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Abstract

Biclustering of microarray data is gaining increasing attention from researchers
both in systems biology and in systems biomedicine. For systems biology, bi-
clustering algorithms have the advantage of discovering genes that are coex-
pressed in a subset of (instead of all) the measured conditions, compared with
conventional clustering methods. Since the emergence of web-based reposi-
tories of microarray data such as ArrayExpress and GEO, analysis based on
microarray compendia where gene expression levels are measured under a
large number of heterogeneous conditions has become more and more pop-
ular. Biclustering suits the needs for this type of analysis, especially for dis-
covery of transcriptional modules, which provide essential clues for revealing
genetic networks. For systems biomedicine, biclustering concerns the other
orientation of microarray data, which is to cluster experiments (e.g., tumor
samples) based on a subset of genes for each of which the experiments show
consistent expression levels. The pattern of the target bicluster provides a gene
expression fingerprint for the classification of the experiments. Therefore, the
bicluster can help to reveal genes that are important for the pathology.

In this thesis, we propose a biclustering strategy based on Bayesian model-
ing of microarray data and Gibbs sampling for the parameterization of the
model. Bayesian models give our method the advantage of incorporating
prior knowledge so that the resulting bicluster can be directed towards an-
swering the specific questions of the biologist, such as ”what are the genes
that are involved in this particular function, and what are the working condi-
tions of the function?” In addition, Bayesian models also provide the base for
the integration of information extracted from other data sources. Research in
bioinformatics has seen growing awareness that data from different sources
should not be studied in isolation. This awareness is calling out the need for
tools that allow such integration to take place.

Because of the high complexity of the biological process underlying a mi-
croarray data set, optimization methods for the clustering problems of mi-
croarray data often run into the problem of local maximum solutions. The
corresponding clusters are often not interesting for the biologists, or often give
an incomplete answer. Gibbs sampling is known for its ability to enhance
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the probability to discover the global maximum solutions. We consider this a
favorable property for the study of microarray data. We provide several case
studies to illustrate the efficiency of our strategy.
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Notations

Mathematical notations

X scalar random variable
x realization of random variable X
Xm set of random variables with set-length equals m
x realization for the set of random variables Xm
X set
p(·) density function
P(·) probability distribution
Ep(X)[X] expectation of random variable X based on the probability

distribution p(X)
E[p(X)] expectation of the distribution p(X) itself

Fixed symbols

bcl The subscript denoting that the associated variable
is applied to the bicluster

bgd The subscript denoting that the associated variable
is applied to the background

Cm Cm = {C1, C2, . . . ,Cm}, set of structural variables for the
Bayesian hierarchical model on the biclustering problem.

C j A binary variable indicating whether the jth column in
the matrix belongs to the bicluster

c indices of structural variables in Cm whose values equal 1
c̄ indices of structural variables in Cm whose values

equal 0
e (When biclustering genes) indices of columns in the data

matrix that are assigned to the bicluster
ē (When biclustering genes) indices of columns in the data

matrix that are assigned to the bicluster
c̄ indices of columns in the data matrix that are assigned to
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the background
D Microarray data matrix
DR Missing data of the biclustering problem—realizations of R
h(D) Counting function
n Number of rows in a microarray data matrixD
m Number of columns in a microarray data matrixD
q Number of conditions in a microarray data set
R Random variable that indicates whether a row in the

matrix belongs to the bicluster or not
r Indices of rows in the data matrix that are assigned to the

bicluster
r̄ Indices of rows in the data matrix that are assigned to the

background
sα User input for the biclustering problem of experiments—

scaling factor for adjusting α
sβ User input for the biclustering problem of experiments—

scaling factor for adjusting B
s2 Parameter (scale) for the inverse-χ2 distribution

describing σ
Xm Xm = {X1, X2, . . . ,Xm}, random variables to which

microarray data is mapped. Each X j is a random variable
representing the gene expression level under experiment j.

Yq Xm = {Y1, Y2, . . . ,Yq}, random variables corresponding
to the experimental conditions of microarray data. Each Yk
is random variable representing the gene expression
level under condition k.

α Parameter vector for the Dirichlet distribution describingΨ
B Parameter matrix for the Dirichlet distributions describingΦ
γc

j Odds between the posterior probability that a column
belongs to the bicluster and the posterior probability that it
does not

γr
i Odds between the posterior probability that a row belongs

to the bicluster and the posterior probability that it does not
ι Autocorrelation time
Λc Parameter for the Bernoulli distributions of Cm
Λr Parameter for the Bernoulli distribution of R
µ Parameters (means) for the normal distribution describing

the microarray data in the problem of biclustering genes
ν Parameter (degree of freedom) for the inverse-χ2

distribution describing σ
Ψ Parameter vector for the multinomial distribution

describing the background data in the problem of
biclustering
experiments, (i.e., model of Xbgd)
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Chapter 1

Introduction

In this opening chapter of the thesis, we put the main idea of this thesis in a
nutshell. We start with a brief introduction of the biological background of the
study of bioinformatics, which is followed by a brief explanation of the concept
of microarray technology, especially with respect to its role in bioinformatics.
We then give a problem statement of what biclustering of microarray data is
and why it is an important subject in bioinformatics. After that, we propose
a biclustering strategy based on Bayesian modeling and Gibbs sampling for
parameter estimation. We introduce the concepts of Bayesian modeling and
Gibbs sampling, and provide an explanation of the main advantages of our
methodology. Finally, we finish this chapter by an overview of the organization
of the thesis.

1.1 Biological background

The study of molecular biology is based on the following central dogma,
which was first formulated by Crick (1958) [26]. DNA is known as the carrier
of genetic information that is needed to conduct the synthesis of proteins—the
workhorses in a living cell. The DNA molecule is composed of two com-
plementary strands, which are made up of four basic units—the nucleotides
adenine (A), cytosine (C), guanine (G), and thymine (T), see Figure 1.1. A
nucleotide on one strand of the DNA is paired up with the complementary
nucleotide at the same position on the other strand by a strict rule of basic
pairing, i.e., (guanine (G) can only be paired with cytosine (C), while adenine
(A) can only be paired with thymine (T), see Figure 1.1). Genes are the work-
ing subunits of DNA molecules that carry such essential information for the
construction of proteins and other functional products.

The first step of a protein synthesis procedure is the transcription of its corre-
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2 Chapter 1. Introduction

Figure 1.1: (A): 3D illustration of the structure of the DNA molecule. (B) Rule
of base pairing for the four nucleotides—adenine (A), cytosine (C), guanine
(G), and thymine (T), which are basic components of DNA molecules. Both of
the figures illustrate the double helix structure of DNA molecule. At each com-
plementary position on the double helix, the nucleotides are paired according
to a strict rule so that guanine (G) can only be paired with cytosine (C), and
adenine (A) can only be paired with thymine (T). The figures are obtained from
Scott et al. (2003).



1.1. Biological background 3

sponding gene, to a messenger RNA (mRNA), see Procedure 1 in Figure 1.2.
This step highly resembles the duplication of DNA molecules. With the help
of RNA polymerases, the two strands of DNA are separated at the location
of the target gene, and each strand is used as a template from which mRNA
molecules are copied (i.e., transcribed). This process is also carried out accord-
ing to the rule of base pairing. The only difference is that uracil (U) is paired
with adenine (and vice versa), because there is no thymine in RNA.

The second step is the translation of the mRNA to the protein, see Procedure 3
in Figure 1.2. This step takes place with the help of ribosomes so that the
mRNA is scanned three nucleotides (called a codon) at a time. Each possible
combination of a codon (in total 64 possibilities) corresponds to one of the
20 amino acids. (Note that the redundancy of this coding system provides
stability to protein synthesis against possible mutations.) In this way, a peptide
chain is assembled by the ribosome. The peptide chain is later folded into the
resulting protein.

Therefore the detailed residue-by-residue transfer of information is carried out
from DNA to RNA to protein. However, this standard pathway of information
flow was found to be an oversimplification, and in 1970, the central dogma of
molecular biology is modified accordingly by Crick (1970) [27]. The modified
information flow is presented in Figure 1.3.

The above is only one part of the story that concerns the guidance of genes in
the synthesis of proteins. The other part, however, is related to the regulative
roles of proteins in the transcriptions of genes. A transcription process for a
gene is only able to start when all the needed transcription factors (which are
proteins themselves) bind to the promoter region of the gene (which usually
locates upstream, i.e., “in front”, of a gene). Consequently, an RNA polymerase
binds to the transcription factors and together forms a complex that opens the
DNA double helix so that the transcription starts. (A good tutorial book for
the beginners of biology is Scott et al. (2003) [85].)

The subjects of biological research range from genomics to proteomics and
beyond. Looking at the level of genes (i.e., in genomics), biologists are most
interested in the functions of the genes and their (regulatory) relation with
each other. In this sense, the transcriptional behavior of the genes may pro-
vide a clue. Equipped with the newly developed microarray technology, it
is possible now to simultaneously monitor the transcriptional behavior of a
whole genome, which gives rise to the study of the transcriptome∗, which is
the main aspect of this thesis. Because proteins are the executors of the cellular
functions that genes instruct, proteomics is also an active field of study aiming
to associate proteins with different cellular functions. Of course, a cell cannot
function without processing metabolites. Metabolomics is an area of study
that considers the interactions and dynamics of all the metabolites in a cell.

∗The transcriptome refers to the whole set of mRNAs in a cell under the studied circumstance.
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Figure 1.2: Biological processes in a eukaryotic cell. Transcription (Process 1) is
the process during which mRNA molecules are made by using DNA molecules
as a template. Transcription takes place in the nucleus. Translation (Process 3)
refers to the production of proteins from mRNA molecules. This process
takes place in the cytosol, and is assisted by both ribosomes and tRNAs.
Both transcription and translation are the essential processes that execute the
standard sequential information flow from DNA to protein. Other processes
depicted in this figure include the replication of DNA (Process 4), and the
processing mRNA (Process 2). For eukaryotic cells, an mRNA molecule is often
spliced after the transcription takes place, and poly(A) tail is frequently added
in the nucleus, and is then transported to the cytosol where the translation
occurs. The figure is obtained from Scott et al. (2003).
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Figure 1.3: The picture depicts the conclusion of Crick (1970), which restated
the central dogma of molecular biology. The residue-by-residue transfer of
sequential information is represented by the arrows, where a solid arrow rep-
resent probable transfers and the dashed arrows represent possible transfers.
While the figure confirms the standard information flow of “DNA makes RNA,
RNA makes proteins” as well as the duplication of DNAs, it also summarizes
other observed exceptions to the standard information flow (denoted by the
dashed arrows).

1.2 Technological background

During the past few years, microarray technology [83] has emerged as an ef-
fective technique to measure the expression levels of thousands of genes in
a single experiment.† Nowadays, a microarray chip take a snapshot of the
gene expression levels of the whole genome while being no larger than a cou-
ple of square centimeters, see Figure 1.4 for an illustration. Putting together
data obtained by from microarray experiments under different experimen-
tal conditions (which can be different tissues, time points, or environmental
conditions), expression profiles are obtained for the genes measured on the
microarray chips. Microarray data is often put in a matrix whose rows repre-
sent the genes and whose columns represent the experimental conditions, see
Figure 1.5. Consequently, each row in a microarray data matrix represents the
expression profile of the corresponding gene.

This technology has been become a major attraction for biologists ranging from
those interested in gene expressions in yeast [63] to those that are involved in
medical research [45], who hope to extract essential functional information
about the genes from the expression profiles measured by the technology.
However, without the help of powerful computational and statistical tech-
niques, analyzing data in such immense amount and of such complexity is
impractical. To begin with, gene expression profiles measured by microarray
technology are often complicated by systematic noise introduced by the pitfalls

†When a gene is activated and its corresponding mRNA is produced, the gene is said to be
expressed in the specific circumstance under discussion. The expression level of a gene refers to
the level of abundance of its correspondent mRNA in the cell.
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Figure 1.4: A resulting image from a microarray chip (enlarged), where each
dot on the chip represents a gene. The color of a dot indicates the level of
abundance of the corresponding mRNA of the gene in the cell. The image is
obtained by a two-color-channel cDNA microarray technology (see Chapter
2 for an explanation about the technology). Typically, if red indicates that
the expression level of the gene is higher under the test condition than under
the control condition (i.e., the gene is overexpressed under the test condition),
green means the gene is underexpressed in the test condition. Yellow indicates
that the gene is expressed under both the test condition and the control con-
dition, and that the levels of expression are similar under the two conditions.
On the other hand, if the corresponding color of a gene is black, it means that
the gene is not expressed in either of the conditions.
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Figure 1.5: Data collected from several microarray experiments are put to-
gether in a matrix, where the rows represent the genes and the columns rep-
resent the experiments (which are performed on several chips). The values
of expression of the genes are represented here by color scales. These values
are often derived from the log ratios of the measured gene expression values
under the test condition and the control condition (see Chapter 2 for more
discussion). Consequently, each row of the matrix represents the expression
profile of a gene. Also observe the asymmetry in the dimension of the data—
while the number of genes can reach several tens of thousands, the number of
conditions is usually up to a few hundred. The figure is obtained from Eisen
et al. (1998).
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of the technology and during the measurement procedure. Therefore, efficient
mathematical modeling is needed to correct the systematic noise, a procedure
that is often referred to as the normalization. This thesis, however, mainly
focuses on a data mining technology that helps biologists to extract essen-
tial information from microarray data after normalization is performed. Yet,
microarray data have several characteristic features that cannot be corrected
during the normalization procedure. First, microarray data contain a huge
amount of noise introduced by the underlying biological process as well as
the measuring procedure. Secondly, microarray data often form a data matrix
with asymmetric dimension. While the number of genes can easily reach tens
of thousands, the number of experimental conditions is often no more than a
few hundred, see Figure 1.5.

1.3 Biclustering problems for microarray data

A core problem of modern molecular biology research is to unveil the function
of the genes. Throughout the years, the goal has evolved from understanding
the individual role that a gene plays in the cell by studying the genes in
isolation, to the unveiling of the concerted genetic program that is involved
in a biological process. By measuring the expression levels of the whole
genome under different conditions, microarrays record the activities of the
genes in interaction so that information about different functional relationships
between the genes is reserved.

For medical applications where the conditions of a microarray study often refer
to the different tumor samples from which the mRNA samples are taken, it is
reasonable to believe that tumor samples of the same pathological type should
have similar expression level for each of those genes that play a responsible
role for the pathology. Therefore, we look for algorithms to cluster tumor
samples based on their gene expression levels for a subset of genes; and in the
meantime, the algorithm should be able to select those genes where the tumor
samples of the same cluster show similar expression levels, see Figure 1.6 (B)
for an illustration.

For molecular biology, one of the basic assumptions in the functional discov-
ery of genes using microarray data is that coexpressed genes (i.e., genes who
share similar expression profiles) often have similar function. This assumption
gives rise to the applications of various clustering algorithms on microarray
data, aiming to find clusters of genes where the selected genes are coexpressed
under all the experimental conditions. In the early days of the applications
of microarray technology [32, 93], experiments were often conducted under
a limited number of homogeneous experimental conditions measured at dif-
ferent time points. In this case, clustering algorithms are a sensible choice
because the above assumption is often valid.
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Figure 1.6: (A) Biclustering genes: the problem is to find a set of genes that
share similar expression under a subset of conditions. (B) Biclustering experi-
ments: the problem is to find a set of experiments (in this case, tumor samples)
that have the same expression levels for each of the selected genes. The re-
sulting biclusters are displayed at the top left corner of the figures. Note that
the two problems should be treated differently because of the asymmetry in
the dimensionality of microarray data sets—(A) large sample size, but small
dimension of the vector space, (B) small sample size, but large dimension of
the vector space.
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With the maturation of the microarray technologies and of the normalization
techniques, the reproducibility of microarray data is improved and compari-
son between microarray data produced by different labs become more feasible.
In addition, with the establishment of a standard for recording and report-
ing microarray data—minimum information about a microarray experiment
(MIAME) [18], it is, nowadays, plausible to retrieve data from publicly avail-
able repositories of microarray experiments, such as ArrayExpress [75] and
GEO [12], and perform the analysis for a combined microarray data set whose
experiments form a heterogeneous compendium. In this case, the assumption
for applying conventional clustering techniques no longer holds. Because in
this case, genes that share similar functions only exhibit coexpression under
their working conditions. Therefore, instead, gene expression profiles should
be clustered only under a subset of conditions, see Figure 1.6 (A) for an illustra-
tion. Biclustering algorithms are introduced to cluster genes and in the mean
time to identify the conditions under which genes in the same cluster exhibit
similar expression profiles.

However, because of the asymmetry in the dimension of microarray data—
much larger number of genes than the number of conditions—the two bi-
clustering problems that we introduced above should be treated individually,
which will be explained in more details in the following section. To distin-
guish them from each other, we refer to them respectively as the biclustering
of experiments and the biclustering of genes.

1.4 Bayesian models for microarray data

Probabilistic models have become a popular choice for modeling microarray
data because they handle the high level of noise of microarrays in a principled
way. Methods based on probabilistic models often treat microarray data as
a mixture model of different probability distributions, where each cluster is
modeled by a component of the mixture (i.e., one probability distribution).
The probability distributions in the mixture model are often in the form of
multivariate distributions. For clustering genes, each experiment (i.e., each
column of the microarray matrix) is represented by a variate, and the genes
are considered as samples from which the multivariate probability distribu-
tions are evaluated. However, for the problem of clustering experiments, the
variates in question refer to the genes (i.e., rows) in microarray data set, while
the experiments are regarded as the samples (see Figure 1.6). Furthermore, in
the problem of biclustering, the goal is not only to associate the samples to the
different components in the mixture, but also to pick out the relevant variates
for each of the probability distributions in the mixture. In the case of biclus-
tering genes (see Figure 1.6 (A)) the number of samples (i.e., genes) available
for evaluating the probability distributions are relatively large comparing with
the number of variates (i.e. experiments) under consideration. However, in
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the case of biclustering experiments, the problem is the other way round—the
number of variates (i.e., genes) overwhelms the number of samples (i.e., ex-
periments), see Figure 1.6 (B). This is what we refer to as the asymmetry in the
biclustering problems of microarray data.

The likelihood of a mixture model for a microarray data usually contains many
modes (i.e., ways of constructing the components), because of the complexity
of the underlying biological process. In clustering, these modes correspond to
the different clustering results that can be derived from the data. The largest
mode (which are easiest to identify) often results in large bicluster that are not
the most interesting to the biologist because they correspond to well-known
generic biological functions—where few novel findings are to be expected.
This lack of sharpness of clustering algorithms has kept clustering algorithms
into a vague exploratory role; because for biologists, one of the main questions
is always “what are the genes that are related to a particular function (or in
a specific pathway) of interest to me?” Note that patterns discovered for this
purpose in microarray data are referred to mathematically as a bicluster, and
biologically it is often referred to as a transcriptional module.

In addition, to study the concerted gene activities in a cell and the different
relationships between them calls out for the need to integrate different data
sources besides microarray data (e.g., DNA sequence information, protein
structural information).

Bayesian probabilistic models have shown promise in both answering specific
questions of biologists and providing a base for the integration of information
from different data sources. Bayesian probability models differ from traditional
probabilistic models in their inference procedure, which is summarized by
Bayes’ rule. Bayesian model can be interpreted as follows,

Posterior probability =
Prior probability × Likelihood

Evidence
,

see Chapter 4 for a discussion. This inference procedure of Bayesian model
learning highly resembles that of the human learning process and formalized
the practice of inductive reasoning. It allows the introduction of prior knowl-
edge in which form soft queries can be imposed to direct the discovery. The
introduction of the prior also provides a systematic base through which in-
formation from different sources can be integrated. By introducing a prior,
methods based on Bayesian models zoom into the local area of interest of
the likelihood landscape, and raise the corresponding area in the posterior
according to the Bayes’ rule.
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1.5 Gibbs sampling for Bayesian models on mi-
croarray data

In Bayesian models for microarray data, though the mode that provides answer
to the question of interest is raised in the posterior distribution, the other modes
in the likelihood function of the models cannot be eliminated. These modes
can still be identified by optimization methods, which aim at global maximum
solutions in the posterior distribution. When this happens, the optimization
method is said to find the local maxima of the posterior distribution.

Gibbs sampling [19] is known as one of the techniques enhanced the prob-
ability to find the mode that corresponds to the maximum probability in a
posterior mixture model. Gibbs sampling is an empirical method to sample
from a posterior distribution, when the analytical form of the posterior distri-
bution is not trivial to get, and when the conditional distributions of all the
concerned variates are available. It is a Markov chain Monte Carlo (MCMC)
method. The Gibbs sampling procedure is carried out by sampling iteratively
from the conditional distributions of each of the involved variates. Samples
collected by Gibbs sampling are guaranteed to converge to the joint distribu-
tion by the Markov chain property. Then Monte Carlo integration is applied to
these samples to evaluate the target distribution. In brief, the Gibbs sampling
procedure produces samples that picture the posterior distribution as a whole,
and consequently the mode (or an approximation thereof) of the posterior
distribution that corresponds to the global maximum solution is decided by
Monte Carlo integration of the samples.

1.6 Organization of the thesis

This thesis is organized as follows (also see Figure 1.7). In Chapter 2, we
overview the various microarray technologies and the pitfalls that lie in these
technologies. This is then followed by a review of the main quality control
measures and normalization techniques that help to minimize the systematic
noise in microarray data. We summarize the chapter by enumerating the
characteristics of normalized microarray data. These characteristics require
full awareness when designing data analysis tools for normalized microarray
data.

Since the emergence of microarray technology, clustering techniques have been
recognized as a useful tool for the analysis of microarray data. Standard clus-
tering methods, such as hierarchical clustering, K-means, and self-organizing
maps (SOM), were applied directly to microarray data and dominated the early
papers for microarray data analysis [32, 93, 3, 108, 97, 101, 95]. With growing
experience, it became clear that tailored clustering algorithms are required to
improve the analysis. Throughout the years, numerous techniques have been
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Figure 1.7: Organization of the thesis.
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developed for clustering microarray data. Furthermore, this still remains an
active field of research. In Chapter 3, we review several popular clustering
techniques, and further introduce the need for biclustering algorithms. We also
account for several existing biclustering algorithms. The chapter is concluded
by a checklist for evaluating cluster quality.

Our biclustering strategy is fully explained in Chapter 4, where the concepts
of Gibbs sampling and Bayesian models are first introduced separately, and
then combined together to address the biclustering problem. This chapter
focuses on the general framework of our methodology. The technical details
for carrying out such an analysis are filled in the following two chapters.

Chapter 5 explains the application of our methodology to the problem of
biclustering experiments. We discuss the application in two scenarios. The first
one is the global pattern discovery in microarray data, which is suitable when
no prior knowledge is available about the class of the experiments (e.g., tumor
samples). In the second scenario, we consider biclusters of tumor samples
whose shared genotype is fingerprinted by a weaker expression pattern that
is overwhelmed by a dominant bicluster embedded in the data. We discuss
the use of a set of seed tumor samples from which we extract information to
construct prior knowledge for bicluster. We demonstrate the effectiveness of
our algorithm on two data sets of leukemia patients.

In Chapter 6, we put the problem of biclustering genes in the context of gene
regulatory module discovery. We first give more biological background for the
purpose of such study. We then explain in detail how to transform information
from the seed genes into the prior knowledge for the Bayesian model. We
illustrate the usefulness of our algorithm in regulatory module discovery by
applying the method on a combined data on Saccharomyces cerevisiae.

Finally, in Chapter 7, we conclude our work and propose some challenges for
further research on this topic.

1.7 Achievements

Our main contribution can be summarized as follows.

Introduction of prior knowledge and integration of information
from other data sources into biclustering

Bayesian models provide a systematic base for the introduction of prior knowl-
edge and the integration of other data sources. We illustrate in Chapter 6 the
usefulness of our method in cooperation with other methods to discover gene
regulatory modules in the study of systems biology. Our biclustering results
reveal highly coexpressed genes under a subset of biological conditions that are
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highly correlated to the working conditions of the governing regulatory pro-
gram. We also illustrate (in Chapter 5) the same methodology to incorporate
information from a small number of patient samples to direct the discovery of
bicluster toward the finding of gene expressional fingerprints of subtle traits.

Robust results

The choice of Gibbs sampling for the parameterization of the Bayesian models
provides our method a high frequency to find the global maximum solution of
the posterior probability mixture. We demonstrate such ability of our method-
ology in Chapter 5 and Chapter 6. In addition, we illustrate that the final
biclusters discovered by our algorithm often only differ in a few genes or a
few conditions.

Handling missing values in the data in a natural way

Because of the use of probabilistic models, missing values in the microar-
ray values are handled in the most natural way by assuming that they are
generated equally likely by the background component and by the bicluster
component of the mixture model.

Allowing genes to belong to different biclusters

Another advantage of our strategy in contrast to conventional clustering algo-
rithms is its ability to include one gene in different biclusters. This is also a
desirable property based on the fact that a gene can have multiple functions.



16 Chapter 1. Introduction



Chapter 2

Microarray: a gene expression
profiling technology

In this chapter, we provide a survey of popular microarray technologies
applied to gene expression profiling. We start with an overview of different
technologies that are used to manufacture microarrays. This overview not
only explains the working mechanisms of microarrays, but also provides a
better understanding of the pitfalls and noise present in microarray data.
Then, we make a survey of various preprocessing methods that help to re-
move the systematic noise introduced during the manufacturing procedure.
We conclude the chapter by reminding the readers about the characteristics
of preprocessed microarray data, which should be taken into account when
designing clustering algorithms for such data.

2.1 Introduction

A microarray is a chip (i.e. array) on the surface of which single-stranded
DNAs (called probes) are bound in grid. When exposed to an RNA or cDNA
sample obtained from a certain biological study, a microarray is able to cap-
ture a snapshot of the transcription levels (i.e., the mRNA levels) of tens of
thousands of genes (nowadays, even a whole genome) under the experimental
condition. By performing microarray experiments under different conditions,
biologists can simultaneously monitor the behavior of the genes at the tran-
scriptional level. The transcriptional behavior of a gene is thus described by
its expression profile, which is made up of the expression levels of the gene
under different experimental conditions.

Besides gene expression profiling, other applications of microarrays include

17
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revealing genome-wide location of DNA-bound proteins [80], genome-wide
analysis of DNA sequence copy number variation (the specific microarray
technology is called comparative genomic hybridization) [76], and monitoring
alternative splicing of pre-mRNA on a genome scale [114], among the others.
However, we will limit our discussion to the application of microarray in gene
expression analysis to keep within the scope of this thesis.

There are different technologies available for the making of microarray chips.
However, the main mechanism for the measurement of mRNA abundance
in the cells is the same for all the technologies. Microarrays used for gene
expression profiling contain probes representing target genes for the study.
mRNA samples in the studied biological process are extracted from the cells.
They are then amplified, and sometimes reverse transcribed to complementary
DNAs (cDNAs), which are less easy to degrade than the mRNA samples. The
mRNA or the single-stranded cDNA is then labeled, usually by fluorescent
dyes, and finally exposed to the chip. The measurement of the expression level
of a gene relies on the binding (called array hybridization) of its corresponding
(i.e., complementary) labeled mRNA or cDNA to the probe(s) representing
the gene on the chip. Once the hybridization is finished, the unhybridized
materials are washed away, and the chip is scanned so that the intensity of the
fluorescence for each probe is read out, which should reflect the abundance of
the corresponding mRNA in the cell.

However, from the building of the chips and the preparation of the mRNA
samples, to the array hybridization and the final scanning procedure, every
step involved in a microarray experiment introduces noise and artifacts to
the readout data, which is faraway from the absolute measurement of mRNA
abundance in a cell under the studied biological process. Thus, the raw data
obtained from a microarray experiment needs to go under various preprocess-
ing procedures that removes the systematic noise before any further analysis
can be carried out.

2.2 Microarray technologies

The mainstream microarray technologies can be classified into two categories
– spotted arrays, and in situ synthesized arrays. In spotted arrays, pre-
synthesized DNA probes, which are typically oligonucleotides (i.e., short DNA
sequences, usually of 50 to 80 bases in length) or cDNAs, are attached to glass
or nylon slides. On the contrary, single stranded DNAs are synthesized di-
rectly on slide surface in in situ synthesized arrays. Because oligonucleotides
are typically used as probes for in situ synthesized arrays, these arrays are
often referred to as oligonucleotide arrays. Two dominant technologies in the
market are cDNA arrays (a type of spotted arrays) and Affymetrix GeneChip R©

(a type of in situ synthesized arrays). Our following discussion will be based
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on these two types of arrays.

2.2.1 cDNA microarrays

The probes on a cDNA microarray are cDNAs fragments genes. These cDNAs
are typically of 100 to 5000 bases long. While the cDNAs were prepared (re-
verse transcribed from mRNAs) by individual labs in the early days of cDNA
microarray technology, nowadays presynthesized cDNA clones are commer-
cially available and are usually derived from reference banks of expressed
sequence tags (ESTs), each of which is documented and, if possible, associated
with a gene. When making cDNA microarrays, a robot fetches cDNA probes
by its pins (fixed on its arm) from wells in a microtiter plate, and spots the
probes onto a glass (or nylon) slide. Each spot on the microarray contains one
cDNA probe representing one gene.

In a cDNA microarray experiment, mRNA samples (or their corresponding
cDNAs) derived from two experiment conditions are hybridized to one mi-
croarray. One condition is used as the reference condition, and the set of
mRNA/cDNA samples derived from this condition is called the reference sam-
ple. The other condition is the experimental condition of interest, which is
referred to as the test condition. The set of mRNA/cDNA samples obtained
in this experimental condition is called the test sample. The reference sample
is labeled with the fluorescent dye Cy3, and the test sample is labeled with
the fluorescent Cy5, or vice versa. After the hybridization, the chip is scanned
at the wavelengths for Cy3 and Cy5. The ratio between the signal intensities
of the two wavelengths measured at each spot on the array is reflects the ex-
pression level for the corresponding gene. Note that the application of two
differentially labeled samples effectively removes the array-to-array variabil-
ity in cDNA microarray technology [110]. Figure 2.1 provides an overview for
the whole measuring procedure using cDNA microarray.

2.2.2 Affymetrix GeneChip

Affymetrix uses a combined technology of photolithography and combina-
torial chemistry to synthesize nucleotides to the multiple growing chains of
oligonucleotides on the surface of the chip. Figure 2.2 illustrate the manufac-
turing procedure of CeneChip.

Instead of using one probe for one target mRNA as is the case for cDNA
microarrays, Affymetrix GeneChip uses a probe set to represent one transcript.
A probe set usually contains 11 to 16 probe pairs, which identifies different
regions of the target gene. The choices for the sequences of the probes are
based on the predicted hybridization properties of the oligonucleotides, and
are further filtered for specificity. Each probe pair consists of a perfect-match
(PM) probe and a mismatch (MM) probe, where the PM probe is perfectly
complementary to the target mRNA sequence, while the MM probe differs
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Figure 2.1: Measuring gene expression values by cDNA microarray. Note that
the detected signal intensities of the fluorescence dyes (typically Cy3 and Cy5)
are often converted by software into a red-and-green-dye presentation for the
readout microarray data.

from the PM probe by only a single base in the center of the oligonucleotide.
All the probes (i.e., oligonucleotides) are 25 bases long. Figure 2.3 illustrates
the probe design strategy of Affymetrix GeneChip.

The PM/MM probe strategy originates from the consideration that it is un-
avoidable for mRNAs other than the target to bind to the PM probe. The MM
probe is introduced with the intention to measure the non-specific binding
of the corresponding PM probe. With this technology, only one mRNA is
required, and the gene expression is measured as absolute value instead of
ratios.

2.2.3 Comparison between spotted arrays and in situ synthe-
sized arrays

A main drawback of spotted arrays is the big array-to-array variation. In
addition, any deficiency in the synthesis and purification of the biomolecules
to be spotted, or any contamination in the source plate will greatly affect the
array quality. On the contrary, better precision in array manufacturing can
be achieved for the in situ synthesized arrays because the technology relies
merely on the source sequence information of oligonucleotides and synthesis
chemistry, and thus provides a better base for between array, even between
batch comparison.

Because of the involvement of photolithographic masks in the manufacturing
procedure, Affymetrix CeneChip are expensive, while spotted arrays are usu-
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Figure 2.2: The manufacturing of Affymetrix
CeneChip (picture source from Affymetrix
http://www.affymetrix.com/technology/manufacturing/index.affx). (1)
Linker molecules that can be activated by ultraviolet light are attached to the
surface of a chip. (2)(5) A photo-protected mask with windows open for the
desired oligonucleotides is placed over the surface of the chip, and ultraviolet
light is shone over the mask. (3)(6) Linker molecules at the unprotected areas
are activated. (4)(7) The surface is flushed with a solution containing a single
nucleotide, and the nucleotide attaches to the oligonucleotides with activated
ends. (8) The procedure is repeated to add all the four types of nucleotides:
adenosine, thymine, cytosine and guanine, and is continued until the probes
reach their full length, usually 25 bases long.

http://www.affymetrix.com/technology/manufacturing/index.affx
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Figure 2.3: Probe design strategy of Affymetrix GeneChip. Affymetrix
GeneChip uses a probe set to represent one transcript. A probe set usually
contain 11 to 16 probe pairs, which identifies different regions of the target gene.
Each probe pair consists of a perfect-match probe (PM) and a mismatch (MM)
probe, where the PM probe is perfectly complementary to the target mRNA
sequence, while the MM probe differs from the PM probe by only a single base
in the center of the oligonucleotide. All the probes (i.e., oligonucleotides) are
25 bases long.

ally more affordable for small labs. Besides, spotted arrays are more flexible
in customized design, for example, the users can decide the set of genes that
are more relevant for the study and spot only these genes on the microarrays.
However, an alternative in situ technology provided by NimbleGen R© is said
to provide more flexibility in array design as well as lower price.

2.3 Noise and artifacts in microarray data

In spite of their best efforts, all the existing microarray technologies cannot
prevent noise and artifacts from being introduced into the data in every step
of the biological and technical procedures involved.

The first thing needed to be pointed out for the discussion of this section
is that the biological variations for different mRNAs make the comparison
between expression levels measured for different genes on the same microarray
worthless. Examples include the variation in the abilities of different mRNAs
to be amplified (after being extracted from the cell culture) or to be hybridized
to the chip. Thus, gene expression levels measured from a microarray is only
meaningful when compared to those from (an)other microarray(s).

Besides biological variation, noise and artifacts are introduced because of the
lack of effective controls in handling the mRNA samples – that is, from the
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isolation of mRNAs to the array hybridizations.

