amounts of model uncertainty shoultisubstantially increase the
off- and on-line computational burden, which is not whatlgained with Algorithm
2.4, which corresponds to the cage- 0.

Figure 5.9 shows that Algorithm 5.2 leads to a linearly imsieg number of con-

,
[ P-GIMPC
- [ P-GIMPC2

o N A O ®
T T T T T

-10 -5 0 5

Figure 5.5: Feasible regions obtained for the same setting as thosanshdwgure 5.4.
In this figure both trimmingd = 0.25) and pruning{ = 0.1) are used to construct the
involved invariant sets. Table 5.6 shows the number of ne-lnequality constraints
and the volume of the feasible regions.
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N

S

(a) No trimming, no pruning.

[e] [e]

[e]

— —
(b) No trimming, pruning withy = 0.1.
T
0N

(c) Trimming withc = 0.25, pruning withy = 0.1.

Figure 5.6: Constraint structures of the polyhedral invariant setsliisé?-GIMPC2
for the settings depicted in Figures 4.8, 5.4 and 5.5.
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straints when applied for computing constraints FsRMPC. Also the computation
times reduce dramatically when using Algorithm 5.2 instebdlgorithm 2.4, which
enables the use of significantly larger horizon lengths. athility to use significantly
larger horizon lengths allows the volume reductions cabgdte constraint tightening
to be more than compensated, which is shown in more detahapt@r 8.

5.5 Conclusions

In this chapter new algorithms for the construction of pelgtal invariant sets are
discussed. The obtained sets are invariant inner approwinsof the MAS and allow
the user to make a trade-off between low complexity and &laojume.

Two different methods were discussegiruning and trimming Both can be
interpreted in terms of the constraint structure of the ioleinvariant sets. Pruning
aims to reduced the number of parallel branches in the ainststructure, while
trimming aims to reduce the depth of the constraint strectukn additional impor-
tant advantage is the reduced computation time needed ttraohthese reduced-
complexity invariant sets, which is due to the fact that thee ®f the optimization
problems that have to be solved for constructing these se¢sliiced.

The algorithms are demonstrated using several exampleghwghow that in
several cases significant complexity reductions can bearaita When used in robust
MPC algorithms, these reduced-complexity invariant satslead to better trade-offs
between the size of the feasible region and the on-line ctatipnal complexity. In
some cases these improvements can be orders of magnitude.

Finally, it should be noted that the proposed algorithmsarly initial steps in
the direction of constructing reduced complexity invatiaets. Extensions towards
different model classes (PWA, hybrid, ...) are possiblewa$f as other ways for
reducing the number of constraints within the frameworH laiit by Algorithm 5.1.
Also, the formulation of expressions for the a priori quficdition of the obtainable
complexity reductions is a useful and interesting futuseegch direction.
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Figure 5.7: Relative number of constraints and relative voluvhef the corresponding
feasible region (both with respect to the MAS,4.e= 0) of invariant sets foP-RMPC
with N = 6 for the example discussed in Section 4.3.5. The constrainttares of
the invariant sets correspondingte= 0.01 andy = 0.1 are depicted at the top of the
figure.
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#const.  \ol.

P-RMPC, N =0 9 25.75
P-RMPC, N =1 14 34.39
P-RMPC, N =2 27 41.87
P-RMPC, N =3 46 49.29
P-RMPC, N =4 69 56.16
P-RMPC, N =5 101 62.12
P-RMPC, N =6 144 70.40
P-GIMPC 17 75.51
P-GIMPC2 23 165.56

Table 5.6: Number of constraints and volume of the feasible regioninbthfor the
same example described in Section 4.3.5 and Table 4.3. Boéigén this table are
obtained by using trimming (wite = 0.25) and Algorithm 5.2 (withy = 0.1) for
computing the invariant sets.

Relative # constraintsy(= 0)
Relative # constraintsy(= 0.1)
Relative volumé/ (y = 0)
Relative volumé/ (y = 0.1)

10 Hemmmmm e o mmm b e

OLANNANAA:
PANA S o O VAN
SISz e
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Figure 5.8: Relative number of constraints and relative voluvhef the corresponding
feasible region of invariant sets f@g-RMPC with N = 6 for the example discussed
in Section 4.3.5 as a function of the amount of uncertaintile @mount of model
uncertainty is varied by considering a modified system wWith= ®; and®, = (1 —
a)®; + a®q, with a € [0, 2]. Values are normalized with respectdo= 0. Algorithm
5.2 with~ € {0,0.1} is used to construct the invariant sets.
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Figure 5.9: Number of constraints and computation times of invariam$ $er P-
RMPC as a function ofV for the example discussed in Section 4.3.5. The different
curves represent different amounts of uncertainty (détexdbya as in Figure 5.8) and
different values ofy. Algorithm 5.2 is used to construct the invariant sets. Allfipon

5.2 clearly leads to a linearly increasing number of comstsaas a function ofV,

if v is given a strictly positive value or i = 0. A corresponding reduction in the
computation times is observed.
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Chapter 6

Reduced-Complexity Control
Invariant Sets

“One should not increase, beyond what is necessary,
the number of entities required to explain anything.”

— William of Ockham (1285-1349) —

In this chapter we extend the results of Chapter 5 from pasitivariant
sets to control invariant sets. First we show that the teghas ofpruning

and trimming can also be extended to this more general context in order
to obtain reduced-complexity sets. Secondly, we show honirmgg can

be applied taFourier-Motzkin eliminatiorin order to calculate reduced-
complexity inner, un-biased or outer approximations ofj@etions of
polyhedral sets. These new techniques for projecting jealsdi sets can
either be used to further reduce the complexity of contrehiiant sets

or can be used for any other application involving the praie of H-
polytopes or Fourier-Motzkin elimination.

6.1 Control invariant sets

Before discussing reduced-complexity control invariatssit is necessary to intro-
duce the necessary definitions and the state of the art aungehe construction of
such sets, after which some basic properties are discussed.

While positive invariant sets are related to constrainédraamous dynamic systems,
control invariant sets are related to constrained dynagstesns with inputs and can
be defined as follows.

Definition 6.1 (Control invariant set, [14]). Given an LPV systeif8.1)(3.2) subject
to input and state constrain{®.10)(2.11)and given\ € (0, 1), then the sef € R"=

137
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is a feasiblex-contractive control invariant set (with € (0, 1)) iff S C X and
VeeS,Ju(x) el : Ax+ Bue XS,V[A B €Q, (6.1)

In what follows we will omit the ternfeasibleunless where we want to emphasize
thatS C X. For briefness of notation, in future sections we will referthese
sets as(f),U, \)-invariant sets or, ifA = 1, (Q,U)-invariant sets. We will not
explicitly consider bounded disturbances in this chajtgtrthis extension is relatively
straightforward and similar to the method described iniSa@.4.2.

Control invariant sets can be seen as the equivalent condgpisitive invariant
sets for systems with inputs. These inputs provide additidegrees of freedom that
can be used to keep states inside the set and therefore teeng{zs1)-(3.2) does not
necessarily be open-loop stable in order to have a contratiemt set. Since the next
chapter will use control invariant sets for guaranteeingst@int satisfaction, we are
primarily interested in the largest possible control ineaft set for a given system:

Definition 6.2 (Maximal control invariant set (MCAS) , [13]). A setS is the maximal
(Q,U, N)-invariant set iff it is (Q,U, \)-invariant and all other feasiblgQ,u, \)-
invariant sets are subsets &f

Similar to the MAS, also the MCAS can be proven to exist andcetamiquely defined
in this way. As already pointed out by [63, Proposition 2&jntrol invariant sets
provide a powerful tool for robust constraint satisfactiemce for any initial state
x(0) one can show that there exists a control ldws u(k) = x(z(k)),k € N that
guarantees constraint satisfactin e N iff 2(0) € S.

Similar to positive invariance, also control invariance t& expressed in terms of a
geometric condition based on the pre-set defined in Chapter 2

Lemma 6.1 (Geometric condition for control invariance, [63]). Given an LPV
system(3.1)}(3.2) subject to input and state constraint.10}(2.11)and given\ €
(0,1) and a setS € R"=, then the sef is (Q2, U, A)-invariant iff

S C Preg 5 (S), (6.2)

where, for reasons of consistency with the notation of Gérahtwe define the operator
Preq.u,x (+) as Preg ) (S) £ Preg 03,0, (S)-
Proof: The proof is similar to the proof of Lemma 2.1 and is hence tadit O

Checking whether a given polyhedral et {2|Asxz < 1} satisfies condition (6.2)
is a three-step procedure:

1. Calculate the s&req 1) (S)* containing all state-input vectofs; u] that keep
the next state insideS:

Pren .y (S) £ {[z;u] € R™ ™ |u e U, As(Ajx + Biu) < Ali=1,...,r}.
6.3)

i [15] the sePreq 14,5y (S) is referred to as the "expanded” set.
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2. ComputeS’ = Preg .5 (S) as the projection aPre i,y (S) ontoR™=:

Preg 0 (S) = proj,,, (Preg . (S)), (6.4)
with proj,, (-) denoting then,-tuple application oproj(-).
3. Check whethef C §'.

The first two steps essentially correspond to the computatidre, /5 (S), while
the third step only consists of checking the inclusion ofissts. The projection of step
2 can be performed using Fourier-Motzkin elimination [L4@hich is briefly described
in Appendix B.

Similar to Algorithm 2.3, it is now possible to formulate afgarithm for the
construction of the MCAS based on condition (6.2):

Algorithm 6.1 ((Q,U, \)-invariant set construction, [13]). Given a systen3.1)
(3.2) subject to constraint$2.10}(2.11) and variables), N’ € R* such that)\ €
(0,1], M € (0,1], N < A, perform the following steps:
1. Initialize Oy := X,i := 0.
2. Execute iteratively unt®; C Preq x 1) (0;):
(a) Seti:=i+1.
(b) Calculate®; := Pre<527X7M7A/>(Oi_1) NO;_1.

Return the sef £ O,.

The resulting sets have the same scalability issues asveasitariant sets, which will
also become clear in the examples section:

e Based on expression (6.3), where it becomes clear that evastraint in the set
S has the potential to generateonstraints in the seFTem_u_)) (S), itis clear
that also in the case of control invariant sets the numbeionbtraints in the
worst-case can increasdold as the number of iterations increases.

e The projection needed for calculating the pre-set in eviemaiion can also in-
crease the number of constraints dramatically, espeda@llyigher-dimensional
systems. This is due to the fact that counter-intuitiveg/tlamber of constraints
describing a projection of a set can be significantly higltiean the number of
constraints describing the original set.

Apart from the increase in the complexity of the resultintssalso the computational
complexity is an important concern, since the added priojestep is computationally
heavy and largely determined by the number of constrainte@fets to which the
operation is applied. We refer to Appendix B for more details

The following section will now introduce several methods fiecreasing the
complexity of the resulting control-invariant sets, whialil also directly have a
positive effect on the computational complexity of the dongtion of these sets.

2The number of constraints describing the — 1)-dimensional projection of am-dimensional H-

polytope described by constraints, is in the worst case equa[@ij. The number of vertices describing
the (n — 1)-dimensional projection of an-dimensional V-polytope described by vertices is in the worst
case equal ten. The projection ofl’-polytopes hence seems to be more efficient,Wgolytopes are not
suited for use as constraint sets in optimization problemesh as those used in MPC . See [146] for details.
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6.2 Reduced-complexity control invariant sets

In this section several methods are proposed for constgiceduced-complexity
control invariant inner approximations of the MCAS. Firdt al the two main
contributions of the previous chaptgsr(gning and trimming) are extended towards
the setting of control invariant sets. Secondly the prumirgghod is also applied to the
projection step involved in constructing control invatiaats. This second contribution
allows the construction of reduced-complexity projecsiarf polytopes which could
also be useful in other settings.

Before describing the different methods for reducing thenglexity of control
invariant sets we describe a general framework similar ggAthm 5.1 within which
the new methods fit.

6.2.1 General framework

The main contribution of this section is the formulation of algorithm for the
construction of inner approximations to the MCAS, similarAlgorithm 5.1. In this
way degrees of freedom are created that are then exploitbd imext sections in order
to obtain complexity reductions.

While Algorithm 5.1 deals with setd’;, with ¢ denoting the iteration number, the
algorithm introduced here deals with several differens sktring a single iteration.
This is due to the fact that a projection of(a, + n,)-dimensional set to a&,-
dimensional set has to be computed. This operation is appliee dimension at
a time and therefore we will consider setd™ "™ ¢ Rretnu ylretrell o
Rretnu—l .,Xi[”’”] c R"=, with againi denoting the iteration number and the
superscripts denoting the dimensionality of the sets. kuaplgity of notation we
will also use set©!" ™ 2 i xl= ) with j = 0,...,n,,i € N. This results in
the following algorithm, whose work flow is depicted scheigsdty in Figure 6.1:
Algorithm 6.2 (Approximate maximal (Q, U/, \)-invariant set construction). Given
a systen{3.1)}(3.2)subject to constraint®.10}(2.11)andX € (0,1}, X € (0,1], N <
A, perform the following steps:

1. Initialize X" ") .= X x 1 and seti := 0.
2. Computex!™ ™7 such thatx["* "7 C proj(x[* M) for j =
1,..., 1.
3. Execute iteratively untiD!™* ") C Prejq , » (O")):
(a) Seti: =i+ 1.
(b) Computex™ " such thato"* ") € Preq 4 a1 (OI"))
(c) Computex"= "~ such thato!"= "~ C proj(O=*m I+ for
7=1,...,n4.

Return the sef £ 0!

If steps 2, 3b and 3c are implemented such that the inclusn'xmssatisfied
with equality — which can be done easily by respectivelyira;gtt’(o["’+"“_J]
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Dimensionality
A
na + nu | X xU | X1[““+"'“] | X2[nz+7m]
v proj() ¥ _proi()
ne +nu—1 | X x proj(U) | Xl[nz+mr1] |
v proj() 1 proj(-)
g + ny — 2 X X projp(U) __ I __
I oroiC) Pl’e<Qu,)\r>(') : Premu,,\g(z)
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ng | X | afrel
0 1 2  lteration

Figure 6.1: Work flow of Algorithm 6.2. The arrows indicate the order inialnthe
different sets are constructed and based on which opethtoeets are computed.

proj (X5« 7Y in step 2, settingt™* ™l .= Preg 0 (2"3) in step 3b
and settingx"* "7 .= proj(OI"= Tt} in step 3¢ — the above algorithm
can be shown to be identical to Algorithm 6.1. In the otherectie resulting sets
will be subsets of the ones obtained using Algorithm 6.1 beitséill guaranteed to be

(Q,U, N-invariant.

Theorem 6.1. Given a systen3.1)}(3.2) subject to constrainte2.10}(2.11)and \ €
(0,1], ) € (0,1], ) < ), then the sef resulting from Algorithm 6.2 i€Q, U/, \)-
invariant.

Proof: The termination condition in step 3 guarantees that, whenatgorithm
terminates, the conditior@y‘””“] - P_re<97u7,\>((9£"’]) is satisfied. Also, by
construction (step 3c) it is guaranteed thfaﬁ“”] C proj,, ((’)[.”””“]). Due to

K3

equivalence (6.4) it is then also guaranteed tﬁ%ﬁ”] C Prequ, (Ol[."m]). After
substitutingS 2 0"*!, Lemma 6.1 then shows thatis (2, 2/, \)-invariant. O

The following sections will now show how the degrees of fremdpresent in
Algorithm 6.2 can be exploited in order to save computatitrmee and obtain reduced-
complexity control invariant sets. It goes without sayihgttalso for the construction
of control invariant sets one should regularly remove redum constraints (i.e.,
garbage collectiopin the sets(?l[””'” in order to reduce the computational overhead
caused by these constraints. The algorithms describeckifiottowing sections do
not explicitly mention the removal of redundant constrainit the same rule of thumb
described in Chapter 2 can still be used.

