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Abstract

Model based Predictive Control (MPC) is an automatic control paradigm that has
gained widespread acceptance in industry due to its unique advantages compared to
classic control methods. The main distinguishing featuresare the ability to efficiently
control large scale interconnected systems and the inherent ability to cope with physical
and other constraints of the controlled system.

MPC controllers are designed on the basis of a dynamical model of the system that
has to be controlled (i.e., the plant) and apply mathematical optimization techniques
in order to obtain the optimal inputs to be applied to the plant. Crucial aspects
are hence the accuracy of the dynamical model and the computational burden of the
optimization that has to be performed. In this thesis the focus is on robust MPC
algorithms, i.e., MPC algorithms that can take model uncertainty into account and can
guarantee stable behavior and acceptable performance despite mismatches between the
real plant behavior and the dynamical model that is used. More specifically, the main
aim of this thesis is the development of MPC algorithms with improved computational
efficiency and improved scaling behavior compared to existing algorithms, while
enabling less conservative constraint handling. These aims are achieved in two ways:
by making mathematical and conceptual contributions to existing MPC algorithms
and by formulating improved algorithms for the construction of invariant sets, a
mathematical concept used in the design phase of MPC controllers.

On the MPC-algorithmic level, contributions are made with respect to the type of
predictions that er made by the controller. Closed-loop predictions are shown to be
preferrable above open-loop predictions. Existing algorithms are converted from the
latter to the former type of predictions in order to guarantee recursive feasibility of the
optimization problems and new algorithms with closed-looppredictions are presented,
resulting in significantly improved constraint handling.

On the level of invariant set synthesis a new class of polyhedral invariant sets is
introduced, that makes a trade-off between maximal volume and minimal complexity.
In this way the computational complexity of the construction of the invariant sets and
their application in MPC algorithms is reduced significantly. It is shown that under
certain conditions the exponential scaling behavior of existing algorithms is reduced to
linear scaling behavior, enabling their application to larger scale systems and enabling
the use of larger prediction horizons.

Several numerical examples and simulation on models of two industrial processes
show the improved properties of the obtained algorithms.
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Korte Inhoud

Modelgebaseerde Predictieve Controle (MPC) is een regeltechnische methode die
in een breed spectrum aan industriële toepassingen gebruikt wordt omwille van de
specifieke voordelen ten opzichte van klassieke technieken. De belangrijkste voordelen
zijn de mogelijkheid om grootschalige systemen te regelen en om fysische beperkingen
expliciet in rekening te brengen.

MPC regelaars worden ontworpen op basis van een dynamisch model van het
te regelen systeem en gebruiken wiskundige optimalisatie om optimale ingangen te
bepalen die aan het systeem aangelegd worden. Cruciale aspecten hierbij zijn de
nauwkeurigheid van het model en de rekenkundige complexiteit van de op te lossen op-
timalisatieproblemen. In deze thesis zal de nadruk liggen op robuuste MPC algoritmes,
dewelke modelonzekerheid in rekening kunnen brengen en zo stabiliteit en aanvaard-
baar regelgedrag kunnen garanderen ondanks verschillen tussen het dynamisch gedrag
van het werkelijke systeem en het gebruikte model. Meer specifiek zullen nieuwe
MPC algoritmes ontwikkeld worden met verbeterde rekenkundige efficiëntie ten
opzichte van bestaande algoritmes, terwijl opgelegde beperkingen minder conservatief
afgehandeld zullen kunnen worden. Deze doelen worden bereikt door wiskundige
en conceptuele bijdragen te leveren tot bestaande MPC algoritmes enerzijds en tot
algoritmes voor het opstellen van invariante verzamelingen, een wiskundig concept
dat gebruikt wordt tijdens het ontwerp van MPC regelaars, anderzijds.

Op MPC-algorithmisch gebied zijn bijdragen geleverd met betrekking tot het type
predicties dat gemaakt wordt door de regelaar. Er wordt aangetoond dat gesloten-
lus predicties de voorkeur genieten boven open-lus predicties. Bestaande algoritmes
worden aangepast naar gesloten-lus predicties om recursieve oplosbaarheid te kunnen
garanderen en bovendien worden nieuwe algoritmes geformuleerd die significant beter
kunnen omgaan met opgelegde beperkingen.

Anderzijds wordt een nieuwe klasse van polyhedrale invariante verzamelingen
geı̈ntroduceerd, die een afweging maakt tussen een maximaal volume en een minimale
complexiteit. Op deze manier wordt de rekencomplexiteit van zowel de constructie
van dergelijke verzamelingen als hun toepassing in MPC algoritmes gereduceerd.
Er wordt aangetoond dat onder bepaalde voorwaarden exponentieel schalingsgedrag
gereduceerd kan worden tot linear schalingsgedrag, wat hetmogelijk maakt om de
robuuste MPC algoritmes op meer grootschalige systemen toete passen en om een
langere predictiehorizon te gebruiken.

Verscheidene numerieke voorbeelden en simulaties op modellen van twee industriële
processen tonen de verbeterde eigenschappen van de bekomenalgoritmes.
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Notation

Variables

α, β, γ ∈ R Greek symbols denote scalar variables
a, b, c ∈ Rn Lower case roman symbols denote

scalar or vector variables
A, B, C ∈ Rm×n Upper case roman symbols denote

matrix variables
A(i, j), A ∈ Rm×n Element at theith row andjth column ofA
A(i, :), A ∈ Rm×n ith row of a matrixA
A(:, j), A ∈ Rm×n jth column of a matrixA
A(i : j, k : l), A ∈ Rm×n Submatrix spanning rowsi throughj

and columnsk throughl of matrixA
[a; b; c] Stacked vectors:[aT bT cT]T

x1...n Enumeration:
x1...n ≥ 0 ⇔ xi ≥ 0, i = 1, . . . , n

Scalar sets

R, R+ Set of real numbers and positive real numbers
Z, Z+, Z+

0 Set of integers, positive integers
and strictly positive integers respectively

N Set of positive integers

Vector sets

A,B, C ⊆ Rn Sets inn-dimensional space
P ⊆ Rn Polyhedral set inn-dimensional space

{x ∈ Rn|APx ≤ bP}
E ⊆ Rn Ellipsoidal set inn-dimensional space

{x ∈ Rn|xTZ−1x ≤ 1} with Z = ZT ≻ 0
1 Vector of appropriate dimensions

containing only ones:[1; . . . ; 1]

ix
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Matrix sets

Sn Set of symmetricn× n matrices
Sn

+ Set of symmetric positive semidefiniten× n matrices
Sn

++ Set of symmetric positive definiten× n matrices

Operators

, Definition
≡ Equivalence
:= Assignment

a := b⇔ the value ofb is assigned to variablea
>,≥ (Strict) scalar inequality

A > B ⇔ A−B has strictly positive elements
≻,� (Strict) matrix inequality

A ≻ B ⇔ A−B is strictly positive definite

Inputs, states, outputs

u(k) ∈ Rnu nu-dimensional input vector at discrete timek
x(k) ∈ Rnx nx-dimensional state vector at discrete timek
y(k) ∈ Rny ny-dimensional output vector at discrete timek
w(k) ∈ Rnx Additive state disturbance vector at discrete timek
uref(k), xref(k), yref(k) Reference values for inputs, states and outputs
u(k + i|k), x(k + i|k) Input and state vectors at discrete timek + i

as predicted / calculated at timek
U ⊆ Rnu Constraint set to be imposed on the input vectors
X ⊆ Rnx Constraint set to be imposed on the state vectors
Y ⊆ Rny Constraint set to be imposed on the output vectors
mx, mu Number of constraints definingX ,U respectively
W ⊆ Rnx Constraint set bounding the disturbance vectors

Model based predictive control

N ∈ Z+
0 Prediction horizon length

κN (·) : Rnx → Rnu Terminal control law
XN ⊆ Rnx Terminal constraint set
QN ∈ Rnx×nx Terminal cost matrix
uN (k) Open-loop input sequence

[u(k|k); . . . ; u(k + N − 1|k)]
ucl,N Closed-loop input sequence
xN (k) Nominal state prediction sequence

[x(k + 1|k); . . . ; x(k + N |k)]
XuN

(k + i|k) Open-loop state prediction set
Xucl,N

(k + i|k) Closed-loop state prediction set
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Matrix operations

AT Transpose of matrixA
Tr(A) Trace of a matrix i.e. sum of its diagonal elements
rows(A) number of rows in matrixA
cols(A) number of columns in matrixA

Norms

‖x‖2, x ∈ Rn 2-norm of a vector:
√

xTx
‖x‖p, x ∈ Rn p-norm of a vector:(

∑n
i=1 |xi|p)1/p

‖x‖Q, x ∈ Rn Weighted 2-norm of a vector:
√

xTQx with Q ∈ Sn
++

ρ̂(·) Joint Spectral Radius (see Appendix C)

Optimization

minx Function minimization overx,
optimal function value is returned

argminx Function minimization overx,
optimal value ofx is returned

s.t. Subject to constraints

Convex functions, convex sets

Co{·} ⊆ Rn Convex hull of a set of points or sets inRn

epi(f) ⊆ Rn+1 Epigraph of a functionf : Rn → R
dom(f) ⊆ Rn Domain of a functionf : Rn → Rm

Geometric operations

∪ Union of sets
∩ Intersection of sets
⊕ Minkowski sum of sets
⊖ Minkowski (or Pontryagin) difference of two sets
proj(P),P ⊂ Rn Projection of a polytope along then-th dimension
elim(P),P ⊂ Rn Elimination of a polytope along then-th dimension
ek ∈ Rn, k ∈ {1, . . . , n} k-th unit vector inRn:

[0; . . . ; 1; . . . ; 0] (k-th component)

Acronyms

APC Advanced Process Control
FIR Finite Impulse Response
IIR Infinite Impulse Response
JSR Joint Spectral Radius
LP Linear Program(ming)
LPV Linear Parameter-Varying
LMI Linear Matrix Inequality
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Acronyms (continued)

LTI Linear Time-Invariant
LTV Linear Time-Varying
LQR Linear Quadratic Regulator
MAS Maximal Admissible Set
MIMO Multiple-Input / Multiple-Output
MPC Model based Predictive Control
NLP Non-Linear Program(ming)
PID Proportional / Integral / Differential
QP Quadratic Program(ming)
RHC Receding Horizon Control
SDP Semi Definite Program(ming)
SQP Sequential Quadratic Programming
SISO Single-Input / Single-Output
SOCP Second-Order Cone Program(ming)
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Robuuste modelgebaseerde
predictieve controle: ontwerp
via invariante verzamelingen

Hoofdstuk 1: Inleiding

Dit hoofdstuk geeft een algemene inleiding tot deze thesis en introduceert
concepten zoals procescontrole, modelgebaseerde predictieve controle,
convexe optimalisatie, computationele geometrie, . . . Deze samenvatting
beperkt zich tot het geven van een algemene inleiding tot procescontrole
waarna de basisconcepten van Modelgebaseerde PredictieveControle
(MPC) zullen toegelicht worden. Voor meer details hieromtrent en
voor meer informatie wat betreft de specifieke wiskundige technieken die
gebruikt zullen worden in latere hoofdstukken, wordt verwezen naar de
Engelstalige versie van dit hoofdstuk.

Procescontrole

In 1788 introduceerde James Watt eencentrifugale regelaar(“centrifugal governor”,
zie Figuur 1.1) voor het regelen van de rotatiesnelheid van zijn stoommachine. Dit
leidde tot een grotere betrouwbaarheid van zijn machine, waardoor deze algemene
ingang kon vinden in de industrie. Deze centrifugale regelaar kan dus gezien worden
als een belangrijke factor die de industriële revolutie aan het einde van de 18e eeuw
mogelijk maakte.

Tegelijkertijd kan de centrifugale regelaar gezien wordenals het eerste industrieel
toegepaste voorbeeld van stabilisatie door middel van expliciete terugkoppeling.
De stoomtoevoer naar de machine (ingang) wordt immers geregeld op basis van
het toerental (uitgang) van de machine. De uitgang van het systeem wordt dus
teruggekoppeld naar de ingang teneinde een stabieler systeem te bekomen. Dergelijke
technieken vallen onder de bredere noemerprocesregelingof procescontrole.

In de moderne procesindustrie wordt de techniek van terugkoppeling veelvuldig
toegepast in de vorm van PID regelaars voor het aansturen vanallerhande processen.
In de huidige praktijk dienen er echter veel grotere systemen geregeld te worden,

xix
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waarbij meerdere ingangen moeten aangestuurd worden om meerdere uitgangen een
bepaalde gewenste waarde te laten aannemen of een bepaald traject te laten volgen.
Hierbij treden er vaak interacties op tussen de verschillende ingangen en uitgangen,
waardoor meer geavanceerde technieken, die deze interacties in rekening kunnen
brengen, gebruikt moeten worden.

Bovendien zijn er vaak fysische beperkingen aanwezig in hetsysteem (een klep
kan bv. niet verder dan 100% open staan), dienen er vaak veiligheidsvoorschriften
in acht genomen te worden (bv. maximale druk binnen in een reactor) en gelden
er economische en logistieke beperkingen (maximale toevoersnelheid van bepaalde
grondstoffen). Typisch opereren productieprocessen dicht tegen deze beperkingen
met het oog op het maximaliseren van het rendement, het reduceren van de kost,
. . . Deze beperkingen moeten dus ook in rekening gebracht kunnen worden bij het
regelaarontwerp.

De enige techniek die aan deze voorwaarden voldoet, is Modelgebaseerde Predic-
tieve Controle (MPC), dewelke dan ook meer en meer gebruikt wordt in de industrie.

Modelgebaseerde predictieve controle

Modelgebaseerde Predictieve Controle (MPC) is een op optimalisatie gebaseerde
techniek, die op elke discrete tijdstap (bv. elke minuut) een optimaal ingangstraject
bepaalt binnen een eindig toekomstig tijdsvenster, waarnavan dit traject enkel de eerste
waarden effectief worden aangelegd aan het systeem. Op de volgende discrete tijdstap
wordt de procedure herhaald, gebaseerd op nieuwe metingen van de toestand van het
systeem. Deze werkwijze is weergegeven in Figuur 1.4.

Teneinde te kunnen voorspellen wat het effect zal zijn van het aanleggen van
bepaalde ingangen aan het te regelen systeem, wordt typischeen zogenaamd toestands-
ruimte-model gebruikt om dit dynamisch systeem (Figuur 1.3) te beschrijven:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),

k ∈ N,

waarbij u(k) ∈ Rnu , x(k) ∈ Rnx en y(k) ∈ Rny respectievelijk de ingangen,
toestanden en uitgangen van het systeem voorstellen op discrete tijdstapk. In
volgende hoofdstukken zal naar modellen van dit type verwezen worden als lineaire,
tijdsinvariante (LTI) modellen. De beperkingen die beschreven zijn in de vorige sectie,
worden wiskundig uitgedrukt als

u(k) ∈ U , x(k) ∈ X , y(k) ∈ Y, k ∈ N,

waarbij U ⊆ Rnu ,X ⊆ Rnx ,Y ⊆ Rny respectievelijk de ingangs-, toestands- en
uitgangsbeperkingen voorstellen.

Gegeven dit model en deze beperkingen kan nu het MPC algoritme dat geı̈ntro-
duceerd werd in [135], maar beter bekend staat onder de vorm beschreven in [131],
geformuleerd worden. Dit algoritme, waarnaar vaak verwezen wordt alsMPC met
quasi-oneindige horizon, lost op elk tijdstipk, gegeven de huidige toestandx(k) ≡
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x(k|k), het volgende optimalisatieprobleem op:

min
x(k),u(k)

N−1∑

i=0

‖x(k + i|k)‖2Q +

N−1∑

i=0

‖u(k + i|k)‖2R + ‖x(k + N |k)‖2QN
,

s.t. x(k + i|k) ∈ X , i = 1, . . . , N − 1,

x(k + N |k) ∈ XN ,

u(k + i|k) ∈ U , i = 0, . . . , N − 1,

x(k + i + 1|k) = Ax(k + i|k) + Bu(k + i|k), i = 0, . . . , N − 1,

waarnauo(k|k) aangelegd wordt aan het systeem. Hierin stellenQ ∈ Snx

++, R ∈ Snu

++

gewichtsmatrices voor die het relatieve belang van de toestanden en de ingangen
voorstellen in de te minimaliseren regelkost.XN en QN stellen respectievelijk de
zogenaamdeeindbeperkingen eindkostvoor. x(k + i|k) stelt de toestand voor op
tijdstip k + i zoals voorspeld op tijdstipk. Een gelijkaardige definitie geldt voor
u(k + i|k).

Eenvoudig gezegd zorgt de eindbeperking ervoor dat de opgelegde beperkingen
gerespecteerd worden op tijdstippen ‘voorbij’ de horizon,terwijl de eindkost de
regelkost ‘voorbij’ de horizon in rekening brengt. Op deze manier wordt bij benadering
een optimaal regelprobleem met oneindige horizon opgelost, waaraan het algoritme
dan ook zijn naam te danken heeft.

Het resulterende algoritme leidt gegarandeerd tot een stabiel gesloten lus systeem
indien aan voorwaarden (1.12) is voldaan. Voorwaarde (1.12c) eist datXN een
invariante verzamelingis ten opzichte van het gesloten lus systeem gevormd door het
te regelen dynamisch systeem en een lokaal stabiliserendeeindregelaar. Het bepalen
van een eindbeperkingXN is een cruciale factor in de uiteindelijke eigenschappen van
de resulterende MPC regelaar. De grootte van deze verzameling bepaalt de grootte
van het werkingsgebied waarbinnen de MPC regelaar geldig is. De manier waarop
deze invariante verzameling beschreven wordt, is bepalendvoor de computationele
vereisten van de regelaar. Dit is meteen de belangrijkste reden waarom onderzoek naar
algoritmes voor het opstellen van dergelijke verzamelingen voor verschillende klassen
van dynamische systemen een groeiend onderzoeksveld is gebleken in het afgelopen
decennium.
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Hoofdstuk 2: Polyhedrale Invariante Verzamelingen

In dit hoofdstuk wordt de stand van zaken wat betreft het opstellen van
invariante verzamelingen voor lineaire, onzekere systemen toegelicht.
Zoals uitgelegd in Hoofdstuk 1, vormen invariante verzamelingen een
essentieel element in het ontwerp van een MPC regelaar. De voornaamste
algoritmes voor het construeren van invariante verzamelingen worden
toegelicht alsook hun voornaamste eigenschappen, met het oog op het
verfijnen van deze algoritmes in Hoofdstuk 5. Deze samenvatting beperkt
zich tot het beschrijven van het belangrijkste algoritme enschetst kort de
belangrijkste eigenschappen.

Model en definities

Zoals uitgelegd in Hoofdstuk 1, is het bepalen van invariante verzamelingen van
cruciaal belang bij het ontwerp van een MPC regelaar. In dit hoofdstuk wordt
aangetoond hoe polyhedrale invariante verzamelingen kunnen opgesteld worden voor
autonome lineaire, onzekere systemen, dewelke een belangrijk hulpmiddel zijn voor
het bekomen van verbeterde robuuste MPC algoritmes, waarover de volgende 2
hoofdstukken zullen handelen.

In dit hoofdstuk beschouwen we autonome, lineaire, onzekere systemen van de
volgende vorm:

x(k + 1) = Φ(k)x(k), k ∈ N,

waarbij de matricesΦ(k) ∈ Rnx×nx tot een onzekerheidspolytoopΩ′ ⊂ Rnx×nx

behoren, die gedefinieerd is als

Φ(k) ∈ Ω′ ≡ Co{Φ1, . . . , Φr}, k ∈ N,

of equivalent

Φ(k) ∈







r∑

j=1

λj(k)Φj

∣
∣
∣
∣
∣
∣

λ1...r(k) ≥ 0,

r∑

j=1

λj(k) = 1






, k ∈ N.

Op elk tijdstipk ligt de systeemmatrixΦ(k) dus binnen een onzekerheidspolytoopΩ′.
De exacte waarden van deze systeemmatrices liggen niet à priori vast, kunnen op elke
tijdstip verschillend zijn en zijn ook niet gekend door de regelaar. In wat volgt zal
verwezen worden naar deze systemen als autonome LPV systemen. Een verzameling
S wordt invariant genoemd met betrekking tot bovenvermeld autonoom systeem als en
enkel als

Φx ∈ S, ∀x ∈ S, ∀Φ ∈ Ω′.

Bovendien voldoet een verzamelingS aan de opgelegde beperkingen als en enkel als

S ⊆ X .
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Er kunnen twee belangrijke klassen van invariante verzamelingen onderscheiden
worden, namelijkellipsöıdaleenpolyhedraleinvariante verzamelingen, respectievelijk
genoteerd alsE enP en gedefinieerd als:

E = {x|xTZ−1x ≤ 1},
P = {x|APx ≤ 1},

met Z ∈ Snx

++ en AP ∈ Rm×nx . Ellipsoı̈dale invariante verzamelingen kunnen
eenvoudig opgesteld worden door het oplossen van een convexoptimalisatieprobleem
(zie [23]). Deze hebben echter als nadeel dat ze niet in staatzijn om te gaan
met asymmetrische beperkingen, dat ze typisch een kleiner volume hebben dan
polyhedrale verzamelingen en dat ze leiden tot MPC regelaars met een hogere reken-
complexiteit. Om deze redenen zijn polyhedrale invarianteverzamelingen verkiesbaar
boven ellipsoı̈dale. Polyhedrale verzamelingen kunnen echter niet opgesteld worden
door het oplossen van een convex optimalisatieprobleem, maar moeten iteratief
geconstrueerd worden. Voor het gevalr = 1 zijn de technieken uit [52] algemeen
gekend, maar voor het meer algemene gevalr > 1 zijn meer geavanceerde technieken
vereist.

Polyhedrale invariante verzamelingen voor LPV systemen

In deze sectie wordt de methode die beschreven wordt in [13,15,63,98] kort behandeld,
met nadruk op de structuur die vervat ligt in de resulterendeverzameling.

Van het volgende algoritme kan aangetoond worden dat het de grootst mogelijke
invariante verzameling bepaalt die voldoet aan de opgelegde beperkingenX ,

{x|Axx ≤ 1}:

1. InitialiseerAS := Ax, i := 1.

2. Voer de volgende stappen iteratief uit totdati > rijen(AS):

(a) Stela := AS(i, :).

(b) Controleer de redundantie van de beperkingenaΦix ≤ 1, i = 1, . . . , r
met betrekking totS , {x|ASx ≤ 1}. Voor allei = 1, . . . , r, voeg, indien
sigS(aΦi) > 1, de beperkingaΦix ≤ 1 toe aanAS doorAS := [AS ; aΦi]
te stellen.

(c) Voer indien nodig1 vuilopruiminguit, m.a.w. controleer voor elke rij van
AS of de overeenkomstige beperking redundant is ten opzichte van de
andere rijen vanAS en zo ja, verwijder die rij uitAS .

(d) Steli := i + 1.

3. Geef de resulterende verzamelingS , {x|ASx ≤ 1} terug als resultaat.

Doordat in elke iteratie enkel die beperkingen toegevoegd worden die significant
zijn, wordt een significante tijdswinst bekomen voor het bepalen van de invariante

1Als vuistregel kan vuilopruiming toegepast worden telkensrijen(AS) met50% is toegenomen.
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verzameling. Dit werd reeds aangekaart in [15]. Echter, voor grootschalige systemen
kan empirisch worden vastgesteld dat het aantal redundantebeperkingen afneemt,
waardoor bovenstaand algoritme vooral zijn nut heeft voor lager dimensionale sys-
temen. Hoofdstuk 5 beschrijft varianten van dit algoritme,die beter geschikt zijn voor
het bepalen van invariante verzamelingen voor grootschalige systemen.

De belangrijkste bijdrage van dit hoofdstuk, naast het beschrijven van de basis-
principes wat betreft invariante verzamelingen. is tweeledig. Enerzijds wordt de
boomstructuur geanalyseerd die aanwezig is in invariante verzamelingen. Anderzijds
wordt convergentie van bovenstaand algoritme gekoppeld aan degemeenschappelijke
spectrale radius(Joint Spectral Radius, JSR).

Sectie 2.3.2 beschrijft de boomstructuur waarin men de lineaire ongelijkheids-
beperkingen van de polyhedrale invariante verzameling kanonderbrengen. Dit wordt
geı̈llustreerd aan de hand van Figuren 2.2 en 2.4. De beperkingen die aanAS

toegevoegd worden, worden toegekend aan een bepaalde laag van de boom afhankelijk
van de iteratie waarin ze werden toegevoegd. De takken van deboom duiden aan welke
beperkingen van welke beperkingen werden afgeleid. Een belangrijk kenmerk is dat
indien een beperking redundant is, automatisch ook alle kinderen van de beperking
redundant zullen zijn. Het aantal kinderen dat een beperking kan hebben, wordt
bepaald door het aantal hoekpuntenr in de onzekerheidspolytoop. Hoofdstuk 5 zal
technieken beschrijven die enerzijds het aantal kinderen van elke beperking rachten te
beperken en die anderzijds tot doel hebben de diepte van de boom te verminderen.

Sectie 2.3.1 legt een verband tussen de convergentie van bovenstaand algoritme en
de JSR van de gesloten lus matricesΦ1, . . . , Φr, die genoteerd wordt alŝρ(Ω′). Voor
meer uitleg wat betreft de JSR, verwijzen we naar Appendix C.Theorema 2.2 toont
aan dat indien

ρ̂(Ω′) < 1,

het bovenstaande algoritme convergeert in een eindig aantal iteraties. Aangezien
ρ̂(Ω′) < 1 een nodige en voldoende voorwaarde is voor asymptotische stabiliteit
van het autonome, lineaire, onzekere systeem dat hier beschouwd wordt, garandeert
dit resultaat dat bovenstaand algoritme convergeert voor alle asymptotisch stabiele
autonome systemen die binnen deze klasse vallen. Bovendienzal dit theorema toelaten
om in Hoofdstuk 5 kwantitatieve resultaten op te stellen watbetreft convergentie van
de nieuwe algoritmes die daar beschreven worden.
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Hoofdstuk 3: Robuuste Modelgebaseerde Predictieve
Controle

In dit hoofdstuk wordt een inleiding gegeven wat betreft robuuste MPC,
waarna een overzicht gegeven wordt van verschillende methodes om met
opgelegde beperkingen om te gaan. Er wordt aangetoond dat zogenaamde
gesloten lus predictiesgebruikt moeten worden indien men recursieve
oplosbaarheid van de MPC optimalisatieproblemen wil kunnen bewijzen.
Tenslotte wordt aangetoond dat twee algoritmes uit de literatuur zoge-
naamdeopen-lus predictiesgebruiken, ten gevolge waarvan recursieve
oplosbaarheid niet kan aangetoond worden. De algoritmes worden
gecorrigeerd en er wordt aangetoond dat de nieuwe algoritmes wel deze
eigenschap hebben.

Robuuste MPC

In Hoofdstuk 1 werd een introductie gegeven over MPC gebaseerd op lineaire,
tijdsinvariante (LTI) modellen. In de praktijk is het werkelijke model van het te regelen
systeem echter nooit perfect gekend. Oorzaken hiervan zijnde eindigheid van de data
aan de hand waarvan de modellen opgesteld zijn, meetruis, modelreductietechnieken,
enz. . . Het feit dat er een verschil is tussen het gebruikte predictiemodel en het
werkelijke systeem (mismatch) kan ertoe leiden dat de performantie van de regelaar
degradeert of dat er stabiliteitsproblemen optreden. Het doel van robuuste MPC is het
in rekening brengen van deze onzekerheid op het gebruikte model om tot een goede
regeling te komen ondanks deze modelfouten. Dergelijke lineaire, onzekere modellen
kunnen als volgt beschreven worden:

x(k + 1) = A(k)x(k) + B(k)u(k), k ∈ N,

met

[A(k) B(k)] ∈ Ω ≡ Co{[A1 B1], . . . , [Ar Br]}, k ∈ N.

Het specifieke probleem dat robuuste MPC bemoeilijkt is het feit de werkelijke
waarden van de matrices[A(k) B(k)] ongekend zijn voor de regelaar, dus er moet
rekening gehouden worden met alle mogelijke waarden. Dit geeft aanleiding tot een
boomvan toestandsvoorspellingen, zoals weergegeven in Figuren 3.1 en 3.2. Het
verschil tussen deze twee figuren is essentieel en wordt verduidelijkt in de volgende
sectie.

Open-lus en gesloten-lus predicties

Bij robuuste MPC kan een onderscheid gemaakt worden tussenopen-lus predicties
engesloten-lus predicties, afhankelijk van het soort ingangsequentie waarover geopti-
maliseerd wordt.
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Figuur 3.1 stelt schematisch voor hoe open-lus predicties geconstrueerd worden. Er
wordt nog steeds geoptimaliseerd over een unieke sequentievan ingangen, net zoals bij
niet-robuuste MPC. De boom van toestandspredicties wordt opgesteld door gebruik te
maken van der verschillende hoekpunten van de onzekerheidspolytoop.

Figuur 3.2 stelt schematisch voor hoe gesloten-lus predicties geconstrueerd worden.
Gesloten-lus predicties houden rekening met het feit dat optijdstippenk + i, i ∈
{1, . . . , N − 1} men bijkomende kennis zal hebben over de toestand van het systeem
op dat moment (doordat er nieuwe metingen binnenkomen) en men dus de aangelegde
ingang hier kan aan aanpassen. Dit wordt in rekening gebracht door voor de
ri verschillende toestandspredicties op tijdstipk + i aparte ingangsvariabelen te
beschouwen waarover geoptimaliseerd kan worden.

In beide gevallen wordt de maximale waarde (over alle mogelijke predicties) van
de regelkost geminimaliseerd met als beperking dat alle mogelijke predicties aan
de opgelegde beperkingen moeten voldoen, hetgeen aanleiding geeft tot min-max
optimalisatieproblemen.

Gesloten-lus predicties hebben als voordeel dat er meer vrijheidsgraden beschikbaar
zijn om over te optimaliseren, waardoor een betere regelingmogelijk wordt. Ander-
zijds heeft deze methode als nadeel dat het aantal optimalisatievariabelen exponentieel
toeneemt in functie van de horizon lengteN , wat al snel voor problemen kan zorgen
wat betreft de rekencomplexiteit. Toch is het aangeraden omgesloten-lus predicties
te gebruiken om redenen die verduidelijkt worden in de volgende sectie. Bovendien
zal in Hoofdstuk 5 blijken dat het computationele nadeel vangesloten-lus predicties
ongedaan kan gemaakt worden door gebruik te maken van nieuwealgoritmes voor het
opstellen van invariante verzamelingen.

Correcties van bestaande algoritmes

In de laatste twee secties van Hoofdstuk 3 worden twee robuuste MPC algoritmes
uit de literatuur behandeld. Enerzijds gaat het om het algoritme dat geı̈ntroduceerd
werd in [142]; anderzijds gaat het om het algoritme dat beschreven wordt in [31].
Beide algoritmes maken gebruik van open-lus predicties. Dit zorgt er bij deze twee
specifieke algoritmes echter voor dat recursieve oplosbaarheid van de algoritmes
niet kan bewezen worden. Recursieve oplosbaarheid garandeert dat als het MPC
optimalisatieprobleem oplosbaar is op tijdstipk, het ook oplosbaar zal zijn op tijdstip
k + 1 en is een nodige voorwaarde voor het bekomen van MPC algoritmes met
gegarandeerde stabiliteitseigenschappen. In beide artikels bevindt zich een vergissing
in het bewijs van recursieve oplosbaarheid, waardoor deze eigenschap foutief wordt
geopperd.

Sectie 3.4 beschrijft hoe het MPC algoritme uit [142] gecorrigeerd kan worden door
het gebruik van gesloten-lus predicties, terwijl Sectie 3.5 beschrijft hoe het MPC
algoritme uit [31] op een gelijkaardige manier gecorrigeerd kan worden. Omwille
van plaatsgebrek kunnen hier geen verdere details gegeven worden en wordt de lezer
doorverwezen naar de Engelstalige versie van Hoofdstuk 3. Als algemene conclusie
kan men zeggen dat het gebruik van gesloten-lus predicties noodzakelijk is om
recursieve oplosbaarheid te kunnen garanderen bij de regeling van onzekere systemen
met ingangs- en toestandsbeperkingen.
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Hoofdstuk 4: Robuuste MPC met Polyhedrale Invariante
Verzamelingen

De nadruk van dit hoofdstuk ligt op het uitbreiden van bestaande robu-
uste MPC algoritmes en aanverwante technieken tot het gebruiken van
polyhedrale invariante verzamelingen. Op deze manier wordt minder
conservatief omgegaan met de opgelegde beperkingen en kan in een aantal
gevallen een significante reductie van de rekencomplexiteit bekomen
worden. Er worden drie belangrijke nieuwe technieken behandeld, die
hier elk kort samengevat worden.

Synthese van robuuste lineaire terugkoppelwetten gebruikmakende
van LMIs en polyhedrale invariante verzamelingen

Zoals kort vermeld in Hoofdstuk 1, is het noodzakelijk bij MPC met quasi-oneindige
horizon om een stabiliserendeeindregelaarte ontwerpen, waarna men kan overgaan
tot het bepalen van een geldige eindkost en eindbeperking. Deze eindregelaar is
typisch van de vormu(k) = −Kx(k), waardoor het ontwerp ervan neerkomt op het
vinden van een geschikte matrixK, waardoor het gegeven LTI systeem gestabiliseerd
wordt. Men kan hiervoor eenvoudigweg een LQR regelaar ontwerpen, dewelke meteen
garandeert dat de uiteindelijke regelaar lokaal optimaal regelgedrag heeft. In het
geval van robuuste MPC moet er echter voor gezorgd worden datde uiteindelijke
regelaar robuust stabiliserend werkt voor het gegeven LPV systeem. Hiervoor wordt
typisch de methode van Kothare et al. [68] gebruikt, dewelkegebaseerd is opLineaire
Matrix Ongelijkheden(Linear Matrix Inequalities, LMIs). Om te kunnen garanderen
dat vanuit een bepaalde initiële toestandx̄ de opgelegde beperkingen gerespecteerd
worden, maakt deze methode gebruik van ellipsoı̈dale invariante verzamelingen,
hetgeen omwille van redenen die reeds in Hoofdstuk 2 aangehaald werden, suboptimaal
is.

Sectie 4.1 breidt de methode uit [68] uit naar meer algemene regelobjectieven en
beperkingen, waarbij kruistermen tussen toestanden en ingangen ook toegelaten zijn
(Algoritme 4.1). Ten tweede wordt de methode verder uitgebreid naar het gebruik van
polyhedrale in plaats van ellipsoı̈dale invariante verzamelingen. Dit gebeurt op twee
manieren:

1. Een eerste nieuw algoritme (Algoritme 4.2) past eerst de oorspronkelijke
methode van [68] toe, waarna voor het resulterende gesloten-lus systeem een
polyhedrale invariante verzameling wordt bepaald met behulp van Algoritme
2.4. Op deze manier wordt een minder conservatieve karakterisering bekomen
van het werkingsgebied van de bekomen regelaar.

2. Een tweede algoritme (Algoritme 4.3) gaat een stap verderen voert Algoritme
4.2 iteratief uit, telkens met herschaalde beperkingen. Deze techniek zorgt ervoor
dat de initiële toestand̄x, waarvoor de regelaar optimaal moet zijn, exact op
de rand van de resulterende polyhedrale invariante verzameling terecht komt.
Hierdoor wordt de conservativiteit minimaal. Het nadeel van deze techniek is
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de significant verhoogde rekencomplexiteit. Maar, aangezien dit een techniek is
die typisch gebruikt wordt in de ontwerpfase van een MPC regelaar, is dit geen
significant nadeel.

Figuren 4.1 en 4.2 tonen duidelijk de verbeterde resultatenvan de twee nieuwe
algoritmes.

Interpolatie-gebaseerde robuuste MPC

Interpolatie-gebaseerde MPC algoritmes bieden een alternatief voor de meer klassieke
MPC algoritmes, zoals MPC met quasi-oneindige horizon. Interpolatie-gebaseerde
MPC werd initieel geı̈ntroduceerd in [3] en vertrekt vann verschillende lineaire
terugkoppelregelaarsKi, i = 1, . . . , n enn invariante verzamelingenSi, i = 1, . . . , n
overeenkomstig de gesloten-lus systemen gevormd door het te regelen systeem en den
verschillende regelaars. In elke tijdstap wordt de huidigetoestandx(k) opgesplitst in
n deelcomponenten̂xi, i = 1, . . . , n als volgt:

x(k) =

n∑

i=1

x̂i(k), waarbij

{ ∑n
i=1 λi(k) = 1, λi ≥ 0,

x̂i(k) ∈ λi(k)Si.

Op basis van deze opsplitsing in deelcomponenten wordt dan een ingang berekend, die
aangelegd wordt aan het systeem:

u(k) = −
n∑

i=1

Kix̂i(k).

De manier waarop de opsplitsing in componenten gebeurt, geeft vrijheidsgraden
waarover in elke tijdstap kan geoptimaliseerd worden, teneinde een vooropgestelde
kwadratische kostfunctie te minimaliseren.

Deze methode wordt op twee manieren verbeterd:

1. Enerzijds wordt de methode uitgebreid naar polyhedrale invariante verzame-
lingen. In het robuuste geval [3] werd er in de literatuur totop heden enkel
ellipsoı̈dale invariante verzamelingen beschouwd. Het gebruik van polyhedrale
verzamelingen zorgt voor een reductie van de rekenkost, zorgt voor minder
conservatieve behandeling van beperkingen en laat ook toe om efficiënt om te
gaan met asymmetrische beperkingen. Deze werkwijze wordt beschreven in
Algoritme 4.5. De voordelen worden geı̈llustreerd in Figuren 4.5 en 4.6.

2. Anderzijds wordt de methode verder verbeterd door ook de interacties tussen
de verschillende regelaars in rekening te brengen. Hierdoor wordt het wer-
kingsgebied van de resulterende regelaar verder vergroot.De opsplitsing in
deelcomponenten, zoals beschreven hierboven, maakt in ditgeval geen gebruik
meer van de individuele invariante verzamelingenSi, maar maakt gebruik
van één enkele invariante verzameling voor het volgendeuitgebreide systeem
(augmented system):

xaug(i + 1) = Ψaug(i)xaug(i), i ∈ N,
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waarbijΨaug(i) ∈ Ωaug, ∀i ∈ N, metΩaug gedefinieerd als

Ωaug , Co{Ψaug,1, . . . , Ψaug,r},

met

Ψaug,j ,








Aj −BjKn Bj(Kn −K1) · · · Bj(Kn −Kn−1)
0 Aj −BjK1 · · · 0
...

...
. . .

...
0 0 · · · Aj −BjKn−1








,

j = 1, . . . , r,

en hetwelke onderhevig is aan volgende beperkingen

AxΓxxaug(i) ≤ 1, AuΓuxaug(i) ≤ 1, ∀i ∈ N,

metΓx = [I 0 . . . 0], Γu = [−Kn (Kn −K1) . . . (Kn −Kn−1)]. Lemma
4.4 toont aan dat als de uitgebreide toestandsvectorxaug , [x(k); x̂1; . . . ; x̂n−1]
binnen de resulterende invariante verzameling ligt, de overeenkomstige trajecten
aan de opgelegde beperkingen voldoen, hetgeen deze werkwijze (Algoritme 4.6)
rechtvaardigt. Figuren 4.8-4.11 illustreren de verbeterde resultaten bekomen met
dit algoritme.

Het is belangrijk op te merken dat Algoritme 4.6 de opgelegdebeperkingen respecteert
door gebruik te maken van één enkele invariante verzameling. Dit toont het belang aan
van performante algoritmes voor het opstellen van dergelijke verzamelingen, alsook
het belang van efficiënte representaties voor zulke verzamelingen, aangezien deze in
grote mate de computationele efficiëntie bepalen van het resulterende algoritme.

Robuuste MPC met quasi-oneindige horizon

In deze sectie wordt de robuuste MPC methode uit [70] uitgebreid naar het gebruik
van polyhedrale invariante verzamelingen. Deze methode iseen robuuste versie van
het MPC algoritme met quasi-oneindige horizon beschreven in Hoofdstuk 1 en maakt
gebruik van gesloten-lus voorspellingen. Om het exponentieel toenemend aantal
variabelen te vermijden, wordt echter een herparametrisatie van de ingangsequentie
gebruikt [123]. Deze is schematisch weergegeven in Figuur 4.12. Hierdoor wordt terug
een lineair opschalend aantal optimalisatievariabelen bekomen. Bovendien wordt het
hierdoor ook mogelijk, net zoals bij Algoritme 4.6, om de beperkingen van het MPC
optimalisatieprobleem te bepalen als een invariante verzameling van een uitgebreid
systeem, namelijk:

x(i + 1)aug = Ψaug(k + i)x(i)aug, i ∈ N,

metΨaug(k + i) ∈ Ωaug , Co{Ψaug,1, . . . , Ψaug,r}, i ∈ N, en
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Ψaug,j =

[
Aj −BjK [BjE 0 0 . . . 0]

0 SN,nc

]

, SN,nc
=










0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
0 0 0 I
0 0 0 . . . 0










,

j = 1, . . . , r,

waarbijSN,nc
∈ RN.nc×N.nc deN.nc-dimensionale doorschuifmatrix met doorschuif-

operaties van lengtenc is. Het systeem is onderhevig aan beperkingen

AxΓxxaug(i) ≤ 1, AuΓuxaug(i) ≤ 1, ∀i ∈ N,

waarbij Γx = [I 0 . . . 0], Γu = [−K E 0 . . . 0] en xaug(i) = [x(k + i|k); c(k +
i|k); . . . ; c(k + i + N − 1|k)]. Het resulterende algoritme (Algoritme 4.7) heeft
een significant groter werkingsgebied dan de bestaande algoritmes (bv. [70]) en kan
geformuleerd worden als eenKwadratisch Programma(Quadratic Program, QP) in
plaats van eenSemi-Definiet Programma(Semi-Definite Program, SDP). Het nadeel
is dat het aantal beperkingen van het resulterende QP nog steeds exponentieel kan
toenemen als een functie vanN . Dit zal in Hoofdstuk 5 verholpen worden. Figuren
4.14-4.17 geven de performantie weer van het nieuwe algoritme. Tabel 4.3 toont aan
dat het aantal beperkingen exponentieel kan toenemen als functie van de lengte van de
horizonN .

Het is belangrijk op te merken dat ook hier de beperkingen vanhet MPC opti-
malisatieprobleem kunnen bepaald worden als een invariante verzameling voor een
uitgebreid systeem. Het verschil met Algoritme 4.6 is de manier waarop het uitgebreide
systeem opgebouwd wordt en de definities vanΓx enΓu. Dit toont enerzijds opnieuw
het belang aan van het bestaan van efficiënte algoritmes voor het opstellen van
invariante verzamelingen en suggereert anderzijds het bestaan van een unificerend
theoretisch raamwerk waarin beide methodes kunnen ondergebracht worden.
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Hoofdstuk 5: Invariante Verzamelingen met Geredu-
ceerde Complexiteit voor Robuuste MPC

Hoofdstuk 2 introduceerde methodes voor het opstellen van polyhedrale
invariante verzamelingen voor LPV systemen, dewelke in Hoofdstuk 4
gebruikt werden voor het verbeteren van de performantie en het vergroten
van het werkingsgebied van enkele robuuste MPC algoritmes.In een
aantal gevallen bleek het aantal beperkingen dat nodig is voor het
beschrijven van de bekomen invariante verzameling ongunstig op te
schalen. Dit hoofdstuk verkent twee belangrijke technieken voor het
reduceren van de complexiteit van de bekomen verzamelingen: snoeien
(pruning) en trimmen (trimming). Er wordt aangetoond dat op deze
manier onder bepaalde voorwaarden de complexiteit significant kan
gereduceerd worden. Deze samenvatting beperkt zich tot hetgeven
van een korte beschrijving van de twee belangrijkste algoritmes en het
toelichten van de implicaties van deze algoritmes voor het robuuste MPC
algoritme met quasi-oneindige horizon beschreven in het vorige hoofdstuk
(Algoritme 4.7).

Complexiteitsreductie door middel van snoeien

Zoals uiteengezet in Sectie 2.3.2 kunnen de beperkingen dieeen invariante verzameling
definiëren ondergebracht worden in een boomstructuur. Hetbelangrijke verschil tussen
LTI en LPV systemen is het feit dat bij LTI systemen geen vertakkingen kunnen
voorkomen in deze boomstructuur. Bij LPV systemen kunnen maximaal r vertak-
kingen optreden per knoop. Dit is de belangrijkste oorzaak van het typisch significant
hogere aantal beperkingen dat nodig is om polyhedrale invariante verzamelingen voor
LPV systemen te beschrijven. In deze sectie wordt Algoritme5.2 kort toegelicht. Dit
algoritme heeft als doel om het aantal vertakkingen per knoop te reduceren, zodat het
totaal aantal beperkingen daalt.

Figuur 5.1 toont deze structuur aan de hand van een numeriek voorbeeld en geeft
de geometrische interpretatie. Het is duidelijk dat bij hetoptreden van een splitsing in
de boomstructuur twee erg gelijkaardige beperkingen gegenereerd worden. Bovendien
is het duidelijk dat indien een van beide beperkingen met eenkleine factor strikter
genomen wordt (d.i. parallel verplaatst worden in de richting van de oorsprong), de
andere beperking redundant wordt en kan weggelaten worden.Lemma 5.2 toont aan
dat deze factor exact kan bepaald worden door het oplossen van een LP. Algoritme 5.2
maakt hiervan gebruik om te komen tot polyhedrale invariante verzamelingen met een
gereduceerd aantal beperkingen. Een parameterγ wordt gebruikt om aan te geven wat
de maximale factor is waarmee een beperking mag aangepast worden. Op deze manier
kan een afweging gemaakt worden tussen een maximaal volume en een minimale
complexiteit.

Figuren 5.2a en 5.2b geven het resultaat weer van deze methodiek, wanneer toegepast
op het numerieke voorbeeld van Figuur 5.1. Sectie 5.4.2 bespreekt de werking van dit
algoritme wanneer het toegepast wordt voor het bepalen van invariante verzamelingen
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voor de robuuste MPC algoritmes uit het vorige hoofdstuk. Een belangrijke vaststelling
is het feit dat in bepaalde gevallen (zie Figuur 5.9) het aantal beperkingen dat
met Algoritme 5.2 bekomen wordt voorP-RMPC (Algoritme 4.7) asymptotisch
lineair toeneemt als een functie vanN , terwijl met Algoritme 2.4 uit Hoofdstuk 2
een exponentieel stijgend aantal beperkingen bekomen wordt voor P-RMPC. Later
in dit hoofdstuk wordt aangetoond onder welke voorwaarden dit schalingsgedrag
gegarandeerd kan worden.

Complexiteitsreductie door middel van trimmen

Terwijl in de vorige sectie aangetoond werd hoe het aantal beperkingen van polyhedrale
invariante verzamelingen voor LPV systemen kan gereduceerd worden door het
verminderen van het aantal vertakkingen in de boomstructuur van de verzameling,
wordt in deze sectie uitgelegd hoe een gelijkaardig effect kan bekomen worden door
het reduceren van de diepte van deze boomstructuur.

Lemma 5.4 toont aan dat, gegeven twee autonome LPV systemen gedefinieerd door
de volgende onzekerheidspolytopen:

Ω1 , Co{Φ1, . . . , Φr},
Ω2 , Co{Φ′

1, . . . , Φ
′
r},

waarbij de matricesΦ′
i, i = 1, . . . , r gedefinieerd zijn als

Φ′
i = (1 + c)Φi − cI, i = 1, . . . , r,

met c ∈ R+, elke verzamelingS ∈ Rnx die invariant is voor het LPV systeem
gedefinieerd doorΩ2, ook gegarandeerd invariant is voor het LPV systeem gedefinieerd
doorΩ1.

Dit lemma laat dus toe, gegeven een LPV systeem gedefinieerd door onzeker-
heidspolytoopΩ1, om een invariante verzameling voor dit systeem te bepalen door
Algoritme 2.4 of Algoritme 5.2 toe te passen op het systeem gedefinieerd door
onzekerheidspolytoopΩ2. Dit geeft een bijkomende vrijheidsgraadc, die door de
gebruiker vrij kan gekozen worden en die toelaat om de waardevan de JSR van het
systeem te beı̈nvloeden, dewelke door middel van Theorema 2.2 gekoppeld kan worden
aan de diepte van de boomstructuur van de verzameling. De parameterc kan dus
gebruikt worden om de diepte van de boomstructuur van de bekomen verzameling aan
te passen en op die manier het aantal beperkingen dat de verzameling beschrijft. Het
nadeel is dat het volume van de bekomen verzameling kleiner is.

Figuren 5.2c en 5.2d geven het resultaat weer van deze methodiek, wanneer toegepast
op het numerieke voorbeeld van Figuur 5.1. Sectie 5.4.2 bespreekt de werking van dit
algoritme wanneer het toegepast wordt voor het bepalen van invariante verzamelingen
voor de robuuste MPC algoritmes uit het vorige hoofdstuk.

Lineair opschalen vanP-RMPC (Algoritme 4.7)

Zoals reeds opgemerkt eerder in dit hoofdstuk, leidt het gebruik van Algoritme
5.2 voor het bepalen van invariante verzamelingen voorP-RMPC tot significante
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complexiteitsreducties vergeleken met Algoritme 2.4. Deze empirische vaststelling kan
echter ook bewezen worden vanuit theoretisch standpunt. Het belang van dit resultaat
wordt weergegeven in Figuur 5.3. Deze figuur verduidelijkt dat dit resultaat ertoe leidt
dat zowel het aantal variabelen als het aantal beperkingen van het MPC optimalisatie
probleem vanP-RMPC lineair opschaalt in functie vanN , wanneer Algoritme 5.2
gebruikt voor het bepalen van de nodige invariante verzamelingen.

Lemma 5.3 toont aan dat de factor waarmee beperkingen strikter gemaakt worden
in Algoritme 5.2 begrensd is, indien dit algoritme toegepast wordt op het uitgebreide
autonome systeem dat gebruikt wordt tijdens de ontwerpfasevan P-RMPC. Het
belangrijkste aspect is dat deze bovengrens wel onafhankelijk is vanN , maar dat deze
bovengrens enkel geldt indien de onzekerheid die aanwezig is in het te regelen systeem
voldoende klein is en indien de JSR van de systeemmatrices ook voldoende klein is in
vergelijking met deze onzekerheid.

Theorema 5.5 maakt gebruik van Lemma 5.3 om daarna te bewijzen dat het aantal
beperkingen vanP-RMPC linear toeneemt in functie vanN .

Het dient vermeld te worden dat de bekomen voorwaarden erg conservatief zijn en
dat in vele gevallen ook lineair schalingsgedrag geobserveerd kan worden indien aan
deze voorwaarde niet voldaan is. Het nadeel is dat dit het schalingsgedrag van dit
algoritme in deze brede klasse van de gevallen erg onvoorspelbaar maakt.

De belangrijkste implicatie van dit resultaat is dat in velegevallen een significant
grotere horizon kan gebruikt worden, waardoor het werkingsgebied van de regelaar
kan vergroot worden. Op deze manier wordt de volumereductiedie gepaard gaat met de
complexiteitsreductie van de invariante set gecompenseerd en kan zelfs een significant
groter werkingsgebied bekomen worden dan wanneer geen complexiteitsreductie zou
toegepast worden.
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Hoofdstuk 6: Controle-Invariante Verzamelingen met
Gereduceerde Complexiteit

Het doel van dit hoofdstuk is het uitbreiden van de algoritmes van
Hoofdstuk 5 naar het construeren van controle-invariante verzamelingen.
Dergelijke verzamelingen kunnen gezien worden als een uitbreiding van
invariante verzamelingen naar systemen met ingangen, in plaats van
autonome systemen, dewelke geen ingangen hebben. Zoals in Hoofdstuk
7 aangetoond wordt, kunnen controle-invariante verzamelingen ook ge-
bruikt worden in MPC algoritmes, wat de reden is voor het verfijnen van
de bestaande algoritmes voor het opstellen van dergelijke verzamelingen.
De moeilijkheid in het construeren van controle-invariante verzamelingen
is dat er een projectiestap moet ingebouwd worden in de algoritmes
waardoor de rekencomplexiteit opnieuw toeneemt. Naast hetuitbreiden
van de algoritmes uit Hoofdstuk 5 naar deze probleemstelling, zal dan ook
getracht worden de rekencomplexiteit van deze bijkomende projectiestap
te reduceren.

Definities

In dit hoofdstuk beschouwen we LPV modellen van dezelfde vorm als deze beschreven
in Hoofdstuk 3, onderhevig aan lineaire ingangs- en toestandsbeperkingen respectie-
velijk beschreven door verzamelingenU enX . Een verzamelingS is een controle-
invariante verzameling met betrekking tot dit systeem indien aan volgende voorwaarde
voldaan is:

∀x ∈ S, ∃u(x) ∈ U : Ax + Bu ∈ S, ∀[A B] ∈ Ω.

In woorden is een verzamelingS dus controle-invariant als voor elke huidige toestand
binnen deze verzameling er een overeenkomstige toelaatbare ingangsvector bestaat die
de toestand binnen de verzameling houdt. In dit hoofdstuk ishet de bedoeling om,
gegeven een LPV systeem en ingangs- en toestandsbeperkingen, de maximale controle-
invariante verzamelingS te vinden, waarvoor geldt datS ⊆ X .

Dergelijke verzamelingen kunnen op gelijkaardige manier als invariante verzame-
lingen iteratief geconstrueerd worden, met als verschilpunt dat in elke iteratie een
projectiestap moet uitgevoerd worden die een(nx + nu)-dimensionale verzameling
projecteert naar eennx-dimensionale verzameling. Deze methodologie is conceptueel
samengevat in Algoritme 6.1 en schematisch weergegeven in Figuur 6.1. De methodes
van het snoeien en trimmen, die reeds uitgewerkt werden in Hoofdstuk 5, kunnen
gebruikt worden voor complexiteitsreducties tijdens het genereren van de(nx + nu)-
dimensionale verzamelingen vanuit denx-dimensionale verzamelingen uit de vorige
iteratie. Projecties met gereduceerde complexiteit worden gebruikt voor de andere
stappen van het algoritme afgebeeld in Figuur 6.1.
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Complexiteitsreductie door middel van snoeien

Alhoewel het niet meteen mogelijk is bij controle-invariante verzamelingen om de
beperkingen onder te brengen in een boomstructuur, omwillevan de extra projectiestap,
is het nog steeds mogelijk om de methode van het snoeien toe tepassen. Het is immers
mogelijk om te detecteren wanneer een enkele beperking in iteratiei aanleiding geeft
tot meerdere beperkingen in iteratiei + 1. In dit geval kan identiek dezelfde methode
toegepast worden om beperkingen redundant te maken door eenandere beperking
strikter te maken. Hiervoor kan men opnieuw een beroep doen op Lemma 5.2 om
de factor te bepalen waarmee een bepaalde beperking strikter moet gemaakt worden.
Deze werkwijze is beschreven in Algoritme 6.3.

Een belangrijk verschilpunt met Algoritme 5.2 is dat het in dit geval minder voor de
hand ligt om een convergentiebewijs te geven. Simulaties leren echter dat er zelden
convergentieproblemen optreden voor gangbare parameterwaarden.

Complexiteitsreductie door middel van trimmen

Naar analogie aan de vorige sectie kan ook de methode van het trimmen uitgebreid
worden naar de constructie van controle-invariante verzamelingen. Theorema 6.2,
dat een uitbreiding is van Theorema 5.4, toont aan dat, gegeven twee LPV systemen
gedefinieerd door de volgende onzekerheidspolytopen

Ω1 , Co{[A1 B1], . . . , [Ar Br]},
Ω2 , Co{[A′

1 B′
1], . . . , [A

′
r B′

r]},

waarbij de matrices[A′
i B′

i], i = 1, . . . , r gedefinieerd zijn als

[A′
i B′

i] = (1 + c)[Ai Bi]− c[I 0], i = 1, . . . , r,

met c ∈ R+, elke verzamelingS die controle-invariant is voor het LPV systeem
gedefinieerd door onzekerheidspolytoopΩ2, ook gegarandeerd controle-invariant is
voor het LPV systeem gedefinieerd doorΩ1.

Net zoals bij de constructie van invariante verzamelingen kan hier de parameter
c gebruikt worden voor het beı̈nvloeden van de complexiteit van de resulterende
verzameling.

Projecties met gereduceerde complexiteit

Zoals eerder in dit hoofdstuk aangegeven, dient bij het construeren van controle-
invariante verzamelingen een bijkomende stap uitgevoerd te worden in elke iteratie,
namelijk een projectiestap. In de praktijk blijkt dat deze stap de belangrijkste
factor is die de rekencomplexiteit bepaalt. De meest gebruikte methode voor het
berekenen van projecties van polyhedrale verzamelingen die beschreven zijn als de
doorsnede van halfruimten, isFourier-Motzkineliminatie. Deze methode projecteert
de opgegeven verzameling dimensie per dimensie en is beschreven in Appendix
B. De rekencomplexiteit stijgt exponentieel naargelang dedimensionaliteit van de
verzamelingen toeneemt. Een alternatief is de ESP-methode[62]. Deze is in staat
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rechtstreeks meer-dimensionale projecties uit te voeren,maar heeft ook een ongunstig
schalingsgedrag.

Sectie 6.2.4 introduceert een methode om inwendige en uitwendige benaderingen te
bepalen van projecties van polyhedrale verzamelingen. Hetdoel is om zowel de com-
plexiteit van de resulterende verzameling te reduceren, alsook om de rekencomplexiteit
van het bepalen van deze projecties te reduceren. In deze samenvatting gaan we enkel
in op het bepalen van inwendige benaderingen omdat deze het meeste nut hebben voor
het bepalen van controle-invariante verzamelingen.

Algoritme 6.5 beschrijft een methode voor het bepalen van inwendige benaderingen
van projecties door gebruik te maken van de methode van het snoeien. Telkens
nieuwe beperkingen opgesteld worden, wordt gecontroleerdmet behulp van Lemma
5.2 of deze beperking niet strikter kan gemaakt worden teneinde andere beperkingen
redundant te maken. Simulaties tonen aan dat voor het bepalen van inwendige
benaderingen van willekeurige polytopen dit algoritme geen significante voordelen
biedt ten opzichte van het bepalen van exacte projecties.

Algoritme 6.5 kan echter ook gebruikt worden voor het uitvoeren van de projec-
tiestap tijdens het bepalen van controle-invariante verzamelingen, zoals Algoritme
6.2 beschrijft. Figuren 6.2 en 6.3 tonen aan dat in deze context het gebruik van
projecties met gereduceerde complexiteit nuttig kan blijken. Voor hoger-dimensionale
systemen, zoals deze beschreven in Hoofdstuk 8, blijken de nieuwe algoritmes echter
nog onvoldoende efficiënt om praktisch bruikbaar te zijn.



Nederlandse samenvatting xxxvii

Hoofdstuk 7: Robuuste MPC met Controle-Invariante
Verzamelingen

In dit hoofdstuk wordt besproken op welke manier de controle-invariante
verzamelingen uit het vorige hoofdstuk kunnen gebruikt worden voor het
formuleren van verbeterde MPC algoritmes. In een eerste deel wordt
interpolatie-gebaseerde MPC uitgebreid naar niet-lineaire regelwetten,
wat toelaat om te interpoleren tussen regelaars die geı̈nduceerd zijn
door controle-invariante verzamelingen en de MPC regelaars beschreven
in Hoofdstuk 4. Hierdoor kan het werkingsgebied van de regelaars
significant uitgebreid worden, indien we beschikken over een controle-
invariante verzameling voor het te regelen systeem. In een tweede
deel wordt een eenvoudige methode voorgesteld om controle-invariante
verzamelingen te gebruiken voor het omgaan met opgelegde beperkingen
bij regelproblemen met volgobjectief.