While the idea of a microarray experiment is to measure the gene expression
levels in a single cell under the studied condition, in reality, it is often difficult
to separate the cells, and instead the mRNA levels in a population of cells
are extracted for further measurement. The worst case scenario is that the
extracted mRNA sample could come from different tissues. Another source
of artifacts in the isolation of mRNA samples is caused by the subtle changes
in the experimental condition during the procedure, where stress responses
of the genes and mRNA degradation can easily happen if the cell cultures are
handled without much caution [8].

When it comes to the array hybridization, and because the binding of mRNA
molecules to the probes depends to a great extent on their three dimensional
features, it happens that some mRNAs may bind to unintended probes. Fur-
thermore, it is also possible for the free fluorescent dyes in the solution to land
on the probes.

Speaking of fluorescent dyes, for cDNA microarrays (and other two-channel
microarray technologies in general), the difference between the labeling ef-
ficiencies of Cy3 and Cy5 introduces another artifact, and can be effectively
corrected by using two microarrays where the dyes for the test sample and the
reference sample are swapped.

A third source of noise and artifacts lies in the pitfalls of the manufacturing
of microarrays and the data readout technology. For the cDNA microarrays,
a contaminated plate is one example, and a blocked or worn-out spotting pin
is another. In addition, combined with an inappropriate scanning method,
unevenly spotted probes on the chip will cause some areas of the chip to have
a “brighter” background than the rest. For Affymetrix GeneChip, the variation
among different probes in the same probe set should also be taken into account.

2.4 Preprocessing of microarray data

Because of the high level of noise in microarray data, it is essential to assess
the quality of the data, and remove as much as possible the systematic noise
that might obscure the biological variation, before any analysis of microarray
data can be carried out. Therefore, preprocessing procedures are designed
to check and remove as much as possible the systematic noise (such as array
effect, plate effect and pin effect for cDNA microarrays, and probe effect for the
Affymetrix CeneChip) in the raw microarray data, so that in the ideal world,
the variation in the data is only explained by biology. The main assumption
for most of the preprocessing measures to work is that the expression levels of
most of the genes are not differentially expressed under different experimental
condition. Therefore, looking from the population level, when we segment
the obtained expression data by any means (e.g., according to the array from
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which the expression levels are obtained, according to the plate from which
the correspondent probes are drawn, according to the pins by which the cor-
respondent probes are plotted, or according to the day when the experiment
is performed), the expression levels should exhibit the same distribution for
different slots.

2.4.1 Quality assessment

The first step is to decide if the data obtained for a microarray is beyond
correction and should better be removed from further analysis. There are many
ways for quantitatively assess the quality of microarray data. However, the
threshold for this type of quality assessment usually lacks consensus among
different analyzers, and are quite arbitrary in most of the cases. A simpler
and more intuitive way for assessing microarray data is to use visualization
techniques.

For example, a first glance at the obtained image of a cDNA microarray can
reveal spatial non-uniformity (due to such as damage or contamination on
the surface of the microarray, plate effects, and/or pin effects), low contrast
between the foreground and the background, and abnormality in the size and
shape of spots. In the case of Affymetrix GeneChip, a plot of the log-intensity
of the raw microarray data serves the same purpose to check spatial non-
uniformity. (The reason to use log is because the largest values in the data are
often orders of magnitude larger than the bulk of the data.) Figure 2.4 shows
two cases of log-intensity plots from a cDNA microarray, indicating possible
contamination on the surface of the microarray and a dominating pin effect.
Another useful plot for checking the array effect, plate effect, pin effect is a
box plot, (see Figure 2.5). While plate effects and pin effects are removable by
normalization methods, array effects due to severe contamination or damage
on the surface of microarray are often beyond correction.

2.4.2 Background correction

Before we calibrate microarray data, one might want to subtract background
noise from the measured values to purify the signal. The motivation for
background adjustment is the belief that a spot’s measured intensity includes
a contribution not specifically due to the hybridization of the target to the
probe, but due to the non-specific hybridization and optical noise [112].

Most of the image processing softwares accompanying cDNA microarray facil-
ities produce spot-specific background fluorescence signal intensities, which
is measured from the surrounding areas of each spot [112]. The assumption
for such measurement is that the signal intensity measured at the surrounding
area of a spot represent the optical noise and noise due to non-specific binding
to the spot. Affymetrix GeneChip, instead, use the MM probes to measure the
non-specific binding fluorescence intensities.
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Figure 2.4: Log-intensity plots of a cDNA microarray (i.e., array 81 in the
“swirl” data from BioConductor package “marray”). (A) log-intensity ratios
between the two channels for each spot on the array, a color toward yellow
indicates a higher value while a color toward blue indicates otherwise. The
figure indicates that there might be a contamination on the surface of the
microarray (the yellow line starting in (1,3) and ends in (3,3)). (B) Added log-
intensities of the two channels for each spot on the array. The plot is segmented
into 16 areas according to the pins. The plot indicates that there might be an
abnormality associated with Pin (3,3).

Figure 2.5: Boxplots of the “swirl” data (from BioConductor package “mar-
ray”). (A) Boxplot of the log-intensity ratios between the two channels (y-axis)
of the spots, calculated for each array (x-axis) in the data. (B) Boxplot of the
log-intensity ratios between the two channels (y-axis) of the spots on array 81,
calculated for each plate (x-axis). The plot indicates that Plate 1 and 2 might
suffer from some plate effects. (C) Boxplot of the log-intensity ratios between
the two channels (y-axis) of the spots on array 81, calculated for each pin (x-
axis). The plot indicates that there might be some deficiency associated with
Pin (3,3).
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However, the subtraction of these measured background signals provided by
either of the platforms has been under debate. There is evidence showing
that the subtraction of the spot-specific background signals measured for a
cDNA introduces greater variability around the low-intensity spots than the
case when no background subtraction is performed at all [112, 2]. As for the
Affymetrix GeneChip, it turned out that the MM probes might be measuring
signals as well as non-specific binding, because for data from a typical array, as
many as 30% of MM probes have intensities higher than their corresponding
PM probes [74]. Furthermore, evidence shows that after subtracting the MM
intensity, the information on expression level provided by the different probes
for the same gene are still highly variable, and that the variation due to probe
effects is larger than variation due to the arrays [67].

While whether to perform the background subtraction of cDNA microarray
data remains a personal choice, popular alternatives to subtracting the MM
probe intensities include the use of ideal mismatch (IM) [1] and a model
based approach, which only uses the PM values, described as the background
adjustment in the robust multichip average (RMA) approach [54].

The IM intensity is designed by Affymetrix as a corrected MM intensity, which
is guaranteed to be smaller than the corresponding PM intensity. To obtain the
IM intensities for a probe set, first a biweight specific background (SB), which
is a robust average over the log-ratios between the corresponding PMs and
MMs in the probe set, is calculated. If the SB is big (decided by a threshold),
it means that the values from the probe set are generally reliable, and if the
MM intensity for one of the probe pairs is larger than the corresponding PM
intensity, the SB is used to construct the IM, which replaces the MM for the
probe pair. On the contrary, if the SB for the probe set is small, Affymetrix
smoothly degrades the PM value to calculate the IM value. See [1] for more
details.

The background adjustment of the RMA method assumes that the observed
PM value is composed of two terms, one generated from a normal distribution,
which explains the background noise, and the other being an exponential sig-
nal component. The normal distribution is truncated at zero to avoid negative
background signals. The model is fit by the expression levels obtained by the
PM probes. See [54] for more details.

2.4.3 Normalization

Normalization procedures are designed mainly to calibrate microarray data
so as to remove as much as possible systematic noise on each array. At this
stage, it is common practice to transform the data to its logarithm. This is
especially suited for dealing with expression ratios (coming from two-channel
cDNA microarray experiments, using a test and reference sample), since ex-
pression ratios are not symmetrical [77] in the sense that upregulated genes
have expression ratios between one and infinity, while downregulated genes



2.4. Preprocessing of microarray data 27

have expression ratios squashed between one and zero. Taking the logarithms
of these expression ratios results in symmetry between expression values of
up- and down-regulated genes. Further more, it is observed that the variance
of microarray data increase proportional to the expression level [20]. Taking
logarithm makes the noise of microarray data additive.

Various methods have been developed for the normalization of microarray
data. Most of them are platform dependent. For the cDNA microarrays, sys-
tematic noise that needs to be taken care of include array effects, pin effects,
plate effects, and dye effects. Nonlinear normalization methods are found to
outperform the linear normalization methods (e.g., total intensity normaliza-
tion [78], rank invariant methods [104], ratio statistics [20], and analysis of
variance models [60]), in terms of correcting systematic biases mainly caused
by dye effects [78, 113]. It is observed that the log-ratios between the red and
green channels of the data are intensity dependent, and the dependency is of-
ten nonlinear. Such effects can be visualized by an MA-plot (see Figure 2.6A).
One of the most popular normalization methods for cDNA microarrays is the
lowess normalization [113], which is a nonlinear normalization method. To
remove the intensity-dependent dye effects, the method performs a lowess fit
(i.e., robust locally weighted regression) [23] to the MA-plot, and subtracts
the obtained fit from the log-ratios of the intensities. By performing lowess
normalization locally to data from the same printing pin, for example, one
can calibrate data from different printing pins so that each pin group has zero
mean, and thus remove the spatial variation on a chip due to pin effects. We
can further regulate the variance of the data by rescaling the variation of the
log-ratios, so that data printed by different pins have the same stretch on the
log-ratios. (Figure 2.6B, 2.6C and 2.6D show the result after the normalization
procedure described above is performed on the example data.) Of course, the
same method can be applied to data from different arrays, or different plates
to remove the array effects and the plate effects.

For Affymetrix CeneChip, the task of normalization is to remove the array
effects and the probe effects. Both linear and nonlinear methods exist for the
normalization of Affymetrix. Similar to the case for cDNA microarrays, the
nonlinear normalization methods tend to outperform the linear ones (such as
the scaling method used in the software of Affymetrix [1]). A popular nonlinear
normalization method for Affymetrix CeneChip data is quantile normalization
[17], whose goal is to impose the same empirical distribution of intensities to
each array. The empirical distributions of the intensities are represented by
the quantiles. The algorithm first ranks the probe intensities from the lowest
to highest for each array, so that each rank represents a quantile. Then, the
average intensity value across all the arrays is calculated within each quantile.
Finally, the measured intensity in a given quantile in an array is replaced by
the calculated average intensity for that quantile. After the normalization
procedure, the data measured by different probe sets need to be summarized
to produce one measure for the expression level of each gene on each chip.
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Figure 2.6: Lowess normalization of the “swirl” data (provided by BioConduc-
tor package “marray”) (A) MA-plot showing the intensity dependent effects
on the log-ratios obtained for Array 93. The x-axis presents the intensity of
the genes by the A (add) values, which are the added log-intensities of the
red (R) and green (G) channels. The y-axis gives the M (minus) values of the
genes, which are the log-ratios of the two channel intensities. Different line
types illustrate the lowess fit for different printing pins. (B) MA-plot of Array
93 after the normalization. (C) Box-plot of post-normalized data for Array 93,
grouped according to different printing pins. (D) Box-plot of post-normalized
data from different chips.
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Common summarization methods include average difference (which simply
computes the average difference between PM and MM intensities over all the
probe sets of a gene), one-step Tukey’s biweight estimate [1], median polish fit
[105] to a linear model describing the log-intensities as a three-term-addition
(with one term being the true log expression level, another one describing the
probe effect and the third one for normally distributed noise) [54].

Besides the platform dependent normalization methods mentioned above, the
variation stabilization normalization (VSN) [52, 30], a normalization method
that works both for cDNA microarrays and Affymetrix CeneChip is receiving
increasing attention. It combines the background correction, the nonlinear
transformation, and the normalization procedures together. The motivation
of the method is to solve the problem of the multiplicative noise feature of
raw microarray data. While the assumption of the proportionality between
the noise and the intensity of microarray data holds for genes with a relatively
large intensity, it does not continue down to the genes that are unexpressed
at all because the proportionality would imply zero measurement noise for
those genes [81]. While this problem can roughly be solved by eliminating the
observed intensities that are close to the background intensities, and take the
logarithm on the rest of the data, the VSN model is proposed [81] to transform
the microarray data incorporating a nonlinear term that approximates the
natural logarithm for large intensities and a linear term for intensities that are
around 0 [30]. Therefore, by using VSN, the variance of the intensities becomes
approximately independent of the mean [52], and data in the whole range can
be preserved for further analysis, which is certainly more favorable. There exist
several ways for specifying the VSN transformation, which is associated with
different names such as the general logarithm [82] and the arcsinh function [52].
However, the basic form of these models (i.e., transformations) is the same,

f (y) = log
(
a(y) +

√
a(y)2 + 1

)
, (2.1)

where y is the measured intensity, and a is specified individually by different
realizations of the method [52, 30, 31]. In addition, these different realizations
are all motivated by the model that describes the raw microarray data (y) by
two terms [81], one for the normally distributed background intensities, and
the other for the real intensities of the genes with an exponential error,

y = α + ε + µeη, (2.2)

where α is the mean background intensity, ε is the additive noise, µ is the true
expression level, and η is the multiplicative noise. Both ε and η are indepen-
dently and normally distributed with mean zero. The resulting variance of
the observed intensities by applying this model is a quadratic function of the
mean of the intensities,

Var(y|µ) = s2
ηµ + s2

ε, (2.3)
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Figure 2.7: Result of VSN on the swirl data for Chip 93. The red dots depict
the running median estimator. If there is no variance-mean dependence, the
line formed by the red dots should be approximately horizontal. Each dot in
the plots represents a gene. In each plot, the y-axis represents the standard
deviation of the normalized intensity of the red and the green channels, and
the x-axis represents (A) the average (i.e., mean) of the normalized intensity of
the red and the green channels (B) the rank of the mean.

where s2
η is the variance of eη, and s2

ε is the variance of ε. Figure 2.7 illustrates
the result of VSN on the example data.

The normalization methods mentioned above are only a small portion of the
various approaches available that are motivated by different problems embed-
ded in the microarray technologies and the experimental designs. The choice
of the normalization method should be data specific and is related to the
specific biological question under study. Efforts in investigating the optimal
normalization method are well deserved for each study.

2.5 Specific characteristics of microarray data

To conclude this chapter, it is necessary to mention the unique characteristics
of (preprocessed) microarray data, which should be taken into account for any
further analysis.

First of all, microarray data typically have an asymmetric dimensionality. The
preprocessed microarray data is usually put in a matrix, where the genes are
represented as rows and the experiments are listed in the columns. Each row
(i.e., the expression levels of a gene across different experiments) is the expres-
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sion profile of the gene. While the number of rows of the matrix can contain
tens of thousands of genes, the dimension of the columns is much smaller. The
current cost for a microarray chip limits the number of experiments in a study.
Most labs can afford studies up to a few tens of experiments. A relatively large
study can use up to a couple of hundred of chips, which is still a small number
comparing to the number genes.

Secondly, although a proper preprocessing procedure removes as much as
possible systematic noise from the data, the noise presented in the resulting
data for further statistical analysis is still non-negligible.

Thirdly, microarray experiments often contain missing values. These values
typically comes from probes that encounter complications in the measuring
procedure (see Section 2.3) and whose values are beyond correction. Simple
replacements such as a replacement by zero or by the average of the expression
profile often disrupt these profiles. Indeed, replacement by average values
relies on the unrealistic assumption that all expression values are similar across
different experimental conditions. More advanced techniques of missing value
replacement (which use the k-nearest neighbor method or the singular value
decomposition) have been described [103] and take advantage of the rich
information provided by the expression patterns of other genes in the data
set. A more favorable way, however, is to obviate the need for missing value
replacement by devising the statistical tools for microarray data analysis so
that only the measured values are used.

Finally, the biological process under scrutiny in a microarray study is assumed
to be a complicated process, which involves concerted gene reactions in dif-
ferent pathways. While some genes can even be involved in more than one
pathway, some others, however, might not be relevant to the biological pro-
cess. These genes usually show little variation over the different experiments
under study. Genes that show little variation over the different experiments
are called constitutive with respect to the biological process studied. Consti-
tutive genes often contribute to a large proportion of the whole population
of the genes included in a microarray study. A conventional way to handle
these genes is to remove the gene expression profiles from the data that do
not satisfy some simple criteria [32]. Commonly used criteria include (1) a
minimum threshold for the standard deviation of the expression values in a
profile and a threshold on the maximum percentage of missing values, and
(2) a minimum threshold on the interquartile range (IQR) of a gene across the
experiments.
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Chapter 3

Clustering microarray data

This chapter gives a survey of (bi)clustering algorithms that have been applied
to microarray data. We dedicate the first main section of this chapter to the
overview of three traditional clustering techniques in the machine learning
world—hierarchical clustering, K-means clustering, and SOM—which are
popular choices in the early practice of clustering microarray data. Then,
we focus our discussion of existing model-based algorithms for clustering
microarray data as a base to motivate our application of Bayesian models
(which will be explained in the three following chapters). Our discussion is
then further extended to biclustering algorithms. In this regard, we first list
different types of biclustering algorithms, and point out the type of biclustering
algorithm that is the focus of this thesis. Then, we provide a brief survey about
existing biclustering algorithms that fall in the same category as ours. Finally,
we give a review of various methods to validate the clustering results.

3.1 Introduction

The first level of interest for molecular biologists is to identify genes whose
expression level is significantly changed under different experimental condi-
tions. Basic statistical techniques can be applied to solve this problem effi-
ciently [7, 106, 94, 92]. However, such an analysis treats the genes as individu-
als rather than exploring their relation with each other. On the other hand, for
every gene, the detailed information about its expression profile as a whole
over all the experiments under study is neglected in this first-level analysis. To
make better use of the full-scale information provided by microarray experi-
ments, the next level of insight is provided by clustering genes into biological
meaningful groups according to their pattern of expression. Comparing with
the full data itself, such groups of related genes are much more tractable for
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further studies including gene function and regulation.

Based on the assumption that expressional similarity implies functional simi-
larity of the genes (and vice versa), the challenge of finding genes that might
be involved in the same biological process is thus transformed to the problem
of clustering genes into groups based on their similarity in expression profiles.
Genes that have similar expression profiles are said to be coexpressed.

The first generation of clustering algorithms (e.g., hierarchical clustering [32],
k-means [46] and self-organizing maps (SOM) [62]) applied to gene expression
profiles were mostly developed outside biological research. Although encour-
aging results have been produced [93, 97, 95], some of their characteristics
often complicate their use for clustering expression data [90]. They require,
for example, the predefinition of one or more user-defined parameters that are
hard to estimate by a biologist (e.g., the predefinition of number of clusters in
k-means and SOM – this number is almost impossible to predict in advance).
Moreover, changing these parameter settings will often have a strong impact
on the final result. These methods therefore need extensive parameter fine-
tuning, which means that a comparison of the results with different parameter
settings is almost always necessary – with the additional difficulty that com-
paring the quality of the different clustering results is hard. Another problem
is that the first-generation algorithms often force every data point to belong
to a cluster. In general, a considerable number of genes included in the mi-
croarray experiments do not contribute to the studied biological process, and
these genes will therefore have seemingly constant or even random expression
profiles rather than having similar expression profiles with the other genes.
Including these “noisy” genes in one of the clusters will contaminate their
content and make these clusters less suitable for further analysis.

In addition to the above limitations of first-generation clustering algorithms,
the specific characteristics of microarray data, such as the high dimensionality,
the highly noisy measurements, the complex biological processes hidden be-
hind, in general have created the need for clustering methods to be tailored to
these specific requirements. Accordingly, desired features for microarray data
cluster analysis include fast calculation speed, robustness, easy interpretation,
and so on.

A second generation of clustering algorithms has started to tackle some of
the limitations of the earlier methods, while seeking to meet those specific
requirements for microarray data. These algorithms include model-based al-
gorithms [116, 44, 71], the self-organizing tree algorithm [50], quality-based
algorithms [51, 91], simulated annealing [69], the cluster affinity search tech-
nique [13], and biclustering algorithms [21, 89, 47, 11]. Also, some procedures
were developed that could help biologists to estimate some of the parameters
needed for the first generation of algorithms (such as the number of clusters
present in the data [44, 69, 116]).

In particular, algorithms based on probabilistic models have become a popular



3.2. Standardization of gene expression profiles 35

choice for the analysis of microarray data [116, 71, 87] because of its ability
to handle the complex nature of the data. A proper probabilistic model can
capture the essential information presented by the data, but in the same time,
it allows variability in the biological system.

In this chapter, we first give a survey of the use of classical clustering methods,
namely hierarchical clustering, k-means clustering, and SOM, on microarray
data, in order to discuss the need of tailored clustering techniques for microar-
ray data. We then particularly focus the discussion of clustering algorithms
for microarray data analysis on the model-based algorithms to see their ad-
vantages and disadvantages. Finally, we provide an overview on the current
status of researches on biclustering algorithms for microarray data as a com-
parison with our method. To conclude this chapter, a list of popular methods
to assess the quality of the clusters for microarray data is provided.

3.2 Standardization of gene expression profiles

Before we dive into the detailed discussion of various clustering algorithms,
we would like to remind the readers of the importance of the standardization
of gene expression profiles for the clustering problems of microarray data. Bi-
ologists are mainly interested in grouping gene expression that have the same
relative behavior; i.e., genes that are up- and downregulated together. Genes
showing the same relative behavior but with diverging absolute behavior (e.g.,
gene expression profiles with a different baseline or a different amplitude but
going up and down at the same time) will have a relatively high Euclidean
distance (see the next section for details). Cluster algorithms based on this dis-
tance measure will therefore wrongfully assign the genes to different clusters.
This effect can largely be prevented by applying standardization or rescaling
to the gene expression profiles to have zero mean and unit standard devia-
tion. Gene expression profiles showing the same relative behavior will have a
small(er) Euclidean distance after rescaling [77].

3.3 Classical clustering methods

Classical clustering methods originated in the machine learning society have
shown success in mining microarray data. Some of them, e.g., hierarchical
clustering, still remain as popular choices for microarray data analysis. We
review three classical clustering algorithms here, and then provide a discussion
on their deficiency with regard to the special characteristics of microarray data,
and give a list of desired features for clustering algorithms for microarray data.

3.3.1 Distance metrics
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All the three classical clustering analysis that we discuss here measure the
similarity between objects (i.e. in our case, gene expression profiles, or when
clustering experiments, the expression levels of genes in each experiments)
by means of distance metrics. A cluster contains data points whose pair wise
distance between one another is lower than a threshold value. Here, the
problem arises from how the distance should be defined. Hereunder, we give
a brief overview of common distance metrics applied for clustering microarray
data.

1. Pearson correlation: This is the most commonly used distance metric. It
is often denoted by r. Pearson correlation is the cosine of the angle
between two vectors. This means that it measures the similarity in the
shapes of two profiles, while not taking the magnitude of the profiles
into account. Therefore, Pearson correlation suits well the intuition of
biologists for what they mean when saying that two expression profiles
are “coexpressed” [32].

2. Squared Pearson correlation: This is the squared product of Pearson cor-
relation. Therefore, squared Pearson correlation r2 neglects the sign in
front of a Pearson correlation measure and considers two vectors point-
ing to the exact opposite directions to be perfectly similar (i.e., in this
case, r = −1 while r2 = 1). This character makes the squared Pearson
correlation able to capture inverse relationships among gene expression
profiles, which might also be interesting for biologists.

3. Euclidean distance: Euclidean distance measures the absolute distance
between two points in space. That is, it is the length of the straight
line connecting the two points. As mentioned previously, the Euclidean
distance measures the similarity between the absolute behaviors of genes,
while the biologists are more interested in their relative behaviors. Thus,
when using Euclidean distance metric, a standardization procedure is
needed before clustering can be applied to the gene expression profiles.
Note here that after the standardization, the Euclidean distance is related
to the Pearson correlation between two points x and y by |x − y|2 =
2(1 − r) [3].

3.3.2 Hierarchical clustering

Hierarchical clustering was first applied in biology was for the construction of
phylogenetic trees. Early applications of the method to gene expression data
analysis [32, 93] have proved its usefulness.

Hierarchical clustering has almost become the de facto standard for gene ex-
pression data analysis, probably because of its intuitive presentation. The
whole clustering process is presented as a tree called a dendrogram, the orig-
inal data are often reorganized in a heatmap demonstrating the relationships
between genes or conditions.
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Two approaches to hierarchical clustering are possible: divisive clustering (a
top-down approach as is used in [3]), and agglomerative clustering (a bottom-
up approach, see for example [32]). In agglomerative clustering [32], each
expression profile is initially assigned to one cluster; at each step, the distance
between every pair of clusters is calculated and the pair of clusters with the
minimum distance is merged; the procedure is carried on iteratively until a
single cluster containing all the expression profiles is obtained. Divisive clus-
tering works the other way round, initially, all the gene expressional profiles
are treated as belonging to one cluster; in each step, a cluster is divided so that
the resulting clusters are as far away from each other as possible. Different
techniques for dividing the clusters are available for divisive hierarchical clus-
tering [46, 57]. In general, the stepwise computational complexity is simpler
in agglomerative clustering than the divisive clustering, but the latter is more
useful when one is more interested in the main structure of the data [57] or
when the number of clusters (say, k) presented in the data is known in ad-
vance [29] (since the stopping criteria for the algorithm can then be modified
so that the splitting procedure is no longer performed when k clusters are
produced).

However, this advantage of the divisive approach is not often helpful in the
analysis of gene expression data, because for the visualization of the result-
ing reorganized microarray data, see Figure 3.1, a full dendrogram is usually
desired by biologists. Therefore, the structure of the dendrogram remains an
important problem, because although the dendrogram itself does not deter-
mine the clusters for the users, a good ordering of the leaves can help the users
to identify and interpret the clusters. A heuristic approach aiming to find a
good solution was developed [32] by weighting genes using combined source
of information, and then placing the genes with lower average weight earlier
in the final ordering. Further, [10] reported a dynamic programming method
that helps to reduce the time and memory complexities for solving the optimal
leaf-ordering problem.

After the full tree is obtained, the determination of the final clusters is achieved
by cutting the tree at a certain level or height, which is equivalent to putting
a threshold on the pair wise distance between clusters. Note that the final
cluster partition is thus rather arbitrary.

Whether agglomerative or divisive, hierarchical clustering in general has sev-
eral drawbacks. Hierarchical clustering can never repair a decision (to merge
in agglomerative clustering, and to split in the divisive one) made in previous
steps [57]. It is, after all, based on a stepwise optimization procedure rather
than finding k optimal clusters globally. Another disadvantage of hierarchical
clustering is that the nature of the hierarchical clustering (where data points
are forced into a strict hierarchy of nested subsets) fits more into the context
of building a phylogenetic tree [95] rather than that of grouping expression
profiles.
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Figure 3.1: Visualization of the results of hierarchical clustering. A heatmap
presenting the gene expression data, with a dendrogram to its side indicating
the relationship between genes (or experimental conditions) is the standard
way to visualize the result of hierarchical cluster analysis on microarray data.
The length of a branch in the dendrogram is proportional to the pair wise
distance between the clusters. Importantly, the leaves of the dendrogram,
and accordingly the rows of the heatmap, can be swapped (without actually
changing the information contained in the tree) so that the similarity between
adjacent genes are maximized, and hence the patterns embedded in the data
become obvious in the heatmap. The figure is obtained from Eisen et al. (1998).
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Distance measure between two clusters

Because agglomerative clustering is more popular in microarray data analysis,
here we take a deeper look at the algorithm. As we mentioned, in every step
of agglomerative clustering, the two clusters that are closest to each other will
be merged. Here comes the problem of how we define the distance between
two clusters. There are four common options:

1. Single linkage: The distance between two clusters is the distance between
the two closest data points in these clusters (each point taken from a
different cluster).

2. Complete linkage: The distance between two clusters is the distance be-
tween the two furthest data points in these clusters.

3. Average linkage: Both single linkage and complete linkage are sensitive to
outliers [29]. Average linkage provides an improvement by defining the
distance between two clusters as the average of the distances between
all pairs of points in the two clusters.

4. Ward’s method: At each step of agglomerative clustering, instead of merg-
ing the two clusters that minimize the pair wise distance between clus-
ters, Ward’s method [107] merges the two clusters that minimizes the
“information loss” for the step. The “information loss” is measured by
the change in the sum-of-squared-error of the clusters before and after
the merge. In this way, Ward’s method assesses the quality of the merged
cluster at each step of the agglomerative procedure.

These methods yield similar results if the data consist of compact and well-
separated clusters. However, if some of the clusters are close to each other
or if the data have a dispersed nature, the results can be quite different [29].
Ward’s method, although less well known, often produces the most satisfac-
tory results.

3.3.3 K-means clustering

K-means clustering [46] is a simple and widely used partitioning method for
data analysis. Its helpfulness in discovering groups of coexpressed genes has
been demonstrated [97].

The number of clusters k in the data is needed as an input for the algorithm.
The algorithm then initializes the mean vector for each of the k clusters either
by hard assignment (e.g., from the input, or by random generation). These
initial mean vectors are called the seeds. Next, the k-means algorithm proceeds
iteratively with the following two steps (1) using the given mean vectors, the
algorithm assigns each gene (or experiment) to the cluster represented by the
closest mean vector, (2) the algorithm recalculates the mean vectors (which
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are the sample means) for all the clusters. The iterative procedure converges
when all the mean vectors of the clusters remain stationary.

From the above description, k-means method can be understood as a distance-
based approach. Both the Pearson correlation and the Euclidean distance can
be used as the distance measure. However, the squared Pearson correlation
metric should not be used in combination with the k-means algorithm, since
this distance measure takes the inverse relationships between the clustering
subjects into account, which can lead to problems when calculating the means.
On the other hand, k-means algorithm is closely related to model-based meth-
ods. When the Euclidean distance metric is used, the step of recalculating the
means of the clusters actually corresponds to minimizing the within-cluster
sum of squared distances from the cluster mean [102]. We will show in Sec-
tion 3.5.1 that in this case the k-means algorithm is an approximation to the
expectation-maximization (EM) method for Gaussian mixture model parame-
terization [8].

A significant problem associated with k-means algorithm is the arbitrariness
of predefining the number of clusters, since it is difficult to predict the number
of clusters in advance. In practice, this implies the use of a trial-and-error
approach where a comparison and biological validations of several runs of
the algorithm with different parameter settings are necessary [73]. Another
parameter that will influence the result of k-means clustering is the choice
of the seeds. The algorithm suffers from the problem of converging to local
minima (of the likelihood function, when explaining the method as a model-
based approach, see Section 3.5.1). This means that with different seeds, the
algorithm can yield very different result. Preferably, the seeds should be chosen
close to the center of the natural clusters. Of course, this is hard to achieve
if no prior knowledge about the clusters is available, which is often the case.
Using principal component analysis (PCA) to provide prior knowledge on the
number and the means of the clusters was proposed in [77].

3.3.4 Self-organizing maps

SOM [62] is a technique to visualize the high-dimensional input data (in our
case, the gene expression data) on an output map of neurons, which are some-
times also called nodes. The map is often presented in a two-dimensional
grid (usually of hexagonal or rectangular geometry) of neurons. In the high-
dimensional input space, the structure of the data is represented by prototype
vectors (serving similar functions as the mean vectors in the k-means algo-
rithm), each of which is related to a neuron in the output space.

As an input for the algorithm, the dimension of the output map (e.g., a map of
6 × 5 neurons) needs to be specified. After initializing the prototype vectors,
the algorithm iteratively performs the following steps. (1) Every input vector
(e.g., representing a gene expression profile) is associated with the closest
prototype vector, and thus is also associated with the corresponding neuron
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on the output space. (2) Update the coordinates of a prototype vector based
on a weighted sum of all the input vectors that are assigned to it. The weight
is given by the neighborhood function (a kernel function in nature), which
can be a Gaussian distribution function, applied in the output space. That is,
in the updating step, a prototype vector is pulled more toward input vectors
that are closer to the prototype vector itself and is less influenced by the
input vectors located farther away. In the meantime, this adaption procedure
of the prototype vectors is reflected on the output nodes – nodes associated
with similar prototype vectors are pulled closer together on the output map.
(3) To put a simulated annealing kind of flavor, the initial variance of the
Gaussian neighborhood function is chosen so that the neighborhood covers
all the neurons, but then the variance is decreased in every iteration so as to
achieve a smoother mapping. The algorithm terminates when convergence of
the prototype vectors is achieved.

Instead of the batch procedure described above, there is also an online pro-
cedure for SOM training. The only difference is, in the online procedure, a
random input vector is picked one at a time at the start of the iteration and
all the prototype vectors (together with the neurons) are then adjusted accord-
ingly.

From the cluster analysis point of view, SOM methods looks similar to k-means
methods. SOM clustering differs from k-means clustering in that a cluster has
two “faces” in a SOM – it is represented by the prototype vector in the input
space and the neuron on the output space. In this way, a SOM provides a direct
means to visualize relations among different clusters. Moreover, a prototype
vector is adjusted according to not only the data points that are associated
with it but also data points that are assigned to other prototype vectors. SOM
clustering is reported to have satisfactory results on gene expression data [95,
101]. In these experiments, every neuron represents a cluster. As a result,
clusters that represents similar gene expression profiles are located closer on
the output map, while clusters with anti-correlated expression profiles are put
into opposite corners of the grid [90].

Because of the advantage in visualization, choosing the geometry of nodes for
a SOM is not as crucial a problem as the choice of the number of clusters for a
k-means method. Of course, initializing an SOM with too few nodes will result
in non-representative and non-distinctive clusters. However, on the contrary,
if too many nodes are added to a SOM, clusters with great similarity (located
in the same neighborhood on the output map) can be merged to get a more
extensive cluster. Based on this idea, a tree-structured SOM clustering method
is implemented for gene expression data in [101]. Like the k-means method,
the initial choice of prototype vectors remains a problem that influence the
final clustering result of SOM clustering. A good way to seed the prototype
vectors can be the result from a PCA analysis [62].
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3.4 A wish list for clustering algorithms

The limitations of the classical clustering algorithms together with the specific
characteristics of gene expression data call out for clustering methods tailored
for microarray data analysis. Collecting the lessons from the classical clus-
tering algorithms and the demands defined by the specific characteristics of
microarray data, we compose here a subjective wish list of the features of an
ideal clustering method for gene expression data.

A problem shared by the classical clustering algorithms is the decision of the
number of clusters in the data. In k-means clustering and SOM clustering,
this decision has to be made before the algorithms are executed, while in
hierarchical clustering it is postponed till the full dendrogram is formed, where
the problem then is to determine where to cut the tree.