6.2.2 Pruning

An important similarity between Algorithms 6.2 and 2.3 igttlthe invariant sets are
constructed iteratively and that the constraints of theltieg sets can be structured
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into different layers of constraints, with each layer cepending to a different
iteration.

However, due to the additional projection step in Algorittth2, there are no
more unambiguous parent-child relationships between dmstcaints of consecutive

layers, i.e. consecutive se&é}"”] and X}f{], which seems to rule out the possibility
of applying pruning to eliminate the number of constraintshwdentical parent
constraints. However, theiga clear relationship between the constraintﬂfﬁf‘] and

Xi[f_f"“}, since the latter are constructed using the: 1 ») (-)-operator. Therefore,

the following algorithm proposes to upeuningin step 2b of Algorithm 6.2.

Algorithm 6.3 (MCAS construction using pruning). Given a systen{3.1)}(3.2)
subject to constraint@2.10}(2.11)and A € (0,1], N € (0,1], A" < A,y > 0, apply
Algorithm 6.2 with the following implementations for st&y8b and 3c:

o Step 2:Setx[" "I .= proj (AT I for j =1, n,.

e Step 3b: SetXi["”"“] = P_re<97u7,\/>()(i[f§]). Apply pruningto constraints
of X" ) that originate from the same constraint 4"/ in the same way

as explained in Algorithm 5.2. No convergence constrainmigosed in this
algorithm: constraints are always tightenedjif < 1 + ~.

K2

o Step 3c: X" I = proj(O T I for j =1, .

It is clear that the above implementations for these stefisfysghe conditions put
forward in Algorithm 6.2 and hence the resulting set is gnteed to be(Q, U, \)-
invariant.

In step 3c) only those constraints have to be retained tleanhat yet present in
the setXi[ff’"“_J] in order to exactly satisfy the condition present in step &kt)
Algorithm 6.2. This insight allows a significant amount ofltmdant computations
to be eliminated. As a result practical implementationshef &lgorithm only need to
store the set®!"* ™™~ ;= 0,... n,.

Similar to Algorithm 5.2, larger values foy lead to lower-complexity but also
lower-volume sets. Also in this case, this trade-off im@®was the amount of
uncertainty decreases. The reasons for the absence ofiegplivergence measures
(prohibiting excessive amounts of constraint tightenindhis algorithm is the absence
of quantitative results regarding the convergence of Atgor 6.1 as is the case for
Algorithm 2.4. However, if divergence or very slow convearge, decreasing the value
of ~ typically helps, so from a practical point of view, no fundamtal problems should
be expected.

6.2.3 Trimming

Similar to the previous section, where pruning is extenasehtds control invariant
sets, this section extends the trimming method proposeddtidh 5.2.3 towards this
more general setting. More specifically, the applicabitityrTheorem 5.4 is extended
in a natural way from autonomous systems to systems withténpu
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Theorem 6.2(Control invariant sets for modified system matrices).Given a se§S €
R and two autonomous LPV systems of the f¢8m )(3.2) subject to constraints
(2.10}(2.11) with uncertainty polytopeQ; and(2, that are defined as

0 £ CO{[Al Bl], ceey [AT BT]}, (65&)
0y 2 Cof{[4}, Bl,...,|A. B]}, (6.5b)

with
[Al Bl] = (1 +¢)[A; Bi] — ¢[1 0], i=1,...,m (6.6)

wherec € R*. If S is convex and(2., U)-invariant, then it is alsq; , U)-invariant.

Proof: If S is (Q,U)-invariant then
Ju(z) : (A;x + leu(gc)) €S, VxeS,i=1,...,r,
or equivalently
((1 +c)Aix —cx+ (1+ C)Blu(:c)) €S, Yz eS,i=1,...,r

Due to convexity ofS and the fact that > 0 it is therefore also guaranteed that

( ! ((1 +o)Aix —cx+(1+ C)Blu(x)) + 1 ¢

x) eSS, VeeS,i=1,...,m
1+c¢ +c

which, after some algebraic manipulation, is equivalent to

(Aigc—i—Biu(x)) €S, Ve eS,i=1,...,r

which proves thas is (1, U)-invariant. O

This theorem shows that also for the construction of conitredriant sets, the
system matrices can be modified in a certain way without tptie property that the
resulting control invariant set is a control invariant set the original system. By
adding a controllei(k) = —Kx(k),k € N to the above systems and constructing
the corresponding autonomous LPV system, one can see tieardrh 5.4 is again
obtained.

A disadvantage in this setting is the difficulty of tuning tharameter. While
positive invariant sets can only be constructed for asytigatily stable systems and
the constraint tree depth can be related to the JSR of the@@uious system, some
heuristics can be formulated for the tuningcof However, control invariant sets can
also be constructed for open-loop unstable systems and aatitpative convergence
results similar to the ones for positive invariant sets amglable. As a result, it is not
yet well understood how can be fine-tuned, apart from trial and error.
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6.2.4 Reduced-complexity set projections

In Sections 6.2.2 and 6.2.3 the two main methods describE€tiapter 5 are extended
towards the construction of control invariant sets. Bothttmads influence the
Pre(q 4,1 (-)-operator and hence the way in which the, + n,)-dimensional sets

X}ﬁ‘{*””] are constructed based on thg-dimensional set&"*! (see Figure 6.1).

However, as pointed out in Section 6.1, also the projectiep sontributes signifi-
cantly to both the complexity of the resulting control ineaut sets and the computation
times of the algorithm. Therefore, this section focussesnore efficient algorithms
for the calculation of such projections. Appendix B exptahow such projections
can be computed by means of Fourier-Motzkin eliminationjcivhis the standard
algorithm for such operations [146]. As explained its cotafional complexity
typically increases exponentially as a function of the namtf dimensions across
which the projection takes place (i.e. the number of inputén Algorithms 6.1 and
6.2), unless some specific problem structure is present.

An alternative method is the so called Equality Set Projectilgorithm (ESP, [62]),
which has a computational complexity that is linear as a tioncof the number of
constraints describing the end result. The main advantédhi® approach is its
independence of the complexity of projections in interraggldimensions, since multi-
dimensional projections can be computed directly instéatihoension per dimension.
However, in the setting of control invariant sets, also tbmplexity of the projected
set can be impractically large and hence also this methodiddmaye an impractically
large computational complexity.

To conclude we can state that neither Fourier-Motzkin elation, nor ESP are
expected to exhibit favorable scaling behavior in the canté the computation of
control invariant sets. Therefore, this section focussesamputing approximations
of the exact projections, in order to obtain computatiorahplexity reductions as
well as reductions in the number of constraints describimegresulting projections.
In order to obtain such approximations we modify the FouM@tzkin elimination
algorithm (Algorithm B.1) by using ideas from previous sees and chapters. We
will distinguish between two different variants:

e Outer approximation: the exact projection is guaranteed to lie inside the
computed set.

e Inner approximation: the computed set is guaranteed to lie inside the exact
projection.

The following sections discuss these two variants indiglty after which it is
explained how these new algorithms can be used in the frankef@lgorithm 6.2 in
order to obtain further complexity reductions. Both algfumis incorporate a parameter
~ > 0 that allows a trade-off to be made between complexity andracy of the re-
sulting projection. We only focus on one-dimensional pco@s; repeated application
of the algorithms will yield reduced-complexity multi-densional projections.
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6.2.4.1 Outer approximations

The following algorithm is a straightforward modificatioh Eourier-Motzkin elimi-
nation (Algorithm B.1) that only retains constraints if ithsignificance exceeds the
thresholdl + ~.

Algorithm 6.4 (Outer approximationto proj(?)). Given a polytop® £ {z|Apz <
bp} and a scalary > 0, construct an outer approximatid?’ of its projectionproj(P)
by means of Algorithm B.1, with the following modifications:

e Only add aconstraint™z < bto P’ ifitis (1++)-significant, i.e. ikigp, (a™) >
1+7.

o After termination of the algorithm remove all constrairitet are not(1 + ~)-
significant.

A

We will denote the result of this algorithm asoj (P) = P’. It is now
straightforward to prove that the following theorem:

Theorem 6.3. Given a polytope® = {z|Apz < bp} and a scalary > 0, then the
following property holds:

proj(P) < proj,(P) <  (1+~)proj(P). (6.7)

Proof: The proof is straightforward and follows from the fact thahitiing a
constraintaTz < b from P’ that isc-significant, withc > 1, is identical to replacing
this constraint witha Tz < ¢b. Since Algorithm 6.4 only omits constraints that are
c-significant withc € (1,1 + ), this directly proves the lemma. O

When projecting am,-dimensional polytop& to ann,-dimensional polytope by
applying Algorithm 6.4 multiple times, the above inclusioecomes

proj(P) € proj,(P) < (147)" "proj(P).

The volumes of the intermediate projections at dimensioas{ns, ..., n; } are easily
shown to satisfy

vol(proj(P)) < vol(proj,(P)) <  (1+7)""™ ™vol(proj(P)).

This property shows, that i, < [ %], the maximal increase in volume with respect
to the exact projection is not obtained for= n, but for an intermediate dimension
n > ns.

6.2.4.2 Inner approximations

The following algorithm is a modification of Fourier-Motzkelimination (Algorithm
B.1) that uses pruning in order to obtain reduced-compjésiier approximations of
the real projections.

Algorithm 6.5 (Inner approximation to proj(P)). Given a polytop® £ {z|Apz <
bp} and a scalary > 0, construct an inner approximatioR’ of its projectionproj(P)
by means of Algorithm B.1, with the following modifications:
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e Only add a constraint™x < bto P’ if it is significant, i.e.sigp, (a™) > 1. For
every additional constraint perform the following steps:

1. Check which constraints of optimization problél 3)were active when
computingsig,, (aT) and denote these indices as. . . , 4, (without loss
of generality we only consider the non-degenerate caseavbeactlyn
constraints are active). This gives an idea of the constsaifiP’ that lie
in the ‘proximity’ ofaT2 < b.

2. Check whether tightening the constraiftz < b would render any of the
constraints with indices,, .. ., i, redundant, using Lemma 5.2. Denote
the respective tightening factorsas . . ., n,,, withn; = 1 if the constraint
with index:; cannot be rendered redundant.

3. Replace the constraint z < bwithna™z < b, withn £ max;.,) < (114 7;-

e After termination of the algorithm remove all redundant swaints (i.e., those
wheresigp, (-) < 1).

We will denote the result of this algorithm @ioj7(73) £ P’. It should, however, be
noted that Algorithm 6.5 does not define an unambiguousoeltip betweerP and
&ojv(P), since the end resuR’ is not independent of the order in which constraints
are added. This in turn depends on how the indigemdi, are selected in Algorithm
B.1. For any of these choices, the following theorem holds:

Theorem 6.4. Given a polytopé £ {z|Apz < bp} and the polytopé’ constructed
using Algorithm 6.5 for a given value f> 0, then the following property holds:

T Pyproj(?’) C proj'y(’P) C  proj(P). (6.8)
Proof: The proofis straightforward and along the same lines of thefipf Theorem

6.3. Due to the way is calculated in step 3, it is guaranteed that all constsang

tightened with a facton € [1, 1 + ~], which directly proves the Theorem. O

When projecting am;-dimensional polytopeP to an ns-dimensional polytope
by applying Algorithm 6.4 multiple times, similar boundsr fthe volumes of the
intermediate projections can be obtained as in Sectiod.d.2.

(n1—n)
(ﬁ) Vol(proj(’P)) C VOl(&Oj’Y(’P)) - Vol(proj(P)).
Again, if no < |%t], the maximal decrease in volume with respect to the exact
projection is not obtained for = no, but for an intermediate dimensian> n..

Finally, one can see that the computational complexity afofithm 6.5 is signif-
icantly higher than the complexity of Algorithm 6.4, due twetfact that for every
additional constraint Lemma 5.2 has to be applied multiptees. An alternative

method for computing inner approximations is calculatingj., (ﬁp) However,

it is expected that this method, while computationally mattactive, will yield
projections with less favorable volume/complexity traufs.
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6.2.4.3 MCAS construction using reduced-complexity set mjections

This section discusses how the algorithms discussed inoBecs.2.4.2 and 6.2.4.2
can be incorporated in the framework of Algorithm 6.2. Besmasteps 2) and 3c)
of Algorithm 6.2 only allow subsets of projections to be useds clear to see
that Algorithm 6.4 is not suited for use in the constructidrcontrol invariant sets.
Therefore the following algorithm describes a modificatidilgorithm 6.3 that uses
Algorithm 6.5 for computing (approximate) set projections

Algorithm 6.6 (Reduced complexity MCAS construction). Given a systenf3.1)
(3.2) subject to constraint§2.10)y(2.11)and A € (0,1], X € (0,1, N < A, Ypre >
0, Yproj > 0, apply Algorithm 6.3 withy = yp, and the following modification:

o Apply Algorithm 6.5 with parameter = ~,,.,; for computing set projections in
steps 2) and 3c).

Similar to Algorithm 6.3 this algorithm clearly fits withirhé framework laid out
by Algorithm 6.2 and hence the resulting set will (@,2/, \}-invariant. The same
efficiency gains can be obtained as in Algorithm 6.3 when @npnting the projections
such that redundant computations are eliminated.

It should be noted that if,,..; = 0 the above algorithm is identical to Algorithm 6.3.
If Yproj = 0 @and~ype = 0 the algorithm is identical to Algorithm 6.1.

It should also be noted that, while Algorithm 6.3 can onlyutesn reduced-
complexity sets ifr > 0, Algorithm 6.6 can also result in complexity reductions if
r =1 (i.e., the LTI case).

6.3 Examples

In this section we provide several numerical examples tastithte the different
techniques described in this chapter.

6.3.1 Triple integrator

Due to the low order of the double integrator example usedéwipus sections and
the fact that it only has a single input, the MCAS of that exrgiready has a
low complexity, even when computed exactly by using Aldorit6.1. Therefore we
start this examples section with a slightly more challeggdiiple integrator example,
defined as follows:

1 01 0 00
Air=]10 1 01], Bi=|1 0|, (6.9a)
0 0 1 | | 0 1]
1 01 0 ] [0 0]
A,=10 1 02|, By=|1 0 (6.9b)
00 1 | |0 1 ]
The system is subject to constraints (2.10), (2.11) defised a

A, =[0.11; —0.11], (6.10a)
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Alg. 6.5 Alg. B.1 Alg. 6.4
vy=01 ~v=0.05 v=005 ~+=0.1
n=_§ 16 16 16 16 16
n="7 31 34 56 36 30
n==~6 62 80 112 107 93
n=>5 103 137 140 268 189
n=4 101 152 112 233 142
n=3 43 53 56 81 46
n=2 13 17 16 21 14

Table 6.1: Number of constraints describing (approximate) projextiof a randomly
generated 8-dimensional polytope as described in Sect®f.6ee also Table 6.2.

A,=1[100; —10; 01; 0 —2]. (6.10b)

Figure 6.2 shows the relative number of constraints andivelaomputation times
of control invariant sets computed for system (6.9)-(6.4€ihg Algorithm 7.2 as a
function ofyp,e and-pr.5. Parametersp,e = 0, vpr0j = 0 resulted in352 constraints
after a computation time df03 seconds. All constraint counts and computation times
reported in Figure 6.2 are normalized with respect to thesesalues.

It can be observed that both pruning (governechby.) and reduced-complexity
projections (governed by,.;) can reduce the number of constraints of the resulting
control invariant sets. In this example both methods alsadl k& computation time
reductions of up to more than an order of magnitude. Whentethods are combined
further complexity reduction can be obtained. However, wheth v,.,; andypq.
are given relatively large values, an increase in the nurabeonstraints (compared
to other parameter settings) is observed in this exampléngugduced-complexity
projections without pruning seems to yield the most prediilet and favorable results.