Veralgemeende interpolatie tussen niet-lineaire regelaars

De algoritmes voor veralgemeende interpolatie die tot nu toe beschreven werden in de
literatuur (zie bv. [3,122]) gelden enkel voor lineaire systemen en lineaire regelwetten.
In Sectie 7.2 wordt echter aangetoond dat veralgemeende interpolatie ook mogelijk is
bij niet-lineaire regelwetten, zolang het te regelen systeem lineair is. Deze techniek
kan gebruikt worden voor het vergroten van het werkingsgebied van de robuuste MPC
algoritmes uit Hoofdstuk 4, omwille van de volgende twee vaststellingen:

1. Enerzijds toont Sectie 7.3.1 aan dat voor elke controle-invariante verzameling
een regelaar kan gedefinieerd worden ten opzichte waarvan deze verzameling een
invariante verzameling is. Deze regelwet kan ook op een voorde hand liggende
manier geconstrueerd worden en wordt de geı̈nduceerde regelwet genoemd. We
verwijzen naar Lemma 7.2 voor verdere details.

2. Anderzijds toont Sectie 7.3.2 aan dat de werkingsgebieden van MPC regelaars,
waarvan recursieve oplosbaarheid gegarandeerd is, invariante verzamelingen zijn
voor deze regelaars. We verwijzen naar Lemma 7.3 voor verdere details.

Deze twee resultaten tonen dus aan dat controle-invarianteverzamelingen en hun
geı̈nduceerde regelaars enerzijds en recursief oplosbareMPC algoritmes en hun
werkingsgebied anderzijds, bruikbaar zijn als invarianteverzameling en niet-lineaire
regelaar voor gebruik in veralgemeende interpolatie voor niet-lineaire regelaars. Dit
wordt verder uitgewerkt in Sectie 7.3.1, waardoor een groter werkingsgebied bekomen
wordt.

Dit resultaat toont aan hoe het werkingsgebied van recursief oplosbare MPC
regelaars kan uitgebreid worden tot het grootst mogelijke werkingsgebied dat kan
bekomen worden voor het te regelen systeem en de opgelegde beperkingen. Het
is echter wel duidelijk (zie Figuur 7.2) dat naarmate de toestand van het systeem
zich verder van de oorsprong bevindt, men minder rekening kan houden met het te
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minimaliseren regelobjectief terwijl de opgelegde beperkingen een steeds grotere rol
gaan spelen.

Controle-invariante verzamelingen voor regelproblemen met volg-
objectief

Deze sectie toont voor de volledigheid aan hoe met behulp vancontrole-invariante
verzamelingen op een theoretisch onderbouwde manier kan omgegaan worden met
opgelegde beperkingen bij regelproblemen met volgobjectief. De klassieke stabi-
liteitstheorie, die gebruik maakt van invariante verzamelingen voor het garanderen
van recursieve oplosbaarheid, is enkel geldig voor regelproblemen waar het systeem
naar een vast instelpunt geregeld wordt. Voor het geval men een regelprobleem met
volgobjectief tracht op te lossen is het niet mogelijk om methetzelfde theoretische
raamwerk recursieve oplosbaarheid te garanderen.

In Sectie 7.4 wordt aangetoond dat ongeacht de gebruikte regelaar, het mogelijk is om
met behulp van controle-invariante verzamelingen te garanderen dat aan alle opgelegde
beperkingen voldaan wordt, ook in het geval van regelproblemen met volgobjectief. In
essentie zorgt de nieuwe methode (Algoritme 7.3) ervoor dater enkel ingangen kunnen
aangelegd worden aan het systeem die de toestand binnen de controle-invariante
verzameling houden, hetgeen garandeert dat aan alle ingangs- en toestandsbeperkingen
voldaan wordt. Asymptotische stabiliteit is niet gegarandeerd in het algemeen en hangt
af van de specifieke regelaar die gebruikt wordt.

Figuren 7.9-7.12 tonen de goede werking van deze methode en maken een vergelijk-
ing met meer eenvoudige technieken. Bovendien heeft de nieuwe methode slechts een
kleine verhoging in rekencomplexiteit tot gevolg. In elke iteratie moet er een QP van
aanvaardbare afmetingen opgelost worden.

Het moet wel opgemerkt worden dat Algoritme 7.3 geen allesomvattende methode
is en slechts een eerste aanzet vormt tot meer algemene methodes, die ook stabiliteit en
goed volggedrag garanderen.
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Hoofdstuk 8: Gevallenstudies

Dit hoofdstuk heeft als doel de verschillende algoritmes die besproken
worden in deze thesis te testen op meer realistische en meer grootschalige
voorbeelden. Twee voorbeelden worden beschouwd: een mechanische
installatie voor het regelen van de spanning in staalplatentijdens het
walsproces enerzijds en een chemische reactor voor de aanmaak van
copolymeren anderzijds.

Regeling van de trekspanning in metaalplaten

Sectie 8.1 beschouwt het model van een mechanische installatie die gebruikt wordt
in staalwalserijen voor het regelen van de trekspanning vanstaalplaten tussen twee
opeenvolgende stadia van het walsproces. De spanning van twee elektrische motoren
kan aangepast worden met als doel een bepaalde gewenste trekspanning te bekomen.
Figuren 8.1 en 8.2 geven dit systeem schematisch weer. Een telage spanning leidt
tot een onstabiele doorvoer van de staalplaten, terwijl eente hoge spanning kan
leiden tot ongewenste afwijkingen in de dikte en breedte vande platen. Bovendien
is het wenselijk om de hoek van de mechanische arm (delooper) die de trekspanning
helpt regelen rond een bepaalde vaste gewenste waarde te houden. Het proces wordt
beschreven door een model met 2 ingangen, 6 toestanden en 2 uitgangen. Afhankelijk
van de hoek van de mechanische arm heeft het systeem een anderdynamisch gedrag.
Om dit op te vangen wordt een LPV model opgesteld gebaseerd oplinearisaties van
het systeemgedrag rond twee verschillende waarden van dezehoek en wordt op basis
hiervan een regelaar ontworpen.

Een vergelijking tussen de algoritmes uit Hoofdstuk 4 toontdatP-RMPC metN = 5
de laagste rekenkost, maar ook een relatief klein werkingsgebied heeft en als gevolg
daarvan al snel problemen ondervindt wanneer het systeem verstoord wordt. GIMPC2
(Algoritme 4.6) leidt tot het beste resultaten en heeft bovendien een relatief lage
rekencomplexiteit vergeleken metP-RMPC metN = 25.

Het opstellen van controle-invariante verzamelingen voorhet te regelen systeem
bleek minder succesvol dan het opstellen van invariante verzamelingen. De controle-
invariante verzamelingen bleken immers kleiner dan de bekomen werkingsgebieden
van de algoritmes uit Hoofdstuk 4. Deze konden dus niet gebruikt worden voor het
verder uitbreiden van dit werkingsgebied.

Regeling van een copolymerisatie-reactor

Sectie 8.1 beschouwt het model van een copolymerisatie-reactor. Het doel van
het proces is om vanuit twee monomeren A en B een copolymeer teproduceren.
De toevoersnelheid van de reagentia en enkele andere chemische stoffen die de
copolymerisatie-reactor beı̈nvloeden dient optimaal geregeld te worden teneinde een
copolymeer met de gewenste eigenschappen te produceren. Figuur 8.9 geeft dit
systeem schematisch weer. Het proces wordt beschreven dooreen model met 6
ingangen, 12 toestanden en 4 uitgangen. Er wordt een LPV model opgesteld gebaseerd
op twee modellen van het systeem die geldig zijn voor twee verschillende samenstelling
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van de reactorinhoud. Op deze manier worden verschillen in de dynamica ten gevolge
van verstoringen wat betreft deze samenstelling opgevangen.

Het belangrijkste resultaat van deze simulatie is datP-RMPC in combinatie met
Algoritme 5.2 resulteert in een lineair toenemend aantal beperking in functie vanN ,
hetgeen toelaat een horizonN = 25 te gebruiken. Wanneer Algoritme 2.4 gebruikt
wordt is een horizon vanN = 10 al een computationele uitdaging. Hierdoor kan een
erg groot werkingsgebied bekomen worden, hetgeen onmogelijk zou zijn zonder het
gebruik van polyhedrale invariante verzamelingen met gereduceerde complexiteit.

Het opstellen van controle-invariante verzamelingen bleek niet haalbaar voor een
systeem van deze afmetingen. Zelfs het opstellen van een controle-invariante verzame-
ling voor het gevalr = 1 bleek reeds computationeel niet haalbaar. Dit illustreertdat
er verder onderzoek nodig is naar efficiëntere algoritmes voor grootschalige systemen.
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Hoofdstuk 9: Besluiten en Toekomstig Onderzoek

Besluiten

Algemeen

In deze thesis werden verschillende wiskundige techniekenonderzocht om robuuste
MPC regelaars te bekomen met voordelig schalingsgedrag en met niet-conservatieve
behandeling van opgelegde beperkingen.

De nadruk lag op het gebruik van polyhedrale invariante verzamelingen in plaats van
ellipsoı̈dale verzamelingen, omdat deze laatste weinig flexibiliteit bieden en resulteren
in MPC optimalisatieproblemen met hoge rekencomplexiteit. Polyhedrale invariante
verzamelingen bieden maximale flexibiliteit maar hebben het nadeel dat ze leiden
tot algoritmes met exponentieel schalingsgedrag, wat verhindert om grootschalige
systemen te regelen of om goede regelperformantie te bekomen door een lange horizon
te gebruiken.

In deze thesis werden verschillende methodes beschreven die het mogelijk maken om
de flexibiliteit van polyhedrale invariante verzamelingenuit te buiten en die resulteren
in robuuste MPC algoritmes met verbeterde behandeling van opgelegde beperkingen
en met verbeterd schalingsgedrag. Deze verbeteringen werden bekomen op basis van
resultaten op twee gebieden: 1) op het niveau van het construeren van invariante
verzamelingen voor gebruik in MPC, en 2) op het niveau van hetopstellen van
algoritmes voor robuuste MPC. Deze twee gebieden worden apart toegelicht in de
volgende secties.

Robuuste modelgebaseerde predictieve controle

In deze thesis werden verschillende algorithmische bijdragen geleverd op het gebied
van robuuste MPC. Deze bijdragen moeten beschouwd worden inhet licht van de
conceptuele beschouwingen die in Hoofdstuk 3 besproken werden. In dit hoofdstuk
werd het belang besproken van terugkoppeling in de ingangsequentie over dewelke
de MPC optimalisaties worden uitgevoerd. Er werd aangetoond dat verschillende
robuuste MPC algoritmes uit de literatuur incorrect zijn omwille van de afwezigheid
van dit concept van terugkoppeling in de ingangsequenties.Deze aanpak, het
gesloten-lus paradigma genaamd, resulteert ook in verbeterde regelperformantie en
impliceert, zoals werd aangetoond in Sectie 4.3, niet noodzakelijk een verhoogd aantal
optimalisatievariabelen. Hoofdstuk 5 ging nog een stap verder en toonde aan dat in het
geval van gesloten-lus MPC met quasi-oneindige horizon, invariante verzamelingen
met gereduceerde complexiteit de rekencomplexiteit zelfskunnen verlagen vergeleken
met open-lus robuuste MPC. Dit werd mogelijk gemaakt door het feit dat Algoritme 4.7
het mogelijk maakt om de beperkingen van het MPC optimalisatieprobleem te bepalen
als een invariante verzameling van een uitgebreid autonoomsysteem. Volgend kader
vat deze vaststellingen samen.



xlii Nederlandse samenvatting

Zoals wordt aangetoond in deze thesis, is het gesloten-lus MPC para-
digma van primair belang voor recursieve oplosbaarheid en stabiliteit
van robuuste MPC algoritmes. In tegenstelling tot wat algemeen
gedacht wordt, impliceert het gebruik van gesloten-lus predicties niet
noodzakelijk een verhoging van de rekencomplexiteit van deMPC
optimalisatieproblemen, maar zorgt de specifieke structuur ervoor dat
significante complexiteitsreducties kunnen bekomen worden. Er wordt
aangetoond dat de resulterende algoritmes lineair schalingsgedrag
vertonen in plaats van het exponentiële schalingsgedrag van bestaande
algoritmes.

Andere algorithmische bijdragen kunnen gesitueerd wordenin verschillende stadia
van het MPC ontwerpproces. Eerst werd in Sectie 4.1 getoond hoe polyhedrale
invariante verzamelingen de synthese van robuuste lineaire terugkoppelregelaars kun-
nen verbeteren. Deze kunnen later gebruikt worden als eindregelaar of als lokale
regelaar in robuuste MPC algoritmes. In secties 4.2 en 4.3 werd verder aangetoond
hoe twee bestaande MPC paradigma’s (MPC met quasi-oneindige horizon (RMPC)
en interpolatie-gebaseerde MPC (GIMPC), beide gesloten-lus paradigma’s) ook hun
voordeel kunnen halen uit het gebruik van polyhedrale invariante verzamelingen.
GIMPC werd bovendien verder verbeterd in Sectie 4.2.5 om nogbeter kunnen omgaan
met opgelegde beperkingen. De auteur zou willen benadrukken dat de synthese van de
RMPC- en GIMPC2-algoritmes op quasi indentieke manier gebeurt en enkel bestaat uit
het construeren van een invariante verzameling en een kwadratische Lyapunov functie
voor een speciaal geconstrueerd uitgebreid systeem. Beidemethodes verschillen in de
manier waarop dit systeem geconstrueerd wordt en hoe de aan te leggen ingangsvector
afhangt van de uitgebreide toestandsvector.

De gemeenschappelijk structuur die aanwezig is in de ontwerp-
procedures van RMPC en GIMPC2 suggereert rechtstreeks het bestaan
van een meer algemeen MPC raamwerk, waar de klasse van
kandidaat ingangsequenties geparametriseerd is door middel van een
autonoom lineair systeem, waarvan de toestanden gebruikt worden als
optimalisatievariabelen in het MPC optimalisatieprobleem.

Deze verschuiving van FIR-type naar IIR-type parametrisaties van de ingang-
sequenties is de theoretische projectie van het in de industriële praktijk gangbare
gebruik om de kandidaat ingangsequenties te parametriseren als stuksgewijs constante
functies, met toenemende intervallengtes naarmate men zich verder bevindt binnen de
controlehorizon.

De oorsprong van deze verschuiving gaat terug tot [131] met de invoering van een
eindregelaar om de ingangsequentie voorbij de horizon te parametriseren. De resultaten
in [123] vergrootten verder het belang van deze lokale regelaar door hem ook een rol te
laten spelen binnen de horizon. Meer recente bijdragen [29,58,61] tonen aan dat deze
trend zich verder doorzet.

Een laatste bijdrage die besproken werd in Hoofdstuk 7 is de uitbreiding van GIMPC
naar niet-lineaire regelaars, wat toelaat om te interpoleren tussen MPC regelaars en
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regelaars die geı̈nduceerd worden door een controle-invariante verzameling. Dit laat
toe om het werkingsgebied van eender welke recursief oplosbare MPC regelaar uit te
breiden naar het theoretisch maximum zonder een significante meerkost op gebied van
rekentijd. Het gebruik van controle-invariante verzamelingen om te kunnen garanderen
dat voldaan wordt aan de opgelegde beperkingen bij regelproblemen met volgobjectief
werd ook kort behandeld. Hiermee werd verder het potentieelvan controle-invariante
verzamelingen geı̈llustreerd voor een bredere klasse van regelproblemen dan wat
mogelijk is met invariante verzamelingen.

Invariante verzamelingen

De centrale bijdrage van deze thesis op gebied van invariante verzamelingen is de
introductie van wat menbijna maximalepolyhedrale invariante verzamelingen kan
noemen. De twee belangrijkste andere types van invariante verzamelingen binnen de
klasse van polyhedrale verzamelingen (maximale invariante verzamelingen (Maximal
Admissible Sets, MAS [52]) en invariante verzamelingen met lage complexiteit
[75]) vormen twee extremen in het spectrum van afwegingen tussen een maximaal
volume en een minimale complexiteit. De klasse van bijna-maximale invariante
verzamelingen die in deze thesis geı̈ntroduceerd werd, laat de gebruiker toe om deze
afweging te variëren tussen deze twee extremen. Meer specifiek werd er aangetoond
in deze thesis dat er typisch een verdedigbaar kleine volumereductie geobserveerd
wordt in combinatie met significante complexiteitsreducties, waarbij exponentieel
schalingsgedrag in bepaalde gevallen gereduceerd wordt tot lineair schalingsgedrag.

De constructie van bijna-maximale invariante verzamelingen werd aangepakt in
Hoofdstuk 5 door middel vansnoeienen trimmen, terwijl in Hoofdstuk 6 deze
methodes werden uitgebreid naar de constructie van controle-invariante verzamelingen
samen met de toevoeging van projecties met gereduceerde complexiteit. Een belangrijk
aspect is dat enkel de maximaliteit van de resulterende verzamelingen opgeofferd
wordt, maar dat de invariantie-eigenschap nog steeds exactgeldt, waardoor de
resulterende MPC algoritmes nog steeds theoretisch onderbouwd kunnen worden.
Deze methode voor het opstellen van invariante verzamelingen, die gelijkaardig
is aan regularisatie, is een volledig nieuwe aanpak die de gebruiker een extra
ontwerpparameter biedt tijdens het ontwerp van robuuste MPC regelaars. Deze
bevindingen kunnen als volgt worden samengevat.

De nieuwe regularisatie-achtige aanpak voor het construeren van
polyhedrale invariante verzamelingen laat de gebruiker toe om een
afweging te maken tussen een maximaal volume en een minimale
complexiteit. De bekomen complexiteitsreducties laten toe om
polyhedrale invariante verzamelingen op te stellen voor hoger
dimensionale systemen dan voorheen mogelijk was. Dit laat op zijn
beurt toe om robuuste MPC algoritmes te ontwerpen met significant
grotere werkingsgebieden.

Tenslotte kan geconcludeerd worden dat de verschillende methodes voor het con-
strueren van invariante verzamelingen met gereduceerde complexiteit slechts initiële
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stappen zijn in het onbekende. Ongetwijfeld zijn er nog veleandere, betere en
meer elegante oplossingen bedenkbaar binnen het raamwerk dat in Hoofdstukken 5
en 6 werd geı̈ntroduceerd. Het is pas in het laatste decennium dat er in die mate
onderzoek verricht is naar invariante verzamelingen als momenteel het geval is en vele
inzichten moeten nog vergaard worden. Deze observaties worden in het volgende kader
samengevat.

Het raamwerk voor de constructie van (controle-)invariante verza-
melingen met gereduceerde complexiteit dat geı̈ntroduceerd werd in
Hoofdstukken 5 en 6 laat ruimte voor vele vrijheidsgraden, waarvan
vele slechts gedeeltelijk verkend zijn in deze thesis. Ook dienen nog
vele eigenschappen van de nieuwe algoritmes uit deze thesisverder
onderzocht te worden. Het inbrengen van bijkomende inzichten vanuit
de computationele meetkunde zou potentieel kunnen leiden tot nieuwe
doorbraken in deze twee gebieden.

Een voorbeeld hiervan is het feit dat decombinatorische structurenvan polytopen
(gedefinieerd door de zogenaamdeface lattice) of het concept vanpolaire polytopen
[146] in geen enkel van de beschreven algoritmes gebruikt zijn, terwijl het niet
ondenkbeeldig is dat beschouwingen op basis van deze concepten zouden kunnen
leiden tot belangrijke nieuwe inzichten in de theorie van invariante verzamelingen.

Toekomstig onderzoek

Er kunnen verschillende potentieel interessante onderwerpen voor toekomstig on-
derzoek onderscheiden worden, zowel op gebied van robuusteMPC als op gebied
van invariante verzamelingen. Deze sectie licht enkele vande meest interessante
denkrichtingen toe.

Robuuste modelgebaseerde predictieve controle

1. Zoals reeds is aangegeven in de conclusies, kan er een trend geobserveerd
worden richting IIR-type parametrisaties van de ingangsequentie waarover de
MPC regelaar optimaliseert. Het is ook duidelijk geworden dat twee algoritmes
uit deze thesis (RMPC en GIMPC2) in dit raamwerk passen, waarbij de
ingangsequenties bepaald worden door de dynamica van een lineair autonoom
systeem. Een voor de hand liggend en potentieel erg interessant toekomstig
onderzoeksonderwerp is daarom de ontwikkeling van een theoretisch raamwerk
voor dergelijke algoritmes. Dit raamwerk zou bij voorkeur aspecten omvatten als
robuustheid, uitgangsterugkoppeling, ISS stabiliteit, computationele vertragin-
gen, enz. . .

2. Hoofdstuk 7 bevat reeds enkel preliminaire resultaten wat betreft regelproblemen
met volgobjectief om te illustreren dat controle-invariante verzamelingen nut
hebben in een dergelijke context. Belangrijke aspecten zoals robuuste sta-
biliteit, gegarandeerde volgperformantie, enz. . . werdenechter nog niet behan-
deld. Een mogelijk toekomstig onderzoeksonderwerp is de ontwikkeling van
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een stabiliteitsraamwerk voor dergelijke regelproblemen, op basis van controle-
invariante verzamelingen. De combinatie van dit raamwerk met het hierboven
beschreven onderzoeksonderwerp zou ook potentieel interessante resultaten
kunnen opleveren.

Invariante verzamelingen

1. Een van de problemen die beschouwd wordt in deze thesis is het bepalen van de
grootste invariante verzameling die binnen een opgegeven verzameling ligt. Uit-
breidingen naar systemen met begrensde verstoringen worden kort aangehaald,
maar worden niet in detail uitgewerkt. Een bijkomende concept dat relevant
wordt in de aanwezigheid van begrensde verstoringen is dat van de kleinst
mogelijk invariante verzameling. De grootte van een invariante verzameling
is immers naar boven toe begrensd door de opgelegde toestandsbeperkingen,
terwijl ze naar onder toe begrensd is door de grootte van de begrensde verstorin-
gen. Wanneer echter gebruik gemaakt wordt van de polaire equivalenten van
deze drie verzamelingen, worden deze relaties omgekeerd. Dit indiceert dat er
mogelijk interessante eigenschappen en verbanden bestaandie uitgebuit kunnen
worden om op een meer efficiënte manier maximale en minimaleinvariante
verzamelingen te construeren. Het opstellen van deze verbanden en het
formuleren van algoritmes voor het synthetiseren van invariante verzamelingen,
gebruik makende van deze verbanden is een potentieel interessant onderwerp
voor toekomstig onderzoek.

2. In deze thesis werden de methodes voor het construeren vaninvariante ver-
zamelingen met gereduceerde complexiteit uitgebreid naarhet construeren
van controle-invariante verzamelingen. Er werden echter nog geen resultaten
besproken wat betreft convergentie van deze algoritmes en ook het te verwachten
schalingsgedrag in functie van de dimensionaliteit van hetbeschouwde systeem
is nog slecht begrepen. Verder onderzoek op dit gebied is noodzakelijk.

3. Een derde interessante richting voor toekomstig onderzoek is het uitbreiden
van de bestaande resultaten naar meer algemene klassen van systemen, zoals
hybriede systemen of stuksgewijs affiene systemen. Ook de uitbreiding naar
de context vangain schedulingis potentieel interessant. Algoritmes voor deze
aanverwante problemen zijn reeds gekend, maar hun schalingsgedrag naar hoger
dimensionale systemen is in het algemeen ongunstig.
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Chapter 1

Introduction

“He who controls the past controls the future.
He who controls the present controls the past.”

– George Orwell (1903-1950) –

Model based Predictive Control (MPC) is a control paradigm that has
gained widespread acceptance in industry and has thereforereceived
increasing amounts of attention from the academic world in the last
few decades. As a result it is currently being regarded as theprime
advanced process control (APC) method for a wide class of industrial
processes. In this chapter the main reasons behind this steady rise are
explained as well as the basic characteristics of the methodology. To
form the basis for future chapters the necessary mathematical foundation
is put in place and the two most important mathematical tools– convex
optimization and computational geometry – are explained. The chapter
finishes by clarifying the structure of this thesis by givinga chapter-by-
chapter overview.

1.1 Process control

In 1788 James Watt introduced the concept of thecentrifugal governor(Figure 1.1)
to improve the reliability of the steam engines he was continuously fine tuning. The
device consisted of two rotating weights connected to the main steam valve of the
engine, thereby preventing runaways of the machine by gradually closing the valve
in case of excessive rotational speed. This improvement, among others, resulted in
the widespread adoption of the Watt steam engine across Europe and helped drive the
industrial revolution at the end of the 18th and the beginning of the 19th century.

1
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Figure 1.1: Centrifugal governor invented by James Watt in 1788 for controlling the
rotary speed of a steam engine. (image taken from [127])

In this way Watt introduced the first well-known type of what is now called a
proportional controller. Indeed, the steam flow (Manipulated Variable, MV) was
adjusted proportional to the deviation of the rotary speed of the machine (Controlled
Variable, CV) from its desired value and as such stabilized the machine by means of
negative feedback. More generally, it can be considered a technological breakthrough
that opened the path towards the widespread use of automaticcontrol methods in
industry.

This very concept of proportional negative feedback still lies at the basis of most
control systems in use today, to which for example the widespread use of PID
(Proportional, Integrational and Differential) controllers can testify. However, these
controllers only form a small part of a larger hierarchy thatmakes up modern types of
process control. In the next section this hierarchy will be further explained and more
specifically the place that Model based Predictive Control –the topic of this thesis –
has earned within this hierarchy.

1.2 The process control hierarchy

In this section we discuss the main rationale for the existence of different levels in
the hierarchy of a process control system and the specific requirements that form the
raisons d’̂etreof Model based Predictive Control in this hierarchy.

1.2.1 Multiple-input / multiple-output control

Compared to the era of Watt’s steam engine, current industrial reality has become much
more complicated. Nowadays, typically many different mechanical, chemical, electric
and electronic systems are interconnected and interact in complex and dynamic ways.
As a result changing the position of one valve or switch typically influences a multitude
of other quantities instead of just a single quantity – speed– in the case of Watt’s steam
engine. Or, in more mathematical terms, changing the value of a single MV typically
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Materials / flow control

(Advanced) process control

Stock / plant
management

MPC

Economic 
optimization

PID

(Static optimization)

(MIMO control)

(SISO control)

Figure 1.2: Depiction of the process control hierarchy. The different process control
levels have different control scopes, use different modelsand have to satisfy different
requirements. See also Table 1.1.

affects multiple CVs and conversely a single CV typically depends upon multiple MVs.
Therefore the pairing of CVs and MVs and controlling all these pairs with independent
control loops is often ineffective since in this way the interaction between the different
loops is not taken into account.

While nowadays at the lowest level all valves, pumps, burners and motors are still
controlled by such SISO (Single-Input / Single-Output) controllers , at a higher level
(Figure 1.2) a supervisory controller is employed for adjusting the different set-points
of the lower level controllers, taking into account the dynamic interactions between the
different MVs and CVs.

The control paradigm used at this level hence has to be capable of efficiently tackling
MIMO (Multiple-Input / Multiple-Output) control problems.

1.2.2 Constraint handling

An additional complication is the presence of constraints on certain of the plant
variables. These constraints can be either hard or soft constraints and can represent
inherent limitations of the controlled system (e.g., valvepositions are restricted to the
range 0%-100%), safety limitations (e.g., maximum tank pressure, maximum reactor
temperature, . . . ), environmental regulations (e.g., NOx emission restrictions), quality
constraints (e.g., produced goods have to satisfy certain customer specifications) or
economic constraints (e.g., maximum amount of energy to be used).

Traditionally one would choose an operating point sufficiently far from these
imposed constraints in order to ensure constraint satisfaction at all times despite
disturbances in the controlled system. However, the general trend of globalization
of the economy, increasingly tough competition and stricter customer demands have
forced companies to operate plants at their economical limits and hence closer to the
economical, environmental, safety, . . . constraints.

Therefore, it is important that the algorithms employed at the process level of the
control hierarchy allow for efficient, non-conservative constraint handling, since this
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Level Model type Constr. Update freq. Algorithm

3 static yes ∼ 1 day−1 economic opt.
2 dynamic (MIMO) yes ∼ 1 min.−1 MPC
1 dynamic (SISO) no ∼ 1 sec.−1 PID

Table 1.1: Different requirements for the different levels of the process control
hierarchy depicted in Figure 1.2.

can directly translate in financial, environmental, safetyand quality benefits.

1.2.3 Pro-active plant operation

A third requirement for control at the process level is the ability to control pro-actively.
In many cases external disturbances to the system can be measured before their actual
effect can be noticed, e.g. a change in composition of a raw material that enters a series
of reactors, whose effect on the composition of the end product can only be measured
when the first product leaves the reactor. In such cases pro-actively counteracting
these disturbances can give significant performance benefits compared to pure feedback
control that would only start acting when the disturbance effect becomes noticeable.

Secondly, when a plant has to make frequent transitions between different operating
points (e.g., in order to produce different product grades)pro-active behavior can also
lead to significant performance benefits, since these transitions are typically known
hours in advance.

For these reasons, the ability to act pro-actively is a thirdimportant requirement for
control algorithms at the process level.

1.2.4 Computational complexity

Since typically the components that have the fastest dynamical behavior correspond to
those that are controlled directly by PID controllers at thelowest level of the control
hierarchy, i.e. valves, pumps, . . . it is not necessary that the controller at the process
control level operates at a high sample frequency. As a result the algorithms employed
at this level can have a higher computational complexity compared to those at the
lowest levels, which makes it computationally possible to incorporate the previous
requirements.

1.2.5 Summary

In order to cope with control problems of increasing complexity, industrial process
control has been built up hierarchically (see Figure 1.2, Table 1.1) and consists of three
levels. At the second level the most important requirementsare the ability to efficiently
control MIMO systems, to handle imposed constraints non-conservatively and to be
able to act pro-actively. On the other hand, due to the lower sample frequency an
increased computational complexity is allowed.
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Model based Predictive Control fits perfectly in these requirements, as will be
clarified in the next section.

1.3 Model based predictive control

In this section a general description of Model based Predictive Control (MPC) is given
for the case of Linear Time-Invariant (LTI) dynamical models. Later chapters will
focus on more general settings, where the main contributions of this thesis are situated.
Many good books on MPC exist, such as e.g., [10,26,69,79,117].

1.3.1 Model, constraints, control objective

x(k)u(k) y(k)
inputs outputs

states

Dynamical System

Figure 1.3: Schematic depiction of a dynamical system.

Before being able to state the basic MPC formulation, it is important to first discuss
the models used to describe the dynamical behavior of the plant to be controlled and
the control objective. In this chapter we consider LTI models in state space form:

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k),

k ∈ N. (1.1)

u(k) ∈ Rnu denotes the vector of inputs at discrete timek and can be interpreted
as the vector of values describing the manipulated variables of the system at timek.
y(k) ∈ Rny denotes the vector of output at discrete timek and can be interpreted as
the vector of controlled variables of the system at timek. x(k) ∈ Rnx denotes the state
vector at discrete timek and acts as a memory containing all information about the
past of the system that is necessary to predict the future behavior. A ∈ Rnx×nx , B ∈
Rnx×nu , C ∈ Rny×nx are matrices defining the actual behavior of the system.

In this thesis we only consider state feedback MPC, which means that exact
knowledge of the system state is assumed. From a practical point of view this implies
that any errors introduced by a state estimator (used to estimate the states based on
output measurements) are assumed to be sufficiently small and are hence neglected.
Consequently the control objective is formulated in terms of the system states instead
of the system outputs. The second equation of (1.1) is therefore omitted in further
discussions. For a detailed discussion of this state-feedback assumption, the reader is
referred to [48,59,60].

The aim of MPC is to implicitly construct a strategyu(k) = κMPC(x(k)) for
determining the inputsu(k), given information about the current state of the system,
in order to steer the states of the system towards their reference values despite the
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influence of any external disturbances, while guaranteeingsatisfaction of constraints
imposed on the inputs, states and/or outputs:

u(k) ∈ U , k ∈ N, (1.2a)

x(k) ∈ X , k ∈ N, (1.2b)

y(k) ∈ Y, k ∈ N. (1.2c)

Please note that, using (1.1), constraints on the outputs can always be rewritten as
state constraintsCx(k) ∈ Y, ∀k. In further sections we will assume thatU ,X ,Y are
convex, compact sets containing the origin in their interior. The control objective is to
minimize a quadratic cost objective:

∞∑

k=0

‖x(k)− xref(k)‖2Q + ‖u(k)− uref(k)‖2R, (1.3)

whereQ ∈ Snx

++, R ∈ Snu

++ are state and input weighting matrices respectively. The
choice of a quadratic cost objective has computational advantages, as will be discussed
later, but also has the advantage of resulting in a more smooth control behavior
compared to e.g. anL1 or L∞ objective.

1.3.2 Basic algorithm formulation

For reasons of clarity only MPC with the aim of system stabilization (i.e.xref(k) ≡
0, uref(k) ≡ 0, ∀k) will be considered. Tracking problems (xref(k) 6= 0, uref(k) 6= 0)
will be considered in Chapter 7.

Algorithm 1.1 (Model based Predictive Control). Given a model(1.1), subject to
constraints(1.2a)-(1.2b)and given a control objective(1.3), solve at each time instant
k, given the value of the current statex(k) ≡ x(k|k), the following optimization
problem:

min
xN (k),uN (k)

N∑

i=0

‖x(k + i|k)‖2Q +
N−1∑

i=0

‖u(k + i|k)‖2R, (1.4a)

s.t. x(k + i|k) ∈ X , i = 1, . . . , N, (1.4b)

u(k + i|k) ∈ U , i = 0, . . . , N − 1,
(1.4c)

x(k + i + 1|k) = Ax(k + i|k) + Bu(k + i|k), i = 0, . . . , N − 1,
(1.4d)

with

uN (k) = [u(k|k); . . . ; u(k + N − 1|k)], (1.5)

xN (k) = [x(k + 1|k); . . . ; x(k + N |k)], (1.6)

and apply the inputu(k) ≡ u(k|k) to the plant. Repeat this procedure at the next time
stepk + 1 based on updated state information.
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u(k)

k Timek+N

Optimization window at time  
Optimization window at time  

k
k+1

FuturePast

Figure 1.4: The principle of Receding Horizon Control (RHC). At every time instantk
an optimal control problem of lengthN is solved after which only the first input vector
is applied to the plant.

Model based Predictive Control hence consists of solving a finite-horizon optimal
control problem at each time instantk after which only the first input vector of the
optimal input sequence is applied to the system. This methodology was first proposed
in the 60’s [73,109] and is depicted in Figure 1.4.

It is clear that this methodology is naturally capable of dealing with MIMO systems
and explicitly takes imposed constraints into account fromthe outset, which classical
control algorithms [22, 47, 49] typically cannot. Furthermore, due to the fact that an
optimal control problem is solved over a future time window,it is straightforward to
incorporate knowledge about future events into the optimization problem, leading to
pro-active behavior. For these reasons MPC is considered the most suitable algorithm
[111,112] for MIMO control of many practical applications.

1.4 Mathematical tools

Before moving on to some more theoretical aspects of MPC thatare of importance in
later chapters, it is useful to give an introduction on two important tools that are used
in this thesis:convex optimizationandcomputational geometry.

1.4.1 Convex optimization

Since MPC is an optimization-based control paradigm it is clear that thought has
to be given to how these optimization problems are formulated. Furthermore, these
optimization problems are to be solved on-line which results in certain efficiency and
guaranteed solvability requirements. For these reasons, one always aims to pose the
on-line MPC optimization problem as a convex optimization problem [24].

1.4.1.1 Definitions

Before defining convex optimization, we define some auxiliary concepts.
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Definition 1.1 (Convex set).A setS ⊆ Rn is convex iff for any two pointsx1, x2 ∈ S
all convex combinations of these points also lie within the setS:

(1− θ)x1 + θx2 ∈ S, ∀θ ∈ [0, 1], ∀x1, x2 ∈ S.

Definition 1.2 (Affine function). A functionf : Rn → R is affine iff it can be written
in the following form:

f(x) = aTx + b, a ∈ Rn, b ∈ R.

A linear function can be defined as the special case of an affine function whereb = 0.
In further sections the termlinear functionwill be used more loosely for referring to
any affine function.

Definition 1.3 (Convex function). A function f : Rn → R is convex iff its
epigraph epi(f) , {[x; c]|x ∈ dom(f), f(x) ≤ c}, with dom(f) , {x ∈
Rn|f(x) is well-defined} the domain off , is a convex set. Equivalently,f is convex iff
dom(f) is convex and

f((1− θ)x1 + θx2) ≤ (1− θ)f(x1) + θf(x2), ∀θ ∈ [0, 1], ∀x1, x2 ∈ dom(f).

In this thesis we consider optimization problems that can bewritten in the following
standard form:

min
x

f0(x), (1.7a)

s.t. fi(x) ≤ 0, i = 1, . . . , mineq, (1.7b)

hi(x) = 0, i = 1, . . . , meq. (1.7c)

x ∈ Rn is called the vector of optimization variables,f0 : Rn → R is called the
objective function or cost function,fi : Rn → R are called the inequality constraints
andhi : Rn → R the equality constraints.

Definition 1.4 (Feasible solution).A vectorxf ∈ Rn is a feasible solution to(1.7) iff
it satisfies constraints(1.7b)-(1.7c).

Optimization problem (1.7) is calledfeasibleif there exists at least one feasible
solution, otherwise it is calledinfeasible.

Definition 1.5 ((Globally) optimal solution). The globally optimal solutionxo ∈ Rn

to (1.7) is defined as

inf{f0(x)|x is a feasible solution to(1.7)}. (1.8)

A feasible solutionxf is calledlocally optimal if there exists a valuer > 0 such
that xf is the optimal solution to the optimization problem (1.7) augmented with the
constraint‖x− xf‖ ≤ r.

We can now define when optimization problem (1.7) is calledconvexand what the
implications are of that property.
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Definition 1.6 (Convex optimization). An optimization problem(1.7) is convex if
its objective functionf0(x) is a convex function, the inequality constraint functions
fi(x), i = 1, . . . , mineq are convex functions and the equality constraint functions
hi(x), i = 1, . . . , meq are affine functions.

The latter two conditions imply that the set of feasible pointsF , which is defined as
F , {x|x is a feasible solution to (1.7)}, is a convex set.

There is an extensive amount of literature available on convex optimization, among
which [24] is a good starting point, covering many differentaspects, but the main
properties of convex optimization problems that are relevant to this thesis can be
summarized as follows:

• Global / local optimality: It can easily be shown [24, p. 138] that any local
optimum of a convex optimization is also a global optimum. Since in this thesis
optimization is mostly used as an on-line tool, where user interaction is not
possible, this property is of foremost importance.

• Computational efficiency: Several algorithms (e.g. interior point algorithms
[89]) exist that can efficiently solve convex optimization problems with guar-
anteed precision. For most classes of convex optimization problems worst-case
bounds on the computational complexity can be obtained thatare polynomial
functions of the problem size (n, mineq, meq).

• Tools for special subclasses:Many software packages (both free and commer-
cial) exist that are capable of solving certain classes of convex optimization
problems with specific problem structures (LP, QP, SOCP, SDP). Therefore,
being able to formulate convex optimization problems in theform of one of these
specific subclasses can lead to substantial reductions in required computational
complexity.

A few well known subclasses of convex optimization are discussed next in order of
increasing generality and decreasing computational efficiency.

1.4.1.2 Linear programming

A Linear Program (LP) can be written in the following standard form

min
x

fTx,

s.t. Aineqx ≤ bineq,

Aeqx = beq,

with f ∈ Rn, Aineq ∈ Rm×n, bineq ∈ Rm, Aeq ∈ Rm×n, beq ∈ Rm. It is clear from
the definition that LPs are convex optimization problems. Werefer to [42, 78, 138] for
an overview of linear programming. Linear programming is used in this thesis, among
other things, to check redundancy of linear constraints with respect to other linear
constraints. See Chapters 2, 5 and 6 for details. Linear equality constraints can always
be eliminated by a change of variables and will therefore notbe explicitly mentioned in
the following subclasses. In this thesis, where not explicitly mentioned, the MATLAB

toolbox Sedumi [133] is used to solve LPs.
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1.4.1.3 Quadratic programming

A Quadratic Program (QP) can be written in the following standard form

min
x

1

2
xTHx + fTx,

s.t. Aineqx ≤ bineq,

with H ∈ Sn
++, f ∈ Rn, Aineq ∈ Rm×n, bineq ∈ Rm. See [24] for more

information on Quadratic programming and its history. Typically on-line MPC
optimization problems are cast as QPs since the quadratic control objective (1.3) cannot
be represented in the more restrictive form of LPs, while more general classes of
convex optimization are less favorable from a computational point of view. Note that
optimization problem (1.4) can be written in the above standard form of a QP.

1.4.1.4 Second-order cone programming

A Second-Order Cone Program (SOCP) has the following standard form

min
x

fTx,

s.t. ‖Aix + bi‖2 ≤ cT
i x + di, i = 1, . . . , m,

with Ai ∈ Rni×n, bi ∈ Rni , ci ∈ Rn, di ∈ R, ni ∈ N0, i = 1, . . . , m. The name of
this class of optimization problems refers to the fact that the inequality constraints are
equivalent to demanding that the affine functions[Aix + bi; c

T
i x + di] lie in second-

order conesin Rn+1, which are defined as{[x; c]|x ∈ Rn, c ∈ R, ‖x‖2 ≤ c}. An
overview of the use of SOCPs can be found in e.g. [1, 77]. SOCPstypically arise in
robust MPC where a maximum of 2-norms has to be minimized. SeeChapter 3 for
more details. For a computationally efficient MATLAB toolbox for solving SOCPs we
refer to [85].

1.4.1.5 Semi-definite programming

A Semi-Definite Program (SDP) can be written in the followingform

min
x

fTx,

s.t. Fi,0 + Fi,1x1 + . . . + Fi,nxn � 0, i = 1, . . . , m,

with f ∈ Rn, Fi,j ∈ Sni , ni ∈ N0, i = 1, . . . , m, j = 1, . . . , n. Note that the
inequality� denotes a matrix inequality instead of a scalar inequality and hence means
that the left hand-side of the above inequalities should be negative semi-definite. The
above inequalities are often referred to asLinear Matrix Inequalities (LMIs). Linear
matrix inequalities arise in many applications of systems and control theory [23] and
appear in this thesis often as off-line optimization problems to be used in the design
phase of robust MPC controllers. See Chapters 3 and 4 and Appendix A for more
information. In this thesis, where not explicitly mentioned, the MATLAB toolbox
Sedumi [133] is used to solve SDPs.
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1.4.2 Computational geometry

1.4.2.1 Constraint set manipulation

In this thesis the emphasis is put on constraint handling in MPC and as a result
several techniques and algorithms are described that deal with constraint sets. These
can either be the imposed constraint setsX ,U or sets derived thereof. Furthermore,
since constraints in MPC typically are linear, these constraint sets can be described as
intersections of halfspacesor asconvex hulls of points. Finally, since we are interested
in scalability issues of constraint handling in MPC, these sets will potentially behigh-
dimensional, i.e. up to100-dimensional or more.

Due the high dimensionality of these objects it is obvious that operations on these
objects (e.g., projections) can be rather complex and therefore have to be dealt with
using numerical algorithms. The field of computational geometry deals with these
kind of algorithms and therefore provides useful tools to deal with these constraint
sets. This discipline, that lies in the intersection between mathematics and computer
science, has applications in many different fields, among which computer graphics,
fluid dynamics simulations, finite element modeling, robot motion planning, . . . and
can, for the reasons mentioned above, also be used in constrained control problems.

Therefore, in this section, we discuss several concepts andtools from computational
geometry that are used in later parts of this thesis. More detailed information on
computational geometry can be found in [53, 90, 107]. An overview on polytopes and
their properties can be found in [146].

1.4.2.2 Set representations

First, we define the geometric objects we will deal with and their possible repre-
sentations.

Definition 1.7 (Halfspace). Ann− dimensional halfspaceH is defined as

H = {x ∈ Rn|aTx ≤ b},

with a ∈ Rn, b ∈ R.

Definition 1.8 ((Convex) polyhedron). A setS ⊂ Rn is a (convex) polyhedron if it
can be written as an intersection of halfspaces

S =

m⋂

i=1

Hi, Hi = {x ∈ Rn|aT
i x ≤ bi}, i = 1, . . . , m,

with m ∈ Z+
0 .

Alternatively, one can writeS = {x ∈ Rn|Ax ≤ b}, with A ∈ Rm×n, b ∈ Rm.

Definition 1.9 ((Convex) polytope). A setS ⊂ R is a (convex) polytope if it is a
polyhedron and bounded, with bounded defined as

∄y, x0 ∈ Rn : x0 + cy ∈ S, ∀c ∈ R+.
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v1

v2

v3

v4

v5

V-polytope H-polytope

aT1 x ≤ b1

aT2 x ≤ b2

aT3 x ≤ b3

aT4 x ≤ b4

aT5 x ≤ b5

Figure 1.5: Left: Representation of a polytope by means of vertices (V-polytope).
Right: Representation of a polytope by means of halfspaces (H-polytope).

In later sections of this thesis we will omit the term ‘convex’. Furthermore, we will
assume that all polytopes contain the origin in their interior, which is no restrictive
assumption in MPC and allows us to write polytopes in the standard form

S = {x ∈ Rn|ASx ≤ 1}, (1.9)

with AS ∈ Rm×n. 1 denotes a vector of appropriate size containing only ones.
A polytope described as an intersection of halfplanes or equivalently as the set of

solutions to a set of linear inequalities as in (1.9) is called anH-polytope. Alternatively,
one can represent a polytope as the convex hull of a set of points in Rn, in which case
the polytope is referred to as aV-polytope. See Figure 1.5 for an illustration of the
different representations.

Definition 1.10(Convex hull). The convex hull of a set ofm vectors is defined as

Co{v1, . . . , vm} , {λ1v1 + . . . + λmvm|λi ≥ 0, i = 1, . . . , m,

m∑

i=1

λi = 1}.

The convex hull of a set of matrices can be defined similarly and will be used in later
chapters to define polytopic model uncertainty sets.

Since in constrained control problems often only component-wise constraints are
imposed, the corresponding constraint setsX ,U are hypercubes. As a result,
representation as H-polytopes is preferrable compared to V-polytopes, since the
number of vertices of a hypercube equals2n, with n the dimensionality. An
additional advantage is that H-polytopes can directly be incorporated as constraints
in optimization problems.

1.4.2.3 Geometric operations

The first and most straightforward operations that can be defined are the intersection of
sets and Minkowski sum and Minkowski (or Pontryagin) difference, three operations
that preserve convexity and are used the most in the following chapters.
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Figure 1.6: The Minkowski sum and difference of two sets. The origins of the
respective sets are indicated with dots.

Definition 1.11 (Intersection: ∩). The intersection of two polytopesA,B ⊂ Rn is
defined as

A ∩ B , {x ∈ Rn|x ∈ A, x ∈ B}.

If A andB are represented as H-polytopes in standard form (1.9), computing the
intersection is trivial :A ∩ B = {x|[AA; AB]x ≤ 1}. Computing intersections
involving V-polytopes is less trivial and not used in this thesis.

Definition 1.12(Minkowski sum: ⊕, [146]). The Minkowksi sum of two setsA,B ⊂
Rn is defined as

A⊕ B , {a + b|a ∈ A, b ∈ B}.

If A and B are represented as V-polytopesA = Co{v1, . . . , vmA
} and B =

Co{w1, . . . , wmB
}, then the Minkowski sum can be computed asA ⊕ B = Co{vi +

wj |i = 1, . . . , mA, j = 1, . . . , mB}.
If A andB are represented as H-polytopes in standard form (1.9), thenthe Minkowski

sum can be computed asA ⊕ B = {x ∈ Rn|[AA; AB]x ≤ 1 + [c; d]}, with c ∈
RmA , d ∈ RmB computed as

ci = max
x

AA[i, :]x s.t. ABx ≤ 1, i = 1, . . . , mA,

di = max
x

AB[i, :]x s.t. AAx ≤ 1, i = 1, . . . , mB.

Definition 1.13 (Minkowski (or Pontryagin) difference: ⊖, [146]). The Minkowksi
difference of two setsA,B ⊂ Rn is defined as

A⊖ B , {x|{x} ⊕ B ⊆ A} ≡ {a|∀b ∈ B : a + b ∈ A}.

If A is represented as an H-polytope, the Minkowski difference can be computed
similarly as the Minkowski sum. In the other case, the computation is less trivial. Only
the case whenA is an H-polytope is needed in this thesis.

Note that, as opposed to the scalar sum and difference, the relationship(A⊖B)⊕B =
A is not true in general, whereas the following relationship(A⊕B)⊖B = A is true in
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x1

x2

P

elim(P)

proj(P)

Figure 1.7: Illustration of the projection and elimination of a two dimensional polytope
along the second dimension.

general, so care has to be taken when thinking about these operations intuitively. See
Figure 1.6 for an illustration of the Minkowski sum and difference.

Two other geometric tools used in this thesis are related to projecting sets to lower-
dimensional spaces. They are further elaborated on in laterchapters and are hence
only mentioned briefly here. For the sake of simplicity of notation we only consider
one-dimensional projection and elimination ofn-dimensional polytopes along then-th
dimension.

Definition 1.14 (Projection). The one-dimensional projection of a polytopeP ∈ Rn

along then-th dimension is defined as

proj(P) , {x ∈ Rn−1|∃c ∈ R : [x; c] ∈ P}.

Definition 1.15 (Elimination). The one-dimensional elimination of a polytopeP ∈
Rn along then-th dimension is defined as

elim(P) , {x ∈ Rn|∃c ∈ R : x + cen ∈ P},

whereen is then-th unit vector ofRn.

Both operations are clearly related and one can see thatproj(elim(P)) ≡ proj(P)
andelim(P) ≡ proj(P)× R. Figure 1.7 further illustrates both operations.

In the case thatP is represented as a V-polytope these operations are trivial, but
in the case thatP is represented as a H-polytope – which will mostly be the casein
this thesis – these operations are computationally non-trivial and need to be performed
using Fourier-Motzkin elimination. This algorithm will bediscussed and modified in
Chapter 6.
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1.5 Stability framework

1.5.1 Stability of MPC vs. linear control laws

Classical linear system theory extensively deals with stability issues and performance
of linear systems. Therefore linear system theory and more specifically, analysis
of poles and zeros of closed-loop transfer functions is the tool of choice to analyze
properties of linear controllers.

However, due to the fact that imposed constraints are explicitly taken into account
in MPC controllers, the resulting control laws will not be linear and hence these tools
cannot be used. Therefore a new stability framework (see e.g. [82, 131]) emerged in
the previous decade, based on Lyapunov theory.

In the case of MPC algorithms for stabilization of disturbance-free systems, one
typically aims at provingasymptotic stabilityfor a non-trivial (or loosely speaking a
’larger-than-ǫ’) region of initial states around the origin. This is done intwo steps. The
first step aims at characterizing the set of initial states for which the resulting closed
loop trajectories arewell-defined. For this purpose one uses the concept ofrecursive
feasibility:

Definition 1.16 (Recursive feasibility). An MPC optimization problem is said to be
recursively feasible, if feasibility at timek implies feasibility at timek + 1.

If an MPC algorithm is shown to be recursively feasible, thenit is guaranteed by
induction that if it is feasible atk = 0, it will be feasible∀k ∈ N and hence the
resulting trajectory is well-defined. In a second step one aims at proving asymptotic
stability for all these initial states that lead to a feasible MPC optimization problem,
which we will refer to assemi-global asymptotic stability:

Definition 1.17 (Semi-global asymptotic stability). The closed-loop system formed
by a dynamical system(1.1)and a controller is asymptotically stable for a given set of
initial statesX0 iff

lim
k→∞

‖x(k)‖ = 0, ∀x(0) ∈ X0. (1.10)

Semi-global asymptotical stability can be proven by means of the following lemma.

Lemma 1.1(Lyapunov stability). An autonomous systemx(k+1) = g(x(k)), k ∈ N0

is asymptotically stable for all initial valuesx(0) ∈ X0 if there exists a convex function
V : X0 → R (Lyapunov function) that satisfies the following conditions:

• V (g(x)) < V (x), ∀x ∈ X0\0,

• V (g(0)) = V (0).

The following section describes how semi-global asymptotic stability can be ob-
tained.

1.5.2 Quasi-infinite horizon MPC

In order to be able to guarantee asymptotic stability of the closed-loop system,
Algorithm 1.1 has to be slightly modified. The following algorithm, that in essence
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was already presented in [135] but is more widely known in theform presented in
[131], leads to asymptotic stability under conditions thatare stated below. Since the
modifications essentially are aimed at taking into account the constraints and control
objective beyond the horizon, it is often referred to asQuasi-Infinite Horizon MPC.

Algorithm 1.2 (Quasi-Infinite Horizon MPC). Given a model(1.1), subject to
constraints(1.2a)-(1.2b)and given a control objective(1.3), solve at each time instant
k, given the value of the current statex(k) ≡ x(k|k), the following optimization
problem:

min
x(k),u(k)

N−1∑

i=0

‖x(k + i|k)‖2Q +
N−1∑

i=0

‖u(k + i|k)‖2R + ‖x(k + N |k)‖2QN
, (1.11a)

s.t. x(k + i|k) ∈ X , i = 1, . . . , N − 1,
(1.11b)

x(k + N |k) ∈ XN , (1.11c)

u(k + i|k) ∈ U , i = 0, . . . , N − 1,
(1.11d)

x(k + i + 1|k) = Ax(k + i|k) + Bu(k + i|k), i = 0, . . . , N − 1, (1.11e)

and apply the inputu(k) ≡ u(k|k) to the plant. Repeat this procedure at the next time
stepk + 1 based on updated state information.

QN ∈ Snx

++ andXN ⊆ Rnx are called the terminal cost matrix and the terminal
constraint set respectively. The latter is included in order to obtain recursive feasibility,
while the former is included in the optimization problem in order to obtain asymptotic
stability of the closed-loop system. Many conceptually similar algorithms exist [17,
32, 74, 75, 80]. Most algorithms differ in the model class forwhich the controller is
designed or the way the terminal cost and terminal constraint set are actually calculated.

The following lemma, discussed in much detail in [82], states under which conditions
Algorithm 1.2 is recursively feasible and leads to a semi-globally asymptotically stable
closed-loop system. We also give the proof since it providesinsights in the role of
the terminal cost, terminal constraint set and the terminalcontroller, that are also of
importance in the following chapters.

Lemma 1.2 (Semi-global asymptotic stability). The closed-loop system formed by
system(1.1) and the MPC controller defined in Algorithm 1.2 leads to recursive
feasibility of the controller and asymptotic stability of the closed-loop system for
all statesx(0) that lead to a feasible optimization problem(1.11), if a controller
u(k) = κN (x(k)) (terminal controller) exists such that the following conditions are
satisfied:

1. XN ⊆ X , (1.12a)

2. κN(x) ∈ U , ∀x ∈ XN , (1.12b)

3. Ax + BκN (x) ∈ XN , ∀x ∈ XN , (1.12c)

4. ‖x‖2QN
− ‖(Ax + BκN (x))‖2QN

≥ ‖x‖2Q + ‖κN(x)‖2R, ∀x ∈ XN . (1.12d)
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Proof: Consider a feasible solutionxo(k),uo(k) to optimization problem (1.11) at
timek:

x
o(k) = [xo(k + 1|k); . . . ; xo(k + N |k)],

u
o(k) = [uo(k|k); . . . ; uo(k + N − 1|k)].

It is now possible to construct a candidate feasible solution x
f(k + 1),uf(k + 1) for

the optimization problem at timek + 1 as follows:

x
f(k + 1) = [xo(k + 2|k); . . . ; xo(k + N |k); xf(k + N + 1|k + 1)],

u
f(k + 1) = [uo(k + 1|k); . . . ; uo(k + N − 1|k); uf(k + N |k + 1)],

with

xf(k + N + 1|k + 1) = Axo(k + N |k) + BκN (xo(k + N |k)),

uf(k + N |k + 1) = κN (xo(k + N |k)).

If the real plant behavior is identical to the model used in the MPC controller this
candidate solution satisfies constraints (1.11e) at timek+1. Conditions (1.12a)-(1.12c)
respectively guarantee that constraint (1.11b) fori = N − 1, constraint (1.11d) for
i = N − 1 and constraint (1.11c) are satisfied, which proves thatx

f(k + 1),uf(k + 1)
are feasible solutions to (1.11) at timek + 1. This proves recursive feasibility, which,
by induction onk, shows that (1.11) is feasible fork ∈ N.

In order to prove that the resulting closed-loop system is asymptotically stable for
all feasible initial statesx(0) ∈ X0, we show thatJo(x(k)), the optimal objective
function value of (1.11) for current statex(k) is a valid Lyapunov function. Therefore,
it is sufficient to show thatJ f(x(k + 1)) < Jo(x(k)), with J f(x(k + 1)) the
objective function value corresponding to the feasible valuesx

f(k + 1),uf(k + 1).
Straightforward algebraic manipulation yields

Jo(x(k)) − J f(x(k + 1)) = ‖x(k|k)‖2Q + ‖u(k|k)‖2R − ‖xo(k + N |k)‖2Q
+ ‖xo(k + N |k)‖2QN

− ‖κN (xo(k + N |k))‖2R
− ‖Axo(k + N |k) + BκN (xo(k + N |k))‖2QN

.

Due to condition (1.12d) one can see that indeedJ f(x(k + 1)) < Jo(x(k))
and therefore, sinceJo(x(k + 1)) ≤ J f(x(k + 1)), also thatJo(x(k + 1)) <
Jo(x(k)), ∀x(k) 6= 0. It can also be shown thatJo(x) is a convex function and that
it hence satisfies all conditions of Lemma 1.1. This proves semi-global asymptotic
stability. �

Note that controllability of the given system is no explicitcondition in the above
lemma. However, controllability is subsumed by condition (1.12c), because a setXN

satisfying this condition can only be found ifκN stabilizes the given system, which in
turn is only possible of the system is controllable.

Furthermore, it is also important to note that the terminal control law is not explicitly
used in the on-line algorithm, but only is a theoretical toolto prove stability and
recursive feasibility.
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Chapter 3 will extend this stability theory to robust MPC, whereas later chapters will
introduce stability notions for other control settings like tracking. In all cases the same
two-step procedure is to be followed: a) recursive feasibility, b) stability.

1.6 Set Invariance

As mentioned in the previous section, the inclusion of a terminal constraint set in the
MPC optimization problem is aimed at obtaining recursive feasibility. In summary, If
the terminal constraint set satisfies conditions (1.12a)-(1.12c) then recursive feasibility
of Algorithm 1.2 is guaranteed. However, it is not immediately clear how to construct
such sets. The theory ofinvariant setsdeals with exactly this problem and plays an
important role in this thesis.

Definition 1.18(Positive invariance). A setS ∈ Rnx is positive invariant with respect
to the autonomous system

x(k + 1) = g(x(k)), k ∈ N, (1.13)

with x(k) ∈ Rnx , ∀k andg : Rnx → Rnx iff

g(x) ∈ S, ∀x ∈ S. (1.14)

Hence, a positive invariant set with respect to some dynamics, if the dynamics are
guaranteed to keep the state inside the set once it has entered. The term ’positive’ refers
to the fact that only forward predictions are considered andwill be omitted in future
sections for reasons of brevity. We can now see that condition (1.12c) is equivalent
to requiring thatXN is invariant with respect to the closed-loop terminal dynamics
x(k + 1) = Ax(k) + BκN (x(k)).