Another problem of the classical clustering algorithms is that they all assign
every gene in the data set (even outliers) to a particular cluster. Because
microarrays perform expression profiling for the whole genome, it is possible
that some measured genes do not contribute to the biological process under
study. Consequently, the measured expression levels of these genes mostly
represent noise. Therefore, it is not sensible to include these in any of the
clusters. A proper filtering step in the preprocessing, which use a threshold
on the variation of the gene expression profiles, (i.e., variation filter) helps to
reduce the number of these genes in the data set. However, it is insufficient.
Therefore, a clustering algorithm should be able to identify genes that are not
relevant for any clusters and leave them as they are.

A third problem is robustness. For all the three clustering techniques addressed
above, difference in the choice of distance metrics (either for between the
expression profiles or between the clusters) will result in different final clusters.
In k-means clustering and SOM clustering, the choices of seeds for the mean
vectors or the prototype vectors also greatly influences the result. Taking
into account the noisy nature of microarray data, improving the robustness
should be one of the goals when designing novel clustering algorithms for
gene expression data.

Finally, the biological process under study in a microarray experiment is a com-
plicated process where genes interact with each other in different pathways.
Consequently, a gene under study might be directly or indirectly involved in
several pathways. With this idea in mind, clustering algorithms that allow a
gene to belong to multiple clusters would be favorable.

The desirable properties here are not exhaustive, but they give a number
of clear directions for the development of clustering algorithms tailored to
microarray data.
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3.5 Model-based approaches for gene expression
data

Model-based clustering [46] is an approach that is not really new and has
already been used in the past for other applications outside bioinformatics.
However, its potential use for cluster analysis of gene expression profiles has
been proposed only recently [116, 44, 71],compared with those are introduced
in Section 3.3. Most importantly, we talk about these methods separately
because they provide a base for our discussion on applying Bayesian models
to microarray data.

Model-based clustering assumes that the data are generated by a finite mixture
of underlying probability distributions, where each distribution represents one
cluster. The problem, then, is to associate every gene (or experiment) with the
best underlying distribution in the mixture, (the assignment of the objects is
often considered as the missing data of the problem), and at the mean time,
to find out the parameters for each of these distributions. In a classical view
of probabilistic models, the problem is solved by finding the parameters of
the distributions that optimizes the likelihood computed on the complete data
(i.e., the observed data plus the missing data).

Regardless of the choice of underlying distributions, a mixture model is usually
learned by an expectation-maximization (EM) algorithm. Given the microar-
ray data and the current set of model parameters, the probability to associate
a gene (or experiment) to every cluster is evaluated in the E step. Then, the
M step finds the parameter setting that maximizes the likelihood based on the
complete data. The complete data refers to both the (observed) microarray
data and the assignment of the genes (or experiments) to the clusters. The
likelihood of the model increases as the two steps iterates, and convergence to
a stable solution is guaranteed under general conditions [111].

In what follows, we discuss respectively the work of Yeung et al. [116] where
a mixture model of normal distributions is used for the cluster analysis of
microarray data, and the work of McLachlan et al. [71] who use a mixture of
factor models for clustering experiments.

3.5.1 Mixture model of normal distributions

When multivariate normal distributions are used, each cluster is represented
by a hypersphere or a hyperellipsoid in the data space. The mean of the normal
distribution gives the center of the hyperellipsoid, and the covariance of the
distribution specifies its orientation, shape, and volume. The covariance ma-
trix for each cluster can be represented by its eigenvalue decomposition, with
the eigenvectors determining the orientation of the cluster, (i.e., the principal
axis of the hyperellipsoid) and the eigenvalues specifying the shape and the
volume of the cluster. (Note that the similarity of the objects in a cluster is mea-
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sured by the volume of the hyperellipsoid—the smaller the volume, the more
similar the objects are with each other.) By using different levels of restrictions
on the form of the covariance matrix (i.e., its eigenvectors and eigenvalues),
one can control the trade-off between model complexity (the number of pa-
rameters to be estimated) and flexibility (the extent to which the model fits the
data).

The choice of the normal distribution is partly based on its desirable analytic
convenience. Moreover, the assumption for fitting normal distribution to
gene expression profiles is considered to be reasonable especially when the
proper preprocessing procedures (see Chapter 2) have been applied [116, 7].
Of course, other underlying distributions, such as gamma distributions or
mixtures of Gaussian and gamma distributions, can also be used to describe
expression profiles [109]. So far, no precise conclusions have been made on
what is the most suitable distribution for gene expression data [7].

The EM procedure is repeated for different numbers of clusters and different
covariance structures. The result of the first step is thus a collection of different
models fitted to the data and all having a specific number of clusters and
specific covariance structure. Then, the best model with the most appropriate
number of clusters and covariance structure in this group of models is selected.
This model selection step involves the calculation of the Bayesian information
criterion (BIC) [84] for each model.

Yeung et al. [116] reported good results of such analysis as described above
using their MCLUST software [33] on several synthetic data sets and real
expression data sets.

Relation of normal mixture learning with k-means approach

The k-means algorithm described in Section 3.3.3 can be viewed as a special
case of applying EM algorithm to learn a mixture model of normal distributions
where all the normal distributions in the mixture are characterized by spheres
of the same volume but different means (the covariance matrices have the
same form of an identity matrix multiplied by a constant). The E step of an EM
algorithm is to evaluate the conditional probability of the latent variable of a
data point (the latent variable indicates to which cluster the data point belongs)
based on the observed data (in our case, the microarray data) and the current
parameters. In this context, k-means method uses an index function (i.e., a
distribution function of zero variance) to replace the conditional distribution
and thus performs a hard assignment to put a data point in the cluster whose
mean (i.e., center) is the closest. The next iterative step of k-means clustering
is to minimize the cost function of sum-of-squared-distance within the cluster.
Using this index function as the conditional distribution, the minimum of this
cost function is exactly the maximum of the log-likelihood function [46]. Thus,
this second step of k-means corresponds to the M step in the EM algorithm in
this case. The parameters from the point of view of the optimization are the
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sample means of the data points of the clusters.

3.5.2 Mixture model of t distributions and mixture of factor
models

For the clustering experiments (e.g., tissue samples), however, problem rises
for fitting a normal mixture to the data because the number of genes is much
larger than the number of experiments. To solve this problem, [71] applied
mixture of factor analysis to the clustering of experiments (see Figure 3.2). The
idea can be interpreted as follows. A single factor analysis performs a dimen-
sional reduction in the gene space of a cluster. That is to say, in factor analysis,
vectors of experiments located in the original n-dimensional hyperellipsoid
(where n represents the number of genes) are projected onto their correspond-
ing vectors of factors located in an m-dimensional unit sphere (usually m << n).
By using a mixture of factor analysis, clustering of the experiments is done on
a reduced feature space (i.e., the m-dimensional factor space) instead of on the
original huge dimensional gene space. The EM algorithm is also used to learn
the mixture of factor analysis model.

However, the choice for the number of factors in such a model remains a
dilemma. If the number is too small, the full correlation structure of the
genes cannot be captured; while if it is too large, the EM algorithm for the
parameterization of the model can encounter computational difficulties. To
alleviate the problem, [71] added another stage to reduce the dimension of
the gene space before applying the mixture of factor analysis to the clustering
of the experiments. In this stage, both a two-component mixture model of
univariate t distributions (where the association of the experiments to the two
components is unknown) and a single t distribution are fit to the data for
each gene. A threshold on the likelihood ratio between the two models is
then applied to determine whether the gene is responsible for the clustering
of experiments.

A t mixture model is more suitable for describing a gene expression profile
than a normal mixture model because the former is more robust to outliers.
A t distribution has an additional parameter called the degree of freedom
compared to a normal distribution. The degree of freedom can be seen as
a parameter for adjusting the thickness of the tail of the distribution. A t
distribution with a relative small degree of freedom will have a thicker tail
than a normal distribution with the same mean and variance. However, as the
degree of freedom goes to infinity, the t distribution approaches the normal
distribution. Because of the thicker tail of a t distribution, the model learned
for the t mixture is more robust to the outliers in gene profiles. Therefore, the
degree of freedom can be viewed as a robustness tuning parameter.

Their software EMMIX-GENE (where these methods are implemented) yields
promising results on several biological data sets.
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Figure 3.2: McLachlan et al. (2002) uses a two-component mixture model
of t distributions to examine every gene expression profile against a single
t distribution. Expression profiles to which the mixture models fit better (in
terms of, for example, likelihood) are selected for further analysis. A mixture
of factor analysis is applied on the selected data to cluster the experimental
conditions.
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3.6 Biclustering algorithms

In addition to discovering the relationship between the genes or the rela-
tionships between the experiments as in conventional clustering algorithms,
biclustering methods also explore the relationships between the genes and
the experiments. The prefix in the word biclustering indicates that this is a
technique to cluster both the genes and the experiments at the same time.

Although the existing biclustering algorithms originate from the same idea,
they differ from each other by their particular emphasis on the problems they
try to solve. Among early papers on biclustering methods, clustering algo-
rithms are applied (iteratively) to both rows and columns of a microarray data
set. As a result, genes and experiments are reorganized so as to improve the
manifestation of the patterns inherited in both the genes and the experiments.
In other words, these algorithms divide the data into checkerboard units of
patterns. Examples of these algorithms are in the works by Alon et al. [3] and
Getz et al. [42], in which existing clustering algorithms are used for the task.
In addition, there are also algorithms particularly designed for this purpose.
In the paper of Lazzeroni and Owen (2002) [65], a mixture model of normal
distributions, which is called the plaid model by the authors, is used to de-
scribe the microarray data and EM is applied for parameter estimation. For
another example, the spectral biclustering method [61] applies singular value
decomposition for solving the problem.

However, this type of biclustering algorithms have its limitation when the
expression profiles of some genes under study divides the samples in corre-
spondence with one biological explanation (say, tumor type) while profiles of
another subset of the genes divides the samples according to another biological
process (e.g., drug response) [47]. The second type of biclustering algorithm
aims to find genes that are responsible for the classification of the samples.
Examples are the gene shaving method [47], which searches for clusters of
genes that vary as much as possible across the samples with the help of PCA,
and a minimum description length method [56] that identifies gene clusters
responsible for classification of experimental conditions.

The third type of biclustering algorithms question conventional clustering
algorithms by the idea that genes that share functional similarities do not have
to be coexpressed over all the experimental conditions under study. Instead of
clustering genes based on their overall expressional behavior, these algorithms
look for patterns where genes share similar expressional behavior over only a
subset of experimental conditions. The same idea can be used for clustering the
experimental conditions. Suppose a microarray study is carried out on tumor
samples of different histopathological diagnosis. The problem then is to find
tumor samples that have similar gene expression level for a subset of genes (so
as to obtain an expressional fingerprint for the tumor). To distinguish the two
orientations for this type of biclustering problem, we will refer to the former
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case as biclustering genes, and the latter case as biclustering experiments, (see
Figure 1.6 for an illustration of the two problems).

This type of biclustering algorithms is pioneered by Cheng and Church (2000) [21],
where a heuristic approach is proposed to find patterns as large as possible
that minimizes the mean squared residues of their objective function while al-
lowing variance to be present across the experiments when biclustering genes
(or across the genes when biclustering experiments). Since then, there has
been active research on this type of biclustering problems. Our method was
first proposed in Sheng et al. (2003) [89], which was among the early papers on
this subject. Other early papers include the following. Tanay et al. (2002) [96]
(known as SAMBA) discretizes the gene expression values into three levels—
upregulated, inactive, and downregulated—and represents the discrete matrix
as a bipartite graph, whose nodes represent the rows on one side and columns
on the other. The edges in the graph have two values—‘+1’ for upregulation
and ‘-1’ for down regulation. At matrix entries whose value is 0 (i.e., inac-
tive), there is no edge between the corresponding rows and columns in the
bipartite graph. The method then uses a heuristic approach to find bicliques
in the graph, which correspond to biclusters in the matrix. Bergmann et al.
(2003) [14] describes a “iterative signature algorithm” which starts from a suf-
ficiently large set of random genes, and selects the experimental conditions
where the average expression value of these genes is above a threshold. Then
the algorithm computes the correlation between a gene and the average profile
of the genes in the bicluster under the selected conditions and iterates. An-
other model-based approach for this type of problem is provided by Barash
and Friedman (2002) [11], where the EM algorithm is used for estimating the
parameters of the model.

Most of algorithms of this type are not able to incorporate prior knowledge, one
exception is the signature algorithm (see Ihmels et al. (2002) [53] for applications
of the signature algorithm from this aspect). In contrast, Bayesian models
provide our method an systematic base for a for integration of prior knowledge
and information from other data sources.

The work of Segal et al. [87] brings the third type of biclustering problem
to a higher level in the following sense. In the paper, they are interested in
identifying not only the relevant experimental conditions for which the rela-
tion between genes of a potential group exists but also the significant attributes
associated with the genes and the conditions that are responsible for the gener-
ation of such patterns. The method incorporates additional information of the
attributes (for example, for a gene, the attributes could be functional role, cel-
lular location or the transcriptional factor (TF) binding sites in gene’s promoter
region, and for a experimental condition, they could be tumor type, or gene
knock out information) together with the gene expression data in a probabilis-
tic framework – the probabilistic relational models (PRMs) [36] in particular,
which is an extension of Bayesian networks – and uses (structural) EM [34] for
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the inference for the parameters of the probabilistic models. In [86], the capa-
bility of this framework is illustrated in unveiling the regulation programs of
the genes from gene expression data.

Note that the target types of biclusters of various approaches differ not only
in their structures, but also in the numeric patterns. Madeira and Oliveira
(2004) [70] gives a comprehensive survey on the existing biclustering algo-
rithms. According to their criterion, the numerical patterns of biclusters can
be divided into following categories: constant biclusters, biclusters of constant
rows or constant columns, biclusters of additive coherent values, biclusters of
multiplicative values, biclusters of coherent evolutions, biclusters of coherent
sign changes. For example, our method aims to find biclusters of constant
rows or columns, the method of Cheng and Church (2000) [21] identifies bi-
clusters of coherent additive values, and SAMBA searches for biclusters of
sign changes.

In what follows, we discuss the gene shaving algorithm [47] (a representa-
tive algorithm for the second type of biclustering algorithm judging from the
structure), the biclustering algorithm of Cheng and Church (2000) [21] (the pio-
neering algorithm of the third type), and the PRMs for microarray data [87, 86]
in more detail.

3.6.1 Gene shaving

As we mentioned previously, gene shaving is an algorithm that tries to find a
small subset of genes that exhibit the largest variations across the experimen-
tal conditions. The intuition is that these genes may help in explaining the
classification of the experiments. To search for a gene cluster, the algorithm
performs a PCA on the p-dimensional space, where p stands for the number
of experiments in the data set. The largest principal component, called the
eigengene, points to the direction where the cloud of data points (represent-
ing the genes) expands with largest variation. Then the correlation between
every gene with this eigengene is calculated. Genes with the smallest (abso-
lute value of) correlation are “shaved off” (discarded). The proportion of the
genes to be shaved off is typically 10%. This procedure is re-performed on
the “shaved” data set until there is only one gene left in the data set. The
remaining data set at every step is treated as a candidate gene cluster. To
determine the output cluster from these candidate clusters, the ratio of the
within-variance versus the between-variance of every candidate cluster is cal-
culated. The within-variance of a cluster calculates first the sample variance
of the genes in the cluster, and then the sample variance is averaged over all
the experiments. It measures the similarity of the genes in the cluster. The
between-variance of a cluster is defined as the variance of the mean expres-
sion profile of the genes in the cluster. A good cluster should have a large
between-variance, meaning that the included genes are expressional active,
and a small within-variance, indicating a tight cluster. The ratio of a candidate
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cluster is compared with the average ratio of the clusters (which contain the
same number of genes) obtained from randomized data sets. The candidate
cluster with the largest difference in the ratio is selected as the output cluster.
Then, the expression profiles in the whole data set is orthogonalized with the
mean of the expression profiles in the output cluster so as to encourage the
discovery of an uncorrelated second cluster. The procedure restarts searching
for the next cluster.

Hastie et al. [47] also shows that the algorithm can also be extended to a
supervised form for the discovery of genes related with particular sample
classification. Results in the paper illustrate a successful application of the
algorithm on predicting patient survival.

3.6.2 Cheng and Church’s approach

The biclustering algorithm of Cheng and Church (2000) [21] is a greedy search
algorithm to find a set of genes that behave consistently under a subset of
conditions.

The consistency of the bicluster is measured by the score of the mean squared
residue H(I, J). The residue of element ai j in the bicluster indicated by the
subsets of I and J is

ai j − aiJ − aI j + aIJ (3.1)

where aiJ is the mean of the ith row in the bicluster, aI j is the mean of jth column
in the bicluster, and aIJ is that of all the elements in the bicluster. In order
to encourage the gene expression profiles in a bicluster to have fluctuation
across the experimental conditions, (because expression profiles with little
fluctuation—called trivial biclusters—are not interesting for biologists), they
devised another score of row variance as an accompanying score to reject trivial
biclusters

V(I, J) =
1
|J|

∑
j∈J

(ai j − aI j)2. (3.2)

The goal of the algorithm is thus to find a bicluster with the largest area (i.e.
|I| · |J|) whose mean squared residue score satisfies H(I, J) <= δ, where δ is a
threshold input by the user. The bicluster is rejected if the row variance score
V(I, J) is lower than another threshold. Because the optimization problem is
an NP hard one, they opted for a greedy search algorithm that starts from the
original microarray data set, and delete a few rows or a few columns at a time
in the direction to decrease H(I, J). Once the condition H(I, J) <= δ is reached,
there is a chance that the resulting bicluster is not maximal. Thus, another step
to add some rows or columns without increasing the score is performed.

The algorithm above aims to find one bicluster at a time for a microarray
data set. In order to discover multiple biclusters, the authors mask the found
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bicluster by replacing the matrix entries in the bicluster by random values.
However, the masks are not used for the rows/columns addition procedure.

3.6.3 Probabilistic relational models for microarray data

In the preparation to address the problem in the language of PRMs [36], Segal
et al. [87] first define the relational schema as follows. The objects – genes,
experiments, and gene expressions – are associated with their corresponding
attributes. Among other attributes such as the TF binding sites for a gene
and the knock-out information for an experiment, the class of a gene is one of
the attributes of the gene; similarly, the class of an experiment is an attribute
for the experiment; and for the expression of a specific gene in a particular
array, the expression level is one of its attributes. The values of some of these
attributes are given by the data, for instance, the TF binding sites, the knock-
out information, and the expression level. However, the values of the other
attributes are unknown. The particular examples of interest in this case are
the class attributes of the genes and the experiments. The task now is not only
to infer the unknown value of the attributes (such as the class attributes so
as to obtain the biclusters) but also to find the relationships between all the
attributes presented in the problem.

A PRM itself can be viewed as the bigger frame defining the relationships
between classes of different objects. In our case, the frame is that gene expres-
sions are influenced by both the genes and the experiments. However, when it
comes to a particular case, where the given data includes the microarray data
and accompanied information of the genes and the experiments, the PRM has
to generate a more detailed probability model, namely a Bayesian network,
for the specific problem. First, to put them in a probabilistic language, all
the attributes are described as random variables. A Bayesian network is set
up to address the dependency structures between the random variables (i.e.,
the attributes). A Bayesian network [49] is a graphical model where nodes
(each representing a random variable) are connected with each other by di-
rected edges. The direction of an edge between two nodes (pointing from a
parent node to a child node) indicates the influence of one random variable
(the parent node) to the other (the child node). The influence is quantified
by the probabilistic distribution of the child node conditioned on the value
of the parent node – the conditional probability distribution (CPD). A node is
conditionally independent of all the other nodes given the value of its parents.
For the microarray data, one can suppose that the attribute of expression level
is always placed at the bottom of the Bayesian network structure; i.e., it is
always a child node but never a parent node.

To learn the relationships between different attributes now means to decide
the structure of the Bayesian network (i.e., to draw the edges) and the CPDs
between the nodes. In addition, the learning task also includes the estimation
of the unknown data (or called missing data) of some of the attributes. The
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learning procedure is carried out by the Structural EM algorithm [34]. Briefly
speaking, it iteratively executes a structural learning step and an EM step till
convergence. In the structural learning step, a search algorithm is performed
based on the current estimate of network parameters (CPDs) and missing data
to find the structure that maximizes a Bayesian information score [84]. The
EM step uses the learned structure to estimate its CPDs (the M step) and the
missing data (the E step).

The efficiency of the method is illustrated in [87] on two yeast data sets as well
as synthetic data sets. In [86], it is shown that the method can be tailored for
unveiling the regulatory program of the genes.

3.7 Assessing cluster quality

Clustering will produce different results. Even random data often produce
clusters depending on the specific choice of preprocessing, algorithm, and
distance measure. Therefore, validation of the relevance of the cluster results
is of utmost importance. Validation can be either statistical or biological.
Statistical cluster validation can be done by assessing cluster coherence, by
examining the predictive power of the clusters, or by testing the robustness of
a cluster result against the addition of noise.

Alternatively, the relevance of a cluster result can be assessed by a biological
validation. Of course it is hard, not to say impossible, to select the best cluster
output, since “the biologically best” solution will be known only if the bio-
logical system studied is completely characterized. Although some biological
systems have been described extensively, no such completely characterized
benchmark system is now available. A common method to biologically vali-
date cluster outputs is to search for enrichment of functional categories within
a cluster. Detection of regulatory motifs (see [97]) is also an appropriate bi-
ological validation of the cluster results. Some of the recent methodologies
described in literature to validate cluster results will be highlighted in the
following.

1. Testing cluster coherence: Based on biological intuition, a cluster result can
be considered reliable if the within-cluster distance is small (i.e., all genes
retained are tightly coexpressed) and the cluster has an average profile
well delineated from the remainder of the data set (maximal inter-cluster
distance). Such criteria can be formalized in several ways, such as the
sum-of-squares criterion of k-means [102], silhouette coefficients [57], or
Dunn’s validity index [5]. These can be used as stand alone statistics to
mutually compare cluster results. They can also be used as an inherent
part of cluster algorithms, if their value is optimized during the clustering
process.
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2. Figure of Merit: FOM [117] is a simple quantitative data-driven method-
ology that allows comparisons between outputs of different clustering
algorithms. The methodology is related to the jackknife and leave-one-
out cross-validation. The method goes as follows. The clustering algo-
rithm (for the genes) is applied to all experimental conditions (the data
variables) except for one left-out condition. If the algorithm performs
well, we expect that if we look at the genes from a given cluster, their
values for the left-out condition will be highly coherent. Therefore, we
compute the FOM for a clustering result by summing, for the left-out
condition, the squares of the deviations of each gene relative to the mean
of the genes in its cluster for this condition. The FOM measures the
within-cluster similarity of the expression values of the removed exper-
iment and therefore reflects the predictive power of the clustering. It is
expected that removing one experiment from the data should not inter-
fere with the cluster output if the output is robust. For cluster validation,
each condition is subsequently used as a validation condition, and the
aggregate FOM over all conditions is used to compare cluster algorithms.

3. Sensitivity analysis: Gene expression levels are the superposition of real
biological signals and experimental errors. A way to assign confidence to
a cluster membership of a gene consists in creating new in silico replicas
of the microarray data by adding to the original data a small amount
of artificial noise (similar to the experimental noise in the data) and
clustering the data of those replicas. If the biological signal is stronger
than the experimental noise in the measurements of a particular gene,
adding small artificial variations (in the range of the experimental noise)
to the expression profile of this gene will not drastically influence its
overall profile and therefore will not affect its cluster membership. In
this case, the cluster membership of that particular gene is robust with
respect to sensitivity analysis, and a reliable confidence can be assigned to
the clustering result of that gene. However, for genes with low signal-to-
noise ratios, the outcome of the clustering result will be more sensitive to
adding artificial noise. Through some robustness statistic [16], sensitivity
analysis lets us detect which clusters are robust within the range of
experimental noise and therefore trustworthy for further analysis.

The main issue in this method is to choose the noise level for sensitivity
analysis. Bittner et al. [16] perturb the data by adding random Gaussian
noise with zero mean and a standard deviation that is estimated as the
median standard deviation for the log-ratios for all genes across the
experiments. This implicitly assumes that ratios are unbiased estimators
of relative expression, yet reality shows often otherwise.

The bootstrap analysis methods described by Kerr and Churchill [59]
to identify statistically significant expressed genes or to assess the reli-
ability of a clustering result offers a more statistically founded basis for
sensitivity analysis and overcomes some of the problems of the method



54 Chapter 3. Clustering microarray data

described by Bittner et al. [16]. Bootstrap analysis uses the residual val-
ues of a linear analysis of variance (ANOVA) model as an estimate of
the measurement error. By using an ANOVA model, nonconsistent mea-
surement errors can be separated from variations caused by alterations
in relative expression or by consistent variations in the data set. These
errors are assumed to be independent with mean zero and constant vari-
ance σ2 but no explicit assumption on their distribution is made. The
residuals are subsequently used to generate new replicates of the data
set by bootstrapping (adding residual noise to estimated values).

4. Use of different algorithms: Just as clustering results are sensitive to adding
noise, they are sensitive to the choice of clustering algorithm and to the
specific parameter settings of a particular algorithm. Many clustering
algorithms are available, each of them with different underlying statistics
and inherent assumptions about the data. The best way to infer biological
knowledge from a clustering experiment is to use different algorithms
with different parameter settings. Clusters detected by most algorithms
will reflect the pronounced signals in the data set. Again statistics similar
to that of Bittner et al. [16] are used to perform these comparisons.

Biologists tend to prefer algorithms with a deterministic output, since
this gives the illusion that what they find is “right”. However, nondeter-
ministic algorithms offer an advantage for cluster validation, since their
use implicitly includes a form of sensitivity analysis.

5. Enrichment of functional categories: One way to biologically validate results
from clustering algorithms is to compare the gene clusters with existing
functional classification schemes. In such schemes, genes are allocated to
one or more functional categories [44, 97] representing their biochemical
properties, biological roles, and so on. Finding clusters that have been
significantly enriched for genes with similar function is proof that a
specific clustering technique produces biologically relevant results.

Using the cumulative hypergeometric probability distribution, we can
measure the degree of enrichment by calculating the probability or P-
value of finding by chance at least k genes in this specific cluster of n
genes from this specific functional category that contains f genes out of
the whole g annotated genes

P = 1 −
k−1∑
i=0

( f
i

)(g− f
n−i

)(g
n
) =

min(n, f )∑
i=k

( f
i

)(g− f
n−i

)(g
n
) . (3.3)

These P-values can be calculated for each functional category in each
cluster. Note that these P-values must be corrected for multiple testing
according to the number of functional categories.
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3.8 Conclusion

In this chapter, we provide an overview of clustering algorithms on microarray
data from three points of view. By looking at the advantages and disadvan-
tages of classical clustering algorithms, we conclude that tailored clustering
algorithms are necessary for better analysis of microarray data. We reviewed
a couple of model-based methods where traditional probabilistic models are
applied. This review provides a basis for understanding our Bayesian models
for microarray data. After that, we briefly discussed the current status of re-
search in biclustering, which situates our research properly. Finally, we give a
guideline for evaluating the quality of a cluster.
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Chapter 4

Gibbs sampling on Bayesian
hierarchical models the
biclustering

This chapter explains in detail the main framework of our biclustering strat-
egy. We start with an introduction of Gibbs sampling. Next, we introduce
the concept of Bayesian hierarchical models, followed by a detailed descrip-
tion of how it is applied to the modeling for the biclustering problem. Then,
we combine the two concepts, and elaborate the Gibbs sampling procedure
on the Bayesian hierarchical model for biclustering—the framework of our
algorithm.

4.1 Introduction

Most clustering techniques provide a global view of the structure of microar-
ray data, revealing genes that share similar expression profiles, or grouping
experiments according to their associated gene expression values. While the
information extracted by these clustering algorithms can be interesting for bi-
ologists when they have little idea about the function of the genes under study,
or (when clustering patients, for example) about what the classifications of the
patients are. However, this type of analysis does not provide insights to those
specific questions that biologists ask.

These specific questions, nowadays, with the developments in systems biology,
are often derived from information from other sources. The increasingly over-
whelming amount of data from heterogeneous sources, besides mRNA level
data (e.g. DNA sequence information, protein structural information) calls
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out for analysis strategies that can integrate these biological insights from dif-
ferent aspects to study the concerted gene interactions. To this end, clustering
algorithms that are compatible for such integration are favorable. For exam-
ple, suppose that a few genes are identified to share the same cis-regulatory
elements in their promoter regions by motif finding algorithms. However,
because of the large noise in DNA sequence data, this discovery does not
guarantee the coregulation of the genes. Evidence from gene expression data
can not only support (or reject) such discoveries in the DNA sequence data,
but also provide new clues of other genes that could be in the same regulatory
transcriptional module (i.e., genes that are coregulated under a certain circum-
stance). To be more concrete, a desirable biclustering algorithm should allow
input of information from a set of genes that share same motif combination in
their promoter region, identify a transcriptional module for these genes, and
leave out those input genes whose expression profile do not match the found
transcriptional module.

Clustering algorithms based on Bayesian probabilistic models are promising as
candidates meeting these requirements. Most importantly, Bayesian inference
allows introducing prior knowledge, which captures the specific questions of
biologists. The incorporation of prior also provides a reliable and interpretable
platform for the integration of the analysis of gene expression data with other
sources of biological information [88, 35]. In addition, Bayesian probabilistic
models retain all the property of general probabilistic models to reveal the
fundamental structure that biologists seek in microarray data [87, 86] (see
Section 3.6).

Seeing these advantages, we put the biclustering problem of microarray data in
the Bayesian context. As we explained in Chapter 3, the biclustering problem
that we consider is to identify genes that behave similarly only over a subset
of conditions. Or for the other orientation of microarray data, the aim of
biclustering is to group experiments (e.g., patients) under each of which a
subset of genes have almost the same expression values, see Figure 1.6. To
distinguish these two types of biclustering problems, we refer to the former
as “biclustering genes”, and the latter as “biclustering experiments”. We use
Bayesian hierarchical models to describe both of the problems. We choose to
use Gibbs sampling to learn such Bayesian models.

The Gibbs sampling strategy was first introduced to the field of bioinformatics
for its applications to the motif finding problem [64] in DNA sequence analysis,
and has become the method-of-choice for this problem [99]. Our idea to apply
Bayesian strategy to the biclustering problem of microarray data was inspired
by its success in motif finding.

Gibbs sampling is a Markov chain Monte Carlo technique to draw samples
from a joint distribution, when the conditional distributions of all the target
random variables are available. It has become a popular alternative to the
expectation-maximization (EM) algorithm for solving incomplete-data prob-
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lems. In a typical incomplete data problem, the observed data is described by
a set of random variables (i.e., the observed variables). For each data point (a
vector whose length equals the number of random variables in the set), the
particular distribution applied to the observed random variables depends on
the corresponding values of a set of hidden variables. However the values of
the hidden variables are not observed, and they form the missing data of the
problem∗. The task is to estimate the missing data for the hidden variables as
well as the parameters of the involved distributions in the model.

The EM algorithm iterates between an expectation step for estimating (the suf-
ficient statistics of) the hidden variables, and a maximization step that selects
the model parameters that maximize the likelihood based on the complete
data (which includes both the observed data and the missing data). Gibbs
sampling, on the other hand, treats both the hidden variables and the model
parameters as random variables, and aims at estimating their joint distribu-
tion. Once the joint distribution is obtained, posterior mean estimate (PME)
estimates are often used for the hidden variables and the model parameters.

So far, we have only addressed the case when the relation between the hidden
variables and the observed variables is known (i.e., known structure). How-
ever, when such structure is unknown, Gibbs sampling becomes an alternative
to structural EM. Structural EM resembles EM by adding a step for structure
optimization. Gibbs sampling, in this case, describes the structure also by
random variables and applies the same strategy.

As explained later in this chapter, the biclustering problem belongs to the latter
type of problem (with incomplete data and unknown model structure). Gibbs
sampling is often found to be time consuming and computationally intensive
for structural learning. However, for the particular class of structure that
addresses the biclustering algorithm (the same general structure is applied to
both the biclustering of genes and the biclustering of experiments), we found
that Gibbs sampling to be efficient, and we favor the Gibbs sampling strategy
over structural EM.

This chapter is organized as follows. First, in Section 4.2, we review some
essential concepts for Gibbs sampling, especially on how and why it works.
Then in Section 4.3, we discuss Bayesian model that we use for the biclusering
problem, as well as why we prefer Gibbs sampling to structural EM for solving
the problem. Finally, we detail the Gibbs sampling procedure in Section 4.4.

∗Note that we distinguish between the phrases “missing data” and “missing values”. Missing
data refers to the data of the hidden variables, while missing values refer to data points in a
microarray data matrix whose values are marked as unavailable (see Section 2.5). Bayesian
inference can be applied to deal with both missing values and missing data, however, the detailed
procedure can be quite different between the cases.
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4.2 Gibbs sampling

Gibbs sampling is a technique to draw samples from a joint distribution based
on the full conditional distributions of all the associated random variables.
Though the idea roots back to the work of Hasting (1970) [48], whose focus
was on its Markov chain Monte Carlo (MCMC) nature, the Gibbs sampler
was first formally introduced by Geman and Geman (1984) [40] to the field
of image processing. The work caught the attention of the statistics society
(especially boosted by the paper of Gelfand and Smith (1992) [38]). Since then,
the applications of Gibbs sampling have covered both the Bayesian world and
the world of classical statistics. In the former case, Gibbs sampling is often
used to estimate posterior distributions, and in the latter, it is often applied to
likelihood estimation [19]. We will talk about the difference between Bayesian
statistics and classical statistics in Section 4.3. In this section, we discuss the
working mechanism of Gibbs sampling.

Gibbs sampling allows statisticians to avoid the tedious and sometimes non-
trivial mathematical calculations of integrals for obtaining the joint distribu-
tion, by sampling directly from the full conditional distributions†. Suppose
that we want to draw samples for the set of random variables X1, X2, . . . , Xm,
but that the marginal distributions (and thus their joint distribution) are (is)
too complex to directly sample from. Suppose also that the full conditional
distributions p(Xi |X j; j , i) (for i = 1, . . . , n) can easily be sampled from.
Starting from initial values x(0)

1 , x(0)
2 , . . . , x(0)

m , the Gibbs sampler draws samples
for the random variables in the following manner,

x(t+1)
1 ∼ p(X1 |X2 = x(t)

2 , . . . , Xm = x(t)
m )

x(t+1)
2 ∼ p(X2 |X1 = x(t+1)

1 , X3 = x(t)
3 , . . . , Xm = x(t)

m )
...

x(t+1)
i ∼ p(Xi |X1 = x(t+1)

1 , . . . , Xi−1 = x(t+1)
i−1 , Xi+1 = x(t)

i+1, . . . , Xm = x(t)
m )

...

x(t+1)
k ∼ p(Xm |X1 = x(t+1)

1 , . . . , Xm−1 = x(t+1)
m−1 ),

(4.1)

where t indexes the iterations.