Figure 6.3 shows the resulting control invariant setsyiqe € {0,0.01} and-ypyo; €
{0,0.01}.

6.3.2 Reduced-complexity projections

We now investigate whether Algorithms 6.4 and 6.5 can proseful to compute
approximate projections in more general settings. Theeefe randomly generate
a 8-dimensional polytopdz < 1 with A = [R; —R], whereR € R3*® is a matrix
whose elements are drawn from a standard normal distribufigure 6.4 depicts the
approximate and exact projections. Tables 6.1 and 6.2 rdponumber of constraints
and the computation times of the projections.

It seems that Algorithms 6.5 and 6.4 are much less efficierthisnmore general
setting. None of the parameter settings reported in Tablegr&l 6.2 lead to convincing
results, which suggests that the practical use of Algorighnis limited to computing
projections in Algorithm 6.6.
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Figure 6.2: Relative number of constraints and relative computatiores of control
invariant sets for system (6.9)-(6.10) obtained with Algon 6.2. Parameters = 1
and X' = 0.999 and different values foryp,e and v,.,; were used. All values
are normalized with respect to the results obtained+igt = 0,vp0; = 0 (352
constraints] 503 seconds). Computations were performed on a 2.6GHz x86 Ciag us
MATLAB 7.1 and SeDuMi 1.1.
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(@ Ypre = 0, Yproj = 0, # constr.. 352, (b) vypre = 0, Yproj = 0.01, # constr.. 104,
CPU-t.: 1503s. CPU-t.: 395s.

CPU-t.: 358s. CPU-t.: 346s.

Figure 6.3: Control invariant sets for system (6.9)-(6.10) computadgiglgorithm
6.6 with A = 1,\ = 0.999 and different values ofip,e and ;. The original
constraint sett’ is depicted as a transparent box around each control imiege.
Computations were performed on a 2.6GHz x86 CPU usirgiMB 7.1 and SeDuMi
1.1. Computation times exclude visualization.
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2 \
- — —— Algorithm B.1
- y — — Algorithm 6.4
R Algorithm 6.5

Figure 6.4: 2-dimensional (approximate) projections of a randomly egated 8-
dimensional polytope, computed using Algorithm B.1 (splidlgorithm 6.5 with
~ € {0.05,0.1} (dotted) and Algorithm 6.4 withy € {0.05,0.1} (dashed). See also
Tables 6.1 and 6.2.

Alg. 6.5 Alg. B.1 Alg. 6.4

v=01 ~=0.05 v=005 ~+=0.1
8 -7 29 29 18 12 10
7T—6 91 106 157 50 37
6 —5 254 451 529 365 218
5—-4 331 640 536 1385 583
4 — 3 166 336 223 627 219
3 -2 20 22 25 42 16
Total 891 1584 1488 2480 1083

Table 6.2: Computation times in seconds of (approximate) projectadresrandomly
generated 8-dimensional polytope as described in Sectth@a.6Computations were
performed on a 2.6GHz x86 CPU usingAvLAB 7.1 and SeDuMi 1.1. See also Table
6.1.
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6.4 Conclusions

In this chapter the two main methods discussed in Chapter &dfimputing reduced-
complexity invariant setgpfuningandtrimming) are extended towards the construction
of control invariant sets. This is possible due to the factt tthese sets can be
constructed in a structurally similar way as invariant setdowever, constructing
control invariant sets involves an additional step, narttely}computation of projections
of polytopes. In order to also reduce the complexity of thiépsn the algorithm, a
modification to Fourier-Motzkin elimination is proposedtitomputes inner approxi-
mations of set projections.

Simulations on numerical examples indicate that these odstltan reduce the
complexity of polyhedral control invariant sets signifidgnas well as the time to
compute these sets. However, the modified Fourier-Motzkmimation algorithm
does not seem to lead to complexity reductions when appliadnore general context
than that of constructing control invariant sets. This asggests that the algorithms
discussed in this chapter can be expected to have undessehling behavior as a
function of the input dimensionality of the system. Furtressearch is needed to further
investigate and improve this behavior.



Chapter 7

Robust MPC using Control
Invariant Sets

“If everything seems under control,
you're just not going fast enough.”

— Mario Andretti —

In this chapter the control invariant sets discussed in Gbap are used
to further enlarge the feasible regions of the robust MPCoallpms
discussed in Chapter 4. The new algorithms are based on gkner
interpolation between a control invariant set of the systetine controlled
and feasible regions of the existing MPC algorithms. The akwrithms
have a feasible region equal to the control invariant set asdsuch
achieve the largest feasible region theoretically possiblRecursive
feasibility and asymptotic stability are also maintainéghally, it is also
shown that this technique can be used to obtain recursiveitfity in
settings, such as e.g. tracking problems, where the t@uidialgorithms
are not guaranteed to be recursively feasible.

7.1 Introduction

In Chapter 4 several new robust MPC algorithms are introduaéth the main aim
of obtaining an improved trade-off between the on-line cataponal complexity
and the size of the feasible region, while retaining reeer$easibility, asymptotic
stability and locally optimal control behavior. Chaptersther improves these results
by constructing reduced-complexity invariant sets. Hosvewbtaining large feasible
regions still involves tuning several parameters, as caseka in Figure 4.4 and 4.13,
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and there is still no guarantee that sufficiently large fdasiegions are obtained in the
end.

As shown in [63], it is possible to use control invariant sassterminal constraint
in robust MPC instead of positive invariant sets, which cigmificantly enlarge the
feasible region. However, the algorithms presented in @rapdo not incorporate a
terminal constraint separately from the within-horizonswaints, but rather construct
the entire set of constraints by means of calculating arriantiset for an augmented
system. This enables the use the algorithms presented pt€Hain order to reduce
the number of constraints, but makes it difficult to repldeeterminal constraint with
a control invariant set. Also, in interpolation-based aiipns, the notion of a terminal
constraint is not explicitly present, which is also a cormatiing factor for incorporating
control invariant sets in the formulation.

In this chapter, instead of replacing the terminal constsaias suggested in [63], a
more general method is proposed, that allows the extengitmedeasible region of
most recursively feasible robust MPC algorithms by meanmadrporating control
invariant sets. Locally optimal behavior is retained by lgjmy the existing MPC
algorithm if the current state lies inside its feasible oegi If the state lies outside
the feasible region, but inside a control invariant sets et is used to drive the
system state towards the feasible region of the MPC coatrolThis methodology
can be captured in an interpolation-based theoreticaldveork for non-linear control
laws, which also allows these results to be extended towaads general settings, like
tracking problems.

This chapter is structured as follows. First, in Section the interpolation based
theoretical framework is laid out. Section 7.3 then showw litis framework can
be used to combine control invariant sets with existing MRgbréithms. Section
7.4 then shows, as a proof-of-concept, how control invargats can be used to
obtain recursive feasibility when applying the existingaithms to tracking problems.
Finally, Sections 7.5 and 7.6 give an example and conclgsion

7.2 General interpolation for non-linear control laws

In this section the concept of general interpolation is edéxl towards non-linear
control laws. Although interpolation is based upon convene linear) combinations
of states and corresponding inputs, we show that only themygs of the system
that is controlled need to be linear. Although general padation [3, 98, 122] until

now has only been applied to linear systems controlled Balircontrol laws, these
requirements are overly stringent. Linearity of the cohtasy, and consequently
linearity of the closed-loop system, allow the easy comsion of a cost function

for the on-line optimization problem, but in order to guasemnrecursive feasibility
linearity of the control law is not a necessary requirem@ilte only requirement, as
is shown later in this section, is the existence of a conveariant set for the closed-
loop system of the (linear) open-loop system and the (noealk) control law. This

extension will allow us to formulate new MPC algorithms ggsontrol invariant sets
in future sections. First some additional notation is idtroed after which recursive
feasibility is proven in this setting.
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7.2.1 Problem formulation

As already mentioned we still consider LPV systems of thenf¢8.1)-(3.2) subject
to constraints (2.10)-(2.11). The control laws to be useth@interpolation-based
controller are defined as

u(k) = ri(z(k)), keNi=1,... n. (7.1)

In order to guarantee constraint satisfaction we assume tlestn convex sets
S1..» C R"= that are feasible and positive invariant with respect tordspective
closed-loop systems:

S CX, i=1,...,n, (7.2a)
ki(x) €U, vz € S, i=1,...,n, (7.2b)
Az + Bk,(z) € S;, Vo € S;,V[A B] € Q, i=1,...,n. (7.2c)

It will become clear in Section 7.3 that this assumption isinsense restrictive and
that the above conditions can be easily satisfied based oresits obtained in the
previous chapters.

The aim is to construct an interpolation-based control ksimilar to the GIMPC
algorithm discussed in Section 4.2, based on the contros lew ,,(-) and the
corresponding invariant sef§ . _,,.

7.2.2 General interpolation

A general interpolation algorithm for non-linear contralls, in further sections
referred to as NL-GIMPC, can now be formulated as follows:

Algorithm 7.1 (NL-GIMPC). Consider an LPV system of the fo(g11)(3.2) subject
to constraints(2.10}(2.11) control laws (7.1) and corresponding invariant sets
S1..» C R™= satisfying condition$7.2). At every timek, given the current state(k)
of the system, calculate a state decomposition as follows

S R A M.n); (7.32)
s.t. Xn::ﬁi = z(k), (7.3b)

:1;:16 AiS; i1=1,...,n, (7.3¢)

A >0, i=1,....n, (7.3d)

Xn: A =1, (7.3e)

with f(-,-) : R™(=+1) _ R an arbitrary cost function, and apply the following input
to the system:

u(k) = imi (i—) . (7.4)
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Figure 7.1: lllustration of the scaling that is used for obtaining sddtevariant sets in
order to construct a GIMPC algorithm for non-linear contamVs.

The state decomposition that is computed is identical tootiee constructed using
GIMPC. If the functions:; _,,(-) are linear, it is easy to verify that also the inpafk)
that is computed based on this state decomposition (seessipn (7.4)), is identical to
GIMPC. Since at this point we only want to prove recursivesiieitity of NL-GIMPC
(and not asymptotic stability), it is not important to aldgapecify the functiorf (-, ).
This is done in Section 7.3 for the specific setting considiénere. Before being able

to prove recursive feasibility of Algorithm 7.1, we need &fide the concept afcaled
control laws

Definition 7.1 (Scaled control law). Given a control lawu(k) = x(z(k)), k € Nand
ascalar\ € R{, then a scaled control law’(-) is defined as

K'(z) & Xk (E) . (7.5)

Note that if x(-) is a linear function, we have that(x) = x(x). However, in
this section we are more interested in the non-linear case fdllowing lemma is
instrumental in proving recursive feasibility of Algorith7.1 :

Lemma 7.1 (Invariant sets for scaled non-linear control laws). Consider an LPV
system of the forn{8.1)(3.2) subject to constraint&.10)(2.11) a non-linear control

law u(k) = k(z(k)), k € N, a setS C R"= satisfying(7.2) (omitting the subscripts
i) and a strictly positive scalan € RJ. The set\S then is a feasible, positive
invariant set for the closed-loop system formed3y)(3.2)and the scaled non-linear
controller defined in Definition 7.1 subject to state and inganstraintsAX’ and A\U/.

Proof: Due to (7.2a) we know tha§ C X and hence\S C A\X, which proves
feasibility of AS with respect toAX. Furthermoreyx € \S it is guaranteed that

% € S. Hence, due to (7.2b) it is guaranteed the(t%) € U. Therefore, it is also

guaranteed that'(z) = A\x (§) € AU, Vo € AS, which proves feasibility oAS with
respect to\l/. Finally, due to (7.2c¢) we know that

Ax + Bk(z) € S, Ve € S,V[A B] € Q,
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which, after multiplication of both sides of the inclusioiithvA and substitution: =
%, leads to

x! x’ x!
This is equivalent with

/
Az’ + Bk (%) € \S, V2’ € AS,V[A B] € Q,
which shows thaAS is positive invariant with respect to the closed-loop systermed
by (3.1)-(3.2) and the controller(k) = «'(z(k)), k € N, which in turn completes the
proof. O

This lemma is illustrated by means of Figure 7.1 and can nowdss to prove
recursive feasibility of Algorithm 7.1.

Theorem 7.1(Recursive feasibility of NL-GIMPC). Applied to a system of the form
(3.1)}(3.2), Algorithm 7.1 guarantees satisfaction of constraif®sl0}(2.11)and is
feasible at time: + 1 if it is feasible at timek.

Proof: Similar to other GIMPC algorithms, Algorithm 7.1 is feashbff «(k) €
Co{Si,...,8,}. Hence, we have to prove that in that case al$h + 1) €
Co{Sy,...,8,} forany[A B] € Q. Given adecompositiafy ., 1., satisfying the
constraints of optimization problem (7.3), we first showtthg) € ¢/. Due to Lemma
7.1 we know that\;x; (i—) € \iUd and hence that(k) € (MU D ... D\ U) = U,
where the latter equality is satisfied becaldde convexand ", A; = 1. This proves
that (2.11) is satisfied. In order to prove feasibility atdiin+ 1, we compute the state
attimek + 1:

x(k+1) = Az(k) + Bx(k),

= Aiji'i‘Bi)\i“i (%) ,
i=1 i=1 v

Due to Lemma 7.1 we know thattz; + B\;x; (i—) eNS,i=1,...,n,V[AB] €Q
and hence that(k + 1) € Co{S1,...,S,},V[A B] € Q, which proves recursive
feasibility. Finally, sinceCo{Si,...,S,} C X, satisfaction of (2.10) is guaranteed,
which concludes the proof. O

This theorem shows that linearity of the control lawys ,,(-) is not strictly necessary
for proving recursive feasibility. The main practical diffities arising from non-
linearity of these control laws is the difficulty of constting a cost functionf (-, -)
such that asymptotic stability is guaranteed and the coctibn of the invariant sets
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S1..». The next section shows that in the specific case of intetipoldetween a
control invariant set and the feasible region of an MPC aietr, both aspects are not
an issue.

7.3 Robust MPC using control invariant sets

In this section we show how the insights of Section 7.2 candsluo enlarge the
feasible region of the algorithms discussed in Chapter #st e show that control
invariant sets and feasible regions can be seen as positizgant sets with respect to
a non-linear control law. Section 7.3.3 then shows how NMBC can be applied in
order to obtain an MPC controller with a maximal feasibleoag

7.3.1 Control-invariant set induced controller

Although control invariant sets are constructed for opmwplsystems without a priori
considering a feedback controller with which the loop isseld, this section shows that
these sets actually induce a state feedback control law.nWhimg this control law
to form a closed-loop system, one can show that the contvakiint set is positive
invariant with respect to this closed-loop system. Firstshiew how any convex set
containing the origin induces a control law.

Definition 7.2 (Set-induced control law}, [13]). Consider an LPV system of the form
(3.1)(3.2), subject to input constraint{®.11)and a convex se&& € R~ with the origin

in its interior. The set-induced state feedback controllaw xs(x) is now defined as
the result of the following optimization problem:

ks(r) £ argmin  Bs(z,u), (7.6a)
ueU

with Ss(x, u) defined as

s.t. Ajx+ Biu € AS, i=1,...,7 (7.6¢)

One can see that the control law () is constructed such that it makes sure that at
every time instank the system is driven as far as possible inside the&sdt should
also be noted that § is a polyhedral set, the above optimization problem redteas

LP. Since the inputs are computed by solving a constrainéthgation problem, the
resulting controller will in general be non-linear.dfis control invariant with respect
to the given open-loop system, the following lemma applies.

Lemma 7.2(Positive invariance of control invariant sets). A control invariant setS
is positive invariant with respect to the closed-loop systermed by3.1)(3.2) and
the induced control laws(k) = ks(x(k)), k € N.