Definition 1.19 (Feasibility). SetS is feasible with respect to constraints(1.2b) iff
S ⊆ X .

Conditions (1.12a)-(1.12b) are equivalent to demanding that XN is feasible with
respect toX ′ , X ∩ {x ∈ Rnx |κN (x) ∈ U}.

Figure 1.8: Left: Polyhedral non-invariant set.Right: Polyhedral invariant set.
Trajectories starting from the vertices of the sets are depicted as dashed lines.
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In order to maximize the feasible region, it is obvious that one would like to find
the largest possible feasible invariant set. This set is called theMaximal Admissible
Setor MAS [52]. Different algorithms exist depending on the model class for which
an invariant set has to be constructed and the type of set (polyhedral, ellipsoidal,
parallellotopic, . . . ) one wants to obtain. This will be discussed in more detail in
Chapter 2.

The ability to construct feasible invariant sets for a givensystem and given
constraints is the determining factor whether a recursively feasible MPC algorithm
can be constructed. As will become clear in later chapters, invariant sets can be used in
MPC algorithms in several different ways, but the invariance condition (1.14) always
plays a key role in proving recursive feasibility.

Furthermore, the representation of the set (ellipsoidal, V-polytope, H-polytope)
determines the computational efficiency of the resulting MPC algorithm and the size
of the set determines the feasible region of the MPC algorithm. Chapter 5 will show
how to make a trade-off between the complexity (of representation) and the volume of
an invariant set.

1.7 Design goals

This section is aimed at clarifying the different goals whendesigning an MPC
controller or when constructing an MPC algorithm and how these are influenced by the
different elements present in the quasi-infinite horizon MPC scheme introduced in the
previous section. It will become clear that some of these goals are conflicting, which
will illustrate the need for improved algorithms and as suchforms the main rationale
for this thesis.

1.7.1 Stability

One of the most important aims is obviously to obtain a controller that stabilizes the
system according to some stability measure. In the case of Algorithm 1.2 one obtains
semi-global asymptotic stability. However, one should note that conditions (1.12) are
sufficientconditions and therefore it is also possible that a stable controller is obtained
if these conditions are not satisfied. Also in the case of Algorithm 1.1 one can obtain
stable behavior under certain conditions systems if the prediction horizonN is chosen
sufficiently large, which is typically what is being done in practice.

However, more or less since the appearance of the overview article by Mayneet
al. [82], there is general agreement that newly proposed MPC algorithms should
incorporate measures that guarantee recursive feasibility and stability in a sense
relevant to the control problem they aim to solve, i.e stabilization, tracking or
disturbance rejection.

1.7.2 Feasible region

An issue related to stability is thefeasible regionX0 that is defined as follows:

X0 , {x(0) ∈ Rnx | the MPC optimization problem is feasible∀k}. (1.15)
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For MPC algorithms that are guaranteed to be recursively feasible, this set is equal to
the set of initial states for which the optimization problemis initially feasible (i.e. at
time k = 0). Typically this is also the region for which stability is guaranteed. As a
result another important aim is to obtain a feasible region that is as large as possible.
However, e.g. incorporating stability measures, like introducing a terminal constraint,
typically significantly reduces the size of the feasible region. On the other hand, larger
values ofN generally result in a larger feasible region.

1.7.3 Local optimality

MPC controllers are typically used when imposed constraints play an important role in
the control problem and as such typically influence the obtainable control performance
significantly compared to the unconstrained case. However,when operating in regions
further away from the imposed constraints, e.g. close to theorigin, it is desirable that
the behavior of the MPC controller closely resembles that ofan optimal unconstrained
controller, e.g. an LQR controller. This property is referred to aslocal optimality.

Two ways of improving local optimality of an MPC controller are increasing the
prediction horizonN or, if N is kept small, improving optimality of the terminal
control law κN . However, typically more optimal terminal control laws (e.g. the
LQR-optimal) lead to relatively small terminal constraintsets, whereas large terminal
constraint sets typically correspond to suboptimal terminal controllers. Therefore
increasingN seems to be the only compromise-free possibility for obtaining local
optimality.

1.7.4 Computational complexity

As already explained MPC consists of on-line solving an optimization problem at
every time instantk. As a consequence the computational complexity of solving this
optimization problem cannot exceed a certain threshold since the calculations have
to be finished within one sample interval. This is one of the main reasons why convex
optimization problems are preferable in MPC, since many solvers for such optimization
problems have known worst-case bounds on their computational complexity.

Computational complexity is mainly determined by the number of optimization vari-
ables, the number of constraints and the class of optimization problems. The number
of optimization variables typically increases proportional toN , which obviously limits
the length of the horizon that one can choose. Therefore, it is obvious that there is a
clear trade-off between computational complexity and the two previous design goals:
feasibility and local optimality.

The number of constraints also increases proportional toN but is also partly
determined by the complexity of the description of the terminal constraint setXN ,
e.g. the number of inequality constraints, ifXN is a polytopic set.

Finally, the optimization class greatly influences the computational complexity,
because the exponents of the polynomial scaling of the computational complexity as a
function of the problem size are class-dependent. Therefore it is preferable to limit the
on-line optimization to either LP or QP. SOCP and SDP are well-suited for off-line use
during the design phase, but less appropriate for on-line application.
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1.7.5 Robustness

Finally, another important aim of MPC controller design is its robustness with respect
to differences between the prediction model and the plant model and robustness with
respect to external disturbances that act upon the system. As will be shown in the next
chapter it is possible to incorporate measures to guaranteerobustness, but this goes at
a significant cost of the computational complexity.

1.7.6 Conclusion

The five main design goals for MPC controllers – stability, feasibility, local optimality,
low complexity and robustness – can be obtained by changing different tuning
parameters in the MPC controller design. However, the different goals are often
not obtainable simultaneously, which is not necessarily a property of the problem
description, but a property of the classical MPC algorithms. Different solutions will
be presented in the next chapters, in order to alleviate someof these compromises.

1.8 General outline of this thesis

The main goal of this thesis is to develop new algorithms thatsatisfy all the design
goals explained in the previous section, or at least satisfythese design goals better
than existing algorithms. This section therefore gives an outline of this thesis and will
highlight how the aforementioned design goals are met.

First of all we restrict ourselves torobust MPC algorithms, that have guaranteed
stability for a certainclassof systems rather than a single system. To this end Section
1.5 introduced the necessary concepts that are relevant in the construction of MPC
algorithms with recursive feasibility and guaranteed stability for the nominal (i.e., non-
robust) case. Later in this thesis these concepts are then extended to the robust case.

In the robust case the issue of recursive feasibility (and hence also asymptotic
stability) becomes somewhat more complicated and additional measures have to be
taken. A distinction betweenopen-loopand closed-looppredictions can be made.
In the nominal case both approaches result in identical behavior and only lead to
numerical differences, but in the robust case the differences between both methods
become crucial and have important implications on recursive feasibility. Chapter 3
will give an assessment of the differences between both approaches and will show that
the use ofclosed-looppredictions is essential for obtaining robust MPC algorithms that
satisfy the design goal of guaranteed stability.

Secondly, the aim is to construct MPC algorithms that maintain the property of
local optimality . To this end, we restrict ourselves to robust MPC algorithmsthat
allow the incorporation of a local control law, such as the quasi-infinite horizon
MPC algorithm discussed in Section 1.5 or general interpolation based robust MPC.
Furthermore, the requirement of local optimality eliminates MPC algorithms based on
L1 andL∞ norms, since these can result in non-optimal local control behavior. This
eliminates algorithms based on linear programming (LP), which has an implication on
the computational efficiency of the obtained algorithms.
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In the majority of cases, non-LP based robust MPC algorithmsmake use of semi-
definite programming (SDP) because typically ellipsoidal invariant sets are used to
ensure recursive feasibility. The computational complexity of such optimization
problems is often prohibitively high for practical applications and therefore the aim
here is to obtain robust MPC algorithms that make use of quadratic programming
(QP). To this end we aim to usepolyhedral invariant sets instead of ellipsoidal ones.
Therefore,Chapter 2 will introduce the basic principles of invariant sets and some
existing algorithms for the construction of these sets. Some important properties, such
as the structure of the resulting sets will also be discussed, since these insights will be
useful in later chapters, where further complexity reductions will be obtained based on
these insights.Chapter 4 will then introduce several robust MPC algorithms that make
use of polyhedral invariant sets. In this way the design goalof obtaining algorithms
with a favorable computational complexity is met, at least for low-dimensional
systems.

It is important to point out that the algorithms introduced in Sections 4.3 and
4.2.5allow the entire constraint structure of the on-line optimization to be computed
by constructing a single polyhedral invariant set for an appropriately constructed
augmented system. In this way, improving the algorithms forthe construction of such
invariant sets will have a more profound impact on the performance and efficiency of
these MPC algorithms, which can be seen as both an advantage and a disadvantage.

The algorithms discussed in Chapter 2 have some disadvantages with respect to
their scaling behavior. For high-dimensional systems, these algorithms can result
in exponentially increasing computational requirements and can return polyhedral
invariant sets with a prohibitively large number of inequality constraints, which in
turn can lead to computationally inefficient MPC algorithms. Therefore,Chapter
5 will introduce algorithms for the construction ofreduced-complexity polyhedral
invariant sets. This will enable the construction of robust MPC algorithmswith lower
computational complexity that are hence applicable to higher-dimensional systems.
More specifically, it can be proven that under certain conditions the scaling behavior of
the algorithm introduced in Section 4.3 will become linear as a function of the horizon
length instead of exponential.

This improved scaling behavior will enable the use of significantly longer prediction
horizons. In this way the resulting algorithms will have bf enlarged feasible regions
compared to the feasible regions of algorithms using full-complexity polyhedral
invariant sets or ellipsoidal invariant sets.

In order to further enlarge the size of the operating region of the obtainded MPC
controllers, without compromising other design goals suchas low computational
complexity,Chapters 6 and 7will investigate reduced complexity control-invariant
sets and their use in robust MPC algorithms. Chapter 7 will show that control-invariant
sets allow thefeasible regionto beextended towards the theoretical maximum.

Chapter 8 finally shows that the obtained algorithms also give favorable results when
applied to models of a few real-life systems.
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Figure 1.9: Overview and connection between the different chapters in this thesis.
Arrows suggest possible reading trajectories.

1.9 Chapter-by-chapter overview

Figure 1.9 gives an overview of the different chapters in this thesis and how they relate
to each other. We will now give an overview of the different contributions of each
chapter:

Chapter 2: This chapter concerns the construction of invariant sets for linear
systems with polytopic uncertainty description. These sets can be used to formulate
several different MPC algorithms. Combining several elements already in literature
an algorithm is formulated that is able to efficiently construct polytopic invariant sets
for such systems. These sets have the advantage that they lead to more efficient MPC
optimization problems and that the feasible region is typically increased significantly.
The main contribution of the chapter, however, is the analysis of the structure of
polytopic invariant sets, which paves the way for the results presented in Chapter 5.

Chapter 3: This chapter explains how Algorithm 1.2 can be extended in order
to explicitly incorporate measures for guaranteeing robustness with respect to model
uncertainty or disturbances. Special attention is given tothe possible ways for com-
puting within-horizon predictions despite the uncertainties and to how this influences
recursive feasibility. The chapter describes and correctstwo algorithms presented in
recent publications that falsely claim to be recursively feasible. Counterexamples are
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also provided.

Chapter 4: In this chapter several MPC algorithms are presented that make use of
the polytopic invariant sets discussed in the previous chapter. A first set consists of
the interpolation-based algorithms, while the second typeof algorithm presented is a
robust and improved version of the quasi-infinite horizon MPC algorithm presented in
Chapter 1. Both types of algorithms are suited for differentkinds of problems.

Chapter 5: The results presented in this chapter are an extension of those presented
in Chapter 2. The polytopic invariant sets discussed there have an impractically large
number of constraints under certain conditions which limits the use of the algorithms
presented in Chapter 4 for larger-dimensional systems. This chapter analyzes the cause
of this problem and proposes a new algorithm for constructing reduced-complexity
versions of such sets. In this way the use of polytopic sets inMPC algorithms becomes
more advantageous.

Chapter 6: This chapter forms a further extension of the results from Chapter 5. The
construction of control invariant sets is discussed. This types of sets are also potentially
useful in MPC algorithms. For the same reasons as in the previous chapters, reduced-
complexity versions of these sets are investigated. As a side-result the construction of
reduced-complexity projections of polytopic sets is also discussed.

Chapter 7: In this chapter the use of controlled invariant sets in MPC algorithms
is explored. It is shown that control invariant sets allow the extension of the feasible
region to the theoretical limit. Another advantage of the use of controlled invariant sets
is that tracking problems can also be tackled.

Chapter 8: Whereas in the previous chapters the new methods are illustrated using
simple numerical examples, this chapter demonstrates the new algorithms using more
real-life systems.

1.10 Specific contributions of this thesis

This thesis makes contributions in two main areas: set invariance theory and robust
model based predictive control. As indicated in Figure 1.9 the contributions in these
two areas are not discussed chronologically in this thesis,but here we will treat both
aspects separately.

Set invariance

A first contribution in this area is given in Chapter 2, where the structure of polyhedral
invariant sets for LPV systems is discussed. It is observed that redundant constraints
induce sparsity in the tree structure. Furthermore, the depth of the tree is linked to
the Joint Spectral Radius (JSR) of the given autonomous system. These two insights
are crucial for the development of new algorithms in later chapters. References are
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[98,101].

The second and most important contribution of this thesis inthe area of set invariance
is the introduction in Chapter 5 of new algorithms for the construction of reduced-
complexity polyhedral invariant sets, i.e. invariant setsthat are described by a reduced
number of linear inequality constraints. Two different methods are introduced:

• Pruning. This method reduces the number of constraints by means of tightening
certain constraints with a small factor. The algorithm detects when such
constraint tightening can make other constraints redundant and calculates the
exact tightening factor to accomplish this. For efficiency reasons, this constraint
tightening is done during the construction of the invariantsets.

• Trimming. This method is based on a new theorem that when modifying the
system matrices in a certain way, any invariant set for the modified system will
also be invariant for the original system. These additionaldegrees of freedom
can then be exploited in order to reduce the number of constraints of the resulting
polyhedral invariant sets.

Both algorithms can be interpreted in terms of the tree structure discussed in Chapter
2. The aim of pruning is the reduction of the number of parallel branches in the tree
structure, while the aim of trimming is reducing the depth ofthe tree.

Both methods can also be linked to the JSR of the system. In thecase of pruning,
the JSR determines the amount of constraint tightening thatcan be performed without
loosing convergence of the algorithm, while in the case of trimming, the JSR provides
a heuristic for optimally choosing the parameters involvedin modifying the system
matrices.

In both methods a trade-off can be made between maximal volume and minimal
complexity. This regularization-like approach to the construction of invariant sets is
novel and not found elsewhere in literature.

Finally, it is proven in Section 5.3 that pruning, when applied to the algorithm of
Section 4.3 can lead to lead to linear (rather than exponential) scaling behavior as a
function of the horizon length. References are [94,106].

A third contribution in the area of set invariance is the introduction in Chapter 6 of
algorithms for the construction of reduced-complexity control invariant sets. These sets
are similar to invariant sets but also allow inputs to be present in the given systems. As
a result, algorithms for constructing such sets typically involve additional steps where
projections of intermediate polytopic sets have to be calculated.

First of all the methods of pruning and trimming are generalized towards the
setting of computing control invariant sets. Secondly, newalgorithms are proposed
for computing approximate reduced-complexity projections of polytopic sets. The
obtained algorithms allow a trade-off to be made between maximal volume and
minimal complexity. At the time of writing, these results are not yet published
elsewhere.
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Model based predictive control

Several contributions have also been made in the area of the synthesis of robust MPC
algorithms. Some of these contributions are based on improvements in the area of set
invariance, as discussed above, others are not directly linked to such advances.

A first contribution in this area is the identification of theoretical misconceptions
regarding some existing robust MPC algorithms. Sections 3.4 and 3.5 highlight and
correct errors present in the algorithms discussed in [142]and [31] respectively. These
corrections have been published in [105,143] and [94] respectively.

A second contribution is the extension of several robust MPCalgorithms towards
the use of polyhedral invariant sets instead of ellipsoidalinvariant sets. Three different
algorithms are extended to this setting:

• Section 4.1 extends the results from [68] and describes how one can use
polyhedral invariant sets for obtaining robust linear feedback controllers with
improved optimality and less conservative constraint handling. These results
can either be used on-line in a receding horizon approach, orcan be used for
computing locally optimal controllers for use in other MPC algorithms. These
results are published in [93].

• Section 4.2 shows how robust interpolation based MPC can be implemented us-
ing polyhedral invariant sets. These results are publishedin [98], which received
the Student Best Paper Award of the 2005 American Control Conference.

• Section 4.3 shows how one can use polyhedral invariant sets for constructing
robust MPC controllers with quasi-infinite horizon. These results are published
in [100].

A third contribution is the improvement of constraint handling in interpolation
based MPC algorithms on an algorithmic level. The new algorithm is able to take
the interaction between the different linear control laws into account and uses this
information to reduce the conservativeness of constraint handling. These results are
published in [118,120].

A fourth contribution consists of the extension of the algorithms discussed in Chapter
4 towards the use of reduced-complexity polyhedral invariant sets. This allows these
algorithms to be used for higher-order models and allows theuse of longer prediction
horizons (if applicable). More specifically, it is shown that under certain conditions
when using the quasi-infinite horizon MPC algorithm discussed in Section 4.3 in
conjunction with reduced-complexity polyhedral invariant sets, one obtains linear
scaling behavior as a function of the horizon length.

A fifth contribution is the extension of the concept of general interpolation to
interpolation between non-linear control laws, like e.g. different MPC controllers, as
described in Section 7.2. At the time of writing, these results are not yet published
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elsewhere.

A sixth and final contribution is a method to enlarge the operating region of any given
recursively feasible MPC controller to the maximal controladmissible set for the given
system. This is discussed in Section 7.3. At the time of writing, these results are not
yet published elsewhere.
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Chapter 2

Polyhedral Invariant Sets

“When in doubt, predict that the present trend will continue.”

– Merkin’s Maxim –

This chapter extends the concept of invariant sets towards the robust
case. Whereas previous chapters illustrated the use of invariant sets,
this chapter focusses on how to construct such sets for autonomous LPV
systems. A literature overview is given, after which an efficient algorithm
is presented for constructing the Maximal Admissible Set (MAS) using
linear programming. Extensions to this algorithm are discussed and some
numerical examples are given. In the following chapters these invariant
sets are then used in robust MPC algorithms and further extended.

2.1 Set invariance

The basic concepts of set invariance were already discussedin Chapter 1, so we
will only briefly repeat the main definitions and properties for the specific case
of autonomous LPV systems subject to bounded disturbances and subject to linear
constraints.

2.1.1 Definitions

In this chapter we consider autonomous LPV systems subject to bounded disturbances

x(k + 1) = Φ(k)x(k) + w(k), k ∈ N, (2.1)

with Φ(k) ∈ Rnx×nx belonging to an uncertainty polytopeΩ′ ⊂ Rnx×nx defined as

Φ(k) ∈ Ω′ ≡ Co{Φ1, . . . , Φr}, k ∈ N, (2.2)

29
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or equivalently

Φ(k) ∈







r∑

j=1

λj(k)Φj

∣
∣
∣
∣
∣
∣

λ1(k) ≥ 0, . . . , λr(k) ≥ 0,

r∑

j=1

λj(k) = 1






, k ∈ N.

(2.3)

The disturbance inputw(k) is bounded by a V-polytope

w(k) ∈ W , Co{w1, . . . , wl}, k ∈ N, (2.4)

and the statex(k) is constrained to (1.2b). The reason for this specific uncertainty
representation will be explained in more detail in Chapter 3. We now redefine
invariance for this class of systems.

Definition 2.1 (Robustly positive invariant set, [14]). A setS ∈ Rnx is robustly
positive invariant with respect to the system(2.1) iff

Φx + w ∈ S, ∀x ∈ S, ∀Φ ∈ Ω′, ∀w ∈ W . (2.5)

In future sections, when appropriate, the term〈Ω′,W〉-invariant will be used. If the set
S is convex, then the following condition is equivalent to (2.7)

Φix + wj ∈ S, ∀x ∈ S, i = 1, . . . , r, j = 1, . . . , l. (2.6)

A related concept is that ofλ-contractive positive invariant sets and can be defined
as follows:

Definition 2.2 (λ-contractive robustly positive invariant set, [13]). A setS ∈ Rnx is
a λ-contractive (withλ ∈ (0, 1]) robustly positive invariant set with respect to system
(2.1) iff

Φx + w ∈ λS, ∀x ∈ S, ∀Φ ∈ Ω′, ∀w ∈ W , (2.7)

with the scalar multiplication of sets defined asλS , {λx|x ∈ S} as in [63, 146]. In
future sections, when appropriate, the term〈Ω′,W , λ〉-invariant will be used.

The definition of afeasible setis already given in Chapter 1 and is hence not repeated.
A related definition is that ofoutput admissible sets. Since all output constraints
considered in this thesis can be mapped to equivalent state constraints, we will use
the termadmissible setin this thesis:

Definition 2.3 (Admissible set). A setS is admissible with respect to(2.1),(1.2b) iff
x(0) ∈ S implies that all future statesx(k), k ∈ N satisfy constraint(1.2b):

x(0) ∈ S ⇒ x(i) ∈ X , ∀Φ(k) ∈ Ω′, ∀w(k) ∈ W , k = 1, . . . , i− 1,

i ∈ N0. (2.8)

Please note that an admissible set is not necessarily positive invariant. Admissibility
is related to the size of a set (becauseX contains the origin in its interior, any
sufficiently small neighborhoodaround the origin is an admissible set) whereas positive
invariance is related to the shape of the set. Conversely, one can see that all feasible
positive invariant sets are admissible.
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Definition 2.4 (Maximal Admissible Set (MAS, [52])). The maximal admissible setS
for system(2.1)and constraints(1.2b)is defined as the set ofall initial states for which
the corresponding trajectories under the autonomous dynamics guarantee constraint
satisfaction:

S , {x(0)|x(i) ∈ X , ∀Φ(k) ∈ Ω′, ∀w(k) ∈ W , k = 0, . . . , i− 1, i ∈ N0}. (2.9)

2.1.2 Properties

The properties given here will be used either explicitly or implicitly in the following
sections and are stated here as background material for better understanding of the
following sections.

Property 2.1. If A,B ∈ Rnx are invariant sets with respect to(2.1)then the following
sets are also positive invariant with respect to(2.1):

a)A∩ B,

b)A∪ B,

c) Co{A,B}.

Please note that part a) states the opposite of [63, Remark 2.3]. However, one can
clearly see that ifx(k) ∈ A andx(k) ∈ B, positive invariance guarantees thatx(k +
1) ∈ A, x(k + 1) ∈ B and hencex(k + 1) ∈ A∩B, which proves part a) of the above
property.

The following fundamental property, the first reference to which can be found in [52],
validates the use of the MAS as a terminal constraint set in MPC algorithms:

Property 2.2. The MAS for a given system is the largest positive invariant set for that
system, if it exists.

Due to the model class and type of constraints under consideration in this thesis, the
following property also holds:

Property 2.3. The MAS for(2.1),(1.2b)is a convex set, if it exists.

These two properties form the main reasons why the MAS is the preferred type of
positive invariant set to be used as a terminal constraint inMPC.

2.2 State of the art

In this section we give a brief overview of the state of the artconcerning the
construction of the MAS or invariant inner approximations of the MAS for LPV
systems. We start off with the LTI case, since this techniquelies at the basis of what
is described in the latter part of this chapter. In the remainder of this thesis we focus
on the case of polytopic input and state constraint sets containing the origin in their
interior:

x(k) ∈ X , {x ∈ Rnx |Axx ≤ 1}, k ∈ N, (2.10)
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u(k) ∈ U , {u ∈ Rnu |Auu ≤ 1}, k ∈ N, (2.11)

which is not a major restriction in the MPC setting. In futuresectionsmx, mu are used
to denote the number of rows inAx andAu respectively.

2.2.1 Maximal admissible set for LTI systems

Although the concept of positive invariant sets was alreadystudied in the 80’s (e.g.
[11, 12, 56]), the link with admissible sets and more specifically maximal admissible
sets was made in [52]. The paper presents both theoretical and algorithmic results
concerning construction of the MAS for deterministic discrete-time non-linear systems
subject to a generic class of inequality constraints. In this section we will describe the
results for the LTI case, whereas the following sections discuss results for the case with
model uncertainty.

In this section we consider autonomous LTI systems, i.e. systems of the form (2.1)
with r = 1 andΩ = {Φ}, subject to constraints (1.2b). The results of [52] make useof
setsOk defined as

Ok = {x|x ∈ X , Φx ∈ X , . . . , Φkx ∈ X}. (2.12)

Two important results of [52] that are of relevance in this thesis can be summarized as
follows:

• The MAS for an LTI system subject to a constraint setX is equal toO∞.

• If the eigenvalues ofΦ satisfy|λi| ≤ 1, there existsk⋆ ∈ Z+ such thatO∞ =
Ok⋆ .

No explicit values fork⋆ are given, but the following algorithm iteratively circumvents
this problem:

Algorithm 2.1 (MAS for LTI systems). Given an autonomous LTI systemx(k+1) =
Φx(k) subject to constraints(2.10), seti := 1 and perform the following steps:

1. ifOi+1 = Oi then go to step 3,

2. seti := i + 1 and go to step 1

3. returnO∞ ≡ Oi andk⋆ ≡ i.

The variablek⋆ is called theadmissibility indexand indicates how many time steps
ahead one has to enforce the constraints in order to ensure positive invariance of the
resulting set. The practicality of Algorithm 2.1 depends onhow efficient the condition
in step 1 can be verified. The concepts ofconstraint significanceand constraint
redundancy, which were not used explicitly in [52] but are introduced here already
with further chapters in mind, are helpful in this respect:

Definition 2.5 (Constraint significance). The significance sigS(aT) of a constraint
aTx ≤ 1 with respect to a setS containing the origin, is defined as

sigS(aT) , max
x∈S

aTx. (2.13)
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S SaT1 x ≤ 1

aT2 x ≤ 1

Figure 2.1: Illustration of the significance of a constraint. Constraint aT
1 x ≤ 1 has a

significance larger than1, while constraintaT
2 x ≤ 1 has a significance smaller than1.

The optimalx-vector resulting from (2.13) is indicated asx⋆.

The redundance of a constraint is defined as the reciprocal ofthe significance:

Definition 2.6 (Constraint redundance). The redundancerS(aT) of a constraint
aTx ≤ 1 with respect to a setS containing the origin, is defined as redS(aT) ,

1
sig

S
(aT)

.

In order to make a distinction between vectors that represent points in space or
vectors that represent constraint coefficients, we use the same convention as used
in [146] and denote points in space by column vectors (e.g.,a) and denote constraint
coefficient vectors as row vectors (e.g.,bT).

The interpretation of the significance of a constraint is straightforward. If the
significance is strictly larger than1, thenS would decrease in size if it would be
intersected withaTx ≤ 1. A significance strictly smaller than1 implies that the
constraint lies outside the setS. This is illustrated in Figure 2.1. In this way step1
of Algorithm 2.1 can be performed by calculating the significance of the constraints
of Oi+1 with respect toOi. If all significance values are≤ 1, then the condition
Oi+1 = Oi is satisfied and the algorithm can terminate. In Algorithm 2.1 all
intermediate sets are polytopes and hence the optimization(2.13) reduces to an LP.
This indicates that Algorithm 2.1 can be implemented and executed efficiently.

Extensions towards the inclusion of bounded disturbances are possible and are based
upon the same principles as those used in for the construction of LPV systems shown
in Figures 2.5 and 2.6. We refer to [51,63,67] for more details.

2.2.2 Ellipsoidal invariant sets for LPV systems

The construction of invariant sets for LPV systems is somewhat more complex, since
for such systems the current state does not uniquely define the future trajectory that
will be followed. All possible trajectories have to be guaranteed to be feasible, which
seems to imply a significant increase in the number of constraint necessary to describe
invariant sets for this class of systems. Therefore, in MPC algorithms for LPV systems,
the use of ellipsoidal invariant sets prevailed until recently [3, 31, 92, 142]. The main
advantages are the fact that the complexity of description of an ellipsoidal set uniquely
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depends on its dimensionality and the fact that such sets canbe constructed by solving
a single convex optimization problem. One can distinguish between two different
cases, depending on whether or not a feedback control law forcontrolling the open-
loop system is already known.

In the first case, no control law is known in advance and hence needs to be calculated
together with a corresponding invariant set. This problem was solved in [68] and is
summarized in Appendix A.

In the second case, one would like to construct an invariant ellipsoid for a given
closed loop system (2.1)-(2.2) subject to constraints (2.10). In this case the following
simpler method can be used [23]:

Algorithm 2.2 (Ellipsoidal invariant set for LPV systems). Given a system(2.1)-
(2.2)subject to constraints(2.10), solve the following optimization problem:

max
Z∈S

nx
++

detZ−1, (2.14a)

s.t.

[
Z ∗

ΦiZ Z

]

≻ 0, i = 1, . . . r, (2.14b)

[
Z ∗

Ax(j, :)Z 1

]

≻ 0, j = 1, . . . , mx. (2.14c)

Construct an ellipsoidal invariant setE , {x|xZ−1x ≤ 1}.

In the above optimization asterisks represent expressionsthat make the matrices
symmetric. This avoids redundant notations, since Linear Matrix Inequalities (LMIs,
[23,24]) always need to consist of symmetric matrix expressions.

The above optimization problem is a so calleddeterminant maximizationproblem,
which can be shown to be convex and hence can be readily solved[24]. In case the
main axes of the invariant ellipsoid can be expected to have lengths of the same order
of magnitude, the objective of (2.14) can be well approximated byminZ∈S

nx
++

Tr(Z),
which allows the use of standard SDP optimization algorithms.

Although the construction of ellipsoidal invariant sets isstraightforward, there are
several disadvantages associated with the use of ellipsoidal invariant sets

• computational complexity: due to the fact that an ellipsoidal set is defined by
a quadratic inequality, MPC algorithms that make use of suchsets automatically
have to make use of SOCP or SDP optimization. However, for computational
efficiency reasons, MPC algorithms are preferably formulated as LP or QP
optimization problems.

• restricted shape: Ellipsoidal invariant sets are rather restricted in shape, due to
the limited number of degrees of freedom associated with thefixed complexity
of representation. Therefore, these sets are sometimes relatively conservative
inner approximations of the real MAS of the system. This problem increases as
the dimensionality of the system increases.

• inherent symmetry: Ellipsoidal invariant sets are by definition centered around
the origin, since they are constructed as level sets of quadratic Lyapunov



2.2 State of the art 35

functions. As a result they are point-symmetric with respect to the origin and
can therefore only cope with asymmetric constraints in a conservative way.

These disadvantages can be eliminated by using polyhedral invariant sets. This
problem is tackled in the next section.

2.2.3 Maximal admissible set for LPV systems

The main advantage of ellipsoidal invariant sets is their computability by means of
solving a single convex optimization problem. The disadvantage is the fact that
ellipsoidal invariant sets are only inner approximations of the MAS. However, the MAS
typically cannot be constructed by solving a single optimization problem, but has to be
constructed iteratively.

All current algorithms for constructing the MAS make iterative use of theone-step
controllability set1 Pre〈Ω,U ,W〉(S):

Pre〈Ω,U ,W〉(S) , {x ∈ Rnx |∃u ∈ U : Ax + Bu + w ∈ S, ∀[A B] ∈ Ω, ∀w ∈ W}.

In a more general setting also a contraction constraints canbe imposed, similar to the
one imposed in Definition 2.2:

Definition 2.7 (λ-contractive one-step controllability set, [13,63]). Theλ-contractive
controllability set (λ ∈ (0, 1]) of S with respect to uncertain dynamicsΩ, input
constraint setU and disturbance setW is defined as

Pre〈Ω,U ,W,λ〉(S) ,

{x ∈ Rnx |∃u ∈ U : Ax + Bu + w ∈ λS, ∀[A B] ∈ Ω, ∀w ∈ W}. (2.15)

In further sections this set will be referred to as thepre-set. In case no inputs
are present this set is denoted as Pre〈Ω,W,λ〉(S). This shortened notation can be
distinguished from the notation mentioned above, by checking the dimensions ofΩ
for the presence of inputs. In case no contractivity is demanded (i.e.λ = 1) and in case
no disturbances are present, the shorthand notation Pre〈Ω〉(S) will be used.

Based on this tool, a necessary and sufficient condition for invariance can be
formulated:

Lemma 2.1 (Geometric condition for positive invariance, [63]). Given a system
(2.1), (2.2)and a setS ∈ Rnx , then the setS is 〈Ω′,W , λ〉-invariant iff

S ⊆ Pre〈Ω′,W,λ〉(S). (2.16)

Proof: (Sufficient) If x(k) ∈ S, it follows from (2.16) thatx(k) ∈ Pre〈Ω′,W,λ〉(S).
Due to Definition (2.7) it is then guaranteed thatΦx(k)+w ∈ λS, ∀Φ ∈ Ω′, ∀w ∈ W ,
which proves thatS is 〈Ω′,W , λ〉-invariant.
(Necessary)If S * Pre〈Ω′,W,λ〉(S), then∃x(k) ∈ (S \ Pre〈Ω′,W,λ〉(S)). Due to
Definition (2.7) it is then guaranteed that∃Φ ∈ Ω′, w ∈ W : x(k) + w /∈ λS,

1By some authors the one-step controllability set is also referred to as theone-step set[63], thepreimage
set[16] or thepre-set.
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which shows that in that caseS cannot be〈Ω′,W , λ〉-invariant. Therefore (2.16) is
a necessary condition for〈Ω′,W , λ〉-invariance. �

Based on the above condition a straightforward iterative strategy can be formulated
for constructing the MAS:

Algorithm 2.3 (〈Ω′,W , λ〉-invariant set construction, [13]). Given a system(2.1),(2.2)
subject to constraints(2.10) and variablesλ, λ′ ∈ R+ such thatλ ∈ (0, 1], λ′ ∈
(0, 1], λ′ ≤ λ, perform the following steps:

1. InitializeO0 := X , i := 0.

2. Execute iteratively untilOi ⊆ Pre〈Ω′,W,λ〉(Oi):

(a) Seti := i + 1.

(b) CalculateOi := Pre〈Ω′,W,λ′〉(Oi−1) ∩ Oi−1.

Return the setS , Oi and admissibility indexk⋆ , i.

Theorem 2.1(Maximal 〈Ω′,W , λ〉-invariant set, [13]). If Algorithm 2.3 terminates,
the resulting setS is 〈Ω′,W , λ〉-invariant. Furthermore, ifλ = λ′, the resulting set is
the maximal〈Ω′,W , λ〉-invariant set.

Proof: The termination condition implies thatOk⋆ ⊆ Pre〈Ω′,W,λ〉(Ok⋆). Due to
condition 2.16 it is directly guaranteed that the setS is 〈Ω′,W , λ〉-invariant. Ifλ = λ′,
the resulting set can also be proven to be the maximal〈Ω′,W , λ〉-invariant set, meaning
that every feasible〈Ω′,W , λ〉-invariant set is a subset ofS. Assume there exists a
〈Ω′,W , λ〉-invariant setS′ * S. This implies that there exists a statex ∈ (S′ \ Ok⋆).
This in turn implies∃Φ ∈ Ω′, w ∈ W : Φx + w /∈ λ′Ok⋆−1 = λOk⋆−1, while
at the same time, for the sameΦ, w it holds thatΦx + w ∈ λS′. This means that
Φx + w ∈ (λS′ \ λOk⋆−1), which means∃x′ ∈ (S′ \ Ok⋆−1). By induction one can
therefore see that∃x ∈ (S′ \ O0) which means thatS′ * X and hence is not feasible.
This proves thatS is the maximal〈Ω′,W , λ〉-invariant set. �

Furthermore, one can show that ifλ′ → λ, the resulting setS also approximates the
real maximal〈Ω′,W , λ〉-invariant set with increasing accuracy.

The above algorithm can be used for the construction of (approximations to) the
MAS for a wide variety of model classes. The only requirementis the modification of
the definition of the pre-set according to the given model class.

In the following section a reformulation of the above algorithm is given, specifically
stating the operations on the different constraints describing the intermediate sets. This
will provide insight into the constraint structure of the obtained sets, which will allow
us to reduce the complexity of the obtained sets in Chapter 5.

2.3 Efficient computation of the MAS for LPV systems

First we formulate a basic algorithm for the disturbance-free case without contraction
constraints. Later we formulate both additions as extensions of this basic algorithm.
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2.3.1 Efficient algorithm formulation

First of all it should be noted that the pre-set Pre〈Ω〉(S), with S = {x|ASx ≤ 1}, can
easily be calculated, by virtue of the following lemma.

Lemma 2.2(Pre-set calculation, [13]). Given an autonomous system(2.1), (2.2)with
W ≡ {0} and a polyhedral setS = {x|ASx ≤ 1}, then the pre-set Pre〈Ω〉(S) is given
by

Pre〈Ω〉(S) = {x|ASΦ1x ≤ 1, . . . , ASΦrx ≤ 1}. (2.17)

Proof: By making convex combinations(
∑r

i=1 λiASΦi)x ≤ 1, of the different
constraintsASΦix ≤ 1, i = 1, . . . , r, one can see that satisfaction ofASΦix ≤ 1, i =
1, . . . , r implies thatASΦx ≤ 1, ∀Φ ∈ Ω′, which, combined with the definition of the
pre-set, proves the lemma. �

On one hand, this lemma allows the straightforward iterative calculation of the
setsOi in Algorithm 2.3, but also shows the exponential growth of the number of
constraints describing these sets for increasing values ofi.

However, one can see that the constraints describing two successive setsOi and
Oi−1 partly overlap, since all constraints describingOi are by construction present
in the description ofOi−1. Hence, when calculating the pre-set ofOi, only the non-
overlapping part of the constraints ofOi has to be considered explicitly.

A second important aspect is the elimination of redundant constraints. As already
pointed out earlier, ifr > 1 the number of constraints describing the setsOi increases
exponentially as a function ofi. However, especially for lower-dimensional systems,
typically a large fraction of these constraints will be redundant and hence can be
omitted. Therefore, significant efficiency gains can be obtained when only retaining
those constraints of Pre〈Ω′〉(λ

′Oi−1) that are non-redundant with respect toOi−1.
Finally, one should note that by iteratively adding constraints, constraints constructed

in earlier iterations can become redundant, even if they were initially non-redundant.
Therefore, efficient implementations should also regularly check the redundancy of
constraints constructing in earlier iterations, a processwe will refer to asgarbage
collection.

Given these considerations, Algorithm 2.3 can now be efficiently reformulated for
the caseW = {0}, λ = λ′ = 1:

Algorithm 2.4 (Efficient MAS-computation for LPV systems, [98]). Given an LPV
system(2.1),(2.2)subject to constraints(2.10).

1. InitializeAS := Ax, i := 1.

2. Perform the following steps iteratively untili > rows(AS):

(a) SetaT := AS(i, :).

(b) Check the redundance of the constraintsaTΦix ≤ 1, i = 1, . . . , r with
respect toS , {x|ASx ≤ 1}. For eachi = 1, . . . , r, if sigS(aTΦi) > 1,
then add the constraintaTΦix ≤ 1 to AS by settingAS := [AS ; aTΦi].
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(c) If necessary2, performgarbage collection, i.e. check for every row ofAS

whether the corresponding constraint is redundant with respect to the set
defined by the other rows ofAS and if so, remove that row fromAS .

(d) Seti := i + 1.

One can easily verify that Algorithm 2.4 is identical to Algorithm 2.3 withW =
{0}, λ = λ′ = 1, apart from the following aspects:

• Algorithm 2.4 makes no explicit distinction between the different setsOi, i ≥ 0.
This is possible due to the fact that every setOi, i ≥ 0 is described by the
constraints ofOi−1 supplemented with the constraints of Pre〈Ω′〉(Oi−1).

• The resulting invariant sets are geometrically identical for the two algorithms,
but differ in their algebraic representation, since Algorithm 2.4 eliminates all
redundant constraints.

Since Algorithms 2.3 and 2.4 are identical from a conceptualpoint of view, Theorem
2.1 also applies to Algorithm 2.4. Since Algorithm 2.4 always usesλ = λ′ = 1, the
resulting set is therefore guaranteed to be the MAS for system (2.1), (2.2) subject to
constraints (2.10). However, it is not guaranteed that the algorithm terminates after a
finite number of iterations. The following Theorem shows under what circumstances
Algorithm 2.4 terminates in a finite number of iterations.

Theorem 2.2. Consider the disturbance-free system(2.1), (2.2)subject to constraints
(2.10). If the following condition is satisfied

∃c ∈ R+, α ∈ (0, 1) :

‖Φ(k)Φ(k − 1) . . . Φ(0)‖ ≤ cαk, ∀Φ(0), . . . , Φ(k) ∈ Ω′, k ∈ N, (2.18)

then Algorithm 2.3 (withλ = λ′ = 1) and Algorithm 2.4 terminate in a finite number
of iterations.

Proof: First of all it should be noted that the setsOi, i ∈ N constructed in Algorithm
2.3 can be written as

Oi =

i⋂

j=0

Xj , i ∈ N, (2.19)

with X0 = X andXi+1 = Pre〈Ω′〉(Xi), i ∈ N. This can be proven by induction on
i. Expression (2.19) is trivially satisfied fori = 0. Furthermore, if it is guaranteed
for i it is also guaranteed fori + 1, since Pre〈Ω′〉(Oi) = Pre〈Ω′〉(

⋂i
j=0 Xi) =

⋂i
j=0 Pre〈Ω′〉(Xi) =

⋂i+1
j=1 Xi and henceOi+1 = (

⋂i+1
j=1 Xi)∩ (

⋂i
j=0 Xi) =

⋂i+1
j=0 Xi.

Due to the recursionXi+1 = Pre〈Ω′〉(Xi), the setsXi, i ∈ N can be written as
Xi = {x|AXi

x ≤ 1} with AX0 = Ax andAXi+1 = [AXi
Φ0; . . . ; AXi

Φr]. This allows

2The necessity of garbage collection can only be evaluated a posteriori. However, a rule of thumb that
experimentally has been proven to be adequate in a wide rangeof circumstances, is to perform garbage
collection with every50%-increase in rows(AS).
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us to construct an upper bound tol(i) , maxj,x∈X ‖AXi
(j, :)x‖ as a function of the

iteration numberi:

l(i) , max
j,x∈X

‖AXi
(j, :)x‖,

≤ max
j
‖Ax(j, :)‖ max

Φ(0...i)∈Ω′

‖Φ(i)Φ(i− 1) . . .Φ(0)‖max
x∈X
‖x‖,

≤ cαi max
j
‖Ax(j, :)‖max

x∈X
‖x‖. (2.20)

One can see that ifl(i) ≤ 1, which is satisfied ifabcαi ≤ 1, with a = maxj ‖Ax(j, :)‖
andb = maxx∈X ‖x‖, it is guaranteed thatX ⊆ Xi. BecauseOi−1 ⊆ X andOi =
Oi−1 ∩Xi it then follows thatOi−1 = Oi. Consequently, since Pre〈Ω′〉(Oi−1)∩Oi−1

it can be concluded that the termination conditionOi−1 ⊆ Pre〈Ω′〉(Oi−1) used in
Algorithm 2.3 is satisfied for these values ofi. This shows that Algorithm 2.3
terminates in at mostk⋆

max iterations, withk⋆
max defined as

k⋆
max =

⌊

− lna + ln b + ln c

lnα

⌋

. (2.21)

Since for every iteration executed in Algorithm 2.3, Algorithm 2.4 only has to execute
a finite number of iterations (i.e., equal to the number of constraints in the setXi), also
the latter algorithm is proven to terminate in a finite numberof iterations. �

This result shows that the MAS of systems satisfying condition (2.18) is finitely
determined, meaning it can be described by a finite number of linear inequalities, and
hence is a polytope.

Condition (2.18) is less strict than the one proven in [98, 101], which required the
given LPV system to be quadratically stable. Quadratic stability of the given system
ensures satisfaction of condition (2.18), but the oppositeis not guaranteed. It can be
shown that (2.18) is satisfied for all systems where theJoint Spectral Radius(JSR,
[137]) of the matricesΦ1, . . . , Φr is strictly smaller than1. We refer to Appendix C
for more details.

Theorem 2.3. If for a given uncertainty polytopeΩ′ the JSRρ̂(Ω′) = λ < 1, then
condition(2.18)is satisfied∀α ∈ (λ, 1).

Proof: If ρ̂(Ω′) = λ < α then, due to the definition oflim sup, there exists a positive
integern ∈ Z+ such thatmaxA(i)∈Ω′,i=1,...,k ‖A(1) · . . . · A(k)‖ 1

k < α, ∀k ≥ n, or
equivalently thatmaxA(0...k)∈Ω′ ‖A(0) · . . . · A(k)‖ < αk+1, ∀k ≥ n. If we now
choose a positive scalarc′ ∈ R+ such that

c′ > max




1, max

k=0,...,n−1

A(i)∈Ω′,i=0,...,k

(‖A(0) · . . . ·A(k)‖
αk+1

)




 ,

then it is clear thatmaxA(i)∈Ω′,i=0,...,k ‖A(0) · . . . · A(k)‖ < c′αk+1, ∀k ∈ N.
Condition (2.18) is hence satisfied∀c ≥ c′α. �
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Since ρ̂(Ω′) < 1 is equivalent with asymptotic stability of the autonomous LPV
system [18] the above theorem extends the applicability of Algorithm 2.4 from
quadratically stable systems (as proven in [98]) to all asymptotically stable autonomous
LPV systems of the form considered in this thesis. Similar statements can be made if
maxj ‖Φj‖ = λ < 1, but the value ofλ thus obtained will be equal or larger than
that obtained using the JSR [18] and therefore the upper bound k⋆

max will typically be
much more conservative. However, the main disadvantage of using the JSR, is that its
computation is an NP-hard problem. Even computing arbitrarily close approximations
to the JSR is an operation with a higher than polynomial worst-case computational
cost if there is no problem structure (e.g., matrix symmetry, non-negativity of matrix
elements, . . . ) that can be exploited [18, 137]. In general itcan be shown [20, 71] that
ρ̂ ≤ 1 is algorithmicallyundecidable. This seems to imply that using theJSR might
not always be useful in this context, but in many cases sufficiently close approximations
can be computed [18] in an acceptable amount of time in order to either confirm or rule
out thatρ̂(·) < 1.

It should be noted that Theorem 2.2 cannot be applied if the constraintsX is not
bounded, since in that caseb will be infinite and no useful bound will be obtained.
However, the following corollary might be useful in that case and can be verified easily:

Corollary 2.1. Consider the disturbance-free system(2.1), (2.2)subject to constraints
(2.10). If condition(2.18)is satisfied and there existsj ∈ Z+ such thatOj is bounded,
then an upper bound to the number of iterations of Algorithm 2.3 is given by

k⋆
max = j +

⌊

− ln a + ln b + ln c

lnα

⌋

, (2.22)

wherea andb are calculated using setOj instead ofX .

Proof: The above upper bound can easily be verified by applying Theorem 2.2 to the
case when Algorithm 2.3 is applied to system (2.1),(2.2) subject to constraint setOj

instead ofX . �

This corollary will prove insightful in Section 5.1, where polyhedral invariant sets
for systems with a specific structure are studied.

2.3.2 Structure of the MAS

Considering the results of the previous section, it is now easy to see that the MAS
S for a given LPV system has a specific structure since it can be expressed as an
intersection of different setsS =

⋂k⋆

i=0 Xk and due to the recursive relationshipXi+1 =
Pre〈Ω′〉(Xi) between these sets.

The different setsXi induce a hierarchical ordering of the constraints describingS
into different levels, depending on the value ofi. The recursion relationship between
successive setsXi andXi+1 induces links between the constraints on leveli and those
on leveli+1. As a result the structure of the MAS of an LPV system can be depicted as
a tree of constraints. The following properties can be verified easily and are illustrated
in the next section:
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LTI LPV

Figure 2.2: Left: Tree structure of the MAS of an LTI system withmy = 3, k⋆ = 3.
Right: Tree structure of the MAS of an LPV system withmy = 3, r = 2, k⋆ = 3. All
constraints are assumed to be non-redundant.

• The tree structure has a depth of at mostk⋆ layers.

• Every constraint at leveli will have at mostr children at leveli + 1. Due to
redundance of constraints the number of children of a given constraint can be
strictly smaller thanr.

• Every constraintaTx ≤ 1 at an arbitrary leveli can be expressed asaT = bTΦj

with j ∈ {1, . . . , r} andbTx ≤ 1 a constraint at leveli− 1. This can be verified
by analyzing the recursion betweenXi andXi−1 and Lemma 2.2.

• The tree structure consists of at mostmx constraints. This is due to the fact that
all constraints at an arbitrary leveli are constructed using exactly one constraint
at level i − 1 and hence all constraints can be ‘traced back’ to exactly one
constraint at level0. Due to the initializationX0 = X there are at mostmx

constraints at level0.

• Every constraint in the tree structure has aparent, except the constraints at level
0. This is equivalent with saying that if a constraintaTx ≤ 1 at an arbitrary level
i is redundant with respect to the invariant set, all its childrenaTΦix ≤ 1, i =
1, . . . , r will also be redundant. Indeed, if one constraintaTΦi⋆x ≤ 1, i⋆ ∈
{1, . . . , r} is non-redundant, whileaTx ≤ 1 is redundant, one can find a state
vectorx⋆ ∈ S such thataTΦi⋆x⋆ = 1. The vectorΦi⋆x hence lies exactly on the
constraint induced byaT which is redundant.Φi⋆x therefore has to lie outside of
S which contradicts the invariance property ofS. Consequently, all constraints
aTΦix ≤ 1, i = 1, . . . , r have to be redundant.

A schematic depiction of a possible tree structure as described above, is shown in
Figure 2.2 and is compared to the structure present in a polyhedral set for an LTI system
(i.e.,r = 1). One can see that in the worst-case the number of constraints describing the
set can increase exponentially as a function ofk⋆, while this increase is only linear in
the LTI case. Given values formx, r, k⋆, the following expression gives the worst-case
number of constraints

rows(AS) = mx

k⋆

∑

i=0

ri = mx
1− rk⋆+1

1− r
. (2.23)
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Figure 2.3: The maximal admissible set computed using Algorithm 2.4 (solid) and an
ellipsoidal invariant set computed using Algorithm 2.2 (dashed and shaded) for system
(2.24), controlled by controlleru(k) = [−0.5 − 0.3]x(k) and subject to constraints
(2.25). 50 trajectories starting from the leftmost vertex of the MAS are depicted in
dotted lines.

In most cases the real number of constraints will typically be significantly lower, an
example of which is given in the next section.

2.3.3 Example

In this section a numerical example is given in order to illustrate the efficacy of
Algorithm 2.4.

We consider a system withnx = 2, nu = 1, r = 2, described by matrices

A1 =

[
1 0.1
0 1

]

, A2 =

[
1 0.2
0 1

]

, (2.24a)

B1 =

[
0
1

]

, B2 =

[
0

1.5

]

, (2.24b)

subject to constraints (fork = 0, . . . ,∞)

−1 ≤ u(k) ≤ 0.5, (2.25a)
[
−10
−10

]

≤ x(k) ≤
[

10
10

]

. (2.25b)

A linear feedback controlleru(k) = −Kx(k) is chosen asK = [0.5 0.3]. This results
in an autonomous LPV system withΩ′ = Co{A1 − B1K, A2 − B2K} subject to
state constraints defined byAx = [−2K; K; 0.1I;−0, 1I]. The closed-loop system is
asymptotically stable and satisfies condition (2.18).
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Figure 2.4: Tree structure of the polyhedral invariant set depicted in Figure 2.3.
Shorthand notation(i, C) is used to denote constraintsAx(i, :)Cx ≤ 1. At the right
hand-side the setsXi are indicated to which the constraints of that level of the tree
belong.

Figure 2.3 shows the MAS obtained using Algorithm 2.4 and compares it to an
ellipsoidal invariant set computed using Algorithm 2.2. The polyhedral invariant set
clearly is significantly larger than the ellipsoidal set andis able to take the asymmetric
constraints into account. The ellipsoidal invariant set isnot able to efficiently deal with
the asymmetry in the imposed constraints since by construction it is centered around
the origin. The plotted trajectories show that both sets areindeed invariant with respect
to the uncertain dynamics.

Figure 2.4 depicts the tree structure corresponding to the polyhedral invariant set
depicted in Figure 2.3. The structure consists of two trees,corresponding to imposed
constraints 5 and 6. Since in this example the 4 first constraints correspond to the
state constraints, one can see that these constraints are all redundant and only the input
constraints determine the size and shape of the MAS in this case.

One can also see that most constraints only have 1child, whereas the theoretical
maximum isr = 2. These observations indicate that a massive reduction of the number
of constraints is obtained by removing the redundant ones. The theoretical maximum
number of constraints in this case ismx(r(k⋆+1) − 1) = 6(26 − 1) = 378. Only 11
of those constraints are found to be non-redundant. It should be noted that during the
execution of Algorithm 2.4 the number of rows in matrixAS never exceeded15. Total
computation time on a1.6GHz Pentium-M CPU was7.4 seconds. MATLAB 6.5 and
the standard toolboxes were used.

More detailed examples and scalability analyses will be shown in Chapters 5 and 8.
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Figure 2.5: Schematic representation of condition (2.29) for a〈Ω′,W , λ〉-invariant set
S with nx = 2, r = 3, l = 4 andλ < 1.

2.4 Extensions

In this section we discuss two basic extensions to the basic formulation of Algorithm
2.4, namely the extensions towardsW 6= {0} and λ < 1. The basic structure
of the algorithm does not change, but the way the pre-set is calculated has to be
updated accordingly. Also the conditions under which convergence of the algorithm
is guaranteed, will have to be updated.

2.4.1 Contraction constraints

Often it is desired to construct invariant sets with a given imposed contraction rate,
i.e. 〈Ω′, {0}, λ〉-invariant sets, withλ ∈ (0, 1). This can then e.g. be used to obtain
constrained controllers with a certified rate of convergence towards the origin. Given a
setS = {x|ASx ≤ 1}, the pre-set can now be calculated as

Pre〈Ω,{0},λ〉(S) = {x|ASΦ1x ≤ λ1, . . . , ASΦrx ≤ λ1}, (2.26)

or if the standard formulation with right hand-side1 should be maintained:

Pre〈Ω,{0},λ〉(S) = {x|λ−1ASΦ1x ≤ 1, . . . , λ−1ASΦrx ≤ 1}. (2.27)

This way it can be seen that computing an〈Ω′, {0}, λ〉-invariant set actually cor-
responds to computing an〈Ω′′, {0}, 1〉-invariant set withΩ′′ defined asΩ′′ ,

Co{λ−1Φ1, . . . , λ−1Φr}. Condition (2.18) now becomes

∃c ∈ R+, α ∈ (0, λ) :

‖Φ(k)Φ(k − 1) . . .Φ(0)‖ ≤ cαk, ∀Φ(0), . . . , Φ(k) ∈ Ω′, k ∈ N, x ∈ X , (2.28)

which is guaranteed to be satisfied ifmaxj ‖Φj‖ < λ or more generally speaking if
ρ̂(Ω′) < λ. Again, the latter condition is less conservative, but is more difficult to
check, since computing the joint spectral radius is an NP-hard problem.
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Figure 2.6: Schematic representation of condition (2.30) for a〈Ω′,W , λ〉-invariant set
S with nx = 2, r = 3, l = 4 andλ < 1.

2.4.2 Bounded disturbances

Computing〈Ω′,W , λ〉-invariant sets, withλ ∈ (0, 1), can be done by making similar
adjustments to the calculation of the pre-set. The pre-set of S consists of all statesx
for which the following condition is satisfied:

Φx + w ∈ λS, ∀Φ ∈ Ω′, ∀w ∈ W , (2.29)

which, according to Definition (1.13) and due to the fact thatΩ′ is a polytope, is
equivalent with

Φix ∈ (λS ⊖W), ∀i = 1, . . . , r. (2.30)

Figure 2.5 schematically depicts condition (2.29) for a〈Ω′,W , λ〉-invariant setS with
nx = 2, r = 3, l = 4 andλ < 1. Figure 2.6 shows condition (2.30) for the same
situation.

Using the remarks in Chapter 1 regarding the computation of the Minkowski
difference of a H-polytope and a V-polytope, the pre-set cannow be calculated as

Pre〈Ω,{0},λ〉(S) =

{

x

∣
∣
∣
∣

1

λ
ASΦix ≤ 1− max

j=1,...,l
ASwj , i = 1, . . . , r

}

, (2.31)

where the maximum ofASwj is calculated for each component separately. Conver-
gence of the accordingly modified Algorithm 2.4 is now guaranteed if

maxj ‖Φj‖
1−maxj ‖AS(j, :)‖maxj ‖wj‖

< λ. (2.32)

This expression can be very conservative and is not independent of linear state
transformationsx′ = Mx, M ∈ Rnx×nx . However, a similar expression using the
JSR, which does not suffer from these drawbacks, is not possible due to the bounded
disturbances.

2.5 Conclusions

This section discussed the concept of set invariance, and more precisely the construc-
tion of polyhedral invariant sets for LPV systems. Relevantdefinitions and properties
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are given, as well as an overview of the state-of-the-art regarding algorithms for
constructing invariant sets.

The main contribution of this chapter is twofold. First of ala more detailed
algorithm for the construction of the MAS for LPV systems is given, illustrating the
ability to achieve significant computational improvementsby only retaining redundant
constraints during the computations. The new algorithm also gives insight in the
structure present in the constraints describing the MAS. This structure will be exploited
in Chapter 5 in order to obtain reduced-complexity polyhedral invariant sets.

Secondly, some attention is given to convergence properties of the described
algorithm using the Joint Spectral Radius. The obtained insights in the convergence
behavior will also prove useful in Chapter 5 in order to assess the convergence behavior
of the algorithms presented there.

The ability to construct polyhedral invariant sets will be used extensively in Chapter
3 in order to improve several existing robust MPC algorithms.



Chapter 3

Robust Model Based Predictive
Control

“In these matters the only certainty is that nothing is certain.”

– Caius Plinius Secundus (23-79) –

This chapter gives an overview on how to extend the stabilizing MPC
framework of the previous chapter towards the robust control setting. A
more general model class than the one used in the previous chapter is
described, allowing the inclusion of uncertain dynamics and bounded
disturbance input in the model description. This chapter describes
the modifications to the quasi-infinite horizon MPC algorithm needed
for maintaining recursive feasibility and stability in this more general
setting. Finally, two existing robust MPC algorithms are described that
are incorrectly claimed to be recursively feasible and asymptotically
stabilizing in literature. Counterexamples to these claims are provided and
corrections are proposed, illustrating the need for careful consideration
when designing robust MPC algorithms.

3.1 Introduction

The main aim of this chapter is to relax the assumption of the previously presented
quasi-infinite horizon MPC algorithm and its accompanying stability framework that
there is no mismatch between the predictions made by the MPC algorithm and the real
plant behavior. In real applications it is unavoidable to experience such mismatches for
two important reasons.

First of all the prediction model used in the MPC controller –i.e. constraint (1.11e)
– typically only approximately describes the plant’s real dynamic behavior. There are

47
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multiple causes that contribute to this fact. In most situations prediction models used in
MPC areblack boxmodels, which means they are based on input/output measurements
of the real plant. These measurements are noisy and limited in number, which in turn
limits the accuracy of the resulting model. Even ifwhite boxmodels are used, it is
often difficult to exactly determine all involved physical constants. Furthermore, due
to wear, maintenance, . . . the behavior of a real plant can be expected to change as a
function of time which also compromises the accuracy of the prediction model.