Geman and Geman (1984) [40] shows that as t→∞, the distribution p(X(t)
1 , . . . , X(t)

m )
converges to p(X1, . . . , Xm). Equivalently, as t → ∞, the distribution p(X(t)

i )
converges to p(Xi) (for i = 1, . . . , m).

†Because the same mechanism applies to both discrete models and continuous models, we use
the terms “distribution” and “density” interchangeably, and we use p(·) to denote both in this
section.
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4.2.1 The Markov chain property

The convergence of samples drawn by the Gibbs sampler relies on the fact that
these samples form aMarkov chain. To be more explicit,(

(X(1)
1 , . . . , X(1)

m ), . . . , (X(t)
1 , . . . , X(t)

m )
)

as well as
(X(1)

i , . . . , X(t)
i )

are Markov chains, where (X(t)
1 , . . . , X(t)

m ) and X(t)
i are called the states of

(X1, . . . , Xm) and Xi respectively. The basic property of a Markov chain, take
that of Xi for example, is

p(X(t+1)
i |X(t)

i , . . . , X(0)
i ) = p(X(t+1)

i |X(t)
i ), (4.2)

which means that the future state of the random variable depends only on
its current state but not on its past states. In other words, the current state
summarizes the past.

Now suppose that we only consider the case of Xi, we use πu(v) to denote the
probability that Xi is in state b at time point t + 1. Writing

πb(t + 1) = p(X(t+1)
i = b) (4.3)

πa(t) = p(X(t)
i = a) (4.4)

and p(a→ b) = p(X(t+1)
i = b |X(t)

i = a), (4.5)

we have
πb(t + 1) =

∑
a

p(a→ b)πa(t). (4.6)

p(a → b) is called the transition probability of going from state a to b (for
random variable Xi). When Xi is a discrete random variable, the probability
transition matrix P is obtained by listing all the possible states for Xi along the
rows and the columns, and filling the stochastic matrix with all the transition
probabilities. Note that this implies that each row of P sums to 1. When
Xi is a continuous variable, the transition matrix can be seen to have infinite
dimensionality, and is represented by a density function.

Thus to generalize Equation 4.6, we have

π(t + 1) = Pπ(t). (4.7)

A Markov chain will reach a unique stationary distribution π∗, such that,

π∗ = Pπ∗, (4.8)

if
p( j→ k) · π∗j = p(k→ j) · π∗k. (4.9)
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This sufficient (but not necessary) condition is called detailed balance. When
this condition is met, samples of the concerned variables obtained by Gibbs
sampling are guaranteed to converge to the stationary distribution π∗, inde-
pendent of the initial distribution of the states π(0).

Casella and George (1992) [19] gives a simple yet intuitive proof that the
stationary distributions of the Markov chains generated by Gibbs sampling
are the joint distribution p(X1, . . . , Xm) and the marginal distributions p(Xi),
and that the probability transition matrices of these Markov chains can be
derived from the full conditional distributions. We demonstrate in Figure 4.1
the convergence of the Gibbs sampling procedure on a simple two dimensional
Gaussian distribution, (

x1
x2

)
= N

((
0
0

)
,

(
1 0.5

0.5 1

))
. (4.10)

As the figure illustrates, the samples collected by the Gibbs sampler converge
to the target distribution, (instead of a single point).

4.2.2 The Monte Carlo property

We leave the discussion of convergence diagnosis of Gibbs sampling to the next
section, and for the moment we assume that we have decided a time point by
which we consider the procedure to have converged. Only those samples
collected by the Gibbs sampler after the convergence is reached can be used
for joint (or marginal) distribution estimation. The Gibbs sampling phase
performed before the convergence is reached is often referred to as the “burn-
in phase”, and the phase during which samples are collected will be called
the “sampling phase” hereafter. The samples collected in the sampling phase
enable us to calculate the expectation of a function f (Xi) over the distribution
p(Xi). This is done by the Monte Carlo integration

Ep(Xi)[ f (Xi)] =
∫

f (Xi) · p(Xi)dXi ≈
1
T

T∑
t=1

f (x(t)
i ), (4.11)

where t indexes the iterations in the sampling procedure, and T is the total
number of samples collected. Thus, the expected value of Xi can be calculated
as

Ep(Xi)[Xi] =
∫

Xi · p(Xi)dXi ≈
1
T

T∑
t=1

X(t)
i . (4.12)

However, as illustrated by Gelfand and Smith (1990) [38] (using the Rao-
Blackwell theorem), a more accurate estimate of the expected value of Xi is
provided by

Ep(Xi)[Xi] =
1
T

T∑
t=1

Ep(Xi |X j; j,i)[Xi]. (4.13)
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(a) Trace plot of the first 20 samples drawn by
the Gibbs sampler. The red dot is the starting
point.

(b) Parameters of the true distribution, and
sample statistics obtained during the burn-in
procedure and on the converged samples.

(c) The green dots are samples obtained for
the true distribution, using generic functions
in MATLAB. The blue dots are samples ob-
tained during the burn-in procedure of Gibbs
sampling.

(d) The green dots are samples obtained for
the true distribution, using generic functions
in MATLAB. The blue dots are samples ob-
tained after convergence of the Gibbs sam-
pling procedure is reached.

Figure 4.1: Example of Gibbs sampling on a two-dimensional Gaussian distri-
bution. During the burn-in phase, the samples are coming into form so that
they begin to overlap with the true distribution. The samples collected after
convergence is reached represent the true distribution well.
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Similarly, the posterior distribution itself can be approximated by

E[p(Xi)] =
1
T

T∑
t=1

p(Xi |X j; j , i). (4.14)

With more generality, a better alternative for Equation 4.11 is

Ep(Xi)[ f (Xi)] =
1
T

T∑
t=1

Ep(Xi |X j; j,i)[ f (Xi)]. (4.15)

In the above three equations, p(Xi |X j; j , i) denotes the full conditional distri-
bution of Xi. The estimators obtained by Monte Carlo integration are unbiased
maximum a priori (PME) estimators.

4.2.3 Checking the convergence

A key issue in using Gibbs sampling is to determine when the procedure
has essentially converged. The number of iterations needed for the burn-
in procedure varies from case to case. For a well-mixed Markov chain—
whose samples cover most of the region of the random variable space—the
convergence can be reached within a few iterations. However, a bad starting
point plus a multimodal target distribution with some of its probabilities close
to zero can result in a poorly mixed chain so that only a small region of the
random variable space is sampled for a long period of time. In this case, the
number of burn-in iterations can easily reach a few thousand. In general, an
optimal starting point close to the center of the marginal distribution can help
in the accelerating the convergence. In addition, using multiple chains starting
at independent positions of the random variable space can help to increase the
coverage of the samples [39] and thus alleviate the problem of poorly mixed
chains.

Yet, convergence diagnostics are favorable in assisting the decision. Informal
procedures of convergence diagnostics include inspecting the trace plot of the
concerned variables or the evolution of the likelihood. Various formal proce-
dures has also been proposed. The method of Raftery and Lewis (1992) [79]
aims to bound the summary statistics of the target variables within a certain
precision. Their approach calculates the number of burn-in iterations as well as
the total number of iterations that are needed to reach a specific quantile with
a desired accuracy with a pre-specified probability. Geweke’s diagnostic [43]
checks if a Markov chain approaches a stationary distribution by examining
if the standardized difference between the mean of the samples taken in the
beginning of the chain and the mean of the samples taken from the end of the
chain reaches a normal distribution. Both of the methods mentioned above
perform diagnostics on a single Markov chain. Gelman and Rubin (1992) [39]
proposed an approach based on parallel Markov chains. The method is based
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on comparison of the within chain variance with the between chain variance
for each target variable. A good review on various convergence diagnostics is
provided by Cowles and Carlin (1996) [25].

In the rest of this section, we focus on one of the important issues for the
convergence of a Markov chain—the autocorrelation—which is used as our
formal criterion to determine if the Gibbs sampling procedure for biclustering
has converged.

One of the reasons that a Markov chain generated by the Gibbs sampler has
a slow convergence is that the samples at successive iterations are not inde-
pendent. This dependency implies that the variance of the model obtained by
averaging the parameters may be much higher (i.e., the accuracy of the model
is lower) than if the samples were independent. The autocorrelation time is the
sum of the autocorrelation values for all positive lags and its square root gives
the factor by which we must increase the number of iterates of the autocor-
related estimates to obtain the same accuracy as with independent estimates.
Denoting by ω(t) the vector of parameters obtained at each iteration and by

ω̄ =
1
T

T∑
t=1

ω(t) (4.16)

the average set of parameters, the autocorrelation function ρ for a lag of h can
be estimated as

ρ̂h =
Cov(ω(t),ω(t+h))

Var(ω(t))
=

∑T−h
t=1 (ω(t)

− ω̄)(ω(t+h)
− ω̄)∑T−h

t=1 (ω(t) − ω̄)2
. (4.17)

In the frequent case where the autocorrelation function can be described as an
autoregressive process, the autocorrelation time ι

ι =
∞∑

h=1

ρ̂h (4.18)

can be simplified to
ι = (1 + ρ̂1)/(1 − ρ̂1). (4.19)

A large autocorrelation time indicates that the chain is poorly mixing, and the
convergence takes a long period.

One way to reduce the autocorrelation is to use the thinning of the Markov
chain. Thinning with a factor l means that each lth element in the chain will
be used for the posterior summary statistics (see Equation 4.15). Another
computational advantage of using the thinning procedure is that it saves the
memory complexity of the Gibbs sampling procedure (although it does not
reduce the computational complexity in any way).

We will show an example of diagnosing the autocorrelations of samples pro-
duced for our biclustering algorithm in Section 5.6.2.
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4.3 Bayesian hierarchical model for biclustering

4.3.1 Bayesian hierarchical models

Suppose that the data for all the concerned random events are collected, and
that the probabilistic model to describe the data is known (or, more realisti-
cally, when the model is determined), and that we would like to estimate the
parameters of the model. From a frequentist point of view, the true parameters
are reflected in the data. However, for a Bayesian, the problem is “starting
from my current knowledge, what do I learn from the collected information
(i.e., data) about the probability that these random events could happen?” or
“how do these data change my point of view?”. This updating procedure of
belief is the essential question that Bayesian inference addresses. The mathe-
matical form of Bayesian inference provides a natural form for translating the
problem to mathematical language,

p(Θ |D, ξ) =
p(Θ | ξ) · p(D|Θ, ξ)

p(D| ξ)
. (4.20)

In Equation 4.20, D represents the data for the random events (i.e., random
variables of interest) Xm = {X1, X2, . . . ,Xm} of interest (where m is the number
of random variables), i.e., D =

{
Xm = x m[1], . . . , Xn = xm[n]

}
(where n is

the total number of instances in the data); and Θ stands for the parameters
of the distribution of Xm (i.e., model parameters, which quantify our belief).
Equation 4.20 tells us that

Posterior probability =
Prior probability × Likelihood

Evidence
,

see Figure 4.2 for a further illustration. The first term in the numerator of Equa-
tion 4.20, p(Θ | ξ), is called the prior distribution of Θ, where ξ parameterizes
this prior distribution (ξ is therefore called the hyperparameter of a Bayesian
model). The second term in the numerator of Equation 4.20, p(D|Θ, ξ), is
called the likelihood of Θ, which is computed based on the probability dis-
tribution of Xm, which is parameterized by Θ, which is referred to as the
parameters of the Bayesian model. The likelihood funciton is the probability
that we observe the data given the model parameters. Finally, the denomina-
tor, p(D| ξ), is called the evidence. It is a normalization term to ensure that the
result of the calculation is still in the form of a probability. The evidence can
be obtained by

p(D| ξ) =
∫
Θ

p(D|Θ, ξ) · p(Θ | ξ)dΘ. (4.21)

The left-hand part of the Equation 4.20, p(Θ |D, ξ), is called the posterior
distribution ofΘ. It represents of our belief after our knowledge is updated by
the presence of the data. In this way, Bayesian inference resembles the human
learning process.
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Figure 4.2: Bayesian hierarchical model and Bayesian inference. The solid ar-
rows show the direction of the modeling in a Bayesian hierarchical model (i.e.,
the distribution of the model parameters is parameterized by the hyperparam-
eters, and the distribution of the random variables of interest is parameterized
by the model parameters). Bayesian inference concerns the problem of how
our belief of the model parameters changes from our prior belief, given the
realization of the random variables (i.e., the data). The dashed arrows show
the information flow in Bayesian inference. Note that the hyperparameters are
seen as fixed values, and are not inferred.
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We have explained above the Bayesian model from the inference point of view.
From the modeling point of view, Bayesian hierarchical model comprises of
three levels, see Figure 4.2. At the bottom level of the hierarchy are the random
variables Xm to which the dataD is presented. This level is thus referred to as
data level. In the middle of the hierarchy are the model parameters for Xm—Θ.
Therefore, this level is called the model level. Finally on the top—the prior
level, we have the prior of the model ξ.

When both the data and the prior are given, the inference of the model pa-
rameters Θ is straightforward by applying Equation 4.20. However, for our
biclustering problem, the microarray data that we obtained only composes
the “observed data” of the problem, which are represented by the observed
random variables in the model. But the partition of the observed data into
the bicluster and the background requires some hidden variables, whose val-
ues are unknown. Therefore, the biclustering problem is an incomplete-data
problem. Gibbs sampling is one of the techniques for solving the inference of
models for this type of problems.

4.3.2 Biclustering: an incomplete-data problem

Graphical models, especially directed acyclic graphical (DAG) models (i.e., for
any vertex v in the graph, there is no path that starts and ends at v) provide
a good representation tool to visualize the relations between the missing data
and the observed data in the biclustering problem. The theory of graphical
models combines probability theory and graph theory, which have become
important tools for machine learning. It is an active research area. A good
tutorial for this field is provided by the book edited by Jordan (1999) [55]. In
what follows, we briefly introduce the terminology used for graphical models.
We then go directly into the discussion of applying graphical models to depict
the data level of Bayesian hierarchical model of biclustering.

Graphical models

A probabilistic graph G(V,E) contains two components, one for the set of
verticesV in the graph, and the other for the set of edges E in the graph. The
vertices of a graph are also called nodes. They represent the random variables
under consideration. An edge in the graph refers to the relation between two
random variables by means of a conditional distribution. An edge points from
a parent variable to its child variable.

In the example of Figure 4.3(A), Y is the parent of X, the edge in between refers
to p(X |Y). In this way, graphical models also depict independence between the
variables. When there is no path of edges that connects two nodes, it implies
that the two nodes are totally independent. In the example of Figure 4.3(B), X
is independent of Y, mathematically denoted as X y Y, which means

p(X,Y) = p(X) · p(Y). (4.22)
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Figure 4.3: Examples of simple graphical model structures.

Figure 4.4: Example of plate: A uses a plate to simplify the structure presented
in B. Both of the graphs imply that the m variables in Xm are conditionally
independent and identically distributed given Y. This structure is known as a
naive Bayes structure.

A more useful and commonly seen independence relation is that of the con-
ditional independence. This is when two nodes share the same parent or
ancestors. In Figure 4.3(C), X1 and X2 are conditionally independent of each
other given Y, written X1 y X2 |Y, i.e.

p(X1,X2 |Y) = p(X1 |Y) · p(X2 |Y). (4.23)

This means that all the dependency between X1 and X2 is addressed by random
variable Y.

When a graphical model has a replicated structure, a plate can be used to
simplify the graph, See Figure 4.4.

Graphical models for clustering using mixture models

We start our discussion of the application of graphical models by considering
a simpler case—i.e., clustering gene expression profiles by fitting the data to a
mixture model. As we explained in Section 3.5, the task of clustering here is
to associate each gene expression profile to the best fitting component in the
mixture. Thus the data instances refer to the gene expression profiles.

We illustrate the data level of a Bayesian model for the clustering problem in
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Figure 4.5: Data level of a Bayesian model for the clustering problem. The
colored grids represent a microarray data matrix, where a cluster is high-
lighted. Each column in the data matrix is represented by a random variable
Xi, (i = 1, . . . , 9), and the rows are treated as data instances. A hidden variable
R describes whether a row belongs to the cluster. Both X and R are random
variables at the data level of the Bayesian hierarchical model. The upper part
of the figure shows the graph model that depicts the relation between the
random variables, which shows that X is dependent on R. The lower part of
the figure shows the realization of the model. While the data for X is observed
(i.e., microarray data), the task of clustering is to find out the value of R for
each row, which is unknown.
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Figure 4.5. Each row in the data matrix, is considered as a data instance, and is
described by m random variables (Xm), corresponding to the m experimental
conditions in the data set. The distribution of Xm depends on the value of
a hidden variable R. In Figure 4.5, R has only two possible values—“1” to
indicate that the row belongs to the cluster, and “1” for otherwise. However,
R can also take value 1, . . . , k indicating to which of the k components (of the
mixture) the row belongs. The values for Xm are observed (i.e., the microarray
data D), however, the values for R is not. Therefore, the data for R is called
missing data. The nodes in the graph only represent the data level of the
problem. The edges in Figure 4.4 (i.e., the conditional distribution between Xm
and R) is where the hierarchical model discussed in Section 4.3.1 comes in for
Xm,

p(Xm |R = r) = f (ΘXm | r), (4.24)

where f (ΘXm |y) is a probability density function for Xm, and ΘXm |r stands for
the set of parameters for the density function when R = r. For example, when
a normal mixture model is used (see Section 3.5.1),

f (ΘXm |r) = N(µXm |r
,ΣXm |r). (4.25)

ΘXm |r is further modeled by a prior distribution p(ΘXm |r | ξXm |r).

Graphical models for the biclustering problem

Let us first restate the biclustering problem. We mentioned in the beginning of
this chapter that biclustering can be applied to both orientations of a microarray
data matrix—i.e., biclustering the genes and biclustering the experiments,
see Figure 1.6 for an illustration. In the rest of this chapter, we generalize
the problem by treating both of the problems as biclustering the rows of a
matrix. That is to say, in the case for biclustering experiments, we transpose
the matrix. The generalized problem is to find a set of rows in a matrix, whose
data entries under each selected column (for the bicluster) are similar (see the
matrix illustrated in Figure 4.6). Note that we search for one bicluster at a time.
(We will talk about how to find multiple biclusters later in this chapter.)

As shown in Figure 4.6, the n rows of a microarray data matrix are the data
instances in the problem, and the m columns corresponds to the random vari-
ables, represented by Xm. A hidden variable R describes whether a row belongs
to the bicluster. Thus, R only takes the value of 0 (which indicates that the
data point belongs to the background; i.e., not in the bicluster) and 1 (which
indicates the data point belongs to the bicluster). Unlike in the clustering case,
only part of the observed variables Xbcl

∈ Xm is conditioned on the hidden
variable R, while the rest of the variables Xbgd

∈ Xm, (Xbcl
∩ Xbgd = ∅ and

Xbcl
∪ Xbgd = Xm) are always modeled by the background distribution. This

relationship between Xm and R is depicted by Figure 4.6.

The graph model in Figure 4.6 only illustrates the data level of the Bayesian
hierarchical model (see Figure 4.2). The rest of the Bayesian hierarchical model
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Figure 4.6: Data level of a Bayesian model for biclustering. The colored matrix
represents microarray data, where an embedded bicluster is highlighted. Each
column in the data matrix is represented by a random variable Xi, (i = 1, . . . , 9).
The rows in the matrix are treated as data instances. A hidden variable R
describes whether a row belongs to the cluster. Both X and R are random
variables at the data level of the Bayesian hierarchical model. The upper part
of the figure shows the graph model that depicts the relation between the
random variables. Unlike the case for clustering problems, now only those
Xi’s whose represented column belong to the bicluster are dependent on R.
This dependence is reflected by the edges in the graph model. In addition, a set
of structure variables Cm is introduced. Each value C j, ( j = 1, . . . , 9), indicates
whether the corresponding edge is represented in the graph. The lower part of
the figure shows the realization of data level in the hierarchical model. While
the data for X is observed (i.e., microarray data), the task of clustering is to find
out the value of R for each row, which is unknown. Moreover, an additional
task for biclustering is to infer the value of the structural variables Cm (i.e., to
learn the structure of the graph model).
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for Xm is explained as follows. The conditional distribution for Xbcl is

p(Xbcl
|R = 1) = f (Θbcl), (4.26)

p(Xbcl
|R = 0) = f (Θbgd). (4.27)

The distribution for Xbgd is

p(Xbgd) = f (Θbgd). (4.28)

Again, f (·) denotes a probabilistic distribution in Equations 4.26 to 4.28. The pa-
rameters Θbcl and Θbgd are modeled by their prior distributions—p(Θbcl

| ξbcl)
and p(Θbgd

| ξbgd) respectively.

Learning the model: Gibbs sampling vs. structural EM

Gibbs sampling has become a popular alternative to the EM for solving the
incomplete-data problem when the data structure is known, such as in the case
of using mixture models for clustering (see Figure 4.5). (See Section 3.5 for
a brief explanation of EM.) The problem is to estimate the missing data (i.e.,
values of the hidden variables) as well as the model parameters.

EM is a numerical maximization procedure that climbs in the likelihood land-
scape aiming to find the model parameters and the hidden variables that max-
imize the likelihood function. It iterates between the following two steps [28],
(1) assuming that the model parameters are known, it calculates the expected
value of the hidden variables (i.e., the sufficient statistics‡ of the missing data),
(2) with the expected values of the hidden variables estimated, it finds the
model parameter that maximizes the likelihood computed on the complete
data. Instead of the likelihood function, the posterior distribution of the com-
plete data can also be used as the target function for the maximization step to
accommodate the introduction of prior knowledge and thus to put the method
in a Bayesian context. The procedure is guaranteed to converge to a stable so-
lution under general conditions [111]. However, the obtained solution of the
EM often gets stuck at local maxima modes of the likelihood function (or the
posterior distribution). To alleviate the problem, multiple runs of EM proce-
dure with independent initializations are often performed, and the solution
with the highest likelihood is selected.

Gibbs sampling, on the other hand, treats the model parameters as random
variables as well—i.e., in the same way as the hidden variables. The task for
the Gibbs sampling procedure is therefore to estimate the joint posterior dis-
tribution p(DR,Θ |D), whereDR stands for the data for the hidden variable R
(i.e., the value of R for each row of the data matrix). As explained in Section 4.2,

‡With D representing the data and θ representing the parameter of the underlying probability
distribution describing D, a statistic F(D) is sufficient forθ if the conditional probability distribution
p(D |F(D)) does not depend on θ.
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the Gibbs sampling strategy estimates the joint distribution by sampling from
the full conditional distributions of the random variables involved (i.e., nodes),
and the PME estimates of the random variables are obtained by performing
Monte Carlo integrations. In other words, PME estimates are made after an es-
timate of the whole posterior distribution is obtained (by the samples collected
during the Gibbs sampling procedure). This strategy increases the probability
of finding the global maximum solution.

In the above case, the known structure of the graph implies the assumption
that the association of columns to the bicluster is known. The estimation of the
value of the hidden variable R answers whether a row of the matrix belongs to
the bicluster. However, for our biclustering problem, neither the association of
the rows, nor the association of the columns is known. In addition to the value
of the hidden variables and the model parameters, the task includes finding
the edges between R and Xm; i.e., the structure of the graph, see Figure 4.6.

The task of Bayesian inference is therefore extended. UsingM to denote the
structure of the graphical model, Equation 4.20 can be rewritten as

p(Θ |D,M, ξ) =
p(Θ |M, ξ) · p(D|Θ,M, ξ)

p(D|M, ξ)
. (4.29)

With the model structure unknown, another term specifying the prior for the
model structure, p(M|κ), needs to be added to the denominator on the right-
hand-side of Equation 4.29, where κ is the hyperparameter for the distribution
ofM

p(Θ |D,M, κ, ξ) =
p(M|κ) · p(Θ |M, ξ) · p(D|Θ,M, ξ)

p(D|M, κ, ξ)
. (4.30)

In this case, both structural EM [34] (which can be seen as an extension of the
EM algorithm) and Gibbs sampling can be used for solving the problem.

Structural EM extends EM by a step for structural search. Starting with an
initial structure M(0), the algorithm performs an EM procedure to find the
estimations for the hidden variables and the model parameters. To put the
procedure in a Bayesian context, PME is used for the maximization step—that
is,

Θ̂ = argmaxΘ{E[Dc
|Θ,M, ξ]}, (4.31)

where Dc denotes the complete data. Then, a Bayesian information criterion
(BIC) [84] score is calculated for the model structure based on the complete data
and the optimized model parameter, s(Dc, Θ̂,M, ξ). Next, a structural search
is performed, and the BIC score is calculated in the same fashion for each of
the encountered model structures. The model structure with the highest score
is selected as the starting point for the next iteration of structure search. The
whole procedure iterates until the BIC score converges.
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As for the Gibbs sampling strategy, the structural estimation is performed in
the same manner as the estimation for the hidden variables and the model
parameters. Whether there is an edge between R and X j (for j = 1, . . . ,m)
is seen as a random event C j, see Figure 4.6. Note that Cm is thus equiva-
lent to M. The target posterior joint distribution becomes p(DR, Cm, Θ |D).
Gibbs sampling is often thought to be a computational intensive procedure for
structural learning. However, because candidate structures for the bicluster-
ing problem conform to the same general structure, (namely only node R is
allowed to be a parent node, see Figure 4.6), we found Gibbs sampling to be an
efficient strategy to find the global maximum mode in the posterior mixture
model. Because in this case, the number of structural variables (Cm) added to
the Gibbs sampling procedure is linear (instead of exponential) with respect
to the number of random variables (Xm).

In addition, as we have mentioned several times, Gibbs sampling paints out
the entire posterior distribution of interest (by the samples that it collects) be-
fore a PME estimate is made. This property makes Gibbs sampling a suitable
candidate for solving model-based problems in bioinformatics, where the like-
lihood function or the posterior function usually consists of a large number
of modes because of the high complexity of the data. Though it takes Gibbs
sampling longer to converge and to collect the samples (than performing one
run of EM or structural EM), considering that there is little knowledge in ad-
vance about how many multiple runs are needed for EM or structural EM to
find the global maximum, we consider Gibbs sampling an efficient technique
for solving this type of problem in bioinformatics.

4.4 Gibbs sampling for biclustering

The entire Gibbs sampling scheme for biclustering is summarized in Figure 4.7.
In what follows, we explain the scheme in detail.

We have mentioned in Section 4.3 that the Bayesian hierarchical models are
applied to the conditional distributions that are represented by the edges in
the graph. In addition, to put the whole model in a Bayesian context means
that Bayesian hierarchical models are also used for R and Cm in Figure 4.6. All
of them are Bernoulli variables by nature (as explained in Section 4.3),

P(R) ∼ Bernoulli(Λr), (4.32)
P(C j) ∼ Bernoulli(Λc) j = 1, . . . ,m, (4.33)

whereΛr andΛc are the parameters of the Bernoulli distribution (see Appendix
for a description of the distribution). Equation 4.33 implies the assumption that
whether there is an edge between R and Xi is modeled by the same distribution
for i = 1, . . . ,m. The Bernoulli parameters Λr and Λc are further modeled by
their respective priors—conjugate priors are used for this purpose—which fol-
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5 The procedure will be explained in detail in Chapter 5.
6 The procedure will be explained in detail in Chapter 6.

Figure 4.7: The Gibbs sampling scheme for biclustering.
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lows Beta distributions (see the Appendix for a discussion on Beta distribution,
and see Section 5.5 for a definition and discussion of conjugate priors.)

p(Λr) ∼ Beta(ζr), (4.34)
p(Λc) ∼ Beta(ζc). (4.35)

The model level (see Figure 4.2) of the whole Bayesian model for the bicluster-
ing problem (which is composed of model parameters Θbcl, Θbgd—see Equa-
tion 4.26 to Equation 4.28,Λr, andΛc), the data of the hidden variable (i.e.,DR),
and the structure of the data level of the Bayesian hierarchical model are the
targets of Gibbs sampling. However, the prior level of the hierarchical model
consists of hyperparameters ξbcl, ξbgd, and the ζ’s, and is treated as input of
the algorithm, and is not updated during the Gibbs sampling procedure, see
Figure 4.2.

We discuss in more details about Θbcl, Θbgd and their priors in the Bayesian
hierarchical models in Chapter 5 and Chapter 6 where different models are
established for biclustering experiments and biclustering genes respectively.
In the following, we discuss some common steps for the Gibbs sampling
procedure that are carried out in both cases.

Including the hyperparameters of the prior distributions in the target joint
distribution, the task of the Gibbs sampling procedure is to infer the posterior
joint distribution

p(DR, Cm, Θ
bcl, Θbgd,Λr, Λc, |D, ξbcl, ξbgd, ζr, ζc), (4.36)

which means that the full conditional distribution of each of the random vari-
ables is needed to carry out Gibbs sampling. In this chapter, we consider the
derivation of the full conditional distributions of the hidden dataDR and the
variables for structural specification Cm, as well as the manipulation of their
prior Bernoulli parametersΛr andΛc. These procedures turn out to have some
common interpretations for both biclustering genes and biclustering experi-
ments.

4.4.1 The target posterior joint distribution

As we will find out later, a decomposed target posterior joint distribution
makes the derivation of the full conditional distribution easier. Therefore, we
start with some analysis of the target posterior joint distribution using Bayes’
rule so that we can decompose the target posterior joint distribution. First,
separately out the evidence component, we have

p(DR, Cm, Θ
bcl, Θbgd, Λr, Λc

|D, ξbcl, ξbgd, ζr, ζc)

=
p(D, DR, Cm, Θ

bcl, Θbgd, Λr, Λc
| ξbcl, ξbgd, ζr, ζc)

p(D| ξbcl, ξbgd, ζr, ζc)
. (4.37)
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The denominator in the above equation (i.e., the evidence) is a normalization
term, which is independent of the model. Thus, we write,

p(DR, Cm, Θ
bcl, Θbgd, Λr, Λc

|D, ξbcl, ξbgd, ζr, ζc)

∝ p(D, DR, Cm, Θ
bcl, Θbgd, Λr, Λc

| ξbcl, ξbgd, ζr, ζc), (4.38)

where ∝means proportional to. Then, according to the Bayes’ rule (see Equa-
tion 4.20), the right-hand side in Equation 4.38 can be decomposed into com-
ponents of likelihood and priors.

p(D, DR, Cm, Θ
bcl, Θbgd, Λr, Λc

| ξbcl, ξbgd, ζr, ζc)

= p(D, DR |Cm, Θ
bcl, Θbgd, Λr).p(Θbcl, Θbgd

|Cm, ξ
bcl, ξbgd)

.p(Λr
|ζr) · P(Cm |Λ

c) · p(Λc
|ζc). (4.39)

Adding the conditional independence of the observed data given the hidden
data as depicted in Figure 4.6 to the above equation, we have

p(DDR, Cm, Θ
bcl, Θbgd, Λr, Λc

| ξbcl, ξbgd, ζr, ζc)

= p(D|DR, Cm, Θ
bcl, Θbgd).P(DR |Λ

r) · P(Cm |Λ
c)

.p(Θbcl, Θbgd
|Cm, ξ

bcl, ξbgd).p(Λr
|ζr) · p(Λc

|ζc)

=

n∏
i=1

{
p(Xm = D[i, ·] |R = DR[i], Cm, Θ

bcl, Θbgd) · P(R = DR[i] |Λr)
}

×p(Θbcl, Θbgd
|Cm, ξ

bcl, ξbgd).p(Λr
|ζr).p(Λc

|ζc).P(Cm |Λ
c), (4.40)

where D[i, ·] denotes the ith row in the microarray data matrix, and DR[i] is
the value for R for the corresponding row. The latter equality comes from
the assumption that D[i, ·] (for i = 1, . . . ,n) are independently and identically
distributed (i.i.d.) given the model—Cm,Θbcl, andΘbgd—and the missing data
DR[i], and thatDR[i] is i.i.d. given Λr. From now on, we base the derivation of
the full conditional distributions on Equation 4.40.

4.4.2 The manipulation of Λr and Λc

To decrease the number of parameters that needs to be estimated for our
Bayesian hierarchical model, we show in the following that Λr and Λc can
be integrated out of the target distribution, and will not be sampled during
the Gibbs sampling procedure. Because conjugate priors are used for Λr and
Λc, their full conditional distributions are in the same form as the prior—Beta
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distributions.

p(DR, Cm, Θ
bcl, Θbgd

|D, ξbcl, ξbgd, ζr, ζc)

∝

∫ ∫
p(D, DR, Cm, Λ

r, Λc, Θbcl, Θbgd
| ξbcl, ξbgd, ζr, ζc) dΛr dΛc

= p(D|DR, Cm, Θ
bcl, Θbgd).p(Θbcl, Θbgd

|Cm, ξ
bcl, ξbgd)

.

∫
P(DR |Λ

r) · p(Λr
|ζr) dΛr.

∫
P(Cm |Λ

c) · p(Λc
|ζc) dΛc

= p(D|DR, Cm, Θ
bcl, Θbgd) · P(DR |ζ

r)

×p(Θbcl, Θbgd
|Cm, ξ

bcl, ξbgd).P(Cm |ζ
c) (4.41)

Consequently, the target joint distribution becomes

p(DR, Cm, Θ
bcl, Θbgd

|D, ξbcl, ξbgd, ζr, ζc)

∝ p(D, DR, Cm, Θ
bcl, Θbgd

| ξbcl, ξbgd, ζr, ζc). (4.42)

For the detailed integration ofΛr, becauseDR are independent Bernoulli trials
given Λr, we have

P(DR |ζ
r) =

∫
P(DR |Λ

r) · p(Λr
|ζr) dΛr

=

∫
p(Λr

|ζr) ·
n∏

i=1

P(R = DR[i] |Λr)dΛr

∝

∫
(Λr)ζ

r
1−1
· (1 −Λr)ζ

r
0−1
· (Λr)v

· (1 −Λr)(n−v)dΛr

∝
Γ(ζr

0 + n − v)Γ(ζr
1 + v)

Γ(ζr
0 + ζ

r
1 + n)

, (4.43)

where ζr
0 and ζr

1 are the two elements of ζr corresponding respectively to the
prior probability that R = 0 and R = 1, and v denotes the number ofDR[i] = 1
for i = 1, . . . ,n. Similarly, for Cm, we have

P(Cm |ζ
c) ∝

∫
P(Cm |Λ

c) · p(Λc
|ζc) dΛc

∝
Γ(ζc

0 +m − w)Γ(ζc
1 + w)

Γ(ζc
0 + ζ

c
1 +m)

, (4.44)

where ζc
0 and ζc

1 are the two elements of ζc corresponding respectively to the
prior probability that C j = 0 and C j = 1 (for j = 1, . . . ,m), and w is the number
of C j = 1 for j = 1, . . . ,m.