1This type of controller is also referred to mén-max controin [13, 39, 40].
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Proof: Consider a state € S and the corresponding input and contraction factor
A* resulting from solving (7.6). Sincg is control invariant with respect to (3.1)-(3.2),
it is guaranteed thatu' € U : Az + Bu' € S,V[A B] € Q. This guarantees that
A* < 1, which then shows thalx + Brs(z) = Az + Bu* € S,V[A B] € Q, which
proves the lemma. O

We now have shown that, once a control invariant$et constructed (which in the
previous chapter has been shown to be possible), its indwozetbl lawu = ks () can
be used as a control law in NL-GIMPC. An interesting point take is that this is the
opposite of what is done in Section 4.2, where one first cantra set of control laws,
after which the corresponding positive invariant sets arafuted. In this section, the
existence of a control invariant set is assumed, after whicbntroller is constructed
such that the control invariant set is positive invarianthwiespect to the resulting
closed-loop system.

In the next section a similar result is obtained for MPC colfeérs where an exact
characterization of the feasible region is known.

7.3.2 Feasible region as positive invariant set

In order to be able to use MPC controllers, which in generalran-linear control

laws, in the NL-GIMPC algorithm, it is necessary to constraipositive invariant set
for the corresponding closed-loop system. The problemsstiiere are no algorithms
that are able to construct such sets in a general settingettawthe following lemma

shows that under certain conditions the feasible regioh@MPC controller will be a

positive invariant set.

Lemma 7.3 (Positive invariance of the feasible region).Consider an LPV system
of the form(3.1)(3.2) subject to constrainté2.10}(2.11)and consider a robust MPC
controller designed for this system, that guarantees feati®n of (2.10}(2.11)and is
recursively feasible. Assume that the MPC controller cawbien as a state feedback
law u(k) = wmpc(z(k)),k € N and that we have an exact characterizatinC
R"= of the feasible region of the controller, i.ec € F < =z leads to a feasible
MPC optimization problem. Under these assumptions thé seta feasible, positive
invariant set for the closed-loop system formed&wt }(3.2)and the MPC controller.

Proof: Due to the fact that the MPC controller guarantees satisfact (2.10), it
will per definition be infeasible for alk(k) ¢ X and hence we have th&t C X.
Furthermore, since the MPC controller guarantees satiisfaof (2.11), we have that
rkmpc(z) € U,Vz € F. This shows thaf is a feasible set.

Due to recursive feasibility we know that if the controllerfeasible at time, i.e.
if (k) € F, itis also feasible at tim& + 1. Since by assumptiof is an exact
characterization of the feasible region, it is thereforargnteed that also(k+1) € F.
This proves thatS is positive invariant with respect to the closed-loop systnd
completes the proof. O

The assumptions made in this lemma seem rather restrictiVbard to fulfill, but the
opposite is true. The three main algorithms discussed iptend (GIMPC, GIMPC2,
RMPC) all satisfy these conditions.
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First of all, these three algorithms can be written as acsttite feedback law.
This cannot be done explicitly (which isn’'t necessary), betause the involved
optimization problems only depend upon the current state@bystem and not upon
the past states, one can see that there is a static functiepahdence betweerik)
andz (k) in all three algorithms.

Secondly, all three algorithms have are recursive feasibteasymptotically stable.
Only the former is a necessary condition in Lemma 7.3, butldkter property will
prove useful in the next section.

Thirdly, the feasible regions can be exactly characteribethe case of GIMPC the
feasible region is exactly equal to the convex hull of theaiant setsS;. ,,. In the
case of GIMPC2 and RMPC the feasible region is equal to thiegiion of S, onto
the firstn, dimensions.

Finally, Lemma 7.3 is perfectly illustrated by Figure 4.@here trajectories starting
from the boundary of the respective feasible regiorB-@IMPC, P-GIMPC2 andP-
RMPC are shown. These trajectories show that the feasipienrgindeed are positive
invariant sets for the closed-loop systems.

7.3.3 Interpolation between control invariant sets and feaible
regions

In this section it is shown how the algorithms discussed iafEér 4 can be combined
with the control invariant sets constructed in Chapter éthi®end, Algorithm 7.1 (NL-
GIMPC) is applied in a specific way such that adding the comvariant set results in
only a small additional on-line computational complexitye choose: = 2 and make
the following choices for the different controllers betweehich the interpolation takes
place :

e 1«1 IS taken as a recursively feasible MPC controller, e.g. drirase discussed
in Chapter 4S; canthen be chosen as the feasible region of that MPC caartroll
If the MPC controller is based on polyhedral invariant stits feasible region is
also polyhedral, which evidently has computational adwges. We will refer to
this controller as théocal MPC controller

e S, is chosen as A-contractive control invariant set (with < 1) for the system
that is to be controlleds, should then be taken as the control law induce&by
(cfr. Definition 7.2). We will refer to this controller as tiset-induced controller
or theouter controller

We can now choosg(Z1.. ., A1...n) = Ae. In this way, we make sure that if the current
state lies withinS; the control behavior is fully determined by the local MPCiroher.
This can now be formalized into the following algorithm.

Algorithm 7.2 (MPC using control invariant sets). Given an LPV system of the form
(3.1)}(3.2)subject to constraint@2.10}(2.11) Perform the following steps:
Off-line:

e Design a robust MPC controller (eitheP-GIMPC, P-GIMPC2 or P-RMPC)
for the given system and constraints and denote this cdetas the static state
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feedback laws, (). Construct the corresponding feasible regigh= {z €
R™|Arz < 1} (see Section 7.3.2) and s&t := F.

e Construct a control invariant set (e.g. by means of Algarith.6) and denote it
asSy = {z € R"|As,x < 1}. Definexy(-) as the corresponding set-induced
control lawkg, (+) (see Definition 7.2).

On-line:

At every time instant, given the current state(k), perform the following steps:

e Solve the NL-GIMPC optimization problgih.3)for the current state:(k) with
K1, ke andSy, S, defined as above anfl-, ) = \..

e Apply the inputu(k) defined by(7.4)to the system.

One can see that this algorithm, compared to simply applyir(g), enlarges the
feasible region taCo{S;, S2}, which can be significantly larger tha, sinceS; is
typically significantly larger. This advantage comes atdlditional cost of solving
optimization problems (7.3) and (7.6), which in this case laP’s. The size of these
LP’s is typically also moderate compared to the optimizatwoblem involved in
evaluatingx4 (). Furthermore, the evaluation ef () andx2(-) can be parallelized
and therefore only solving (7.3) should be considered asgdditianal computational
cost.

Lemma 7.4. Algorithm 7.2 is recursively feasible.

Proof: Due to Lemma 7.2 and 7.3 we know th&t and S, are feasible positive
invariant sets with respect to the respective closed-lgsfesms formed by (3.1)-(3.2)
and controllersu(k) = ki(z(k)),k € N andu(k) = ra(z(k)),k € N subject to
constraints (2.10)-(2.11). Therefafe, S, andx4(-), k2(-) satisfy the conditions put
forward in Theorem 7.1, which proves this lemma. O

On top of recursive feasibility, also asymptotic stabilisy obtained ifSy is A-
contractive withh < 1.

Lemma 7.5. If k1(+) is asymptotically stabilizing and < 1, then Algorithm 7.2 is
also asymptotically stabilizing.

Proof: Consider an optimal decompositidf(0), 25(0), A3(0), A3(0) obtained at
time 0 by solving optimization problem (7.3). Due to Lemma 7.1 we naw construct
a feasible decomposition at timeas follows:

0 = a0a0)+ BOxm (S2). MO =x0,  @.7)
/\01

0 = 40a50) + B (Z2). Mw=x0, @
2

Due to A-contractivity of S, an even stricter choicg (1) = AX3(0), M (1) = 1 —
AL(1) > X9(0) can be made. Due to the cost function that is chosen, it ietbier
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guaranteed thax9(1) < A5(1) = AX3(0). By applying this argument recursively it
can be seen thaty(k) < A*)3(0) and hence thafi$(k)| — 0 ask — oco. Due
to the fact thatk;(-) is asymptotically stabilizing by assumption, we also hdvet t
|25 (k)| — 0 ask — oco. As aresulijz(k)|| — 0 ask — oo, which proves asymptotic
stability of Algorithm 7.2 under the specified conditions. O

To conclude, we can state the Algorithm 7.2 is able to in@d¢he feasible region
of existing MPC algorithms while retaining the two most imjamt properties of the
MPC algorithms that is used as controllex(-): recursive feasibility and asymptotic
stability. The additional computational cost is small,lwitnly 2 additional LP’s of
moderate size that have to be solved at every time ingtaftinally, due to the cost
function that is chosen, it can be seen that if the state o$ystem is situated within
the feasible region of the local MPC controlleg, = 1 — A\ = 1 is obtained, which
shows that local optimality is also conserved.

7.3.4 Interpretation

The new Algorithm 7.2, which is based on non-linear genensrpolation and
control invariant sets, has a natural interpretation imteof optimality and constraint
handling. Figure 7.2 depicts the different operationalarg of Algorithm 7.2, within

which different trade-offs are made between optimal cdrtetavior and constraint
handling. As a result, als the computational complexity waky in each region, since
some regions allow significant simplifications to be madéwéispect to optimization
problem (7.3) and the corresponding expression for therabattion (7.4). The
following regions can be discerned:

1. The outer constrained region:Ss \ S;.

e Action: Solve optimization problem (7.3) and apply input (7.4).

e Optimality: The control objective is only partly taken into account,
depending om\;. The main goal is to drive the state towaisis as fast
as possible.

e Constraint handling: Constraints are typically active for a longer period,
after which the state entefs, where typically still some constraints remain
active.

e Computational complexity: 2 LPs ((7.3) and (7.6)) and the QP associated
with x4 (-) have to be solved.
2. The inner constrained region: S; \ S.
e Action: Since in this region\; = 1, we can directly apply the local MPC
controlleru(k) = k1(x).

e Optimality: The control behavior is optimized subject to the imposed
constraints.

e Constraint handling: Constraints are typically only active for a few time
steps, after which the state entérsin caseP-RMPC is used as; (), the



7.3 Robust MPC using control invariant sets 163

X So

Figure 7.2: Schematic depiction in state space of the different regidmperation of
Algorithm 7.2. S represents the MAS of the locally optimal linear controlised in
the local MPC controller.S; is the feasible region of the local MPC controlle$;

is the control invariant set used for interpolatiod’. is the imposed state constraint
set. Darker shades of grey indicate more optimal behavicording to the control
objective.

state is driven insidé in at mostV time steps. Straightforward application
of Algorithm 7.2 would yieldA; = 1 — Ay = 1, which allows us to skip
this step and directly evaluatg (z(k)).

e Computational complexity: Only the QP associated with (-) has to be
solved.

3. The unconstrained region:S.

e Action: In this region no constraints are active and the local MPC
controlleru(k) = k1 (x(k)) should result in identical behavior as the local
controlleru(k) = —Kux(k) used in its design. Therefore this latter control
action can directly be applied to the system.

e Optimality: The control behavioris optimal i is chosen to be the locally
optimal controller.

e Constraint handling: No constraints are active.

e Computational complexity: No optimization has to be performed, only
the locally optimal controller.(k) = —Kz(k) has to be evaluated.

Finally, there exists one additional region, which howesaar be argued not to be part
of the proper operation of the algorithm:

4. The twilight zone: X'\ S,.

e Action: In this region it is not guaranteed that in all future timepstall
constraints will be satisfied. Whether or not this happensiegpend on the
actual values ofA(k), B(k). In order to reduce the odds and/or severity of
the possible constraint violations, one might still app(y) = ko (z(k)),
which drives the state as close as possibl&:to



164 Robust MPC using Control Invariant Sets

e Optimality: The control objective is not taken into account. The only
concern is constraint handling.

e Constraint handling: Some constraints are active and the possibility
exists that some state constraints might be violated inréutime steps.
By definitionx(-) always guarantees input constraint satisfaction.

e Computational complexity: Only LP (7.6) has to be solved.

The following general conclusions can be drawn:

e The further away one moves from the origin, the more congsabecome
active and during longer periods of time. This results intomnbehavior
that increasingly deviates from the locally optimal belaviwhich in turn
necessitates different control strategies. Hence, tlieduone moves away from
the origin, the more the emphasis has to be put on constraidling and the
less one can take the control objectives into account.

e The more constraints are active or the longer they are attieenore computa-
tional resources one has to employ in order to perform progestraint handling
without losing stability of the closed-loop system.

e The ability to enlarge the feasible region to the size of atmdinvariant set,
incurs an additional cost in the form of two additional LPiathave to be solved.
However, the ability to obtain this enlarged feasible regieduces the need for
the local MPC controller to have a large feasible region citin turn potentially
reduces its computational complexity.

7.4 Control-invariant sets in tracking problems

While up to the previous section only stabilization probdemere considered, we
here consider the problem of steering a system such thatiffgibor its statesrack
a prescribed trajectory, i.e. a tracking problem. The aasstability framework
introduced in Chapter 1 and further extended to the robusst acaChapter 3 is only
valid for stabilization problems and hence it cannot be igpgb stabilization problems
in a theoretically sound manner.

The main aim of this section is to show that control invariets can be used in order
to guarantee input and state constraint satisfaction akitng problems. This section
is conceived as @roof-of-conceptind hence, for simplicity reasons, orthacking
without previewis considered, meaning that no information on future vahfethe
reference trajectory is available to the controller. Thetsection first formulates the
problem, after which Section 7.4.2 will present an alganitfor tracking problems,
that is able to guarantee robust constraint satisfactiomégns of a control invariant
set.

7.4.1 Problem formulation

As in previous sections we still consider LPV systems of tre1f(3.1)-(3.2) subject to
constraints (2.10)-(2.11). While in all previous sectiand chapters a control objective
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Uref(k)

xref (k)

Local Post-
Controller Processor

m(k) LPV System :u(k:)

[A(k) B(k)] € @

Figure 7.3: A schematic representation of the tracking setup discussthis section.
A local MPC controller designed for stabilization probleimemployed by performing
static reference insertion in a straightforward way. Diestie simplicity of the setup,
the post-processor can still guarantee constraint setiisfaand recursive feasibility.

(1.3) with z,er (k) = 0, urer(k) = 0,VE € N is assumed we now explicitly consider
the case whem, ¢ (k) # 0, uyer(k) # 0.

The only purpose of this section is to obtain recursive fabitsi in this setting, the
reference trajectory is not required to satisfy any smosgbrcondition , any asymptotic
conditions or any relationship (e.g., steady state camsli with the dynamical model.
Itis not even required that the reference trajectory sasisfie state or input constraints.

We consider the simplified setting of tracking without peavi which means that at
time k, the future part,o¢(k + ©), uret(k +4),4 > 0 is not available to the controller.
The problem can now be formalized as follows:

Problem 7.1(Trajectory tracking without preview for constrained LPV sy stems).
Consider an LPV system of the foif®.1)(3.2) subject to constraint§2.10}(2.11)
and consider arbitrary reference trajectories.t (k) € R™, u,et(k) € R™. Design a
static state feedback control lam(k) = Kiracking (2(k), Tref (k), urer(k)) with the aim
of minimizing(1.3)and such that constrain{2.10}(2.11)are satisfied at all times.

The following section discusses, as a proof-of-conceptfersuccessful application
of control invariant sets in a tracking setting, a possibég for solving this problem.

7.4.2 Algorithm synthesis

Similar to Section 7.3 we consider a local controller, ded@sxoc.1(+), which can be
either an MPC controller or a linear feedback law. No restits regarding recursive
feasibility or guaranteed constraint satisfaction appiurthermore, we consider a
control invariant setS = {z € R"=|Agz < 1} that is used to guarantee recursive
feasibility.

As is indicated in Figure 7.3 we essentially apply at evemetinstant: the local
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controllersiocal(+):
ﬁ(k) = Iﬂocal(f(k)), (78)

with @(k) 2 u(k) — urer(k) andz (k) £ z(k) — rer (k).