Secondly, apart form limited accuracy of the prediction model, often only a limited
number of inputs of a system can be manipulated by the controller. In reality a
multitude of inputs exist, calleddisturbance inputs, that cannot be manipulated by
the controller, because they are governed by phenomena thatlie beyond the scope of
the plant. These phenomena include dynamics occurring in connected systems that
are controlled by other controllers, natural phenomena like rain, outside temperature,
. . . or other uncontrollable effects like fluctuations in thecomposition of certain
reagents.

Two different approaches to robustness can be identified in the MPC literature. One
aspect is the inherent robustness ofnominalMPC algorithms, i.e. algorithms that were
not designed for robustness from the outset. Examples of this approach are [43, 81],
but constrained MPC, the main focus of this thesis, is not considered.

A second robustness aspect that has received attention in MPC literature is based
on the observation that, although the quantification of the exact contribution of these
phenomena at every time instant is impossible due to their uncertain nature, it often
is possible to quantify the worst-case magnitude of these phenomena, which allows
them to be taken into account during the controller design. This is typically done by
including this uncertainty information in the model upon which the controller is based,
which is referred to as robust control (see e.g., [145]). This is also the approach taken
in this thesis.

3.2 Model class

3.2.1 Uncertain dynamics

Before being able to start the robust controller design process, some information is
needed about the model uncertainty. Early results [2, 44, 50, 144] considered impulse
response models with bounded uncertainty on the coefficients. However, for reasons of
computational efficiency, flexibility and compactness of representation, recent MPC
algorithms typically makes use of state space models. The two most well-known
uncertainty classes that are able to represent uncertain dynamics in the state-space
framework are those ofnorm-bounded uncertainty(orstructured uncertainty, [91]) and
polytopic uncertainty[68]. For use in MPC it is computationally convenient to have
explicit expressions for the extremal values of the uncertain dynamics, so one typically
uses linear state space models with polytopic uncertainty,where the uncertainty region
is described as a V-polytope ( [146], see Figure 1.5):

x(k + 1) = A(k)x(k) + B(k)u(k), k ∈ N, (3.1)
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with

[A(k) B(k)] ∈ Ω ≡ Co{[A1 B1], . . . , [Ar Br]}, k ∈ N, (3.2)

or equivalently

[A(k) B(k)] ∈







r∑

j=1

λj(k)[Aj Bj ]

∣
∣
∣
∣
∣
∣

λ1(k) ≥ 0, . . . , λr(k) ≥ 0,

r∑

j=1

λj(k) = 1






,

k ∈ N. (3.3)

In further sections we will use the shorthand notationλ(k) = [λ1(k); . . . ; λr(k)].
Depending on the allowed variation in time ofλ(k) and the availability of information
regarding this variation a distinction can be made between the following model classes:

Linear Time-Invariant (LTI): λ(k) is constant (i.e. independent of timek)
and known a priori.

Linear Time-Varying (LTV): λ(k) is time-dependent
and known a priori.

Linear Parameter-Varying (LPV): λ(k) is time-dependent
but unknown a priori.

Note that in MPC literature the term LTV is sometimes used to refer to LPV systems.
Most existing MPC algorithms are designed for the latter model class and hence also
in this thesis only LPV systems are considered.

Also note that from a control point of view LPV systems are more general than LTV
or LTI systems in the sense that beyond the bounding plytopeΩ no further information
is known aboutλ(k) and hence the controller has to be designed for the worst-case
variations. A controller that is designed for an LPV system with uncertainty regionΩ
will therefore also stabilize any LTV system with the same uncertainty region or any
LTI system with dynamics insideΩ.

Strictly speaking, the setΩ only represents anuncertaintyin the system matrices
in the LPV case, while in the other cases the setΩ simply represents bounds on
the (known) value(s) of[A(k) B(k)]. However, in this thesis we will always build
controllers for the LPV case and therefore, even if the real system is LTI or LTV, the
real values of[A(k) B(k)] are not known to the controller. Therefore, with some slight
abuse of terminology, the setΩ is always referred to as theuncertainty polytopein the
rest of this thesis.

Finally, it should also be noted that we do not consider bounds on the speed
of variation of the variablesλ(k), which is typically the case ingain scheduling
[76, 128, 134] and which is often implied when using the term LPV. The robust
controllers discusses in this thesis allow for arbitrarilyfast changes ofλ(k) (within
Ω) and therefore should also work if the real values ofλ(k) have a limited rate of
change. Admittedly, taking into account such bounds on the rate of change, if they
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are known, could improve control performance significantly. An examples of such an
approach can be found in e.g., [134].

3.2.2 Disturbance inputs

A second source for mismatches between the predicted and theactual plant behavior,
is the existence of inputs that cannot be manipulated by the controller and are typically
impossible to measure. In the MPC framework these disturbances are typically
modeled as bounded state disturbances denoted asw(k):

x(k + 1) = A(k)x(k) + B(k)u(k) + w(k), k ∈ N, (3.4)

with [A(k) B(k)] satisfying (3.2) andw(k) satisfying (2.4).W is typically represented
as a V-polytope, since for computational reasons it is favorable to have an explicit
expression for the extremal values ofw(k). However, an H-polytope representation
forW would only mildly complicate the way disturbances can be taken into account.
Therefore, in further chapters, MPC algorithms that take disturbances into account in
general can be extended to this setting with only relativelysmall implementational
modifications.

To make the distinction between system (3.1)-(3.2) and system (2.4),(3.2),(3.4) in
future sections the former will be referred to as thedisturbance-free system, while the
latter will be referred to as thedisturbed system. When not explicitly mentioned, the
disturbance-free system (3.1)-(3.2) is being referred to.System (1.1) will be referred
to as thenominal system.

3.3 Constraint handling in robust MPC

The aim of this section is not to give an exhaustive overview of the state-of-the-art
of robust MPC. An overview of related algorithms and necessary background will
be given when new algorithms will be introduced in further sections. The aim of
this section is rather to give a more fundamental idea of how robustness can be
incorporated into the MPC design and how it influences recursive feasibility. Two
important methodologies are explained, after which a critical assessment is given about
the advantages of each of both methods. The main idea behind both methods is the
optimization of theworst case(over all possible values of the uncertainty) control
cost [2, 27]. Special attention will be given to feasibilityissues, since this is an
important area in which both methods differ.

In order to improve clarity we only discuss disturbance-free LPV systems in further
sections of this chapter, although some of the algorithms described here were initially
proposed for LTI systems subject to bounded disturbances. However, conceptually
there are no significant differences between both settings with regards to recursive
feasibility. Therefore the conclusions of this chapter apply to robustness with respect to
polytopic model uncertainty, polytopically bounded disturbances and the combination
of both. The next two sections describe results published in[144] and [129], which
still lie at the basis of many recently published robust MPC algorithms, either directly
or indirectly.
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3.3.1 Open-loop min-max MPC

One of the first well-known stability results for robust MPC incorporating worst-case
predictions is the paper by Zheng and Morari published in 1993 [144]. A modification
to the standard finite-horizon MPC Algorithm 1.1 is proposedthat allows uncertainty
in the future output/state evolutions to be taken into account for a class of uncertain
FIR-models. However, the absence of output/state constraints and the rather restrictive
class of models considered there, did not necessitate the incorporation of specific
stability measures as in Algorithm 1.2. Therefore the results only have limited general
applicability. In what follows we briefly describe the method of [144] applied to model
class (3.1) and objective function (1.3).

3.3.1.1 Open-loop predictions

In Algorithm 1.1, at every time instant an optimal input sequenceuo(k) is optimized
by solving a finite-horizon optimal control problem. Withinthe optimization problem
the corresponding within-horizon state sequencex

o(k) is computed by means of model
equations (1.1) and both input and state constraints are applied. However, when using
model (3.1), this state sequence cannot be computed deterministically. The method
described in [144] tackles this by computing set-valued state predictionsXuN

(k + i|k)
corresponding to input sequenceuN (see (1.5)):

XuN (k)(k + i + 1|k) , {Ax + Bu(k + i|k)|[A B] ∈ Ω, x ∈ XuN (k)(k + i|k)},
i = 0, . . . , N − 1, (3.5)

with XuN (k)(k|k) ≡ {x(k|k)}. However, due to the fact thatΩ is a V-polytope and
due to linearity of the prediction equations the predictionsets can also be represented
as V-polytopes:

XuN (k)(k + i|k) , Co{xj0,...,ji−1(k + i|k)|jm = 1, . . . , r, m = 0, . . . , i− 1},
i = 1, . . . , N, (3.6a)

with

xj0(k + 1|k) = Aj0x(k|k) + Bj0u(k|k), j0 = 1, . . . , r, (3.6b)

xj0,...,ji−1,ji
(k + i + 1|k) = Aji

xj0,...,ji−1(k + i|k) + Bji
u(k + i|k),







i = 1, . . . , N − 1,
jm = 1, . . . , r,
m = 0, . . . , i.

(3.6c)

This prediction methodology is depicted in Figure 3.1. It isclear that for any[A(k +
i) B(k + i)] ∈ Ω, i = 0, . . . , j − 1, j = 1, . . . , N it is guaranteed thatx(k + j|k) ∈
XuN (k)(k + j|k) and that hence the setsXuN (k)(k + j|k) capture all possible state
evolutions within the prediction horizon. Due to the fact that a deterministic sequence
of inputs is considered, ignoring the fact that at timek + 1 a different input can be
applied depending on the measured value ofx(k + 1|k), the setsXuN (k)(k + 1|k)
defined in (3.6) are calledopen-loop predictions. Other examples of this approach can
be found in e.g., [31,33,84,110,142,143].



52
R

obustM
odelB

ased
P

redictive
C

ontrol

x(k|k)

x1(k +1|k)

x2(k +1|k)

x1,1(k+2|k)

x2,1(k+2|k)

x2,2(k+2|k)

[A1 B1]

[A2 B2]

[A1 B1]

[A1 B1]

[A2 B2]

[A2 B2]

u(k|k)
u(k+1|k)

x1,2(k+2|k)

u(k+2|k)

XuN(k+3|k)XuN(k+2|k)XuN(k+1|k)

Figure 3.1: Schematic representation of the computation of open-loop state predictions with a horizon lengthN = 3 using an LPV
model (3.1)-(3.2) withr = 2. For clarity reasons, symbols for the state predictions at timek + 3 are omitted.
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3.3.1.2 Algorithm formulation

We can now formulate therobust open-loop min-max MPC algorithmby imposing state
constraints to all vertices of the state prediction setsXuN (k)(k+ i|k), i = 1, . . . , N and
by minimizing the worst-case cost by means of a min-max optimization problem:

Algorithm 3.1 (Robust open-loop min-max MPC). Given a system described by
(3.1)-(3.2), subject to constraints(1.2a)-(1.2b) and given a control objective(1.3),
solve at each time instantk, given the value of the current statex(k) ≡ x(k|k), the
following optimization problem:

min
u(k)

max
jm=1,...,r

m=0,...,N−1

(
N∑

i=0

‖xj0,...,ji−1(k + i|k)‖2Q +

N∑

i=1

‖u(k + i|k)‖2R

)

, (3.7a)

s.t. xj0,...,ji−1(k + i|k) ∈ X ,







jm = 1, . . . , r,
m = 0, . . . , i− 1,
i = 1, . . . , N,

(3.7b)

u(k + i|k) ∈ U , i = 0, . . . , N − 1, (3.7c)

and subject to(3.6b)-(3.6c). Apply the inputu(k) ≡ u(k|k) to the plant. Repeat this
procedure at the next time stepk + 1 based on updated state information.

Due to convexity of the state constraint setX and the fact that the state prediction sets
X (k + i|k) are polytopic, it is clear that imposing the state constraints to the vertices
of XuN (k)(k + i|k), guarantees thatXuN (k)(k + i|k) ⊆ X .

It should be noted that the original algorithm presented in [144] used FIR-models
with uncertain coefficients and anL∞- andL1-based cost expressed in terms ofy(k)
and∆u(k) , u(k) − u(k − 1). However, the idea of making open-loop worst-case
predictions as explained above is conceptually identical.

If X ,XN andU are polyhedral the above optimization problem can be convexified
by reformulation as an SOCP. Due to the choice of a different cost objective and a
more restrictive model class, the original algorithm can besolved by means of an LP
whose dimensions increase polynomially in terms of the control problem size, whereas
the above algorithm would require an exponentially increasing number of optimization
variables.

3.3.1.3 Recursive feasibility and stability

Due to the fact that only input constraints are considered in[144], recursive feasibility
is not an issue, since one can always choose the trivial inputsequenceu(k + i|k) ≡
0, i = 0, . . . , N − 1 or ∆u(k + i|k) ≡ 0, i = 0, . . . , N − 1. Therefore, no terminal
constraint is considered. Furthermore, due to the choice ofFIR-models, which are
stable by construction and have finite settling-behavior, no specific measures need to
be included for asymptotic stability.

However, when extended to a more general setting, like Algorithm 3.1, where state
constraints are also included, recursive feasibilitydoesbecome an issue, as is also
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Figure 3.2: Schematic representation of the computation of closed-loop state predictions with a horizon lengthN = 3 using an LPV
model (3.1)-(3.2) withr = 2. For clarity reasons, symbols for the state predictions at timek + 3 are omitted.
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pointed out in [144, Remark 2]. Also, when applied to the moregeneral model class
(3.1)-(3.2), stability is not guaranteed without including an appropriate terminal cost.

3.3.2 Closed-loop min-max MPC

In order to cope with the recursive feasibility issues foundin the min-max MPC using
open-loop predictions, [129] introduced the notion ofwithin-horizon feedbackleading
to closed-looppredictions. This paradigm explicitly makes of the fact that at timek+1
additional information will be available in the form of new state measurements that can
then be used to adjust the control strategy.

3.3.2.1 Closed-loop predictions

Instead of optimizing a deterministic sequence of control actions (inputs), the closed-
loop MPC paradigm optimizes over a strategy of control actions that is ordered in a
tree structure similar to the state predictions. While the open-loop paradigm employs
a single inputu(k + i|k) at every time instant within the horizon, the closed-loop
paradigm employs different inputsuj0,...,ji−1 for every state predictionxj0,...,ji−1

within the horizon. In this way a different control strategyis proposed for every
possible realization of the dynamic uncertainty[A(k + i) B(k + i)], i = 0, . . . , N − 1.
As such the inputs over which the optimization takes place are dependent of the actual
state evolution within the horizon, which corresponds to the notion of feedback. This
concept is depicted schematically in Figure 3.2.

Mathematically, the new input sequence parametrization isdenoted asucl,N (k) =
[ucl(k|k); . . . ;ucl(k + N − 1|k)], with

ucl(k + i|k) ,








u1,...,1(k + i|k)
u1,...,2(k + i|k)

...
ur,...,r
︸︷︷︸

i

(k + i|k)








, i = 0, . . . , N − 1. (3.8)

ucl,N (k) is referred to as aclosed-loop input sequence. The correspondingclosed-loop
state prediction setsnow become:

Xucl,N (k)(k + i|k) , Co{xj0,...,ji−1(k + i|k)|jm = 1, . . . , r, m = 0, . . . , i− 1},
i = 1, . . . , N, (3.9a)

with

xj0(k + 1|k) = Aj0x(k|k) + Bj0u(k|k), j0 = 1, . . . , r, (3.9b)

xj0,...,ji−1,ji
(k + i + 1|k) = Aji

xj0,...,ji−1(k + i|k) + Bji
uj0,...,ji−1(k + i|k),







i = 1, . . . , N − 1,
jm = 1, . . . , r,
m = 0, . . . , i.

(3.9c)
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Apart from being a solution to ensure recursive feasibility, the additional degrees
of freedom resulting from the within-horizon feedback alsoenables the controller
to reduce the spread in the state predictions. As a result thefeasible region can be
significantly larger compared to open-loop min-max MPC. Thesame principle is used
in e.g., [68,104,129,142].

3.3.2.2 Algorithm formulation

The algorithm described in [129] was initially formulated for LTI systems subject to
bounded disturbances and was formulated for a generic classof cost objectives. Here
we give the equivalent formulation for disturbance-free LPV systems (3.1)-(3.2) and
quadratic control objectives (1.3):

Algorithm 3.2 (Robust closed-loop min-max MPC).Given a system described by
(3.1)-(3.2), subject to constraints(1.2a)-(1.2b) and given a control objective(1.3),
solve at each time instantk, given the value of the current statex(k) ≡ x(k|k), the
following optimization problem:

min
ucl,N (k)

max
j0...N−1=1,...,r

(
N−1∑

i=0

‖xj0,...,ji−1(k + i|k)‖2Q

+‖xj0,...,jN−1(k + N |k)‖2QN
+

N∑

i=1

‖uj0,...,ji
(k + i|k)‖2R

)

, (3.10a)

s.t. xj0,...,ji−1(k + i|k) ∈ X ,







jm = 1, . . . , r,
m = 0, . . . , i− 1,
i = 1, . . . , N − 1,

(3.10b)

xj0,...,jN−1(k + N |k) ∈ XN ,

{
jm = 1, . . . , r,
m = 0, . . . , N − 1,

(3.10c)

uj0,...,ji
(k + i|k) ∈ U ,







jm = 1, . . . , r,
m = 0, . . . , i,
i = 0, . . . , N − 1,

(3.10d)

and subject to(3.9b)-(3.9c). Apply the inputu(k) ≡ u(k|k) to the plant. Repeat this
procedure at the next time stepk + 1 based on updated state information.

It is clear that compared to Algorithm 3.1, the above algorithm is computationally
even more demanding. However, ifX ,XN and U are polyhedral it still can be
converted to an SOCP and therefore for small values ofN it is still practically
implementable.

3.3.2.3 Recursive feasibility and stability

One can show that recursive feasibility and asymptotic stability of Algorithm 3.2 is
guaranteed ifXN is convex and there exists a feedback control lawu(k) = −Kx(k)
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such that the following modified stability conditions hold:

1. XN ⊆ X , (3.11a)

2. −Kx ∈ U , ∀x ∈ XN , (3.11b)

3. (A−BK)x ∈ XN , ∀x ∈ XN ,∀[A B] ∈ Ω, (3.11c)

4. QN − (A−BK)TQN (A−BK) � Q + KTRK, ∀[A B] ∈ Ω. (3.11d)

Condition (3.11c) means thatXN should be chosen such that it is robustly positive
invariant with respect to the closed loop system formed by the disturbance-free LPV
system and the terminal controller. More details on how to construct such sets will be
given in Chapter 2.

Condition (3.11d) implies that the terminal costQN should be an upper bound to the
worst-case cost beyond the horizon if the terminal controller would be applied.QN can
be calculated by solving an SDP imposing (3.11d) for all vertices ofΩ. More details
can be found in Chapter 4, where similar optimization problems are discussed.

Lemma 3.1 (Robust semi-global asymptotic stability). The closed-loop system
formed by system(3.1)-(3.2)and the MPC controller defined in Algorithm 3.2 leads to
recursive feasibility of the controller and asymptotic stability of the closed-loop system
for all statesx(0) that lead to a feasible optimization problem(3.7), if XN is convex
and a controlleru(k) = −Kx(k) exists such that conditions(3.11)are satisfied.

Proof. We only give the proof of recursive feasibility. Assume an optimal solution
exists at timek:

uo(k|k), uo
j0(k + 1|k), . . . , uo

j0,...,jN−2
(k + N − 1|k),

{
jm = 1, . . . , r,
m = 0, . . . , N − 2,

(3.12)

xo
j0(k + 1|k), . . . , xo

j0,...,jN−1
(k + N |k),

{
jm = 1, . . . , r,
m = 0, . . . , N − 1,

(3.13)

and a new state measurementx(k + 1) ≡ x(k|k) is obtained. Since it is assumed that
the real system is described by (3.1)-(3.2), it is possible to write

x(k + 1) =

r∑

j=1

λj(k)xo
j (k + 1|k), with λj(k) ≥ 0,

r∑

j=1

λj(k) = 1. (3.14)

Using these uncertainty coefficientsλj = λj(k) it is possible to construct a feasible
input sequence at timek + 1:

uf
j1,...,ji−1

(k + i|k + 1) =

r∑

j0=1

λj0u
o
j0,j1,...,ji−1

(k + i|k),







jm = 1, . . . , r,
m = 1, . . . , i− 1,
i = 1, . . . , N − 1,

(3.15)

uf
j1,...,jN−1

(k + N |k + 1) = −K
r∑

j0=1

λj0x
o
j0,j1,...,jN−1

(k + N |k),
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{
jm = 1, . . . , r,
m = 1, . . . , N − 1,

(3.16)

with a corresponding feasible state sequence

xf
j1,...,ji−1

(k + i|k + 1) =
r∑

j0=1

λj0x
o
j0,j1,...,ji−1

(k + i|k),







jm = 1, . . . , r,
m = 1, . . . , i− 1,
i = 2, . . . , N,

(3.17)

xf
j1,...,jN

(k + N + 1|k + 1) = (AjN
−BjN

K)

r∑

j0=1

λj0x
o
j0,j1,...,jN−1

(k + N |k),

= (AjN
−BjN

K)xf
j1,...,jN−1

(k + N |k + 1),
{

jm = 1, . . . , r,
m = 1, . . . , N.

(3.18)

Due to convexity ofU andX and condition (3.11a) it is guaranteed that the inputs
and states constructed in (3.15) and (3.17) respectively satisfy constraints (3.10d) and
(3.10b) in the optimization problem at timek+1. Due to convexity ofXN and condition
(3.11b) it is also guaranteed that inputs (3.16) satisfy (3.10d) at timek+1. Finally, due
to condition (3.11c) and convexity ofXN the states (3.18) satisfy (3.10c). Finally, by
construction the above proposed inputs and states also satisfy conditions (3.9), which
shows that the proposed input and state sequence is indeed feasible for the optimization
problem at timek + 1, which proves recursive feasibility.

Once the feasible solution at timek+1 is constructed, the proof of robust asymptotic
stability is similar to the proof of Lemma 1.2 and is hence omitted. �

3.3.3 Assessment

As shown by Lemma 3.1, Algorithm 3.2 guarantees recursive feasibility, whereas
Algorithm 3.1 in its present form does not guarantee recursive feasibility in the
presence of state constraints. The main reason for this is not the absence of a terminal
contraint in Algorithm 3.1, but the fact that no feedback is considered within the
horizon. Even if a terminal constraint would be added to Algorithm 3.1, recursive
feasibility would still not be guaranteed.

Insight into this issue can be gathered by looking at equation (3.16), where it becomes
clear that the MPC algorithm has enough degrees of freedom tochoose a different
input vector for each terminal state obtained at timek. As a result the corresponding
new terminal states (3.18) are kept within the terminal constraint by the closed-loop
dynamicsAjN

−BjN
K of the terminal controller and the LPV system.

When doing open-loop predictions only one control action isavailable, which is in
general not sufficient to keep all the terminal states withinthe terminal constraint. It is
hence due to the use of an open-loop input sequence that recursive feasibility typically
cannot be guaranteed in open-loop min-max MPC algorithms. An exception to this
observation is the combination of an open-loop input sequence with a time-varying
horizon length, as is described in [143].
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On the other hand, open-loop min-max MPC exhibits a lower computational
cost because a significantly smaller number of optimizationvariables is involved.
Furthermore, the open-loop input sequence parametrization is notationally somewhat
more transparent, whichseemsto facilitate analysis of the algorithm.

Mainly due to the computational advantage and despite the fact that open-loop
input sequences typically do not lead to recursively feasible algorithms, some recently
published algorithms still aim to obtain recursive feasibility while employing open-
loop input sequence parameterizations. The next two sections show that this is not
always done successfully.

3.4 Corrections to [Wanet al., 2003]

In this section we treat the robust MPC algorithm introducedin [142]. Despite the
use of an open-loop input parametrization, the algorithm isclaimed to be recursively
feasible. The contribution of this section is the detectionof an error in the recursive
feasibility of this algorithm. By means of a counterexamplethe algorithm is shown
not to be recursively feasible in general. A correction to the algorithm is proposed and
illustrated by means of the same numerical example.

3.4.1 Introduction

The problem considered in [142] is that of controlling a disturbance-free LPV system
(3.1)-(3.2) subject to input constraints|u(k)| ≤ umax, k ∈ N. A nominal model
[Â B̂] ∈ Ω, representing the most likely model of the true system is also assumed
to be known. The aim is to construct a model predictive controller to robustly,
asymptotically, stabilize the system with (1.3) andxref(k) ≡ 0, uref(k) ≡ 0 as a
control objective.

The algorithm proposed in [142] addresses this issue by using a finite horizon length,
within which an open-loop input sequence is employed, combined with a time-varying
terminal constraint set that is imposed on the terminal states of the state prediction
tree. The stability proof of the algorithm is based on the assertion that, due to the
fact that the terminal constraint set is invariant with respect to a robustly stabilizing
terminal controller, each terminal state is driven furtherinside the terminal constraint
set. However, due to the choice of a deterministic input sequence, proving stability
requires the construction of a single input vector that simultaneously drives all terminal
states further inside the terminal constraint set. For unstable systems this cannot be
guaranteed based upon the invariance property, that only guarantees that such an input
vector exists for each terminal state individually. For this reason the algorithm proposed
in [142] cannot be proven to be asymptotically stabilizing,neither can it be guaranteed
to be feasible if it is initially feasible.

In this section we present a new algorithm with a time-varying terminal constraint
set that optimizes over a closed-loop input sequence ratherthan an open-loop input
sequence, similar to Algorithm 3.2. Due to this modification, the invariance property
of the terminal constraint becomes a sufficient condition for stability of the controller.
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This section [105] [142]

nx, nu n, m n, m state and input dimensionality
Q, R Q, R Q, R state and input weights
XN ,FN (·) Xf , F (·) Xf , F (·) terminal constraint and cost
κN (·) κf(·) κf(·) terminal controller
Zi Qi Qi terminal constraint parameter
γi, Xi, Yi γi, Xi, Yi γi, Xi, Yi terminal cost, controller param.
r L L number of vertices describingΩ
ρi ri ri radius of ball inscribed

in i-th terminal constraint set
uN (k) U(k) U(k) open-loop input sequence
ucl,N(k) uN (k) / closed-loop input sequence
XuN

(k + i|k) X (k + i|k) X (k + i|k) state prediction sets
uj0,...,jp−1(·) ujp−1,...,j0(·) / closed-loop input vector
λji

(k + i) ci+1,ji+1 ci+1,ji+1 model uncertainty coefficients
at timek + i

Table 3.1: Notational differences and similarities between this section, [105] and
[142].

3.4.2 Time-varying terminal constraint set

In this section a brief description is given of the off-line part of the corrected algorithm,
which is identical to that of the original algorithm. For thesake of brevity in this
section we refer to equations of the original paper [142] with the notation(·)⋆. Similar
notations will be used to refer to theorems, corollaries andalgorithms. For the sake of
uniformity with other parts of this thesis, some notations used in this section deviate
from the notations used [105,142]. Table 3.1 gives an overview of differing notations.

We make use of the classical ingredientsa) a terminal controllerκN (·) : Rnx →
Rnu , b) a terminal costFN (·) : Rnx → R and c) a terminal constraintXN ⊂ Rnx .
The latter two elements can be interpreted as an upper bound to the (in this case
nominal) control cost of the terminal controller, when applied at the end of the
control horizon of the MPC controller. The terminal constraint represents a feasible
invariant set associated with the terminal controller, given the aforementioned input
constraints. See [82, 142] for details. Theorem1⋆ allows the construction of a
triplet (XN , κN(·),FN (·)) parameterized by variablesγ, X, Y, Z asXN = {x ∈
Rn|xTZ−1x ≤ 1}, κN (x) = Y Z−1x andFN (x) = xTγZ−1x, with (γ, X, Y, Z)
satisfying (5)⋆, (6)⋆, (9)⋆ and (11)⋆ for a givenρ > 0, denoting the radius of a
hyperball inscribed inXN . XN is an invariant ellipsoid with respect toκN (·), meaning
that

x ∈ XN ⇒ A(k)x + B(k)κN (x) ∈ XN , ∀[A(k) B(k)] ∈ Ω. (3.19)

Corollary1⋆ then allows the construction of a continuum(XN (θ), κN (θ, ·), FN(θ, ·))
based on two sets of parameters(γ1, X1, Y1, Z1) and(γ0, X0, Y0, Z0), obtained with
Theorem1⋆ for two valuesρ0 and ρ1 with ρ1 > ρ0, by considering the convex
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combination

(γ(θ), X(θ), Y (θ), Z(θ)) = θ(γ1, X1, Y1, Z1) + (1− θ)(γ0, X0, Y0, Z0), (3.20)

with θ ∈ [0, 1] and constructing the corresponding(XN (θ), κN (θ, ·), FN(θ, ·)) as
in Theorem1⋆. See also Appendix A for more details. Algorithm1⋆ makes
use of Theorem1⋆ and Corollaries1⋆ and 2⋆ to construct(γ0, X0, Y0, Z0) and
(γ1, X1, Y1, Z1) and the corresponding continuum of terminal constraint sets in a
practical way.

3.4.3 Recursive feasibility

The proof of Theorem2⋆ asserts that, given optimal solutionsu
o(k),X o(k+i|k), θo(k)

at timek, one can find a feasible input sequence

u
f
N (k + 1) =

[
uo(k + 1|k); . . . ; uo(k + N − 1|k); uf(k + N |k + 1)

]
, (3.21)

for the optimization problem at timek+1, such that the corresponding state prediction
setXuf

N
(k+1)(k + N + 1|k + 1) satisfiesXuf

N
(k+1)(k + N + 1|k + 1) ⊂ XN (θo(k)),

by applying the terminal controllerκN (θo(k), ·) to the terminal statex(k + N |k).
However, this terminal state is not uniquely determined dueto the unknown

coefficientsλji
(k + i), ji = 1, . . . , r, i = 0, . . . , N − 1 (cfr. expressions between

(3)⋆ and (4)⋆). It is therefore unclear what value to choose foruf(k + N |k + 1).
Neither can it be guaranteed that there exists any value foruf(k + N |k + 1), such that
Xuf

N
(k+1)(k + N + 1|k + 1) ⊂ XN (θo(k)). This would require that

Ax + Buf(k + N |k + 1) ∈ XN (θo(k)), ∀[A B] ∈ Ω, ∀x ∈ XN (θo(k)), (3.22)

while set invariance ofXN (θo(k)) only guarantees that

Ax + BκN (θo(k), x) ∈ XN (θo(k)), ∀[A B] ∈ Ω, ∀x ∈ XN (θo(k)), (3.23)

which means that a different input vector is used for eachx ∈ XN (θo(k)), which
conflicts with condition (3.22). Therefore, it is not alwayspossible to find an
appropriate value foruf(k + N |k + 1) and henceθo(k) is not necessarily non-
decreasing, neither is recursive feasibility guaranteed.

However, in the case thatXN (θo(k)) is invariant with respect to the open-loop model
xk+1 = A(k)xk with A(k) ∈ Co{A1, . . . , Ar}, one can chooseuf(k +N |k +1) = 0.
This suggests an explanation why the example in [142] does not result in unstable
closed-loop behavior. This also suggests the possible successful application of the
original algorithm to certain classes of stable systems.

3.4.4 Feedback MPC formulation

In this section we present the on-line part of the new algorithm and the different modes
of operation that are employed. The focus is on the introduction of feedback within the
horizon as in Algorithm 3.2, in order to be able to guarantee recursive feasibility.
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The modified algorithm uses a closed-loop input sequenceucl,N instead of an open-
loop input sequenceuN . For notational simplicity we definer sub-sequencesucl,j(k+
p|k) of ucl(k + p|k):

ucl,j(k + p|k) ,








uj,1,...,1(k + p|k)
uj,1,...,2(k + p|k)

...
uj,r,...,r
︸ ︷︷ ︸

p

(k + p|k)








, p = 0, . . . , N − 1, (3.24)

such thatucl(k + p|k) = [ucl,1(k + p|k); . . . ;ucl,r(k + p|k)]. Please note that a
slightly different notation as in [105] is used in order to beconsistent with the notation
of Algorithm 3.2. This tree of inputs implicitly defines a control policy for all possible
combinations of[A(k + p) B(k + p)] ∈ Ω, p = 0, . . . , N − 1, since these can be
described as convex combinations of the nodes of the polytopeΩN−1. A corresponding
state prediction treexj0,...,jp−1(k + p|k) with j0...p−1 = 1, . . . , r andp = 1, . . . , N
is constructed as in (3.9c). Similar notationsxj(k + p|k) andx(k + p|k) with p =
0, . . . , N andxN (k) will be used in the remainder of this section.

In an initial phase (mode 1), an optimization is performed over the inputsucl,N (k) in
order to minimize the size of the terminal constraint set, characterized by the parameter
θ:

min
ucl,N (k),θ

θ, (3.25a)

subject to

|uj0,...,jp−1(k + p|k)| < umax,







jm = 1, . . . , r,
m = 0, . . . , p− 1,
p = 0, . . . , N − 1,

(3.25b)

xj0,...,jN−1 ∈ XN (θ),

{
jm = 1, . . . , r,
m = 0, . . . , N − 1,

(3.25c)

0 ≤ θ ≤ 1. (3.25d)

The optimal value ofθ at timek is denoted asθo(k).
A second phase (mode 2) is initiated when at the previous time stepk−1 the smallest

terminal constraintθo(k − 1) = 0 is obtained. In this phase the horizon length is
reduced with 1 at each time step (N := N − 1) and an MPC problem with a nominal
cost objective is solved. For the sake of clarity and withoutloss of generality, we
assume that the nominal system model is given by[Â B̂] = [A1 B1]. The nominal state
and input predictions now becomêx(k + p|k) = x1,...,1(k + p|k) andû(k + p|k) =
u1,...,1(k + p|k). The following optimization problem is obtained:

min
ûN (k)

N−1∑

i=0

‖û(k + i|k)‖R +

N−1∑

i=0

‖x̂(k + i|k)‖Q + ‖x̂(k + N |k)‖γ0Z−1
0

, (3.26)
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whereûN (k) , [û(k|k); . . . ; û(k + N − 1|k)], subject to (3.25b) and (3.25c) with
θ = 0.

If at the previous time stepk − 1 a mode 2 optimization problem was solved with
N = 1, a third and final phase (mode 3) is initiated. In this mode, the current state
x(k) is guaranteed to be positioned within the smallest terminalconstraintXN (0) and
therefore the corresponding terminal control lawu(k) = κN (0, x(k)) = Y0Z

−1
0 x(k)

is applied to further drive the system to the origin.
These 3 modes of operation can be summarized in the followingnew algorithm:

Algorithm 3.3. InitializeN := N0 andmode := 1. Given a system described as(3.1)-
(3.2), input constraintsumax, state and input weighting matricesQ ∈ Snx

++ andR ∈
Snu

++ and two sets(γ0, X0, Y0, Z0) and(γ1, X1, Y1, Z1) calculated using Algorithm1⋆

and given the current statex(k), perform at each time stepk the following steps:

• If mode = 1, solve optimization problem(3.25)and applyu(k|k) to the system.
If θo(k) = 0 setmode := 2. Wait until time stepk + 1.

• If mode = 2, setN := N − 1, solve optimization problem(3.26)subject to
(3.25b)and (3.25c)with θ = 0 and applyu(k|k) to the system. IfN = 1, set
mode := 3. Wait until time stepk + 1.

• If mode = 3, applyu(k) = Y0Z
−1
0 x(k) to the system. Wait until time stepk+1.

3.4.5 Feasibility and asymptotic stability

The following theorem is proven as a corrected version to Theorem 2⋆.

Theorem 3.1. Given a system described as(3.1)-(3.2), input constraintsumax, state
and input weighting matricesQ andR and an initial horizon lengthN0. If optimization
problem(3.25) is feasible at timek = 0 for the initial statex(0) andN = N0, then
Algorithm 3.3 is also feasible fork > 0 and robustly, asymptotically stabilizes(3.1)-
(3.2).

Proof: We prove that under the given assumptions modes 1 and 2 are feasible and
terminate in a finite number of time steps. Therefore robust asymptotic stability is
proven if mode 3 is robustly asymptotically stable.

First, we prove by induction that mode 1 is feasible and terminates in a finite amount
of time. By assumption a feasible mode 1 solutionu

o
cl,N(k − 1),xo

N (k − 1) and
θo(k − 1) exists for eachk > 0. We will now construct a feasible mode 1 solution
u

f
cl,N (k),xf

N (k) andθf(k) with θf(k) < θo(k − 1). Since[A(k) B(k)] ∈ Ω, it is
possible to find valuesλ1(k), . . . , λr(k), with λi(k) ≥ 0 and

∑r
i=1 λi(k) = 1, such

thatx(k|k) =
∑r

i=1 λi(k)xo
i (k|k − 1). Using these valuesλ1...r(k) it is possible to

construct a new set of feasible inputs

u
f
cl,N (k + p|k) =

r∑

i=1

λi(k)uo
cl,i(k + p|k − 1), p = 0, . . . , N − 2, (3.27a)

and

uf
j0,...,jN−2

(k + N − 1|k) = κN (θo(k − 1), xf
j0,...,jN−2

(k + N − 1|k)), (3.27b)
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with jm = 1, . . . , r, m = 0, . . . , N − 2. A set of feasible states can be constructed
likewise:

x
f(k + p|k) =

r∑

i=1

λi(k)xo
i (k + p|k − 1), p = 0, . . . , N − 1, (3.28)

andxf
j0,...,jN−1

(k+N |k) defined using (3.9c). It is clear that through construction these
sets of inputs and states satisfy (3.9c). Due to the convexity of the terminal constraint
set, it is also clear that by construction all the states fromx

f(k + N − 1|k) also lie
within the terminal constraint setXN (θo(k−1)). Due to the invariance of this terminal
constraint set, the strict inequality in (5)⋆ and the construction ofuf

cl,N (k+N−1|k), all
terminal states fromxf(k + N |k) lie in the strict interior ofXN (θo(k− 1)). Therefore
infk(θo(k − 1)− θo(k)) > 0, which proves the fact that mode 1 terminates in a finite
amount of time.

In mode 2 the horizon length is decreased by 1 in each time step, so it is trivial to
prove that the conditionN = 1 will be satisfied in a finite number (i.e.N0− 1) of time
steps. By constructing a feasible mode 2 solutionu

f
N−1(k),xf

N−1(k) using (3.27a)
and (3.28) feasibility is also trivially guaranteed.

By means of a similar argument one can easily see that ifN = 1 at timek − 1, the
current statex(k) will lie in the terminal constraint setXN (0), which legitimates the
use of the terminal controllerκN (0, ·) in this mode, since it robustly asymptotically
stabilizes (3.1)-(3.2) for all initial states that belong to its invariant setXN (0). See [68,
142] for details. This, combined with the above arguments, proves robust asymptotic
stability of Algorithm 3.3. �

3.4.6 Example

In this section we present a numerical example that clearly illustrates the flaw in
Algorithm 2⋆ and shows the improvement obtained with Algorithm 3.3. Consider a
system withL = 2, m = 1, n = 2, described by

A1 =

[
1 0
−0.3 1.3

]

, A2 =

[
1 0
−0.1 1.1

]

, (3.29a)

B1 = [0.2 0]T , B2 = [1 0]T , (3.29b)

with input constraint|u| ≤ 1. Initial horizonsN0 ∈ {4, 5} and input and state cost
matricesQ = diag(1, 0.1) andR = 0.001 were chosen. The radius of the largest
inscribed ball was chosen asρ1 ∈ {0.34, 0.35}. The radius of the smallest inscribed
ball was found to beρ0 = 0.27411. Simulations were performed on a time-invariant
system described by[A2 B2] with initial state x0 = [1 1]T. The resulting total
simulation control costs and computation times are given inTable 3.2, the sequence
of θo(k)-values forN0 = 4 is depicted in Figure 3.3. Algorithm 2⋆ exhibits non-
monotonically decreasing values ofθo(k) in mode 1 for all aforementioned values of
ρ1 andN0 and becomes infeasible in mode 1 forρ1 = 0.34, N0 = 4 due to (3.25d) and
infeasible in mode 2 forN0 = 5 due to (3.25c). Algorithm 3.3 exhibits monotonically
decreasing values ofθo(k) in mode 1 and is feasible and asymptotically stable for all
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ρ1 = 0.34 ρ1 = 0.35

Alg. 2⋆, N0 = 4 inf. at k = 2 42.58 (0.39s)
Alg. 2⋆, N0 = 5 inf. at k = 29 inf. at k = 27 (0.83s)
Alg. 3.3,N0 = 4 30.74 30.73 (0.59s)
Alg. 3.3,N0 = 5 30.79 30.78 (2.08s)

Table 3.2: Total simulation control cost for Algorithm 2⋆ and Algorithm 3.3 forρ1 ∈
{0.34, 0.34} andN0 ∈ {4, 5}. The maximum computation time per iteration (P4-
2GHz, MATLAB 6.5, LMI LAB 1.0.8) forρ1 = 0.35 is indicated between brackets.
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Figure 3.3: Values of x1(k), u(k) and θo(k) for Algorithm 2⋆ (dotted), the new
Algorithm 3.3 (solid) and the alternative Algorithm proposed in [143] (dash-dotted)
for ρ1 = 0.34 (largerθ-values) andρ1 = 0.35 (smallerθ-values) andN0 = 4. Note
that Algorithm 2⋆ becomes infeasible forρ1 = 0.34 at timek = 2.
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aforementioned values ofρ1 andN0, but at the cost of an increase in computational
complexity.

3.4.7 Conclusion

In this section an existing algorithm [142] is successfullymodified in order to guarantee
recursive feasibility. A counterexample is provided indicating that the original
algorithm was falsely claimed to be recursively feasible and that the new algorithm
indeed solves the problem. No attempts have been made to improve other apparent
deficiencies of the original algorithm, among which possible suboptimal behavior ifR
is given a relatively large value and the large maximum computational complexity per
iteration.

The next section shows that a similar issue was already present in a less recently
published algorithm, on which Algorithm2⋆ is partly based.

3.5 Corrections to [Casavolaet al., 2000]

3.5.1 Introduction

This section discusses an error present in [31] that is similar to the one discussed in the
previous section. The paper is slightly less recent than [142], but no other publications
appear to hint at possible errors in the paper under consideration, so it still is worthwhile
to give an account of the misconceptions present in this paper.

The algorithms introduced in [31] are developed specifically for input-constrained
linear systems with polytopic uncertainty description. The authors state that the
algorithms are recursively feasible and asymptotically stable. In order to obtain these
two properties, the authors make use of a terminal cost and a corresponding constraint
set [82] that is recalculated at each time step using the results of [68]. Due to the lack
of imposing the terminal constraint on the set of terminal states in the optimization
problem of Algorithm 1 of [31] (in further sections referredto as Algorithm 1∗, with
similar notation for Algorithm 2 of [31]) and the fact that anopen-loop input sequence
is used, it is not guaranteed that the algorithm is recursively feasible. Algorithm 2∗

suffers from a similar deficiency, but for reasons of brevitywe will focus on Algorithm
1∗ in this section.

In the rest of this section∗-notation is used to denote theorems, equations and
algorithms of the original article [31]. We refer to table 3.3 and the original article
for further details about other notations.

3.5.2 Deficiencies in original algorithm

Algorithm 1∗ extends the results of [68] by addingN free control movesu(k|k), . . . ,
u(k + N − 1|k) to the formulation. These control moves are meant to drive the
system inside the time-dependent terminal constraint setXN (k), which is taken to
be the invariant ellipsoid corresponding to a time-dependent terminal controller gain
−K(k) constructed using [68]. At each time stepk ≥ 0, the terminal controller and
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This section [94] [31]

k t t discrete time
i k k within-horizon time index
nx, nu n, m n, m state and input dimensionality
Ai, Bi Φi, Gi Φi, Gi system matrices
Q, R Ψx, Ψu Ψx, Ψu state and input weights
U Ωu Ωu input constraint set
QN Q Q terminal cost matrix
−K F F terminal controller gain
XN E E terminal constraint set
γ, Y, Z ρ, Y, P ρ, Y, P terminal cost, constraint

and controller parameters
r l l number of vertices describingΩ
u(k) u(·|t) u(·|t) open-loop input sequence
ucl(k) u(t) / closed-loop input sequence
uj0,...,jp−1(·) ujp−1,...,j0(·) / closed-loop input vector
uf(k + i|k) ū∗(t + k|t) ū∗(t + k|t) candidate feasible input
λji

(k + i) ci+1,ji+1 pji
(i) model uncertainty coefficients

at timek + i

Table 3.3: Notational differences and similarities between this section, [94] and [31].

its invariant ellipsoid, are recomputed to take into account the (assumed) fact that the
system has been driven closer to the origin. For reasons of brevity we refrain from
entirely restating the algorithm, but refer to [31] for the details.

Two main deficiencies exist in Algorithm 1∗:

• The terminal constraintXN (k) is not explicitly imposed on the terminal states in
optimization problem (28)∗-(29)∗, which corresponds to step 1 of Algorithm 1∗

and as a result feasibility of the terminal controller is notguaranteed.

• An open-loop sequence is employed and for reasons already stated in the
previous sections, this in general does not guarantee recursive feasibility, even in
the presence of an appropriate terminal constraint.

As a result of these deficiencies, Lemma 3∗ does not hold in general. Given an
optimal input sequenceuo

N (k) to (28)∗-(29)∗ at timek, expression (37)∗ is used as a
candidate feasible input sequence to (28)∗-(29)∗ at timek + 1. However, due to the
fact that the terminal constraintx ∈ XN (k), ∀x ∈ vert{Xuo

N
(k)(k + N |k)} is not

explicitly imposed in (28)∗-(29)∗, this input sequenceuf
N (k + 1) is not guaranteed to

be feasible, since−K(k)xo(k+N |k) is not guaranteed to be feasible∀xo(k+N |k) ∈
Xuo

N
(k)(k + N |k), which contradicts with the paragraph between (36)∗ and (38)∗.

Assume that it would be guaranteed∀k thatXuo
N

(k)(k+N |k)⊆ XN (k) and therefore
that−K(k)xo(k + N |k) ∈ U , even then monotonicity of the cost is not guaranteed.
The expression right after (38)∗ assumes that the terminal cost value at timek + 1
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resulting from input sequenceuf
N (k + 1) can be upper bounded by

max
i∈{1,...,r},z∈vert{X

u
o
N

(k)(k+N |k)}
‖(Ai −BiK(k))z‖2QN(k+1), (3.30)

which in turn is based on the incorrect assumption that in general

Xuf
N

(k+1)(k + N + 1|k + 1)

⊆ {(Ai −BiK(k))z|i ∈ {1, . . . , r}, z ∈ Xuo
N

(k)(k + N |k)}. (3.31)

Due to invariance ofXN (k) it can be shown that the rhs of the above expression is a
subset ofXN (k). On the other hand, due the specific choice ofu

f(k + 1), it can be
seen that

Xuf
N

(k+1)(k + N + 1|k + 1)

= {Aiz −BiK(t)xo(k + N |k)|i ∈ {1, . . . , r}, z ∈ Xuo
N

(k)(k + N |k)}, (3.32)

which, in general, is not a subset ofXN (k), since one cannot necessarily find a fixed
control move (i.e.−K(t)xo(k + N |k)), that steers all terminal states further into the
invariant ellipsoidXN (k). This wrong assumption is similar to the error discussed
in the previous section. The main consequence is that the inclusion (3.31) does not
hold in general, that the terminal cost at timek + 1 in general cannot be bounded by
(3.30) and that therefore monotonicity ofW (k) is not guaranteed. Similarly, recursive
feasibility cannot be guaranteed anymore, since in generalit is not guaranteed that
XN (k + 1) ⊂ XN (k).

By means of similar arguments one can also invalidate both claims of Lemma 2∗.

3.5.3 Counterexample

In order to illustrate these findings, we consider a system ofthe form (1)∗-(3)∗, with
r = 2, defined as follows:

A1 =

[
1 0
−0.3 1.3

]

, A2 =

[
1 0
−0.1 1.1 + δ

]

, (3.33a)

B1 = [0.2 0]T , B2 = [1 0]T , (3.33b)

with δ ∈ [0, 1] a parameter that is fixed in time and known during the controller
synthesis. Forδ = 0, this system is identical to (3.29). The system is subject to
input constraint|u(k)| ≤ 1, ∀k ≥ 0. Cost matrices are chosen asQ = diag(1, 0.1) and
R = 0.001. The controller horizon is chosen asN = 2.

Figure 3.4 shows simulation results starting from initial state [1; 1] for 4 different
values ofδ. The algorithm is initially feasible for all values ofδ, but becomes infeasible
after a few time steps for the two largest values ofδ. Also the functionW (k) is
not monotonically decreasing. The original example in [31]does not exhibit these
problems because the system is already stable in open-loop.
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3.5.4 Corrected algorithm

In order to correct the deficiencies of Algorithm 1∗, two modifications are proposed:

• explicitly impose the terminal constraint set in the optimization problem (28)∗-
(29)∗,

• use a closed-loop input sequenceucl,N (k) instead of an open-loop input
sequence.

As in the previous sections the closed-loop input sequenceucl,N (k) and closed-
loop state prediction setsXucl,N (k)(k + N |k) are defined as (3.8),(3.24) and (3.9)
respectively.

We can now state the corrected algorithm in a straightforward way:

Algorithm 3.4. At timek = 0, givenx(0) solve the initialization step of Algorithm 1∗,
with the closed-loop input sequenceucl,N (k) (instead ofuN (k)) and state prediction
polytope(3.9). At every timek ≥ 0 execute the following steps:

1. Givenx(k), Z(k), γ(k), solve the following optimization:

u
o
cl,N (k) = argmin

J0...N ,ucl,N (k)

N∑

i=0

Ji, (3.34)

subject to
[

JN ∗
z γ−1(k)Z(k)

]

≥ 0, ∀z ∈ vert{Xucl,N (k)(k + i|k)}, (3.35)

JN ≤ γ(k), (3.36)

uj0,...,ji−1(k + i|k) ∈ U ,







jm = 1, . . . , r,
m = 0, . . . , i− 1,
i = 0, . . . , N − 1,

(3.37)





1 ∗ ∗
Q

1
2 xj0,...,ji−1(k + i|k) JiI ∗

R
1
2 uj0,...,ji−1(k + i|k) 0 JiI



 ≥ 0,







jm = 1, . . . , r,
m = 0, . . . , i− 1,
i = 0, . . . , N − 1.

(3.38)

2. Applyuo(k|k) to the plant.

3. Calculate[Z(k + 1), Y (k + 1), γ(k + 1)] using step 3 of Algorithm 1∗, with the
closed-loop definition of the state prediction polytope(3.9).

Theorem 3.2(Feasibility and Stability). Algorithm 3.4 is recursively feasible if the
initialization step is feasible, in which case it also asymptotically stabilizes the system.

Proof: Since step 1 is identical to the initialization step, exceptfor the fixation of the
terminal constraint and cost, it is straightforward that the former is feasible if the latter
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Figure 3.4: Application of Algorithm 1∗ to system (3.33) for initial state[1; 1] andδ ∈
{0, 0.016, 0.018, 0.020}. The algorithm does not result in a monotonically decreasing
Lyapunov functionW (k) and becomes infeasible for the latter two values ofδ at time
stepsk = 3 andk = 6 respectively.
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Figure 3.5: Application of Algorithm 3.4 to system (3.33) for initial state [1; 1] and
δ ∈ {0, 0.016, 0.018, 0.020}. The algorithm results in a monotonically decreasing
Lyapunov functionW (k) and results in stable behavior for all 4 values ofδ.
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is feasible. This shows that step 1 is feasible atk = 0. If step 1 is feasible at timek,
then step 3 is also feasible at timek. This is due to the fact that all terminal states lie
insideXn(k), since this is imposed by constraint (3.36). Therefore it isalso guaranteed,
due to invariance, that all states(Ai − BiK(k))z used in step 3 of Algorithm 1 also
lie within XN (k), which indicates thatZ(k), Y (k), γ(k) are feasible solutions to the
optimization in this step. As a consequence the propertyγ(k + 1) ≤ γ(k) also holds.

We now show that it is possible to construct a feasible solution to step 1 at timek+1.
Because of (2)∗, it is possible to find valuesλ1(k), . . . , λr(k), such thatx(k + 1) =
∑r

i=1 λr(k)xo
i (k + 1|k). A feasible solutionuf

cl,N (k + 1) can now be constructed as

u
f
cl(k + i|k + 1) =

r∑

j=1

cju
o
cl,j(k + i|k), i = 1, . . . , N − 1,

and

u
f
cl,j0,...,jN−2

(k + N |k + 1) = −K(k)xf
j0,...,jN−1

(k + N |k + 1)),
{

jm = 1, . . . , r,
m = 0, . . . , N − 2.

The corresponding state predictions can be expressed similarly as

x
f(k + i|k + 1) =

r∑

j=1

λj(k)xo
cl,j(k + i|k), i = 1, . . . , N,

and

xf
j1,...,jN

(k + N + 1|k + 1) = (AjN
−BjN

K(k))xf
j1,...,jN−1

(k + N |k + 1),
{

jm = 1, . . . , l,
m = 1, . . . , N.

One can see that this input sequence satisfies (7)∗ for i = 1, . . . , N − 1 and, because
all possible statesx(k + N |k + 1) ∈ XN (k), also fori = N . Due to the specific
choice ofuf

cl(k + N |k + 1) and the wayXN (k + 1) is calculated, one can see that the
terminal constraint is also satisfied for the candidate input sequence proposed above.
Therefore step 1 of Algorithm 1 is also feasible at timek + 1, which then proves
recursive feasibility. Furthermore, due to convexity and because the state predictions
corresponding touf

cl,N(k + 1) can be expressed as convex combinations, one can see
that

Xuf
cl,N (k+1)(k + i|k + 1) ⊆ Xuo

cl,N (k)(k + i|k), i = 1, . . . , N.

Combined with the observation thatQN (k) satisfies (19)∗ and thatγ(k + 1) ≤ γ(k)
this then shows thatW (k + 1) ≤ W (k), which proves asymptotic stability, along the
lines presented in [82]. �

Figure 3.5 shows the same simulation shown in Figure 3.4, nowusing Algorithm 3.4.
Recursive feasibility is now obtained for all 4 values ofδ. Also, W (k) now behaves
monotonically.



72 Robust Model Based Predictive Control

3.6 Conclusions

In this chapter the important issue of recursive feasibility has been discussed in the
context of robust MPC. Compared to nominal MPC, this issue issomewhat more
delicate and subtle and requires special attention when designing MPC algorithms.
The use of open-loop input sequences, although attractive from a computational point
of view, often does not lead to recursive feasibility. This is illustrated using two recently
published papers [31,142] that make errors in this respect.

An important observation that can be made is that recursive feasibility and compu-
tational simplicity seem to be incompatible design objectives. One of the aims of the
following chapters is to provide methods to eliminate or alleviate this problem.



Chapter 4

Robust MPC using Polyhedral
Invariant Sets

“Prediction is very difficult, especially about the future.”

– Niels Bohr (1885-1962) –

This chapter discusses and extends three different types ofrobust MPC
algorithms. First the MPC algorithm introduced by Kothare et al. [68] is
discussed. Secondly, interpolation-based MPC algorithmsare discussed
and finally a robust quasi-infinite horizon algorithm is discussed. All
three classes of algorithms are extended towards the use of polyhedral
invariant sets instead of ellipsoidal invariant sets, leading to either
reduced computational complexity, less conservative constraint handling
or a combination of both. The first two classes are also extended on an al-
gorithmic level towards more general cost objectives and constraints and
to further enlarge the feasible region respectively. Numerical examples
are provided, illustrating the obtained improvements.

4.1 Robust constrained linear state feedback synthesis

4.1.1 Introduction

This section combines and improves two complementary algorithms in order to obtain
a computationally tractable control algorithm with improved control characteristics.
On the one hand the robust MPC method introduced by Kothareet al. [68] is used.
This algorithm is able to construct linear robust linear feedback laws for LPV systems
subject to input and state constraints, but has the disadvantage that it uses ellipsoidal
invariant sets. This can lead to conservative constraints handling, even when the

73
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algorithm is applied in a receding horizon fashion, i.e. when a feedback law is
recomputed at each time instant based on new state measurements. On the other
hand the algorithm to construct polyhedral invariant sets for LPV systems, which is
described in the previous chapter is used to obtain an improved characterization of the
feasible region of the resulting controller. The downside of the latter algorithm is that
it does not allow the simultaneous construction of a controller and the corresponding
polyhedral invariant set, as does the algorithm discussed in [68].

This chapter extends these algorithms in two important ways. First the method of
[68] is extended to also include mixed state/input constraints and cross-terms between
states and inputs in the quadratic objective function. Secondly, the use of polyhedral
invariant sets is introduced in the controller synthesis toassess the conservativeness
of the constraint handling of the resulting controller and to iteratively recompute
the feedback gain of this controller in order to improve the constraint handling.
The resulting algorithm consists of the sequential solution of several SDPs. Both
improvements were published in [93].

The method described in this section is related to MPC in several ways. First
of all it also provides a method for off-line controller synthesis for systems subject
to input/state constraints. It can be verified that the resulting controller, Lyapunov
function and invariant sets satisfy the stability conditions (3.11) and as such can be
used as terminal controller, cost and constraint respectively. On the other hand, the
method can also be applied on-line in a receding horizon fashion by recalculating the
feedback gain at every time step in order to further improve constraint handling. As
such this method is also an MPC method in itself.

4.1.2 Problem formulation

This paper considers LPV systems (3.1) with polytopic uncertainty description (3.2),
subject to state and input constraints (2.10)-(2.11). Later on in this section also mixed
state and input constraints will be considered:

[x(k); u(k)] ∈ Y ≡ {y|Axuy ≤ 1}, k ∈ N. (4.1)

The aim is to find a linear feedback controller

u(k) = −Kx(k), k ∈ N, (4.2)

that robustly asymptotically stabilizes (3.1)-(3.2) without violating constraints (2.10)-
(2.11) and/or (4.1) for a given initial statēx ∈ Rn

x . Optimality of the controller is
defined using the following cost function, which is a slight generalization of (1.3):

J ≡
∞∑

k=0

[
x(k)
u(k)

]T [
Q N

NT R

] [
x(k)
u(k)

]

, (4.3)

with N ∈ Rnx×nu .
The problem discussed in this paper can more formally be summarized as follows:
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Problem 4.1 (P4.1). Given a system(3.1)-(3.2) subject to constraints(2.10), (2.11),
(4.1), an optimality criterion defined as(4.3) and an initial statex̄ ∈ Rnx , find a
feedback gainK such that the controller(4.2) results in a minimal worst-case (over
all possible trajectories starting from the initial statēx) control cost(4.3)and without
violating constraints(2.10),(2.11),(4.1) for any of the possible trajectories.

The initial statex̄ can be a state chosen off-line by the user in order to obtain a
feedback controller with a desired feasible region. Alternatively P4.1 can be solved
on-line at each time instantk, wherex̄ is then chosen as the current state measurement
x(k).

No exact solution to P4.1 exists, but a the following relaxation to P4.1 was solved
in [68]:

Problem 4.2(P4.2). Given a system(3.1)-(3.2)subject to constraints(2.10)-(2.11), an
optimality criterion defined as(4.3) with N = 0 and an initial statēx ∈ Rnx , find a
feedback gainK such that

• the worst-case cost functionV (x̄) = x̄TP x̄ ≥ J(x̄) is minimal withP ∈ Snx

++

satisfying the Lyapunov inequality

P − (Ai −BiK)TP (Ai −BiK) ≻ Q + KTRK, i = 1, . . . , r, (4.4)

• the given initial statēx lies within a feasible invariant ellipsoidE of the form

E ≡ {x|xTPx ≤ γ}, (4.5)

with P ∈ Snx

++ andγ > 0.