Equation 4.43 and 4.44 show that after the integration, DR[i] (for i = 1, . . . ,n)
are not i.i.d. given ζr, and C j (for j = 1, . . . ,m) also become dependent of each
other given ζc.
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4.4.3 Full conditional distributions of the missing data and
the structural variables

We now consider the full conditional distributions of R. For the ith row in
the data, the full conditional probability R = DR[i] is modeled by a Bernoulli
distribution with parameterΛr

i (because of the use of conjugate priors—which
will be explained in more detail in Section 5.5), which is the probability that
DR[i] = 1.

Λr
i = P(DR[i] = 1 |D, DR[ī], Cm, Θ

bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

∝ p(D, DR[i] = 1, DR[ī] |Cm, Θ
bcl, Θbgd, ζr, ζc)

= P(DR[i] = 1, DR[ī] |ζr) · p(Xm = D[i, ·] |R = 1,Cm, Θ
bcl, Θbgd)

·

n∏
k=1,k,i

p(Xm = D[k, ·] |R = DR[k], Cm, Θ
bcl, Θbgd)

= P(DR[i] = 1, DR[ī] |ζr) ·
∏
{ j |C j=1}

p(X j = D[i, j] |Θbcl)

·

∏
{ j |C j=0}

p(X j = D[i, j] |Θbgd)

·

n∏
k=1,k,i

p(Xm = D[k, ·] |R = DR[k], Cm, Θ
bcl, Θbgd), (4.45)

where DR[ī] denotes the data in all the other rows except the ith row in the
microarray data matrix. (Though R is the random variable whose parameter
we want to estimate, we use DR[i] in the following to specify the value of R
for the ith row in the data matrix). The last equality in the above equation is
justified by the conditional independence of Xbcl on R. The complement of the
Bernoulli parameter, 1 −Λr

i , is

1 −Λr
i = P(DR[i] = 0 |D, DR[ī], Cm, Θ

bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

∝ P(DR[i] = 0, DR[ī] |ζr) · p(Xm = D[i, ·] |R = 0,Cm, Θ
bcl, Θbgd)

·

n∏
k=1,k,i

p(Xm = D[k, ·] |R = DR[k], Cm, Θ
bcl, Θbgd)

= P(DR[i] = 1, DR[ī] |ζr) ·
m∏

j=1

p(X j = D[i, j] |Θbgd)

·

n∏
k=1,k,i

p(Xm = D[k, ·] |R = DR[k], Cm, Θ
bcl, Θbgd). (4.46)
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Note that the Bernoulli parameterΛr
i can be transformed to the oddsγr

i between
Λr

i and 1 −Λr
i ,

γr
i =

Λr
i

1 −Λr
i

(4.47)

Λr
i =

γr
i

1 + γr
i

(4.48)

We show in the following equation that γr
i has an interpretable meaning:

γr
i =

P(DR[i] = 1 |D, DR[ī], Cm, Θ
bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

P(DR[i] = 0 |D, DR[ī], Cm, Θ
bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

=
P(DR[i] = 1, DR[ī] |ζr)
P(DR[i] = 0, DR[ī] |ζr)

·
p(D|DR[i] = 1, Cm, Θ

bcl, Θbgd)

p(D|DR[i] = 0, Cm,Θ
bcl, Θbgd)

=
Γ(n − vī + ζ

r
0)Γ(vī + 1 + ζr

1)

Γ(n + ζr
0 + ζ

r
1)

·
Γ(n + ζr

0 + ζ
r
1)

Γ(n − vī + 1 + ζr
0)Γ(vī + ζ

r
1)

·
p(D|DR[i] = 1, Cm, Θ

bcl, Θbgd)

p(D|DR[i] = 0, Cm,Θ
bcl, Θbgd)

=
vī + ζ

r
1

n − vī + ζ
r
0
·

∏
{ j |C j=1}

p(X j = D[i, j] |Θbcl)

p(X j = D[i, j] |Θbgd)
. (4.49)

We use vī to denote the number of rows (all but the ith row in the microarray
data matrix) that currently belongs to the bicluster. The equation tells us that
given the model structure (Cm) and model parameters (Θbcl and Θbgd), the
full conditional odds of whether the row under consideration belongs to the
bicluster is given by a weighted likelihood ratio. The likelihood is calculated
between the case where the data of the row under the biclustering columns
are generated by the bicluster and the case where these data are generated by
the background. The weight is calculated as the ratio between the number of
rows that are currently assigned to the bicluster and the number of rows that
currently belong to the background. (Note that γr

i is dependent only on Cm
andΘ.)

The parameter γc
j of the full conditional posterior distribution of C j (for

j = 1, . . . ,m) depends on more parameters. Because of the dependence of
Θ on Cm, the derivation of the distribution requires specification of the type
of distributions and especially the correlations between the model parame-
ters Θ for the Bayesian hierarchical model. A first analysis of the Bernoulli
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distribution shows that its parameter is

Λc
j = p(C j = 1 |D, DR, C j̄, Θ

bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

∝ p(D, DR, C j = 1, C j̄, Θ
bcl, Θbgd

| ξbcl, ξbgd, ζr, ζc)

= p(D|DR, C j = 1, C j̄, Θ
bcl, Θbgd) · P(DR |ζ

r)

·p(Θbcl, Θbgd
|C j = 1, C j̄, ξ

bcl, ξbgd) · P(C j = 1,C j̄ |ζ
c). (4.50)

The complement of the parameter is,

1 −Λc
j = p(C j = 1 |D, DR, C j̄, Θ

bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

∝ p(D|DR, C j = 0, C j̄, Θ
bcl, Θbgd) · P(DR |ζ

r)

·p(Θbcl, Θbgd
|C j = 0, C j̄, ξ

bcl, ξbgd) · P(C j = 0, C j̄ |ζ
c). (4.51)

Therefore the odds between the two, γc
j =

Λc
j

1−Λc
j
, is

γc
j =

p(C j = 1 |D, DR, C j̄, Θ
bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

p(C j = 1 |D, DR, C j̄, Θ
bcl, Θbgd, ξbcl, ξbgd, ζr, ζc)

=
p(D|DR, C j = 1, C j̄, Θ

bcl, Θbgd)

p(D|DR, C j = 0, C j̄, Θ
bcl, Θbgd)

·
p(Θbcl, Θbgd

|C j = 1, C j̄, ξ
bcl, ξbgd)

p(Θbcl, Θbgd
|C j = 0, C j̄, ξ

bcl, ξbgd)
·

w j̄ + ζ
c
1

m − w j̄ + ζ
c
0
. (4.52)

In Equations 4.50 to 4.52, we use C j̄ to denote the edges between R and Xm
except for X j, and w j̄ for the current number of columns in the microarray data
matrix that belong to the bicluster. Equation 4.52 tells us that γc

j is a product

of (1) the likelihood ratio of the data (between the case when the jth column
of the microarray data is generated by the bicluster and the case when it is
generated by the background), (2) a ratio between the priors of Θ, and (3) a
ratio between the number of columns that are already in the bicluster and the
number of those that are in the background.

4.4.4 The Gibbs sampling scheme for the biclustering prob-
lem

To summarize, the Gibbs sampling scheme for the biclustering problem is as
follows, also see the procedure within the black dashed box in Figure 4.7.

1. Initialization: Assign binary random values to Cm (i.e., initialize the
model structure) and DR (i.e., initialize the missing data), and initial-
ize the model parameters Θ
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2. Update the hidden data: fix the model—both Cm andΘ—for each row i,
(i = 1, . . . ,n), fixDR[ī], and

(a) Calculate the Bernoulli distribution forDR[i] whose parameterΛr
i =

γr
i

1+γr
i

can be calculated by applying Equation 4.49.

(b) Draw a sample forDR[i] from the Bernoulli distribution.

3. Update the model structure: fixDR andΘ, for each C j, ( j = 1, 2, ...,m), fix
the value of all C j̄, and

(a) Calculate the Bernoulli distribution for C j whose parameter Λc
j =

γc
j

1+γc
j

can be calculated by applying Equation 4.52.

(b) Draw a sample for C j from the Bernoulli distribution.

4. Sample the model parameters Θ according to their conditional distribu-
tions (see Chapter 5 and Chapter 6 for detail).

5. Go to Step 2, and iterate for a predefined number of iterations, see Loop 1
in Figure 4.7.

4.4.5 From samples to the final pattern

To evaluate every involved parameter in the target posterior distribution
(Equation 4.42) means to collect samples produced at each iteration of the
Gibbs sampling (Loop 1 in Figure 4.7) for each of these parameters. The final
PME estimates of these parameters are then obtained by performing Monte
Carlo integrations the collected samples. For the accuracy of the PME esti-
mates, the number of samples should be as large as possible. This means that
the number of sampling iterations of the Gibbs sampler is usually several hun-
dreds. Storing samples of all the parameters (especially those of Θ which is
proportional to the number of columns in microarray data) for each iteration
can dramatically increase the memory complexity of the algorithm. However,
the main purpose of the algorithm is to find the position of the bicluster, which
require the storage of only those samples ofDR and Cm. The parameters of the
model Θ will be obtained—if necessary—by evaluating their sample statis-
tics according to the position of the bicluster determined by the algorithm.
According to Equation 4.13, the PME estimate ofDR[i] is.

EP(DR[i] |D)

[
DR[i]

]
=

1
T

T∑
t=1

EP(DR[i] |DR[ī](t),C(t)
m , (Θ

bcl)(t), (Θbgd)(t),D)

[
DR[i]

]
i = 1, . . . ,n.

(4.53)
Similarly, the PME estimate of C j is,

EP(C j |D)[C j] =
1
T

T∑
t=1

EP(C j |D
(t)
R ,C

(t)
j̄
, (Θbcl)(t), (Θbgd)(t),D)[C j] j = 1, . . . ,m. (4.54)
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The marginal distribution ofDR[i] and C j, according to Equation 4.14, are

E[P(DR[i] |D)] =
1
T

T∑
t=1

P(DR[i] |DR[ī](t), C(t)
m , (Θbcl)(t), (Θbgd)(t), D) i = 1, . . . ,n,

(4.55)

E[P(C j |D)] =
1
T

T∑
t=1

P(C j |D
(t)
R , C(t)

j̄
, (Θbcl)(t), (Θbgd)(t), D) j = 1, . . . ,m.

(4.56)
Note that to simplify the notation, we omitted the priors ξbcl, ξbgd, ζr, and ζc

out of the notation of the probability distributions. In Equations 4.53 to 4.56, t
indexes the iterations and T is the total number of iterations in the sampling
procedure. To determine the final position of the bicluster, we can either put
a threshold on the PME estimate of the random variables, and select only the
rows and columns for whom the PME estimate are above that threshold for the
bicluster. Or, another more meaningful way is to put a threshold on the, say
95% quantile, of the estimated marginal distribution of the random variables.

In our implementation, we use 500 iteration as default for performing the Gibbs
sampling procedure (including both the burn-in and the sampling stages).
The autocorrelation (see Equation 4.17) between the samples is monitored for
determining the convergence, and additional iterations are added if necessary.

4.4.6 Multiple biclusters

The probabilistic model that we discussed above considers only the presence
of a single bicluster in the data set, which is not biologically realistic. Several
methods can be used to enable the detection of multiple biclusters. We choose
(for both the biclustering of genes and the biclustering of experiments) to mask
the experiments selected for the found biclusters and rerun the algorithm on
the rest of the data (see Loop 3 in Figure 4.7). By masking, we mean that the
random variable (subset of Cm in the case of biclustering genes, and subset of
DR in the case of biclustering experiments) associated with the experiments
in all the found biclusters are set permanently to 0, and are not included in
the next round of the Gibbs sampling procedure. In this way, experiments
retrieved for previous biclusters will not further be selected as candidates for
any future bicluster, while the data under these experiments will be included
for the evaluation of the background model for the next bicluster. Note that
this choice let the genes to be selected in multiple biclusters. In this way, the
algorithm is iterated on a data set until no bicluster can be found for the
unmasked part of the data (see Section 4.4.6 for the decision).

Another approach to find multiple biclusters would be to add multiple hidden
nodes to the model structure. However, the increase in the number of param-
eters to estimate, together with the need for a procedure for the estimation of
the number of biclusters, led us to settle for the simpler masking procedure.
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Data without a bicluster

To decide that a data set does not or no longer contains a bicluster, we check
the number of genes or conditions that belong to the bicluster after Step 2 and
Step 3 of the algorithm (see Section 4.4.4). If either of the numbers equals zero,
we reinitialize the algorithm and perform Gibbs sampling again, see Loop 2
in Figure 4.7. However, if after a predefined number of reinitializations (for
example, 50 in our implementation) the algorithm still does not succeed to
reach convergence, we terminate the algorithm and consider that the data set
does not contain a bicluster.

4.5 Conclusion

In this chapter, we developed a Bayesian hierarchical model for the biclustering
problem, and a Gibbs sampling strategy for refining the structure and the
parameterization of the model. We explained in detail the framework of the
Gibbs sampling procedure for the biclustering problem. In the following two
chapters, we develop dedicated models, which specifies the distribution of
and the priors for Θ, respectively for the biclustering of experiments and the
biclustering of genes.
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Chapter 5

Biclustering experiments in
microarray data

In this chapter, we describe a dedicated Bayesian hierarchical model for
the problem of biclustering experiments. The model is developed for a dis-
cretized microarray data matrix. We first explain why and how to discretize
the microarray data. Then, we elaborate on the model and re-explain the Gibbs
sampling framework for the model. We show two types of usage of the algo-
rithm by using different prior settings—the first one is to discovery a global
bicluster embedded in the data by using a non-informative prior, and the sec-
ond is to construct a specific prior model to direct the bicluster discovery for
a specific pathology.

5.1 Introduction

In this chapter we discuss Gibbs sampling to for biclustering experiments
(e.g., tumor samples) on discretized microarray data [89]. The aim is to find
experiments whose discrete expression levels are consistent for each gene
selected for the bicluster (see Figure 1.6). To keep in accordance with the
Gibbs sampling frame that we gave in Chapter 4, we transpose the discretized
microarray data matrix (see Figure 4.7) for the biclustering analysis, so that
now the rows represent the experiments, and the columns represent the genes.

The choice of using discretized data for the biclustering of experiments was
not only inspired by the success of applying Gibbs sampling to motif finding
problem in DNA sequence analysis [64, 68, 100], where the data has a discrete
nature, so that the mathematical models of the motif finding problem can be
conveniently extended to biclustering. This choice is also justified by the con-

87
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sideration that the experiment dimension of microarray data is usually much
larger than its gene dimension. Using a normal distribution to model a gene
expression profile, for example, is often found to be sensitive to outliers [71].
However, the use of discrete data avoids the problem of outliers by signifi-
cantly reducing the noise level in the data while reserving the most essential
information for biologists.

We discuss the Gibbs sampling strategy for tackling the biclustering problem
of experiments in the following four aspects:

• Discretization of microarray data: why and how to discretize the microarray
data for the biclustering of experiments.

• Data model: the hierarchical Bayesian models describing the bicluster and
the background.

• Full conditional distributions: the distributions from which samples of the
missing data DR and the variables for model structure specification Cm
are drawn during the Gibbs sampling procedure.

• More notes on the priors: Incorporating prior knowledge into the hierar-
chical model.

By using different constructions of the priors, the biclustering algorithm can
be used to assist discoveries of pathology under two circumstances. In the first
case, we assume that the biologist (or the doctor) has no idea about the pathol-
ogy types of the tumors from which samples are collected for the microarray
experiments. The task of biclustering is then to discover global patterns that
are embedded in the data, which provide expressional fingerprints for differ-
ent pathology types. However, the expressional patterns of some pathological
traits dominate others in their size and amplitude, and consequently dominate
the results of biclustering. To enhance the ability of the biclustering algorithm
to discover fingerprints for those less dominant pathological traits, priors can
be introduced to the algorithm by specifying a small number of positive exam-
ples of the tumors that should belong to the pathology of interest. We discuss
the usage and the performance of the biclustering algorithm for these two
purposes individually. In each case, synthetic data sets are used to illustrate
the influence of the input parameters and the performance of the algorithm,
and a case study is provided to illustrate the ability of the algorithm to assist
the discovery of pathologies.

5.2 The discretization of microarray data

In the biclustering of experiments, the different microarray experiments are the
data instances for evaluating the Bayesian hierarchical model, which the genes
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Figure 5.1: Discretization with the equal frequency principle: first the expres-
sion values in a gene expression profile are ranked from the lowest to the
highest. Then, the third of the data points with the lowest rank is assigned
with discrete value 1 (“low”), the third of data points ranked in the middle
are assigned with discrete value 2 (“medium”), and the top ranked third of
data points are assigned with discrete value 3 (“high”). The ranks of equal
expression values are decided by the order that they appear in the expres-
sion profile—values that appear earlier in the vector (of expression profile) get
lower ranks. See Figure 5.2.

are the random variables in the model, see Figure 1.6. Therefore, the sample
space has a much smaller dimension than the variable space (i.e., number of
experiments is much smaller than the number of genes). An extreme expression
value (i.e., outlier) in a gene expression profile can significantly influence the
estimate of the probabilistic distribution that describes the expression profile.
Discretization groups the continuous values together and thus reduce the
number of distinct values. Therefore, discretized expression profiles are more
resistant to outliers.

We found that the equal-frequency discretization provides a biologically mean-
ingful and mathematically reasonable method for discretizing microarray data
for the purpose of biclustering experiments. By discretizing microarray data
into three bins, the discrete gene expression levels correspond respectively
to “high” (or “upregulated”), “median” (or “not activated”), and “low” (or
“downregulated”). Mathematically speaking, the discrete data obtained by
equal-frequency discretization have maximum entropy (i.e., the data represent
a uniform distribution). This means that the method does not (in principle)
introduce additional information during the discretization procedure (though
we discuss an exception in practice at the end of this section, see Figure 5.2). The
procedure of equal-frequency discretization is carried out as follows. For each
gene profile, we assign the experiments with the lowest third of the expression
values to the first bin (corresponding to “low”), similarly, the third experiments
with the highest expression values to the third bin (corresponding to “high”),
and finally, the rest of the experiments to the second bin (corresponding to
“medium”), see Figure 5.1. We choose to use three bins for the discretization
because the discrete levels have more intuitive biological interpretations—
high/upregulated, medium/not active, and low/downregulated. In addition,
we found that discretizations into different number of bins influence little the
biclustering results.
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Figure 5.2: An artifact when applying equal frequency principle discretization
on data sets where experiments (e.g., patients or tumor samples) of the same
group are put next to each other. An extreme case is shown in the top figure
where the resulting discrete data is coupled with the patient class though there
is no variation at all in the gene expression profile. Shuffling the order of the
patients help to decouple such effect—bottom figure.

To deal with the missing values in the microarray data, we assign them ran-
domly to one of the three bins, so that the maximum-entropy property of the
equal-frequency principle is preserved.

Note that the equal-frequency discretization takes care of the standardization
of the gene expression profiles automatically, as the discretization is done per
gene profile. Therefore, problems arise if the continuous expression profile of
a gene remains constant over different experiments. Thus, a filtering proce-
dure based on the variation of the genes is needed before the equal-frequency
discretization is performed. For microarray data sets where the experiments
are grouped (e.g., tumors of the same type are arranged next to each other in
the data matrix), we further an artifact for equal-frequency discretization by
permuting the order of the experiments in the data set before performing the
discretization, see Figure 5.2.
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5.3 The model

The equal frequency discretization procedure justifies the use of a single multi-
nomial distribution to describe the background data, with each entry of the
multinomial distribution explaining the frequency of observing the corre-
sponding discrete expression level in background data. We use Ψ to denote
the parameter vector of the multinomial distribution,

Ψ = [ ψ1 ψ2 ψ3 ]T, (5.1)

where 0 ≤ ψi ≤ 1, for i = {1, 2, 3},
∑3

i=1 ψ = 1. Note that the background model
is independent of the model structure,

Ψ y Cm. (5.2)

For the bicluster, to allow the experiments (i.e., rows) for different genes (i.e.,
columns) to have different expression levels (although the expression levels of
the experiments should be the same under the same gene), we use a multino-
mial distribution to model the data for every gene in a bicluster,

Φ j = [ φ1, j φ2, j φ3, j ]T
∀{ j |C j = 1, j = 1, . . . ,n}, (5.3)

Φ = {Φ j |C j = 1, j = 1, . . . ,m}, (5.4)

where 0 ≤ φi, j ≤ 1, for i = {1, 2, 3},
∑3

i=1 φi, j = 1; and we assume that the
multinomial distributions for different conditions of a bicluster are mutually
independent,

Φ j y Φk j , k ∀Φ j,Φk ∈Φ. (5.5)

Therefore, the bicluster modelΦ is dependent on Cm.

BothΦ andΨ form the model parameters (denoted asΘ in Chapter 4) for the
distribution of the observed variables Xm into which the discrete expression
data map. The explicit distribution of Xm is now: for the background,

P(X j |R = 0) ∼Multinomial(Ψ) j = 1, . . . ,m; (5.6)

for the model,

P(X j |R = 1) ∼
{

Multinomial(Φ j) { j |C j = 1}
Multinomial(Ψ) { j |C j = 0} (5.7)

As we discussed in Chapter 4, the prior level is one of the indispensable ingre-
dients of a Bayesian hierarchical model. The priors in our model play a main
role in directing the discovery of biclusters, as will be explained in Section 5.5
and will be further illustrated in Section 5.6 and Section 5.7. To introduce
the complete Bayesian hierarchical model that we use for the biclustering of
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experiments, we briefly describe here the type of priors that we use in this
case.

We assume that each multinomial distribution in Ψ is modeled by a corre-
sponding prior. Further, we use conjugate priors for these multinomial distri-
butions, which are in the form of Dirichlet distributions,

Φ j ∼ Dirichlet(β j), (5.8)

β j = [ β1, j β2, j β3, j ]T, (5.9)

B = {β j |C j = 1}. (5.10)

The Dirichlet distribution is also used for the prior ofΨ,

Ψ ∼ Dirichlet(α), (5.11)
α = [ α1 α2 α3 ]T (5.12)

(We motivate our choice for using conjugate priors in Section 5.5.)

5.4 Full conditional distributions

Substituting our model into Equation 4.42, the target joint distribution of the
Gibbs sampling procedure for the biclustering problem of experiments is

p(DR, Cm, Ψ, Φ |D, α, B, ζr, ζc) ∝ p(D, DR, Cm, Ψ, Φ |α, B, ζr, ζc). (5.13)

The procedure is carried out by sampling iteratively from the full conditional
distributions of DR, Cm, Ψ, and Φ. We have made some general analysis of
the Bernoulli conditional distributions of DR and Cm in Section 4.4.3. We will
make a more detailed analysis about these two distributions later on in this
section. But let us first consider the manipulation ofΨ andΦ.

Using conjugate priors for Ψ and Φ means that the full conditional distribu-
tions of the parameters are also in the form of Dirichlet distributions. Sampling
from Dirichlet distributions is not a trivial procedure and consumes a non-
negligible amount of computation [68]. In addition, the number of parameters
in Φ is proportional to (or three times—when three bins are used for the dis-
cretization) the number of genes that are included in the bicluster, which could
greatly increase the computational complexity of the algorithm. This proce-
dure can be avoided by integratingΨ andΦ out of the target joint distribution
(similar to how we deal with Λr and Λc, see Section 4.4.2). Consequently, the
target joint distribution becomes P(DR, Cm |D, α, B, ζr, ζc).

To facilitate the analysis of the full conditional distributions of DR and Cm,
we need the help of the following notation. First of all, we use lower-case
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bold letters to denote vectors of indices of the rows and the columns of the
microarray data matrix. More specifically,

r =
[
i |DR[i] = 1

]
(5.14)

is the vector of the indices of the data instances of R, (i.e., the rows, or in this
case the experiments) that are assigned to the bicluster, and

r̄ =
[
i |DR[i] = 0

]
(5.15)

is the vector of indices of the data instances of R that are assigned to the
background. Similarly,

c =
[
j |C j = 1

]
(5.16)

is the vector of the indices of structure variables in Cm (i.e., in this case, the
columns, or the genes) that are assigned to the bicluster, and

c̄ =
[
j |C j = 0

]
(5.17)

is the vector of the indices of the columns that are assigned to the background.
In addition, a subscript ī (or j̄) means that the bicluster and the background is
evaluated on the data excluding the ith row (or the jth column) of the matrix. For
example, r̄ī refers to the rows that are assigned to the background excluding
the ith row (regardless of the value of DR[i], i.e., whether the row belongs to
the bicluster or not).

The data can be either indexed by two integers (e.g., D[i, j]), which refers to
the data point at the ith row and the jth column, or by two vectors of indices.
Given two vectors of indices u and v, D[u,v] refers to the part of the data
under rows u and columns v.

We define h(·) as a counting function. Thus h(D[u,v]) produces a vector of
length three, with each of its entries giving the number of occurrences of the
corresponding discrete level (1, 2, or 3) in the specified region of the data
matrix. For example, for the following discrete matrix,

D =

[
2 1 3 2
1 1 2 2

]
(5.18)

h(D) = [3, 4, 1]T, (5.19)

because “1” is observed 3 times in the matrix, “2” is observed 4 times in the
matrix, and “3” is observed 1 time in the matrix.

For two scalars u and v, we use δu(v) to denote an index vector of length u
whose vth entry equals 1, and the rest of its entries equal 0.

δ3(2) = [0, 1, 0]T
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Given a vector of indices u and a scalar v, u ⊕ v denotes concatenating v to
vector u. For example,

u = [11, 42, 29]T

v = 63
u ⊕ v = [11, 42, 29, 63]T.

Further, for two vectors u = [u1, u2, . . . , uk]T and v = [v1, v2, . . . , vk]T (of the
same length k), we define the power function uv = uv1

1 · u
v2
2 · · · u

vk
k , the Gamma

function Γ(u) = Γ(u1) · Γ(u2) · · · Γ(uk), and the sum
∑

u =
∑k

i=1 ui.

Coming back to the full conditional distribution of DR[i], the final result in
Equation 4.49 is not applicable anymore after the integration on the model
parameters, becauseDR[i] andDR[ j] for all i, j = 1 . . . n, i , j are conditionally
independent given the model parameters (Θbcl = Φ and Θbgd = Ψ) in that
equation. Therefore, we have to recalculate the parameter Λr

i for the posterior
conditional Bernoulli distribution for DR[i], for which we use the odds γr

i =
Λr

i
1−Λr

i
instead again (for the use of Step 2 in the Gibbs sampling procedure

described in Section 4.4.4).

γr
i =

P(D, DR[i] = 1, DR[ī], Cm |α, B, ζr, ζc)
P(D, DR[i] = 0, DR[ī], Cm |α, B, ζr, ζc)

=
P(D|DR[i] = 1, DR[ī], Cm, α, B)
P(D|DR[i] = 0, DR[ī], Cm, α, B)

·
P(DR[i] = 1, DR[ī] |ζr)
P(DR[i] = 0, DR[ī] |ζr)

=
P(D|DR[i] = 1, DR[ī], Cm, α, B)
P(D|DR[i] = 0, DR[ī], Cm, α, B)

·
vī + ζ

r
1

n − vī + ζ
r
0
.

(5.20)

The above equation shows that when Φ and Ψ are absent, the posterior dis-
tribution of DR[i] is dependent on the rest of the missing data DR[ī] and the
model structure Cm.

To calculate the first term in Equation 5.20, we perform the integration respec-
tively for P(D|DR[i] = 1, DR[ī], Cm, α, B) and P(D|DR[i] = 0, DR[ī], Cm, α, B),
we have, for each experiment i,

P(D|DR[i] = 1, DR[ī], Cm, α, B)

=

∫
Φ

∫
Ψ

P(D|DR[i] = 1, DR[ī], Cm, Φ, Ψ) · p(Φ |B, Cm) · p(Ψ |α) dΦdΨ

∝

∫
Φ

∫
Ψ

Ψh{D[r̄ī, ·]}+ h{D[rī⊕i, c̄]}
·

∏
{ j |C j=1}

Φ
h{D[rī⊕i, δm( j)]}
j ·Ψα−1

·

∏
{ j |C j=1}

Φ
β j−1

j dΦdΨ

=
Γ
(
h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α

)
Γ
{∑ (

h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α
)} · ∏

{ j |C j=1}

Γ
(
h{D[rī ⊕ i, δm( j)]} + β j

)
Γ
{∑ (

h{D[rī ⊕ i, δm( j)]} + β j

)} ,
for i = 1 . . . n, (5.21)
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and

P(D|DR[i] = 0, DR[ī], Cm,α,B)

=

∫
Φ

∫
Ψ

P(D|DR[i] = 0, DR[ī], Cm, Φ, Ψ) · p(Φ |B, Cm) · (Ψ |α) dΦdΨ

∝

∫
Φ

∫
Ψ

Ψh{D[r̄ī⊕i, ·]}+h{D[rī, c̄]}
·

∏
{ j |C j=1}

Φ
h{D[rī, δm( j)]}
j ·Ψα−1

·

∏
{ j |C j=1}

Φ
β j−1

j dΦdΨ

=
Γ
(
h{D[r̄ī ⊕ i, ·]} + h{D[rī, c̄]} + α

)
Γ
{∑ (

h{D[r̄ī ⊕ i, ·]} + h{D[rī, c̄]} + α
)} · ∏

{ j |C j=1}

Γ
(
h{D[rī, δm( j)]} + β j

)
Γ
{∑ (

h{D[rī, δm( j)]} + β j

)}
for i = 1 . . . n. (5.22)

Note that the denominators omitted by the proportional mark “∝” are the
same for both Equation 5.21 and Equation 5.22, which means that

P(D|DR[i] = 1, DR[ī], Cm, α, B)
P(D|DR[i] = 0, DR[ī], Cm, α, B)

equals the ratio between the end result of Equation 5.21 and Equation 5.22.

To evaluate this ratio, we first need to use the nature of the Gamma function,

Γ(u + 1) = Γ(u) · u (5.23)

where u is a scalar. Such calculation reveals that ratios (part of the ratio of
Equation 5.21 and Equation 5.22) have simpler forms:

Γ
(
h{D[rī ⊕ i, δm( j)]} + β j

)
Γ
(
h{D[rī, δm( j)]} + β

·, j

) =(h{D[rī, δm( j)]} + β j

)δ3{D[i, j]}

{i | i = 1 . . . n}, { j |C j = 1},

(5.24)

and

Γ
{∑ (

h{D[rī ⊕ i, δm( j)]} + β j

)}
Γ
{∑ (

h{D[rī, δm( j)]} + β j

)} =
Γ(vī + 1 +

∑
β j)

Γ(vī +
∑
β j)

= vī +
∑
β j,

for i = 1, . . . ,n, j = 1, . . . ,w.

(5.25)

To calculate the ratio of the first factors in Equation 5.21 and 5.22, we need the
approximation that when the size of u2 is relatively small compared to u1 and
the composition of u2 is relatively diverse [68],

Γ{h(u1) + h(u2)}
Γ{h(u1)}

≈ h(u1)h(u2). (5.26)
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h(u1) [16, 238, 46] [16, 238, 46]
h(u2) [3, 3, 4] [0, 0, 10]
log

(
Γ{h(u1)+h(u2)}
Γ{h(u1)}

)
40.37 39.20

log
(
h(u1)h(u2)

)
40.05 38.32

The following table shows an example:

In our case, the values in h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α are much larger those
in h{D[δn(i), c]}, and the composition of h{D[δn(i), c]} is relatively diverse.
Therefore,

Γ
(
h{D[r̄ī ⊕ i, ·]} + h{D[rī, c̄]} + α

)
Γ
(
h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α

)
=
Γ
(
h{D[r̄ī, ·]} + h{D[rī, c̄]} + h{D[δn(i), c̄]} + α + h{D[δn(i), c]}

)
Γ
(
h{D[r̄ī, ·]} + h{D[rī, c̄]} + h{D[δn(i), c̄]} + α

)
≈

(
h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α

)h{D[δn(i), c]}
, i = 1, . . . ,n. (5.27)

Similarly,

Γ
{∑ (

h{D[r̄ī ⊕ i, ·]} + h{D[rī, c̄]} + α
)}

Γ
{∑ (

h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α
)}

=
∑(

h{D[r̄ī, ·]} + h{D[rī ⊕ i, c̄]} + α
)∑(h{D[δn(i), c]})

, i = 1, . . . ,n.(5.28)

Equipped with Equations 5.24 to 5.28, we put Equation 5.21, Equation 5.22
together to evaluate Equation 5.20. We finally arrive at

γr
i ≈

∏
{ j |C j=1}

 Φ̂ j

Ψ̂

δ3(D[i, j])

·
vī + ζ

r
1

n − 1 − vī + ζ
r
0
, i = 1, . . . ,n, (5.29)

where

Φ̂ j =
h{D[rī, δm( j)]} + β j

vī +
∑
β j

{ j |C j = 1} (5.30)

Ψ̂ =
h{D[r̄ī, ·]} + h{D[rī, c̄]} + h{D[δn(i), c̄]} + α

n ·m − vī · w
. (5.31)

The final result of γr
i in Equation 5.29 is exactly in the same form as Equa-

tion 4.49. Φ̂ and Ψ̂ are the byproduct of our method, which represent respec-
tively the model of the bicluster and the model of the background. Equa-
tion 5.30 and 5.31 reveal that Φ̂ and Ψ̂ are essentially the posterior biclus-
ter model evaluated at the currently assigned biclustering positions, and the
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posterior background model evaluated at the currently assigned background
positions. The “current” bicluster and background refers to the data divided
according toDR[ī] and Cm. Intuitively, by fixing all the other random variables
(Cm,DR[ī]) to the values sampled in previous Gibbs sampling steps, the possi-
bility that experiment i belongs to the bicluster is associated with the likelihood
that the data of the experiment for the genes that are currently assigned to the
bicluster is generated by the bicluster model; while the possibility that the
experiment belongs to the background is related to the likelihood that those
data points are drawn from the background model.