Klocal CaN be any controller designed for e.g. disturbance rejegatiptimal tracking
of step signals, etc ..., but for the purpose of guarantesingtraint satisfaction, the
actual choice of )., is irrelevant. The following algorithm post-processesitipgut
suggested by the local control law in order to obtain a cdmtrton that lies as close
as possible to this suggested control action, while guaeamg constraint satisfaction
and recursive feasibility:

Algorithm 7.3 (Trajectory tracking using control invariant sets). Consider an LPV
system of the forn(8.1)(3.2) subject to constraint§?.10}(2.11)and reference state
and input trajectories,ef (k) € R™, u.r(k) € R™. Furthermore, consider a feasible
control invariant setS and a state feedback controllgf,..;. At every time instant,
given the current state(k), perform the following steps:

e Calculate us(k) := uret + Kiocal(z(k) — xrer(k)) and solve the following
optimization problem:

min (k) — ur k)| (7.9a)

st [2(k);u(k)] € Spu, (7.9b)

with S,,,, defined as

Sow 2 {[z;u] e Ry e U, Ajz+ BjueS,j=1,...,r}. (7.10)

e Apply inputu(k) to the system.

This simple control setup, regardlessf.. guarantees constraint satisfaction if
the initial stater(0) lies within the control invariant sef.

Lemma 7.6(Robust recursive feasibility). Algorithm 7.3 is recursively feasible.

Proof: One can see that optimization problem (7.9) is feasile &) : [z(k); u(k)] €
S,.. Due to control-invariance of and the definition ofS,,, this condition is
satisfied ifz(k) € S. Consequently, due to the definition &f.,, it is guaranteed
thatz(k +1) € S, which then guarantees thai(k + 1) : [z(k +1);u(k+1)] € Szu,
which in turn guarantees that optimization problem (7.9¢&sible at time: + 1. O

This lemma shows that control invariant sets can indeed leel s guarantee
constraint satisfaction in control settings where this @nmally not guaranteed.
Extensions towards trackingith preview (see [136]) or off-set free setpoint tracking
are straightforward, by appropriately designing..;.. However, the post-processing
step (7.9) can remain unchanged, which is the strength ®&proach.
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7.5 Example

In this section we illustrate the algorithms introducedtistchapter by retaking the
same numerical example as used in previous chapters. Bé&chdl first illustrates
Algorithm 7.2, after which a tracking problem is solved inc8en 7.5.2 by means of
Algorithm 7.3.

7.5.1 Stabilization problem

In this section we still consider the same LPV system (4(8&7) as discussed in
Sections 4.2.7, 4.3.5 and 5.4.2. The aim is to improve thsiliéaregion of the
algorithms discussed there by means of Algorithm 7.2. THewviing straightforward
design choices are made:

e The local MPC controllek; is chosen as th®-RMPC controller withN = 6
designed in Section 4.3.5. Based on the results describ8ddtion 5.4.2; =
0.3 is chosen. The resulting invariant set for the augmentetésyis described
by 91 constraints.

e S, is chosen as the control invariant set obtained by applylgoithm 6.6 with
A = 1 andvp,. = 0.01. The resulting set is described B¥ constraints.

The different regions (cfr. Figure 7.2) of operation thusaited are depicted in
figure 7.4. The control invariant set clearly is significgriirger than the feasible
region of the local MPC controller.

In order to assess feasibility and optimality, we first cobegbe trajectories resulting
from applying the set-induced controlleg, to the system, starting from initial states
near the boundary af,. These trajectories are depicted in Figure 7.5, while the

2r 82

-10 -5 0 5

Figure 7.4: The different regions of operation of Algorithm 7.2 (as eipéd in Figure
7.2) for the numerical example under consideration.
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O 00 0OO OO

Figure 7.5: Trajectories generated by the set-induced contrallgrfor initial states
near the boundary &,. The setS, is calculated by applying Algorithm 6.6 to system
(4.56)-(4.57) using\ = 1 andvp,. = 0.01. The real system behavior is chosen as the
LTI system defined byl,, Bs.

corresponding input sequences are depicted in 7.6. Ret@nsysehavior was taken
as the LTI system described bys, B5. One can see that feasibility is guaranteed for
all states lying insideS,, which shows that (7.2) is satisfied for= 2. However,

as Figure 7.6 indicates, the control behavior is extremelwous and non-smooth,
which is due to the LP formulation (it is known that optimalig®ns of parameterized
LPs are non-continuous functions of the involved paramsdigre [21] and references
therein) and the fact that the control objective is not takémaccount.

Figure 7.6: Input sequences corresponding to the trajectories showigirre 7.5.
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Figure 7.7: Trajectories generated by Algorithm 7.2 for initial statesr the boundary
of S,. The setS; is calculated by applying Algorithm 6.6 to system (4.56)6{@ using
A = 1 and~vp,. = 0.01. The inner controller was chosen as fAReRMPC controller
with N = 6 described in Section 4.3.5, but with= 0.3. The real system behavior is
chosen as the LTI system defined Ay, B-.

Figures 7.7 and 7.8 respectively show state and input tajes resulting from
Algorithm 7.2. One can see that the input trajectories addigtively better and that
the trajectories are also markedly different than thoseltieg from xs,. The average
control cost per trajectory i618.61 when using Algorithm 7.2 compared4@7.6 when
only usingks,. This shows that Algorithm 7.2 significantly improves loogtimality,
because local behavior only has a relatively small contidbito the total control cost

28 NIVORNK Goo0e e 1

06 '&"*\%«\\e\é\\ """"0’6{‘ |

i R |

> o2 N AN ‘. &é‘,%{\\\ ]
N ——

02 lq“"‘““\‘i"""{ : // ]

I‘EP;':!L‘S\“\@:‘ _____________________

Figure 7.8: Input sequences corresponding to the trajectories showigimre 7.7.
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and the total control cost still differs noticeably.

Average computation time per iteration was0.1 secondsq.4GHz x86 CPU) for
both Algorithm 7.2 and controllexs,, which is too small compared to the overhead
incurred by calling external optimization solvers and heeno clear comparison can
be made, besides the observation that both algorithms sediawve a computational
complexity that is in the same order of magnitude.

7.5.2 Tracking problem

In this section we show that the same control invariant sed irsthe previous section
can also be used for guaranteeing constraint satisfaairdneicking control problems,
by means of Algorithm 7.3.

We consider the same system (4.56)-(4.57) and want to steaystem towards the
following reference trajectory:

Tret(k) = [a(k); 0], a(k) € (—10,8), k€N, (7.11)
Uret(k) = 0, k e N. (7.12)

The sequence(k), k € N is chosen as a piecewise constant function, with switching
between different values occurring every 20 time instafite reference trajectory is
depicted in red in Figure 7.10. In order to illustrate theogdficy of Algorithm 7.3 even

if the local controlletk;,.) is chosenin a naive way, we choagé) = — K5 z(k), with

K, given the same value as in (4.58). We compare Algorithm 7tB thie following

two controllers:

u(k) = uper(k) — K1 (2(k) — xret (k)), (7.13)

1.2

I
—— Algorithm 7.3

A Controller (7.14)
Controller (7.13)

0 20 40 60 80 100 120 140 160 180

Figure 7.9: Inputs generated by the three different controllers undesicleration,
when applied to system (4.56)-(4.57) with the aim of tragkime trajectory shown in
Figure 7.10.



7.5 Example 171
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Figure 7.10: The first state component of the closed-loop systems olgtaine
by combining system (4.56)-(4.57) with the three differetintrollers under
consideration.
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Figure 7.11: Phase plot of the closed-loop systems obtained by combystem
(4.56)-(4.57) with the three different controllers undensideration.
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5 T T 10

—— Algorithm 7.3

— — Controller (7.14)
Controller (7.13)

9r — — Reference trajectory|

Figure 7.12: Close-up of Figures 7.11 and 7.10 in order to compare cdnstrandling
of the three different controllers under considerationewloperating near the state
constraints.

and
u(k) = trim_g.5,1) (Uret (k) — K1 (2(k) — 2rer(k))) (7.14)

with trimy, ;(u) defined as

b, u>b,
trimy, ) (u) 23 u, wuéela,b], (7.15)
a, u<a.

Figure 7.9 shows the inputs generated by the three consalleder consideration.
As expected, controller (7.14) and Algorithm 7.3 respeetithposed input constraints
at all times, whereas controller (7.13) violates the inputstraint at several points in
time.

Figure 7.10 shows that controller (7.14), while guaramg@iput constraint satisfac-
tion, causes state constraint violations when the refereragectory closely approaches
these constraints or when large reference steps are appliadever, Algorithm 7.2
is able to also guarantee satisfaction of the state contgrarhis is accomplished by
adjusting the applied input such that the overshoot, afiptying a reference step, is
kept small enough in order to stay within the imposed coirgsa

Figure 7.11 shows phase portraits of the three differeseddoop systems, together
with a depiction of the control invariant set used in Algbnit 7.3. It is clear that this
algorithm makes sure that at all times the state is kept withe control invariant set,
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such that it is always guaranteed that there exists a feaisiplit sequence that keeps
the state within the state constraints.

Figure 7.11 finally shows a close-up of Figures 7.11 and 7lshow in detail the
difference in control behavior of the three controllers wkibanging the reference state
from [4; 0] to [7.8;0].

It should be noted that off-set free setpoint tracking isaoted in this example be-
causet, ot (k), urot (k) are chosen such thates (k) = Azt (k) + Buret(k),V[A B] €
Q. Still, this example clearly shows that useful results claeaaly be obtained when
appropriately combining a simple linear controller witte tknowledge of allowable
control behavior contained in a feasible control invarisett Further extensions are
straightforward and form the subject of current research.

7.6 Conclusions

This chapter discussed how control invariant sets can be inskIPC algorithms to
further improve constraint handling. Two different segrare discussed: stabilization
and tracking.

First of all it is shown that, by extending general interpiola towards non-linear
control laws, control invariant sets and their induced oallgrs can be used to extend
the feasible region of the robustly stabilizing MPC corerd discussed in Chapter 4.
In this way the feasible region of the resulting control IaAtie largest feasible region
theoretically possible, if the control invariant set isg¢alas the MCAS. This significant
advantage comes only at the cost of a moderate amount oicadditomputational
complexity.

Secondly, it is shown that also in the context of trackingtoamroblems, control
invariant sets can be used to guarantee robust constréisfastion of any (linear or
non-linear) state feedback controller. This is shown asafpof-concept for the case
of tracking without preview, but extensions towards mormptex and useful settings
is relatively straightforward.

On a general note, it can be said that control invariant s®te b large potential for
improved constraint handling in stabilization and tragkaontrol problems. As shown
in this chapter, this potential can be put to use by meansafistrd techniques such as
general interpolation and simple convex optimization peots, but many possibilities
are probably yet to be discovered.



174 Robust MPC using Control Invariant Sets




Chapter 8

Case Studies

“In theory, there is no difference between theory and piati
In practice, there is”

— Chuck Reid —

In this chapter the algorithms discussed in the previouspttrs are
applied to two practical examples. The first case study disesia control
problem encountered in steel rolling mills. The second casey consists
of a chemical process for the production of a copolymer. Bodimples
are constrained MIMO systems of relatively high order coraegdao the
numerical examples considered up till now and are hence suétéd to
illustrate the practical efficacy of the algorithms presahin this thesis.

8.1 Steel rolling mill

This section considers the control of a steel rolling precellore specifically, the
problem of controlling the tension in hot strips that pas®tigh a finishing mill is
tackled. Section 8.1.1 starts with a general overview optioeess, after which Section
8.1.2 defines the control problem more precisely. Sectiohgl&o 8.1.6 then present
results obtained with the different control strategiesaduced in this thesis. Section
8.1.7 finally discusses the control performance of the abthtontrollers.

8.1.1 Process description

For reasons of confidentiality not all details of the proazssbe given here. Therefore,
all physical variables are omitted or rescaled and reposti¢isout units. For more
information we refer to [36]. In what follows the general ¢ext of the control problem
is sketched, in order to illustrate the practical relevance

175
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Figure 8.1: Typical layout of a hot strip mill. Slabs are heated in a fumafter
which roughing and finishing mills reduce the thickness ef $trips. Finished strips
are cooled down and coiled for later transportations. Intagen from [36].

The main aim of a hot strip mill process is to produce ste@stwith a specified
thickness and width. To this aim steel slabs are heatedafteh their thickness is
reduced by roughing and finishing mills. Figure 8.1 givesp@agl layout of such a
process. The reverse roughing mills result in an initiatkhess reduction of the slabs,
after which the finishing mills reduce the thickness of thigstto the specified value.

Figure 8.2 depicts a typical control loop present in betwtem finishing mills.
The main aim of this looper-tension control loop is to cohthe tension of the strip
passing through the finishing mills. Excessive tension eanlt in width and thickness
reductions and can hence have a detrimental effect on thendional quality of the
end product. On the other hand, when the strip tension istedhe mass flow through
the finishing mills can become unstable. Therefore the éensiould be kept around
a fixed value. This can be achieved by means of motors confdlie speed of the
mills.

Another actuator present between two finishing mill standisé looper, whose angle
can be changed in order to compensate for sudden mass flgularities. However,

ith stand i+1th stand

tension

looper
roll

looper

motor . N
main
motor @

AR
main
motor @
ASR ASR/ACR ASR

looper-tension
control system

Figure 8.2: Looper and tension control system between two finishing stalhds. The
strip tension and the looper angle are controlled by meaetecofrical motors. Image
taken from [36].
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v =0.10 v =0.05 v = 0.00
N=5 202 (285s) 272 (444s) 1370 (7789s)
N =10 362 (950s) 484 (1696s)  >4000 (~50000s)
N=15 528 (2820s) 716 (5458s) /
N = 20 674 (6712s) 946 (12607s) /
N =25 828 (12253s) 1158 (25405s) /

Table 8.1: Total number of constraints and computation times (betvieaokets) for
invariant sets of the augmented system (4.63)-(4.64) fiferént values ofN. The
invariant sets are computed using Algorithm 5.2 with défatrvalues ofy. See also
Figure 8.4. {conservative lower bounds based on extrapolation of pagsalts)

in order to maintain maximal flexibility, the looper angleositd also be kept around a
fixed value. The looper angle can be controlled by means ofeatrieal motor.

8.1.2 Problem formulation

The looper angle and finishing mill speed mechanism are redd®} means of non-
linear first-principles model, which is then linearized @md the desired operating
point. The model has 2 inputs (controlling the two electrivators), 6 states and 2
outputs (looper angle deviation and strip tension devigtith order to gain robustness
against non-linearities present in the real process, afinecertain model is used for
controller design. A polytopic uncertainty set with= 2 is constructed based on
two linear models, linearized around two different loopeglas. We hence have a
robust control problem with dimensioms. = 6,n,, = 2,r = 2. States and inputs
are subject to component-wise upper and lower bounds. Mmefically, the looper
angle deviation is restricted fe-0.2 0.2], while the strip tension deviation is restricted
to [—2 2]. A quadratic control objective (1.3) is imposed with

2025 0 B
Q=C [ 0 64}0, R =0.0011, (8.1)

where the scaling factors i compensate for the differences in units.

8.1.3 Design Specifications

The aim of this example is to provide a comparative case studgpecification driven
design process of the robust MPC algorithms discussed srtlileisis. We will apply
the design procedures of the different MPC algorithms with dim of satisfying the
following specifications:

e The controller should be locally optimal according to thewabcriteria.

e The controller should have a region of operation that spaesntire range of
allowed strip tension deviation and that spans a loopeieaagige that is as large
as possible.
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e Due to the fast sampling time of the system, the computaiioa per second
should not exceed.02 seconds.

e The controller should be able to cope with sudden systenugietions of
sufficiently large amplitudes.