Appendix A describes the solution method to this relaxation. More details can be
found in [68,93].

4.1.3 Mixed state/input cost and constraints

This section eliminates the assumptions of P4.2 thatN = 0 and that no mixed
constraints (4.1) are present and shows how these more general situations still lead
to a convex optimization problem.

4.1.3.1 Mixed state/input cost terms

In order to allow forN 6= 0 the Lyapunov inequality (4.4) needs to be adapted and
reformulated in an LMI similar to (A.3c). By substitution ofu(k) = −Kx(k), the
objective function (4.3) can be rewritten as

J(x(0)) ≡
∞∑

k=0

x(k)T
[

I
−K

]T [
Q N

NT R

] [
I
−K

]

x(k),

which then results in the following Lyapunov inequalities:

P − (Ai −BiK)TP (Ai −BiK) ≻
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[
I
−K

]T [
Q N

NT R

] [
I
−K

]

, i = 1, . . . , r. (4.6)

After substitution ofK = −Y Z−1 andP = γZ−1, left and right multiplication with
Z ∈ Snx

++ and division byγ > 0, these inequalities become

Z − (AiZ + BiY )TZ−1(AiZ + BiY ) ≻
1

γ

[
Z
Y

]T [
Q N

NT R

] [
Z
Y

]

, i = 1, . . . , r. (4.7)

By applying the Schur complement this can be formulated as the LMI






Z ∗ ∗
AiZ + BiY Z ∗
Q

1
2
xu

[
Z
Y

]

0 γI






≻ 0, i = 1, . . . , r, (4.8)

with Qxu =

[
Q N

NT R

]

. This LMI replaces (A.3c) in caseN 6= 0. If N = 0, both

LMIs are easily shown to be equivalent.

4.1.3.2 Mixed state/input constraints

The aim of this subsection is to reformulate (4.1) into sufficient LMI conditions in the
optimization variablesγ, Y, Z. First, we rewrite (4.1) as

Axu,xx(k) + Axu,uu(k) ≤ 1v, k ∈ N,

whereAxu = [Axu,x Axu,u]. After substitution ofu(k) = −Kx(k) this can be
rewritten as

[Axu,x −Axu,uK]x(k) ≤ 1v, k ∈ N,

which, for each row ofAxu separately, is satisfied if:

max
z∈E
‖[(Axu,x)[j,:] −Axu,uK]z‖ ≤ 1, j = 1, . . . , mxu,

with mxu denoting the number of rows inAxu. This is equivalent with

σ̄([(Axu,x)[j,:] −Axu,uK]Z
1
2 ) ≤ 1, j = 1, . . . , mxu,

with σ̄(·) denoting the largest singular value, which (similar to the derivation of the
state constraint LMI in [68]) is satisfied if





Z ∗
(Axu)[j,:]

[
Z
Y

]

1



 ≻ 0, j = 1, . . . , mxu. (4.9)

This LMI can be added as an additional constraint to (A.3) in case constraints of the
form (4.1) are present.
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4.1.3.3 Algorithm formulation

The two extensions described above are now summarized in thefollowing algorithm:

Algorithm 4.1 (Constrained controller synthesis for LPV systems, [93]).Given a
system(3.1)-(3.2) subject to constraints(2.10),(2.11),(4.1), optimality criterion(4.3)
and an initial statēx ∈ Rnx , solve optimization problem(A.3), with (A.3c) replaced
with (4.8)and with additional constraint(4.9). Return feedback gainK = −Y Z−1.

4.1.4 Controller synthesis using polyhedral invariant sets

This section discusses how polyhedral invariant sets can beintegrated in the synthesis
process to reduce conservative constraint handling and obtain more optimal controllers.
Two algorithms are formulated:

• An algorithm that consists of first applying Algorithm 4.1 after which a
polyhedral invariant set is computed using Algorithm 2.4 resulting in an exact
characterization of the feasible region of the closed loop system.

• An algorithm that consists of iteratively recomputingK using Algorithm 4.1
andP using Algorithm 2.4 in order to increase the optimality ofK subject to the
feasibility requirement̄x ∈ P .

The first algorithm obviously results in the same controlleras Algorithm A.1, but
returns a more exact characterization of the feasible region, whereas the second
algorithm exploits the improved characterization of the feasible region to improve
optimality of the controller.

Algorithm 4.2. Given a system(3.1)-(3.2)subject to constraints(2.10), (2.11), (4.1),
optimality criterion(4.3)and an initial statēx ∈ Rnx , perform the following steps:

• Apply Algorithm 4.1 to obtain a feedback gainK and a Lyapunov function
V (x) = xTPx.

• Apply Algorithm 2.4 to obtain the MASP for the closed-loop system(3.1), (3.2),
(4.2)subject to constraints(2.10), (2.11), (4.1).

Although Algorithm 4.2 is rather straightforward, there are a few interesting points
to make:

• Since by construction̄x ∈ E , it is also guaranteed thatx̄ ∈ P ,

• The Lyapunov functionV (x) = xTPx, that is proven in [68] to be valid within
E is also valid for all statesx ∈ P , since all the imposed constraints are satisfied
for trajectories starting from such states.

• An upper bound to the control costJ(x̄) is given byγo. This is due to the fact
that in the optimum equation (A.3b) is satisfied with equality, i.e. γo = x̄TP x̄ ≡
V (x̄). SinceV (x) is an upper bound to the worst case value ofJ(x), γ serves as
an upper bound to the control cost of trajectories starting from the initial value
x̄.
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Based on these observations we can now formulate an algorithm that iteratively
applies Algorithm 4.2 in order to find an optimal feedback gain K over all feedback
gains for which̄x ∈ P (instead of̄x ∈ E in case of Algorithm 4.1).

Algorithm 4.3. Given a system(3.1)-(3.2)subject to constraints(2.10), (2.11), (4.1),
an optimality criterion(4.3) and an initial statex̄ ∈ Rnx such that Algorithm 4.1 is
feasible, solve the following optimization problem:

min
c

γ(c), (4.10a)

s.t. x̄ ∈ PK(c), (4.10b)

whereγ(c) andK(c) are the values obtained with Algorithm 4.1 for relaxed constraints
X ′,U ′,Y ′:

X ′ = cX , U ′ = cU , Y ′ = cY, (4.11)

with c a positive scalar.PK(c) is the MAS for the closed loop system(3.1), (3.2), (4.2)
(withK = K(c)) subject to constraints(2.10), (2.11), (4.1). ReturnK(co) andPK(co),
with co denoting the optimal solution of(4.10).

Optimization problem (4.10) is a scalar optimization problem with a monotonically
decreasing objective functionγ(c). Therefore the problem is reduced to finding the
largest value ofc for which (4.10b) is still satisfied. Since in typical situations the set
C , {c|x̄ ∈ PK(c)} is convex, one can solve optimization problem (4.10) by means of
interval reduction techniques, e.g. bisection search. In degenerate cases whereC is not
convex, one can still easily find a feasible solution due to the following lemma.

Lemma 4.1. Optimization problem(4.10)is feasible forc = 1.

Proof: One can see that forc = 1 the obtained values forγ(c), K(c),PK(c) are
identical to the valuesγ, K,P obtained with Algorithm 4.3. Sincēx ⊂ P = PK(c)

this implies that (4.10b) is satisfied forc = 1. �

Lemma 4.1 indicates that an interval reduction method initialized with the interval
[1, c̄], c̄ > 1 will always find a feasible solution to (4.10). Standard methods can find
sufficiently accurate solutions (∼ 10−10) in 10 to 20 iterations, with each iteration
consisting of the computation ofK(c) and the correspondingPK(c).

Theorem 4.1.Consider the optimal valueγ(co) of Algorithm 4.3 and the optimal value
γo of Algorithm 4.1, then the following property holds:

γ(co) ≤ γo. (4.12)

Proof: Sincec = 1 is always a feasible solution to (4.10) by virtue of Lemma 4.1
andγ(1) ≡ γo the theorem is trivially proven. �

Theorem 4.2. The feedback gainK(co) obtained with Algorithm 4.3 robustly as-
ymptotically stabilizes(3.1)-(3.2) and satisfies constraints(2.10), (2.11), (4.1) for
trajectories starting from initial statēx.
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Proof: Since K(co) is essentially calculated using Algorithm 4.1, it robustly
asymptotically stabilizes (3.1)-(3.2) with Lyapunov function V (x) = xTP (co)x, with
P (co) defined in a similar way asK(co). Sincex̄ ∈ P(co) andP(co) is a robust
feasible invariant set with respect to the closed loop system (3.1), (3.2), (4.2) (with
K = K(co)) subject to constraints (2.10), (2.11), (4.1), it is also guaranteed by
construction that all trajectories starting from̄x satisfy the imposed constraints. �

As is done in [68], it is also possible to apply Algorithms 4.1, 4.2 and 4.3 on-line
in a receding-horizon fashion, i.e. applying the algorithmat every time instantk ∈ N
with x̄ = x(k) and applyingu(k) = −Kx(k) to the system. We will refer to these
algorithms as Algorithms 4.1b, 4.2b and 4.3b.

4.1.5 Example

We consider a numerical example describing a double integrator with polytopic model
uncertainty described by

A1 =

[
1 0.1
0 1

]

, B1 =

[
0
1

]

, (4.13a)

A2 =

[
1 0.2
0 1

]

, B2 =

[
0

1.5

]

. (4.13b)

The system is subject to constraints (2.10), (2.11), (4.1) defined as

Ax = [0.01I; −0.1I], (4.14a)

Au = [1; −2], (4.14b)

Axu = [0.1 0 − 2]. (4.14c)

The control objective (4.3) is defined as

Q = I, R = 0.01, N = [0.05; 0]. (4.15)

Figure 4.1 depicts the resulting invariant sets and trajectories corresponding to
controllers computed using Algorithms 4.2 and 4.3. Algorithm 4.2 computes identical
controllers for symmetrically positioned initial states,although the imposed constraints
are non-symmetrical, which illustrates that it cannot efficiently deal with this setting.
The depicted polyhedral invariant sets (dashed) also show that the initial state in some
cases lies well within the feasible region, which indicatesthat the feedback controller
will not reach any of the imposed constraints for this initial state. Algorithm 4.3 results
in controllers whose feasible region exactly contain the imposed initial states. Table
4.1 indicates that this improved constraint handling leadsto more optimal controllers
at the expense of an increased computation time.

Figure 4.2 shows trajectories using Algorithms 4.1b and 4.3b. The system behavior
was chosen to be alternating between[A1 B1] and[A2 B2]. Both algorithms lead to
stable behavior and satisfy all imposed constraints, including the mixed state/input
constraint. Algorithm 4.3b leads to more complex control behavior and has non-
conservative constraint handling, as can be verified in Figure 4.2. This leads to
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Figure 4.1: Top: Ellipsoidal (solid) and polyhedral (dashed) invariant sets and
trajectories (dash-dotted) corresponding to feedback controllers computed using
Algorithm 4.2 for different initial statēx (depicted as circles) for the LPV system
defined by (4.13) subject to constraints defined by (4.14) andfor cost matrices (4.15).
Bottom: Polyhedral invariant sets (solid) and trajectories (dash-dotted) corresponding
to feedback controllers computed using Algorithm 4.3.

increased optimality, with Algorithm 4.1b resulting in a control cost of 1150.4 for both
initial states and Algorithm 4.3b leading to a control cost of 606.3 and 1104.5 for initial
state[−8; 0] and[8; 0] respectively.

4.1.6 Conclusions

This section extends the results of [68] in two ways. First the algorithm is extended
to also deal with mixed state/input constraints and cost terms. Secondly Algorithm
2.4 is combined with this method to improve the constraint handling in the controller
synthesis. The obtained algorithms can be applied either off-line to compute robustly
stabilizing linear feedback controllers with guaranteed feasibility or can be applied on-
line in a receding horizon fashion.
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Figure 4.2: Input and state trajectories resulting from Algorithms 4.1b (dashed) and
4.3b (solid) for initial states[−8; 0] (thin lines) and[8; 0] (thick lines). The same
system, constraints and cost matrices as in Figure 4.1 were used. The lower right
subfigure illustrates that the imposed mixed state/input constraint is successfully taken
into account.

x̄ [−4;0] [−2;0] [2;0] [4;0] T

γ for Algorithm 4.2 282.78 58.70 58.70 282.78 0.41s
γ for Algorithm 4.3 207.70 48.41 53.82 270.58 101s

Table 4.1:Upper bounds for the total control cost (4.3) and for different values of̄x and
average computation time using two different algorithms for computing the feedback
controller. The same system, constraints and cost matricesas in Figure 4.1 were used.
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4.2 Interpolation based robust MPC

4.2.1 Introduction

In this section a specific class of MPC algorithms with guaranteed stability is discussed,
that is able to obtain large feasible regions in a markedly different way than the quasi-
infinite horizon MPC Algorithms 1.2 and 3.2. With this latterclass of quasi-infinite
horizon algorithms, the feasible region can be enlarged by means of increasing the
horizon length. However, when controlling systems with slow dynamics, or when
relatively strict input constraints are applied, a large increase in horizon length might be
needed in order to obtain a moderate enlargement of the feasible region. As a result, the
maximum obtainable feasible region under given computational complexity constraints
might be relatively small in these circumstances. A large feasible region can also
be obtained by choosing a sub-optimal terminal controller with a large corresponding
invariant set. However, local optimality is sacrificed in this case.

The class of interpolation-based MPC algorithms is able to achieve large feasible
regions while maintaining local optimality and a relatively low computational com-
plexity. Interpolation-based algorithms do not explicitly make use of a finite horizon,
but rather interpolate between trajectories resulting from a priori fixed linear feedback
laws. One of these linear feedback laws is typically chosen to be locally optimal, which
then guarantees local optimality of the resulting interpolation-based control law. The
other feedback laws are typically chosen such that the corresponding invariant sets are
large in one or more dimensions of state space. In this way thefeasible region of the
resulting control law is guaranteed to be large, since it canbe proven to be equal to the
convex hull of the invariant sets corresponding to the different linear feedback laws.

General interpolation in MPC was initially introduced in [3] for LPV systems and
made use of ellipsoidal invariant sets. [122] investigatedthe LTI case and made use of
polyhedral invariant sets. However, the use of polyhedral invariant sets for the LPV
case had not been investigated until recently. Based on the results presented in Chapter
2, this section describes this extension. This leads to improved constraint handling,
reduced computational complexity – especially for low-dimensional systems – and a
guaranteed enlargement of the feasible region. This contribution was discussed in [99].

A second contribution of this section is the extension of thefeasible region of
interpolation-based MPC algorithms beyond the convex hullof the invariant sets
corresponding to the different linear feedback laws. This extension is applicable any
general interpolation based algorithm regardless of the type of invariant sets that is
used, but in the latter case of polyhedral sets, the enlargement of the feasible region
typically is more significant. The disadvantage is the potentially large increase in the
number of constraints, compared to the standard algorithmsfor general interpolation.
This contribution was introduced in [118,120].

First we introduce the concept of general interpolation forLTI systems. Then, the
concept is generalized to the robust control setting, afterwhich the use of polyhedral
invariant sets is introduced. Finally, a new method is described to further enlarge the
feasible region of interpolation based MPC.
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x̂1(k)

Figure 4.3: Depiction of the state decomposition used in general interpolation based
MPC for the casenx = 2 andn = 2.

4.2.2 General interpolation for LTI systems

In this section we consider the LTI systems of the form (1.1).The aim is to steer the
system state towards the origin without violating state andinput constraints (2.10)-
(2.11). General interpolation combines large feasible regions and local optimality by
interpolating the behavior of different linear feedback laws:

u(k) = −Kix(k), i = 1, . . . , n, (4.16)

with 2 ≤ n ∈ N denoting the number of linear control laws between which the
interpolation is performed. The controllers are constructed off-line during the design
phase together with feasible invariant setsS1, . . . ,Sn for the corresponding closed-
loop systems(A−BK1), . . . , (A−BKn). At every time instantk, the current system
statex(k) is written as a convex combination ofn vectorsx1(k), . . . , xn(k) ∈ Rnx :

x(k) =

n∑

i=1

λi(k)xi(k), λ1...n(k) ≥ 0,

n∑

i=1

λi(k) = 1, (4.17)

where every vectorxi has to lie within the corresponding invariant set:xi ∈
Si, i = 1, . . . , n. By introducing variableŝxi(k) , λi(k)xi(k), i = 1, . . . , n, this
decomposition can also be written as

x(k) =

n∑

i=1

x̂i(k), with

{∑n
i=1 λi(k) = 1, λi ≥ 0,

x̂i(k) ∈ λi(k)Si.
(4.18)

This decomposition is depicted in Figure 4.3. Note that thisdecomposition can only
be carried out ifx(k) ∈ Co{S1, . . . ,Sn}. Based on this state decomposition a control
action is calculated as follows:

u(k) = −
n∑

i=1

Kix̂i(k). (4.19)
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This control action is by construction feasible with respect to U . Due to the fact that
x̂i(k) ∈ λi(k)Si, one can see that−Kix̂i(k) ∈ λi(k)U and thereforeu(k) ∈ U is
satisfied. One can also see that this control action results in the following next state
x(k + 1):

x(k + 1) = Ax(k) + Bu(k), (4.20a)

= A
n∑

i=1

x̂i(k)−B
n∑

i=1

Kix̂i(k), (4.20b)

=

n∑

i=1

(A−BKi)x̂i(k). (4.20c)

At time k + 1 one can therefore make a decomposition into vectorsx̂i(k + 1) =
(A − BKi)x̂i(k) with coefficientsλi(k + 1) = λi(k), i = 1, . . . , n. Because the sets
Si are invariant with respect to their respective closed-loopsystems, one can see that
(A − BKi)x̂i(k) ∈ λi(k + 1)Si and that this decomposition at timek + 1 is indeed
valid. By applying this reasoning recursively the following input and state sequences
are obtained:

u(k + i|k) = −
n∑

j=1

Kj(A−BKj)
ix̂j(k), i ∈ N, (4.21a)

x(k + i|k) =

n∑

j=1

(A−BKj)
ix̂j(k), i ∈ N. (4.21b)

The control cost corresponding to these input and state sequences can now be calculated
as a function of the variableŝxi(k), i = 1, . . . , n by applying standard Lyapunov
theory. By introducing the stacked vectorx̃(k) = [x̂1(k); . . . ; x̂n(k)] an upper bound
x̃T(k)P x̃(k) to this cost can be calculated as

P � ΨTPΨ + ΓT
u RΓu + ΓT

x QΓx, (4.22)

with P ∈ Sn.nx

++ and Ψ = diag((A − BK1), . . . , (A − BKn)), Γx = [I, . . . , I],
Γu = [K1, . . . , Kn]. One can calculateP by solving the SDP

min
P∈S

n.nx
++

tr(P ), subject to (4.22). (4.23)

This optimization problem is an SDP and can hence be solved efficiently. In the LTI
case this optimization yields an exact expression for the expected control cost, and the
condition (4.22) will be satisfied with equality.

General interpolation based MPC consists of calculating anoptimal state decompo-
sition at every time instant and applying the correspondingcontrol action to the system.
This can be formalized as follows:

Algorithm 4.4 (MPC using general interpolation (GIMPC)). Given a system(1.1),
constraints(2.10)-(2.11), cost weighting matricesQ ∈ Snx

++, R ∈ Snu

++, controllersKi

and invariant setsSi, perform the following steps.
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Off-line: CalculateP by solving(4.23).
On-line: At every time instantk, given the current statex(k), perform the following
steps

• Solve the optimization problem

min
x̂1...n(k),λ1...n(k)

x̃T(k)P x̃(k), subject to(4.18). (4.24)

in order to obtain an optimal state decomposition.

• Apply the inputu(k) = −∑n
i=1 Kix̂i(k).

Lemma 4.2 (Recursive feasibility and asymptotic stability). Algorithm 4.4 is
recursively feasible and is asymptotically stabilizing.

Proof: The proof is straightforward based on the above arguments and is only
sketched briefly. Calculation (4.20) suggests a possible decomposition at timek + 1
based on the decomposition at timek. Based on invariance and feasibility of the sets
Si, this suggested decomposition can be verified to be feasiblewhich proves recursive
feasibility. This feasible solution results in a reduced value of the cost function of the
on-line optimization problem, which then shows asymptoticstability. �

This methodology was initially introduced in [3] for the LPVcase, after which [122]
described the LTI case together with several variants of themethod that aim to further
alleviate the computational complexity.

4.2.3 General interpolation for LPV systems

General interpolation can be extended to the LPV case in a straightforward way.
In this section the main differences with the LTI case are highlighted. For more
details we refer to [3] and to Section 4.2.4, where the specific case of interpolation
based MPC using polyhedral invariant sets is discussed. A more general overview of
interpolation based MPC algorithms can be found in [124,125]. In the LPV case a state
decomposition is performed in the same way as described by (4.18). Due to the model
uncertainty the input and state sequences induced by this decomposition now become:

u(k + i|k) = −
n∑

j=1

Kj

i∏

p=1

Φj(k + i− p)x̂j(k), i ∈ N, (4.25a)

x(k + i|k) =

n∑

j=1

i∏

p=1

Φj(k + i− p)x̂j(k), i ∈ N, (4.25b)

with Φj(k + i) = A(k + i) − B(k + i)Kj, i ∈ N, j = 1, . . . , n. One can see
that not only the state but also the input sequence depends onthe future values of
A(k), B(k), which indicates that within-horizon feedback is present in this type of
MPC. Also note that the input and state sequence under consideration cover an infinite
horizon and hence the notion of a terminal cost and constraint is not applicable in this
setting. In order to obtain recursive feasibility the feedback controllersK1...n need to
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be robustly stabilizing and the corresponding invariant sets S1...n need to be robustly
positive invariant:

(Aj −BjKi)x ∈ Si, ∀x ∈ Si, j = 1, . . . , r, i = 1, . . . , n. (4.26)

In the LTI case these different controllersK1...n can be constructed as LQR controllers
calculated for different cost weighting matrices. In the LPV case the construction
of these controllers is somewhat more complicated, but still tractable, since here the
methods described in Section 4.1 can be used. This can be doneby choosingn
different values of̄x resulting inn different feedback gainsKi. This already gives
an indication of how the improvements obtained there influence the performance of
other MPC algorithms.

An upper bound̃xT(k)P x̃(k) to the corresponding worst-case control cost can be
obtained by solving the following modified optimization problem:

min
P∈S

n.nx
++

Tr(P ), (4.27a)

subject to P � ΨT
i PΨi + ΓT

u RΓu + ΓT
x QΓx, i = 1, . . . , r, (4.27b)

Note that this optimization problem is still an SDP, similarto the LTI case, but with
an increased number of LMI constraints. Typically, not all of these constraints can
be satisfied with equality and hence the obtained upper boundx̃T(k)P x̃(k) will be an
over-estimate of the real worst-case control cost. This is the sacrifice that has to be
made in order to obtain a quadratic function as an upper boundto the control cost and
hence obtain a more efficient on-line optimization problem.

Although the off-line computations become visibly more complex in the LPV case,
the on-line optimization problem remains identical to the LTI case. However, a second
look also reveals an increase in computational complexity in the on-line optimization
problem. This is due to the fact that invariant sets for LPV systems typically are
more complex than those for LTI systems. In [3] ellipsoidal invariant sets are used,
leading to an SDP formulation for the on-line computation. In [96] it is shown that
this optimization problem can also be formulated as an SOCP.In the LTI case [122]
polyhedral invariant sets are typically used, which results in a QP.

The next section describes in more detail the case when polyhedral invariant sets are
used in the LPV case. This leads to a QP optimization problem,which is significantly
easier to solve than the SDP presented in [3] and also leads toa significant improvement
in the control performance.

4.2.4 General interpolation using polyhedral invariant sets

This section restates Algorithm 4.4 for the LPV case combined with the use of
polyhedral invariant sets. A detailed proof of recursive feasibility and asymptotic
stability are given. These results were initially described in [99].

Algorithm 4.5 (Robust GIMPC using polyhedral sets (P-GIMPC)). Given a system
(1.1), constraints(2.10)-(2.11), cost weighting matricesQ ∈ Snx

++, R ∈ Snu

++,
controllersKi and polyhedral invariant setsSi = {x|ASi

x ≤ 1}, solve on-line at
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each time instantk, given the current statex(k), the following problem:

min
x̂1...n(k),λ1...n(k)

x̃T(k)P x̃(k), (4.28a)

subject to x(k) =

n∑

i=1

x̂i(k), (4.28b)

ASi
x̂i(k) ≤ λi(k)1, i = 1, . . . , n, (4.28c)

n∑

i=1

λi(k) = 1, (4.28d)

λi(k) ≥ 0, i = 1, . . . , n, (4.28e)

and implement inputu(k) = −∑n
i=1 Kix̂i(k).

It is obvious that this optimization problem is a QP and can hence be solved efficiently.

Lemma 4.3. Algorithm 4.5 guarantees robust satisfaction of(2.10)-(2.11) and is
recursively feasible and asymptotically stable for all initial statesx(0) ∈ S ,

Co{S1, . . . ,Sn}.

Proof: It is clear from (4.18) that (4.28) is feasible for allx ∈ S. Given the current
statex(k), componentŝxi(k) and factorsλi(k), it is possible to calculate the next state
to bex(k +1) =

∑n
i=1 Φi(k)x̂i(k). Since the componentsxi(k) lie in their respective

invariant setsSi, this will also be the case for the componentsxi(k+1) = Φi(k)xi(k),
which shows thatx(k+1) will also lie withinS. By recursively applying this argument
it is proven thatx(k + i) ∈ S, i = 1, . . . ,∞. Since allSi are subsets ofX andX is
convex,S will also be a subset ofX , which then proves robust satisfaction of the state
constraints. Furthermore, sincex̂i(k) ∈ λi(k)Si, it is clear that̂ui(k) , −Kix̂i(k) ∈
λi(k)U . Therefore (sinceU is a convex set)u(k) ,

∑n
i=1 ûi(k) ∈ U , which proves

robust satisfaction of the input constraints.
Asymptotic stability can be proven by considering components x̂i(k), which are

shown above to provide a feasible candidate decompositionx̂i(k + 1) = Φi(k)x̂i(k)
for timek +1. It is now easy to see, based on satisfaction of (4.27b) that this candidate
decomposition already provides a lower value of the cost function of (4.28) than the
optimal cost value at timek, which proves that the optimal value of the cost at time
k + 1 will also be lower than the optimal value at timek. This consequently proves
that the optimal value of the cost function of (4.28) acts as aLyapunov function of the
closed-loop system, which proves asymptotic stability. �

In the sequel we refer to algorithm 4.5 asP-GIMPC, whereas the same algorithm
using ellipsoidal invariant sets will be referred to asE-GIMPC. The former algorithm
has several advantages compared to the latter. First of all,it has an enlarged feasibility
region, since the individual invariant sets are larger thantheir ellipsoidal counterparts
used inE-GIMPC. Furthermore, the polyhedral invariant sets can efficiently cope with
non-symmetrical constraints, which ellipsoids cannot. Due to the invariant sets being
larger, less conservative satisfaction of the imposed input and state constraints can be
expected, potentially leading to a reduction in control cost. Finally, the algorithm
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is formulated as a QP, which is significantly less expensive to solve than the SDP
formulation ofE-GIMPC. Section 4.2.7 clearly illustrates these advantages.

4.2.5 Improved general interpolation

This section discusses a further improvement of the GIMPC algorithm discussed in the
previous section. Section 4.2.5.1 first shows that the constraint handling in GIMPC
algorithms can still be conservative in many cases due to thefact that constraint
handling is only done explicitly for each linear control lawseparately. Section 4.2.5.2
then shows how improved constraint handling can be obtainedby constructing a mutual
invariant set for an augmented autonomous system describing the dynamic behavior of
the state decomposition vectorsx̂i(k). The improved constraint handling is applicable
to bothP-GIMPC andE-GIMPC leading to respectivelyP-GIMPC2 andE-GIMPC2.
These results are published in [118,120,121].

4.2.5.1 Conservative constraint handling in GIMPC

This section explains a shortcoming in GIMPC that can lead toconservative constraint
handling. For reasons of simplicity only the LTI case is considered, but the same
arguments can be formulated for the LPV case.

Constraint handling in GIMPC is done by means of invariant setsSj corresponding
to the different linear control lawsKj. By imposing thatx̂j(k) ∈ λj(k)Sj it is
guaranteed that the corresponding input and state sequencecomponents lie within their
correspondingly scaled state and input constraint sets:

x̂j(k + i|k) , (A−BKj)
ix̂j(k) ∈ λj(k)X , i ∈ N, j = 1, . . . , n, (4.29a)

ûj(k + i|k) , −Kj(A−BKj)
ix̂j(k) ∈ λj(k)U , i ∈ N, j = 1, . . . , n. (4.29b)

As a result, the corresponding state and input sequence willalso satisfy the input and
state constraints:

x(k + i|k) =
n∑

j=1

x̂j(k + i|k) ∈ X , i ∈ N, (4.30a)

u(k + i|k) =

n∑

j=1

ûj(k + i|k) ∈ U , i ∈ N. (4.30b)

If a state component vector̂xj(k) lies close to the edge of its correspondingly scaled
invariant setλj(k)Sj this will mean that either (4.29a) or (4.29b) will only be
marginally satisfied for one or more values ofi. Consequently ifx(k) lies close to
the edge ofS, all state component vectorŝxj(k) will lie close to the edge of their
correspondingly scaled invariant setλj(k)Sj and hence for eachj = 1, . . . , n there
will exist one or more values ofi for which either (4.29a) or (4.29b) will only be
marginally satisfied. However, this does not necessarily imply that the same will hold
for either (4.30a) or (4.30b). Possible reasons for this arethe following:
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• (4.29a) or (4.29b) might have extremal values with different signs for different
values of j, whose effect will be annihilated by summing these different
sequences (over allj-values) intox(k + i|k) andu(k + i|k).

• (4.29a) or (4.29b) might achieve their extremal values for different values of
i depending onj. (e.g., x̂1(k + i|k) might be maximal fori = 2, whereas
x̂2(k + i|k) might be maximal fori = 5)

• Possibly some values ofj might only have state component sequences that
lie close to the constraints, whereas other values ofj might only have input
sequences that lie close to the constraints. (e.g., forj = 1 only x̂1(k + i|k)
might reach values close to the constraints, whereas forj = 2 only û2(k + i|k)
might reach values close to the constraints)

For any of these reasons the resulting state and input sequences (4.30a), (4.30b) might
lie well within the imposed constraints even for values ofx(k) lying close to edge ofS.
This implies that there exist statesx(k) outside ofS for which a state decomposition
exists that results in a feasible corresponding input and state sequence. This effect
is illustrated in Section 4.2.7. The aim of the next section is to improve the GIMPC
algorithm to better cope with these effects.

4.2.5.2 Improved constraint handling (GIMPC2)

This section improves the constraint handling of the GIMPC algorithm by allowing all
possible decompositions (also those withx̂j /∈ λj(k)Sj for somej) that lead to feasible
input and state sequencesu(k + i|k), x(k + i|k), i ∈ N. This is done by constructing
an augmented system describing the dynamics of the considered state decomposition
componentŝxj(k + i|k), j = 1, . . . , n, i ∈ N. Two different methods are possible,
based on the definition state vectorxaug(k+i|k) of this augmented system. This vector
can either be defined asxaug(i) , [x̂1(k + i|k); . . . ; x̂n(k + i|k)] or asxaug(i) ,

[x(k + i|k); x̂1(k + i|k); . . . ; x̂n−1(k + i|k)]. We first describe the former method.
Afterwards the latter choice, which has some advantages over the former, is described.

4.2.5.2.1 Method 1. If we definexaug(i) , [x̂1(k+ i|k); . . . ; x̂n(k+ i|k)] the state
sequence (4.25b) can be described by the following autonomous system:

xaug(i + 1) =






Φ1(k + i)
. . .

Φn(k + i)




 xaug(i), i ∈ N, (4.31)

where againΦj(k + i) , A(k + i)− B(k + i)Kj. The state and input sequences can
be easily expressed in terms ofxaug(i):

x(k + i|k) ≡ [I . . . I]xaug(i), i ∈ N, (4.32)

u(k + i|k) ≡ −[K1 . . . Kn]xaug(i), i ∈ N. (4.33)

We now want to characterize all state decompositions definedby xaug(0), for which
the corresponding state and input sequences satisfy the constraints. In other words,
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we want to characterize all augmented statesxaug(0), that guarantee that the following
constraints are satisfied:

[I, . . . , I]xaug(i) ∈ X , ∀[A(k + i) B(k + i)] ∈ Ω, ∀i ∈ N, (4.34)

−[K1, . . . , Kn]xaug(i) ∈ U , ∀[A(k + i) B(k + i)] ∈ Ω, ∀i ∈ N. (4.35)

This can be done by calculating the MASSaug for the following autonomous LPV
system:

xaug(i + 1) = Ψaug(i)xaug(i), i ∈ N, (4.36)

whereΨaug(i) ∈ Ωaug, ∀i ∈ N, with Ωaug defined as

Ωaug , Co{Ψaug,1, . . . , Ψaug,l}, (4.37)

Ψaug,j , diag(Aj −BjK1, . . . , Aj −BjKn), j = 1, . . . , r, (4.38)

subject to constraints

[Ax . . . Ax]xaug(i) ≤ 1, ∀i ∈ N, (4.39)

[−AuK1 . . . −AuKn]xaug(i) ≤ 1, ∀i ∈ N. (4.40)

It is clear that ifxaug(0) ∈ Saug, constraints (4.34),(4.35) are automatically satisfied.
The following on-line optimization problem can now be formulated:

min
x̂1...n(k)

x̃T(k)P x̃(k), (4.41)

subject to x(k) =

n∑

i=1

x̂i(k), (4.42)

x̃T(k) ∈ Saug. (4.43)

Compared to GIMPC this optimization problem has a reduced number of optimization
variables and ifSaug is polyhedral, the resulting optimization problem is a QP.
However, this formulation has two disadvantages. First of all there are still equality
constraints present in this formulation in order to make sure that the different state
component vectorŝx1...n(k) sum up tox(k). Second of all, finding an explicit
description of the feasible region (in terms ofx(k)), requires the computation of an
oblique projection ofSaug. These two disadvantages are eliminated in the second
method, at the cost of a slightly more complicated construction of Ψaug(k).

4.2.5.2.2 Method 2. If we definexaug(i) , [x(k+i|k); x̂1(k+i|k); . . . ; x̂n−1(k+
i|k)], the following autonomous LPV system is obtained:

xaug(i + 1) = Ψaug(i)xaug(i), i ∈ N, (4.44a)

whereΨaug(i) ∈ Ωaug, ∀i ∈ N, with Ωaug defined as

Ωaug , Co{Ψaug,1, . . . , Ψaug,r}, (4.44b)
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with

Ψaug,j ,








Aj −BjKn Bj(Kn −K1) · · · Bj(Kn −Kn−1)
0 Aj −BjK1 · · · 0
...

...
. . .

...
0 0 · · · Aj −BjKn−1








,

j = 1, . . . , r, (4.44c)

subject to constraints

AxΓxxaug(i) ≤ 1, ∀i ∈ N, (4.45a)

AuΓuxaug(i) ≤ 1, ∀i ∈ N, (4.45b)

with Γx = [I 0 . . . 0], Γu = [−Kn (Kn − K1) . . . (Kn − Kn−1)]. Similar to
method 1, characterization of all state decompositions that lead to feasible input and
state sequences can be done by calculating the MASSaug for system (4.44)-(4.45) and
demanding thatxaug(0) ∈ Saug.

An upper bound to the worst-case control cost in terms of the augmented state
vectorxaug(0) can now be obtained asxaug(0)TP ′xaug(0) by solving the following
optimization problem:

min
P ′∈S

n.nx
++

Tr(P ′), (4.46a)

subject to P ′ � ΨT
aug,jP

′Ψaug,j + ΓT
u RΓu + ΓT

x QΓx, j = 1, . . . , r, (4.46b)

with Ψaug,j defined as in (4.44). It should be noted thatP ′ can also be obtained by
means of simple algebraic manipulations of the solutionP of (4.27). We can now
formulate the following improved improved interpolation based MPC algorithm:

Algorithm 4.6 (Improved general interpolation (GIMPC2)). Given a system(3.1),
(3.2), constraints(2.10)-(2.11), cost weighting matricesQ, R and robustly stabilizing
controllersK1...n, perform the following steps:
Off-line:

• Construct the augmented system(4.44)-(4.45)and calculate a feasible positive
invariant setSaug for this system.

• CalculateP ′ by solving(4.46).

On-line:
At every time instantk, given the current statex(k), perform the following steps:

• Solve the optimization problem

min
x̂1...n−1(k)

xT
aug(0)P ′xaug(0), subject to xaug(0) ∈ Saug, (4.47)

in order to obtain an optimal state decomposition.
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• Calculatex̂n(k) = x(k)−∑n−1
j=1 x̂j(k).

• Apply the inputu(k) = −
∑n

j=1 Kj x̂j(k).

If the setSaug is chosen to be a polyhedral invariant set the above algorithm will be
referred to asP − GIMPC2, whereas it will be referred to asE − GIMPC2 if an
ellipsoidal invariant set is used.

Note that due to the specific choice ofx(i)aug the constraintx(k) =
∑n

j=1 x̂j(k)
is already eliminated from the formulation and therefore isn’t included in the on-line
optimization problem. Furthermore, the feasible region ofthe algorithm can be defined
as

F , {x|∃x̂1...n−1 : [x; x̂1; . . . x̂n−1] ∈ Saug}. (4.48)

The feasible region hence is the projection ofSaug onto the firstnx dimensions, which
can be done using standard techniques like e.g. Fourier-Motzkin elimination [146] in
the polyhedral case, or using the Schur complement in the ellipsoidal case. The two
disadvantages of method 1 are hence eliminated in method 2.

GIMPC2 maintains the properties of GIMPC regarding recursive feasibility, guaran-
teed robust constraint satisfaction and asymptotic stability, as is shown by the following
lemmas.

Lemma 4.4. Algorithm 4.6 is recursively feasible.

Proof: Given a state decomposition̂x1...n(k) at time k satisfying xaug(0) ≡
[x(k); x̂1(k); . . . ; x̂n−1(k)] ∈ Saug, the corresponding state at timek + 1 is given
by

x(k + 1) =

n∑

j=1

(A(k) −B(k)Kj)x̂j(k), (4.49)

which suggests a possible decompositionx̂j(k + 1) = (A(k) − B(k)Kj)x̂j(k), j =
1, . . . , n at timek + 1. This candidate decomposition at timek + 1 can be verified to
be feasible, since some straightforward algebraic manipulation yields that

Ψaug,jxaug(0) =








∑n
m=1(Aj −BjKm)x̂m(k)

(Aj −BjK1)x̂1(k)
...

(Aj −BjKn−1)x̂n−1(k)








, j = 1, . . . , r. (4.50)

SinceSaug is a positive invariant set with respect to these dynamics, any convex
combination of these right hand-sides will still lie insideSaug. Since[x(k +1); x̂1(k +
1); . . . ; x̂n−1(k + 1)] can indeed be written as such a convex combination (because
[A(k) B(k)] can be written as a convex combination of the[Aj Bj ]) the above proposed
state decomposition at timek +1 is indeed feasible, which proves recursive feasibility.

�



4.2 Interpolation based robust MPC 93

Lemma 4.5. Algorithm 4.6 guarantees robust satisfaction of(2.10)-(2.11) if it is
initially feasible.

Proof: Due to recursive feasibility it is guaranteed that, if the on-line optimization
(4.47) is initially feasible,[x(k); x̂1(k); . . . ; x̂n−1(k)] ∈ Saug, ∀k ∈ N. BecauseSaug

is also feasible with respect to (4.45), it is guaranteed that

Axx(k) ≤ 1, ∀k ∈ N, (4.51)

which proves that the state constraints are satisfied∀k, and it is also guaranteed that

−Au



Knx(k) +
n−1∑

j=1

(K1 −Kn)x̂j(k)



 ≤ 1, ∀k ∈ N, (4.52)

which is equivalent with

Auu(k) ≤ 1, ∀k ∈ N, (4.53)

which guarantees that also the input constraint are satisfied ∀k, which proves the
lemma. �

Lemma 4.6. Algorithm 4.6 robustly asymptotically stabilizes(3.1),(3.2) if it is initially
feasible.

Proof: Condition (4.46b) guarantees that

xaug(0)TP ′xaug(0)− (Ψaug,jxaug(0))TP ′(Ψaug,jxaug(0)) ≥
x(k)TQx(k) + u(k)TRu(k), ∀xaug(0) 6= 0 ∈ Saug, j = 1, . . . , r, (4.54)

and, after making appropriate convex combinations, that

xaug(0)TP ′xaug(0) ≥ xaug(1)TP ′xaug(1),

∀xaug(0) 6= 0 ∈ Saug, ∀[A(k) B(k)] ∈ Ω. (4.55)

This shows that the feasible solution constructed in Lemma 4.4 already results in a
lower value of the objective function of the on-line optimization problem ifx(k) 6=
0. Hence the optimal value of the optimization problem at timek + 1 will also be
strictly lower than that obtained at timek if x(k) 6= 0, which shows that this value is
monotonically decreasing as a function ofk, which proves asymptotic stability. �

Lemma 4.7. Algorithm 4.6 has a larger feasible region thanP-GIMPC ifSaug is taken
to be the MAS for the augmented system.

Proof: If Saug is taken to be the MAS, the maximality of the set guarantees that
all possible state decompositions that lead to feasible state and input sequences are
captured withinSaug. Hence, also all decompositions allowed byP-GIMPC are
captured, which proves the lemma. �
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Figure 4.4: Flow chart of the design process of an interpolation based MPC controller.
At first sight the design process is largely independent fromthe type of interpolation
that is used, apart from the determination of the constraints to be used in the on-line
optimization problem. However, as a result the computational complexity and the
feasible region will be interpolation type dependent, influencing the decisions made
during the design process. Still, the tuning parameters formodifying both aspects are
identical for both types of interpolation.
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4.2.6 Controller design

The design process of interpolation based MPC algorithms (both GIMPC and GIMPC2)
is somewhat different than that of more standard MPC controllers. This process is
depicted as a flow chart in Figure 4.4.

In the following subsections the 4 most important design parameters will be
discussed: choice ofn, choice ofK1...n, choice of the invariant set type and choice
of the interpolation type (GIMPC vs. GIMPC2).

4.2.6.1 Number of controllersn

The choice ofn influences two important properties of the resulting controller: the
feasible region and the computational complexity.

Larger values ofn allow interpolation between a larger number of control lawsand
can therefore lead to larger feasible regions. Especially for higher-dimensional systems
(largenx), it might be necessary to choose larger values ofn (proportional tonx) in
order to obtain a feasible region that is large in all dimensions.

On the other hand larger values ofn also lead to more complex on-line optimization
problems as is shown in Table 4.2. The computational complexity also depends on the
type of invariant sets that is used, as well as the type of interpolation, as is explained in
the following subsections.

4.2.6.2 Choice of feedback lawsK1...n

Since the aim is to obtain an MPC controller with local optimality, at least one of the
controllers should be chosen as the locally optimal controller. This is also depicted in
Figure 4.4. In the LTI case this can be done by calculating theLQR controller for the
given system, in the LPV case, Algorithm 4.2 with a value ofx̄ close to0 can be used.

The other control lawsK2...n should be chosen to obtain a large feasible region. One
can either chose these controllers as manually detuned versions of the locally optimal

#variables #constraints class

P-GIMPC n.(1 + nx) n +
∑n

j=1 mj QP
E-GIMPC n.(1 + nx) + 1 n linear constr. SDP

n + 1 LMIs
2n.nx LMI rows

P-GIMPC2 (n− 1).nx m QP
E-GIMPC2 (n− 1).nx + 1 0 linear constr. SDP

2 LMIs
2n.nx LMI rows

Table 4.2: Computational complexity of the on-line optimization problems of GIMPC
and GIMPC2 in terms of the number of optimization variables,the number of
inequality constraints and the optimization class. The variables mj denote the
number of constraint describing the invariant setsSj , while m denotes the number
of constraints describingSaug.
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controller [116] or one can use Algorithm 4.3 with larger values ofx̄ in order to obtain
control laws with feasible regions that are large in specificdirections. Figure 4.4 also
shows that the choice of these controllers is an iterative process in order to achieve a
desired resulting feasible region for the interpolation based controller.

4.2.6.3 Type of invariant sets

The choice of invariant set type (polyhedral vs. ellipsoidal) is largely determined by
the computational complexity and the resulting feasible region. Polyhedral invariant
sets lead to feasible regions that are guaranteed to be larger than those obtained with
their ellipsoidal counterparts and lead to an on-line optimization class (QP) that can
be solved efficiently. However, the number of constraints ofthe optimization problem
is less predictable when using polyhedral invariant sets than when usign ellipsoidal
invariant sets. In those cases when this number of constraints becomes too large, one
can revert to using ellipsoidal invariant sets, otherwise one should stick with polyhedral
invariant sets.

4.2.6.4 Choice of interpolation type

As shown by Lemma 4.7 the feasible region of GIMPC2 is larger than that of GIMPC.
Simultaneously, GIMPC2 needs a smaller number of on-line optimization variables
than GIMPC. Hence, from both points of view GIMPC2 is favorable. The downside,
however, is that in the case polyhedral invariant sets are used, the number of constraints
m can increase exponentially as a function ofn.nx. As a result, when controlling
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Figure 4.5: Comparison ofE-GIMPC andP-GIMPC for system (4.56)-(4.57) using
controllers (4.58). The invariant sets are depicted in solid lines, the convex hulls are
depicted in dotted lines.
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higher-dimensional systems, GIMPC should be favored aboveGIMPC2. In the other
case GIMPC should be favored.

4.2.7 Example

In this section we use a numerical example with the same double integrator dynamics as
the one used in Section 4.1.5 in order to illustrate the concepts described in the previous
sections. We consider a model of the form (3.1),(3.2) withr = 2 and dynamics defined
by

A1 =

[
1 0.1
0 1

]

, B1 =

[
0
1

]

, (4.56a)

A2 =

[
1 0.2
0 1

]

, B2 =

[
0

1.5

]

. (4.56b)

The system is subject to constraints (2.10), (2.11), with

Ax = [I/8; −I/10], (4.57a)

Au = [1; −2]. (4.57b)

The control objective is defined by weighting matricesQ = diag(1, 0.01), R = 3. In
this section we construct and compare different interpolation based MPC controllers.
In all casesn = 2 is used with

K1 = [0.4858 0.3407], (the LQR-optimal for[A1 B1]) (4.58a)

K2 = [0.3 0.4]. (4.58b)

Both controllers are locally robustly asymptotically stabilizing for the given LPV
system (4.56).

We first compareE-GIMPC to P-GIMPC. A depiction of the resulting feasible
regions can be found in Figure 4.5. It is clear thatP-GIMPC has a significantly larger
feasible region thanE-GIMPC, which is partly due to the fact that polyhedral invariant
sets can efficiently cope with asymmetric constraints.

Figure 4.6 shows trajectories for both controllers starting from initial states[−5.5; 5]
and[5.5;−5]. E-GIMPC results in symmetrical trajectories for the two different initial
states and achieves a control cost of82.45, whileP-GIMPC is able to take advantage
of the asymmetrical constraints and achieves a control costof 81.37 and78.74 for the
two initial states respectively.

Figure 4.7 shows the difference in feasible region between anominal and robustP-
GIMPC controller. The nominal controller is designed for[A1 B1], whereas the robust
controller is designed forCo{[A1 B1], [A2 B2]}. The right subfigure shows trajectories
for both controllers for initial condition[−8; 4], when the real system behavior is taken
to be the LTI system defined by[A2 B2]. The nominal controller first steers the system
outside the feasible region of the robust controller and afterwards even outside its
own feasible region, after which an infeasibility occurs (indicated with a circle). As
expected, the robust controller steers the system to the origin. This clearly indicates that
model mismatch can cause unwanted control behavior when using nominal controllers,
which can be avoided when including robustness measures in the controller design.
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Figure 4.6: Comparison ofE-GIMPC andP-GIMPC for system (4.56)-(4.57) using
controllers (4.58). Trajectories from two symmetrically opposed initial states are
depicted.
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Figure 4.7: Comparison of robust and nominalP-GIMPC. The nominal
controller is designed for[A1 B1], whereas the robust controller is designed for
Co{[A1 B1], [A2 B2]}. Left: The invariant sets are depicted in solid lines, the convex
hulls are depicted in dotted lines.Right: Trajectories starting from initial state[−8; 4]
are depicted in solid (robustP-GIMPC) and dashed (nominalP-GIMPC) lines.
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Figure 4.8: Comparison ofP-GIMPC andP-GIMPC2 for system (4.56)-(4.57) using
controllers (4.58).P-GIMPC2 clearly extends the feasible region significantly beyond
the convex hull of the individual invariant sets.
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Figure 4.9: Comparison of the state decompositions obtained byP-GIMPC andP-
GIMPC2 for system (4.56)-(4.57) using controllers (4.58) and current statex(k) =
[−4; 0]. The values of̂x1(k), x̂2(k) obtained withP-GIMPC are indicated with×-
symbols, those obtained withP-GIMPC2 with ◦-symbols. x(k) is indicated with a
�-symbol.
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Figure 4.10: Comparison of the input sequences corresponding to the state
decompositions depicted in Figure 4.9. Both input sequences satisfy the imposed input
constraints, but the sequence obtained byP-GIMPC2 comes closer to the imposed
constraints, which is an indication of less conservative constraint handling. The real
system behavior was taken as the LTI system defined by[A2 B2].

We now compare GIMPC and GIMPC2. Figure 4.8 shows the feasible region for
P-GIMPC andP-GIMPC2. The second algorithm clearly has a significantly larger
feasible region. Figure 4.9 shows the decomposition obtained by both algorithms for
the statex(k) = [−4; 0], which lies close to the border of the feasible region ofP-
GIMPC.P-GIMPC2 clearly obtains a state decomposition that is not allowed byP-
GIMPC, since the state component vectors lie outside both invariant sets. However,
Figure 4.10 shows that the corresponding input sequences (4.25a) satisfy the imposed
input constraints. The same can be verified for the state sequences (4.25b).

Finally we compareP-GIMPC2 toE-GIMPC2 in terms of the obtainable feasible
region. This is depicted in Figure 4.11. Similar toP-GIMPC2, E-GIMPC2 is
also able to enlarge the feasible region ofE-GIMPC, but is less successful thanP-
GIMPC2. Furthermore, it should be noted that the feasible region ofE-GIMPC2 does
not completely enclose that ofE-GIMPC.

4.3 Quasi-infinite horizon robust MPC

In this section we extend results presented in [123] and [70]. The common part of both
methods is the use of a reparameterization of the input sequence over which the on-line
optimization takes place. This reparameterization was initially introduced in [123] for
LTI systems in order to improve numerical stability in MPC design. The results in [70]
are presented in a different angle and emphasize the fact that this reparameterization
allows the controller design to take place by calculating aninvariant set and a Lyapunov
function for an augmented system, very similar to the methods presented in Section
4.2.5.2. The latter method was introduced for LPV systems using ellipsoidal invariant
sets.

In this section we modify the results from [70] towards the use of polyhedral sets.
This allows the resulting controller to handle asymmetric constraints more efficiently,
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Figure 4.11: Comparison of the feasible regions ofE /P-GIMPC andE /P-GIMPC2.
The latter are depicted using solid lines, the former using dashed lines.

and results in a significantly larger feasible region for identical values ofN . The
downside is the fact that the number of constraints of the on-line optimization problem
typically increases exponentially as a function of the horizon lengthN . Methods for
tackling this disadvantage are presented in Chapter 5. Another contribution of this
section is the discussion of the relationship of the use method to the open-loop and
closed-loop quasi-infinite horizon MPC algorithms discussed in Sections 3.3.1 and
3.3.2.

The results presented in this section were published in [100]. A different version
of this algorithm using multi-parametric programming (seee.g., [4, 6, 7, 21, 139]) was
published in [119].

4.3.1 Input sequence parameterization

While in open-loop quasi-infinite horizon MPC controllers,an on-line optimization
over the following input sequence takes place
{

u(k + i|k) = free control moves, i = 0, . . . , N − 1,
u(k + i|k) = −Kx(k + i|k), i ≥ N.

(4.59)

In this section the following parameterization of the inputsequence is used [106]:
{

u(k + i|k) = −Kx(k + i|k) + Ec(k + i|k), i = 0, . . . , N − 1,
u(k + i|k) = −Kx(k + i|k), i ≥ N,

(4.60)

with E ∈ Rnu×nc and the optimization taking place over the variablesc(k + i|k) ∈
Rnc . This was originally proposed in [123] for the LTI case and with E ≡ I and later
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Figure 4.12: Schematic representation of the reparameterization of theclosed-loop input sequence used in this section. In
this schematic example, a horizon lengthN = 3 and an LPV model (3.1)-(3.2) withr = 2 is used. For clarity reasons,
symbols for the state predictions at timek + 3 are omitted. Implicitly a closed-loop input sequence is used, while the
on-line optimization only has to be performed over the sequence ofc(k + i|k)-variables.
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used for the LPV case in e.g., [34,70] and the LTI case subjectto disturbances [83]. A
recent generalization of this reparameterization can be found in [54]. The introduction
of the matrixE allows for additional degrees of freedom during the controller design.
In both casesK is chosen to be a stabilizing feedback gain. One can see that this
corresponds to actually controlling a pre-stabilized system[A′ B′] , [A−BK BE],
with accordingly modified input constraints. Due to the factthat, opposed toA,
the eigenvalues ofA′ are guaranteed to lie within the unity circle, the numerical
conditioning of the resulting optimization problem is improved significantly, especially
for large values ofN . We refer to [123] for further details.

One can show [123] that in the LTI case, if one choosesE = I, the class of input
sequences over which the optimization takes place is identical in (4.59) and (4.60).
However, in the LPV case, the reparameterization (4.61) results in a different class of
input sequences since the notion of feedback is introduced.Figure 4.12 shows that in
the LPV case (4.60) actually induces the following parameterization of the closed-loop
input sequence:

{
uj0,...,ji−1(k + i|k) = −Kxj0,...,ji−1(k + i|k) + Ec(k + i|k), i = 0, . . . , N − 1,
uj0,...,ji−1(k + i|k) = −Kxj0,...,ji−1(k + i|k), i ≥ N.

(4.61)

In this way one can see that by using the above parameterization, the on-line
optimization actually takes place over a subset of thefully parameterizedclosed-
loop input sequence introduced in Section 3.3.2. However, the main advantage is the
fact that the notion of feedback is maintained while actually only needing the same
number of optimization variables as the open-loop input sequence used in Section
3.3.1. A second advantage, which will become even more useful in the next chapter, is
highlighted in the following section.

4.3.2 Controller synthesis using an augmented autonomous system

Similar to Section 4.2.5.2, this sections aims to constructan augmented autonomous
system that modelsa) the closed-loop dynamics of the LPV system controlled by
the MPC controller using input sequence (4.61) andb) the dynamics involving the
construction of a feasible solution at timek + 1 given a feasible solution at timek.
This will allow us to construct the on-line objective function and inequality constraints
in a straightforward way.

A straightforward choice for the augmented state vector isxaug(i) = [x(k +
i|k); c(k + i|k); . . . ; c(k + i + N − 1|k)]. As suggested in [70] one can see
that the following augmented system successfully models the closed-loop dynamics
corresponding to the closed-loop input sequence (4.61):

x(i + 1)aug = Ψaug(k + i)x(i)aug, i ∈ N, (4.62)
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with Ψaug(k + i) ∈ Ωaug , Co{Ψaug,1, . . . , Ψaug,r}, i ∈ N, where

Ψaug,i =

[
Ai −BiK [BiE 0 0 . . . 0]

0 SN,nc

]

, SN,nc
=










0 I 0 . . . 0
0 0 I . . . 0
...

...
...

. . .
0 0 0 I
0 0 0 . . . 0










, (4.63)

whereSN,nc
∈ RN.nc×N.nc is theN.nc-dimensional shift matrix with lengthnc shifts.

Given an augmented state vectorxaug(i), the corresponding state vectorx(k + i|k)
can be expressed asx(k + i|k) = Γxxaug(i), with Γx = [I 0 . . . 0], while the
corresponding input vectoru(k+i|k) can be expressed asu(k+i|k) = Γuxaug(i) with
Γu = [−K E 0 . . . 0]. State and input constraints (2.10)-(2.11) can now be expressed
in terms ofxaug(i):

xaug(i) ∈ Xaug ≡ {x|Aaugx ≤ 1}, i ∈ N, (4.64a)

Aaug = [Γx; Γu]. (4.64b)

In order to guarantee that, given a set of feasible control actionsc(k|k), . . . , c(k +N −
1|k) at timek, the set of control actions at timek +1 generated by the dynamics (4.64)
also will be feasible, we construct a setSaug that is positive invariant with respect to
(4.63) and feasible with respect to (4.64). In [70] this is done by means of ellipsoidal
invariant sets. In this sectionSaug is constructed using Algorithm 2.4 resulting in a
polyhedral set.

An objective functionxT
aug(i)Pxaug(i) that serves as an upper bound to the real

worst-case value of the control cost and is guaranteed to be monotonically decreasing
under the dynamics given by (4.63), can now be constructed bysolving the following
SDP:

min
P∈S

n.nx
++

Tr(P ), (4.65a)

subject to P � ΨT
aug,jPΨaug,j + ΓT

u RΓu + ΓT
x QΓx, j = 1, . . . , r, (4.65b)

4.3.3 Algorithm formulation and properties

We can now formulate the following algorithm, by summarizing the previous section:

Algorithm 4.7 (Robust MPC using polyhedral sets (P-RMPC)). Given a system
(3.1),(3.2), constraints(2.10)-(2.11), cost weighting matricesQ, R and a horizon
lengthN ∈ Z+

0 , perform the following steps:
Off-line:

• Construct the augmented system(4.63)-(4.64)and calculate a feasible positive
invariant setSaug for this system using Algorithm 2.4.

• CalculateP by solving(4.65).
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On-line:
At every time instantk, given the current statex(k), perform the following steps:

• Solve the optimization problem

min
c(k|k),...,c(k+N−1|k)

xT
aug(0)Pxaug(0), subject to xaug(0) ∈ Saug, (4.66)

in order to obtain optimal control actionsc(k|k), . . . , c(k + N − 1|k).

• Apply the inputu(k) = −Kx(k) + c(k|k).

This algorithm extends the algorithm introduced in [70] in two ways. First of all
polyhedral invariant sets are used instead of ellipsoidal invariant sets. Secondly, an
objective function is used that is more representative of the real control objective. The
algorithm in [70] essentially usesP = I.

Theorem 4.3. Algorithm 4.7 is recursively feasible and, if it is initially feasible,
guarantees robust satisfaction of(2.10)-(2.11)and asymptotic stability of the closed-
loop system.

Proof: The proof is similar to the proofs of Lemma’s 4.4, 4.5 and 4.6 and is hence
omitted. For more details we refer to [100]. �

The following lemma establishes a link with the stability framework discussed in
Section 3.3.2.

Lemma 4.8. The control movesc(k|k), . . . , c(k + N − 1|k) determined using
optimization problem(4.66) for a given statex(k) guarantee that the input sequence
(4.60)drives the system inN time steps into a feasible invariant set for the closed-loop
system{A1 −B1K, . . . , Ar − BrK} subject to constraints(2.10)-(2.11).