Similar to Equation 5.20, for the odds γc
j in evaluating the posterior Bernoulli

distribution of the model structural variables C j ∈ Cm (for the use in Setp 3 of
the Gibbs sampling procedure described in Section 4.4.4), we have

γc
j =

w j̄ + ζ
c
1

m − w j̄ + ζ
c
0
·

P(D|DR, C j = 1, C j̄, α,B)

P(D|DR, C j = 0, C j̄, α, B)
. (5.32)

Comparing the graph (see Figure 4.6) where the edge between nodes R and X j
is present (i.e., C j = 1) and the one without the edge (i.e., C j = 0), the model of
the bicluster for the former case can be seen as having an extra column copied
from the background model, whose multinomial parameter vector is φ j whose
distribution is parameterized by α. Evaluating P(D|DR, C j = 1, C j̄, α,B) and
P(D, |DR, C j = 0, C j̄, α, B) respectively to calculate Equation 5.32, we have

P(D|DR, C j = 1, C j̄, α,B)

=

∫
Φ

∫
Ψ

P(D|DR, C j = 1, C j̄, Φ, Ψ) · p(Φ |C j = 1,C j̄, B) · p(Ψ |α) dΦdΨ

∝

∫
Φ

∫
Ψ

Ψh{D[·, c̄ j̄]}+h{D[r̄, c j̄⊕ j]}
·

∏
{k |Ck=1, k, j}

Φh{D[r, δm(k)]}
k ·Φ

h{D[r, δm( j)]}
j

·Ψα−1
·

∏
{k |Ck=1, k, j}

Φ
βk−1
k ·Φα−1

j dΦdΨ

=
Γ
(
h{D[·, c̄ j̄]} + h{D[r̄, c j̄ ⊕ j]} + α

)
Γ
{∑ (

h{D[·, c̄ j̄]} + h{D[r̄, c j̄ ⊕ j]} + α
)} · ∏

{k |Ck=1, k, j}

Γ
(
h{D[r, ck]} + βk

)
Γ
{∑ (

h{D[r, ck]} + βk

)}
·

Γ
(
h{D[r, δm( j)]} + α

)
Γ
{∑ (

h{D[r, δm( j)]} + α
)} , j = 1 . . .m, (5.33)
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and

P(D|DR, C j = 0, C j̄, α, B)

=

∫
Φ

∫
Ψ

P(D|DR, C j = 0, C j̄, Φ, Ψ) · p(Φ |C j = 0, C j̄, B) · p(Ψ |α) dΦdΨ

∝

∫
Φ

∫
Ψ

Ψh{D[·, c̄ j̄⊕ j]}+h{D[r̄, c j̄]} ·

∏
{k |Ck=1, k, j}

Φh{D[r, ck]}
k ·Ψα−1

·

∏
{k |Ck=1,k, j}

Φ
βk
k dΦdΨ

=
Γ
(
h{D[·, c̄ j̄ ⊕ j]} + h{D[r̄, c j̄]} + α

)
Γ
{∑ (

h{D[·, c̄ j̄ ⊕ j]} + h{D[r̄ j̄, c]} + α
)} · ∏

{k |Ck=1,k, j}

Γ
(
h{D[r, ck]} + βk}

Γ
{∑ (

h{D[r, ck]} + βk

)} ,
for j = 1 . . .m. (5.34)

Putting the above two equations together to calculate Equation 5.32, we get

γc
j =

Γ
(
h{D[·, c̄ j̄]} + h{D[r̄, c j̄ ⊕ j]} + α

)
· Γ

(
h{D[r, j]} + α

)
Γ
(
h{D[·, c̄ j̄ ⊕ j]} + h{D[r̄ j̄, c]} + α

)
·

Γ
{∑ (

h{D[·, c̄ j̄ ⊕ j]} + h{D[r̄ j̄, c]} + α
)}

Γ
{∑ (

h{D[·, c̄ j̄]} + h{D[r̄, c j̄ ⊕ j]} + α
)}
· Γ

{∑ (
h{D[r, j]} + α

)}
·

(w j̄ + ζ
c
1)

(m − w j̄ − 1 + ζc
0)

=
Γ
(
h{D[·, c̄ j̄]} + h{D[r̄, c j̄ ⊕ j]} + α

)
· Γ

(
h{D[r, j]} + α

)
Γ
(
h{D[·, c̄ j̄ ⊕ j]} + h{D[r̄ j̄, c]} + α

)
·

Γ(n ·m − v · w j̄ +
∑
α)

Γ(n ·m − v · w j̄ − v +
∑
α) · Γ(v +

∑
α)
·

(w j̄ + ζ
c
1)

(m − w j̄ − 1 + ζc
0)

j = 1 . . .m. (5.35)

Note that the equation cannot be simplified, because the conditions for the
approximation in Equation 5.26 to hold are no longer satisfied. Intuitively,
the denominator of Equation 5.35 assumes the current prediction of the back-
ground and extends the current bicluster by treating the jth condition as one of
the biclustering conditions, while the second term in Equation 5.35 adds the jth

condition to the currently assigned background. Again, the current bicluster
and background refers to the data divided according toDR and C j̄.

5.5 Importance of the priors

It is important to emphasize again (see explanations in Chapter 4) that the
power of the Bayesian model lies in its incorporation of prior knowledge in
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deriving the posterior probability. A proper prior should be interpretable so
that knowledge of a human expert or from other information sources can
be meaningfully transformed into probabilistic distributions (or densities).
Further, it should be mathematically convenient for the computation of the
posterior. Conjugate priors are often considered to be suitable choices regard-
ing these two aspects. Conjugate priors refer to the class of prior distributions
(or density functions) that, when combined with the target likelihood function
(i.e., probabilistic model of the data), produce posterior of the same form as
the prior. Therefore, conjugate priors are convenient to use in the sense that
the output we want (i.e., the posterior distribution) is in the same format and
has the same metric as the input we impose (i.e., the prior distribution). For
these reasons, conjugate priors are used throughout this thesis.

The Dirichlet priorsα and B are conjugate priors for our multinomial models on
the bicluster and the background. They express our prior knowledge about the
bicluster and the background in the form of pseudocounts. The parameters inα
and B are treated in the same way as the counts of the discrete expression levels
in the data. A Dirichlet parameter vector u = [u1, u2, v3]T can be decomposed
into a term of counts l and a term of frequency v

u = l · [v1, v2, v3]T = l · v, (5.36)

where
∑3

i=1 vi = 1. The frequency term, v represents the frequencies of observ-
ing the three discrete levels; and the term of counts l is the amount of data
from which v is observed. Thus, by changing l of a Dirichlet prior, we impose
the strength of our prior knowledge on observing the frequency pattern v.

5.6 Biclustering for global pattern discovery of patholo-
gies

In this section, we show that our method can be used to discover global patterns
embedded in the microarray data by using non-informative priors.

5.6.1 Construction of priors

Global pattern discovery means that we have no knowledge about the patho-
logical classes of the tumors under study. This means that little prior knowl-
edge should be imposed on the model of the bicluster. In this way, we allow
the algorithm to discover natural patterns of biclusters that are embedded in
the data. Therefore, we use weak priors (i.e., non-informative priors) for the
bicluster, which means that by default, we set

β j =
1
√

n
·

h(D)
n ·m

, j = 1 . . .m. (5.37)
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Note that h(D)
n·m is the frequencies to observe the discrete levels in the entire

data, and 1
√

n
is a factor which shrinks the value of β j implying that we have

little belief that the multinomial distribution of the bicluster resembles the
frequency term h(D)

n·m . (This factor 1
√

n
is chosen based on our experience after

applying the algorithm on several data sets.)

On the other hand for the background, we assume that the frequency pattern
discovered at the background resembles that of the entire data. Thus, we use

α =
√

n ·
h(D)
n ·m

. (5.38)

Again, the factor
√

n is chosen based on our experience. It implies our stronger
belief that the multinomial model of the background resembles the frequency
term h(D)

n·m .

Though the above two equations provide a good starting point for the bi-
clustering algorithm, we find that tuning the prior parameters α and B by
a coefficient (i.e., tuning on the l component of the Dirichlet prior vector in
Equation 5.36) helps to direct the size and the consistency of the discovered
pattern. Therefore, we open two parameters for user input—sα and sβ—which
tune α and B respectively as follows,

α = sα ·
√

n ·
h(D)
n ·m

, (5.39)

β j = sβ ·
1
√

n
·

h(D)
n ·m

, j = 1 . . .w. (5.40)

5.6.2 Experiments on synthetic data

We use a synthetic data set to show how our algorithm works in practice and
to illustrate the influence of the parameters.

Data

We embedded a pattern of 25 rows by 8 columns (see Figure 5.3(d)) into a data
set of size 100 by 30 (see Figure 5.3(b)). The pattern was described by eight
sharp multinomial distributions, while the background was generated from a
multinomial distribution close to a uniform distribution,

Φtrue =

 0.05 0.9 0.03 0.05 0.03 0.9 0.05 0.05
0.9 0.07 0.07 0.9 0.07 0.07 0.9 0.9
0.05 0.03 0.9 0.05 0.9 0.03 0.05 0.05

 , (5.41)

Ψtrue =

 0.3
0.4
0.3

 . (5.42)
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The task for our algorithm is to find the location of the embedded bicluster
(i.e., to give an estimate onDR and Cm).

Discovery of a bicluster

We ran the Gibbs sampling procedure (i.e., Loop 1 in Figure 4.7) for 500 it-
erations on the data set under the parameter settings sα = 0.3 and sβ = 5,
and terminate the algorithm (so that Loop 3 in Figure 4.7 is not executed). We
calculated the autocorrelation time (see Equation 4.19) for the samples of each
of the Bernoulli parameters in the full conditoinal distributions

P(DR[i] = 1 |DR[ī](t), C(t)
m , D) for i = 1 . . . n,

and
P(C j = 1 |D(t)

R , C(t)
j̄
, D) for j = 1 . . .m.

In Figure 5.4, we use a density plot to represent the autocorrelation time of
the 130 Bernoulli parameters under concern. As the plot shows, most of the
Bernoulli parameters have an autocorrelation time smaller than 6. Combined
with information from Figure 5.5 (a), which shows that the log-likelihood
appear to converge after less than 10 iterations, we consider the Markov chains
to have converged well after 50 iterations, and that with the 500 iterations
in total, enough samples have been collected to carry out the Monte Carlo
integration. Figure 5.5 (b) and (c) monitor the Bernoulli parameters of the full
conditional distributions, which confirms our decision to use samples drawn
from the last 450 iterations to simulate the posterior distributions of the labels.

Both the data and the result of the biclustering procedure are summarized in
Figure 5.3. Figure 5.3(a) illustrates the posterior probability for each position in
the data matrix that it belongs to the bicluster by a heatmap, P(DR[i] = 1, C j =
1 |D), which is obtained by

P(DR[i] = 1, C j = 1 |D)

=

T∑
t=1

P(DR[i] = 1 |DR[ī](t), C(t)
m , D) · P(C j = 1 |D(t)

R , C(t)
j̄
, D). (5.43)

The posterior probability is reflected by the brightness associated to every po-
sition in the plot, where the two extremes, white and black, imply respectively
the probabilities of 1 and 0. The inner bars around the main plot in Figure 5.3(a)
indicate posterior probabilities P(DR[i] = 1, |D) and P(C j = 1 |D), which can
be calculated from Equation 4.14. The outer bars mark the embedded positions
of the bicluster by a white tag. Figure 5.6 provides a further examination of
the posterior probability that a row or a column belongs to the bicluster. It also
shows that size of the final bicluster can also be adjusted by setting different
thresholds on the posterior probabilities (in addition to adjusting sα and sβ).
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Figure 5.3: Results from the synthetic data set. (a) Main plot: The posterior
probability that a position of the data matrix belongs to the bicluster. Inner bars:
expected values of the random variables DR and Cm. Outer bars: positions of
the embedded pattern. (b) The data matrix. (c) Pattern of the bicluster revealed
by the Gibbs sampling algorithm. (d) Pattern of the embedded bicluster. All the
positions where the bicluster is embedded have a high posterior probability
to belong to the bicluster (see the inner bars of subplot (a)). We determine the
position of the bicluster by putting a threshold on the posterior probability
of the random variables DR and Cm. The pattern of the retrieved bicluster
(subplot (c)) highly resembles that of the embedded bicluster (subplot (d)).
All the columns where the embedded bicluster locates are identified, and two
relatively noisy rows of the bicluster are left out of the discovered bicluster.
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Figure 5.4: Density plot of the autocorrelation time of the Bernoulli parameters
for the full conditional distribution of the 130 random variables under consid-
eration (i.e., those that are included inDR and Cm). The figure shows that the
autocorrelation time for most of the random variables is smaller than 6.

Figure 5.6 further illustrate the value of these posterior probabilities. In both
of the plots in Figure 5.6, a seperation of the posterior probabilities at 0.5 is
obvious. Therefore we use 0.5 as the threshold both for the rows DR and the
columns Cm, and consider the positions of the target bicluster to be the ones
that possess expected values higher than the thresholds in both dimensions.
The final pattern of the bicluster revealed by our algorithm is shown in Fig-
ure 5.3(c), which resembles the embedded bicluster (see Figure 5.3(d)). Two
rows of the embedded bicluster are not recovered, Row 26 and Row 94 of the
data matrix, which can be explained by the fact that these two rows deviate
most from the conserved pattern.

A more detailed look shows that there is quite variability in the configura-
tion of the biclusters retrieved at different iterations. However, these biclusters
overlapped with each other most frequently at the positions of our final deci-
sion, which is reflected by Figure 5.3 (a). (More illustrations will be provided
in this respect in the following section.) This is a typical characteristic of Gibbs
sampling, which presents targets in terms of distributions rather than deter-
ministic values. In this way, Gibbs sampling also avoids the problem of local
maxima that often hinders Expectation–Maximization.

Influence of sα and sβ
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Figure 5.5: (a) Trace of the log likelihood of the synthetic data evaluated at the
end of each iteration during the whole Gibbs sampling procedure. (b) and (c)
reflects the evolution of the P(DR[i] = 1 |D) and P(C j |D). For every random
variable, we estimated P(DR[i] = 1 |D) or P(C j |D) over every possible window
of 50 iterations to obtain the trace of the posteriors (every trace contains thus
451 points); then we centered each trace around the mean of its last 100 points;
finally we examined the variance of these centered traces across the whole set
DR or Cm. Shown in (b) and (c) are the plus and minus one standard deviation.
The plot shows a fast convergence of the log-likelihood and the posterior
probabilities of the random variables—all of which seem to converge after less
than 10 Gibbs sampling iterations.
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Figure 5.6: Plots of posterior probabilities of the random variables—left: DR,
right: Cm.

The user input parameters sα and sβ (see Equation 5.39 and Equation 5.40)
influence not only the size but also the diversity of the bicluster found at
each iteration. To illustrate the impact of the two parameters, we performed
the biclustering algorithm in two experiments with the following settings: (1)
sα = 0.3 remains fixed, while sβ ranges over 0.1, 0.5, 1, 5, 10, 20, 50, and 100; (2)
sα ranges over 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 0.8, while sβ = 5 remains fixed.

Figure 5.7 illustrates the impact of sα and sβ on the size of the bicluster found
in each iteration. The figure shows that sα has limited influence on the number
of rows discovered in each bicluster (see Figure 5.7(a)). However, it has a high
influence on the number of columns included in the bicluster. A bigger sα puts
a more stringent criterion on the selection of the columns, and as a result, fewer
columns are included in the bicluster (see Figure 5.7(c)). When sα = 0.1, almost
all the columns are selected for the bicluster in every iteration; when sα = 0.9
(results not shown here), the algorithm failed to converge because it happened
frequently that no column was included in the bicluster. In contrast, sβ has little
influence on the number of rows selected for the bicluster (see Figure 5.7(d)).
Rather, it influences the number of columns selected for the bicluster in each
iteration. The number of rows in the bicluster found for an iteration increases
with the increment of sβ (see Figure 5.7(b)). This phenomenon is explained
by Equation 5.40—a larger sβ imposes a stronger prior that the pattern of the
bicluster resembles a uniform distribution, which is actually the distribution
of the background.

Figure 5.8 depicts the influence of sα and sβ on the posterior probabilities that
a row or a column may belong to the bicluster. Again, the figures show that sα

has limited influence on the posterior probabilities P(DR |D) (see Figure 5.8(a))
and that sβ has little influence on P(Cm |D) (see Figure 5.8(d)). However, with
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(a) Influence of sα on the number of rows
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(b) Influence of sβ on the number of rows
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(c) Influence of sα on the number of columns
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(d) Influence of sβ on the number of columns

Figure 5.7: Frequency plots of the number of rows (or the number of columns)
in the found bicluster of an iteration under different parameter settings. The
differently color lines correspond to different parameter settings. The figure
shows that sα has limited influence on the number of rows discovered in each
bicluster (see Subplot 5.7(a)). However, it has a high influence on the number
of the columns included in the bicluster. A bigger sα puts a more stringent
criterion on the selection of the columns, and as a result, fewer columns are
included in the bicluster (see Subplot 5.7(c)). On the other hand, sβ has little
influence on the number of rows selected for the bicluster (see Subplot 5.7(d)).
Rather, it influences the number of columns selected for the bicluster in each
iteration. The number of rows in the bicluster found for an iteration increases
with the increment of sβ (see Subplot 5.7(b)).
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Figure 5.8: Heatmap illustrating the posterior probability that a row or a col-
umn in the data matrix belongs to the bicluster under different parameter
settings. The brighter the spot in the heatmap, the larger the probability that
the corresponding row or column (shown along the x-axis) in the data ma-
trix may belong to the bicluster under the corresponding parameter setting
(shown along the y-axis). The figures show that sα has limited influence on
the posterior probabilities P(DR |D) (see subplot 5.8(a)) and that sβ has little
influence on P(Cm |D) (see subplot 5.8(d)). However, with a smaller sα, the
posterior probability for a column to belong to the bicluster increases (see sub-
plot 5.8(c)). Similarly, the probability for a row to be selected for a bicluster
increases with sβ (see subplot 5.8(d)).
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a smaller sα, the posterior probability for a column to belong to the bicluster
increases (see Figure 5.8(c)). (Note that when sα = 0.1, every the column in
the data set almost has the posterior probability of 1 to be in the bicluster.)
Similarly, the probability for a row to be selected for a bicluster increases with
the increment of sβ (see Figure 5.8(d)).

Combining the information from Figure 5.7 and Figure 5.8, we can infer that
when sα is relatively large (i.e., when the discovered bicluster at the end
of each iteration of the Gibbs sampling procedure contains a small number
of columns), the selected columns for the bicluster are relatively consistent
from one iteration to another, (or in other words, the diversity of the selected
columns is relatively small). When sα is small, the diversity of the selected
columns at the end of each iteration is larger, but the columns selected in
different iterations always overlap with each other most frequently at those
selected columns when a larger sα is used. The same inference can be made
for sβ, but note that in the contrast, the increment of sβ raises the diversity of
selected rows at each iteration. Therefore, by adjusting the input parameters
sα and sβ, users of the algorithm can fine-tune the stringency of the target
bicluster.

5.6.3 Case study: biclustering experiments on leukemia pa-
tients

We applied our algorithm on a data set on leukemia patients, see [4] for a
detailed description of the data. In this paper, Armstrong et al. show that
differences in gene expression are robust enough to classify leukemias correctly
as mixed-linkage leukemia (MLL), acute lymphoblastic leukemia (ALL), or
acute myelogenous leukemia (AML). We explored the possibility to use our
algorithm to find gene expression fingerprints of expression profiles for the
three patient groups. The data set consists of expression data from Affymetrix
chips (U95a or U95aV2) for 12,600 genes collected from 72 leukemia tumor
samples (from 72 patients), of which 28 were clinically diagnosed as ALL, 20
as MLL, and 24 as AML.

We preprocess the data according to the original paper∗ [4]. First, a threshold
of 100 and a ceiling of 1,600 were put on the original data to eliminate data
points with noisy and non-reproducible low values and unreliable high values.
Next, a variation filter was imposed so that only the first 15 percent of genes
with the highest standard deviation were selected for further analysis. In this
way, the size of the data set was reduced to 1887 genes by 72 tumor samples.
This reduced data set was then discretized according to the equal frequency
principle as described in Section 5.2.

∗We favored the preprocessing procedure described by the original paper than RMA or VSN
(see Chapter 1), because both RMA and VSN result in a larger number of Affymetrix control
probes that exhibit a big variation (among the top 15 percent for all the probes) in expression
values across the tumor samples.
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By masking the patients found after each run, the algorithm succeeded in
discovering three biclusters one after another for the data set. The first bicluster
selected 25 patients all of whom are (out of the 28) AML patients, and 444 genes
(because of the large number of selected genes, Figure 5.9 illustrate the pattern
of the discovered bicluster for 100 genes randomly chosen from the 444 genes).
The second bicluster included 19 (out of 24) ALL patients, and 119 genes (see
Figure 5.10). The third bicluster consisted of 17 (out of 20) MLL patients and 34
genes (see Figure 5.11). The patterns displayed in these figures demonstrate the
ability of our algorithm to group patients based on their expression behavior
over a subset of genes, and thus discover expression fingerprint for the patient
groups.

These results are obtained by putting a threshold of 0.5 on the posterior prob-
abilities ofDR and Cm. For the patients, the posterior probabilities forDR are
quite polarized (being either very close to 1, or very close to 0). However, a
different threshold on the posterior probabilities of Cm helps to fine-tune the
selection of genes.

To test the significance of the found biclusters, we performed the algorithm
on 100 permuted data sets of the test data. Tests were done under three sets of
pseudocounts. No pattern was found for any of the data sets under any setting
of the pseudocounts. By this we mean that for every iteration in the tests, a
small bicluster (often consisting of only one patient and several genes) was
sampled at most iterations but that, if we look at the evolution of the biclus-
ter throughout all the iterations, the revealed biclustering positions scattered
around and did not have a consistent core. This result demonstrates that the
patterns found by Gibbs biclustering are statistically highly significant.

We checked the genes whose difference in their expression levels for ALL
patients and MLL patients is explained by their biological characters according
to the paper of Armstrong et al. (2002), to see if these genes are also revealed
by our algorithm. Table 5.1 provides a comparison between our discovery and
the descriptions in the original paper [4] of those genes. The table shows that
most of the genes mentioned in the original paper are recovered by at least
one of the found biclusters. In general, the expression of these genes are in
accordance with the description in Armstrong et al. (2002). However, judging
from the results of our method on this data set, ALL patients have much more
consistent patterns for most of the referred genes (than the MLL patients).
For example, for the genes that have a function early B-cell development (i.e.,
MME, CD24, DNTT, TCF3, TCF4, POU2AF1, and LIG4) evidence revealed by
our algorithm suggests that these genes are overexpressed in ALL, while the
evidence that they are underexpressed in MLL is relatively weak. Similarly, for
the genes that encode certain adhesion molecules (i.e., LGALS1, ANXA1, and
CD44) our result provides more evidence that these genes are underexpressed
for ALL patients than that they are overexpressed in MLL.

The paper of Armstrong et al. (2002) also compared gene expressions between
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Figure 5.9: The first bicluster discovered consists of 25 out of 28 AML patients,
whose discrete gene expression pattern is illustrated in the top figure as a
heatmap, where the rows represent the patients, and the columns represent
the genes (100 genes are randomly selected from the 444 genes that are included
in the bicluster for the purpose of illustration). Black is used to represent the
discrete level ”low”, gray for ”medium”, and white for ”high”. The heatmap in
the middle of the figure shows the discrete expression pattern of the 3 left-out
AML patients over the selected genes. The bottom heatmap shows the pattern
of the ALL patients and the MLL patients over the selected genes, where the
patients are reordered so that they are grouped according to their pathological
categories.
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Figure 5.10: The found bicluster discovered consists of 19 out of 24 ALL pa-
tients, whose discrete gene expression pattern is illustrated in the top figure
as a heatmap, where the rows represent the patients, and the columns rep-
resent the genes. Black is used to represent the discrete level ”low”, gray for
”medium”, and white for ”high”. The heatmap in the middle of the figure
shows the discrete expression pattern of the 5 left-out ALL patients over the
selected genes. The bottom heatmap shows the pattern of the AML patients
and the MLL patients over the selected genes, where the patients are reordered
so that they are grouped according to their pathological categories.
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Figure 5.11: The third bicluster discovered consists of 17 out of 20 MLL patients,
whose discrete gene expression pattern is illustrated in the top figure as a
heatmap, where the rows represent the patients, and the columns represent the
genes. Black is used to represent the discrete level ”low”, gray for ”medium”,
and white for ”high”. The heatmap in the middle of the figure shows the
discrete expression pattern of the 3 left-out MLL patients over the selected
genes. The bottom heatmap shows the pattern of the AML patients and the
ALL patients over the selected genes, where the patients are reordered so that
they are grouped according to their pathological categories.
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Armstrong et al. (2002) Discovered biclustersa
Gene

Description MLL vs. ALL MLL ALL AML
MME – high low
CD24 Genes expressed

Under-
medium high low

CD22 in early B cells
expressed

– – low
DNTT

in MLL
– high low

TCF3 Genes required – high low
TCF4 for appropriate

Under-
– high –

POU2AF1 B-cell
expressed

medium high low
LIG4 development

in MLL
– high –

Under-
SMARCA4

Correlated with
expressed

Gene filtered out by
B-precursor ALL

in MLL
the variation filter

LGALS1 – low –
ANXA1 Relatively – low –
ANXA2

Genes encoding
over- – – –

CD44
certain adhesion

expressed – low –molecules
in MLL Gene filtered bySPN

the variation filter
PROML1 Highly high – –
FLT3 Genes expressed over- high – –

in progenitors expressed Gene filtered out byLMO2
in MLL the variation filter

CCNA1 highly high low –
SERPINB1 Myeloid-specific over- – low –
CAPG genes expressed – – –
RNASE3 in MLL – – –

Highly
Natural killer cell- over- Gene filtered out byNKG2D
associated gene expressed the variation filter

in MLL
CD79B – high low
CD19

Genes that MLL < ALLb
– – lowmark early

not expressedMME B-lymphoid
in MLL

– high –

IL7R
commitment

MLL = ALLc – – low

aThe biclusters discovered by our algorithm are associated with the patient groups that they
represent. Shown under this column are the discretized expression levels of the corresponding
gene for the majority of patients included in the bicluster. A “–” means that the gene is not revealed
by the corresponding bicluster.

bExpressed in MLL, though with lower levels than in ALL.
cExpressed at similar levels in ALL and MLL.

Table 5.1: Comparison between MLL expression pattern and ALL expression
pattern for some biologically related genes discussed in Armstrong et al. (2002)
according to both the original paper and the biclusters found by our algorithm.
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Armstrong et al. (2002) Discovered biclustersa
Gene

Description High inb MLL ALL AML
MME – high –
CD24 Lymphoid-specific medium high low
DNTT genes

ALL
– high low

LIG4 – high –
RPOML1 high – –
FLT3 Hematopoietic high – –

progenitors
MLL

Gene filtered out byLMO2
the variation filter

DF – low high
myeloid-specific Gene filtered out byCTSD
genes

AML
the variation filter

ANPEP – – high

aThe biclusters discovered by our algorithm are associated with the patient groups that they
represent. Shown under this column are the discretized expression levels of the corresponding
gene for the majority of patients included in the bicluster. A “–” means that the gene is not revealed
by the corresponding bicluster.

bHigh expression levels in the corresponding patient category according to Armstrong et al.
(2002).

Table 5.2: Biclustering results on biologically relevant genes with characteris-
tic expression patterns for one of the three pathological groups according to
Armstrong et al. (2002).

the three types of leukemia sub-types—MLL, ALL, and AML. They reached a
conclusion that conventional ALL samples express high levels of lymphoid-
specific genes; AML samples express high levels of myeloid-specific genes;
whereas MLL samples express high levels of genes associated with hematopoi-
etic progenitors [4]. We also compared our results with their discovery in this
regard. Our results confirmed the discovery of Armstrong et al., see Table 5.2.

To further validate if the genes selected for the biclusters are leukemia re-
lated, we calculate the enrichment of the gene ontology (GO) terms [24] of
biological processes based on a hypergeometric distribution (see Section 3.7).
Putting a limit of 0.05 on the p-values of the GO terms, the 444 genes included
in the bicluster that characterizes AML patients are over-represented in 162
GO terms of biological process. Figure 5.12 shows the hierarchical structure
of these over-represented GO termsb. The majority of these over-represented
terms are leukemia related, such as cell differentiation, regulation of cytokine,
hemopoiesis, immune response, chemotaxis, monocyte activation, neutrophil
activation, regulation of DNA recombination, and somatic cell DNA recombi-

bThe GO graphs in this thesis are generated by BioConductor [41] package “GOstats” and
R [98] package “Rgraphviz”.
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ranka GO term p-value kb f c

9 regulation of transcription, DNA-dependent 7.49e-05 73 1025
14 positive regulation of cytokine biosynthesis 1.16e-03 4 11
16 regulation of vascular permeability 2.15e-03 2 2
19 positive regulation of tumor necrosis

factor-alpha biosynthesis 2.15e-03 2 2
22 hemocyte development 3.02e-03 3 7
25 hemocyte differentiation (sensu Arthropoda) 4.66e-03 3 8
28 membrane fusion 6.71e-03 4 17
33 chromatin modification 8.68e-03 7 51
35 vesicle targeting 1.21e-02 2 4
39 induction of positive chemotaxis 1.21e-02 2 4
42 cell growth 1.33e-02 9 82
47 cell differentiation 1.48e-02 14 158
48 hemopoiesis 1.71e-02 7 58
51 positive regulation of interleukin-2

biosynthesis 1.96e-02 2 5
55 protein amino acid methylation 1.96e-02 2 5
60 humoral immune response 2.26e-02 12 135
63 DNA recombination 2.49e-02 6 49
67 regulation of DNA recombination 2.85e-02 2 6
70 negative regulation of nucleobase, nucleoside,

nucleotide and nucleic acid metabolism 2.98e-02 9 94
73 chromatin assembly or disassembly 3.49e-02 7 67
81 nucleosome assembly 3.98e-02 5 41
83 regulation of gene expression, epigenetic 4.16e-02 3 17
85 intracellular copper ion transport 4.64e-02 1 1
87 fractalkine biosynthesis 4.64e-02 1 1
89 positive regulation of fractalkine biosynthesis 4.64e-02 1 1
93 positive regulation of interleukin-1

beta biosynthesis 4.64e-02 1 1

aThe rank of significance of the GO term (biological process ontology), based on its p-value,
among all the significantly enriched GO terms.

bNumber of LocusLink IDs, corresponding to genes in the bicluster that are annotated with the
specified GO term (biological process ontology).

cNumber of LocusLink IDs corresponding to probes on the chip of Affymetrix U95A V2 that
are annotated with the specific GO term (biological process ontology).

Table 5.3: Some GO terms (from the biological process ontology) that are highly
related to leukemia that are associated with genes selected for the bicluster
corresponding to AML patients.
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ranka GO term p-value kb f c

94 positive regulation of cytokine secretion 4.64e-02 1 1
96 constitutive protein ectodomain proteolysis 4.64e-02 1 1
98 chondroitin sulfate biosynthesis 4.64e-02 1 1
99 defense response to Gram-negative

bacteria 4.64e-02 1 1
104 detection of triacylated bacterial lipoprotein 4.64e-02 1 1
109 monocyte activation 4.64e-02 1 1
110 neutrophil activation 4.64e-02 1 1
113 DNA integration 4.64e-02 1 1
115 transcription termination from Pol II promoter 4.64e-02 1 1
116 paranodal junction formation 4.64e-02 1 1
117 microglial cell activation 4.64e-02 1 1
118 alanyl-tRNA aminoacylation 4.64e-02 1 1
123 generation of antibody gene diversity 4.64e-02 1 1
124 release of cytochrome c from mitochondria 4.64e-02 1 1
126 UDP catabolism 4.64e-02 1 1
127 RNA methylation 4.64e-02 1 1
128 UMP biosynthesis 4.64e-02 1 1
130 dTDP biosynthesis 4.64e-02 1 1
131 dTTP biosynthesis 4.64e-02 1 1
132 regulation of body size 4.64e-02 1 1
133 Golgi to endosome transport 4.64e-02 1 1
134 negative regulation of cyclin dependent

protein kinase activity 4.64e-02 1 1
135 UDP-N-acetylgalactosamine transport 4.64e-02 1 1
136 glutamine catabolism 4.64e-02 1 1
151 cellular response to starvation 4.64e-02 1 1
154 histidine biosynthesis 4.64e-02 1 1
157 mismatch repair 4.82e-02 3 18
159 calcium-mediated signaling 5.00e-02 2 8
160 androgen receptor signaling pathway 5.00e-02 2 8
162 cGMP biosynthesis 5.00e-02 2 8

aThe rank of significance of the GO term (biological process ontology), based on its p-value,
among all the significantly enriched GO terms.

bNumber of LocusLink IDs, corresponding to genes in the bicluster that are annotated with the
specified GO term (biological process ontology).

cNumber of LocusLink IDs corresponding to probes on the chip of Affymetrix U95A V2 that
are annotated with the specific GO term (biological process ontology).

Table 5.4: Some GO terms (from the biological process ontology) that are highly
related to leukemia that are associated with genes selected for the bicluster
corresponding to AML patients (continued).
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nation. Table 5.3 and 5.4 list those terms that are represented by the leaves of
the GO graph. Some of the branches of the GO graph are extended a bit deeper
in Table 5.3 and Table 5.4 to illustrate their relevance to leukemia.

The majority of over-represented GO terms of biological processes for those
genes that are included in the bicluster characterizing ALL patients are highly
related to ALL (in this case we put the limit on p-values< 0.1). Figure 5.13 illus-
trates the hierarchical structure of these over-represented GO terms. Table 5.5
and Table 5.6 list the terms on the leaves of the GO graph, as well as the two
GO terms with the lowest p-value—B-cell differentiation and hemopoiesis—
because of their close relation with ALL and leukemia. Together, Figure 5.13,
Table 5.5 and Table 5.6 show that the over-represented GO terms, which include
B-cell differentiation, hemopoiesis, immune response, transcription regulation,
B-cell activation, lymphocyte differentiation and apoptosis, evidently portray
an ALL theme.

Although the 34 selected genes for the bicluster representing MLL patients
exhibit a strong pattern on the 17 MLL patients included in the bicluster, the
majority of the GO terms of biological processes for these genes are not relevant
to leukemia.