Obviously, the above specifications are conflicting (e.peration range vs. computa-
tional complexity), so possibly no clearly optimal winneillwe found.

8.1.4 Quasi-infinite horizon MPC

A first step into the design of a controller based on Algorithmis the construction of

a locally optimal linear feedback controller. To this end use Algorithm 4.2 witte
chosen close to the origin. A value @of= 0.001e3 was chosen, which corresponds to
a slight deviation of the looper angle from the operatinghpoin further sections we
refer to this controller as),..). Figure 8.3 shows invariant sets for this local controller,
computed using Algorithm 5.2 for different values-pf It is clear that choosing =
0.05 results in a significant complexity reduction without anpagent volume loss and
hence we will also use this value for later computations.

We can now construct ®-RMPC controller (Algorithm 4.7, Section 4.3) using this
locally optimal controller. Since both inputs can be coasidl to be equally important,
we choosel = I. Figure 8.4 shows feasible regions for different valueshof
Table 8.1 reports the resulting number of constraints aedcttimputation times for
the different horizon lengths.

Choosingy = 0 is obviously not a practical choice due to the rapid increase
of the number of constraints as a function 8f This leads to a prohibitively
large computation time for constructing the invariant setswell as a large on-line
computational load. The two other values1{0.05 and0.1) lead to a significantly
reduced number of constraints. The increase is almostlgkaetar as a function oiv,
which shows that Algorithm 5.2 enables the use of long pt&dicdorizons in robust
MPC algorithms. Figure 8.4 shows the resulting feasibléoregycorresponding to
different values forV and~. Itis clear that the operating region increases as a fumctio
of N and is significantly larger than the invariant set for thealfcoptimal controller
depicted in Figure 8.3. However, looper angle deviatioovedld by the feasible region
is still fairly small and increases very slowly as a functmnN. Therefore the next
section aims to construct a controller with a larger feasibbion by means of general
interpolation.

8.1.5 Interpolation based MPC

An alternative for obtaining an MPC controller with a largea$ible region is to
use general interpolation as discussed in Section 4.2. deroto construct an
interpolation based controller we first compute additiolivaar control laws with
enlarged corresponding invariant sets. To this end we aflglyrithm 4.2 and place
farther away from the origin. Since we aim to increase the eizthe feasible region
in the 3rd dimension, which corresponds to the looper anvgtetry 7 = 0.01es and
Z = 0.02e3. These values lie outside the invariant set of the locallynogl controller.
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Figure 8.3: Invariant sets for the local controller designed for the kwip mill
model, computed using Algorithm 5.2. Solid lines repredatgrsections, dashed
lines represent projections onto the two most importame stemensions. The resulting
number of constraints and computation times were a) 198@nts, 278 seconds, b)
60 constraints, 87 seconds. No significant volume diffezsrman be observed.
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Figure 8.4: Feasible region fo?-RMPC controller for different values av. The
invariant sets were computed using Algorithm 5.2 usingedéht values ofy. Solid
lines represent intersections, dashed lines represejecioms onto the two most
important state dimensions.
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Figure 8.5: Invariant set for two linear control laws with enlarged fiésregion for
use in GIMPC(2). The controller is computed using Algorithrg, while the invariant
setis computed using Algorithm 5.2 with= 0.05. Solid lines represent intersections,
dashed lines represent projections onto the two most iraptstate dimensions.

In further sections, the thus obtained linear control lavesraferred to ag; andxs.
The invariant sets of; andx. are depicted in Figure 8.5 and are clearly larger than
the invariant set ofocal-

We now construct an interpolation based controller basegiQp and either<; or
k2. In order to maximize the feasible region, we choose to caoosaP-GIMPC2
controller using method 2 described in Section 4.2.5.2. dittained feasible regions
are shown in Figure 8.6.

Against expectations, the feasible regions of the two difi€P-GIMPC2 controllers
are more or less identical in size. After comparison of Fég8.5 and 8.6, it is found
that the feasible region of the controller based«gn..; and s is smaller than the
invariant set ofky. We therefore conclude that the relatively small feasilgigion
of the latter GIMPC2 controller is due to the fact that= 0.1 is chosen too large.
However, smaller values afresulted in an excessive number of constraints. Therefore
we choose the controller based ©g.., andx1, with v = 0.1 to compute the invariant
set of the associated augmented system.

8.1.6 MPC using control invariant sets

Finally, we try to increase the size of the feasible regiornefurther by means
of Algorithm 7.2. This algorithm employs general intergaa between non-linear
control laws in order to make the feasible region equal toMI@AS of the system.
Therefore we use Algorithm 6.6 (witk = 1, A = 0.95 and different values ofp..
and~pr0;) in order to compute the maximal control admissible sethergiven system.
Figure 8.7 shows the resulting control invariant sets. ppsintingly these sets turn
out to be smaller than the feasible regions of h&MPC andP-GIMPC2 controllers.
Therefore this design route is not explored any further.
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Algorithm Parameters Constraints  Variables
MPC1 P-RMPC N=5FE=1vy=0.1 202 10
MPC2 P-RMPC N=25E=1,v=0.1 828 50
MPC3 P-GIMPC2 Klocal, K1,y = 0.1 750 6

Table 8.2: Overview of the different controllers compared in this gatt
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(a) P-GIMPC2 controller based of,.,) andxi. (b) P-GIMPC2 controller based o, andxa.

Figure 8.6: Feasible regions foP-GIMPC2 controllers based on different linear
control laws. The invariant sets were computed using Atgari5.2 withy = 0.05.
Solid lines represent intersections, dashed lines reptrpsgjections onto the two most
important state dimensions.
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Infeasible at time step CPU-t./iter. Control cost

MPC 1 401 0.005s 0.2709
MPC 2 1001 0.029s 0.2709
MPC 3 1601 0.009s 0.2803

Table 8.3: Comparison of the 3 MPC controllers with respect to feaisyhil
computational complexity and optimality. The best scorésach category are
underlined.

8.1.7 Simulation results

We now assess the control performance of the different obhaits constructed in the
previous sections by means of a simulation. An overview efdlfferent controllers
compared here is given in Table 8.2

In order to assess the control performance of the contneeperform a simulation
with all three controllers. The initial state is chosen:4%) = 0 and disturbance signals
are added to the states corresponding to the looper angldharstrip tension. These
disturbance signals are depicted in Figure 8.8. Theselsignasist of Gaussian noise
and spikes with increasing magnitudes. This setting alkmsollowing three aspects
to be tested:

e Feasibility: Due to the fact that the disturbance signals have increasing
amplitudes, it is expected that infeasibilities will occaooner or later. The
time steps when these infeasibilities occur give inforpratin the size of the
disturbances that can be tackled by the controllers.

Optimality: For that part of the simulations where all three controléees still

0.4 T T T T T T T T T

_0'27" Ay ot ooty v ‘l ,[ v lrr vn‘lvﬂ :“w Aot ’A

_0 4 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Strip tension dist.

0.04 T T T T T T T T T

0.02+ j ‘ g

-0.02

Looper angle dist.

_0 04 | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

k

Figure 8.8: Disturbance signals used in the comparative test betwei3 thiPC
controllers.
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feasible, one can compare the total control cost in termiseofjtiadratic control
objective defined by the matricésandR. These costs give an idea of how well
the controllers are able to reject the disturbances.

e Computational efficiency: Similarly, the computation time per iteration can be
calculated for each algorithm.

Table 8.3 gives an overview of the performance of the difiecentrollers with respect
to the above aspects. The following conclusions can be drawn

e Locally, P-RMPC offers the most optimal control performance (acauydo
the quadratic control objective), although the differeisagot large compared to
GIMPC2.

o Of the twoP-RMPC algorithms, only the short-horizon controller didis the
imposed specifications regarding the maximum computaticoraplexity, but
it has relatively poor feasibility. This indicates thatatlely small system
perturbations can render the controller unusable.

e GIMPC2 has a sufficiently large marging with respect to thengotational
complexity specification and has the best results with m@sfe feasibility,
indicating that the controller should be able to cope withtreely large system
disturbances.

In summary, we can conclude th&t/ M PC?2 seems to result in the best trade-off
between the different design specifications. howeverdéloptimality is prioritized
significantly above the ability to cope with large systentuisancesP-RMPC should
be used. However, the horizon length should be kept suftlgismall (e.g., not above
10) in order not to violate the computational complexitycifieation.

It should be noted that, due to the fact that all 3 controliess QP optimization,
the computational costs are very modest. If ellipsoidahirant sets would have been
used, the computational complexity would have been sigmiflg higher due to the
fact that SDP optimization would have to be used. This faetiss illustrated in the
next section.
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8.2 Copolymerization reactor

This section deals with the control of a copolymerizationgass in a continuously
stirred tank reactor (CSTR). The aim of this section is noteiterate the different
design options discussed in the previous section, but to she difference between
P-RMPC andS-RMPC for high dimensional systems. It will become cleat tkaen
though until recently the use of polyhedral invariant sets whought to be limited
to low dimensional systemsP-RMPC significantly outperformg-RMPC in this
example. These results and further information can alsmbed in [106] and [95]
respectively.

8.2.1 Process description

monomer A
_—
monomer B
> )
etc ... A
B ® A S .
A?\\> BsN\
AAR
pohreR?

copolymer
_—

Figure 8.9: A continuously stirred tank reactor (CSTR) for a copolyrmation
reaction.

In this section we consider a control problem involving a ®&Sieactor for a
copolymerization process described in [37,38]. Such atoeaonsists of a tank to
which the reagents are fed continuously. The contents ofahk are continuously
stirred in order to obtain perfect mixing conditions. Sitankeously the reaction
products are drained from the tank. The reaction produetseparated from the rest
of the drained fluid, which is fed back into the reactor thioagecycle loop. However,
this recycle loop is not considered in this section, sinsgifficient information on its
dynamics was available.

The aim of a copolymerization process is to produce a copethtwo different
monomers, which will be referred to as monomer A and monomefige two
monomers are fed into the CSTR, together with a solvent ahérothemicals
influencing the copolymerization reaction. The reactioodoict (i.e., the copolymer)
consists of mixed chains of the two monomers. The two maipgnttes of the reaction
productthat can be influenced are the average molar masscti#tins, which is related
to the average length of the chains, and the average mas®ifraé monomer A in



8.2 Copolymerization reactor 185

Input Steady state
monomer A mass feed raté'{;) 18.00 kg/h
monomer B mass feed rat€'(;) 89.99 kg/h
initiator mass feed rate%;) 0.18 kg/h
solvent mass feed raté/(;) 36.02 kg/h
chain transfer agent mass feed raf{ 2.70 kg/h
inhibitor mass feed ratei¢) 0.0003 kg/h

Output Steady state
polymer production ratef},) 23.31 kg/h
monom. A mass fract. in polymY{;) 0.56
polymer molar massi{,) 35003.48 g/mole
reactor temperaturdy) 353.00 K

Table 8.4: Overview of the input and output variables of the reactor et@hd their
steady state values.

the copolymer, which is a measure for the relative number afiomer A molecules
presentin each chain.

The control problem considered here has the aim of maimgiai fixed average
molar mass and a fixed average mass fraction of monomer A icof@ymer. To this
end the feed rates of 6 different reagents can be manipubgtéide controller. Two
other important variables that also have to be kept conatarthe reactor temperature
and the production rate of the reactor.

8.2.2 Problem formulation

In order to control the process, the model described in [88]ded. The model is
based on first principles and is represented as a set of nearlcoupled differential
equations. The model has 6 inputs 12 states and 4 outpulge Sdlyives an overview
of the input and outputs of the model and their steady staigesa This model is
linearized around the operating point given in Table 8.4 disdretized in time with a
sample timel’, = 30min. Input, state and output variables of the model are Inted
and normalized with respect to their steady state valuesder to improve numerical
stability.

In order to obtain robustness with respect to the differgnidnics in the neighbor-
hood of the operating point, an LPV model is constructed thasetwo linear models,
resulting from linearization aroungd% and 110% of the steady state value of the
monomer A concentration in the reactor.

Constraints are imposed on the inputs and states in ordestoethat a) the applied
inputs do not deviate more thar20% and+10% from their steady state values, b) the
outputs do not deviate more thar50% from their steady state values and c) the states
do not deviate more thahi100% from their steady state values.

A quadratic control objective (1.3) is imposed with= 10C*TC andR = 0.0011.
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8.2.3 Design Specifications

The system under consideration here is markedly differemt fthe system discussed
in the first case study. This chemical system has a much ansalfepling frequency
(1500 times smaller) and hence computational complexity is nooirgmt issue.
The dimensionality of the system, however, is larger andrthber of inputs is
also significantly larger. Due to this higher dimensiomal@tonstructing controllers
with sufficiently large feasible regions is the main conceifhe following design
specifications are imposed in this case study:

e The controller should be locally optimal with respect to #imve mentioned
guadratic control objective.

e The computation time per iteration should be lower th&minutes.

e The controller should have a region of operation that is @gelas possible.

In the following sections, robust MPC controllers will bes@iged in order to optimally
satisfy these specifications.

8.2.4 Controller design

In this section we desigP-RMPC and£-RMPC controllers for the given control
setting. The design of both controllers is almost identieatept for the computation
of the invariant set for the augmented system (4.63)-(4.64)

First we design a locally optimal controller. This is chosenthe locally optimal
LQR controller at the operating point. The resulting colérowas also found to be
robustly stabilizing for the LPV system described in the/mas section and hence can
be used for designing a robust MPC controller.

Secondly, a choice has to be made regardingiheatrix in equation (4.61). Since
one of the primary aims is to keep the concentration of themhwaomers in the reactor
at a constant level and because these two states are pyigavirned by the first two
inputs, we choos& = [I;04x2].

In the case of thé>-RMPC controller additional choices have to be made for the
parameters related to the construction of the polyhedvatiant set for the augmented
system. We tryy = 0 and~ = 0.15. The resulting feasible regions (for different
horizon lengthsV) are depicted in Figure 8.10, the number of constraintsridesg
the obtained invariant sets are given in Table 8.5.

Ellipsoidal invariant sets for th&-RMPC controller were computed using Algorithm
2.2. The resulting feasible region fof = 25 is shown in Figure 8.11.

In order to obtain MPC algorithms with further enlarged fblesregion, attempts
were made to compute control-invariant sets for the givestesy using Algorithm
6.6. However, even in the nominal case, the computationwasunacceptably large.
Hence, this route was not further pursued. This also shostsribre research is needed
in this area.
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N #statesin(4.63) # constr. (Alg. 5.2) # constr. (Alg. 2.4)

0 12 58 74

5 22 177 771
10 32 299 >2000
15 42 417 /
20 52 538 /
25 62 642 /

Table 8.5: Dimensionality of the augmented system (4.63) and the nurobe
constraints of invariant sets for (4.63) for different gotidn horizonsN .
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Figure 8.10: Feasible regions oP-RMPC for N = 0 (solid) andN = 5,...,25
(dashed), computed using Algorithm 5.2 with= 0.15. Feasible regions fav = 0, 5,
computed using Algorithm 2.4 are also depicted (dotted)teNbat the two feasible
regions forN = 20 and N = 25 only differ marginally and hence are hardly
discernable. See also Table 8.5.
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Figure 8.11: Trajectories for the€-RMPC controller [70] forN = 25 starting from
initial conditions starting near the boundary of the fekesikgion.
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Figure 8.13: Trajectories for theP-RMPC controller forN = 25 starting from initial
conditions starting near the boundary of the feasible regio
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Figure 8.15: Trajectories for Algorithm A.1 [68] starting from
conditions as the trajectories depicted in Figure 8.13.
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8.2.5 Simulation results

Figures 8.11-8.14 show trajectories starting from the sdgehe respective feasible
regions of the€-RMPC [68] andP-RMPC controllers with horizon lengthv = 25.
It is hard to explicitly determine the feasible region of Atghm A.1, so therefore
Figures 8.15-8.16 shows simulation results for the santmliistates as those used in
Figures 8.13-8.14.