Proof: By applying dynamics (4.63) one can see thatxaug(N) = [x(k +
i|k); 0; . . . ; 0]. This shows thatx(k + i|k) lies inside an intersection ofSaug along
the firstnx dimensions, which we will denote asSaug,nx

. By inspecting the firstnx

dimensions of constraints (4.64) and dynamics (4.63), or similarly by filling in xaug(N)
in these expressions, and by observing thatSaug is a feasible positive invariant set for
(4.63),(4.64), it is clear thatSaug,nx

is a feasible positive invariant set for the system
mentioned in the formulation of this lemma. �

Lemma 4.8 shows that the notion of a terminal controller and aterminal constraint is
also present in Algorithm 4.7. A similar observation can be made about a link with a
terminal cost by inspecting the upper leftnx × nx submatrix ofP and by writing out
the same submatrix part of inequalities (4.65b).

4.3.4 Controller design

Figure 4.13 shows a possible design approach for a controller based on Algorithm
4.7. The three important tuning parameters areN, nc andE. The influence of these
parameters is discussed in the following sections.
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Calculate locally optimal controller K

Choose nc, E
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Figure 4.13: Flow chart of a possible design process of an interpolation based MPC
controller. The main design choices consist ofN, nc andE. LargerN and largernc ∈
{1, . . . , nu} typically lead to enlarged feasible regions and computational complexity
increases.

4.3.4.1 Choice ofN

As is also illustrated in Section 4.3.5, an increasing valueof N leads to a larger
feasible region. However, also the on-line computational complexity can increase
dramatically. Although the number of optimization variables is equal toN.nc and
hence only increases as a linear function ofN , the number of inequality constraints
describingSaug typically increases exponentially as a function ofN . As a result, in
typical situations only small values ofN can be chosen. This problem is tackled in the
next chapter.

4.3.4.2 Choice ofnc, E

The introduction of variableE is aimed at introducing additional degrees of freedom
in the controller design. The algorithms described in [70, 123] do not use this variable
and hence implicitly make the choiceE ≡ I. In many cases this is often also a good
initial choice when designing the controller.

However, if a given MIMO system has several inputs that areunimportant for
the given control problem it might not be needed to spend mucheffort to optimally
choose control actions for these inputs. One can use this information to obtain a
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decreased on-line computational complexity by decreasingnc and omitting the rows
of E corresponding to these inputs.

For example, when the second input of a3-input system is considered unimportant
one might want to choosenc = 2 andE = [1 0; 0 0; 0 1]. Similarly, when the effect
of the two first inputs is considered to be highly correlated,one might want to choose
E = [1 0; 1 0; 0 1].

4.3.5 Example

We retake the examples given in Section 4.2.7 and assess the different dimensions of
performance of Algorithm 4.7. In order to make a fair comparison we chooseK = K1.
Since there’s only 1 input, we chooseE = I.

Figure 4.14 shows the feasible regions forP-RMPC for increasing values ofN .
Larger values ofN result in larger feasible regions, but the increase is not assignificant
as the increase obtained when increasingn in P-GIMPC(2). However, the on-line
computational complexity does increase significantly whenincreasingn, as can be
observed in Table 4.3. In this example interpolation based algorithms seem to result in
a better trade-off between computational complexity and obtained feasible region.

Figure 4.15 shows trajectories forP-RMPC (N = 6), P-GIMPC andP-GIMPC2.
The real plant behavior is chosen as[A2 B2]. The different initial states are chosen
inside the intersection of the feasible regions of the different algorithms. Control
behavior can be observed to be qualitatively identical. Theaverage control cost per
initial state was51.41, 51.73 and51.42 respectively. Hence, from an optimality point
of view the three algorithms behave equally well in this example. Figure 4.16 shows
the obtained input signals for the different algorithms andthe different initial states.
Also here no significant differences can be observed.

Finally, for the sake of completeness, Figure 4.17 shows trajectories starting close to
the boundaries of the feasible regions of the different algorithms, in order to show that
the algorithms are indeed stabilizing in the entire feasible region.

4.4 Conclusions

In this chapter several robust control techniques are introduced that make use of
polyhedral invariant sets in order to handle constraints.

Both interpolation based and quasi-infinite horizon MPC algorithms are discussed
and extended towards the use of polyhedral invariant sets. These extensions result
in enlarged feasible regions, less conservative constraint handling in general and the
ability to efficiently cope with asymmetric constraints in particular. Another advantage
is that the on-line optimization reduces to solving a QP, which can be solved more
efficiently than an SDP. The main disadvantage of the obtained algorithms is the
questionable scalability properties towards large-dimensional systems or algorithms
using many degrees of freedom. This is the main concern discussed in the next chapter.

Finally, the seminal robust constrained controller synthesis results introduced in [68]
are extended towards using polyhedral instead of ellipsoidal invariant sets, leading to
feedback laws with improved optimality. These results can prove to be useful when
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Figure 4.14: Comparison of the feasible region ofP-RMPC (solid) forN = 0, . . . , 6
applied to system (4.56)-(4.57) using terminal controllerK = K1 and the feasible
regions ofP-GIMPC (dark grey) andP-GIMPC2 (light grey).

#variables #constraints vol.

P-RMPC, N = 0 0 12 27.94
P-RMPC, N = 1 1 21 39.42
P-RMPC, N = 2 2 40 51.26
P-RMPC, N = 3 3 73 63.73
P-RMPC, N = 4 4 135 76.59
P-RMPC, N = 5 5 259 87.34
P-RMPC, N = 6 6 506 96.88
P-GIMPC 6 24 79.13
P-GIMPC2 2 63 181.82

Table 4.3:Computational complexity of the on-line optimization problems and volume
of the feasible regions ofP-RMPC for system (4.56)-(4.57) using terminal controller
K = K1 andP-GIMPC(2) using controllers (4.58). Complexity is expressed in terms
of the number of optimization variables and the number of inequality constraints.
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Figure 4.15: Comparison of the control behavior ofP-RMPC (N = 6) applied to
system (4.56)-(4.57) using terminal controllerK = K1 and the control behavior ofP-
GIMPC andP-GIMPC2 for different initial states inside the intersection of the feasible
regions of the three controllers.
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Figure 4.16: Comparison of the input sequences corresponding to the trajectories
depicted in Figure 4.15. No significant differences can be observed.
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Figure 4.17:Trajectories forP-GIMPC (a),P-GIMPC2 (b) andP-RMPC withN = 6
(c) applied to system (4.56)-(4.57) for different initial states inside their respective
feasible regions.



4.4 Conclusions 111

constructing linear feedback laws for use in the interpolation based or quasi-infinite
horizon MPC algorithms discussed in this and next chapters.
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Chapter 5

Reduced-Complexity Invariant
Sets in Robust MPC

“Any intelligent fool can make things
bigger and more complex. . . ”

– Albert Einstein (1879-1955) –

The contribution of this chapter is the formulation of new algorithms for
the construction of invariant inner approximations of the MAS for LPV
systems. The main aim is to obtain invariant sets described with a reduced
number of constraints compared to the real MAS. Several examples
show that the complexity of the obtained invariant sets has significantly
improved scaling behavior as a function of the dimensionality. These sets
are then used in the MPC algorithms presented in Chapter 4 resulting in
an improved trade-off between the volume of the feasible region and the
on-line computational complexity.

5.1 Scalability analysis

Chapter 2 showed that the computation of the MAS for low-dimensional LPV systems
is computationally tractable, due to the fact that typically a large fraction of the
constraints under consideration is redundant. The examples at the end of Chapter 4,
however, seem to indicate that the number of constraints describing the MAS seems
to increase exponentially as a function of the dimensionality of the system for which
the invariant set is calculated. This can clearly be observed in Table 4.3: in case of
theP-RMPC algorithms, the number of constraints of the on-line optimization, which
in turn is determined by the number of constraints describing the invariant set for the

113
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augmented system (4.63), roughly doubles with every increase ofN . Whether this is
due to the specific structure that is present in (4.63) or whether this phenomenon is
generally valid is not immediately clear. This section aimsto shed light on this issue.

5.1.1 Monte-Carlo experiment

In this section we take a look at this scaling behavior for a class of LPV systems that
do not exhibit the specific structure of the augmented systems constructed in Chapter
4. We randomly generate LPV systems withr = 2 as follows:

Φ1 = a(I + 0.1R1), Φ2 = a(I + 0.1(R1 + 0.1R2)), (5.1)

with R1, R2 ∈ Rnx×nx square matrices whose entries are picked from a normal
distribution with µ = 0, σ =

√
nx. In this way the norms of theRi-matrices

do not increase asnx increases. The scalara is chosen such that̂ρ({Φ1, Φ2}) ≤
0.9. This is done by calculating an upper boundρ to ρ̂({Φ1, Φ2}) as ρ =

maxΦ(1...k)∈{Φ1,Φ2} ‖Φ(1) · . . . · Φ(k)‖ 1
k with k = 15 (see [71]) and settinga = 0.9

ρ .
Constraints are chosen asAx = [W ;−2W ], with W ∈ Rnx×nx randomly generated
in the same way asR1 andR2. These randomly generated systems can be seen as
discretized versions (with sample time equal to 0.1 time units) of random continuous-
time LPV systems with10% uncertainty.

Table 5.1 shows that also in this case, the number of constraints increases exponen-
tially as a function of the system dimensionality. Non-surprisingly the time needed
to construct the sets also increases exponentially as a function of the dimensionality.
This shows that the scaling behavior observed in the previous chapter is not a result of
the specific structure of the augmented sets considered there, but that this behavior is
inherent to polyhedral invariant sets for LPV systems.

Taking Theorem 2.2 into consideration as well as the fact that in these examplesmx

only increases linearly with the dimensionality, only an increase in the admissibility
index k⋆ can be the cause of this exponential increase. Furthermore,since by
constructionρ̂(Ω′) < 0.9 for all randomly generated systems, we can conclude that
the variablesa, b, c (see the proof of Theorem 2.2) are the determining factors inthis
case.

One insight that we would like to emphasize here is the fact that the producta.b can
be interpreted in terms of the shape ofX . One can verify thata.b ≈ 1 if the shape of
X is very close to a hyper-sphere, and thata.b =

√
nx if X is taken as a hyper-cube.

Since in reality typically component-wise constraints areimposed, which corresponds
to a hyper-box shaped constraint setX where similarlya.b ∼ √nx, one can now
directly find a plausible cause for the observed scaling behavior.

Secondly, it can also be observed that the fraction of redundant constraints decreases
as the dimensionality increases. A useful measure to inspect this effect is theequivalent
branching factorrequiv, which is defined by means of the following equation:

mx

1− rk⋆+1
equiv

1− requiv
= rows(AS), (5.2)
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rows(AS) k
⋆ CPU-t. (s) requiv

nx = 2 10.93 4.22 10.78 0.49
nx = 3 29.82 6.33 19.09 0.70
nx = 4 53.04 7.21 29.42 0.86
nx = 5 94.76 7.95 53.58 0.95
nx = 6 154.91 8.76 98.87 1.03
nx = 7 257.25 9.06 204.59 1.10
nx = 8 363.12 9.00 336.81 1.16
nx = 9 469.30 9.70 513.78 1.17
nx = 10 556.90 9.10 671.87 1.21

Table 5.1: Results of the Monte-Carlo experiment discussed in Section5.1.1. Average
number of constraints, average tree depth and average computation time of invariant
sets for 100 randomly generated systems are reported fornx = 2, . . . , 10. Due to time
constraints the results fornx = 8 were obtained with a sample size of50, the results
for nx = 9, 10 were obtained with a sample size of10.

and that can be interpreted as the value ofr that, according to expression (2.23), would
explain the observed number of constraints. Since expression (2.23) gives a worst-case
value for rows(AS), one can see thatrequiv ≤ r by definition. Larger values ofrequiv

indicate that a larger fraction of all possible constraintsis non-redundant. Table 5.1
shows thatrequiv increases as a function of the dimensionality.

5.1.2 Theoretical considerations

The Monte-Carlo experiment discussed in the previous section clearly shows that for
randomly generated systems with a fixed value of the JSR, the complexity of the
resulting invariant sets increases exponentially as the dimensionality of the system
increases. We now state a few properties regarding theP-GIMPC2 andP-RMPC
algorithms discussed in Chapter 4 that relate the above observations to the specific
structure present in these two algorithms, both of which rely on the construction of a
polyhedral invariant set for an augmented system. We first state the following Lemma
that directly proves the corollaries below.

Lemma 5.1(JSR of upper block triangular matrices). Given a setM = {M1, . . . ,
Mr}, with everyMi an upper block triangular matrix with diagonal blocksMi,(j,j),
then

ρ̂(M) = max
j

ρ̂({M1,(j,j), . . . , Mr,(j,j)}). (5.3)

Proof: This property directly follows from the fact that the diagonal blocks of
products of such matrices are equal to the products of the respective diagonal blocks
and from the fact that the norm of an upper block triangular matrix is given by the
maximum of the norms of the diagonal blocks. �

It goes without saying that the same can be proven for lower block triangular
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matrices. The following two corollaries follow directly and are of more importance
in this context.

Corollary 5.1 (Joint spectral radius andP-GIMPC2). The joint spectral radiuŝρaug

of augmented system(4.44)and the JSR̂ρi of the autonomous systems formed by LPV
system(3.1),(3.2)and feedback gainsKi satisfy the following relation:

ρ̂aug = max
i

ρ̂i. (5.4)

Proof: Applying Lemma 5.1 to (4.44) directly yields (5.4). �

The JSR of the augmented system (4.44) hence depends on the largest JSR of the
closed loop systems corresponding to the individual control laws between which the
interpolation is performed. The disadvantage is that less agressive controllers typically
result in slower convergence (and hence a larger JSR) while at the same time providing
a larger feasible region.

Furthermore, the constraints (4.45) that are imposed are unbounded along the last
(n − 1)nx dimensions of the augmented system, which prevents the use of 2.2 to
be used in order to determinek⋆

max. However, it can be verified that if the different
controllersK1, . . . , Kn are unique, Corollary 2.1 can be applied withj = n− 1. This
shows thatk⋆

max further increases as more different controllers are used.
These two observations show theoretically that there is an inherent trade-off inP-

GIMPC2 between the complexity of the obtained invariant setof the augmented system
and the size of the feasible region, both of which increase asn increases or more
detuned controllers are used.

Corollary 5.2 (Joint spectral radius andP-RMPC). The joint spectral radiuŝρaug

of augmented system(4.63)and the JSR̂ρcl of the closed-loop system formed by LPV
system(3.1),(3.2)and the feedback gainK are equal:

ρ̂aug = ρ̂cl. (5.5)

Proof: SinceSN,nc
is a nil-potent matrix and hence its spectral radius is0, applying

Lemma 5.1 to (4.63) directly yields (5.5). �

Similar toP-GIMPC2, it can be verified that Corollary 2.1 can be applied with j =
N − 1 in order to assess the complexity of the resulting invariantset used to construct
a P-RMPC controller. Hence, although the JSR of the augmented system (4.63) is
independent ofN , the value ofk⋆

max still increases asN is increased.
This shows that from a theoretical point of view also with theP-RMPC algorithm a

trade-off has to be made between the number of on-line constraints and the size of the
feasible region of the controller, both of which increase asN is increased.

5.1.3 Conclusion

This section makes an analysis of the scaling behavior of invariant sets for randomly
generated systems on the one hand, and of invariant sets for two classes of structured
systems on the other hand. In both cases an exponential scaling behavior is observed
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as a function of the dimensionality of the (augmented) system. This scaling behavior
is due to the fact that we construct the MAS for the given systems exactly. The
maximality of the volume of the invariant set seems to come atthe expense of a high
complexity.

Therefore in the following section new algorithms are discussed for constructing
reduced-complexity invariant sets, in order to improve thescaling behavior of the
resulting invariant sets. These sets are inner approximations to the MAS and hence
represent a different trade-off between volume and complexity.

5.2 Reduced-complexity invariant sets

5.2.1 State of the art

Three different approaches for the construction of invariant sets can be identified based
on the assumptions that are made from the outset or the restrictions that are imposed
during the construction of the sets.

A first approach consists of imposing a fixed low complexity structure on the
invariant set after which the aim is to maximize the volume without losing the
invariance property. The results discussed in [28, 30, 68, 75] can be classified in this
category. The method proposed in [68], which is already discussed in Chapter 2,
imposes an ellipsoidal structure, whereas the methods proposed in [28, 30, 75] impose
a parallellotopic structure. Both structures can be expressed as‖Wx‖p ≤ 1 with
W ∈ Rnx×nx , wherep = 2 for the ellipsoidal case andp = ∞ for the parallellotopic
case. Imposing an ellipsoidal structure has some importantdisadvantages as is already
discussed in Chapter 2, but leads to a formulation based on convex optimization.
Parallellotopic invariant sets on the other hand have the additional disadvantages that
they can only be constructed for a limited class of stable systems and that their
construction is not based on convex optimization. Their advantage lies in the fact
that they can be decribed by linear inequality constraints,which facilitates the on-line
optimization. Recent results [30] use partial invariance to obtain larger invariant sets
of low complexity but are still restricted to the same class of systems.

A different diametrically opposed approach is the construction of the MAS, where
essentially the a maximal volume is imposed. Within this framework of maximality of
the volume, the only degree of freedom for reducing the complexity of the resulting
invariant set is the removal of redundant constraints. Thisapproach hence leaves no
degrees of freedom to the user.

A third approach, which is the approach pursued in this chapter, is that of making
a trade-off between maximal volume and minimal complexity.The methods proposed
here start from the MAS which is then approximated in order toreduce the number
of constraints. The methods proposed here make these approximations either during
(pruning) or before (trimming) the actual construction of the invariant set. In this way
the real MAS is never explicitly constructed, which resultsin significant efficiency
gains. By means of a few tuning parameters the trade-off between maximal volume
and minimal complexity can be adjusted according to the user’s preferences. These
results are also discussed in [102].
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Based on expression (2.23) two possible strategies can be laid out within this third
class of methods. A first strategy is trying to reduce the number of parallel branches
present in the tree, in order to reduced the effective value of r in expression (2.23).
This method is calledpruningand is discussed in Section 5.2.2. A second strategy is
reducing the tree depth, in order to reduce the exponent present in (2.23). This method
is calledtrimmingand is discussed in Section 5.2.3.

5.2.2 Reducing branching: pruning

In this section an algorithm is introduced that constructs an invariant set in a similar
way to Algorithm 2.4 but uses constraint tightening in orderto reduce the number of
constraints describing the invariant set. The first subsection describes how constraints
can be tightened without losing the invariance property. Inthe second subsection we
then formulate an algorithm that makes use of these insightsto reduce the number of
inequalities describing the invariant sets. A third subsection gives rules of thumb for
parameter tuning.

5.2.2.1 Constraint tightening

First, we rephrase Algorithm 2.3 in terms of the setsXi instead ofOi in order to create
a theoretical framework within which we can formulate the concept ofpruning.

Algorithm 5.1 (Approximate maximal 〈Ω′〉-invariant set construction). Given a
system(2.1),(2.2)subject to constraints(2.10), perform the following steps:

1. InitializeX0 := X , i := 0.

2. Execute iteratively until
⋂i

j=0 Xj ⊆ Pre〈Ω′〉(Xi):

(a) Seti := i + 1.
(b) CalculateXi such thatXi ⊆ Pre〈Ω′〉(Xi−1).

Return the setS ,
⋂i

j=0 Xi and admissibility indexk⋆ , i.

Note that the equality in step 2b) of Algorithm 2.3 has been replaced with the above
inclusion. It can be shown that the above algorithm, if it terminates still produces a
valid 〈Ω′〉-invariant set, but maximality is not guaranteed anymore:

Theorem 5.1 (Correctness of Algorithm 5.1). If Algorithm 5.1 terminates, the
resulting setS is 〈Ω′〉-invariant.

Proof: One can see that by construction at the end of every iterationi, the set
Oi =

⋂i
j=0 Xj satisfiesOi ⊆ Pre〈Ω′〉(Oi−1). If the termination condition is

satisfied, then one has thatOi ⊆ Pre〈Ω′〉(Oi−1) ∩ Pre〈Ω′〉(Xi) which is equivalent
with Oi ⊆ Pre〈Ω′〉(Oi−1 ∩ Xi), which in turn is equivalent withOi ⊆ Pre〈Ω′〉(Oi).
Due to Lemma 2.1 this guarantees thatS ≡ Oi is 〈Ω′〉-invariant. �

The aim is now, in every iteration, to constructXi such that it approximates
Pre〈Ω′〉(Xi−1) as close as possible, but with a reduced number of inequalityconstraints.
How this is done exactly is explained by means of Figure 5.1.



5.2 Reduced-complexity invariant sets 119

−1 −0.5 0 0.5 1

−1

0

1

2

3

X4

X3

X2

X1

X0(1, I)

(1, Φ1)

(1, Φ2
1)

(2, I)

(2, Φ1)

(2, Φ2
1) (2, Φ1Φ2)

(2, Φ3
1) (2, Φ1Φ

2
2)

(2, Φ4
1) (2, Φ1Φ

3
2)

(3, I)

Figure 5.1: Illustration of the structure of the Maximal Admissible Setfor an
example system defined bynx = 2, r = 2, Φ1 = [1 0.2; −0.5 0.55] and Φ2 =
[1 0.2; −0.55 0.45], subject to constraintsAxx ≤ 1 with Ax = [−1 0; 0 − 1; 0.5 0.5].
Left: the tree structure of the MAS, where the nodes of the tree represent the different
constraints of the MAS, with the constraints of the different setsXi appearing at
different depths of the trees as indicated on the figure. The notation(i, M) denotes
the constraintaT

i Mx ≤ 1, with aT
i denoting thei-th row ofAx. Right: a depiction of

the MAS. The constraints(1, ∗) bound the MAS from the left; constraints(2, ∗) bound
the MAS from the lower right; constraint(3, I) is the diagonal constraint bounding the
MAS from above. Constraints(2, Φ2

1) and(2, Φ1Φ2) are depicted as dotted lines.

When inspecting Figure 5.1 one can notice that two separate branches appear
below constraint(2, Φ1), corresponding to the two verticesΦ1, Φ2 of the uncertainty
polytope. Thisbranching effect, which becomes more frequent with increasing state
dimension, is the primary reason why polyhedral invariant sets for LPV systems can
be dramatically more complex than invariant sets for LTI systems. Therefore, the main
purpose of this section is to find a way to efficiently reduce this branching effect.

Eliminating the branching effect observed in Figure 5.1 is possible by tightening one
of the two constraints(2, Φ2

1) and(2, Φ1Φ2). When comparing the two dotted lines it
is clear that by tightening either of both constraints with only a small factor, the other
becomes redundant. This actually corresponds to choosingX2 slightly smaller than
Pre〈Ω′〉(X1), which fits within the framework of Algorithm 5.1. Therefore, choosing
some constraints slightly tighter than necessary can potentially result in a complexity
reduction of the invariant set, while still guaranteeing〈Ω′〉-invariance of the resulting
setS.

The problem of finding how much a constraint should be tightened in order to make
another constraint redundant can be formulated as follows:

Problem 5.1 (Constraint tightening). Given real matricesA ∈ Rm×n, a1 ∈
Rn, a2 ∈ Rn with ν > 1,

ν = max
x

aT
2 x s.t.

[
A
aT
1

]

x ≤ 1, (5.6)
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find a scalarη > 1 such thatν′ = 1, with

ν′ = max
x

aT
2 x s.t.

[
A

ηaT
1

]

x ≤ 1. (5.7)

Note that the propertyν > 1 indicates thataT
2 x ≤ 1 is not redundant with respect to

[A; aT
1 ]x ≤ 1. The scalarη is the factor with whichaT

1 x ≤ 1 should be made stricter
in order to makeaT

2 x ≤ 1 redundant.
The following lemma allows this problem to be solved by solving a single LP:

Lemma 5.2. Given Problem 5.1, and given the optimal solutionxo, ξo of the following
optimization problem

min
x,ξ

ξ s.t.

[
A 0
aT
1 −1

] [
x
ξ

]

≤
[

1

0

]

, aT
2 x = 1, (5.8)

thenη = 1
ξo is a solution to Problem 5.1 ifξo > 0.

Proof: Due to the assumption of Problem 5.1 thatν > 1 it is guaranteed that there
exists a vectorxf such that[x; ξ] = [xf ; 1] is strictly feasible for (5.8) and hence
ξo < 1. By rewriting the constraints of (5.8) into the form of (5.7)it is clear thatxo is a
feasible solution to (5.7) forη = 1

ξo if ξo > 0. Furthermore, by writing the optimality

conditions of (5.8), it can be seen thatxo also is an optimal solution to (5.7) forη = 1
ξo .

Due to the constraintaT
2 x = 1 of (5.8) it is clear thatν′ = 1, which proves correctness

of the lemma ifξo > 0. �

The above lemma provides an efficient method for checking whether tightening a
given constraint, can eliminate a branch in the constraint tree. In the following sections
this method will be referred to aspruning.

5.2.2.2 Algorithm formulation using pruning

In this section constraint tightening is incorporated intoAlgorithm 2.4 in order to
construct invariant sets with a reduced number of constraints compared to the MAS
constructed using Algorithm 2.4. For simplicity the Algorithm will only be given for
the caser = 2, but extensions tor > 2 are straightforward.

Algorithm 5.2 (〈Ω′〉-invariant set construction using pruning). Given a system
(2.1),(2.2) subject to constraints(2.10), satisfying(2.18) for valuesc = c⋆, α = α⋆.
Consider user-defined scalarsd1 ≥ c⋆, d2 ∈ [α⋆, 1) andγ > 0. Execute Algorithm
5.1 with the following implementation of step 2b):

1. SetXi := Pre〈Ω′〉(Xi−1) and defineXi = {x|AXi
≤ 1}.

2. Check whether anybranching eventhas occurred, meaning that two non-
redundant constraints ofXi have the same parent constraint inXi−1. For every
branching event involving constraint rowsj1 and j2 of AXi

, check whether
constraint tightening can make one of both redundant:
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(a) Use Lemma 5.2 to calculate the scalarsη1 > 1, η2 > 1 (if both exist)
needed to make one of the constraints redundant (with respect to

⋂i
j=0 Xj)

by tightening the other. Assume without lack of generality thatη1 < η2.

(b) If η1 ≤ 1 + γ and η1‖AXi
(j1, :)‖ ≤ maxk ‖Ax(k, :)‖d1d

i
2, then set

AXi
(j1, :) := η1AXi

(j1, :).

Convergence and correctness can be proven in a straightforward way.

Theorem 5.2(Convergence of Algorithm 5.2). Algorithm 5.2 terminates in a finite
number of iterations.

Proof: Due to the safeguards built into step 2b) of Algorithm 5.2 anddue to the
choice ofd1 andd2, it is guaranteed thatmaxk ‖AXi

(k, :)‖ ≤ maxk ‖Ax(k, :)‖d1d
i
2.

By means of a similar argumentation as used in the proof of Theorem 2.2 it can now
be proven that Algorithm 5.2 terminates in a finite number of iterations. For details we
refer to this proof. �

Theorem 5.3(Correctness of Algorithm 5.2). The setS constructed using Algorithm
5.2 is〈Ω′〉-invariant.

Proof: Due to the fact that Algorithm 5.2 is a specific implementation of Algorithm
5.1, it is guaranteed thatS is 〈Ω′〉-invariant if in every iterationXi is indeed constructed
such thatXi ⊆ Pre〈Ω′〉(Xi−1). This is guaranteed sinceXi is initially constructed as
Xi := Pre〈Ω′〉(Xi−1), after whichXi is only made smaller, which proves the theorem.

�

Figure 5.2b) shows how Algorithm 5.2 is able to construct a reduced complexity
invariant set for the system depicted in Figure 5.1.

5.2.2.3 Parameter tuning

Parametersd1 andd2 are primarily used to impose convergence of the algorithm and
need to satisfyd1 > c⋆ andd2 ∈ [α⋆, 1) in order to do so. Mostly they can be given
the following default values:

d1 = m1c
⋆, (5.9a)

d2 = (1−m2).α + m2.1, (5.9b)

with m1 = 1.5 andm2 = 0.5. Unless stated otherwise these will be the values used
in all the following examples. An interesting property is that the worst-case volume
reduction to be expected is proportional tomnx

1 , wherenx is the state dimension of
the system. Therefore, in cases where large volume reductions can be tolerated, larger
values ofm1 can be chosen and vice-versa.

The parameterγ ≥ 0 is the main parameter influencing the trade-off between low
complexity and high volume since it defines an upper bound on the factor with which
constraints can be tightened in every iteration. Larger values of γ lead to lower
complexity invariant sets, while smaller values forγ lead to larger invariant sets. A
good starting point usually isγ ≈ 0.1. Systems with a larger amount of uncertainty
typically require larger values forγ to obtain equally large complexity reductions.
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Figure 5.2: Results of pruning and trimming when applied to the system discussed
in Figure 5.1.Top subfigures: Constraint trees of the resulting invariant sets. Solid
circles depict constraints that are modified with respect tothe MAS (i.e. figure a)).
Bottom subfigures: Invariant sets along with trajectories starting near the boundaries
of the sets. Top left to bottom right: a) the MAS of the system,b) invariant set
obtained usingpruning(cfr. Algorithm 5.2) withγ = 0.1, c) the MAS obtained using
trimming (cfr. Section 5.2.3) withc = 0.5, d) result obtained using both pruning and
trimming using identical parameters as in figures b) and c).
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5.2.3 Reducing tree depth: trimming

In this section a new theorem is introduced that adds an additional tuning parameter
to the algorithm for constructing reduced complexity invariant sets. It is shown that,
given an LPV system, it is allowed to modify the system in a specific way and calculate
the invariant set for the modified system. Under certain conditions the invariant set for
the modified system is also invariant with respect to the original system. By tuning the
involved parameter, one can potentially obtain invariant sets with a lower admissibility
indexk⋆. In the following sections this method will be referred to astrimming.

Theorem 5.4(Invariant sets for modified system matrices).Given a setS ∈ Rnx

and two autonomous LPV systems defined by uncertainty polytopesΩ1 andΩ2 that are
defined as

Ω1 , Co{Φ1, . . . , Φr}, (5.10a)

Ω2 , Co{Φ′
1, . . . , Φ

′
r}, (5.10b)

with

Φ′
i = (1 + c)Φi − cI, i = 1, . . . , r, (5.11)

wherec ∈ R+. If S is convex and〈Ω2〉-invariant, then it is also〈Ω1〉-invariant.

Proof: If S is 〈Ω2〉-invariant then

Φ′
ix ∈ S, ∀x ∈ S, i = 1, . . . , r,

or equivalently

((1 + c)Φix− cx) ∈ S, ∀x ∈ S, i = 1, . . . , r.

Due to convexity ofS and the fact thatc > 0 it is therefore also guaranteed that
(

1

1 + c
((1 + c)Φix− cx) +

c

1 + c
x

)

∈ S, ∀x ∈ S, i = 1, . . . , r,

which, after some algebraic manipulation, is equivalent to

Φix ∈ S, ∀x ∈ S, i = 1, . . . , r,

which proves thatS is 〈Ω1〉-invariant. �

The above theorem indicates that, given a system defined by uncertainty polytope
Ω1, one can calculate an invariant setS for the system defined byΩ2, which is then
invariant for both systems. The setS will be a subset of the MAS for the original
system. The parameterc can be used to reduce the number of constraints of the
resulting setS.

The theorem can be further generalized by, among other things, allowing different
values ofc for eachΦi-matrix.

Figure 5.2c) shows how Theorem 5.4 allows the construction of a reduced complexity
invariant set for the system depicted in Figure 5.1. Figure 5.2d) shows the results when
combining this theorem with Algorithm 5.2.
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5.2.3.1 Parameter tuning

The above described method for computing reduced complexity invariant sets based on
modified system matrices is especially useful for systems where the eigenvalues of the
Φi matrices lie close to the point1+0i on the unit circle, which is often the case in real-
life examples. One can see that increasing the value ofc moves the eigenvalues of the
Φ′

i-matrices away from the unity point, which can intuitively be seen as accelerating
the dynamics of the system. As a result one can see thatc influences the JSR which in
turn influencesk⋆. In this way the number of constraints of the resulting invariant set
can be reduced at the cost of a decrease in volume.

In order to reduce the number of constraints without taking the volume reduction into
account one can obtain a value forc as

min
c

ρ̂(Ω2).

However, since the computation ofρ̂(Ω2) for a single value ofc is already an NP-
hard problem, the above optimization problem cannot be solved in polynomial time.
However, it is possible to minimize the ellipsoid norm approximation [19, 137] of the
JSR instead:

min
c,P∈S

nx
++

γ,

s.t. ‖Φ′
i‖P ≤ γ, i = 1, . . . , r.

The ellipsoid norm can be computed by solving an SDP [24], andhence the optimal
value ofc can be found by means of an interval reduction method.

5.3 Linear scaling ofP-RMPC

This section shows that under certain conditions, the number of constraints ofP-RMPC
can be reduced from an exponentially increasing number (as afunction of N ) to a
linearly increasing number, when using Algorithm 5.2 instead of Algorithm 2.4 for
computing the invariant set for the augmented system (4.63)-(4.64), used in the design
phase of Algorithm 4.7 (P-RMPC). These conditions essentially come down to the fact
that the amount of model uncertainty must be sufficiently small and that the parameters
of Algorithm 5.2 should be chosen appropriately.

In order to
We first derive bounds on the tightening factors obtained using Lemma 5.2 by making

use of the structure present in (4.63)-(4.64) in order to come to a quantification of the
performance of Algorithm 5.2 in this context. This chapter is of high importance in
this thesis, because it combines results from Chapters 2 and4 and Sections 5.1.2 and
5.2.2 and gives insight into the factors determining the efficiency of Algorithm 5.2

Lemma 5.3. Given an LPV system(3.1)-(3.2)subject to constraints(2.10)-(2.11)and
a stabilizing feedback gainK. Consider the application of Lemma 5.2 for tightening
a constraintaT

1 x ≥ 1 in order to make a constraintaT
2 x ≤ 1 redundant during an

arbitrary iteration i of Algorithm 5.2 when applied to(4.63)-(4.64). Furthermore
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Invariant set type

Prediction type

Model class

Full complexity Red. complexity

Open-loop Cl.-l. w. reparameterized inputsClosed-loop

LTI LPV

# constraints

# opt. variables O(N) O(N)exp(N)

exp(N)O(N) O(N)

Algorithms Algorithm 1.2
Algorithms 
corrected in 
Chapter 3

Algorithm 
introduced in 

(Scokaert et al., 
1998, IEEE TAC)

P-RMPC using 
Algorithm 2.4

P-RMPC using 
Algorithm 5.2 

(see Theorem 5.5)

Figure 5.3: Evolution of the computational complexity of different MPCalgorithms.
In the LTI case one automatically has linear scaling behavior. In the LPV case one
obtains exponential scaling behavior if no special complexity reduction measures are
taken. Using reparameterized inputs (see Figure 4.12) one can reduce the number of
optimization variables to a linearly scaling number, whileusing reduced-complexity
invariant sets results in a linearly scaling number of constraints.

consider the fact that both constraints arechildren of constraintbTx ≤ 1, with
b = [b; b], b ∈ Rnx , b ∈ RN ·nu . In that case the tightening factorη obtained with
Lemma 5.2 is upper bounded by

η ≤ 1

1−√m
(

1 + ‖λ(+)‖
minλ(+)

)

‖C†‖‖U‖‖b‖
, (5.12)

if the denominator is strictly positive, with

C =

[
AT

x −KTAT
u

0 AT
u

]

, U =

[

(Φ2 − Φ1)
T

(B2 −B1)
T

]

, (5.13)

λ(+) a strictly positive vector satisfyingCλ(+) = Ub, m denoting the number of rows
of C andΦi = Ai −BiK.

Proof: See Appendix D. �

Expression (5.12) can be expected to be very conservative due to the many approxi-
mations made in Section D.1 when constructing this bound. The real tightening factor
found using Lemma 5.2 is in most cases significantly smaller.Therefore, this upper
bound only is of limited practical use, but shows thata bound exists that is independent
of N . This property is used in the following theorem.

Theorem 5.5. Given an LPV system(3.1)-(3.2) subject to constraints(2.10)-(2.11)
and a stabilizing feedback gainK. If γ is chosen such that

γ ∈
(
c− 1, d−1

2 − 1
)
, (5.14)
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with c equal to the RHS of(5.12), then the following property holds:

rows(AS) = O(N), (5.15)

with S = {x|ASx ≤ 1} an invariant set for system(4.63)-(4.64) computed using
Algorithm 5.2.

Proof: See Appendix D. �

The above theorem shows that if the amount of uncertainty is sufficiently small, the
parameters of Algorithm 5.2 are chosen appropriately and the interval given by (5.14) is
non-empty, the number of constraints ofP-RMPC increases as a linear function ofN .
Figure 5.3 sketches the broader context within which this result should be interpreted.

It is important to emphasize that if the above conditions arenot satisfied (e.g., if the
interval (5.14) is empty) one can still observe linear scaling behavior, or exponential
scaling behavior with a lower base number. In most situations, as illustrated in the next
section, the additional computational cost of verifying whether constraint tightening
can be applied is relatively small.

Therefore, the main conclusion of this section is that in most cases there is no reason
why not to use Algorithm 5.2 instead of Algorithm 2.4, especially when computing
constraints forP-RMPC.

5.4 Examples

Two sets of examples are provided. First the Monte-Carlo experiment discussed in
Section 5.1.1 is repeated using Algorithm 5.2 (pruning) andthe method described in
Section 5.2.3 (trimming). Secondly, the examples discussed in Sections 4.2.7 and 4.3.5
are also repeated using the new algorithms in order to evaluate whether an improved
trade-off is obtained between the number of on-line constraints and the obtained
feasible regions.

5.4.1 Monte-Carlo experiment

For easy reference, we first summarize the results of the Monte-Carlo experiment
discussed in Section 5.1.1. The experiment showed that for random LPV systems the
number of constraints describing polyhedral invariant sets constructed using Algorithm
2.4 increases exponentially as a function of the dimensionality of the system, even
if the convergence rate of the systems is kept fixed by construction. This was
shown to be due to an increase of the admissibility indexk⋆ as a function of the
dimensionality. Expression (2.23) shows that the worst-case number of constraints
describing polyhedral invariant sets increases exponentially as a function ofk⋆, which
explains the observed scaling behavior.

First, we recompute invariant sets using Algorithm 5.2 (pruning) with γ = 0.1.
Results are presented in Table 5.2 and can be compared to the results shown in Table
5.1. A significant reduction of the number of constraints is obtained. Also the average
computation time needed for the construction of the sets is reduced significantly,
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enabling the construction of invariant sets for higher-dimensional systems is reasonable
amounts of time.

Table 5.3 shows results obtained when using trimming. The parameterc was
optimally chosen from{0, 0.1, 0.3, 1, 3, 10} in order to minimize the JSR of the
resulting modified systems. Also in this case significantly reduced numbers of
constraints and significantly lower computation times wereobtained. As expected
trimming significantly reduces the admissibility indexk⋆.

Table 5.4 finally shows results obtained when combining pruning and trimming.
As expected this results in the lowest complexity invariantsets, but due to the small
average values ofk⋆ the further reduction is relatively small.

A volume comparison is not given here, since computing volumes in high-dimen-
sional spaces is non-trivial, and volumes in different dimensions are difficult to
compare. The next example lends itself better for volume comparisons because there
the volume of the resulting feasible regions can be compared, even for different state
dimensions of the involved augmented systems.

5.4.2 Robust MPC using reduced-complexity invariant sets

In this section we reconsider the example discussed in Section 4.3.5 and now compute
the invariant sets using the new algorithms introduced in this chapter. The aim is
to investigate whether the new algorithms can provide a better trade-off between
the obtained feasible region and the number of constraints to be used in the on-line
optimization problems.

Figure 5.4 compares the feasible regions reported in Figure4.14 with those obtained
using Algorithm 5.2 withγ = 0.1. The feasible regions obtained with the new
algorithm are slightly smaller and are not nested for decreasing values ofN . However,

rows(AS) k
⋆ CPU-t. (s) requiv

nx = 2 10.36 4.21 10.57 0.48
nx = 3 19.29 6.38 14.67 0.62
nx = 4 29.13 7.35 19.22 0.71
nx = 5 42.57 8.15 26.90 0.76
nx = 6 57.21 9.12 37.85 0.80
nx = 7 76.88 9.43 52.47 0.84
nx = 8 95.70 9.69 67.84 0.87
nx = 9 116.59 10.17 87.26 0.88
nx = 10 141.84 10.22 114.94 0.90
nx = 11 171.95 10.79 151.38 0.92
nx = 12 197.61 10.73 183.84 0.93

Table 5.2: Results of the application of Algorithm 5.2 (pruning) withγ = 0.1 to the
sets used in the Monte-Carlo experiment discussed in Section 5.1.1. Average number
of constraints, average tree depth, average computation time and average equivalent
branching factor of invariant sets for 100 randomly generated systems are reported for
nx = 2, . . . , 12.
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rows(AS) k
⋆ CPU-t. (s) requiv

nx = 2 5.36 1.08 9.03 0.28
nx = 3 9.47 1.37 10.52 0.47
nx = 4 14.65 1.56 11.84 0.61
nx = 5 21.32 1.74 14.08 0.75
nx = 6 27.15 1.82 16.68 0.79
nx = 7 35.39 1.95 20.00 0.88
nx = 8 43.82 2.08 24.10 0.90
nx = 9 51.10 2.00 27.16 0.94
nx = 10 64.70 2.30 32.71 1.00

Table 5.3: Results of the application of trimming (withc optimally chosen from
{0, 0.1, 0.3, 1, 3, 10}) to the sets used in the Monte-Carlo experiment discussed in
Section 5.1.1. Average number of constraints, average treedepth, average computation
time and average equivalent branching factors of invariantsets for 100 randomly
generated systems are reported fornx = 2, . . . , 10.

rows(AS) k
⋆ CPU-t. (s) requiv

nx = 2 5.19 1.08 9.03 0.26
nx = 3 8.65 1.35 10.48 0.37
nx = 4 13.07 1.59 11.80 0.48
nx = 5 18.39 1.73 13.93 0.59
nx = 6 23.24 1.84 16.50 0.63
nx = 7 29.73 1.96 19.69 0.70
nx = 8 36.02 2.04 23.29 0.73
nx = 9 43.69 2.15 27.78 0.78
nx = 10 52.27 2.28 32.36 0.82
nx = 11 59.52 2.20 36.71 0.86
nx = 12 67.28 2.22 42.00 0.89

Table 5.4: Results of the application of trimming (withc optimally chosen from
{0, 0.1, 0.3, 1, 3, 10}) and pruning (usingγ = 0.1) to the sets used in the Monte-Carlo
experiment discussed in Section 5.1.1. Average number of constraints, average tree
depth, average computation time and average equivalent branching factors of invariant
sets for 100 randomly generated systems are reported fornx = 2, . . . , 12.
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#constr. Vol.

P-RMPC, N = 0 10 27.81
P-RMPC, N = 1 16 37.42
P-RMPC, N = 2 26 46.41
P-RMPC, N = 3 47 59.58
P-RMPC, N = 4 74 68.00
P-RMPC, N = 5 120 78.24
P-RMPC, N = 6 171 87.25
P-GIMPC 19 78.85
P-GIMPC2 28 176.06

Table 5.5: Number of constraints and volume of the feasible region obtained for the
same example described in Section 4.3.5 and Table 4.3. The results in this table are
obtained by using Algorithm 5.2 (withγ = 0.1) for computing the invariant sets.

as Table 5.5 shows, the number of constraints is also significantly reduced compared
to those reported in Table 4.3. By comparing both tables, it becomes clear that with
Algorithm 5.2 andN = 6 a similar feasible region is obtained as with Algorithm 2.4
andN = 5, but the former results in a lower number of constraints. Thedifference
is not dramatic in this case because there is a significant amount of model uncertainty,
with up to 100% uncertainty on some coefficients. Table 5.6 and Figure 5.5 show the
results obtained is also trimming is applied withc = 0.25. The number of constraints
is further reduced, but the trade-off between complexity and volume of the feasible
region is not further improved for theP-RMPC algorithm.

It should be noted that, although Section 5.3 only gives guarantees for the complexity
of P-RMPC, the algorithms described in this chapter also seem very effective when
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Figure 5.4: Left: Feasible regions of the different algorithms presented in Chapter
4 with invariant sets computed using Algorithm 2.4 as also depicted in Figure 4.14.
Right: Feasible regions of the same algorithms using invariant sets computed using
Algorithm 5.2 with γ = 0.1. Table 5.5 shows the number of on-line inequality
constraints and the volume of the feasible regions.
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used for constructing invariant sets forP-GIMPC2. In this example the number of on-
line constraints is reduced from63 to 23, while the volume of the feasible region is only
slightly reduced (from181.82 to 165.56). Figure 5.6 shows the constraint structures of
the invariant sets ofP-GIMPC2 obtained using three different methods. This shows
clearly that pruning reduces the number of parallel branches of the constraint tree and
that trimming reduces the tree depth, as already explained.

Finally, we investigate the behavior of Algorithm 5.2 for different values ofγ and
for different amounts of uncertainty. Figure 5.7 shows the relative number of on-line
constraints and the relative volume of the feasible region as a function ofγ for theP-
RMPC algorithm withN = 6. As expected, increasing values ofγ lead to a reduced
number of constraints and a lower volume of the corresponding feasible region. For
two different values ofγ the constraints structures are depicted, showing that higher
γ-values result in less parallel branches.

Figure 5.8 shows the behavior of Algorithm 5.2 (withγ ∈ {0, 0.1}) for different
amounts of model uncertainty. The amount of model uncertainty is varied by
considering a modified system withΦ′

1 = Φ1 and Φ′
2 = (1 − a)Φ1 + aΦ2, with

a ∈ [0, 2]. The number of constraints and the volume of the feasible region are
normalized with respect toa = 0. The figure shows that for smaller amounts of model
uncertainty Algorithm 5.2 becomes increasingly efficient in reducing the number of
constraints ifγ > 0. Also, as the amount of model uncertainty approaches0, the
number of constraints approaches27, which is identical to the number of constraints
describing the MAS in the LTI case. This observation is in line with the general
intuition that small amounts of model uncertainty should not substantially increase the
off- and on-line computational burden, which is not what is obtained with Algorithm
2.4, which corresponds to the caseγ = 0.

Figure 5.9 shows that Algorithm 5.2 leads to a linearly increasing number of con-
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Figure 5.5: Feasible regions obtained for the same setting as those shown in Figure 5.4.
In this figure both trimming (c = 0.25) and pruning (γ = 0.1) are used to construct the
involved invariant sets. Table 5.6 shows the number of on-line inequality constraints
and the volume of the feasible regions.



5.4 Examples 131

(a) No trimming, no pruning.

→ ←

(b) No trimming, pruning withγ = 0.1.

ր տ

↑

(c) Trimming withc = 0.25, pruning withγ = 0.1.

Figure 5.6: Constraint structures of the polyhedral invariant sets used in P-GIMPC2
for the settings depicted in Figures 4.8, 5.4 and 5.5.
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straints when applied for computing constraints forP-RMPC. Also the computation
times reduce dramatically when using Algorithm 5.2 insteadof Algorithm 2.4, which
enables the use of significantly larger horizon lengths. Theability to use significantly
larger horizon lengths allows the volume reductions causedby the constraint tightening
to be more than compensated, which is shown in more detail in Chapter 8.

5.5 Conclusions

In this chapter new algorithms for the construction of polyhedral invariant sets are
discussed. The obtained sets are invariant inner approximations of the MAS and allow
the user to make a trade-off between low complexity and a large volume.

Two different methods were discussed:pruning and trimming. Both can be
interpreted in terms of the constraint structure of the obtained invariant sets. Pruning
aims to reduced the number of parallel branches in the constraint structure, while
trimming aims to reduce the depth of the constraint structure. An additional impor-
tant advantage is the reduced computation time needed to construct these reduced-
complexity invariant sets, which is due to the fact that the size of the optimization
problems that have to be solved for constructing these sets is reduced.

The algorithms are demonstrated using several examples, which show that in
several cases significant complexity reductions can be obtained. When used in robust
MPC algorithms, these reduced-complexity invariant sets can lead to better trade-offs
between the size of the feasible region and the on-line computational complexity. In
some cases these improvements can be orders of magnitude.

Finally, it should be noted that the proposed algorithms areonly initial steps in
the direction of constructing reduced complexity invariant sets. Extensions towards
different model classes (PWA, hybrid, . . . ) are possible, aswell as other ways for
reducing the number of constraints within the framework laid out by Algorithm 5.1.
Also, the formulation of expressions for the a priori quantification of the obtainable
complexity reductions is a useful and interesting future research direction.
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Figure 5.7: Relative number of constraints and relative volumeV of the corresponding
feasible region (both with respect to the MAS, i.eγ = 0) of invariant sets forP-RMPC
with N = 6 for the example discussed in Section 4.3.5. The constraint structures of
the invariant sets corresponding toγ = 0.01 andγ = 0.1 are depicted at the top of the
figure.
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#const. Vol.

P-RMPC, N = 0 9 25.75
P-RMPC, N = 1 14 34.39
P-RMPC, N = 2 27 41.87
P-RMPC, N = 3 46 49.29
P-RMPC, N = 4 69 56.16
P-RMPC, N = 5 101 62.12
P-RMPC, N = 6 144 70.40
P-GIMPC 17 75.51
P-GIMPC2 23 165.56

Table 5.6: Number of constraints and volume of the feasible region obtained for the
same example described in Section 4.3.5 and Table 4.3. The results in this table are
obtained by using trimming (withc = 0.25) and Algorithm 5.2 (withγ = 0.1) for
computing the invariant sets.
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Relative volumeV (γ = 0)
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Figure 5.8: Relative number of constraints and relative volumeV of the corresponding
feasible region of invariant sets forP-RMPC withN = 6 for the example discussed
in Section 4.3.5 as a function of the amount of uncertainty. The amount of model
uncertainty is varied by considering a modified system withΦ′

1 = Φ1 andΦ′
2 = (1 −

a)Φ1 + aΦ2, with a ∈ [0, 2]. Values are normalized with respect toa = 0. Algorithm
5.2 withγ ∈ {0, 0.1} is used to construct the invariant sets.
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Figure 5.9: Number of constraints and computation times of invariant sets for P-
RMPC as a function ofN for the example discussed in Section 4.3.5. The different
curves represent different amounts of uncertainty (determined bya as in Figure 5.8) and
different values ofγ. Algorithm 5.2 is used to construct the invariant sets. Algorithm
5.2 clearly leads to a linearly increasing number of constraints as a function ofN ,
if γ is given a strictly positive value or ifa = 0. A corresponding reduction in the
computation times is observed.
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Chapter 6

Reduced-Complexity Control
Invariant Sets

“One should not increase, beyond what is necessary,
the number of entities required to explain anything.”

– William of Ockham (1285-1349) –

In this chapter we extend the results of Chapter 5 from positive invariant
sets to control invariant sets. First we show that the techniques ofpruning
and trimming can also be extended to this more general context in order
to obtain reduced-complexity sets. Secondly, we show how pruning can
be applied toFourier-Motzkin eliminationin order to calculate reduced-
complexity inner, un-biased or outer approximations of projections of
polyhedral sets. These new techniques for projecting polyhedral sets can
either be used to further reduce the complexity of control invariant sets
or can be used for any other application involving the projection of H-
polytopes or Fourier-Motzkin elimination.

6.1 Control invariant sets

Before discussing reduced-complexity control invariant sets, it is necessary to intro-
duce the necessary definitions and the state of the art concerning the construction of
such sets, after which some basic properties are discussed.

While positive invariant sets are related to constrained autonomous dynamic systems,
control invariant sets are related to constrained dynamic systems with inputs and can
be defined as follows.

Definition 6.1 (Control invariant set , [14]). Given an LPV system(3.1)-(3.2)subject
to input and state constraints(2.10)-(2.11)and givenλ ∈ (0, 1), then the setS ∈ Rnx
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is a feasibleλ-contractive control invariant set (withλ ∈ (0, 1)) iff S ⊆ X and

∀x ∈ S, ∃u(x) ∈ U : Ax + Bu ∈ λS, ∀[A B] ∈ Ω, (6.1)

In what follows we will omit the termfeasibleunless where we want to emphasize
that S ⊆ X . For briefness of notation, in future sections we will referto these
sets as〈Ω,U , λ〉-invariant sets or, ifλ = 1, 〈Ω,U〉-invariant sets. We will not
explicitly consider bounded disturbances in this chapter,but this extension is relatively
straightforward and similar to the method described in Section 2.4.2.

Control invariant sets can be seen as the equivalent conceptof positive invariant
sets for systems with inputs. These inputs provide additional degrees of freedom that
can be used to keep states inside the set and therefore the system (3.1)-(3.2) does not
necessarily be open-loop stable in order to have a control invariant set. Since the next
chapter will use control invariant sets for guaranteeing constraint satisfaction, we are
primarily interested in the largest possible control invariant set for a given system:

Definition 6.2 (Maximal control invariant set (MCAS) , [13]). A setS is the maximal
〈Ω,U , λ〉-invariant set iff it is 〈Ω,U , λ〉-invariant and all other feasible〈Ω,U , λ〉-
invariant sets are subsets ofS.

Similar to the MAS, also the MCAS can be proven to exist and to be uniquely defined
in this way. As already pointed out by [63, Proposition 2.5],control invariant sets
provide a powerful tool for robust constraint satisfaction, since for any initial state
x(0) one can show that there exists a control lawU ∋ u(k) = κ(x(k)), k ∈ N that
guarantees constraint satisfaction∀k ∈ N iff x(0) ∈ S.

Similar to positive invariance, also control invariance can be expressed in terms of a
geometric condition based on the pre-set defined in Chapter 2:

Lemma 6.1 (Geometric condition for control invariance, [63]). Given an LPV
system(3.1)-(3.2) subject to input and state constraints(2.10)-(2.11)and givenλ ∈
(0, 1) and a setS ∈ Rnx , then the setS is 〈Ω,U , λ〉-invariant iff

S ⊆ Pre〈Ω,U ,λ〉(S), (6.2)

where, for reasons of consistency with the notation of Chapter 2, we define the operator
Pre〈Ω,U ,λ〉(·) as Pre〈Ω,U ,λ〉(S) , Pre〈Ω,{0},U ,λ〉(S).

Proof: The proof is similar to the proof of Lemma 2.1 and is hence omitted. �

Checking whether a given polyhedral setS = {x|ASx ≤ 1} satisfies condition (6.2)
is a three-step procedure:

1. Calculate the setPre〈Ω,U ,λ〉(S)1 containing all state-input vectors[x; u] that keep
the next state insideλS:

Pre〈Ω,U ,λ〉(S) , {[x; u] ∈ Rnx+nu |u ∈ U , AS(Aix + Biu) ≤ λ1, i = 1, . . . , r}.
(6.3)

1In [15] the setPre〈Ω,U,λ〉(S) is referred to as the ”expanded” set.
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2. ComputeS′ = Pre〈Ω,U ,λ〉(S) as the projection ofPre〈Ω,U ,λ〉(S) ontoRnx :

Pre〈Ω,U ,λ〉(S) ≡ projnu

(
Pre〈Ω,U ,λ〉(S)

)
, (6.4)

with projnu
(·) denoting thenu-tuple application ofproj(·).

3. Check whetherS ⊆ S′.
The first two steps essentially correspond to the computation of Pre〈Ω,U ,λ〉(S), while
the third step only consists of checking the inclusion of both sets. The projection of step
2 can be performed using Fourier-Motzkin elimination [146], which is briefly described
in Appendix B.

Similar to Algorithm 2.3, it is now possible to formulate an algorithm for the
construction of the MCAS based on condition (6.2):

Algorithm 6.1 (〈Ω,U , λ〉-invariant set construction, [13]). Given a system(3.1)-
(3.2) subject to constraints(2.10)-(2.11) and variablesλ, λ′ ∈ R+ such thatλ ∈
(0, 1], λ′ ∈ (0, 1], λ′ ≤ λ, perform the following steps:

1. InitializeO0 := X , i := 0.
2. Execute iteratively untilOi ⊆ Pre〈Ω,X ,U ,λ〉(Oi):

(a) Seti := i + 1.
(b) CalculateOi := Pre〈Ω,X ,U ,λ′〉(Oi−1) ∩Oi−1.

Return the setS , Oi.

The resulting sets have the same scalability issues as positive invariant sets, which will
also become clear in the examples section:

• Based on expression (6.3), where it becomes clear that everyconstraint in the set
S has the potential to generater constraints in the setPre〈Ω,U ,λ〉(S), it is clear
that also in the case of control invariant sets the number of constraints in the
worst-case can increaser-fold as the number of iterations increases.

• The projection needed for calculating the pre-set in every iteration can also in-
crease the number of constraints dramatically, especiallyfor higher-dimensional
systems. This is due to the fact that counter-intuitively the number of constraints
describing a projection of a set can be significantly higher2 than the number of
constraints describing the original set.

Apart from the increase in the complexity of the resulting sets, also the computational
complexity is an important concern, since the added projection step is computationally
heavy and largely determined by the number of constraints ofthe sets to which the
operation is applied. We refer to Appendix B for more details.

The following section will now introduce several methods for decreasing the
complexity of the resulting control-invariant sets, whichwill also directly have a
positive effect on the computational complexity of the construction of these sets.

2The number of constraints describing the(n − 1)-dimensional projection of ann-dimensional H-

polytope described bym constraints, is in the worst case equal to⌊m2

4
⌋. The number of vertices describing

the(n − 1)-dimensional projection of ann-dimensional V-polytope described bym vertices is in the worst
case equal tom. The projection ofV -polytopes hence seems to be more efficient, butV -polytopes are not
suited for use as constraint sets in optimization problems,such as those used in MPC . See [146] for details.
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6.2 Reduced-complexity control invariant sets

In this section several methods are proposed for constructing reduced-complexity
control invariant inner approximations of the MCAS. First of all the two main
contributions of the previous chapter (pruning and trimming) are extended towards
the setting of control invariant sets. Secondly the pruningmethod is also applied to the
projection step involved in constructing control invariant sets. This second contribution
allows the construction of reduced-complexity projections of polytopes which could
also be useful in other settings.

Before describing the different methods for reducing the complexity of control
invariant sets we describe a general framework similar to Algorithm 5.1 within which
the new methods fit.

6.2.1 General framework

The main contribution of this section is the formulation of an algorithm for the
construction of inner approximations to the MCAS, similar to Algorithm 5.1. In this
way degrees of freedom are created that are then exploited inthe next sections in order
to obtain complexity reductions.

While Algorithm 5.1 deals with setsXi, with i denoting the iteration number, the
algorithm introduced here deals with several different sets during a single iteration.
This is due to the fact that a projection of a(nx + nu)-dimensional set to anx-
dimensional set has to be computed. This operation is applied one dimension at
a time and therefore we will consider setsX [nx+nu]

i ⊂ Rnx+nu ,X [nx+nu−1]
i ⊂

Rnx+nu−1, . . . ,X [nx]
i ⊂ Rnx , with againi denoting the iteration number and the

superscripts denoting the dimensionality of the sets. For simplicity of notation we
will also use setsO[nx+j]

i ,
⋂i

k=0 X
[nx+j]
k with j = 0, . . . , nu, i ∈ N. This results in

the following algorithm, whose work flow is depicted schematically in Figure 6.1:

Algorithm 6.2 (Approximate maximal 〈Ω,U , λ〉-invariant set construction). Given
a system(3.1)-(3.2)subject to constraints(2.10)-(2.11)andλ ∈ (0, 1], λ′ ∈ (0, 1], λ′ ≤
λ, perform the following steps:

1. InitializeX [nx+nu]
0 := X × U and seti := 0.

2. ComputeX [nx+nu−j]
0 such thatX [nx+nu−j]

0 ⊆ proj
(
X [nx+nu−j+1]

0

)
for j =

1, . . . , nu.