To conclude, the genes recovered by our algorithm for each of the three bi-
clusters provide a strong expressional fingerprint for the patients selected for
the corresponding bicluster. Furthermore, the genes that are included in the
biclusters representing AML and (especially) ALL patients have a meaningful
interpretation of pathology. However, pathological evidence is relatively weak
for the genes that are selected for the bicluster representing MLL patients. The
difference in the selected differentially expressed genes between our results
and those represented in Armstrong et al. (2002) [4] might because of the
discretization procedure and consequently the different criterion for judging
differentially expressed genes.

In general, the experiments on this data set illustrate the ability of the al-
gorithm to discover biclusters of consistent gene behaviors over subsets of
patients, which are embedded in a microarray data set. Moreover, the biclus-
ters discovered by the algorithm confirm the possibility to use data produced
by microarray technology to fingerprint gene expression patterns to facilitate
pathological discoveries in leukemia.

5.7 Query-driven biclustering for pattern discovery
in pathology

As we mentioned before, the task of query-driven biclustering of experiments
is the following. Given a set of patients (usually in a small amount), or tumor
samples, which we know to share the same pathology (we refer to this set
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ranka GO term p-value kb f c

1 B-cell differentiation 3.72e-4 3 13
2 hemopoiesis 4.77e-4 5 58
5 regulation of transcription, DNA-dependent 7.47e-4 23 1025

11 calciumion transport 1.61e-3 4 45
14 DNA recombination 2.22e-3 4 49
17 hemocyte development 2.58e-3 2 7
19 androgen receptor signaling pathway 3.41e-3 2 8
28 spermatogenesis 7.63e-3 4 69
31 cytokinesis 8.85e-3 4 72
35 immunoglobulin secretion 1.13e-2 1 1
36 male meiosis I 1.13e-2 1 1
37 adrenal gland development 1.13e-2 1 1
38 positive regulation of B-cell differentiation 1.13e-2 1 1
41 cell-matrix adhesion 1.51e-2 3 46
43 diuresis 2.26e-2 1 2
44 natriuresis 2.26e-2 1 2
45 regulation of dendrite morphogenesis 2.26e-2 1 2
48 regulation of vasodilation 2.26e-2 1 2
49 regulation of vascular permeability 2.26e-2 1 2
50 positive regulation of interferon-gamma

biosynthesis 2.26e-2 1 2
51 postreplication repair 2.26e-2 1 2
53 release of cytoplasmic sequestered NF-kappaB 2.26e-2 1 2
56 Wnt receptor signaling pathway 2.43e-2 3 55
61 transcription initiation from Pol II promoter 2.99e-2 2 24
65 induction of apoptosis 3.11e-2 4 105
72 regulation of neuronal synaptic plasticity 3.37e-2 1 3
74 inhibition of caspase activation 3.37e-2 1 3
75 single strand break repair 3.37e-2 1 3
84 transforming growth factor beta receptor

signaling pathway 3.98e-2 2 28
85 DNA replication 4.03e-2 4 114
98 DNA methylation 5.55e-2 1 5
99 positive regulation of T-cell differentiation 5.55e-2 1 5

105 protein ubiquitination 5.99e-2 4 130

aThe rank of significance of the GO term (biological process ontology), based on its p-value,
among all the significantly enriched GO terms.

bNumber of LocusLink ID’s, corresponding the genes in the bicluster, which are annotated
with the GO term of biological process.

cNumber of LocusLink ID’s corresponding to the probes on the chip of Affymetrix U95A V2
that are annotated with the GO term of biological process.

Table 5.5: Some Go terms of biological processes that are highly related to
leukemia that are associated with genes selected for the bicluster correspond-
ing to ALL patients.
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ranka GO term p-value kb f c

111 mRNA cleavage 6.63e-2 1 6
112 regulation of DNA recombination 6.63e-2 1 6
113 fluid secretion 6.63e-2 1 6
114 negative regulation of angiogenesis 6.63e-2 1 6
115 nucleotide catabolism 6.63e-2 1 6
119 B-cell proliferation 7.69e-2 1 7
120 mRNA polyadenylylation 7.69e-2 1 7
125 calcium-mediated signaling 8.74e-2 1 8
127 cGMP biosynthesis 8.74e-2 1 8

aThe rank of significance of the GO term (biological process ontology), based on its p-value,
among all the significantly enriched GO terms.

bNumber of LocusLink ID’s, corresponding to the genes in the bicluster that are annotated
with the GO term of biological process.

cNumber of LocusLink ID’s corresponding to the probes on the chip of Affymetrix U95A V2
that are annotated with the GO term of biological process.

Table 5.6: Some Go terms of biological processes that are highly related to
leukemia that are associated with genes selected for the bicluster correspond-
ing to ALL patients (continued).

of patients or tumor samples hereafter as the seeds), we want to query the
microarray data to recruit other patients (or tumor samples) that belong to the
same pathological group and in the mean time to identify a gene expressional
fingerprint for the pathology. This type of tools is useful for biologists and
doctors to retrieve information from microarray data when only a small num-
ber of (tumor) samples can be confirmed by traditional means to belong to the
specific pathological type of interest.

5.7.1 Construction of priors

To incorporate information from the seeds into the Bayesian framework of our
biclustering algorithm, we use the frequency information from the seeds to
construct the prior of the bicluster, and impose it to the bicluster model as a
soft query, so that the Gibbs sampling procedure is directed to the discovery of
the target pathological type. In the meantime, the soft query means that seed
patients (or seed tumor samples) that do not share the common pattern for the
discovered bicluster will be excluded.

More specifically, given a set of seed patients (or seed tumor samples) whose
indices in the data matrix are collected in a, we calculate the frequencies of the
three discrete levels observed on the seed patients for gene j, and use it as the
base for β j:

β j = sβ ·
h(D[a, j]) + 0.001

n
. (5.44)
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Note that 0.001 is a pseudocount added to the counts to avoid zero frequency.

However, for the background model, we keep the parameter setting as de-
scribed in Section 5.6.1, assuming that the background model is similar to the
frequency model observed in the whole data set, i.e.

α =
√

n ·
h(D)
n ·m

. (5.45)

In addition, to accelerate the convergence of the Gibbs sampling procedure,
we initialize the algorithm by assigning all the seed patients (seed rows in
the data matrix) to the bicluster and assigning the rest of the patients to the
background.

DR[i] =
{

1, i ∈ a
0, i = 1 . . . n, i < a. (5.46)

However, for the columns of the data matrix Cm (i.e., for the genes), we initialize
by randomly assigning them to either the bicluster or the background.

5.7.2 Experiments on synthetic data

We embedded three biclusters to a noisy background described by a distribu-
tion close to the uniform distribution. The data set contains 200 rows and 40
columns. Bicluster 1 is 40 by 7 in size, Bicluster 2 is 25 by 10, and Bicluster 3 is
35 by 8. The consistency of the data in the three biclusters (i.e., the sharpness of
the multinomial distributions that generate the data in the biclusters) also dif-
fers from one to another. The resulting data is shown in Figure 5.14, where the
rows and the columns of the data set are rearranged to manifest the biclusters.

We first performed biclustering for global pattern discovery on the data as
described in Section 5.6. We used five different sets of parameters, under each
of which the biclustering algorithm was performed 10 times, to see which
embedded bicluster is first recovered each time (i.e., Loop 3 in Figure 4.7 is
not executed). As illustrated in Table 5.7, Bicluster 3 remains as a dominant
pattern for the biclustering discovery.

Parameters Bicluster 1 Bicluster 2 Bicluster 3
sbcl = 7, sbgd = 0.2 0 0 10
sbcl = 7, sbgd = 0.4 0 2 8
sbcl = 5, sbgd = 0.3 1 0 9
sbcl = 3, sbgd = 0.2 0 0 10
sbcl = 3, sbgd = 0.4 2 2 6

Table 5.7: Number of times each bicluster are discovered by the biclustering
algorithm under five different parameter settings.



5.7. Query-driven biclustering for pattern discovery in pathology 123

Figure 5.14: Synthetic data set with three biclusters of different size and consis-
tency are embedded. The rows and the columns of the data set are reordered
to clearly show the biclusters.
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Seed 1 Seed 2 Seed 3sβ
Bcl. 1 Bcl. 2 Bcl. 3 Bcl. 1 Bcl. 2 Bcl. 3 Bcl. 1 Bcl. 2 Bcl. 3

0.1 16 4 0 12 3 5 11 6 3
0.5 16 3 1 13 2 5 10 5 5

1 19 1 0 13 2 5 10 4 6
5 16 4 0 16 0 4 5 0 15a

10 20 0 0 18 0 2 0 0 20a

20 20 0 0 18 0 2 - - -
50 20 0 0 19 0 1 - - -

100 20 0 0 20 0 0 - - -

aDegenerate bicluster that has a major overlap with Bicluster 3.

Table 5.8: Number of times (out of 20) that each embedded bicluster is recov-
ered under different values of sβ for each set of seeds.

We now explore the ability of the algorithm to discover the two non-dominant
biclusters—Bicluster 1 and Bicluster 2—when a set of seed rows is imposed
to the algorithm as a query to direct the discovery. As a first experiment,
we examine the performance of the algorithm under different sets of seeds
extracted from Bicluster 1, where the consistency of the seed rows in each
set varies from one to another. To construct the different sets of seeds, we
calculated the frequency that each discrete levels (i.e., 1, 2, or 3) is observed
under each column of Bicluster 1. This frequency model is concluded asΦtrue,

Φtrue
j =

h{D[rtrue, δ40( j)]} + 0.001
200

, j ∈ ctrue, (5.47)

where rtrue and ctrue are the row and column indices indicating where Bicluster 1
is embedded in the data. Similarly, we calculated the frequency model of the
background, Ψtrue, using the background data. Then, each row is scanned to
obtain a similarity score (between the row and the embedded bicluster) which
is essentially a likelihood ratio,

d[i] =
∏

j∈ctrue

(
Φtrue

Ψtrue

)h{D[i, j]}

, i = 1, . . . , 200. (5.48)

The scores of the rows in the whole data set is plotted in Figure 5.15. We
ranked the rows according to their scores, and composed three sets of seeds
accordingly: Seed 1 consists of 5 rows of the highest similarity scores, Seed 2
is composed of 5 rows ranked in the middle of the 200 rows in the data set,
and Seed 3 contains 5 genes with the lowest similarity scores. The data of the
seeds are illustrated as heatmaps in Figure 5.16.

For each set of seeds, we first test the frequency with which Bicluster 1 is found
back as the first bicluster discovered by the algorithm under different param-
eter settings. We found that the influence of sα remains the same as explained
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Figure 5.15: Scores of the rows in the whole data set measuring their simi-
larity with the embedded Bicluster 1. The triangles represent the rows where
Bicluster 1 is embedded, and the dots represent the rest of the rows in the data
set.

(a) Seed 1 for Bicluster 1

(b) Seed 2 for Bicluster 1

(c) Seed 3 for Bicluster 1

Figure 5.16: Patterns of the three seeds that are used to guide the discovery of
Bicluster 1. The rows in each pattern represent the rows in the data set that are
used as seeds. The column in each pattern is rearranged so that the first seven
columns corresponds to those where Bicluster 1 is embedded.
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in Section 5.6.2. That is, a larger sα results in fewer columns selected for the
bicluster, and data under the selected columns exhibit higher consistency for
those rows that are included in the bicluster. Therefore, we focus our discus-
sion below on the influence of sβ. To illustrate the influence of sβ, we fixed
sα = 0.3, and performed the algorithm under 8 different values of sβ. For each
set of seeds and under the same parameter settings, we ran the algorithm 20
times, each time only to identify one cluster in the bicluster. Out of these 20
runs, we count the number of times that Bicluster 1 is recovered. The result is
presented in Table 5.8.

Table 5.8 shows that in general the introduction of seeds increases the chance
to discover the target bicluster (i.e., Bicluster 1). When the set of seed rows
compose a consensus pattern under the columns of the true bicluster (as in
the case of Seed 1), and with a large sβ (e.g., sβ ≥ 5 in this case), the intended
bicluster is almost always found back. When the pattern of the seed rows
exhibits high consistency under the true biclustering columns, (e.g., Seed 1
and Seed 2), the frequency that the algorithm retrieves the embedded pattern
decreases together with of sβ. The decrement in the consistency of seed rows
reduces the frequency of finding the intended pattern. When the set of seeds
carries little information about the bicluster—as in the case of Seed 3, where
the similarity scores (see Equation 5.48) of the seed rows (to Bicluster 1) are
no higher than the maximum score of the rest of the rows (see Figure 5.15)—a
smaller sβ, however, helps to recover the embedded bicluster. That is because a
big sβ only emphasizes the noise of the seeds, and thus suggests that the target
bicluster is also a noisy one. This explanation is also reflected by the fact that
a degenerated version of Bicluster 3 (a bicluster consisting of some 50 rows
and 10 columns, with the rows and columns greatly overlapping with those in
Bicluster 3) is found when a large sβ (i.e., larger than 10) is used.

We also examined the influence of sβ on the number of rows selected for the
bicluster in each iteration of the Gibbs sampling procedure in those cases
when the target bicluster (i.e., Bicuster 1) is recovered. Figure 5.17 shows the
frequency that, the bicluster found in an iteration contains a certain number of
rows. For the two extreme situations (i.e., Seed 1 and Seed 3) the increment of
sβ causes the bicluster discovered during the whole Gibbs sampling procedure
to cover a larger range of row size. However, in the case of Seed 2, the range
for the number of rows discovered by the algorithm increased first and then
fell back as sβ grows larger. Despite their individual difference, the bicluster
discovered during the whole Gibbs sampling procedure always overlap at the
position of the target bicluster (i.e., Bicluster 1). Changing the threshold on the
final estimate ofDR (see Equation 4.53) helps to fine-tune the final selection of
rows.

Note that the algorithm can exclude seeds that are not consistent with the
discovered bicluster. For instance, when Seed 3 is used, those rows often have
very low posterior probabilities to be included in the final bicluster.
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Figure 5.17: Frequency plots of the number of rows contained in the bicluster
found at the end of an iteration in the Gibbs sampling procedure, for differ-
ent set of seeds, and under the 8 different values of sβ. For the two extreme
situations (i.e., Seed 1 and Seed 3) increasing sβ causes the bicluster discov-
ered during the whole Gibbs sampling procedure to cover a larger range of
row sizes. However, in the case of Seed 2, the range for the number of rows
discovered by the algorithm increased first and then fell back as sβ grows
larger.
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# Unique rows
in the seed

Bicluster 1 Bicluster 2 Bicluster 3

0 9 0 11
1 16 0 4
2 15 0 5
3 17 0 3
4 20 0 0
5 20 0 0

Table 5.9: Number of times (out of 20) that each embedded bicluster is discov-
ered when a query is imposed to discover Bicluster 2. The seed is made up of
two components, one of those rows where only Bicluster 2 is embedded, and
the other of those rows where Bicluster 2 overlaps with Bicluster 3. Each set
of seeds consists of five rows. The first row in the table shows the number of
rows in the seed where Bicluster 2 is uniquely embedded.

In the second experiment, we examine the impact of seed rows that overlap
with the dominant bicluster in the data set. Our target bicluster in this case
is Bicluster 2. We set the parameters sα = 0.2, and sβ = 10, and use five rows
in each set of seeds. Each set of seed rows is composed of two parts, one of
those rows where only Bicluster 2 is embedded, and the other of those rows
where Bicluster 2 overlaps with Bicluster 3. However the proportion of the
two components is different from one set of seeds to another. As Table 5.9
illustrates, the increase in the proportion of unique rows in the seed raises the
chance to find the intended bicluster.

5.7.3 Case study: query-driven biclustering of leukemia pa-
tients

The paper of Yeoh et al. (2002) [115] demonstrates that distinct expression pro-
files can identify each of the prognostically important leukemia subtypes of
pediatric acute lymphoblastic leukemia (ALL), including T-ALL, E2A-PBX1,
BCR-ABL, TEL-AML1, MLL rearrangement, and hyperdiploid > 50 chromo-
somes. In addition, they found a novel ALL subgroup based on its unique
expression profile.

The data of Yeoh et al. (2002) [115] contains gene expression profiles mea-
sured on 327 patients, of whom 15 are BCR-ABL patients, 27 are E2A-PBX1
patients, 64 are hyperdiploid-over-50-chromosomes patients, 20 are MLL-
rearrangement patients, 43 are T-ALL patients, 79 are TEL-AML patients, and
79 are from other pathological categories. We preprocessed the data as de-
scribed in the original paper [115]. Further, we only retained the genes, whose
variations was are among the 15% highest for further analysis, which leaves
1894 genes in the data set. The resulting data was then discretized as described
in Section 5.2.
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Patient group 1st bicl. 2nd bicl. 3rd bicl. 4th bicl. 5th bicl.
TEL-AML1 4/20 3/11 1/7 0/7 0/5
T-ALL 6/20 2/11 2/7 0/7 0/5
Hyperdiploid > 50 1/20 1/11 3/7 2/7 0/5
E2A-PBX1 0/20 1/11 1/7 1/7 0/5
E2A-PBX1 +MLL 0/20 0/11 0/7 2/7 0/5
Last 1/3 patientsa 9/20 3/11 0/7 0/7 0/5
First 1/3 patientsb 0/20 1/11 0/7 2/7 5/5

aSelected patients are represented in the last 1/3 columns in the data matrix.
bSelected patients are represented in the first 1/3 columns in the data matrix.

Table 5.10: The frequency of recovering biclusters representing different pa-
tient groups by performing the biclustering algorithm to the data using non-
informative priors. The columns of the table correspond to the biclusters found
sequentially by performing the biclustering experiment. In total 20 experi-
ments were performed, and the masking-and-biclustering procedure was ter-
minated when a bicluster not corresponding to any of the patient groups is
found. The denominators gives the number of times that the algorithm suc-
ceeded to recover a ith bicluster during the 20 experiments (where i refers to
the number in the title of the column). The numerators are the number of times
that the bicluster corresponding to a certain patient type is recovered.

We first applied the biclustering algorithm (as described in Section 5.6) to dis-
cover global patterns in the data, to get an idea of the behavior of the pattern
discovery under non-informative prior on the data. Clusters found in earlier
rounds are masked to discover multiple patterns. The whole procedure is ter-
minated when a biclusters not in correspondence to any of the patient group is
found, as illustrated in Figure 4.7. This entire procedure was repeated 20 times
in total. Out of these 20 rounds, we counted the number of times that a bicluster
was recovered. Table 5.10 summarizes the frequency of discovering a bicluster
representing a certain patient group. The table shows that biclusters whose
columns depend on their position in the data set (which is a result from the
fact that the genes included in these bicluster do not show sufficient variations
in their continuous expression profiles, see Figure 5.2 for an explanation) are
more dominant than the biclusters representing the MLL group, the BCR-ABL
group, and the novel patient group.

For each of the ALL pathological subgroups that are not recovered in the above
biclustering experiments (i.e., the MLL group, the BCR-ABL group, the novel
group of patients) we randomly selected five patients as seeds, and applied the
query-driven biclustering to the unmasked data. Our algorithm successfully
revealed biclusters corresponding to the targeted patient classes. The biclus-
ter presented in Figure 5.18 includes 20 patients, 18 of whom are clinically
identified as MLL patients (while the other two belong to the hyperdiploid >
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50 group), and 57 genes, fingerprinting the gene expression profiles of the 20
patients. Moreover, the 57 genes are highly related to MLL according to both
Yeoh et al. (2002) [115] and Armstrong et al. (2002) [4]. Figure 5.19 illustrates
the bicluster where 12 out of the 14 patients of the novel group are included.
This bicluster includes 84 genes, which have a strong fingerprint over the 12
selected patients. For the BCR-ABL patients, the algorithm found a bicluster
of 9 BCR-ABL patients and 71 genes, 17 out of which overlaps with those that
are discovered by Yeoh et al. (2002), see Figure 5.20.

This example shows the power of applying informative prior on the hier-
archical Bayesian model for the biclustering problem of experiments. If such
prior knowledge is available, the ability of the algorithm to find non-dominant
patterns embedded in the microarray data can be greatly enhanced.

5.8 Conclusion

In this chapter, we give a full explanation of the Bayesian hierarchical model for
the problem of biclustering experiments. We discussed two ways of construct-
ing the prior distributions either to discover respectively global biclusters em-
bedded in the data or to direct the discovery toward a bicluster corresponding
to a certain type of experiment. By using two synthetic data sets, we illustrate
the influence of user input parameters on the resulting bicluster. In addition,
we also illustrate the usefulness of algorithm on two leukemia data sets.
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Chapter 6

Biclustering genes in
microarray data

In this chapter, we develop a dedicated Bayesian hierarchical model for the
problem of biclustering genes. We emphasize the importance of priors in this
type of model, and their usefulness in biological discovery. We illustrate the
efficiency of our algorithm in assisting the discovery of regulatory transcrip-
tional modules on a combined data set of yeast.

6.1 Introduction

The same Gibbs sampling strategy as described in Chapter 4 can be used for
the biclustering of genes. However, in contrast to the biclustering of experi-
ments, we treat the preprocessed microarray as it is—i.e., no transposition is
performed before carrying out the Gibbs biclustering procedure. Because now
the row dimension of the data is at least of thousands of rows, a Gaussian dis-
tribution becomes a feasible candidate for describing the data. Fitting a normal
model to gene expression measurements under a certain condition is consid-
ered reasonable especially when an appropriate preprocessing procedure has
been applied to the microarry data.

The nature of our biclustering algorithm partitions the genes in the microarray
data into two components based on their expression profiles under a selected
subset of conditions. The partition is made by associating the genes either to the
bicluster model or to the background model. Because of the high complexity
of the underlying biological processes, a probabilistic mixture model for a
microarray data set often comprises a vast number of modes. In our case, we
divide the probabilistic mixture into a bicluster component and a background
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136 Chapter 6. Biclustering genes in microarray data

component, which means that each combination of the modes in the mixture
model can be selected as a bicluster (and consequently the rest of the modes
combined as the background).

As described later on in the chapter, the same hierarchical model structure is
used for both the bicluster and the background. This means that when a non-
informative prior is used, the Gibbs sampling procedcure tends to partition
the genes corresponding to the two global modes in the maximum likelihood
function. Genes included in either of the partitions are often of little interest to
biologists.

The strength of our algorithm lies in its ability to answer this type of specific
questions that interest biologists. Thanks to the Bayesian hierarchical model
that we use, the question of interest for the biologists, once transformed to
mathematical language, can be imposed to the model to direct the discovery
of the bicluster. By introducing a prior, methods based on Bayesian models
help to zoom in on the local area of interest of the likelihood landscape, and
raise the corresponding area in the posterior distribution.

We consider one possible situation where the biologists have at hand a specific
set of genes (called the “seed genes” hereafter), which they know to be related
to some common biological function. The question for their query to the mi-
croarray data is “which other genes in this data set share similar expression
profiles as the seed genes and thus might be involved in the same function?
In the meantime, in which experimental conditions is this biological function
involved?” Otherwise stated, given the seed genes, we want to recruit genes
(presented in the microarray data set) that share similar expression profiles
under a subset of conditions. In addition, the few seed genes whose profiles
are not compatible with the discovered pattern should be rejected if present.
We discuss in this chapter the methodology to construct a prior model by using
the seed genes. When the prior model is strong enough, the posterior mean
estimate of the target joint posterior distribution (see Equation 4.42) provides
an answer to the query of biologists.

In this chapter, we discuss the Gibbs sampling strategy for tackling the biclus-
tering problem of genes in the following four aspects:

• Model structure: minor modifications in the general structure to improve
results on time-series experiments

• Gauss-Wishart model: the hierarchical Bayesian models describing the bi-
cluster and the background

• Full conditional distributions: the distributions from which samples of the
hidden variable R, the structural variables C, and the model parameters
are drawn during the Gibbs sampling procedure

• Construction of the priors: the incorporation of prior information into the
Bayesian hierarchical model
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For a case study, we illustrate the ability of our biclustering strategy to as-
sist the discovery of regulatory modules in transcriptional networks. We first
consider the possible layout of the biclusters in a microarray data set that
could correspond to different transcriptional modules from a biological point
of view. Then, we test the performance of our algorithm on a synthetic data
set in which the discussed layout of biclusters are embedded. Finally, we use
a yeast data set to illustrate our strategy for transcriptional regulatory module
discovery as a whole.

6.2 Model structure

For this chapter, we distinguish between the phrases “experiment” and “con-
dition” by defining an experiment as a column of the microarray data matrix,
and a condition as a group of experiments. This distinction is useful, for ex-
ample, when the microarray data is obtained from time-series experiments.
In this case, different columns in a microarray data set may correspond to
experiments that are performed under the same condition but at different time
points. When performing the biclustering algorithm, we might want to assign
all the experiments from the same condition to one bicluster by using one hid-
den variable to describe the association of these experiments to the bicluster.
Yet in the meantime, to allow flexibility in the model, we would use different
distributions to describe different experiments.

We use {X j | j = 1, . . . ,m} to denote random variables that describe the expres-
sion values of the genes under the corresponding experiment (i.e., correspond-
ing column in the data set). We introduce another set of variables {Yk | k = 1 . . . q}
(where q is the number of the conditions) to denote the expression of the genes
under condition k. Using ek to denote the set of indices of the experiments that
belong to Condition k, we have,

Yk = {Xl | l ∈ ek}. (6.1)

For example, in Figure 6.1,

e4 = [5, 6], (6.2)
Y4 = {X5, X6}. (6.3)

Adjusting our Bayesian hierarchical model introduced in Section 4.3 for this
change, the nodes for observed data now represent Y1, . . . ,Yq (see Figure 6.1
for an example). Consequently, the notation for the set of Bernoulli variables
to describe whether a node belongs to the bicluster changes to Cq = {Ck | k =
1, . . . , q}. To be explicit, the bicluster model now is

p(Yk) =


p(Yk |R = 1) = f (Θbcl

k ) Ck = 1, R = 1
p(Yk |R = 0) = f (Θbgd

k ) Ck = 1, R = 0
p(Yk) = f (Θbgd

k ) Ck = 0
, k = 1 . . . q, (6.4)
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Figure 6.1: Data level of a Bayesian model for biclustering genes. The col-
ored matrix represents microarray data, where an embedded bicluster is high-
lighted. Each column in the data represents an experiment, which is described
by random variable Xi, (i = 1, . . . , 9). The experiments performed under the
same condition are grouped together. The conditions are represented by ran-
dom variables {Yk | k = 1 . . . 6}. Random variables Yk, (k = 1, . . . , 6) are involved
in the graphical model for biclustering as shown in the upper part of the figure.
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where aΘk parameterizes the multivariate distribution p(Yk) = p(Xek ).

To facilitate the notation, we keep the symbols r, r̄, c and c̄ as described in
Equations 5.14 to 5.17. More specifically, r and r̄ are respectively the indices of
the rows (i.e., genes) that belong to the bicluster and the background; c and
c̄, however, now denote the indices of the conditions (instead of the columns
in the data matrix, or the experiments) that belong to the bicluster and the
background respectively. For the experiments, we use

e =
[
j | j ∈ ek,∀k = {1, . . . , q} ∧ Ck = 1

]
(6.5)

to denote the entire set of indices of the experiments (i.e., columns in the data)
whose corresponding conditions belong to the bicluster, and

ē =
[
j | j ∈ ek,∀k = {1, . . . , q} ∧ Ck = 0

]
(6.6)

to notate the entire set of indices of the experiments whose corresponding
condition are in the background. Take Figure 6.1 for example,

e = [2, 3, 4, 7, 8], (6.7)
ē = [1, 5, 6, 9]. (6.8)

6.3 The Gauss-Wishart model

We use Gaussian distributions to describe the expression data. This choice
is not only inspired because normal models are analytically convenient, but
also because of the previous success in applying normal mixture models to
the clustering problems of microarray data [116, 71]. Furthermore, as we have
mentioned in the beginning of this chapter, the assumption for fitting a normal
distribution to the gene expression measurements in a given situation is con-
sidered to be reasonable especially when a proper preprocessing procedure
has been applied to the microarray data [7].

For each Yk (k ∈ c) we assume that the covariance matrix of Xek is diagonal.
That is to say that we use a single normal distribution to model the expression
values of the genes that belong to the bicluster under each experiment,

X j ∼ N
(
µbcl

j , (σ
bcl
j )2

)
, j ∈ e. (6.9)

To provide flexibility to the model, we allow µ j (for j ∈ e) to be drawn from
different distributions. Because of the use of conjugate priors, the µ j’s follow
normal distributions,

µbcl
j ∼ N

(
ϕbcl

j , (τ
bcl
j )2

)
, j ∈ e. (6.10)
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Figure 6.2: The same hierarchal model structure used for describing both the
bicluster and the background for the problem of biclustering genes.

However, for the variance of the experiments in the bicluster, we assume that
the variances of different experiments in the bicluster are modeled by the same
prior distribution. Again, conjugate priors are used,

(σbcl
j )2
∼ Inverse-χ2

(
νbcl, (sbcl)2

)
, j ∈ e. (6.11)

In this way, we assume that both the correlations within Yk (i.e., correlations
between the experiments in the same condition, X j for j ∈ ek) as well as the
correlation between the Yk’s (for k = 1 . . . q) are explained by the prior on σ2

j
for j ∈ e.

The hierarchical model structure for experiments in the bicluster is illustrated
in Figure 6.2. Note that the hierarchical model for the bicluster as explained
above (see Equation 6.9, Equation 6.11, and Equation 6.10) is represented as a
whole byΘbcl in Equation 6.4.

We use the same hierarchical structure for the background (as illustrated in
Figure 6.2),

X j ∼ N

(
µ

bgd
j , (σbgd

j )2
)

j = 1 . . .m, (6.12)

µ
bgd
j ∼ N

(
ϕ

bgd
j , (τbgd

j )2
)

j = 1 . . .m, (6.13)

(σbgd
j )2

∼ Inverse-χ2
(
νbgd, (sbgd)2

)
j = 1 . . .m. (6.14)

Equations 6.13 to 6.14 contains the hierarchical model for data in the back-
ground represented asΘbgd in Equation 6.4.

We will also use

µbcl = {µbcl
j | j ∈ e} (6.15)

µbgd = {µ
bgd
j | j = 1 . . .m}. (6.16)
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The same system of notations is applied to σbcl, σbgd,ϕbcl,ϕbgd, τbcl and τbgd.

6.4 Full conditional distributions

As explained in Section 4.4.2 (see Equation 4.42) the target joint distribution
for this biclustering problem is

p(DR, Cm, Θ
bcl, Θbgd

|D, ξbcl, ξbgd, ζr, ζc),

where

Θbcl = {µbcl, (σbcl)2
} (6.17)

Θbgd = {µbgd, (σbgd)2
} (6.18)

ξbcl = {ϕbcl, (τbcl)2, νbcl, (sbcl)2
} (6.19)

ξbgd = {ϕbgd, (τbgd)2, νbgd, (sbgd)2
}. (6.20)

This means that in the Gibbs sampling procedure, we need to iteratively sample
from the full conditional distribution of each of the random variables involved
in Equation 6.17 to Equation 6.20. In what follows, we show how to derive the
full conditional distributions for each of these variables.