The following conclusions can be drawn:

e The feasible region of th&-RMPC controller is significantly larger than the
feasible region of£-RMPC. This can be attributed to the lack of flexibility
present in ellipsoidal sets compared to polyhedral setschwbecomes more
apparent when the dimensionality increases. Furthernmtbeefact that the
feasible regions foP-RMPC with N = 20 and N = 25 are nearly identical
suggests that these feasible regions probably closelpappate the MCAS for
the given system. This shows thBtRMPC actually provides a method for
implicitely computing the MCAS for a given system.

e Algorithm A.1 is feasible for all initial points close to thexige of the feasible
region of theP-RMPC controller. This indicates that in this example tressible
region of Algorithm A.1 is equal or larger than that of tReRMPC controller.

o £-RMPC exhibits very conservative constraints handlingerethough many of
the trajectories shown in Figure 8.11 start outside theriama set of the local
controller, none of the imposed constraints seem to becatieedor any of
these trajectories. This clearly indicates that the ttajges obtained witre-
RMPC are suboptimal. Furthermore, sitt®@MPC andP-RMPC make use of
the same cost objective in their on-line optimization peoh$, this suboptimal
behavior can entirely be attributed to the use of ellipsaidaariant sets rather
than polyhedral invariant sets. On the other hand, as shawFigure 8.14,
P-RMPC exhibits non-conservative constraint handling aslits in complex
control behavior.

e Algorithm A.1 is significanlty less conservative th&rRMPC. The applied input
signals come much closer to the imposed input constrairtie. aBymmetry of
these constraints, however, cannot be taken into accoulligoyithm A.1. The
convergence rate of the trajectories seems comparablat@thhe?-RMPC
controller. The average (over all trajectories) total fowee trajectory) control
cost wa9).63 for P-RMPC andl10.08 for Algorithm A.1.

e The on-line computational cost 3*-RMPC was observed to be 1 second
per iteration, while the computational cost &fRMPC and that of Algorithm
A.1 respectively were- 10 and~ 20 seconds per iteration. This shows that
also from a computational point of vie®-RMPC outperformg-RMPC in this
case. However, all numbers are still well within the compiatel restrictions
imposed by the sampling time 86 minutes.

As a general conclusion it is not clear which algorithm is ltlest choice £-RMPC
does not perform very well in this case, F’HRMPC and Algorithm A.1 both seem to
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have their advantage®-RMPC exhibits better (input) constraint handling and has a
lower computational cost, but Algorithm A.1 has a largessfbbe region and results in
(slightly) more optimal control behavior.

Therefore, other factors are likely to influence the finalicko Two factors that
seem to favofP-RMPC is that QP solvers are generally speaking more robush @
numerical point of view) than SDP solvers and tFaRMPC has the potential of being
extendable towards the inclusion of soft constraints.

On afinal note, the rather restrictive choicefothat is made here, could be changed
in order to give more degrees of freedom to the controlleris Thpossible because
the computational complexity of the current controllertif well below the imposed
specification.

8.3 Conclusions

In this section two case studies were investigated in oadlustrate the algorithms
discussed in this thesis in a more practical setting. The dikample consists of a
looper-tension control loop of a hot steel mill, while the@ed example considers
the control of a continuously stirred tank reactor for a dgpeerization reaction. Both
examples illustrate that the use of reduced-complexitytpedral invariant sets leads to
robust MPC controllers with enlarged operating regiongrimwed control performance
and reduced computational complexity.

In both cases one can observe that existing methods for dimgppolyhedral
invariant sets would not have been practically feasibletdube high dimensionality
of the augmented systems encountered during the contdaign. The second case
study also clearly shows that the use of ellipsoidal inversts can lead to suboptimal
control behavior and is therefore not advisable for higinatisional systems.

Finally, the first case study shows that the constructioedficed-complexity control
invariant sets is a harder problem than constructing rethgoenplexity invariant sets.
This issue hence needs further research.



Chapter 9

Conclusions and Future
Research

“If we knew what it was we were doing, it
would not be called research, would it?”

— Albert Einstein (1879-1955) —

9.1 Conclusions

General

In this thesis the author has investigated different ma#t&al techniques with the
aim of obtaining robust MPC controllers with favorable stglproperties and non-
conservative constraint handling.

The emphasis is put on the use of polyhedral constraint setead of ellipsoidal
sets, since the latter offer little flexibility and resultéxpensive on-line optimization
problems. Polyhedral invariant sets offer maximal flexipibut have the potential of
leading to algorithms with exponential scaling behavibmimating the possibility of
controlling large-scale systems or obtaining good comiesformance by using long
prediction horizons.

In this thesis several methods have been described thatbéeeta exploit this
additional flexibility of polyhedral sets and result in rabuUMPC algorithms with
improved constraint handling and improved scaling prapsrtThese improvements
were obtained using new results on two different levels: d)tloe level of the
construction of invariant sets for use in MPC, and 2) on tkellef algorithm synthesis
in robust MPC. These two areas are hightlighted separatehgi following sections.
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Robust model based Predictive control

This thesis contains several algorithmic contributionghe area of robust MPC.
However, all of these contributions should be considerdtérlight of the conceptual
considerations discussed in Chapter 3. This chapter disduthe importance of
incorporating the notion of feedback in the input sequenger avhich the on-line

optimizations take place. It is shown that several robusCMiRjorithms described
in literature are incorrect due to the absence of this nodibfeedback. This latter
approach, called the closed-loop paradigm, also leadspoowed control performance
and, as is shown in Section 4.3, does not necessarily impiycaease of the number
of on-line optimization variables. Chapter 5 goes one stefhér by showing that in

the case of quasi-infinite horizon closed-loop MPC, redum@dplexity invariant sets
can actually decrease the computational complexity, coetbto open-loop robust
MPC. This result is enabled by the fact that Algorithm 4.0ab the constraints to
be calculated as an invariant set of an augmented autonosystesn. The following

statement summarizes these observations.

As shown in this thesis the closed-loop MPC paradigm is ahary
importance for recursive feasibility and stability of rcliuMPC
algorithms.  Contrary to common belief, the use of closexplo
predictions does not necessarily imply an increase in theiran
computational complexity but on the contrary, due to itscpe
structure, can lead to significant complexity reductionie Tesulting
algorithms can be shown to have linear scaling behavioreagtof
exponential scaling behavior observed in existing aldons.

Other algorithmic contributions are situated in severages of the MPC design
process. First of all Section 4.1 shows how polyhedral iiaversets can improve the
synthesis of robust linear feedback controllers, that leé@ be used as a terminal or
local controllers in robust MPC algorithms. Sections 4.8 4r8 then show how two
existing MPC paradigms (quasi-infinite horizon MPC (RMP@&)l anterpolation based
MPC (GIMPC), both of which are closed-loop paradigms) alsodijit from the use of
polyhedral invariant sets. On top of this GIMPC is furthepnoved in Section 4.2.5 in
order to improve constraint handling even more. The authmrlevlike to emphasize
that the off-line synthesis of RMPC and GIMPC2 algorithmalimost identical and
only consists of computing a positive invariant set and adgatéc Lyapunov function
for a specially constructed augmented autonomous systenhn Bethods only differ
in how this augmented system is constructed, and how theeapiplput depends on
the augmented state.

The common structure present in the design process of RMPC
and GIMPC2 directly suggests the existence of a more geperal
MPC framework, where the class of candidate input sequersses
parameterized by means of a linear autonomous system ovesewh
state vector the on-line optimization actually takes place

This shift from FIR-like to IIR-like input sequence paramigétations would be the
theoretical projection of the common practice in industfyemploying piecewise
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constant input sequence parameterizations (see e.g. [@8j)increasing interval
lengths further down the control horizon.

The start of this paradigm shift can be traced back to [13fl] thie introduction of a
terminal control law. The results in [123] further incred$ke importance of this local
control law by also letting it also play a role in the withilfizon predictions. More
recent contributions [29, 58, 61] further suggest the caration of this trend.

A final contribution discussed in Chapter 7 is the extensibiGiMPC towards
non-linear controllers allowing interpolation between ®Bontrollers and controllers
induced by control invariant sets. This allows the feasielgion of any recursively
feasible MPC algorithm to be extended to the largest redimoretically possible
without a significant additional computational burden. Tle of control invariant sets
for ensuring constraint satisfaction in a tracking congedting is also briefly discussed,
illustrating the potential of control invariant sets for aler class of constrained control
problems than positive invariant sets.

Set invariance

The main contribution of this thesis in the area of set irasace is the introduction
of what might be callednear-maximal” polyhedral invariant sets. The two main
other types of invariant sets within the class of polyhedes$ (maximal invariant sets
[52] and low-complexity invariant sets [75]) each represame extremum within the
spectrum of trade-offs between maximal volume and miniroahglexity. The class
of near-maximal invariant sets allows the user to vary trzide-off between these two
extremes. More specifically, it has been shown in this thisistypically justifiably
small volume reductions enable vast complexity reductiarith exponential scaling
behavior that is reduced to linear scaling behavior in soases.

The construction of near-maximal positive invariant setiackled in Chapter 5 by
means ofpruning and trimming while Chapter 6 extends these techniques towards
the construction of control invariant sets together witle @ddition of reduced-
complexity polytope projections. An important aspect iattbnly maximality of the
resulting sets is sacrificed, invariance of the resultirtg &estill guaranteed and the
resulting MPC algorithms can still be justified theoretigalThis regularization-like
method of constructing invariant sets is a novel approadmgares the user additional
tuning parameters during the design process of robust MP@alters. This can be
summarized as follows.

of polyhedral invariant sets allows the user to make a traffe-
between maximality of the volume and minimality of the ceriyl
of representation. The obtained complexity reductionsbenahe
construction of polyhedral invariant sets for much higldémensiona|
systems than previously possible, which in turn actuallabées
the construction of robust MPC algorithms with significgridrger
feasible regions.

The novel regularization-like approach towards the camstion%

Finally, we can conclude that the different directions fanstructing reduced-
complexity invariant sets that are explored in this thesiguld only be considered
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initial steps into the unknown. Undoubtedly many othertdreand more elegant
solutions exist within the framework laid out in Chaptersri@l@®. Only in the last
decade set invariance has been studied to the extent thaténty the case and many
insights remain to be obtained. The following general shatet summarizes these
observations.

The framework for the construction of reduced-complexign(rol)
invariant sets laid out in Chapters 5 and 6 leaves room for yjan
degrees of freedom, many of which are only partially explarethis
thesis. Also, many properties of the algorithms presentetis thesis
remain to be investigated in detail. Bringing in additiomasights from
computational geometry could potentially lead to vast iovements in
these two areas.

An example of this is the fact that ttembinatorial structuref polytopes (defined
by theface lattic§ or the concept opolar polytopes [146] are not used in any of the
algorithms presented in this thesis, while it is not unimagie that considerations
based on these concepts can lead to important new insigbés invariance theory.

9.2 Future research

Several potentially interesting future research topias loa identified in the area of
robust model based predictive control as well as set inmeealn this section a few of
the most interesting research directions are highlighted.

Robust model based predictive control

1. As already indicated in the conclusions, a trend towaktds use of IRR-
type parameterizations of the input sequence over whichtMRE controller
optimization can be observed. It also has become clear Wtatgorithms
described in this thesis (RMPC and GIMPC?2) fit in this framewaevhere the
input sequence is governed by the dynamics of a linear aotons system.
A straightforward and potentially extremely interestingure research topic
therefore is the development of a theoretical frameworksioch algorithms.
This framework preferably would include robustness isstessllts with respect
to output-feedback, input-to-state stability, computatielays, etc ...

2. Chapter 7 already contains some preliminary resultsdaggtracking in order
to illustrate the usefulness of control invariant sets fosweing recursive feasi-
bility in this setting. However, robust stability, guaraat tracking performance
and other important aspects have not been covered. A pedstbre subject is
the development of a stability framework for tracking cohfproblems using
control invariant sets. Also potentially interesting i€ tbombination of this
framework with the research direction explained above.
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Set invariance

1. One of the problems discussed in this thesis is the corniputaf the largest
positive invariant set that lies within a given set of coastts (i.e. the construc-
tion of the MAS). Extensions towards the inclusion of bouhdisturbances
are mentioned briefly but not discussed in detail. A new cphegising in
the presence of bounded disturbances is that of the smpbegive invariant
set [114]. The size of a positive invariant set is hence upggmmded by
the imposed constraint set and lower bounded by the bounidtartthnces.
These sets are useful for the construction of MPC algoritfeng. [72, 83])
for systems subject to bounded disturbances. However, whgrloying set
duality in order to construct the polar sets of these threg, $be inclusions
are inverted. This suggests many possible interestingepties and relations
that can be exploited for more efficiently computing maxiraald minimal
admissible sets. Identifying these relations and fornmuatew algorithms for
invariant set synthesis, exploiting these insights is anemtially interesting area
of future research.

2. In this thesis the methods for constructing reduced-dexity invariant sets are
further extended towards the construction of reduced-dexityg control invari-
ant sets. However, no results concerning convergence ofighealgorithms
are presented. Also, the expected scaling behavior of thenmethods is still
understood poorly. Further research in this area is negessa

3. Athird interesting future research direction is the agten of the existing results
towards more general classes of systems, like hybrid sys&md piecewise
affine systems. Also the extension towards the gain schedwdetrol setting
is potentially interesting. Algorithms for these settimjeeady exist, but their
scaling properties for higher dimensional systems is pogeneral.
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Appendix A

Constrained Controller
Synthesis for LPV Systems
using LMIs

A.1 Introduction

This appendix summarizes the main results of [68]. The masults presented
there consisted of a new robust MPC algorithm based on tredcidation at every
sample instant of a linear robustly stabilizing control laith guaranteed constraint
satisfaction by means of on-line solving an SDP. In order uargntee constraint
satisfaction, at every time instant an ellipsoidal feasipbsitive invariant set is
calculated, corresponding to the linear control law. Tlael aspect is of main
importance in this appendix.