3. Execute iteratively untilO[nx+nu]
i ⊆ Pre〈Ω,U ,λ〉(O[nx]

i ):
(a) Seti := i + 1.
(b) ComputeX [nx+nu]

i such thatO[nx+nu]
i ⊆ Pre〈Ω,U ,λ′〉(O[nx]

i−1 )

(c) ComputeX [nx+nu−j]
i such thatO[nx+nu−j]

i ⊆ proj
(
O[nx+nu−j+1]

i

)
for

j = 1, . . . , nu.

Return the setS , O[nx]
i .

If steps 2, 3b and 3c are implemented such that the inclusionsare satisfied
with equality – which can be done easily by respectively setting X [nx+nu−j]

0 :=
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X × U
proj(·)

X × proj(U)

nx+ nu

nx + nu− 1

nx + nu − 2

proj(·)

X × proj2(U)

X

Iteration

proj(·)

proj(·)
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Figure 6.1: Work flow of Algorithm 6.2. The arrows indicate the order in which the
different sets are constructed and based on which operatorsthe sets are computed.

proj
(
X [nx+nu−j+1]

0

)
in step 2, settingX [nx+nu]

i := Pre〈Ω,U ,λ′〉(X [nx]
i−1 ) in step 3b

and settingX [nx+nu−j]
i := proj

(
O[nx+nu−j+1]

i

)
in step 3c – the above algorithm

can be shown to be identical to Algorithm 6.1. In the other case the resulting sets
will be subsets of the ones obtained using Algorithm 6.1 but are still guaranteed to be
〈Ω,U , λ〉-invariant.

Theorem 6.1. Given a system(3.1)-(3.2)subject to constraints(2.10)-(2.11)andλ ∈
(0, 1], λ′ ∈ (0, 1], λ′ ≤ λ, then the setS resulting from Algorithm 6.2 is〈Ω,U , λ〉-
invariant.

Proof: The termination condition in step 3 guarantees that, when the algorithm
terminates, the conditionO[nx+nu]

i ⊆ Pre〈Ω,U ,λ〉(O[nx]
i ) is satisfied. Also, by

construction (step 3c) it is guaranteed thatO[nx]
i ⊆ projnu

(O[nx+nu]
i ). Due to

equivalence (6.4) it is then also guaranteed thatO[nx]
i ⊆ Pre〈Ω,U ,λ〉(O[nx]

i ). After

substitutingS , O[nx]
i , Lemma 6.1 then shows thatS is 〈Ω,U , λ〉-invariant. �

The following sections will now show how the degrees of freedom present in
Algorithm 6.2 can be exploited in order to save computational time and obtain reduced-
complexity control invariant sets. It goes without saying that also for the construction
of control invariant sets one should regularly remove redundant constraints (i.e.,
garbage collection) in the setsO[nx+j]

i in order to reduce the computational overhead
caused by these constraints. The algorithms described in the following sections do
not explicitly mention the removal of redundant constraint, but the same rule of thumb
described in Chapter 2 can still be used.

6.2.2 Pruning

An important similarity between Algorithms 6.2 and 2.3 is that the invariant sets are
constructed iteratively and that the constraints of the resulting sets can be structured
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into different layers of constraints, with each layer corresponding to a different
iteration.

However, due to the additional projection step in Algorithm6.2, there are no
more unambiguous parent-child relationships between the constraints of consecutive
layers, i.e. consecutive setsX [nx]

i andX [nx]
i+1 , which seems to rule out the possibility

of applying pruning to eliminate the number of constraints with identical parent
constraints. However, thereis a clear relationship between the constraints ofX [nx]

i and

X [nx+nu]
i+1 , since the latter are constructed using thePre〈Ω,U ,λ〉(·)-operator. Therefore,

the following algorithm proposes to usepruningin step 2b of Algorithm 6.2.

Algorithm 6.3 (MCAS construction using pruning). Given a system(3.1)-(3.2)
subject to constraints(2.10)-(2.11)andλ ∈ (0, 1], λ′ ∈ (0, 1], λ′ ≤ λ, γ ≥ 0, apply
Algorithm 6.2 with the following implementations for steps2, 3b and 3c:

• Step 2:SetX [nx+nu−j]
0 := proj

(
X [nx+nu−j+1]

0

)
for j = 1, . . . , nu.

• Step 3b: SetX [nx+nu]
i := Pre〈Ω,U ,λ′〉(X [nx]

i−1 ). Apply pruning to constraints

of X [nx+nu]
i that originate from the same constraint inX [nx]

i−1 in the same way
as explained in Algorithm 5.2. No convergence constraint isimposed in this
algorithm: constraints are always tightened ifη1 < 1 + γ.

• Step 3c:X [nx+nu−j]
i := proj

(
O[nx+nu−j+1]

i

)
for j = 1, . . . , nu.

It is clear that the above implementations for these steps satisfy the conditions put
forward in Algorithm 6.2 and hence the resulting set is guaranteed to be〈Ω,U , λ〉-
invariant.

In step 3c) only those constraints have to be retained that are not yet present in
the setX [nx+nu−j]

i−1 in order to exactly satisfy the condition present in step 3c)of
Algorithm 6.2. This insight allows a significant amount of redundant computations
to be eliminated. As a result practical implementations of this algorithm only need to
store the setsO[nx+nu−j]

i , j = 0, . . . , nu.
Similar to Algorithm 5.2, larger values forγ lead to lower-complexity but also

lower-volume sets. Also in this case, this trade-off improves as the amount of
uncertainty decreases. The reasons for the absence of explicit convergence measures
(prohibiting excessive amounts of constraint tightening)in this algorithm is the absence
of quantitative results regarding the convergence of Algorithm 6.1 as is the case for
Algorithm 2.4. However, if divergence or very slow convergence, decreasing the value
of γ typically helps, so from a practical point of view, no fundamental problems should
be expected.

6.2.3 Trimming

Similar to the previous section, where pruning is extended towards control invariant
sets, this section extends the trimming method proposed in Section 5.2.3 towards this
more general setting. More specifically, the applicabilityof Theorem 5.4 is extended
in a natural way from autonomous systems to systems with inputs.
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Theorem 6.2(Control invariant sets for modified system matrices).Given a setS ∈
Rnx and two autonomous LPV systems of the form(3.1)-(3.2) subject to constraints
(2.10)-(2.11), with uncertainty polytopesΩ1 andΩ2 that are defined as

Ω1 , Co{[A1 B1], . . . , [Ar Br]}, (6.5a)

Ω2 , Co{[A′
1 B′

1], . . . , [A
′
r B′

r]}, (6.5b)

with

[A′
i B′

i] = (1 + c)[Ai Bi]− c[I 0], i = 1, . . . , r, (6.6)

wherec ∈ R+. If S is convex and〈Ω2,U〉-invariant, then it is also〈Ω1,U〉-invariant.

Proof: If S is 〈Ω2,U〉-invariant then

∃u(x) :
(

A′
ix + B′

iu(x)
)

∈ S, ∀x ∈ S, i = 1, . . . , r,

or equivalently

(

(1 + c)Aix− cx + (1 + c)Biu(x)
)

∈ S, ∀x ∈ S, i = 1, . . . , r.

Due to convexity ofS and the fact thatc > 0 it is therefore also guaranteed that

(
1

1 + c

(

(1 + c)Aix− cx + (1 + c)Biu(x)
)

+
c

1 + c
x

)

∈ S, ∀x ∈ S, i = 1, . . . , r,

which, after some algebraic manipulation, is equivalent to

(

Aix + Biu(x)
)

∈ S, ∀x ∈ S, i = 1, . . . , r,

which proves thatS is 〈Ω1,U〉-invariant. �

This theorem shows that also for the construction of controlinvariant sets, the
system matrices can be modified in a certain way without losing the property that the
resulting control invariant set is a control invariant set for the original system. By
adding a controlleru(k) = −Kx(k), k ∈ N to the above systems and constructing
the corresponding autonomous LPV system, one can see that Theorem 5.4 is again
obtained.

A disadvantage in this setting is the difficulty of tuning theparameterc. While
positive invariant sets can only be constructed for asymptotically stable systems and
the constraint tree depth can be related to the JSR of the autonomous system, some
heuristics can be formulated for the tuning ofc. However, control invariant sets can
also be constructed for open-loop unstable systems and no quantitative convergence
results similar to the ones for positive invariant sets are available. As a result, it is not
yet well understood howc can be fine-tuned, apart from trial and error.
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6.2.4 Reduced-complexity set projections

In Sections 6.2.2 and 6.2.3 the two main methods described inChapter 5 are extended
towards the construction of control invariant sets. Both methods influence the
Pre〈Ω,U ,λ′〉(·)-operator and hence the way in which the(nx + nu)-dimensional sets

X [nx+nu]
i+1 are constructed based on thenx-dimensional setsX [nx]

i (see Figure 6.1).
However, as pointed out in Section 6.1, also the projection step contributes signifi-

cantly to both the complexity of the resulting control invariant sets and the computation
times of the algorithm. Therefore, this section focusses onmore efficient algorithms
for the calculation of such projections. Appendix B explains how such projections
can be computed by means of Fourier-Motzkin elimination, which is the standard
algorithm for such operations [146]. As explained its computational complexity
typically increases exponentially as a function of the number of dimensions across
which the projection takes place (i.e. the number of inputsnu in Algorithms 6.1 and
6.2), unless some specific problem structure is present.

An alternative method is the so called Equality Set Projection algorithm (ESP, [62]),
which has a computational complexity that is linear as a function of the number of
constraints describing the end result. The main advantage of this approach is its
independence of the complexity of projections in intermediate dimensions, since multi-
dimensional projections can be computed directly instead of dimension per dimension.
However, in the setting of control invariant sets, also the complexity of the projected
set can be impractically large and hence also this method would have an impractically
large computational complexity.

To conclude we can state that neither Fourier-Motzkin elimination, nor ESP are
expected to exhibit favorable scaling behavior in the context of the computation of
control invariant sets. Therefore, this section focusses on computing approximations
of the exact projections, in order to obtain computational complexity reductions as
well as reductions in the number of constraints describing the resulting projections.
In order to obtain such approximations we modify the Fourier-Motzkin elimination
algorithm (Algorithm B.1) by using ideas from previous sections and chapters. We
will distinguish between two different variants:

• Outer approximation: the exact projection is guaranteed to lie inside the
computed set.

• Inner approximation: the computed set is guaranteed to lie inside the exact
projection.

The following sections discuss these two variants individually, after which it is
explained how these new algorithms can be used in the framework of Algorithm 6.2 in
order to obtain further complexity reductions. Both algorithms incorporate a parameter
γ ≥ 0 that allows a trade-off to be made between complexity and accuracy of the re-
sulting projection. We only focus on one-dimensional projections; repeated application
of the algorithms will yield reduced-complexity multi-dimensional projections.
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6.2.4.1 Outer approximations

The following algorithm is a straightforward modification of Fourier-Motzkin elimi-
nation (Algorithm B.1) that only retains constraints if their significance exceeds the
threshold1 + γ.

Algorithm 6.4 (Outer approximation to proj(P)). Given a polytopeP , {x|APx ≤
bP} and a scalarγ ≥ 0, construct an outer approximationP ′ of its projectionproj(P)
by means of Algorithm B.1, with the following modifications:

• Only add a constraintaTx ≤ b toP ′ if it is (1+γ)-significant, i.e. ifsigP′(aT) ≥
1 + γ.

• After termination of the algorithm remove all constraints that are not(1 + γ)-
significant.

We will denote the result of this algorithm asprojγ(P) , P ′. It is now
straightforward to prove that the following theorem:

Theorem 6.3. Given a polytopeP , {x|APx ≤ bP} and a scalarγ ≥ 0, then the
following property holds:

proj(P) ⊆ projγ(P) ⊆ (1 + γ)proj(P). (6.7)

Proof: The proof is straightforward and follows from the fact that omitting a
constraintaTx ≤ b from P ′ that isc-significant, withc > 1, is identical to replacing
this constraint withaTx ≤ cb. Since Algorithm 6.4 only omits constraints that are
c-significant withc ∈ (1, 1 + γ), this directly proves the lemma. �

When projecting ann1-dimensional polytopeP to ann2-dimensional polytope by
applying Algorithm 6.4 multiple times, the above inclusionbecomes

proj(P) ⊆ projγ(P) ⊆ (1 + γ)n1−n2proj(P).

The volumes of the intermediate projections at dimensionsn ∈ {n2, . . . , n1} are easily
shown to satisfy

vol
(
proj(P)

)
≤ vol

(
projγ(P)

)
≤ (1 + γ)n(n1−n)vol

(
proj(P)

)
.

This property shows, that ifn2 < ⌊n1

2 ⌋, the maximal increase in volume with respect
to the exact projection is not obtained forn = n2, but for an intermediate dimension
n > n2.

6.2.4.2 Inner approximations

The following algorithm is a modification of Fourier-Motzkin elimination (Algorithm
B.1) that uses pruning in order to obtain reduced-complexity inner approximations of
the real projections.

Algorithm 6.5 (Inner approximation to proj(P)). Given a polytopeP , {x|APx ≤
bP} and a scalarγ ≥ 0, construct an inner approximationP ′ of its projectionproj(P)
by means of Algorithm B.1, with the following modifications:
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• Only add a constraintaTx ≤ b to P ′ if it is significant, i.e.sigP′(aT) > 1. For
every additional constraint perform the following steps:

1. Check which constraints of optimization problem(2.13)were active when
computingsigP′(aT) and denote these indices asi1, . . . , in (without loss
of generality we only consider the non-degenerate case where exactlyn
constraints are active). This gives an idea of the constraints ofP ′ that lie
in the ‘proximity’ ofaTx ≤ b.

2. Check whether tightening the constraintaTx ≤ b would render any of the
constraints with indicesi1, . . . , in redundant, using Lemma 5.2. Denote
the respective tightening factors asη1, . . . , ηn, withηj ≡ 1 if the constraint
with indexij cannot be rendered redundant.

3. Replace the constraintaTx ≤ b withηaTx ≤ b, withη , maxj:ηj≤(1+γ) ηj .

• After termination of the algorithm remove all redundant constraints (i.e., those
wheresigP′(·) ≤ 1).

We will denote the result of this algorithm asproj
γ
(P) , P ′. It should, however, be

noted that Algorithm 6.5 does not define an unambiguous relationship betweenP and
proj

γ
(P), since the end resultP ′ is not independent of the order in which constraints

are added. This in turn depends on how the indicesi1 andi2 are selected in Algorithm
B.1. For any of these choices, the following theorem holds:

Theorem 6.4. Given a polytopeP , {x|APx ≤ bP} and the polytopeP ′ constructed
using Algorithm 6.5 for a given value ofγ ≥ 0, then the following property holds:

1

1 + γ
proj(P) ⊆ proj

γ
(P) ⊆ proj(P). (6.8)

Proof: The proof is straightforward and along the same lines of the proof of Theorem
6.3. Due to the wayη is calculated in step 3, it is guaranteed that all constraints are
tightened with a factorη ∈ [1, 1 + γ], which directly proves the Theorem. �

When projecting ann1-dimensional polytopeP to an n2-dimensional polytope
by applying Algorithm 6.4 multiple times, similar bounds for the volumes of the
intermediate projections can be obtained as in Section 6.2.4.1:

(
1

1 + γ

)n(n1−n)

vol
(
proj(P)

)
⊆ vol

(
proj

γ
(P)
)
⊆ vol

(
proj(P)

)
.

Again, if n2 < ⌊n1

2 ⌋, the maximal decrease in volume with respect to the exact
projection is not obtained forn = n2, but for an intermediate dimensionn > n2.

Finally, one can see that the computational complexity of Algorithm 6.5 is signif-
icantly higher than the complexity of Algorithm 6.4, due to the fact that for every
additional constraint Lemma 5.2 has to be applied multiple times. An alternative

method for computing inner approximations is calculatingprojγ

(
1

1+γP
)

. However,

it is expected that this method, while computationally moreattractive, will yield
projections with less favorable volume/complexity trade-offs.
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6.2.4.3 MCAS construction using reduced-complexity set projections

This section discusses how the algorithms discussed in Sections 6.2.4.2 and 6.2.4.2
can be incorporated in the framework of Algorithm 6.2. Because steps 2) and 3c)
of Algorithm 6.2 only allow subsets of projections to be usedit is clear to see
that Algorithm 6.4 is not suited for use in the construction of control invariant sets.
Therefore the following algorithm describes a modificationof Algorithm 6.3 that uses
Algorithm 6.5 for computing (approximate) set projections.

Algorithm 6.6 (Reduced complexity MCAS construction). Given a system(3.1)-
(3.2) subject to constraints(2.10)-(2.11)andλ ∈ (0, 1], λ′ ∈ (0, 1], λ′ ≤ λ, γpre ≥
0, γproj ≥ 0, apply Algorithm 6.3 withγ = γPre and the following modification:

• Apply Algorithm 6.5 with parameterγ = γproj for computing set projections in
steps 2) and 3c).

Similar to Algorithm 6.3 this algorithm clearly fits within the framework laid out
by Algorithm 6.2 and hence the resulting set will be〈Ω,U , λ〉-invariant. The same
efficiency gains can be obtained as in Algorithm 6.3 when implementing the projections
such that redundant computations are eliminated.

It should be noted that ifγproj = 0 the above algorithm is identical to Algorithm 6.3.
If γproj = 0 andγpre = 0 the algorithm is identical to Algorithm 6.1.

It should also be noted that, while Algorithm 6.3 can only result in reduced-
complexity sets ifr > 0, Algorithm 6.6 can also result in complexity reductions if
r = 1 (i.e., the LTI case).

6.3 Examples

In this section we provide several numerical examples to illustrate the different
techniques described in this chapter.

6.3.1 Triple integrator

Due to the low order of the double integrator example used in previous sections and
the fact that it only has a single input, the MCAS of that example already has a
low complexity, even when computed exactly by using Algorithm 6.1. Therefore we
start this examples section with a slightly more challenging triple integrator example,
defined as follows:

A1 =





1 0.1 0
0 1 0.1
0 0 1



 , B1 =





0 0
1 0
0 1



 , (6.9a)

A2 =





1 0.1 0
0 1 0.2
0 0 1



 , B2 =





0 0
1 0
0 1



 . (6.9b)

The system is subject to constraints (2.10), (2.11) defined as

Ax = [0.1I; −0.1I], (6.10a)
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Alg. 6.5 Alg. B.1 Alg. 6.4
γ = 0.1 γ = 0.05 γ = 0.05 γ = 0.1

n = 8 16 16 16 16 16
n = 7 31 34 56 36 30
n = 6 62 80 112 107 93
n = 5 103 137 140 268 189
n = 4 101 152 112 233 142
n = 3 43 53 56 81 46
n = 2 13 17 16 21 14

Table 6.1: Number of constraints describing (approximate) projections of a randomly
generated 8-dimensional polytope as described in Section 6.3.2. See also Table 6.2.

Au = [10 0; −1 0; 0 1; 0 − 2]. (6.10b)

Figure 6.2 shows the relative number of constraints and relative computation times
of control invariant sets computed for system (6.9)-(6.10)using Algorithm 7.2 as a
function ofγPre andγproj. ParametersγPre = 0, γproj = 0 resulted in352 constraints
after a computation time of1503 seconds. All constraint counts and computation times
reported in Figure 6.2 are normalized with respect to these two values.

It can be observed that both pruning (governed byγPre) and reduced-complexity
projections (governed byγproj) can reduce the number of constraints of the resulting
control invariant sets. In this example both methods also lead to computation time
reductions of up to more than an order of magnitude. When bothmethods are combined
further complexity reduction can be obtained. However, when bothγproj andγPre

are given relatively large values, an increase in the numberof constraints (compared
to other parameter settings) is observed in this example. Using reduced-complexity
projections without pruning seems to yield the most predictable and favorable results.

Figure 6.3 shows the resulting control invariant sets forγPre ∈ {0, 0.01} andγproj ∈
{0, 0.01}.

6.3.2 Reduced-complexity projections

We now investigate whether Algorithms 6.4 and 6.5 can prove useful to compute
approximate projections in more general settings. Therefore we randomly generate
a 8-dimensional polytopeAx ≤ 1 with A = [R;−R], whereR ∈ R8×8 is a matrix
whose elements are drawn from a standard normal distribution. Figure 6.4 depicts the
approximate and exact projections. Tables 6.1 and 6.2 report the number of constraints
and the computation times of the projections.

It seems that Algorithms 6.5 and 6.4 are much less efficient inthis more general
setting. None of the parameter settings reported in Tables 6.1 and 6.2 lead to convincing
results, which suggests that the practical use of Algorithm6.5 is limited to computing
projections in Algorithm 6.6.
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Rel. # constraints (γproj = 0)
Rel. comp. time (γproj = 0)
Rel. # constraints (γproj = 0.05)
Rel. comp. time (γproj = 0.05)

0.0001 0.001 0.01 0.1

0.1

1

γPre

(a) γPre ∈ [0.0001, 0.25], γproj ∈ {0, 0.05}

Rel. # constraints (γPre = 0)
Rel. comp. time (γPre = 0)
Rel. # constraints (γPre = 0.05)
Rel. comp. time (γPre = 0.05)

0.0001 0.001 0.01 0.1

0.1

1

γproj

(b) γPre ∈ {0, 0.05}, γproj ∈ [0.0001, 0.1]

Figure 6.2: Relative number of constraints and relative computation times of control
invariant sets for system (6.9)-(6.10) obtained with Algorithm 6.2. Parametersλ = 1
and λ′ = 0.999 and different values forγPre and γproj were used. All values
are normalized with respect to the results obtained forγPre = 0, γproj = 0 (352
constraints,1503 seconds). Computations were performed on a 2.6GHz x86 CPU using
MATLAB 7.1 and SeDuMi 1.1.
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(a) γPre = 0, γproj = 0, # constr.: 352,
CPU-t.: 1503s.

(b) γPre = 0, γproj = 0.01, # constr.: 104,
CPU-t.: 395s.

(c) γPre = 0.01, γproj = 0, # constr.: 169,
CPU-t.: 358s.

(d) γPre = 0.01, γproj = 0.01, # constr.: 90,
CPU-t.: 346s.

Figure 6.3: Control invariant sets for system (6.9)-(6.10) computed using Algorithm
6.6 with λ = 1, λ′ = 0.999 and different values ofγPre and γproj. The original
constraint setX is depicted as a transparent box around each control invariant set.
Computations were performed on a 2.6GHz x86 CPU using MATLAB 7.1 and SeDuMi
1.1. Computation times exclude visualization.
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Algorithm B.1
Algorithm 6.4
Algorithm 6.5

Figure 6.4: 2-dimensional (approximate) projections of a randomly generated 8-
dimensional polytope, computed using Algorithm B.1 (solid), Algorithm 6.5 with
γ ∈ {0.05, 0.1} (dotted) and Algorithm 6.4 withγ ∈ {0.05, 0.1} (dashed). See also
Tables 6.1 and 6.2.

Alg. 6.5 Alg. B.1 Alg. 6.4
γ = 0.1 γ = 0.05 γ = 0.05 γ = 0.1

8→ 7 29 29 18 12 10
7→ 6 91 106 157 50 37
6→ 5 254 451 529 365 218
5→ 4 331 640 536 1385 583
4→ 3 166 336 223 627 219
3→ 2 20 22 25 42 16
Total 891 1584 1488 2480 1083

Table 6.2: Computation times in seconds of (approximate) projectionsof a randomly
generated 8-dimensional polytope as described in Section 6.3.2. Computations were
performed on a 2.6GHz x86 CPU using MATLAB 7.1 and SeDuMi 1.1. See also Table
6.1.
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6.4 Conclusions

In this chapter the two main methods discussed in Chapter 5 for computing reduced-
complexity invariant sets (pruningandtrimming) are extended towards the construction
of control invariant sets. This is possible due to the fact that these sets can be
constructed in a structurally similar way as invariant sets. However, constructing
control invariant sets involves an additional step, namelythe computation of projections
of polytopes. In order to also reduce the complexity of this step in the algorithm, a
modification to Fourier-Motzkin elimination is proposed that computes inner approxi-
mations of set projections.

Simulations on numerical examples indicate that these methods can reduce the
complexity of polyhedral control invariant sets significantly, as well as the time to
compute these sets. However, the modified Fourier-Motzkin elimination algorithm
does not seem to lead to complexity reductions when applied in a more general context
than that of constructing control invariant sets. This alsosuggests that the algorithms
discussed in this chapter can be expected to have undesirable scaling behavior as a
function of the input dimensionality of the system. Furtherresearch is needed to further
investigate and improve this behavior.



Chapter 7

Robust MPC using Control
Invariant Sets

“If everything seems under control,
you’re just not going fast enough.”

– Mario Andretti –

In this chapter the control invariant sets discussed in Chapter 6 are used
to further enlarge the feasible regions of the robust MPC algorithms
discussed in Chapter 4. The new algorithms are based on general
interpolation between a control invariant set of the systemto be controlled
and feasible regions of the existing MPC algorithms. The newalgorithms
have a feasible region equal to the control invariant set andas such
achieve the largest feasible region theoretically possible. Recursive
feasibility and asymptotic stability are also maintained.Finally, it is also
shown that this technique can be used to obtain recursive feasibility in
settings, such as e.g. tracking problems, where the traditional algorithms
are not guaranteed to be recursively feasible.

7.1 Introduction

In Chapter 4 several new robust MPC algorithms are introduced, with the main aim
of obtaining an improved trade-off between the on-line computational complexity
and the size of the feasible region, while retaining recursive feasibility, asymptotic
stability and locally optimal control behavior. Chapter 5 further improves these results
by constructing reduced-complexity invariant sets. However, obtaining large feasible
regions still involves tuning several parameters, as can beseen in Figure 4.4 and 4.13,

153
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and there is still no guarantee that sufficiently large feasible regions are obtained in the
end.

As shown in [63], it is possible to use control invariant setsas terminal constraint
in robust MPC instead of positive invariant sets, which can significantly enlarge the
feasible region. However, the algorithms presented in Chapter 4 do not incorporate a
terminal constraint separately from the within-horizon constraints, but rather construct
the entire set of constraints by means of calculating an invariant set for an augmented
system. This enables the use the algorithms presented in Chapter 5 in order to reduce
the number of constraints, but makes it difficult to replace the terminal constraint with
a control invariant set. Also, in interpolation-based algorithms, the notion of a terminal
constraint is not explicitly present, which is also a complicating factor for incorporating
control invariant sets in the formulation.

In this chapter, instead of replacing the terminal constraints, as suggested in [63], a
more general method is proposed, that allows the extension of the feasible region of
most recursively feasible robust MPC algorithms by means ofincorporating control
invariant sets. Locally optimal behavior is retained by applying the existing MPC
algorithm if the current state lies inside its feasible region. If the state lies outside
the feasible region, but inside a control invariant set, this set is used to drive the
system state towards the feasible region of the MPC controller. This methodology
can be captured in an interpolation-based theoretical framework for non-linear control
laws, which also allows these results to be extended towardsmore general settings, like
tracking problems.

This chapter is structured as follows. First, in Section 7.2the interpolation based
theoretical framework is laid out. Section 7.3 then shows how this framework can
be used to combine control invariant sets with existing MPC algorithms. Section
7.4 then shows, as a proof-of-concept, how control invariant sets can be used to
obtain recursive feasibility when applying the existing algorithms to tracking problems.
Finally, Sections 7.5 and 7.6 give an example and conclusions.

7.2 General interpolation for non-linear control laws

In this section the concept of general interpolation is extended towards non-linear
control laws. Although interpolation is based upon convex (hence linear) combinations
of states and corresponding inputs, we show that only the dynamics of the system
that is controlled need to be linear. Although general interpolation [3, 98, 122] until
now has only been applied to linear systems controlled by linear control laws, these
requirements are overly stringent. Linearity of the control law, and consequently
linearity of the closed-loop system, allow the easy construction of a cost function
for the on-line optimization problem, but in order to guarantee recursive feasibility
linearity of the control law is not a necessary requirement.The only requirement, as
is shown later in this section, is the existence of a convex invariant set for the closed-
loop system of the (linear) open-loop system and the (non-linear) control law. This
extension will allow us to formulate new MPC algorithms using control invariant sets
in future sections. First some additional notation is introduced after which recursive
feasibility is proven in this setting.
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7.2.1 Problem formulation

As already mentioned we still consider LPV systems of the form (3.1)-(3.2) subject
to constraints (2.10)-(2.11). The control laws to be used inthe interpolation-based
controller are defined as

u(k) = κi(x(k)), k ∈ N, i = 1, . . . , n. (7.1)

In order to guarantee constraint satisfaction we assume there exist n convex sets
S1...n ⊂ Rnx that are feasible and positive invariant with respect to therespective
closed-loop systems:

Si ⊆ X , i = 1, . . . , n, (7.2a)

κi(x) ∈ U , ∀x ∈ Si, i = 1, . . . , n, (7.2b)

Ax + Bκi(x) ∈ Si, ∀x ∈ Si, ∀[A B] ∈ Ω, i = 1, . . . , n. (7.2c)

It will become clear in Section 7.3 that this assumption is inno sense restrictive and
that the above conditions can be easily satisfied based on theresults obtained in the
previous chapters.

The aim is to construct an interpolation-based control law,similar to the GIMPC
algorithm discussed in Section 4.2, based on the control laws κ1...n(·) and the
corresponding invariant setsS1...n.

7.2.2 General interpolation

A general interpolation algorithm for non-linear control laws, in further sections
referred to as NL-GIMPC, can now be formulated as follows:

Algorithm 7.1 (NL-GIMPC). Consider an LPV system of the form(3.1)-(3.2)subject
to constraints(2.10)-(2.11), control laws (7.1) and corresponding invariant sets
S1...n ⊂ Rnx satisfying conditions(7.2). At every timek, given the current statex(k)
of the system, calculate a state decomposition as follows

min
x̂1...n∈Rnx ,λ1...n∈R

f(x̂1...n, λ1...n), (7.3a)

s.t.
n∑

i=1

x̂i = x(k), (7.3b)

x̂i ∈ λiSi i = 1, . . . , n, (7.3c)

λi ≥ 0, i = 1, . . . , n, (7.3d)
n∑

i=1

λi = 1, (7.3e)

with f(·, ·) : Rn.(nx+1) → R an arbitrary cost function, and apply the following input
to the system:

u(k) =

n∑

i=1

λiκi

(
x̂i

λi

)

. (7.4)
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S
λS

U
λU

x(k)

x(k)
λ

u(k)
λ

u(k)

Figure 7.1: Illustration of the scaling that is used for obtaining scaled invariant sets in
order to construct a GIMPC algorithm for non-linear controllaws.

The state decomposition that is computed is identical to theone constructed using
GIMPC. If the functionsκ1...n(·) are linear, it is easy to verify that also the inputu(k)
that is computed based on this state decomposition (see expression (7.4)), is identical to
GIMPC. Since at this point we only want to prove recursive feasibility of NL-GIMPC
(and not asymptotic stability), it is not important to already specify the functionf(·, ·).
This is done in Section 7.3 for the specific setting considered there. Before being able
to prove recursive feasibility of Algorithm 7.1, we need to define the concept ofscaled
control laws:

Definition 7.1 (Scaled control law). Given a control lawu(k) = κ(x(k)), k ∈ N and
a scalarλ ∈ R+

0 , then a scaled control lawκ′(·) is defined as

κ′(x) , λκ
(x

λ

)

. (7.5)

Note that if κ(·) is a linear function, we have thatκ′(x) ≡ κ(x). However, in
this section we are more interested in the non-linear case. The following lemma is
instrumental in proving recursive feasibility of Algorithm 7.1 :

Lemma 7.1 (Invariant sets for scaled non-linear control laws). Consider an LPV
system of the form(3.1)-(3.2)subject to constraints(2.10)-(2.11), a non-linear control
law u(k) = κ(x(k)), k ∈ N, a setS ⊂ Rnx satisfying(7.2) (omitting the subscripts
i) and a strictly positive scalarλ ∈ R+

0 . The setλS then is a feasible, positive
invariant set for the closed-loop system formed by(3.1)-(3.2)and the scaled non-linear
controller defined in Definition 7.1 subject to state and input constraintsλX andλU .

Proof: Due to (7.2a) we know thatS ⊆ X and henceλS ⊆ λX , which proves
feasibility of λS with respect toλX . Furthermore,∀x ∈ λS it is guaranteed that
x
λ ∈ S. Hence, due to (7.2b) it is guaranteed thatκ

(
x
λ

)
∈ U . Therefore, it is also

guaranteed thatκ′(x) = λκ
(

x
λ

)
∈ λU , ∀x ∈ λS, which proves feasibility ofλS with

respect toλU . Finally, due to (7.2c) we know that

Ax + Bκ(x) ∈ S, ∀x ∈ S, ∀[A B] ∈ Ω,
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which, after multiplication of both sides of the inclusion with λ and substitutionx =
x′

λ , leads to

λ

(

A
x′

λ
+ Bκ

(
x′

λ

))

∈ λS, ∀x′

λ
∈ S, ∀[A B] ∈ Ω.

This is equivalent with

Ax′ + Bλκ

(
x′

λ

)

∈ λS, ∀x′ ∈ λS, ∀[A B] ∈ Ω,

which shows thatλS is positive invariant with respect to the closed-loop system formed
by (3.1)-(3.2) and the controlleru(k) = κ′(x(k)), k ∈ N, which in turn completes the
proof. �

This lemma is illustrated by means of Figure 7.1 and can now beused to prove
recursive feasibility of Algorithm 7.1.

Theorem 7.1(Recursive feasibility of NL-GIMPC). Applied to a system of the form
(3.1)-(3.2), Algorithm 7.1 guarantees satisfaction of constraints(2.10)-(2.11)and is
feasible at timek + 1 if it is feasible at timek.

Proof: Similar to other GIMPC algorithms, Algorithm 7.1 is feasible iff x(k) ∈
Co{S1, . . . ,Sn}. Hence, we have to prove that in that case alsox(k + 1) ∈
Co{S1, . . . ,Sn} for any[A B] ∈ Ω. Given a decomposition̂x1...n, λ1...n satisfying the
constraints of optimization problem (7.3), we first show that u(k) ∈ U . Due to Lemma

7.1 we know thatλiκi

(
x̂i

λi

)

∈ λiU and hence thatu(k) ∈ (λ1U ⊕ . . . ⊕ λnU) = U ,

where the latter equality is satisfied becauseU is convex and
∑n

i=1 λi = 1. This proves
that (2.11) is satisfied. In order to prove feasibility at timek + 1, we compute the state
at timek + 1:

x(k + 1) = Ax(k) + Bx(k),

= A

n∑

i=1

x̂i + B

n∑

i=1

λiκi

(
x̂i

λi

)

,

=
n∑

i=1

(

Ax̂i + Bλiκi

(
x̂i

λi

))

.

Due to Lemma 7.1 we know thatAx̂i+Bλiκi

(
x̂i

λi

)

∈ λiSi, i = 1, . . . , n,∀[A B] ∈ Ω

and hence thatx(k + 1) ∈ Co{S1, . . . ,Sn}, ∀[A B] ∈ Ω, which proves recursive
feasibility. Finally, sinceCo{S1, . . . ,Sn} ⊆ X , satisfaction of (2.10) is guaranteed,
which concludes the proof. �

This theorem shows that linearity of the control lawsκ1...n(·) is not strictly necessary
for proving recursive feasibility. The main practical difficulties arising from non-
linearity of these control laws is the difficulty of constructing a cost functionf(·, ·)
such that asymptotic stability is guaranteed and the construction of the invariant sets
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S1...n. The next section shows that in the specific case of interpolation between a
control invariant set and the feasible region of an MPC controller, both aspects are not
an issue.

7.3 Robust MPC using control invariant sets

In this section we show how the insights of Section 7.2 can be used to enlarge the
feasible region of the algorithms discussed in Chapter 4. First we show that control
invariant sets and feasible regions can be seen as positive invariant sets with respect to
a non-linear control law. Section 7.3.3 then shows how NL-GIMPC can be applied in
order to obtain an MPC controller with a maximal feasible region.

7.3.1 Control-invariant set induced controller

Although control invariant sets are constructed for open-loop systems without a priori
considering a feedback controller with which the loop is closed, this section shows that
these sets actually induce a state feedback control law. When using this control law
to form a closed-loop system, one can show that the control invariant set is positive
invariant with respect to this closed-loop system. First weshow how any convex set
containing the origin induces a control law.

Definition 7.2 (Set-induced control law1, [13]). Consider an LPV system of the form
(3.1)-(3.2), subject to input constraints(2.11)and a convex setS ∈ Rnx with the origin
in its interior. The set-induced state feedback control lawu = κS(x) is now defined as
the result of the following optimization problem:

κS(x) , argmin
u∈U

βS(x, u), (7.6a)

with βS(x, u) defined as

βS(x, u) , min
λ∈R

λ, (7.6b)

s.t. Aix + Biu ∈ λS, i = 1, . . . , r. (7.6c)

One can see that the control lawκS(x) is constructed such that it makes sure that at
every time instantk the system is driven as far as possible inside the setS. It should
also be noted that ifS is a polyhedral set, the above optimization problem reducesto an
LP. Since the inputs are computed by solving a constrained optimization problem, the
resulting controller will in general be non-linear. IfS is control invariant with respect
to the given open-loop system, the following lemma applies.

Lemma 7.2(Positive invariance of control invariant sets). A control invariant setS
is positive invariant with respect to the closed-loop system formed by(3.1)-(3.2) and
the induced control lawu(k) = κS(x(k)), k ∈ N.

1This type of controller is also referred to asmin-max controlin [13, 39, 40].



7.3 Robust MPC using control invariant sets 159

Proof: Consider a statex ∈ S and the corresponding inputu⋆ and contraction factor
λ⋆ resulting from solving (7.6). SinceS is control invariant with respect to (3.1)-(3.2),
it is guaranteed that∃uf ∈ U : Ax + Buf ∈ S, ∀[A B] ∈ Ω. This guarantees that
λ⋆ ≤ 1, which then shows thatAx + BκS(x) ≡ Ax + Bu⋆ ∈ S, ∀[A B] ∈ Ω, which
proves the lemma. �

We now have shown that, once a control invariant setS is constructed (which in the
previous chapter has been shown to be possible), its inducedcontrol lawu = κS(x) can
be used as a control law in NL-GIMPC. An interesting point to make is that this is the
opposite of what is done in Section 4.2, where one first constructs a set of control laws,
after which the corresponding positive invariant sets are computed. In this section, the
existence of a control invariant set is assumed, after whicha controller is constructed
such that the control invariant set is positive invariant with respect to the resulting
closed-loop system.

In the next section a similar result is obtained for MPC controllers where an exact
characterization of the feasible region is known.

7.3.2 Feasible region as positive invariant set

In order to be able to use MPC controllers, which in general are non-linear control
laws, in the NL-GIMPC algorithm, it is necessary to construct a positive invariant set
for the corresponding closed-loop system. The problem is that there are no algorithms
that are able to construct such sets in a general setting. However, the following lemma
shows that under certain conditions the feasible region of the MPC controller will be a
positive invariant set.

Lemma 7.3 (Positive invariance of the feasible region).Consider an LPV system
of the form(3.1)-(3.2)subject to constraints(2.10)-(2.11)and consider a robust MPC
controller designed for this system, that guarantees satisfaction of (2.10)-(2.11)and is
recursively feasible. Assume that the MPC controller can bewritten as a state feedback
law u(k) = κMPC(x(k)), k ∈ N and that we have an exact characterizationF ⊂
Rnx of the feasible region of the controller, i.e.x ∈ F ⇔ x leads to a feasible
MPC optimization problem. Under these assumptions the setF is a feasible, positive
invariant set for the closed-loop system formed by(3.1)-(3.2)and the MPC controller.

Proof: Due to the fact that the MPC controller guarantees satisfaction of (2.10), it
will per definition be infeasible for allx(k) /∈ X and hence we have thatF ⊆ X .
Furthermore, since the MPC controller guarantees satisfaction of (2.11), we have that
κMPC(x) ∈ U , ∀x ∈ F . This shows thatF is a feasible set.

Due to recursive feasibility we know that if the controller is feasible at timek, i.e.
if x(k) ∈ F , it is also feasible at timek + 1. Since by assumptionF is an exact
characterization of the feasible region, it is therefore guaranteed that alsox(k+1) ∈ F .
This proves thatS is positive invariant with respect to the closed-loop system and
completes the proof. �

The assumptions made in this lemma seem rather restrictive and hard to fulfill, but the
opposite is true. The three main algorithms discussed in Chapter 4 (GIMPC, GIMPC2,
RMPC) all satisfy these conditions.
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First of all, these three algorithms can be written as a static state feedback law.
This cannot be done explicitly (which isn’t necessary), butbecause the involved
optimization problems only depend upon the current state ofthe system and not upon
the past states, one can see that there is a static functionaldependence betweenu(k)
andx(k) in all three algorithms.

Secondly, all three algorithms have are recursive feasibleand asymptotically stable.
Only the former is a necessary condition in Lemma 7.3, but thelatter property will
prove useful in the next section.

Thirdly, the feasible regions can be exactly characterized. In the case of GIMPC the
feasible region is exactly equal to the convex hull of the invariant setsS1...n. In the
case of GIMPC2 and RMPC the feasible region is equal to the projection ofSaug onto
the firstnx dimensions.

Finally, Lemma 7.3 is perfectly illustrated by Figure 4.17,where trajectories starting
from the boundary of the respective feasible regions ofP-GIMPC,P-GIMPC2 andP-
RMPC are shown. These trajectories show that the feasible regions indeed are positive
invariant sets for the closed-loop systems.

7.3.3 Interpolation between control invariant sets and feasible
regions

In this section it is shown how the algorithms discussed in Chapter 4 can be combined
with the control invariant sets constructed in Chapter 6. Tothis end, Algorithm 7.1 (NL-
GIMPC) is applied in a specific way such that adding the control invariant set results in
only a small additional on-line computational complexity.We choosen = 2 and make
the following choices for the different controllers between which the interpolation takes
place :

• κ1 is taken as a recursively feasible MPC controller, e.g. one of those discussed
in Chapter 4.S1 can then be chosen as the feasible region of that MPC controller.
If the MPC controller is based on polyhedral invariant sets,the feasible region is
also polyhedral, which evidently has computational advantages. We will refer to
this controller as thelocal MPC controller.

• S2 is chosen as aλ-contractive control invariant set (withλ ≤ 1) for the system
that is to be controlled.κ2 should then be taken as the control law induced byS2

(cfr. Definition 7.2). We will refer to this controller as theset-induced controller
or theouter controller.

We can now choosef(x̂1...n, λ1...n) = λ2. In this way, we make sure that if the current
state lies withinS1 the control behavior is fully determined by the local MPC controller.
This can now be formalized into the following algorithm.

Algorithm 7.2 (MPC using control invariant sets). Given an LPV system of the form
(3.1)-(3.2)subject to constraints(2.10)-(2.11). Perform the following steps:
Off-line:

• Design a robust MPC controller (eitherP-GIMPC,P-GIMPC2 orP-RMPC)
for the given system and constraints and denote this controller as the static state
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feedback lawκ1(·). Construct the corresponding feasible regionF = {x ∈
Rnx |AFx ≤ 1} (see Section 7.3.2) and setS1 := F .

• Construct a control invariant set (e.g. by means of Algorithm 6.6) and denote it
asS2 = {x ∈ Rnx |AS2x ≤ 1}. Defineκ2(·) as the corresponding set-induced
control lawκS2(·) (see Definition 7.2).

On-line:

At every time instantk, given the current statex(k), perform the following steps:

• Solve the NL-GIMPC optimization problem(7.3) for the current statex(k) with
κ1, κ2 andS1,S2 defined as above andf(·, ·) , λ2.

• Apply the inputu(k) defined by(7.4) to the system.

One can see that this algorithm, compared to simply applyingκ1(·), enlarges the
feasible region toCo{S1,S2}, which can be significantly larger thanS1, sinceS2 is
typically significantly larger. This advantage comes at theadditional cost of solving
optimization problems (7.3) and (7.6), which in this case are LP’s. The size of these
LP’s is typically also moderate compared to the optimization problem involved in
evaluatingκ1(·). Furthermore, the evaluation ofκ1(·) andκ2(·) can be parallelized
and therefore only solving (7.3) should be considered as an additional computational
cost.

Lemma 7.4. Algorithm 7.2 is recursively feasible.

Proof: Due to Lemma 7.2 and 7.3 we know thatS1 andS2 are feasible positive
invariant sets with respect to the respective closed-loop systems formed by (3.1)-(3.2)
and controllersu(k) = κ1(x(k)), k ∈ N andu(k) = κ2(x(k)), k ∈ N subject to
constraints (2.10)-(2.11). ThereforeS1,S2 andκ1(·), κ2(·) satisfy the conditions put
forward in Theorem 7.1, which proves this lemma. �

On top of recursive feasibility, also asymptotic stabilityis obtained ifS2 is λ-
contractive withλ < 1.

Lemma 7.5. If κ1(·) is asymptotically stabilizing andλ < 1, then Algorithm 7.2 is
also asymptotically stabilizing.

Proof: Consider an optimal decomposition̂xo
1(0), x̂o

2(0), λo
1(0), λo

2(0) obtained at
time0 by solving optimization problem (7.3). Due to Lemma 7.1 we can now construct
a feasible decomposition at time1 as follows:

x̂f
1(1) = A(0)x̂o

1(0) + B(0)λo
1κ1

(
x̂o

1(0)

λo
1

)

, λf
1(1) = λo

1(0), (7.7a)

x̂f
2(1) = A(0)x̂o

2(0) + B(0)λo
2κ2

(
x̂o

2(0)

λo
2

)

, λf
2(1) = λo

2(0), (7.7b)

Due toλ-contractivity ofS2 an even stricter choiceλf
2(1) = λλo

2(0), λf
1(1) = 1 −

λf
2(1) > λo

1(0) can be made. Due to the cost function that is chosen, it is therefore
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guaranteed thatλ0
2(1) ≤ λf

2(1) = λλo
2(0). By applying this argument recursively it

can be seen thatλ0
2(k) ≤ λkλo

2(0) and hence that‖x̂o
2(k)‖ → 0 ask → ∞. Due

to the fact thatκ1(·) is asymptotically stabilizing by assumption, we also have that
‖x̂o

1(k)‖ → 0 ask →∞. As a result‖x(k)‖ → 0 ask →∞, which proves asymptotic
stability of Algorithm 7.2 under the specified conditions. �

To conclude, we can state the Algorithm 7.2 is able to increase the feasible region
of existing MPC algorithms while retaining the two most important properties of the
MPC algorithms that is used as controllerκ2(·): recursive feasibility and asymptotic
stability. The additional computational cost is small, with only 2 additional LP’s of
moderate size that have to be solved at every time instantk. Finally, due to the cost
function that is chosen, it can be seen that if the state of thesystem is situated within
the feasible region of the local MPC controller,λ1 = 1 − λ2 = 1 is obtained, which
shows that local optimality is also conserved.

7.3.4 Interpretation

The new Algorithm 7.2, which is based on non-linear general interpolation and
control invariant sets, has a natural interpretation in terms of optimality and constraint
handling. Figure 7.2 depicts the different operational regions of Algorithm 7.2, within
which different trade-offs are made between optimal control behavior and constraint
handling. As a result, als the computational complexity will vary in each region, since
some regions allow significant simplifications to be made with respect to optimization
problem (7.3) and the corresponding expression for the control action (7.4). The
following regions can be discerned:

1. The outer constrained region:S2 \ S1.

• Action: Solve optimization problem (7.3) and apply input (7.4).

• Optimality: The control objective is only partly taken into account,
depending onλ1. The main goal is to drive the state towardsS1 as fast
as possible.

• Constraint handling: Constraints are typically active for a longer period,
after which the state entersS1, where typically still some constraints remain
active.

• Computational complexity: 2 LPs ((7.3) and (7.6)) and the QP associated
with κ1(·) have to be solved.

2. The inner constrained region:S1 \ S.

• Action: Since in this regionλ1 ≡ 1, we can directly apply the local MPC
controlleru(k) = κ1(x).

• Optimality: The control behavior is optimized subject to the imposed
constraints.

• Constraint handling: Constraints are typically only active for a few time
steps, after which the state entersS. In caseP-RMPC is used asκ1(·), the
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S1

S

S2X

Figure 7.2: Schematic depiction in state space of the different regionsof operation of
Algorithm 7.2. S represents the MAS of the locally optimal linear controllerused in
the local MPC controller.S1 is the feasible region of the local MPC controller.S2

is the control invariant set used for interpolation.X is the imposed state constraint
set. Darker shades of grey indicate more optimal behavior according to the control
objective.

state is driven insideS in at mostN time steps. Straightforward application
of Algorithm 7.2 would yieldλ1 = 1 − λ2 = 1, which allows us to skip
this step and directly evaluateκ1(x(k)).

• Computational complexity: Only the QP associated withκ1(·) has to be
solved.

3. The unconstrained region:S.

• Action: In this region no constraints are active and the local MPC
controlleru(k) = κ1(x(k)) should result in identical behavior as the local
controlleru(k) = −Kx(k) used in its design. Therefore this latter control
action can directly be applied to the system.

• Optimality: The control behavior is optimal ifK is chosen to be the locally
optimal controller.

• Constraint handling: No constraints are active.

• Computational complexity: No optimization has to be performed, only
the locally optimal controlleru(k) = −Kx(k) has to be evaluated.

Finally, there exists one additional region, which howevercan be argued not to be part
of the proper operation of the algorithm:

4. The twilight zone: X \ S2.

• Action: In this region it is not guaranteed that in all future time steps all
constraints will be satisfied. Whether or not this happens can depend on the
actual values ofA(k), B(k). In order to reduce the odds and/or severity of
the possible constraint violations, one might still applyu(k) = κ2(x(k)),
which drives the state as close as possible toS2.
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• Optimality: The control objective is not taken into account. The only
concern is constraint handling.

• Constraint handling: Some constraints are active and the possibility
exists that some state constraints might be violated in future time steps.
By definitionκ2(·) always guarantees input constraint satisfaction.

• Computational complexity: Only LP (7.6) has to be solved.

The following general conclusions can be drawn:

• The further away one moves from the origin, the more constraints become
active and during longer periods of time. This results in control behavior
that increasingly deviates from the locally optimal behavior, which in turn
necessitates different control strategies. Hence, the further one moves away from
the origin, the more the emphasis has to be put on constraint handling and the
less one can take the control objectives into account.

• The more constraints are active or the longer they are active, the more computa-
tional resources one has to employ in order to perform properconstraint handling
without losing stability of the closed-loop system.

• The ability to enlarge the feasible region to the size of a control invariant set,
incurs an additional cost in the form of two additional LP’s that have to be solved.
However, the ability to obtain this enlarged feasible region reduces the need for
the local MPC controller to have a large feasible region, which in turn potentially
reduces its computational complexity.

7.4 Control-invariant sets in tracking problems

While up to the previous section only stabilization problems were considered, we
here consider the problem of steering a system such that its output or its statestrack
a prescribed trajectory, i.e. a tracking problem. The classical stability framework
introduced in Chapter 1 and further extended to the robust case in Chapter 3 is only
valid for stabilization problems and hence it cannot be applied to stabilization problems
in a theoretically sound manner.

The main aim of this section is to show that control invariantsets can be used in order
to guarantee input and state constraint satisfaction in tracking problems. This section
is conceived as aproof-of-conceptand hence, for simplicity reasons, onlytracking
without previewis considered, meaning that no information on future valuesof the
reference trajectory is available to the controller. The next section first formulates the
problem, after which Section 7.4.2 will present an algorithm for tracking problems,
that is able to guarantee robust constraint satisfaction bymeans of a control invariant
set.

7.4.1 Problem formulation

As in previous sections we still consider LPV systems of the form (3.1)-(3.2) subject to
constraints (2.10)-(2.11). While in all previous sectionsand chapters a control objective
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LPV System u(k)

Local 
Controller

Post-
Processor

x(k)

xref(k)

uref(k)

[A(k) B(k)] ∈ Ω

Figure 7.3: A schematic representation of the tracking setup discussedin this section.
A local MPC controller designed for stabilization problemsis employed by performing
static reference insertion in a straightforward way. Despite the simplicity of the setup,
the post-processor can still guarantee constraint satisfaction and recursive feasibility.

(1.3) with xref(k) ≡ 0, uref(k) ≡ 0, ∀k ∈ N is assumed we now explicitly consider
the case whenxref(k) 6= 0, uref(k) 6= 0.

The only purpose of this section is to obtain recursive feasibility in this setting, the
reference trajectory is not required to satisfy any smoothness condition , any asymptotic
conditions or any relationship (e.g., steady state conditions) with the dynamical model.
It is not even required that the reference trajectory satisfies the state or input constraints.

We consider the simplified setting of tracking without preview, which means that at
time k, the future partxref(k + i), uref(k + i), i > 0 is not available to the controller.
The problem can now be formalized as follows:

Problem 7.1(Trajectory tracking without preview for constrained LPV sy stems).
Consider an LPV system of the form(3.1)-(3.2) subject to constraints(2.10)-(2.11)
and consider arbitrary reference trajectoriesxref(k) ∈ Rnx , uref(k) ∈ Rnu . Design a
static state feedback control lawu(k) = κtracking(x(k), xref (k), uref(k)) with the aim
of minimizing(1.3)and such that constraints(2.10)-(2.11)are satisfied at all times.

The following section discusses, as a proof-of-concept forthe successful application
of control invariant sets in a tracking setting, a possible way for solving this problem.

7.4.2 Algorithm synthesis

Similar to Section 7.3 we consider a local controller, denoted asκlocal(·), which can be
either an MPC controller or a linear feedback law. No restrictions regarding recursive
feasibility or guaranteed constraint satisfaction apply.Furthermore, we consider a
control invariant setS = {x ∈ Rnx |ASx ≤ 1} that is used to guarantee recursive
feasibility.

As is indicated in Figure 7.3 we essentially apply at every time instantk the local
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controllerκlocal(·):

ũ(k) = κlocal(x̃(k)), (7.8)

with ũ(k) , u(k)− uref(k) andx̃(k) , x(k) − xref(k).
κlocal can be any controller designed for e.g. disturbance rejection, optimal tracking

of step signals, etc . . . , but for the purpose of guaranteeingconstraint satisfaction, the
actual choice ofκlocal is irrelevant. The following algorithm post-processes theinput
suggested by the local control law in order to obtain a control action that lies as close
as possible to this suggested control action, while guaranteeing constraint satisfaction
and recursive feasibility:

Algorithm 7.3 (Trajectory tracking using control invariant sets). Consider an LPV
system of the form(3.1)-(3.2) subject to constraints(2.10)-(2.11)and reference state
and input trajectoriesxref(k) ∈ Rnx , uref(k) ∈ Rnu . Furthermore, consider a feasible
control invariant setS and a state feedback controllerκlocal. At every time instantk,
given the current statex(k), perform the following steps:

• Calculate uf(k) := uref + κlocal(x(k) − xref(k)) and solve the following
optimization problem:

min
u(k)

‖u(k)− uf(k)‖2, (7.9a)

s.t. [x(k); u(k)] ∈ Sxu, (7.9b)

with Sxu defined as

Sxu , {[x; u] ∈ Rnx+nu |u ∈ U , Ajx + Bju ∈ S, j = 1, . . . , r}. (7.10)

• Apply inputu(k) to the system.

This simple control setup, regardless ofκlocal guarantees constraint satisfaction if
the initial statex(0) lies within the control invariant setS.

Lemma 7.6(Robust recursive feasibility). Algorithm 7.3 is recursively feasible.

Proof: One can see that optimization problem (7.9) is feasible if∃u(k) : [x(k); u(k)] ∈
Sxu. Due to control-invariance ofS and the definition ofSxu, this condition is
satisfied ifx(k) ∈ S. Consequently, due to the definition ofSxu, it is guaranteed
thatx(k +1) ∈ S, which then guarantees that∃u(k +1) : [x(k +1); u(k +1)] ∈ Sxu,
which in turn guarantees that optimization problem (7.9) isfeasible at timek + 1. �

This lemma shows that control invariant sets can indeed be used to guarantee
constraint satisfaction in control settings where this is normally not guaranteed.
Extensions towards trackingwith preview (see [136]) or off-set free setpoint tracking
are straightforward, by appropriately designingκlocal. However, the post-processing
step (7.9) can remain unchanged, which is the strength of this approach.
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7.5 Example

In this section we illustrate the algorithms introduced in this chapter by retaking the
same numerical example as used in previous chapters. Section 7.5.1 first illustrates
Algorithm 7.2, after which a tracking problem is solved in Section 7.5.2 by means of
Algorithm 7.3.

7.5.1 Stabilization problem

In this section we still consider the same LPV system (4.56)-(4.57) as discussed in
Sections 4.2.7, 4.3.5 and 5.4.2. The aim is to improve the feasible region of the
algorithms discussed there by means of Algorithm 7.2. The following straightforward
design choices are made:

• The local MPC controllerκ1 is chosen as theP-RMPC controller withN = 6
designed in Section 4.3.5. Based on the results described inSection 5.4.2,γ =
0.3 is chosen. The resulting invariant set for the augmented system is described
by 91 constraints.

• S2 is chosen as the control invariant set obtained by applying Algorithm 6.6 with
λ = 1 andγPre = 0.01. The resulting set is described by22 constraints.

The different regions (cfr. Figure 7.2) of operation thus obtained are depicted in
figure 7.4. The control invariant set clearly is significantly larger than the feasible
region of the local MPC controller.

In order to assess feasibility and optimality, we first compute the trajectories resulting
from applying the set-induced controllerκS2 to the system, starting from initial states
near the boundary ofS2. These trajectories are depicted in Figure 7.5, while the
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Figure 7.4: The different regions of operation of Algorithm 7.2 (as explained in Figure
7.2) for the numerical example under consideration.
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Figure 7.5: Trajectories generated by the set-induced controllerκS2 for initial states
near the boundary ofS2. The setS2 is calculated by applying Algorithm 6.6 to system
(4.56)-(4.57) usingλ = 1 andγPre = 0.01. The real system behavior is chosen as the
LTI system defined byA2, B2.

corresponding input sequences are depicted in 7.6. Real system behavior was taken
as the LTI system described byA2, B2. One can see that feasibility is guaranteed for
all states lying insideS2, which shows that (7.2) is satisfied fori = 2. However,
as Figure 7.6 indicates, the control behavior is extremely nervous and non-smooth,
which is due to the LP formulation (it is known that optimal solutions of parameterized
LPs are non-continuous functions of the involved parameters (see [21] and references
therein) and the fact that the control objective is not takeninto account.
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Figure 7.6: Input sequences corresponding to the trajectories shown inFigure 7.5.
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Figure 7.7: Trajectories generated by Algorithm 7.2 for initial statesnear the boundary
of S2. The setS2 is calculated by applying Algorithm 6.6 to system (4.56)-(4.57) using
λ = 1 andγPre = 0.01. The inner controller was chosen as theP-RMPC controller
with N = 6 described in Section 4.3.5, but withγ = 0.3. The real system behavior is
chosen as the LTI system defined byA2, B2.