Given a fixed model structure Cq and a known value for the hidden variable
R, the derivation of the full conditional distributions of the parameters for
the Gauss-Wishart model is straightforward because of the use of conjugate
priors (see explanations in Section 5.5). These conditional distributions are in
the same form as the prior. In either the bicluster model or the background
model, the conditional distribution forµ j remains a normal distribution, which
is illustrated in the following equation:

p(µ j |D[u, j], σ2
j , φ j, τ

2
j )

∝ p(D[u, j] |µ j, σ
2
j ) · P

(
µ j |φ j, τ

2
j )

∝ exp

− |u|2σ2
j

[
µ j − µ̄ j

]2
 · exp

− 1
2τ2

j

[
µ j − φ j

]2


= exp

−1
2

µ2
j

σ2

|u|

+
µ̄2

j

σ2

|u|

− 2
µ j · µ̄ j

σ2

|u|

+
µ2

j

τ2 +
φ2

j

τ2 − 2
µ j · φ j

τ2




∝ exp

−1
2

µ2
j

 1
σ2

|u|

+
1
τ2

 − 2µ j

 µ̄ j

σ2

|u|

+
φ j

τ2



 , (6.21)

where µ̄ j is the sample mean µ̄ j =
∑

i∈uD[i, j]−µ j

|u| , and |u| denotes the length of the
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vector of indices u. Let a = 1
τ2

j
and b = 1

σ2
j
|u|

,

p(µ j |D[u, j], σ2
j , φ j, τ

2
j ) ∝ exp

{
−

1
2

[
µ2

j

(
a + b

)
− 2µ j

(
a · φ j + b · µ̄ j

)]}
∝ exp

−1
2

µ2
j

(
a + b

)
−

2µ j ·
(
a · φ j + b · µ̄ j

)
· (a + b)

(a + b)
+

(
a · φ j + b · µ̄ j

)2
· (a + b)

(a + b)2


 . (6.22)

Using σ̂2 = 1
a+b and µ̂ j =

a·φ j+b·µ̄ j

a+b , we finally derive

p(µ j |D, DR, Cq, σ
2
j , φ j, τ

2
j ) =N(µ̂ j, σ̂

2
j )

µ̂ j =

ϕ j

τ2
j
+

µ̄ j

σ2
j
|u|

1
τ2

j
+ 1

σ2
j
|u|

and σ̂2
j =

1
1
τ2

j
+ 1

σ2
j
|u|

.
(6.23)

The posterior distributions for σ2
j is a scaled inverse-χ2 distribution,

p(σ2
j |D[u, j], µ j, ν, s2) =

p(D[u, j] |µ j, σ2
j ) · p(σ2

j | ν, s2)

p(D[u, j]|µ j, ν, s2)
. (6.24)

The numerator of Equation 6.24 is,

p(D[u, j] |µ j, σ
2
j ) · p(σ2

j | ν, s2)

=
1

(
√

2πσ j)|u|
exp

−
∑

i∈u(D[i, j] − µ j)2

2σ2
j

 · 2−ν/2

Γ(ν/2)
sνσ−2( ν2+1)

j exp

− νs2

2σ2
j


= Z · σ−2( ν+|u|2 +1)

j exp

−
∑

i∈u(D[i, j] − µ j)2 + νs2

2σ2
j

 , (6.25)

where Z = 1
√

2π
·

2−ν/2
Γ(ν/2) s

ν. The denominator of Equation 6.24 is,

p(D[u, j]|µ j, ν, s2)

=

∫
p(D[u, j] |µ j, σ

2
j ) · p(σ2

j | ν, s2) dσ2
j

= Z ·
∫
σ
−2( ν+|u|2 +1)
j exp

−
∑

i∈u(D[i, j] − µ j)2 + νs2

2σ2
j

 dσ2
j . (6.26)
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Replacing
∑

i∈u(D[i, j] − µ j)2 + νs2 by t, we have

p(D[u, j]|µ j, ν, s2) ∝

∫  1
σ2

j


ν+|u|

2 +1

exp

− t
2σ2

j

 dσ2
j

=

∫
2
t

(
σ2

j

)2
 1
σ2

j
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2 +1

exp

− t
2σ2

j

 d

 t
2σ2

j


=

∫ ( t
2

)−1
 1
σ2

j
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2 −1

exp

− t
2σ2

j

 d

 t
2σ2

j


=

( t
2

)− ν+|u|2
∫  t

2σ2
j


ν+|u|

2 −1

exp

− t
2σ2

j

 d

 t
2σ2

j


=

( t
2

)− ν+|u|2

Γ
(
ν + |u|

2

)
(6.27)

Therefore,

p(σ2
j |D[u, j], µ j, ν, s2) (6.28)

=

(∑
i∈u(D[i, j]−µ j)2+νs2

2

) ν+|u|
2

Γ
(
ν+|u|

2

) · σ
−2( ν+|u|2 +1)
j exp

−
∑

i∈u(D[i, j] − µ j)2 + νs2

2σ2
j

 .
Using

ν̂ = ν + |u| (6.29)

and
ŝ2 =

1
ν + |u|

∑
i∈u

(D[i, j] − µ j)2 +
ν

ν + |u|
s2, (6.30)

we have,

p(σ2
j |D[u, j], µ j, ν, s2) =

(
ν̂
2

) ν̂
2

Γ
(
ν̂
2

) ŝν̂σ
−2( ν̂2+1)
j exp

− ν̂ · ŝ2

2σ2
j

 . (6.31)

That is to say,

p(σ2
j |D, DR, Cq, µ j, ν, s2) = Inverse-χ2(ν̂, ŝ2). (6.32)

Thanks to the conditional independence assumptions of our model as de-
scribed in Section 6.3, in Equations 6.21 to 6.32, µ j is only conditioned on σ2

j in
the same model (i.e., the model either for the bicluster or for the background)
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in addition toD,DR and Cq; and vice versa. Note that the vector of indices u
carries the information of bothDR and Cq: for µbcl and (σ2)bcl,

u = r , j ∈ e; (6.33)

for µbgd and (σ2)bgd,

u =
{

r̄ j ∈ e
[1, . . . ,n]T j ∈ ē

(6.34)

Equation 4.49 is directly applicable for the evaluation of the full conditional
distribution ofDR[i] (i = 1 . . . n), which now becomes,

γr
i =

∏
j∈e

P
(
D[i, j] |µbcl

j , (σ
2)bcl

i

)
P
(
D[i, j] |µbgd

j , (σ2)bgd
j

) · vī + ζ
r
1

n − 1 − vī + ζ
r
0

i = 1, . . . , n. (6.35)

For the conditions, when applying Equation 4.52 to our model here, we have
to keep in mind that Equation 6.34 indicates that µbgd

j and (σ2)bgd
j are evaluated

differently depending on whether experiment j is included in the bicluster or
not. We use µbgd1

j and (σ2)bgd1
j to denote the parameters of the background

model evaluated in the former case, and µbgd0
j and (σ2)bgd0

j for the latter case.
Now, Equation 4.52 is evaluated as
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(6.36)

The first term in both Equation 6.35 and Equation 6.36 are likelihood ratios (also
see the explanations for Equation 4.49 and Equation 4.52). Note that by using
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likelihood ratios, the missing values in the microarray data can be neglected
from the evaluation of the conditional distributions, which is equivalent to
assuming that these data points have the same possibility be to generated by
the bicluster model as by the background model.

6.5 Construction of the priors

Note that conjugate priors are used for the hierarchical models (see Section 6.3)
for the same reason as explained in Chapter 5—their interpretability and their
analytical convenience.

As we explained in the beginning of this chapter, the imposition of priors
plays an utmost important role to guide the discovery of the bicluster toward
the answer to the specific question that interests the biologist. Given a set of
seed genes, biologists want to recruit other genes whose expression profile is
similar to the seed genes, but only under a subset of conditions. Mathematically
translated, the objective is to find a set of genes that have small variance under
a subset of conditions, in addition the mean profile of these genes should
strictly follow that of the seed genes under the selected conditions.

To impose our requirement that the mean of the genes under each experiment
in the bicluster should strictly follow that of the mean of seed genes, we define

ϕbcl
j =

∑
i∈aD[i, j]
|a|

, (6.37)

which is the mean of the seed genes under all the experiment j in the data
set—a stands for the vector of indices of the seed genes, and |a| is the number
of genes in the seed. Moreover, we use a very small value for τbcl, for example,

τbcl
j = 10−4, j ∈ e. (6.38)

By setting

(s2)bcl =
1
νbcl

(6.39)

for the prior on (σ2)bcl, the scaled inverse-χ2distribution becomes an inverse-
χ2 distribution, which means that no prior knowledge on the exact value of
the posterior variance is imposed, and that the posterior parameters for (σ2)bcl

are of smaller values for those experiments under which the selected genes
have a smaller sample variance. Raising νbcl implies a stronger belief that the
posterior variance is close to the sample variance of the selected genes, the
effect of which is equivalent to increasing the number of genes in the bicluster
without changing the sample variance.

Similarly, we assume that the mean profile of the genes in the bicluster should
be close to that of those genes that are not used as seed genes. Therefore, for
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the prior on µbgd, we set ϕbgd
j to the mean of the expression levels of all the

genes under experiment j,

ϕbcl
j =

∑
i∈āD[i, j]
n − |a|

; (6.40)

and we use
τ

bgd
j = 10−4, k ∈ e. (6.41)

For the priors on (σ2)bgd, we set

(s2)bgd =
1
νbgd

. (6.42)

In addition, weak priors are used for the labels, because we have little knowl-
edge beforehand about how many genes and conditions the bicluster would
contain. We typically set

ζr
0 = ζ

r
1 = 0.5 (6.43)

ζc
0 = ζ

c
1 = 0.5. (6.44)

In this way, νbcl and νbgd are the only two hyperparameters opened to the user
for controlling the stringency of the bicluster.

6.6 Biclusters for transcriptional regulatory mod-
ules

The assumption for regulatory module discovery in transcriptional data (i.e.,
microarray data) is that genes governed by the same regulatory program (i.e.,
having the same set of regulators) share similar expression profiles under the
working conditions of the regulators. A transcriptional module refers to the set
of the genes that are coregulated, the conditions under which the coregulation
occurs and the expression profiles of these genes under the specific set of con-
ditions. By this definition, it is clear that a transcriptional module corresponds
to a bicluster in the microarray data. The regulatory module however includes
both the transcriptional module and its governing regulatory program.

Depending on the combination of regulators, the same genes can be involved
in different transcriptional modules of different size (i.e., biclusters including
different additional genes and different working conditions). A hypothetical
example is given in Figure 6.3.

A gene expression data set can be subdivided in several overlapping context
dependent modules. Modules found in many conditions can be expected to
contain few genes with a very specific function. Indeed, the more conditions
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Figure 6.3: C1, C2, and C3 represent three unrelated conditions. Ri represents
different regulators active in the respective condition dependent regulatory
programs. R1 and R2 are active in C1; R1 and R3 are active in C3; and R4 is active
in C2. (A) Distinct partially overlapping modules exist. Modules consisting of
a few genes, tightly coexpressed in many conditions can be hypothesized
to be associated with a highly specific function (horizontal middle panel).
They consist of genes that respond to the same regulatory program and are
coexpressed under all conditions. As modules are extended with more genes,
the number of conditions can be expected to decrease. Genes within such
extended modules only share part of the regulatory program (i.e., the one that
is active under the selected conditions—top and bottom panel).
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φ τ2 ν s2

Background 0 0.3 200 1.0
Bicluster 1 0 2 50 0.25
Bicluster 2 0 1.5 50 0.36
Overlap (50 ×30) – – 50 0.16

Table 6.1: Parameter settings for the generation of the synthetic data set.

genes appear to be coexpressed in, the more similar their regulatory program
tends to be and the more connected their role in the pathway becomes. In a
module, the number of genes will usually increase with a decreasing number
of conditions. Obviously, there will be more genes that only share part of their
regulatory program, (i.e., the part that is active under the set of conditions
tested). The fewer the number of conditions included in the module one con-
siders, the less stringent the requirements on the overlap in the regulatory
program becomes (see Figure 6.3).

6.7 Experiments on synthetic data

To demonstrate the performance of the algorithm, we have embedded two
overlapping biclusters—(1) Bicluster 1 of 300 rows by 80 and (2) Bicluster 2
of 400 rows by 50 columns—into a noisy background of 2000 rows by 100
columns. The two biclusters overlap each other by 50 rows and 30 columns.
The data of the two biclusters at the overlapping area share the same mean for
each column. However, the variance under each column in the overlapping
areas is generated by a different inverse-χ2 distribution other than those that
generated the variances for the columns under Bicluster 1 and Bicluster 2. The
parameters used to generate the data are listed in Table 6.1. Part of the resulting
data set is illustrated in Figure 6.4, which includes 100 rows from Bicluster 1,
150 rows from Bicluster 2 (note that all the 50 rows at the overlapping region
are all included) and 100 rows from the background data are selected for
illustrate. The rows and columns in Figure 6.4 are rearranged so that the
embedded biclusters are clearly visible.

In this way, the synthetic data resembles the one that we discussed for Fig-
ure 6.3, and yet contains different structures that allow us to explore the in-
fluence of the user input parameters νbcl and νbgd on the resulting biclusters.
We want to investigate which part of the three biclusters is recovered under
different parameter settings.

To illustrate the performance of the algorithm under different parameter set-
tings νbcl and νbgd, we use four sets of seed rows that are extracted from different
parts of the data set. Seed 1 consists of five rows in the non-overlapping area
of Bicluster 1, Seed 2 consists of five rows in the non-overlapping area of Bi-
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Figure 6.4: Part of the synthetic continuous data set. The values of the data
points are reflected by the color scale. The rows and the columns are rearranged
to manifest the embedded biclusters.
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cluster 2, Seed 3 is made up of five rows out of the 50 rows where Bicluster 1
overlaps with Bicluster 2, and finally Seed 4 is composed of two rows from
the overlapping area of Bicluster 1 and Bicluster 2, two of the non-overlapping
rows of Bicluster 2, and two random rows from the background data.

We found that our algorithm retrieved reproducible patterns for each set of
seeds under each of the parameter settings that we tested for this synthetic data
set. We performed the algorithm 10 times on each of Seed 1, 2, 3, and 4, under
each parameter setting. Each time we aim to find one bicluster (which means
that Loop 3 in Figure 4.7 is not performed). However, for these 10 rounds on a
particular set of seed—take Seed 1 for example—a different random set of seed
rows is generated according to the requirement described above for Seed 1. In
Table 6.2 and Table 6.3, we report the size of the bicluster discovered under
each parameter setting, as well as the number of times that the corresponding
bicluster was found out of the 10 rounds using the same parameter setting.

These two tables tells us that increasing νbgd raises the stringency in selecting
the columns for the bicluster. With a larger νbgd, fewer columns are selected.
In contrast, an increase in νbcl helps to increase the diversity of the resulting
biclusters. The table suggests that every mode in the posterior distribution is
amplified under a larger µbcl. This is why biclusters corresponding to local
maxima solutions (i.e., the “small” biclusters, see the footnotes of Table 6.2
for their definition) are more frequently found with a larger νbcl. However,
comparing biclusters containing the same number of rows but discovered by
different νbcl for the same seed, we suppose that a larger νbcl reinforces the
power of the seeds, and consequently relatively fewer columns are selected
for the bicluster. In addition, the result on Seed 2 suggests that a combination
of large νbgd and small νbcl encourages the resulting bicluster to include more
rows and fewer columns.

The two tables also illustrate the influence of the choice of seeds. Bicluster 2
has a weaker pattern compared with Bicluster 1, because the means of its
rows under the non-overlapping columns (with Bicluster 1) have a smaller
amplitude than those of Bicluster 1 (see Figure 6.4). That is to say that the
patterns of both Bicluster 1 and the overlapping bicluster (containing all the
rows in the Bicluster 1 and Bicluster 2, and only those overlapping columns of
Bicluster 1 and Bicluster 2), which corresponds to the vertical middle panel in
Figure 6.3, are more dominant than Bicluster 2. Therefore, seed rows picked at
any region of Bicluster 1 (i.e., either from the non-overlapping rows or from the
overlapping ones), most frequently, directs the result to the embedded pattern
of Bicluster 1. However, the discovery of Bicluster 2 is highly influenced by the
selection of the seeds. When the seeds are selected from the overlapping rows,
the result is directed toward the discovery of Bicluster 1. When the seeds are
made up from those “pure” rows for Bicluster 2, Bicluster 2 can be identified
very frequently. Finally, when the seeds are mixed (i.e., extracted from both
the non-overlapping rows, the overlapping ones, and even added with some
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νbgd

Seed 1 1 10 50 100
size #a size # size # size #

1 300×80 10 300×78 10 300×48 10 300×25 10
10 300×79 10 300×77 10 300×49 10 300×25 10

300×75 2 300×71 10 300×43 10 300×23 10
50 smallb 2

–c 6νb
cl

650×27 1
300×51 9 300×36 10 300×19 10100

small 1
– 9

νbgd

Seed 2 1 10 50 100
size # size # size # size #

650×69 2 650×15 10
1 400×59 7 400×49 8 400×45 10

300×80 3
650×15 10

10 400×50 7 400×50 10 400×45 10
350×78 3

650×12 1νb
cl

400×50 6 400×50 10 400×35 10 400×14 950
small 1

– 3
650×30 1 650×11 3

100 – 400×46 10 400×23 10 400×13 7
– 9

aThe number of times that the corresponding bicluster was found out of the 10 runs using the
same parameter settings.

bThe Gibbs sampling converged to a very small bicluster by the end of the 500 iterations. The
bicluster is typically of one row or one column in size, or of size such as 4 by 4.

cThe algorithm failed to converge after 50 re-initializations (see Loop 2 in Figure 4.7; i.e., no
bicluster was found.

Table 6.2: The size of the bicluster discovered using each set of seeds under
different parameter settings.
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νbgd

Seed 3 1 10 50 100
size # size # size # size #

1 300×80 10 300×76 10 300×50 10 300×26 10
10 300×80 10 300×77 10 300×49 10 300×26 10

400×45 1 400×40 1
300×70 9 300×44 10 300×24 1050

small 1νb
cl

– 8
– 300×60 2 300×37 10 300×16 10

100 small 8
– 10

νbgd

Seed 4 1 10 50 100
size # size # size # size #

650×85 10 650×81 9 650×41 10 650× 8 9
1 400×48 1

300× 4 1
650×81 8 650×73 7 650×38 10 650× 7 8

10 400×50 2 400×50 3
300× 4 2

650×50 4 650×28 10 650× 5 10
400×44 7 400×42 2νb

cl

50
small 1 small 4

– 2
650×50 1 650×33 3 650×15 8 650× 5 4

400×30 1
100 300×32 1 300× 8 2 300× 5 2

small 6 small 5
– 3 – 4

Table 6.3: The size of the bicluster discovered using each set of seeds under
different parameter settings (continued).
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random rows from the background), the discovery is mostly directed toward
the finding of the overlapping bicluster.

These experiments on synthetic data set illustrate the flexibility of the algorithm
to discovery different regions of overlapped transcription modules, and give
some intuitive directions on how to manipulate the findings from the input of
the algorithm—the seeds and the parameters νbcl and νbgd.

6.8 Transcriptional module discovery in Saccharomyces
cerevisiae

To discover a transcriptional regulatory module, we use the method of De Bie
et al. (2005) [15] to reveal regulatory programs as well as sets of seed genes that
are governed by these regulatory programs. De Bie et al. (2005) [15] combine
three independent data sources, namely genome-wide location data (ChIP-
chip data), motif information as obtained by phylogenetic shadowing, and
gene expression profiles. Seed genes are identified from the input information
as those that share the same combination of regulators and motifs, and whose
expression profiles have a large correlation. However, this method is only suit-
able when the microarray data is obtained under homogeneous conditions.
Our biclustering method further extends the work by applying the seed genes
(typically of the size of 3 to 15 genes) to microarray data collected from a het-
erogeneous compendium for the discovery of transcriptional modules under
the regulatory program of interest.

We use three sets of seed genes found by the method of De Bie et al. (2005)
when it is applied to the data from Kellis et al. (2003) [58] (motif data), Lee et
al. (2002) [66] (ChIP-chip data [80]), and Spellman et al. (1998) [93] (micorarray
data). The final data contains 6157 genes, 267 experiments and 70 conditions.
Two sets of seed genes (referred to as Seed 1 and Seed 2 hereafter) are composed
of cell cycle related genes, see Table 6.4, Table 6.5, and Table 6.6. To be more
specific, Seed 1 is related to the early G1 phase of the cell cycle and Seed 2 is
related to the G2 phase of the cell cycle. The other set of seed genes (i.e., Seed 3)
is involved in ribosome biogenesis, a more general function, see Table 6.7.

We applied our algorithm to the combined data set on Saccharomyces cerevisiae
from Gasch et al. (2000) [37] (with stress-response experiments), Spellman et
al. (1998) [93] and Cho et al. (1998) [22] (both with cell cycle-related experiments)
for the three sets of seeds. Each of the original data set was centered and
rescaled so that measurements under every microarray experiment have mean
of 0 and standard deviation of 1. Then, the gene profiles in each data set were
centered and rescaled in the same way. The resulting data sets were then put
alongside each other. We expect that for Seed 1 and Seed 2 the algorithm
would identify all the experimental conditions under the data from Spellman
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Table 6.6: Information about Seed 2.
Regulators Gene ID Names MIPS Description
Ndd1 YJL051W – 99 UNCLASSIFIED PROTEINS
Fkh2 YGL021W ALK1 32.01 stress response
Mcm1 YLR190W – 99 UNCLASSIFIED PROTEINS

Table 6.7: Information about Seed 3.
Regulators Gene ID Names MIPS Description

YGR148C RPL24B 12.01 ribosome biogenesis
YGL189C PRS26A 12.01 ribosome biogenesis
YER056C-A RPL34A 12.01 ribosome biogenesis
YER131W RPS26B 12.01 ribosome biogenesis
YGL031C RPL24A 12.01 ribosome biogenesis
YGL103W PRL28 12.01 ribosome biogenesis
YER102W RPS8B 12.01 ribosome biogenesis
YLR167W RPS31 12.01 ribosome biogenesis

Fkl1 14.13.01 cytoplasmic and
Yap5 nuclear protein
Rap1 degradation

YLR029C RPL15A 12.01 ribosome biogenesis
YLR333C RPS25B 12.01 ribosome biogenesis
YOL127W RPL25 12.01 ribosome biogenesis
YOL040C RPS15 12.01 ribosome biogenesis
YLR344W RPL26A 12.01 ribosome biogenesis
YLR441C RPS1A 12.01 ribosome biogenesis

34.11.03.07 pheromone response,
mating-type
determination,
sex-specific proteins

et al. (1998) [93] and Cho et al. (1998) [22], and recruit additional genes related
to cell cycle regulation. For Seed 3, we expect the algorithm to find a bicluster
consisting of most of the experimental conditions in the data set.

For each set of seeds, we ran the biclustering algorithm for 1000 iterations to
have a sufficient number of samples for evaluating the posterior distributions
for the random variables. The number of burn-in iterations was determined
as described in Chapter 4. A gene or a condition was selected (to be in the
bicluster) if in 95% of the collected samples (i.e., iterations), the gene or the
condition had a probability of more than 0.9 to be in the bicluster. Figure 6.5,
Figure 6.6, and Figure 6.7 illustrate the three biclusters we found for Seed 1,
Seed 2, and Seed 3. Finally, we validated the bicluster by calculating the func-
tional enrichment of the bicluster using a hypergeometric distribution [97],
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where the functional categories of the genes are obtained from MIPS [72]. In
Table 6.8 to 6.10 we only report the functional categories whose p-values are
lower than 0.01 (as well as those p-values). The input parameters νbcl and νbgd

are reported as well.

In accordance with our expectation, the genes recruited for Seed 1 are mainly
enriched in cell cycle related functional categories. In addition, only the cell
cycle experimental conditions are recruited by the bicluster.

Seed 2 is experimentally detected (i.e., based on the ChIP-chip data) to be
regulated by Ndd1, Fkh2, and Mcm1, which are cell cycle regulators. Yet,
according to the MIPS database, two of the three genes in Seed 2 are annotated
as functionally unknown, and the other gene is only associated to “stress
response”. The results show that the biclustering algorithm mainly recruited
genes that are functionally enriched in categories of “cell cycle and DNA
processing” and “cell type differentiation”. Thus, the biclusters discovered by
our algorithm confirm that the three seed genes might have cell cycle related
functions.

Seed 3 is composed of 14 genes that are in the functional category of “ribosome
biogenesis”. The algorithm recruited genes that are highly enriched in the same
functional category, 119 out of the 132 selected genes are found to have the
function “ribosome biogenesis”. For those 13 genes that are selected for the
bicluster but are not associated with “protein synthesis” according to MIPS,
we consulted the Saccharomyces Genome Database [6] (SGD) and found that
10 of these genes are rather dubious ORFs that overlap with various known
protein synthesis genes on the other strand of the DNA (see Table 6.11).

Although Seed 3 is obtained by applying the method of De Bie et al. (2005) [15]
to the data set from Spellman et al. (1998) [93], the cell cycle related experimental
conditions are seldom selected to be in the bicluster, while almost all the stress
response related conditions from Gasch et al. (2000) [37] are selected. This
result shows that data set from Gasch et al. (2000) [37] might be a better data
set to look at for the study of “ribosome biogenesis” than those from Spellman
et al. (1998) [93] and Cho et al. (1998) [22], justified by either some biological
explanation or the experimental noise presented in the data, which needs to
be further investigated.

6.9 Conclusion

In this chapter, we give a full explanation of the Bayesian hierarchical model
for the problem of biclustering genes. We show here how our priors can be
constructed to incorporate information from other data sources to direct the
discovery of biclusters to answer specific questions in systems biology. We
illustrate the effectiveness of our algorithm in assisting the discovery of regu-
latory transcriptional on a combined data set on yeast.
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Gene ID Function
YDR417C Dubious ORF overlapping with RPL12B
YGL102C Dubious ORF overlapping with RPL28
YJL188C Dubious ORF overlapping with RPL39
YLL044W Dubious ORF overlapping with RPL8B
YLR062C Dubious ORF overlapping with RPL22A
YLR076C Dubious ORF overlapping with RPL10
YLR339C Dubious ORF overlapping with RPL0
YPL142C Dubious ORF overlapping with RPL33A
YPR044C Dubious ORF overlapping with RPL43A
YOR277C Dubious ORF overlapping with CAF20 (whose MIPS

functional category ID is 12.04)
YLR150W Protein that binds G4 quadruplex and purine motif triplex

nucleic acid; acts with Cdc13p to maintain telomere structure;
interacts with ribosomes and subtelomeric Y’ DNA; multicopy
suppressor of tom1 and pop2 mutations

YML022W Adenine phosphoribosyltransferase, catalyzes the formation
of AMP from adenine and 5-phosphoribosylpyrophosphate;
involved in the salvage pathway of purine nucleotide
biosynthesis

YPL273W S-adenosylmethionine-homocysteine methyltransferase,
functions along with Mht1p in the conversion of
S-adenosylmethionine (AdoMet) to methionine to control
the methionine/AdoMet ratio

Table 6.11: Function (according to SGD) of the genes that are found for the bi-
cluster applying Seed 3, and are not associated to “protein synthesis” according
to MIPS.



Chapter 7

Discussion and conclusion

In this thesis, we have developed a general framework based on Bayesian
hierarchical models and Gibbs sampling for the biclustering microarray data.
We have also refined our methodology into two dedicated models to provide
solutions to the problems of both the biclustering experiments and the biclus-
tering of genes, which are two distinct problems because of the asymmetry of
microarray data.

In this chapter, we summarize the achievements of this work. In addition
we also recognize here the limitations of our algorithms, based on which we
propose new challenges for future research on this topic.

7.1 Achievements of the work

Our choice of strategy for biclustering provides our algorithms with several
key characteristics that fit the needs of microarray data analysis. We enumerate
here the advantages of our algorithms, especially in relation to the use of
Bayesian models and Gibbs sampling.

Handling missing values in the data

Because of the use of probabilistic models, the association of each row or each
column to the bicluster essentially depends on the likelihood ratio of the related
data points (see explanations in Chapter 4). Consequently, missing values in
the microarray values are handled in the most natural way by assuming that
they are generated equally likely by the background model and by the bicluster
model. This handling of missing values is independent of the specific model
of use. However, an alternative when using the equal frequency discretization
before performing the algorithm for biclustering experiments (as described in

165



166 Chapter 7. Discussion and conclusion

Chapter 5) is to randomly assign the missing values to one of the three bins.
We encourage the generic treatment of missing values. But in practice, we find
that the biclustering results of the two methods differs little.

Introduction of prior knowledge and integration of information
from other data sources

Bayesian models provide a systematic basis for the introduction of prior knowl-
edge and the integration of other data sources. We have demonstrated in
Chapter 6 the usefulness of our method in cooperation with other methods to
discover gene regulatory modules systems biology. First, useful information
from other data sources (in this case, the ChIP-chip data and motif informa-
tion) are extracted (by the method of De Bie et al. (2005) [15]) in the form of seed
genes, which are corregulated genes that show similar gene expression profiles
in a relatively restricted microarray data set. Then we use these seed genes to
build a Gauss-Wishart prior model that is compatible with our Bayesian hi-
erarchical model for the biclustering of genes. The result of our biclustering
algorithm reveals highly coexpressed genes under a subset of biological con-
ditions that are highly correlated to the working conditions of the governing
regulatory program. We also illustrated (in Chapter 5) the same methodology
for cooperating information from a small number of patient examples to direct
the discovery of biclusters toward the finding of gene expression fingerprint
of subtle traits.

Robust results

Because of the complicated and noisy nature of the microarray data, finding
the global mode of the target posterior distribution, which gives answer to
the biological question under concern, is a critical issue for choosing the op-
timization methods for the probabilistic model. (Structural) EM is one of the
popular methods for solving the missing data problem the biclustering prob-
lem. However, EM is well known for its frequent troubles with local maxima.
Taking into account that it is never obvious in advance how many runs of an
EM procedure can guarantee the discovery of the global mode, we opt for the
Gibbs sampling procedure for the estimation of the Bayesian model. Though
it takes longer for the algorithm to converge, Gibbs sampling gives a much
higher chance of finding the global maximum solution. We have demonstrated
in Chapter 5 and Chapter 6 that our algorithms find relatively frequently the
bicluster that corresponds to the global maximum solution for the data. In
addition, the final biclusters discovered by our algorithm often only differ in
a few genes or a few conditions in size.

Allowing genes to belong to different biclusters
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By discovering one bicluster at a time, we avoid the problem of associating
a gene only to one bicluster. In the case of global bicluster discovery for the
experiments (see Chapter 5), we mask a found bicluster by assigning the
experiments of the bicluster permanently to the background for the discovery
of any further biclusters, while allowing the genes of the found bicluster to be
candidates for the other biclusters. When a query of seeds is used to direct the
discovery of bicluster, we assume that there is only one optimal bicluster in the
data set for the query. In this case, biclusters discovered by inputs of different
seeds can still overlap in either the gene or the experiment dimension.

7.2 Limitations of the work

As any other algorithms, desirable features always mean compromises for the
others. We list a few main issues where improvements can be made.

Improvement of the time complexity of the algorithm

First, the time complexity of the algorithm can curb the popularity of the al-
gorithm. The judgment of convergence of Gibbs sampling has long been an
issue, to guarantee the convergence and to collect sufficient amount of sam-
ples for statistical evaluation, it is common practice to collect a large amount
of samples during the sampling procedure. A(n) (alternative) way to acceler-
ate the optimization is favorable for the analysis of the ever-growing-in-size
microarray data.

Global discovery for the biclustering of genes

Secondly, although the global bicluster discovery works well for the prob-
lem of biclustering experiments, where the number of modes in the posterior
distribution is relatively small, our method for biclustering genes is mainly de-
signed for the use for directed discovery of transcriptional modules. Applying
non-informative priors to the biclustering of genes often result in discovery of
bisecting the data set into two groups whose mean expression profiles are anti-
correlated with each other, which corresponds to the two main modes in the
posterior distribution. It is desired to improve the algorithm by allowing input
of minimum information about a desired bicluster, and therefore allowing the
spontaneous discovery of various embedded biclusters in the data.

Overlapping patterns

Another issue concerns the discovery of overlapping patterns. For the global
discoveries, overlaps of biclusters are allowed in one dimension (for which we
often choose the gene dimension) while is prohibited for the other dimension
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(i.e. the experiment dimension in our case). However, biologically speaking,
the experiments in different biclusters can also overlap with each other. An
example would be that one bicluster groups the experiments according to
pathological types of the tumors, and the other includes experiment of the
same drug response. Therefore, an improvement in strategy that allows the
biclusters to overlap in both dimensions is favorable.

7.3 Future directions

In addition, the work can be extended in following aspects.

Other dedicated models

First, our general framework (i.e., applying Gibbs sampling on Bayesian mod-
els for microarray data as described in Chapter 4) can be applied to a variety of
dedicated models. What we provided in this thesis are just two of the examples.

t models: Take the biclustering of experiments for instance, other models such
as those whose likelihood function is in the form of t-distribution can be
explored [71], considering their success in detecting differentially ex-
pressed genes [9].

HMM models: Further, incorporating dynamic models that are able to dis-
cover time dependences in the relations between the genes will bring the
usefulness of the algorithm to another level. This ability of the model
is important for the study of cell cycle for example. In addition, genes
only respond to the regulator when the protein level of the regulator
reaches a certain threshold in the cell. The ability of the models to catch
time dependency can certainly benefit the research of regulatory mod-
ules. Our framework is immediately extendable to accommodate this
modification by using a hidden Markov Model (HMM) to replace the
multivariate model that describes the gene expression values under each
condition (i.e., node Yk in Chapter 6). Of course this replacement would
introduce more parameters into the model. Nevertheless, additional as-
sumptions to limit the complexity of the model as well as some necessary
modification in the methodology can help to control the computational
complexity of the algorithm.

Incorporation of priors

Secondly, the Bayesian hierarchical model can allow prior knowledge to be
introduced in other ways. For example, if we allow the parameters ζr (and ζc)
to have different values for different rows (and different columns), information
of the seeds can be introduced directly at this level—ζr of the seed rows would
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have a larger value, while the rest has a smaller value. The method that we
illustrated in this thesis (i.e., building a Gauss-Wishart model from the seed
genes) is a more general approach. If such prior model is available (e.g., from
some other inference methods such, as neural networks), it can directly be
plugged into the framework of our method. Finally, of course, the seed genes
can be obtained from other sources such as text information, GO categories,
discoveries in wet labs, and so on.
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Appendix: Probabilistic
distributions

Hereunder, we provide a list of distributions used in this thesis.

Bernoulli distribution

Notation
X ∼ Bernoulli(λ)

Parameter
λ: Probability of a successful Bernoulli trial.

Distribution

P(X = x) =
{

1 − λ, x = 0
λ, x = 1

Description
The Bernoulli distribution describes the probabilities of its two possible outcomes—
0 and 1. The probability of 1 (“success”) is λ and the probability of 0 (“failure”)
is 1 − λ.

Beta distribution

Notation
X ∼ Beta(α, β)

Parameters
λ: Prior number of counts of successful Bernoulli trials.
β: Prior number of counts of failed Bernoulli trials.
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Density function

p(X = x) =
Γ(α + β)
Γ(α) · Γ(β)

xα−1(1 − x)β, x ∈ [0, 1]

Description
The Beta distribution is the conjugate prior for the Bernoulli distribution. The
outcome of the Beta distribution represents the probability of a Bernoulli trial
to be successful.

Multinomial distribution

Notation

X ∼Multin(n; p1, . . . , pk)

Parameters
n: Sample size.
p1, . . . , pk: Probabilities for each of the outcome k,

∑k
i=1 pi = 1, 0 ≤ pi ≤ 1.

Distribution

P(X = [x1, . . . , xk]) =
(

n
x1, · · · , xk

)
px1

1 . . . p
xk
k ,

k∑
i=1

xi = n,

where
(

n
x1, · · · , xk

)
denotes the binomial coefficient.

Description
The multinomial distribution describe the probability to observe each event Xi
(for i = 1, . . . , k) xi times.

Dirichlet distribution

Notation

X ∼ Dirichlet(α)

Parameters
α = [αi, . . . , αk]: Prior number of counts of for observing each event i, for
i = 1, . . . , k.
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Density function

p(X = [x1, . . . , xk]) =
Γ(α1 + · · · + αk)
Γ(α1) · · · Γ(αk)

xα1−1
1 · · · xαk

k ,
k∑

i=1

xi = n, xi ∈ [0, 1]

Description
The Dirichlet distribution is the conjugate prior for the multinomial distribu-
tion. The outcome of the Dirichlet distribution represents the probability of
observing each event i, for i = 1, . . . , k.

k-variate Gaussian distribution

Notation
X ∼ N(µ,Σ)

Parameters
µ: A vector of length k, providing the mean of the distribution. Σ: A symmetric
matrix of dimension k × k, specifying the variance of the distribution.

Density function

p(X = x) = (2π)−
d
2 |Σ|−

1
2 · exp

{
−

1
2

(x − µ)TΣ−1(x − µ)
}

Description
The Gaussian distribution is also called the normal distribution. It is the most
widely used continuous distribution.

Scaled inverse-χ2 distribution

Notation

X ∼ Inverse-χ2(ν, s2)

Parameters
ν: Degree of freedom. s2: Scale.

Density function

p(X = x) =
( ν2 )

ν
2

Γ( ν2 )
sνx−( ν2+1)exp−

νs2

2x

Description
The scaled inverse-χ2 distribution is the conjugate prior on the variance of
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a (one dimensional) Gaussian distribution. The mean, the variance, and the
mode of the scaled inverse-χ2 distribution are

E(X) =
ν

ν − 2
s2

Var(X) =
2ν2

(ν − 2)2(ν − 4)
s4

mode(X) =
ν

ν + 2
s2
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