A.2 Problem formulation

We consider systems of the form (3.1)-(3.2) subject to caimds (2.10)-(2.11).
The aim is to find a linear control law(k) = —Kuz(k),k € N that is robustly
asymptotically stabilizing

lim max lz(B)|| = 0,
k—oo [A(3) B(4)]€Q,ieN

for a given initial state valug(0) = z and has guaranteed constraint satisfaction

z(k) € {z|lzr e X, — Kz € U}, [AG) B(i)] € Q, i=0,...,k—1,
keN,
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202 Constrained Controller Synthesis for LPV Systems usingMls

with z(k + 1) = (A(k) — B(k)K)z(k), k € N. The aim is to minimize the following
worst-case control objective:

=) 2 2
I = e (Z (k)1 + ||u<k>||R> . (A1)

A.3 Solution based on convex optimization

In order to minimize (A.1) a quadratic upper boubtdz) = TPz > J(x) is
considered. If the following condition is satisfied the ftion V' (z) is indeed a valid
upper bound to the control objective:

2"Pz — 27 (A~ BK)"P(A - BK)x > 2" Qz +u"KTRKu, V[AB]€Q,
which in turn is satisfied if
P —(A-BK)TP(A-BK) » Q+ KTRK, V[A B] € Q,
which, due to convexity of2 and the convexity of LMIs, is equivalent with
P—(A; - B;K)"P(A4; - BjK) - Q+ K'RK, j=1,....,r. (A2)
In order to guarantee constraint satisfaction, a levef s#tV (z)
& ={z|V(z) <v},

which is automatically positive invariant, is chosen sutitf C {z|z € X, —-Kx €

U}. Constraint satisfaction follows automaticallyzife £, or equivalently ifz™ Pz <

~. Optimization overy, P, K subject to the above formulated constraints leads to a
robustly stabilizing control law and a corresponding sliifglal invariant set. In order

to perform this optimization the following change of valie®Z = yP~ 'Y = - KZ

is performed, leading to the following reformulation of 2.

vZV— (A - B,YZ Wz A -BYZT) = Q4+ (YZTHTRY ZT,
j=1,...,nr
Pre- and post-multiplication witl and division byy yields
Z=(AZ-BY)'Z WA Z-B;Y)+~y'Q+~y'YTRY, j=1,...,m

which can be formulated as an LMI using the Schur compleme&hts leads to the
following algorithm [68, 93]:

Algorithm A.1 (Constrained controller synthesis for LPV systems, [68]).Given
a systen(3.1)}(3.2) subject to constraint§2.10}(2.11) an optimality criterion(A.1)
and an initial statez € R"=, solve the following optimization problem:

min v, (A.33)
~YER,Y cR™u X" ,ZeSThT,
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subject to
1 =
[ R/ } =0, (A.3b)
7 * %
Q%Z I * ]
3 07 :1,...,1 ABC
Ry 0 AL x| (A.3c)
A;Z+B)Y 0 0 Z
zZ x .
VA * .
[ A (G,)Z 1 } =0, j=1,...,ma. (A.3e)

Asterisks are used to denote the corresponding transpotieedbwer block part of
symmetric matrices. This avoids redundant notation, sirfdés always must consist
of symmetric matrix expressions. The optimal solutioni® aptimization problem
are denoted ag°,Y?°, Z°. The feedback matrix(k) = —Kuz(k), the closed-loop
Lyapunov functioV (z) = 2™ Pz and an invariant ellipsoid are computed as

K =-Y°(Z°) !, (A.3f)
P =~°(2°)71, (A.39)
E={zlz"(Z°) 'z < 1}. (A.3h)

The following lemma is given without proof. For the proof wefer to [68].
Lemma A.1. If (A.3)is feasible, then the following properties hold:
e The controlleru(k) = —Kx(k) robustly stabilizes syste(8.1)(3.2)
e The set is robustly positive invariant with respect to the closedg dynamics.

e The setf is feasible with respect to the state constraint 88t = {z|z €
X, —KzxelU}.

The initial statez lies inside€.

For all initial statesz € &, the functionV (z) = T Pz is an upper bound to
the worst case value of the cqdt3) (with z,c¢(k) = 0, uer(k) = 0) over all
possible uncertainty realizationg (k) B(k)] € Q,k € N.

If the system is quadratically stabilisable ands sufficiently close to the origin,
the optimization problem (A.3) is always feasible. The qatid stabilisability
requirement is relaxed in [41].

One can verify that the control law, the corresponding iiardrset and quadratic
cost function satisfy conditions (3.11) and can hence be aseterminal controller,
constraint and cost in (robust) MPC algorithms, as is e.gedo [3,96, 103,104, 140—
142].
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Apart from the use as an off-line tool to calculate robustdfeek laws and
corresponding invariant sets, the above algorithm can lpéepon-line in order to
obtain a robust MPC algorithm. In [68] recursive feasililitnd robust asymptotic
stability of such a setup are proven.

A.4 Convex Combinations

An interesting additional advantage of the fact that Aljori A.1 is based on solving
a single convex optimization problem, is the fact that défe solutions to (A.3) can
be combined by making convex combinations. Assume (A.liges forn different
initial statesz, ..., Z,, resulting in optimal solutions;, Y;, Z;,i = 1, ..., n, then the
following solutions

w=im, Y =3 \Y, Z =Y \Z,
i=1 : 3

are feasible solutions to (A.3) for initial state= >""" | A\;z; if Y0 A =1, A1 >
0. These solutions then induce a corresponding robustlylizialy (but not necessarily
optimal) control law with corresponding invariant set. §property was used in [96,
97,103-105, 142, 143] to construct MPC algorithms with egdd feasible region and
reduced on-line computational complexity.



Appendix B

Projecting Polytopes using
Fourier-Motzkin Elimination

B.1 Problem Formulation

In this section we consider andimensional H-polytop®, defined as the intersection
of m halfspaces :

P 2 {z € R"|Az < b}, (B.1)

with A € R™*" b € R™. In the case of the polytope depicted in Figure B.1, we have
e.g.n = 2 andm = 5. The problem considered here is that of finding a H-polytope
description of the orthogonal projection BfontoR" 1.

Problem B.1. Given a polytopé® described agB.1), compute a polytop®’ = {x €
R~ A’z < b’} such that

P’ = proj(P). (B.2)

In the next section we describe how Problem B.1 can be soly@idans of Fourier-
Motzkin elimination [146]. A different method would be EditaSet Projection (ESP,
[62]), but this method does not lend itself well to the extens proposed in Section
6.2.4. Both methods are included in the MPT toolbox [86] foxTMAB .

B.2 Fourier-Motzkin Elimination

Fourier-Motzkin can be seen as the equivalent of Gaussdoetimination for sets
of inequality constraints. Gauss-Jordan elimination aiméind the strictest set of
linear equalities in1, . . ., z,,_1 that forms necessary conditions for satisfaction of the
complete system of equality constraints, while FouriertAkin does exactly the same
for sets of inequality constraints. While Gauss-Jordamielation constructs this set as
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Figure B.1: Geometric interpretation of the Fourier-Motzkin algoniti{Algorithm
B.1). Dash-dotted lines depidtout of 6 candidate constraints generated by Fourier-
Motzkin elimination.

linear combinations of the existing constraints, Fourier-Matzdimination constructs
this set azonvexcombinations of the existing constraints.

Before formulating the algorithm, some notation has to Heoduced. We use
shorthand notation to denote elements and rowd ahdb, with a;; £ AL, §), a4 £
A(i,:) andb; £ b(i).

Algorithm B.1 (Fourier-Motzkin Elimination , [146]). Given a polytopeP defined
as(B.1), constructA, b as follows :

e Initialize A := [a;,; ... a4, ], b := [bi,;. . .3 bi, |, Whereij, j = 1,...,mg are
all indices such that,; ;, = 0.

e Forevery index; € [1,m], iz € [1,m] such thata;,,, > 0 anda,,, < 0 set

- - —Qiyn Ajyn

. [A;72ail G (B.3)
ailn - aiz’ﬂ, ailn - aign

T N —Qiyn Ajin

b= |:b, 2 bil + L bi2 . (B4)
ailn - aign ailn - aign

e Remove all redundant constraints frofn: < b.

In Figure B.1, we havey,, > 0fori = 1,2,5anda;, < 0fori = 3,4. The
constraints resulting frori1, i2) = (2,4) and(i1, i2) = (5, 3) are not depicted due to
space constraints.

It can be verified algebraically that all constraints An are independent aof,,.
Furthermore, since all constraints are obtained as cormabimations of the original
constraints, the original se® is a subset of the set defined by, B. Since all
possible convex combinations are addedAtd it can intuitively be seen that the
resulting setelim(P) = {z|Az < b}. The projection can hence be found as

A =A(G1:n—1),0 =0.
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It should be noted that in the worst case, the number of cainssrin A’, b’ is equal
to LWT2J. Computingk-dimensional projections can in the worst case I@%dﬁk
constraints, with an accordingly high computational cost.

Another disturbing observation is that often one sees thlgn projecting across
multiple dimensions, the sets at intermediate dimensiawe hthe largest number
of non-redundant constraiftswhich indicates that even having an upper bound on
the number of constraints describing the final projectiag.(ebased on knowledge
about the problem structure) does not guarantee that thjegtion can be computed

efficiently.

1This increased number of constraints at intermediate diinas is sometimes referred tothe bulge
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Appendix C

Joint Spectral Radius

The Joint Spectral Radius (JSR) is a mathematical concaphtis gained interest in
recent years, because of its usefulness in a variety of@gtjgns, among which the
stability analysis of (uncertain) linear autonomous dytatsystems is of the most
importance in this thesis. We first define the spectral ragliasmatrix and then define
the joint spectral radius of a set of matrices.

Definition C.1 (Spectral Radius). Given a matrix nornj| - ||, the spectral radius of a
matrix A € R"*™ is defined as

ZNERE k%
p(A) £ Tim | A¥E. (1)
The spectral radius of a matrix can be interpreted as the @syim growth rate of the
seriesA” for increasing values df. The value of the spectral radius is independent of
the matrix norm that is used (see [57]) and can be shown to e ém

p(A) = {|A| : Nis an eigenvalue ofi}. (C.2)

This equivalence already shows that if the spectral radiaswatrix A is smaller than
1, the autonomous systemé&k + 1) = Az (k) is stable.
The joint spectral radius is an extension of the spectralisat multiple matrices:

Definition C.2 (Joint Spectral Radius (JSR, [126])). Given a matrix normj| - ||, the
joint spectral radius of a set of matricelst = {A1,...,A,}is defined as

N A 7. 1

pM) = lﬁiip Ry [AM)-...- A(R)[*. (C.3)
It should be noted that the value of the JSR does not changksdf al convex
combinations of the matriced; are considered when taking the maximum, i.e. if
we defineM = Co{A4,,...,A,}.

Similar to the spectral radius, the JSR can be used to checkt#bility of linear

uncertain or linear time-varying systems. The condifM) < 1 is a sufficient and
necessary condition for asymptotic stabilityeft + 1) = A(k)xz(k), A(k) € M,
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which makes the JSR a powerful tool for stability analysiswth autonomous LPV
systems. However, the computation of the JSR is an NP-hatdgm. However, some
methods for approximately computing the JSR have been peapeecently [18]. The
following bounds on the JSR are provenin [71]:

max  p(As)% < p({Ar,..., An}) < max }kHAUH%, (C.4)
oe{l,..., m

where A, denotesA,, A,,...A,,. Throughout this thesis the above expression
with & = 15 is used to compute upper bounds to the JSR. See [18, 55] foe mor
computational results.



Appendix D

Proofs

D.1 Proof of Lemma5.3

Proof: We consider the invocation of Lemma 5.2 during an arbitréeyationi of
Algorithm 5.2 when applied to (4.63)-(4.64). The consttaiee of the intermediate
set(), A; is depicted in Figure D.1. This proof is restricted to theecas= 2 and
E = I, but similar derivations can be made for- 2 andE # I.

We now consider the application of Lemma 5.2 for tighteniagstrainta = < 1in
order to make constraiszx < 1 redundant, both of which are children of constraint
bTx < 1 asdepicted in Figure D.1. In order to calculate the necgsiggtening factor,
optimization problem (5.8) is solved. The matrixof (5.8) represents all constraints
of the set under consideration (Figure D.1) except the twestraints defined by,
andas. In order to obtain an upper bound on the tightening fagtowe construct a
lower bound on the optimal solutig® of (5.8). In order to do so, we first rewrite (5.8)
in the following equivalent form:

Axr <1,

. T
min a; T s.t.
z 17 {agx =1.

(D.1)

We now calculate the Lagrange dual optimization problera [24, Chapter 5]) of this
LP:
maxy, —1TA—v,
s.t. A >0, (®.2)
a1 + AT\ + vas = 0.

It is known [24] that any feasible solution to the Lagrangaldoroblem is a lower
bound to the optimal solution of the original (primal) preil. We now construct a
feasible solution(\!, ) to (D.2) in order to obtain such a lower bound. First we
construct a feasible solution to the equality constraif{®a?), after which we make
sure the solution also satisfias > 0. We first choose = —1, after which we need
to choose\! such that

ATN = ay —ay. (D.3)
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AJuge < 1
Xo
X1
| | | |
| | | |
| | | |
| | | |
| | | |
bz <1 o) o) Q Xi—1
/N AN /A
ajz <1 a;rcc <1 X;

Figure D.1: Constraint tree under consideration in Lemma 5.3. Circlggasent
individual constraints. Solid circles represent thosest@ints that are explicitly taken
into consideration in the derivation of the upper bound antightening factor.

By making use of the structure present in (4.63), and thetfattz; = \IfaTugylb and
az = V1, ob, we can rewrite (D.3) as

(B2 — @1)"
AT\ = | (By—B)T | b, (D.4)

O(N—1)m,x1

with b = [b; b],b € R, b € RN"™ and®; = a; — B, K. This shows that, due to the
structure of (4.63), the vectous andas only differ in their firstn, + n, components,
which gives additional degrees of freedom in how to chods&Ve choose to set those
components of\’ to 0 that correspond to constraints &%, j > 0. This is justified,
since the constraints oy = X, form a closed set iR™=+"+ x {0}(¥~1)-7u and
therefore the rows ofl,,, form a basis for this space, which is also exactly the space
in which the right-hand side of (D.4) lies. By denoting thenrero components of
as), we obtain the simplified system of equalities:

AT _KTAT ] ®— )T -
[ 0 AT ]X —[EBj_ B |B (D.5)
—_—

c U

We now construct a non-negative solutidh 2 \(+=) + e, with
A+ 2 ofy, (D.6)

a vector that can have both positive and negative comporaemts\(+) a strictly
positive homogeneous solution to (D.5). Sirédas full row rank (for reasons given
above)\(+~) is guaranteed [9] to be an exact solution to (D.5).
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The existence of a strictly positive homogeneous solutian to (D.5) is guaranteed
due to the fact thatt,,, is a strictly bounded polytope inside its affine hull, and
therefore) lies strictly inside the relative interior of the dual (pglpolytope (see [146,
Section 2.3]). This latter observation guarantees thetenig of a strictly positive
homogeneous solutioh(*) to (D.5). e can now be chosen large enough, such that
N> 0, while satisfying (D.5). Itis clear that if we choosas follows:

AT

€= ) (D.7)

where the minimum is taken over all components, the resyMﬁeffectively satisfies

N> 0. The corresponding variablé is now constructed by inserting the appropriate

number of zeros. We now compute (a lower bound to) the cooretipg value of the

objective function of (D.2). First we compute an upper botmﬂ:l/\’f”:

||A |
/\(+)

< 1+M H)\(+—)||
- min A(+H) ’

IRy
< (1+ L Y iemon. ©8)

AP

)

VT = HM* 4 L

The first two factors of the right-hand side depend solely fom ¢onstraintsd g
imposed on the augmented system. while the third factor depends on the amount
of uncertainty present in the system to be controlled. Omdylast factor depends on
the (firstn, components of the) specific constraint whose children ansidered in
Lemma 5.2. It is now possible to construct a lower bound orotijective function of
(D.2):

AT = 1TV
>1 - V|V,
TR
> 1-va (14 B ieene. e

wherem is the number of rows il®. Because the left-hand side of (D.9) is a lower
bound to the optimal objective value of (D.1) and hence to (ttentical) optimal
objective valug® of (5.8), we have

go 2 _lT)\f _ I/f,

A -
> 1= (1+ L jeroa, (0.10)
and hence, if/m (1 + H‘K:?ﬂ)) ICTIIUI1IB]| < 1, we have
n < ! . (D.11)

() 7
1= v (1+ B et o))

This concludes the proof. O
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D.2 Proof of Theorem 5.5

We first prove that under the conditions of this theorem, iglitening attempts of

Algorithm 5.2 are successful. Due to Corollary 5.2, whiclpiias that the depth of the
constraint tree is upper bounded by a linear functiotvofive can then conclude that
the number of constraints describing the resulting invasat isO(N).

In order to show that all tightening attempts are succestfabs to be proven that
both conditions of step 2(b) of Algorithm 5.2 are satisfied.islstraightforward to
see that the first condition is satisfied due to the lower baommqmbsed ony by this
theorem, while the second condition is satisfied due to tipeupound imposed of
by this theorem.

As aresult no branching ever occurs in the constraint trbe.rilaximal depth of the
constraint tree can be computed to be

(D.12)

S N-—1+ {_lna—i—lnb—i—lncJ ’

In d1

using similar arguments as those used in Corollary 2.1. eSihccan be chosen
independent ofV, it is now shown that the total number of constraints degagilthe
invariant set increase as a linear functiomaf O
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