Figures 7.7 and 7.8 respectively show state and input trajectories resulting from
Algorithm 7.2. One can see that the input trajectories are qualitatively better and that
the trajectories are also markedly different than those resulting fromκS2 . The average
control cost per trajectory is448.61 when using Algorithm 7.2 compared to477.6 when
only usingκS2 . This shows that Algorithm 7.2 significantly improves localoptimality,
because local behavior only has a relatively small contribution to the total control cost
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Figure 7.8: Input sequences corresponding to the trajectories shown inFigure 7.7.
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and the total control cost still differs noticeably.
Average computation time per iteration was< 0.1 seconds (2.4GHz x86 CPU) for

both Algorithm 7.2 and controllerκS2 , which is too small compared to the overhead
incurred by calling external optimization solvers and hence no clear comparison can
be made, besides the observation that both algorithms seem to have a computational
complexity that is in the same order of magnitude.

7.5.2 Tracking problem

In this section we show that the same control invariant set used in the previous section
can also be used for guaranteeing constraint satisfaction for tracking control problems,
by means of Algorithm 7.3.

We consider the same system (4.56)-(4.57) and want to steer the system towards the
following reference trajectory:

xref(k) = [a(k); 0], a(k) ∈ (−10, 8), k ∈ N, (7.11)

uref(k) = 0, k ∈ N. (7.12)

The sequencea(k), k ∈ N is chosen as a piecewise constant function, with switching
between different values occurring every 20 time instants.The reference trajectory is
depicted in red in Figure 7.10. In order to illustrate the efficiency of Algorithm 7.3 even
if the local controllerκlocal is chosen in a naive way, we chooseu(k) = −K1x(k), with
K1 given the same value as in (4.58). We compare Algorithm 7.3 with the following
two controllers:

u(k) = uref(k)−K1(x(k)− xref(k)), (7.13)
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Algorithm 7.3
Controller (7.14)
Controller (7.13)

Figure 7.9: Inputs generated by the three different controllers under consideration,
when applied to system (4.56)-(4.57) with the aim of tracking the trajectory shown in
Figure 7.10.



7.5 Example 171

0 20 40 60 80 100 120 140 160 180
−12

−10

−8

−6

−4

−2

0

2

4

6

8

10

k

x 1

Algorithm 7.3
Controller (7.14)
Controller (7.13)
Reference trajectory

Figure 7.10: The first state component of the closed-loop systems obtained
by combining system (4.56)-(4.57) with the three differentcontrollers under
consideration.
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Figure 7.11: Phase plot of the closed-loop systems obtained by combiningsystem
(4.56)-(4.57) with the three different controllers under consideration.
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Figure 7.12:Close-up of Figures 7.11 and 7.10 in order to compare constraint handling
of the three different controllers under consideration, when operating near the state
constraints.

and

u(k) = trim[−0.5,1] (uref(k)−K1(x(k)− xref(k))) , (7.14)

with trim[a,b](u) defined as

trim[a,b](u) ,







b, u > b,
u, u ∈ [a, b],
a, u < a.

(7.15)

Figure 7.9 shows the inputs generated by the three controllers under consideration.
As expected, controller (7.14) and Algorithm 7.3 respect the imposed input constraints
at all times, whereas controller (7.13) violates the input constraint at several points in
time.

Figure 7.10 shows that controller (7.14), while guaranteeing input constraint satisfac-
tion, causes state constraint violations when the reference trajectory closely approaches
these constraints or when large reference steps are applied. However, Algorithm 7.2
is able to also guarantee satisfaction of the state constraints. This is accomplished by
adjusting the applied input such that the overshoot, after applying a reference step, is
kept small enough in order to stay within the imposed constraints.

Figure 7.11 shows phase portraits of the three different closed-loop systems, together
with a depiction of the control invariant set used in Algorithm 7.3. It is clear that this
algorithm makes sure that at all times the state is kept within the control invariant set,
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such that it is always guaranteed that there exists a feasible input sequence that keeps
the state within the state constraints.

Figure 7.11 finally shows a close-up of Figures 7.11 and 7.10 to show in detail the
difference in control behavior of the three controllers when changing the reference state
from [4; 0] to [7.8; 0].

It should be noted that off-set free setpoint tracking is obtained in this example be-
causexref(k), uref(k) are chosen such thatxref(k) = Axref(k) + Buref(k), ∀[A B] ∈
Ω. Still, this example clearly shows that useful results can already be obtained when
appropriately combining a simple linear controller with the knowledge of allowable
control behavior contained in a feasible control invariantset. Further extensions are
straightforward and form the subject of current research.

7.6 Conclusions

This chapter discussed how control invariant sets can be used in MPC algorithms to
further improve constraint handling. Two different settings are discussed: stabilization
and tracking.

First of all it is shown that, by extending general interpolation towards non-linear
control laws, control invariant sets and their induced controllers can be used to extend
the feasible region of the robustly stabilizing MPC controllers discussed in Chapter 4.
In this way the feasible region of the resulting control law is the largest feasible region
theoretically possible, if the control invariant set is taken as the MCAS. This significant
advantage comes only at the cost of a moderate amount of additional computational
complexity.

Secondly, it is shown that also in the context of tracking control problems, control
invariant sets can be used to guarantee robust constraint satisfaction of any (linear or
non-linear) state feedback controller. This is shown as a proof-of-concept for the case
of tracking without preview, but extensions towards more complex and useful settings
is relatively straightforward.

On a general note, it can be said that control invariant sets have a large potential for
improved constraint handling in stabilization and tracking control problems. As shown
in this chapter, this potential can be put to use by means of standard techniques such as
general interpolation and simple convex optimization problems, but many possibilities
are probably yet to be discovered.
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Chapter 8

Case Studies

“In theory, there is no difference between theory and practice.
In practice, there is.”

– Chuck Reid –

In this chapter the algorithms discussed in the previous chapters are
applied to two practical examples. The first case study discusses a control
problem encountered in steel rolling mills. The second casestudy consists
of a chemical process for the production of a copolymer. Bothexamples
are constrained MIMO systems of relatively high order compared to the
numerical examples considered up till now and are hence wellsuited to
illustrate the practical efficacy of the algorithms presented in this thesis.

8.1 Steel rolling mill

This section considers the control of a steel rolling process. More specifically, the
problem of controlling the tension in hot strips that pass through a finishing mill is
tackled. Section 8.1.1 starts with a general overview of theprocess, after which Section
8.1.2 defines the control problem more precisely. Sections 8.1.4 to 8.1.6 then present
results obtained with the different control strategies introduced in this thesis. Section
8.1.7 finally discusses the control performance of the obtained controllers.

8.1.1 Process description

For reasons of confidentiality not all details of the processcan be given here. Therefore,
all physical variables are omitted or rescaled and reportedwithout units. For more
information we refer to [36]. In what follows the general context of the control problem
is sketched, in order to illustrate the practical relevance.
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Reheating
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Run-out
Table

Down
Coiler

Figure 8.1: Typical layout of a hot strip mill. Slabs are heated in a furnace after
which roughing and finishing mills reduce the thickness of the strips. Finished strips
are cooled down and coiled for later transportations. Imagetaken from [36].

The main aim of a hot strip mill process is to produce steel strips with a specified
thickness and width. To this aim steel slabs are heated afterwhich their thickness is
reduced by roughing and finishing mills. Figure 8.1 gives a typical layout of such a
process. The reverse roughing mills result in an initial thickness reduction of the slabs,
after which the finishing mills reduce the thickness of the strips to the specified value.

Figure 8.2 depicts a typical control loop present in betweentwo finishing mills.
The main aim of this looper-tension control loop is to control the tension of the strip
passing through the finishing mills. Excessive tension can result in width and thickness
reductions and can hence have a detrimental effect on the dimensional quality of the
end product. On the other hand, when the strip tension is too low, the mass flow through
the finishing mills can become unstable. Therefore the tension should be kept around
a fixed value. This can be achieved by means of motors controlling the speed of the
mills.

Another actuator present between two finishing mill stands is the looper, whose angle
can be changed in order to compensate for sudden mass flow irregularities. However,

M

ith stand i+1th stand

main
motor

ASR ASR/ACR

looper-tension
control system

tension

looper
roll

M

strip

looper
motor

looper

main
motor

ASR

M

Figure 8.2: Looper and tension control system between two finishing millstands. The
strip tension and the looper angle are controlled by means ofelectrical motors. Image
taken from [36].



8.1 Steel rolling mill 177

γ = 0.10 γ = 0.05 γ = 0.00

N = 5 202 (285s) 272 (444s) 1370 (7789s)
N = 10 362 (950s) 484 (1696s) >4000 (>50000s)1

N = 15 528 (2820s) 716 (5458s) /
N = 20 674 (6712s) 946 (12607s) /
N = 25 828 (12253s) 1158 (25405s) /

Table 8.1: Total number of constraints and computation times (betweenbrackets) for
invariant sets of the augmented system (4.63)-(4.64) for different values ofN . The
invariant sets are computed using Algorithm 5.2 with different values ofγ. See also
Figure 8.4. (1conservative lower bounds based on extrapolation of partial results)

in order to maintain maximal flexibility, the looper angle should also be kept around a
fixed value. The looper angle can be controlled by means of an electrical motor.

8.1.2 Problem formulation

The looper angle and finishing mill speed mechanism are modeled by means of non-
linear first-principles model, which is then linearized around the desired operating
point. The model has 2 inputs (controlling the two electrical motors), 6 states and 2
outputs (looper angle deviation and strip tension deviation). In order to gain robustness
against non-linearities present in the real process, a linear uncertain model is used for
controller design. A polytopic uncertainty set withr = 2 is constructed based on
two linear models, linearized around two different looper angles. We hence have a
robust control problem with dimensionsnx = 6, nu = 2, r = 2. States and inputs
are subject to component-wise upper and lower bounds. More specifically, the looper
angle deviation is restricted to[−0.2 0.2], while the strip tension deviation is restricted
to [−2 2]. A quadratic control objective (1.3) is imposed with

Q = CT

[
0.25 0
0 64

]

C, R = 0.001I, (8.1)

where the scaling factors inQ compensate for the differences in units.

8.1.3 Design Specifications

The aim of this example is to provide a comparative case studyin a specification driven
design process of the robust MPC algorithms discussed in this thesis. We will apply
the design procedures of the different MPC algorithms with the aim of satisfying the
following specifications:

• The controller should be locally optimal according to the above criteria.

• The controller should have a region of operation that spans the entire range of
allowed strip tension deviation and that spans a looper angle range that is as large
as possible.
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• Due to the fast sampling time of the system, the computation time per second
should not exceed0.02 seconds.

• The controller should be able to cope with sudden system perturbations of
sufficiently large amplitudes.

Obviously, the above specifications are conflicting (e.g., operation range vs. computa-
tional complexity), so possibly no clearly optimal winner will be found.

8.1.4 Quasi-infinite horizon MPC

A first step into the design of a controller based on Algorithm4.7 is the construction of
a locally optimal linear feedback controller. To this end, we use Algorithm 4.2 with̄x
chosen close to the origin. A value ofx̄ = 0.001e3 was chosen, which corresponds to
a slight deviation of the looper angle from the operating point. In further sections we
refer to this controller asκlocal. Figure 8.3 shows invariant sets for this local controller,
computed using Algorithm 5.2 for different values ofγ. It is clear that choosingγ =
0.05 results in a significant complexity reduction without any apparent volume loss and
hence we will also use this value for later computations.

We can now construct aP-RMPC controller (Algorithm 4.7, Section 4.3) using this
locally optimal controller. Since both inputs can be considered to be equally important,
we chooseE = I. Figure 8.4 shows feasible regions for different values ofN .
Table 8.1 reports the resulting number of constraints and the computation times for
the different horizon lengths.

Choosingγ = 0 is obviously not a practical choice due to the rapid increase
of the number of constraints as a function ofN . This leads to a prohibitively
large computation time for constructing the invariant setsas well as a large on-line
computational load. The two other values ofγ (0.05 and0.1) lead to a significantly
reduced number of constraints. The increase is almost exactly linear as a function ofN ,
which shows that Algorithm 5.2 enables the use of long prediction horizons in robust
MPC algorithms. Figure 8.4 shows the resulting feasible regions corresponding to
different values forN andγ. It is clear that the operating region increases as a function
of N and is significantly larger than the invariant set for the locally optimal controller
depicted in Figure 8.3. However, looper angle deviation allowed by the feasible region
is still fairly small and increases very slowly as a functionof N . Therefore the next
section aims to construct a controller with a larger feasible region by means of general
interpolation.

8.1.5 Interpolation based MPC

An alternative for obtaining an MPC controller with a large feasible region is to
use general interpolation as discussed in Section 4.2. In order to construct an
interpolation based controller we first compute additionallinear control laws with
enlarged corresponding invariant sets. To this end we applyAlgorithm 4.2 and placēx
farther away from the origin. Since we aim to increase the size of the feasible region
in the 3rd dimension, which corresponds to the looper angle,we try x̄ = 0.01e3 and
x̄ = 0.02e3. These values lie outside the invariant set of the locally optimal controller.
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Figure 8.3: Invariant sets for the local controller designed for the hotstrip mill
model, computed using Algorithm 5.2. Solid lines representintersections, dashed
lines represent projections onto the two most important state dimensions. The resulting
number of constraints and computation times were a) 198 constraints, 278 seconds, b)
60 constraints, 87 seconds. No significant volume differences can be observed.
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Figure 8.4: Feasible region forP-RMPC controller for different values ofN . The
invariant sets were computed using Algorithm 5.2 using different values ofγ. Solid
lines represent intersections, dashed lines represent projections onto the two most
important state dimensions.
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(a) Invariant set ofκ1

−2 −1 0 1 2
−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

lo
op

er
 a

ng
le

 d
ev

ia
tio

n

strip tension deviation

(b) Invariant set ofκ2

Figure 8.5: Invariant set for two linear control laws with enlarged feasible region for
use in GIMPC(2). The controller is computed using Algorithm4.2, while the invariant
set is computed using Algorithm 5.2 withγ = 0.05. Solid lines represent intersections,
dashed lines represent projections onto the two most important state dimensions.

In further sections, the thus obtained linear control laws are referred to asκ1 andκ2.
The invariant sets ofκ1 andκ2 are depicted in Figure 8.5 and are clearly larger than
the invariant set ofκlocal.

We now construct an interpolation based controller based onκlocal and eitherκ1 or
κ2. In order to maximize the feasible region, we choose to construct aP-GIMPC2
controller using method 2 described in Section 4.2.5.2. Theobtained feasible regions
are shown in Figure 8.6.

Against expectations, the feasible regions of the two differentP-GIMPC2 controllers
are more or less identical in size. After comparison of Figures 8.5 and 8.6, it is found
that the feasible region of the controller based onκlocal and κ2 is smaller than the
invariant set ofκ2. We therefore conclude that the relatively small feasible region
of the latter GIMPC2 controller is due to the fact thatγ = 0.1 is chosen too large.
However, smaller values ofγ resulted in an excessive number of constraints. Therefore
we choose the controller based onκlocal andκ1, with γ = 0.1 to compute the invariant
set of the associated augmented system.

8.1.6 MPC using control invariant sets

Finally, we try to increase the size of the feasible region even further by means
of Algorithm 7.2. This algorithm employs general interpolation between non-linear
control laws in order to make the feasible region equal to theMCAS of the system.
Therefore we use Algorithm 6.6 (withλ = 1, λ′ = 0.95 and different values ofγPre

andγproj) in order to compute the maximal control admissible set for the given system.
Figure 8.7 shows the resulting control invariant sets. Disappointingly these sets turn
out to be smaller than the feasible regions of theP-RMPC andP-GIMPC2 controllers.
Therefore this design route is not explored any further.
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Algorithm Parameters Constraints Variables

MPC 1 P-RMPC N = 5, E = I, γ = 0.1 202 10
MPC 2 P-RMPC N = 25, E = I, γ = 0.1 828 50
MPC 3 P-GIMPC2 κlocal, κ1, γ = 0.1 750 6

Table 8.2: Overview of the different controllers compared in this section.
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(a) P-GIMPC2 controller based onκlocal andκ1.
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(b) P-GIMPC2 controller based onκlocal andκ2.

Figure 8.6: Feasible regions forP-GIMPC2 controllers based on different linear
control laws. The invariant sets were computed using Algorithm 5.2 withγ = 0.05.
Solid lines represent intersections, dashed lines represent projections onto the two most
important state dimensions.
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Figure 8.7: Control invariant sets computed using Algorithm 6.6 using different values
of γPre andγproj.
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Infeasible at time step CPU-t./iter. Control cost

MPC 1 401 0.005s 0.2709
MPC 2 1001 0.029s 0.2709
MPC 3 1601 0.009s 0.2803

Table 8.3: Comparison of the 3 MPC controllers with respect to feasibility,
computational complexity and optimality. The best scores of each category are
underlined.

8.1.7 Simulation results

We now assess the control performance of the different controllers constructed in the
previous sections by means of a simulation. An overview of the different controllers
compared here is given in Table 8.2

In order to assess the control performance of the controllerwe perform a simulation
with all three controllers. The initial state is chosen asx(0) = 0 and disturbance signals
are added to the states corresponding to the looper angle andthe strip tension. These
disturbance signals are depicted in Figure 8.8. These signals consist of Gaussian noise
and spikes with increasing magnitudes. This setting allowsthe following three aspects
to be tested:

• Feasibility: Due to the fact that the disturbance signals have increasing
amplitudes, it is expected that infeasibilities will occursooner or later. The
time steps when these infeasibilities occur give information on the size of the
disturbances that can be tackled by the controllers.

• Optimality: For that part of the simulations where all three controllersare still
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Figure 8.8: Disturbance signals used in the comparative test between the 3 MPC
controllers.
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feasible, one can compare the total control cost in terms of the quadratic control
objective defined by the matricesQ andR. These costs give an idea of how well
the controllers are able to reject the disturbances.

• Computational efficiency: Similarly, the computation time per iteration can be
calculated for each algorithm.

Table 8.3 gives an overview of the performance of the different controllers with respect
to the above aspects. The following conclusions can be drawn:

• Locally, P-RMPC offers the most optimal control performance (according to
the quadratic control objective), although the differenceis not large compared to
GIMPC2.

• Of the twoP-RMPC algorithms, only the short-horizon controller satisfies the
imposed specifications regarding the maximum computational complexity, but
it has relatively poor feasibility. This indicates that relatively small system
perturbations can render the controller unusable.

• GIMPC2 has a sufficiently large marging with respect to the computational
complexity specification and has the best results with respect to feasibility,
indicating that the controller should be able to cope with relatively large system
disturbances.

In summary, we can conclude thatGIMPC2 seems to result in the best trade-off
between the different design specifications. however, if local optimality is prioritized
significantly above the ability to cope with large system disturbances,P-RMPC should
be used. However, the horizon length should be kept sufficiently small (e.g., not above
10) in order not to violate the computational complexity specification.

It should be noted that, due to the fact that all 3 controllersuse QP optimization,
the computational costs are very modest. If ellipsoidal invariant sets would have been
used, the computational complexity would have been significantly higher due to the
fact that SDP optimization would have to be used. This fact isalso illustrated in the
next section.
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8.2 Copolymerization reactor

This section deals with the control of a copolymerization process in a continuously
stirred tank reactor (CSTR). The aim of this section is not toreiterate the different
design options discussed in the previous section, but to show the difference between
P-RMPC andE-RMPC for high dimensional systems. It will become clear that, even
though until recently the use of polyhedral invariant sets was thought to be limited
to low dimensional systems,P-RMPC significantly outperformsE-RMPC in this
example. These results and further information can also be found in [106] and [95]
respectively.

8.2.1 Process description

monomer A
monomer B

copolymer

etc ... A

A

A

A
B B

B

B

A B A A B
A A

BBAAB
A A B

Figure 8.9: A continuously stirred tank reactor (CSTR) for a copolymerization
reaction.

In this section we consider a control problem involving a CSTR reactor for a
copolymerization process described in [37, 38]. Such a reactor consists of a tank to
which the reagents are fed continuously. The contents of thetank are continuously
stirred in order to obtain perfect mixing conditions. Simultaneously the reaction
products are drained from the tank. The reaction products are separated from the rest
of the drained fluid, which is fed back into the reactor through a recycle loop. However,
this recycle loop is not considered in this section, since insufficient information on its
dynamics was available.

The aim of a copolymerization process is to produce a copolymer of two different
monomers, which will be referred to as monomer A and monomer B. The two
monomers are fed into the CSTR, together with a solvent and other chemicals
influencing the copolymerization reaction. The reaction product (i.e., the copolymer)
consists of mixed chains of the two monomers. The two main properties of the reaction
product that can be influenced are the average molar mass of the chains, which is related
to the average length of the chains, and the average mass fraction of monomer A in
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Input Steady state

monomer A mass feed rate (Gaf ) 18.00 kg/h
monomer B mass feed rate (Gbf ) 89.99 kg/h
initiator mass feed rate (Gif ) 0.18 kg/h
solvent mass feed rate (Gsf ) 36.02 kg/h
chain transfer agent mass feed rate (Gtf ) 2.70 kg/h
inhibitor mass feed rate (Gzf ) 0.0003 kg/h

Output Steady state

polymer production rate (Gp) 23.31 kg/h
monom. A mass fract. in polym. (Yap) 0.56
polymer molar mass (Mp) 35003.48 g/mole
reactor temperature (Tr) 353.00 K

Table 8.4: Overview of the input and output variables of the reactor model and their
steady state values.

the copolymer, which is a measure for the relative number of monomer A molecules
present in each chain.

The control problem considered here has the aim of maintaining a fixed average
molar mass and a fixed average mass fraction of monomer A in thecopolymer. To this
end the feed rates of 6 different reagents can be manipulatedby the controller. Two
other important variables that also have to be kept constantare the reactor temperature
and the production rate of the reactor.

8.2.2 Problem formulation

In order to control the process, the model described in [38] is used. The model is
based on first principles and is represented as a set of non-linear coupled differential
equations. The model has 6 inputs 12 states and 4 outputs. Table 8.4 gives an overview
of the input and outputs of the model and their steady state values. This model is
linearized around the operating point given in Table 8.4 anddiscretized in time with a
sample timeTs = 30min. Input, state and output variables of the model are translated
and normalized with respect to their steady state values, inorder to improve numerical
stability.

In order to obtain robustness with respect to the different dynamics in the neighbor-
hood of the operating point, an LPV model is constructed based on two linear models,
resulting from linearization around90% and 110% of the steady state value of the
monomer A concentration in the reactor.

Constraints are imposed on the inputs and states in order to ensure that a) the applied
inputs do not deviate more than−20% and+10% from their steady state values, b) the
outputs do not deviate more than±50% from their steady state values and c) the states
do not deviate more than±100% from their steady state values.

A quadratic control objective (1.3) is imposed withQ = 10CTC andR = 0.001I.
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8.2.3 Design Specifications

The system under consideration here is markedly different from the system discussed
in the first case study. This chemical system has a much smaller sampling frequency
(1500 times smaller) and hence computational complexity is no important issue.
The dimensionality of the system, however, is larger and thenumber of inputs is
also significantly larger. Due to this higher dimensionality, constructing controllers
with sufficiently large feasible regions is the main concern. The following design
specifications are imposed in this case study:

• The controller should be locally optimal with respect to theabove mentioned
quadratic control objective.

• The computation time per iteration should be lower than30 minutes.

• The controller should have a region of operation that is as large as possible.

In the following sections, robust MPC controllers will be designed in order to optimally
satisfy these specifications.

8.2.4 Controller design

In this section we designP-RMPC andE-RMPC controllers for the given control
setting. The design of both controllers is almost identical, except for the computation
of the invariant set for the augmented system (4.63)-(4.64).

First we design a locally optimal controller. This is chosenas the locally optimal
LQR controller at the operating point. The resulting controller was also found to be
robustly stabilizing for the LPV system described in the previous section and hence can
be used for designing a robust MPC controller.

Secondly, a choice has to be made regarding theE matrix in equation (4.61). Since
one of the primary aims is to keep the concentration of the twomonomers in the reactor
at a constant level and because these two states are primarily governed by the first two
inputs, we chooseE = [I; 04×2].

In the case of theP-RMPC controller additional choices have to be made for the
parameters related to the construction of the polyhedral invariant set for the augmented
system. We tryγ = 0 andγ = 0.15. The resulting feasible regions (for different
horizon lengthsN ) are depicted in Figure 8.10, the number of constraints describing
the obtained invariant sets are given in Table 8.5.

Ellipsoidal invariant sets for theE-RMPC controller were computed using Algorithm
2.2. The resulting feasible region forN = 25 is shown in Figure 8.11.

In order to obtain MPC algorithms with further enlarged feasible region, attempts
were made to compute control-invariant sets for the given system using Algorithm
6.6. However, even in the nominal case, the computation timewas unacceptably large.
Hence, this route was not further pursued. This also shows that more research is needed
in this area.
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N # states in(4.63) # constr. (Alg. 5.2) # constr. (Alg. 2.4)

0 12 58 74
5 22 177 771
10 32 299 >2000
15 42 417 /
20 52 538 /
25 62 642 /

Table 8.5: Dimensionality of the augmented system (4.63) and the number of
constraints of invariant sets for (4.63) for different prediction horizonsN .
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Figure 8.10: Feasible regions ofP-RMPC for N = 0 (solid) andN = 5, . . . , 25
(dashed), computed using Algorithm 5.2 withγ = 0.15. Feasible regions forN = 0, 5,
computed using Algorithm 2.4 are also depicted (dotted). Note that the two feasible
regions forN = 20 and N = 25 only differ marginally and hence are hardly
discernable. See also Table 8.5.
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Figure 8.11: Trajectories for theE-RMPC controller [70] forN = 25 starting from
initial conditions starting near the boundary of the feasible region.
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Figure 8.12: State and input sequence corresponding to the trajectoriesshown in
Figure 8.11.
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Figure 8.13: Trajectories for theP-RMPC controller forN = 25 starting from initial
conditions starting near the boundary of the feasible region.
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Figure 8.14: State and input sequence corresponding to the trajectoriesshown in
Figure 8.13.
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Figure 8.15: Trajectories for Algorithm A.1 [68] starting from the same initial
conditions as the trajectories depicted in Figure 8.13.
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Figure 8.16: State and input sequence corresponding to the trajectoriesshown in
Figure 8.15.
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8.2.5 Simulation results

Figures 8.11-8.14 show trajectories starting from the edges of the respective feasible
regions of theE-RMPC [68] andP-RMPC controllers with horizon lengthN = 25.
It is hard to explicitly determine the feasible region of Algorithm A.1, so therefore
Figures 8.15-8.16 shows simulation results for the same initial states as those used in
Figures 8.13-8.14.

The following conclusions can be drawn:

• The feasible region of theP-RMPC controller is significantly larger than the
feasible region ofE-RMPC. This can be attributed to the lack of flexibility
present in ellipsoidal sets compared to polyhedral sets, which becomes more
apparent when the dimensionality increases. Furthermore,the fact that the
feasible regions forP-RMPC with N = 20 andN = 25 are nearly identical
suggests that these feasible regions probably closely approximate the MCAS for
the given system. This shows thatP-RMPC actually provides a method for
implicitely computing the MCAS for a given system.

• Algorithm A.1 is feasible for all initial points close to theedge of the feasible
region of theP-RMPC controller. This indicates that in this example the feasible
region of Algorithm A.1 is equal or larger than that of theP-RMPC controller.

• E-RMPC exhibits very conservative constraints handling. Even though many of
the trajectories shown in Figure 8.11 start outside the invariant set of the local
controller, none of the imposed constraints seem to become active for any of
these trajectories. This clearly indicates that the trajectories obtained withE-
RMPC are suboptimal. Furthermore, sinceE-RMPC andP-RMPC make use of
the same cost objective in their on-line optimization problems, this suboptimal
behavior can entirely be attributed to the use of ellipsoidal invariant sets rather
than polyhedral invariant sets. On the other hand, as shown in Figure 8.14,
P-RMPC exhibits non-conservative constraint handling and results in complex
control behavior.

• Algorithm A.1 is significanlty less conservative thanE-RMPC. The applied input
signals come much closer to the imposed input constraints. The asymmetry of
these constraints, however, cannot be taken into account byAlgorithm A.1. The
convergence rate of the trajectories seems comparable to that of theP-RMPC
controller. The average (over all trajectories) total (over one trajectory) control
cost was9.63 for P-RMPC and10.08 for Algorithm A.1.

• The on-line computational cost ofP-RMPC was observed to be< 1 second
per iteration, while the computational cost ofE-RMPC and that of Algorithm
A.1 respectively were∼ 10 and∼ 20 seconds per iteration. This shows that
also from a computational point of viewP-RMPC outperformsE-RMPC in this
case. However, all numbers are still well within the computational restrictions
imposed by the sampling time of30 minutes.

As a general conclusion it is not clear which algorithm is thebest choice.E-RMPC
does not perform very well in this case, butP-RMPC and Algorithm A.1 both seem to
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have their advantages.P-RMPC exhibits better (input) constraint handling and has a
lower computational cost, but Algorithm A.1 has a larger feasible region and results in
(slightly) more optimal control behavior.

Therefore, other factors are likely to influence the final choice. Two factors that
seem to favorP-RMPC is that QP solvers are generally speaking more robust (from a
numerical point of view) than SDP solvers and thatP-RMPC has the potential of being
extendable towards the inclusion of soft constraints.

On a final note, the rather restrictive choice ofE that is made here, could be changed
in order to give more degrees of freedom to the controller. This is possible because
the computational complexity of the current controller is still well below the imposed
specification.

8.3 Conclusions

In this section two case studies were investigated in order to illustrate the algorithms
discussed in this thesis in a more practical setting. The first example consists of a
looper-tension control loop of a hot steel mill, while the second example considers
the control of a continuously stirred tank reactor for a copolymerization reaction. Both
examples illustrate that the use of reduced-complexitypolyhedral invariant sets leads to
robust MPC controllers with enlarged operating regions, improved control performance
and reduced computational complexity.

In both cases one can observe that existing methods for computing polyhedral
invariant sets would not have been practically feasible dueto the high dimensionality
of the augmented systems encountered during the controllerdesign. The second case
study also clearly shows that the use of ellipsoidal invariant sets can lead to suboptimal
control behavior and is therefore not advisable for high-dimensional systems.

Finally, the first case study shows that the construction of reduced-complexity control
invariant sets is a harder problem than constructing reduced-complexity invariant sets.
This issue hence needs further research.



Chapter 9

Conclusions and Future
Research

“If we knew what it was we were doing, it
would not be called research, would it?”

– Albert Einstein (1879-1955) –

9.1 Conclusions

General

In this thesis the author has investigated different mathematical techniques with the
aim of obtaining robust MPC controllers with favorable scaling properties and non-
conservative constraint handling.

The emphasis is put on the use of polyhedral constraint sets instead of ellipsoidal
sets, since the latter offer little flexibility and result inexpensive on-line optimization
problems. Polyhedral invariant sets offer maximal flexibility but have the potential of
leading to algorithms with exponential scaling behavior, eliminating the possibility of
controlling large-scale systems or obtaining good controlperformance by using long
prediction horizons.

In this thesis several methods have been described that are able to exploit this
additional flexibility of polyhedral sets and result in robust MPC algorithms with
improved constraint handling and improved scaling properties. These improvements
were obtained using new results on two different levels: 1) on the level of the
construction of invariant sets for use in MPC, and 2) on the level of algorithm synthesis
in robust MPC. These two areas are hightlighted separately in the following sections.
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Robust model based Predictive control

This thesis contains several algorithmic contributions tothe area of robust MPC.
However, all of these contributions should be considered inthe light of the conceptual
considerations discussed in Chapter 3. This chapter discussed the importance of
incorporating the notion of feedback in the input sequence over which the on-line
optimizations take place. It is shown that several robust MPC algorithms described
in literature are incorrect due to the absence of this notionof feedback. This latter
approach, called the closed-loop paradigm, also leads to improved control performance
and, as is shown in Section 4.3, does not necessarily imply anincrease of the number
of on-line optimization variables. Chapter 5 goes one step further by showing that in
the case of quasi-infinite horizon closed-loop MPC, reduced-complexity invariant sets
can actually decrease the computational complexity, compared to open-loop robust
MPC. This result is enabled by the fact that Algorithm 4.7 allows the constraints to
be calculated as an invariant set of an augmented autonomoussystem. The following
statement summarizes these observations.

As shown in this thesis the closed-loop MPC paradigm is of primary
importance for recursive feasibility and stability of robust MPC
algorithms. Contrary to common belief, the use of closed-loop
predictions does not necessarily imply an increase in the on-line
computational complexity but on the contrary, due to its specific
structure, can lead to significant complexity reductions. The resulting
algorithms can be shown to have linear scaling behavior instead of
exponential scaling behavior observed in existing algorithms.

Other algorithmic contributions are situated in several stages of the MPC design
process. First of all Section 4.1 shows how polyhedral invariant sets can improve the
synthesis of robust linear feedback controllers, that later can be used as a terminal or
local controllers in robust MPC algorithms. Sections 4.2 and 4.3 then show how two
existing MPC paradigms (quasi-infinite horizon MPC (RMPC) and interpolation based
MPC (GIMPC), both of which are closed-loop paradigms) also benefit from the use of
polyhedral invariant sets. On top of this GIMPC is further improved in Section 4.2.5 in
order to improve constraint handling even more. The author would like to emphasize
that the off-line synthesis of RMPC and GIMPC2 algorithms isalmost identical and
only consists of computing a positive invariant set and a quadratic Lyapunov function
for a specially constructed augmented autonomous system. Both methods only differ
in how this augmented system is constructed, and how the applied input depends on
the augmented state.

The common structure present in the design process of RMPC
and GIMPC2 directly suggests the existence of a more general
MPC framework, where the class of candidate input sequencesis
parameterized by means of a linear autonomous system over whose
state vector the on-line optimization actually takes place.

This shift from FIR-like to IIR-like input sequence parameterizations would be the
theoretical projection of the common practice in industry of employing piecewise
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constant input sequence parameterizations (see e.g. [25])with increasing interval
lengths further down the control horizon.

The start of this paradigm shift can be traced back to [131] with the introduction of a
terminal control law. The results in [123] further increased the importance of this local
control law by also letting it also play a role in the within-horizon predictions. More
recent contributions [29,58,61] further suggest the continuation of this trend.

A final contribution discussed in Chapter 7 is the extension of GIMPC towards
non-linear controllers allowing interpolation between MPC controllers and controllers
induced by control invariant sets. This allows the feasibleregion of any recursively
feasible MPC algorithm to be extended to the largest region theoretically possible
without a significant additional computational burden. Theuse of control invariant sets
for ensuring constraint satisfaction in a tracking controlsetting is also briefly discussed,
illustrating the potential of control invariant sets for a wider class of constrained control
problems than positive invariant sets.

Set invariance

The main contribution of this thesis in the area of set invariance is the introduction
of what might be called“near-maximal” polyhedral invariant sets. The two main
other types of invariant sets within the class of polyhedralsets (maximal invariant sets
[52] and low-complexity invariant sets [75]) each represent one extremum within the
spectrum of trade-offs between maximal volume and minimal complexity. The class
of near-maximal invariant sets allows the user to vary this trade-off between these two
extremes. More specifically, it has been shown in this thesisthat typically justifiably
small volume reductions enable vast complexity reductions, with exponential scaling
behavior that is reduced to linear scaling behavior in some cases.

The construction of near-maximal positive invariant sets is tackled in Chapter 5 by
means ofpruning and trimming, while Chapter 6 extends these techniques towards
the construction of control invariant sets together with the addition of reduced-
complexity polytope projections. An important aspect is that only maximality of the
resulting sets is sacrificed, invariance of the resulting sets is still guaranteed and the
resulting MPC algorithms can still be justified theoretically. This regularization-like
method of constructing invariant sets is a novel approach and gives the user additional
tuning parameters during the design process of robust MPC controllers. This can be
summarized as follows.

The novel regularization-like approach towards the construction
of polyhedral invariant sets allows the user to make a trade-off
between maximality of the volume and minimality of the complexity
of representation. The obtained complexity reductions enable the
construction of polyhedral invariant sets for much higher-dimensional
systems than previously possible, which in turn actually enables
the construction of robust MPC algorithms with significantly larger
feasible regions.

Finally, we can conclude that the different directions for constructing reduced-
complexity invariant sets that are explored in this thesis,should only be considered
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initial steps into the unknown. Undoubtedly many other, better and more elegant
solutions exist within the framework laid out in Chapters 5 and 6. Only in the last
decade set invariance has been studied to the extent that is currently the case and many
insights remain to be obtained. The following general statement summarizes these
observations.

The framework for the construction of reduced-complexity (control)
invariant sets laid out in Chapters 5 and 6 leaves room for many
degrees of freedom, many of which are only partially explored in this
thesis. Also, many properties of the algorithms presented in this thesis
remain to be investigated in detail. Bringing in additionalinsights from
computational geometry could potentially lead to vast improvements in
these two areas.

An example of this is the fact that thecombinatorial structureof polytopes (defined
by theface lattice) or the concept ofpolar polytopes [146] are not used in any of the
algorithms presented in this thesis, while it is not unimaginable that considerations
based on these concepts can lead to important new insights inset invariance theory.

9.2 Future research

Several potentially interesting future research topics can be identified in the area of
robust model based predictive control as well as set invariance. In this section a few of
the most interesting research directions are highlighted.

Robust model based predictive control

1. As already indicated in the conclusions, a trend towards the use of IRR-
type parameterizations of the input sequence over which theMPC controller
optimization can be observed. It also has become clear that two algorithms
described in this thesis (RMPC and GIMPC2) fit in this framework, where the
input sequence is governed by the dynamics of a linear autonomous system.
A straightforward and potentially extremely interesting future research topic
therefore is the development of a theoretical framework forsuch algorithms.
This framework preferably would include robustness issues, results with respect
to output-feedback, input-to-state stability, computation delays, etc . . .

2. Chapter 7 already contains some preliminary results regarding tracking in order
to illustrate the usefulness of control invariant sets for ensuring recursive feasi-
bility in this setting. However, robust stability, guaranteed tracking performance
and other important aspects have not been covered. A possible future subject is
the development of a stability framework for tracking control problems using
control invariant sets. Also potentially interesting is the combination of this
framework with the research direction explained above.
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Set invariance

1. One of the problems discussed in this thesis is the computation of the largest
positive invariant set that lies within a given set of constraints (i.e. the construc-
tion of the MAS). Extensions towards the inclusion of bounded disturbances
are mentioned briefly but not discussed in detail. A new concept arising in
the presence of bounded disturbances is that of the smallestpositive invariant
set [114]. The size of a positive invariant set is hence upperbounded by
the imposed constraint set and lower bounded by the bounded disturbances.
These sets are useful for the construction of MPC algorithms(e.g. [72, 83])
for systems subject to bounded disturbances. However, whenemploying set
duality in order to construct the polar sets of these three sets, the inclusions
are inverted. This suggests many possible interesting properties and relations
that can be exploited for more efficiently computing maximaland minimal
admissible sets. Identifying these relations and formulating new algorithms for
invariant set synthesis, exploiting these insights is one potentially interesting area
of future research.

2. In this thesis the methods for constructing reduced-complexity invariant sets are
further extended towards the construction of reduced-complexity control invari-
ant sets. However, no results concerning convergence of thenew algorithms
are presented. Also, the expected scaling behavior of the new methods is still
understood poorly. Further research in this area is necessary.

3. A third interesting future research direction is the extension of the existing results
towards more general classes of systems, like hybrid systems and piecewise
affine systems. Also the extension towards the gain scheduled control setting
is potentially interesting. Algorithms for these settingsalready exist, but their
scaling properties for higher dimensional systems is poor in general.
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Appendix A

Constrained Controller
Synthesis for LPV Systems
using LMIs

A.1 Introduction

This appendix summarizes the main results of [68]. The main results presented
there consisted of a new robust MPC algorithm based on the recalculation at every
sample instant of a linear robustly stabilizing control lawwith guaranteed constraint
satisfaction by means of on-line solving an SDP. In order to guarantee constraint
satisfaction, at every time instant an ellipsoidal feasible positive invariant set is
calculated, corresponding to the linear control law. This latter aspect is of main
importance in this appendix.

A.2 Problem formulation

We consider systems of the form (3.1)-(3.2) subject to constraints (2.10)-(2.11).
The aim is to find a linear control lawu(k) = −Kx(k), k ∈ N that is robustly
asymptotically stabilizing

lim
k→∞

max
[A(i) B(i)]∈Ω,i∈N

‖x(k)‖ = 0,

for a given initial state valuex(0) = x̄ and has guaranteed constraint satisfaction

x(k) ∈ {x|x ∈ X ,−Kx ∈ U}, [A(i) B(i)] ∈ Ω, i = 0, . . . , k − 1,

k ∈ N,
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with x(k + 1) = (A(k) −B(k)K)x(k), k ∈ N. The aim is to minimize the following
worst-case control objective:

J(x̄) = max
[A(i) B(i)]∈Ω,i∈N

(
∞∑

k=0

‖x(k)‖2Q + ‖u(k)‖2R

)

. (A.1)

A.3 Solution based on convex optimization

In order to minimize (A.1) a quadratic upper boundV (x) = xTPx ≥ J(x) is
considered. If the following condition is satisfied the function V (x) is indeed a valid
upper bound to the control objective:

xTPx− xT(A−BK)TP (A−BK)x ≥ xTQx + uTKTRKu, ∀[A B] ∈ Ω,

which in turn is satisfied if

P − (A−BK)TP (A−BK) ≻ Q + KTRK, ∀[A B] ∈ Ω,

which, due to convexity ofΩ and the convexity of LMIs, is equivalent with

P − (Aj −BjK)TP (Aj −BjK) ≻ Q + KTRK, j = 1, . . . , r. (A.2)

In order to guarantee constraint satisfaction, a level setE of V (x)

E = {x|V (x) ≤ γ},

which is automatically positive invariant, is chosen such thatE ⊆ {x|x ∈ X ,−Kx ∈
U}. Constraint satisfaction follows automatically ifx̄ ∈ E , or equivalently ifx̄TP x̄ ≤
γ. Optimization overγ, P, K subject to the above formulated constraints leads to a
robustly stabilizing control law and a corresponding ellipsoidal invariant set. In order
to perform this optimization the following change of variablesZ = γP−1, Y = −KZ
is performed, leading to the following reformulation of (A.2):

γZ−1 − (Aj −BjY Z−1)TγZ−1(Aj −BjY Z−1) ≻ Q + (Y Z−1)TRY Z−1,

j = 1, . . . , r.

Pre- and post-multiplication withZ and division byγ yields

Z ≻ (AjZ − BjY )TZ−1(AjZ − BjY ) + γ−1Q + γ−1Y TRY, j = 1, . . . , r,

which can be formulated as an LMI using the Schur complement.This leads to the
following algorithm [68,93]:

Algorithm A.1 (Constrained controller synthesis for LPV systems, [68]).Given
a system(3.1)-(3.2) subject to constraints(2.10)-(2.11), an optimality criterion(A.1)
and an initial statēx ∈ Rnx , solve the following optimization problem:

min
γ∈R,Y ∈R

nu×nx ,Z∈S
nx
++

γ, (A.3a)
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subject to
[

1 ∗
x̄ Z

]

≻ 0, (A.3b)







Z ∗ ∗ ∗
Q

1
2 Z γI ∗ ∗

R
1
2 Y 0 γI ∗

AjZ + BjY 0 0 Z






≻ 0, j = 1, . . . , l (A.3c)

[
Z ∗

Au(j, :)Y 1

]

≻ 0, j = 1, . . . , mu, (A.3d)

[
Z ∗

Ax(j, :)Z 1

]

≻ 0, j = 1, . . . , mx. (A.3e)

Asterisks are used to denote the corresponding transpose ofthe lower block part of
symmetric matrices. This avoids redundant notation, sinceLMIs always must consist
of symmetric matrix expressions. The optimal solutions to this optimization problem
are denoted asγo, Y o, Zo. The feedback matrixu(k) = −Kx(k), the closed-loop
Lyapunov functionV (x) = xTPx and an invariant ellipsoidE are computed as

K = −Y o(Zo)−1, (A.3f)

P = γo(Zo)−1, (A.3g)

E = {x|xT(Zo)−1x ≤ 1}. (A.3h)

The following lemma is given without proof. For the proof we refer to [68].

Lemma A.1. If (A.3) is feasible, then the following properties hold:

• The controlleru(k) = −Kx(k) robustly stabilizes system(3.1)-(3.2).

• The setE is robustly positive invariant with respect to the closed-loop dynamics.

• The setE is feasible with respect to the state constraint setX ′ = {x|x ∈
X ,−Kx ∈ U}.

• The initial statex̄ lies insideE .

• For all initial statesx ∈ E , the functionV (x) = xTPx is an upper bound to
the worst case value of the cost(1.3) (with xref(k) ≡ 0, uref(k) ≡ 0) over all
possible uncertainty realizations[A(k) B(k)] ∈ Ω, k ∈ N.

If the system is quadratically stabilisable andx̄ is sufficiently close to the origin,
the optimization problem (A.3) is always feasible. The quadratic stabilisability
requirement is relaxed in [41].

One can verify that the control law, the corresponding invariant set and quadratic
cost function satisfy conditions (3.11) and can hence be used as terminal controller,
constraint and cost in (robust) MPC algorithms, as is e.g. done in [3,96,103,104,140–
142].
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Apart from the use as an off-line tool to calculate robust feedback laws and
corresponding invariant sets, the above algorithm can be applied on-line in order to
obtain a robust MPC algorithm. In [68] recursive feasibility and robust asymptotic
stability of such a setup are proven.

A.4 Convex Combinations

An interesting additional advantage of the fact that Algorithm A.1 is based on solving
a single convex optimization problem, is the fact that different solutions to (A.3) can
be combined by making convex combinations. Assume (A.3) is solved forn different
initial states̄x1, . . . , x̄n, resulting in optimal solutionsγi, Yi, Zi, i = 1, . . . , n, then the
following solutions

γ =

n∑

i=1

λiγi, Y =

n∑

i=1

λiYi, Z =

n∑

i=1

λiZi,

are feasible solutions to (A.3) for initial statēx =
∑n

i=1 λix̄i if
∑n

i=1 λi = 1, λ1...n ≥
0. These solutions then induce a corresponding robustly stabilizing (but not necessarily
optimal) control law with corresponding invariant set. This property was used in [96,
97, 103–105, 142, 143] to construct MPC algorithms with enlarged feasible region and
reduced on-line computational complexity.



Appendix B

Projecting Polytopes using
Fourier-Motzkin Elimination

B.1 Problem Formulation

In this section we consider ann-dimensional H-polytopeP , defined as the intersection
of m halfspaces :

P , {x ∈ Rn|Ax ≤ b}, (B.1)

with A ∈ Rm×n, b ∈ Rm. In the case of the polytope depicted in Figure B.1, we have
e.g. n = 2 andm = 5. The problem considered here is that of finding a H-polytope
description of the orthogonal projection ofP ontoRn−1.

Problem B.1. Given a polytopeP described as(B.1), compute a polytopeP ′ , {x ∈
Rn−1|A′x ≤ b′} such that

P ′ = proj(P). (B.2)

In the next section we describe how Problem B.1 can be solved by means of Fourier-
Motzkin elimination [146]. A different method would be Equality Set Projection (ESP,
[62]), but this method does not lend itself well to the extensions proposed in Section
6.2.4. Both methods are included in the MPT toolbox [86] for MATLAB .

B.2 Fourier-Motzkin Elimination

Fourier-Motzkin can be seen as the equivalent of Gauss-Jordan elimination for sets
of inequality constraints. Gauss-Jordan elimination aimsto find the strictest set of
linear equalities inx1, . . . , xn−1 that forms necessary conditions for satisfaction of the
complete system of equality constraints, while Fourier-Motzkin does exactly the same
for sets of inequality constraints. While Gauss-Jordan elimination constructs this set as
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x1

x2

P

elim(P)

proj(P)

1 2

34

5

Figure B.1: Geometric interpretation of the Fourier-Motzkin algorithm (Algorithm
B.1). Dash-dotted lines depict4 out of 6 candidate constraints generated by Fourier-
Motzkin elimination.

linear combinations of the existing constraints, Fourier-Motzkin elimination constructs
this set asconvexcombinations of the existing constraints.

Before formulating the algorithm, some notation has to be introduced. We use
shorthand notation to denote elements and rows ofA andb, with aij , A(i, j), ai ,

A(i, :) andbi , b(i).

Algorithm B.1 (Fourier-Motzkin Elimination , [146]). Given a polytopeP defined
as(B.1), constructA, b as follows :

• InitializeA := [ai1 ; . . . ; aim0
], b := [bi1 ; . . . ; bim0

], whereij , j = 1, . . . , m0 are
all indices such thataijn = 0.

• For every indexi1 ∈ [1, m], i2 ∈ [1, m] such thatai1n > 0 andai2n < 0 set

A :=

[

A;
−ai2n

ai1n − ai2n
ai1 +

ai1n

ai1n − ai2n
ai2

]

, (B.3)

b :=

[

b;
−ai2n

ai1n − ai2n
bi1 +

ai1n

ai1n − ai2n
bi2

]

. (B.4)

• Remove all redundant constraints fromAx ≤ b.

In Figure B.1, we haveain > 0 for i = 1, 2, 5 andain < 0 for i = 3, 4. The
constraints resulting from(i1, i2) = (2, 4) and(i1, i2) = (5, 3) are not depicted due to
space constraints.

It can be verified algebraically that all constraints inA′ are independent ofxn.
Furthermore, since all constraints are obtained as convex combinations of the original
constraints, the original setP is a subset of the set defined byA, B. Since all
possible convex combinations are added toA, b it can intuitively be seen that the
resulting setelim(P) = {x|Ax ≤ b}. The projection can hence be found as
A′ = A(:, 1 : n− 1), b′ = b.
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It should be noted that in the worst case, the number of constraints inA′, b′ is equal
to ⌊m2

4 ⌋. Computingk-dimensional projections can in the worst case lead⌊m
2 ⌋2

k

constraints, with an accordingly high computational cost.
Another disturbing observation is that often one sees that,when projecting across

multiple dimensions, the sets at intermediate dimensions have the largest number
of non-redundant constraints1, which indicates that even having an upper bound on
the number of constraints describing the final projection (e.g., based on knowledge
about the problem structure) does not guarantee that this projection can be computed
efficiently.

1This increased number of constraints at intermediate dimensions is sometimes referred to asthe bulge.
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Appendix C

Joint Spectral Radius

The Joint Spectral Radius (JSR) is a mathematical concept that has gained interest in
recent years, because of its usefulness in a variety of applications, among which the
stability analysis of (uncertain) linear autonomous dynamical systems is of the most
importance in this thesis. We first define the spectral radiusof a matrix and then define
the joint spectral radius of a set of matrices.

Definition C.1 (Spectral Radius). Given a matrix norm‖ · ‖, the spectral radius of a
matrixA ∈ Rn×n is defined as

ρ(A) , lim
k→+∞

‖Ak‖ 1
k . (C.1)

The spectral radius of a matrix can be interpreted as the asymptotic growth rate of the
seriesAk for increasing values ofk. The value of the spectral radius is independent of
the matrix norm that is used (see [57]) and can be shown to be equal to:

ρ(A) = {|λ| : λ is an eigenvalue ofA}. (C.2)

This equivalence already shows that if the spectral radius of a matrixA is smaller than
1, the autonomous systemsx(k + 1) = Ax(k) is stable.

The joint spectral radius is an extension of the spectral radius to multiple matrices:

Definition C.2 (Joint Spectral Radius (JSR, [126])).Given a matrix norm‖ · ‖, the
joint spectral radius of a set of matricesM , {A1, . . . , Ar} is defined as

ρ̂(M) , lim sup
k→+∞

max
A(1...k)∈M

‖A(1) · . . . ·A(k)‖ 1
k . (C.3)

It should be noted that the value of the JSR does not change if also all convex
combinations of the matricesAi are considered when taking the maximum, i.e. if
we defineM = Co{A1, . . . , Ar}.

Similar to the spectral radius, the JSR can be used to check the stability of linear
uncertain or linear time-varying systems. The conditionρ̂(M) < 1 is a sufficient and
necessary condition for asymptotic stability ofx(k + 1) = A(k)x(k), A(k) ∈ M,
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which makes the JSR a powerful tool for stability analysis ofsuch autonomous LPV
systems. However, the computation of the JSR is an NP-hard problem. However, some
methods for approximately computing the JSR have been proposed recently [18]. The
following bounds on the JSR are proven in [71]:

max
σ∈{1,...,m}k

ρ(Aσ)
1
k ≤ ρ̂({A1, . . . , Am}) ≤ max

σ∈{1,...,m}k
‖Aσ‖

1
k , (C.4)

where Aσ denotesAσ1Aσ2 . . . Aσk
. Throughout this thesis the above expression

with k = 15 is used to compute upper bounds to the JSR. See [18, 55] for more
computational results.



Appendix D

Proofs

D.1 Proof of Lemma 5.3

Proof: We consider the invocation of Lemma 5.2 during an arbitrary iterationi of
Algorithm 5.2 when applied to (4.63)-(4.64). The constraint tree of the intermediate
set
⋂

iXi is depicted in Figure D.1. This proof is restricted to the case r = 2 and
E = I, but similar derivations can be made forr > 2 andE 6= I.

We now consider the application of Lemma 5.2 for tightening constraintaT
1 x ≤ 1 in

order to make constraintaT
2 x ≤ 1 redundant, both of which are children of constraint

bTx ≤ 1 as depicted in Figure D.1. In order to calculate the necessary tightening factor,
optimization problem (5.8) is solved. The matrixA of (5.8) represents all constraints
of the set under consideration (Figure D.1) except the two constraints defined bya1

anda2. In order to obtain an upper bound on the tightening factorη, we construct a
lower bound on the optimal solutionξo of (5.8). In order to do so, we first rewrite (5.8)
in the following equivalent form:

min
x

aT
1 x, s.t.

{
Ax ≤ 1,
aT
2 x = 1.

(D.1)

We now calculate the Lagrange dual optimization problem (see [24, Chapter 5]) of this
LP:

maxλ,ν −1
Tλ− ν,

s.t. λ ≥ 0,
a1 + ATλ + νa2 = 0.

(D.2)

It is known [24] that any feasible solution to the Lagrange dual problem is a lower
bound to the optimal solution of the original (primal) problem. We now construct a
feasible solution(λf , νf) to (D.2) in order to obtain such a lower bound. First we
construct a feasible solution to the equality constraints of (D.2), after which we make
sure the solution also satisfiesλf ≥ 0. We first chooseνf = −1, after which we need
to chooseλf such that

ATλf = a2 − a1. (D.3)

211



212 Proofs

bTx ≤ 1

a
T
1 x ≤ 1 aT2 x ≤ 1

X0

X1

.

.

.

Xi−1

Xi

AT
augx ≤ 1

Figure D.1: Constraint tree under consideration in Lemma 5.3. Circles represent
individual constraints. Solid circles represent those constraints that are explicitly taken
into consideration in the derivation of the upper bound on the tightening factorη.

By making use of the structure present in (4.63), and the factthata1 = ΨT
aug,1b and

a2 = ΨT
aug,2b, we can rewrite (D.3) as

ATλf =





(Φ2 − Φ1)
T

(B2 −B1)
T

0(N−1)·nu×1



 b, (D.4)

with b = [b; b], b ∈ Rnx , b ∈ RN ·nu andΦi = ai − BiK. This shows that, due to the
structure of (4.63), the vectorsa1 anda2 only differ in their firstnx + nu components,
which gives additional degrees of freedom in how to chooseλf . We choose to set those
components ofλf to 0 that correspond to constraints ofXj , j > 0. This is justified,
since the constraints ofX0 ≡ Xaug form a closed set inRnx+nu × {0}(N−1).nu and
therefore the rows ofAaug form a basis for this space, which is also exactly the space
in which the right-hand side of (D.4) lies. By denoting the non-zero components ofλ
asλ′, we obtain the simplified system of equalities:

[
AT

x −KTAT
u

0 AT
u

]

︸ ︷︷ ︸

C

λ′f =

[

(Φ2 − Φ1)
T

(B2 −B1)
T

]

︸ ︷︷ ︸

U

b. (D.5)

We now construct a non-negative solutionλ′f , λ(+−) + ǫλ(+), with

λ(+−) , C†Ub, (D.6)

a vector that can have both positive and negative componentsand λ(+) a strictly
positive homogeneous solution to (D.5). SinceC has full row rank (for reasons given
above)λ(+−) is guaranteed [9] to be an exact solution to (D.5).
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The existence of a strictly positive homogeneous solutionλ(+) to (D.5) is guaranteed
due to the fact thatXaug is a strictly bounded polytope inside its affine hull, and
therefore0 lies strictly inside the relative interior of the dual (polar) polytope (see [146,
Section 2.3]). This latter observation guarantees the existence of a strictly positive
homogeneous solutionλ(+) to (D.5). ǫ can now be chosen large enough, such that
λ′f ≥ 0, while satisfying (D.5). It is clear that if we chooseǫ as follows:

ǫ =
‖λ(+−)‖
min λ(+)

, (D.7)

where the minimum is taken over all components, the resulting λ′f effectively satisfies
λ′f ≥ 0. The corresponding variableλf is now constructed by inserting the appropriate
number of zeros. We now compute (a lower bound to) the corresponding value of the
objective function of (D.2). First we compute an upper boundto ‖λ′f‖:

‖λ′f‖ =

∥
∥
∥
∥
λ(+−) +

‖λ(+−)‖
min λ(+)

λ(+)

∥
∥
∥
∥

,

≤
(

1 +
‖λ(+)‖

min λ(+)

)

‖λ(+−)‖,

≤
(

1 +
‖λ(+)‖

min λ(+)

)

‖C†‖‖U‖‖b‖. (D.8)

The first two factors of the right-hand side depend solely on the constraintsAaug

imposed on the augmented system. while the third factor onlydepends on the amount
of uncertainty present in the system to be controlled. Only the last factor depends on
the (firstnx components of the) specific constraint whose children are considered in
Lemma 5.2. It is now possible to construct a lower bound on theobjective function of
(D.2):

−1
Tλf − νf = 1− 1

Tλ′f ,

≥ 1−
√

m‖λ′f‖,

≥ 1−
√

m

(

1 +
‖λ(+)‖

min λ(+)

)

‖C†‖‖U‖‖b‖, (D.9)

wherem is the number of rows inC. Because the left-hand side of (D.9) is a lower
bound to the optimal objective value of (D.1) and hence to the(identical) optimal
objective valueξo of (5.8), we have

ξo ≥ −1
Tλf − νf ,

≥ 1−
√

m

(

1 +
‖λ(+)‖

min λ(+)

)

‖C†‖‖U‖‖b‖, (D.10)

and hence, if
√

m
(

1 + ‖λ(+)‖
minλ(+)

)

‖C†‖‖U‖‖b‖ < 1, we have

η ≤ 1

1−√m
(

1 + ‖λ(+)‖
minλ(+)

)

‖C†‖‖U‖‖b‖
. (D.11)

This concludes the proof. �
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D.2 Proof of Theorem 5.5

We first prove that under the conditions of this theorem, all tightening attempts of
Algorithm 5.2 are successful. Due to Corollary 5.2, which implies that the depth of the
constraint tree is upper bounded by a linear function ofN , we can then conclude that
the number of constraints describing the resulting invariant set isO(N).

In order to show that all tightening attempts are successful, it has to be proven that
both conditions of step 2(b) of Algorithm 5.2 are satisfied. It is straightforward to
see that the first condition is satisfied due to the lower boundimposed onγ by this
theorem, while the second condition is satisfied due to the upper bound imposed onγ
by this theorem.

As a result no branching ever occurs in the constraint tree. The maximal depth of the
constraint tree can be computed to be

k⋆
max = N − 1 +

⌊

− ln a + ln b + ln c

ln d1

⌋

, (D.12)

using similar arguments as those used in Corollary 2.1. Since d1 can be chosen
independent ofN , it is now shown that the total number of constraints describing the
invariant set increase as a linear function ofN . �
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