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Abstract

In the nonlinear system identification and forecasting of time-series, im-
portant challenges are in the accurate modeling by incorporation of prior
knowledge and the estimation of such models from large scale datasets.
In this thesis, the main scope is structured kernel based modeling and its
application to electric load forecasting. We take as a starting point Least-
Squares Support Vector Machines (LS-SVM) formulations for nonlinear
regression. The primal-dual optimization framework can be extended to
incorporate structured elements available from prior knowledge about the
problem. The results are derived for the case of imposing symmetry to
the estimated nonlinear model, imposing an additional parametric term
for a new set of regressors and incorporating autocorrelation in the noise
process of the regression. For each of these extensions, the goal is to include
the additional structures in the form of equality constraints such that the
resulting problem or subproblem remains convex, and Mercer’s theorem can
be applied with the use of a positive definite kernel and a kernel induced
feature map. The prior information contained in the additional constraints
becomes embedded at the kernel level, such that it can be used directly to
evaluate the models at new datapoints. This property makes a contribution
in terms of modularity of the model formulation, in the sense that different
types of prior knowledge can be tested in practice simply by changing the
kernel function being used. Furthermore, large scale versions of the different
LS-SVM extensions can be formulated in primal space by using the Nyström
method (which delivers finite dimensional approximations to the feature map
as shown in the area of Gaussian processes) in the same way as for original
fixed-size LS-SVMs. By considering each of the developed extensions as
building blocks, a modular framework for the case of nonlinear system
identification is further proposed. It is shown that this framework can be
used for the estimation of NARX and AR-NARX model structures, with
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different possible parameterization, exploiting the practical advantage of
formulating the model in dual space and estimation in primal space for large
sample sizes. The nonlinear system identification methods have been tested
in a real-life industrial application by considering the short-term electricity
load forecasting problem. Comparing different structures, we find that
nonlinear models can capture the behavior of the load series and generate
more accurate forecasts than the linear models, particularly when comparing
not only black-box structures but also more structured representations. It
is shown that the modular approach proposed in this thesis can be quite
successful in the definition, estimation and final forecasting performance of
nonlinear time series models.



Notation

Variables and Symbols

α, β, γ ∈ R Scalar variables
x, z ∈ R

n Vector variables
Z,Φ ∈ R

m×n Matrix variables
Ωij ,Ω ∈ R

m×n Element at the ith row and jth column of A
xT Transpose of the vector x

ΩT Transpose of the matrix Ω
[x; z], x, z ∈ R

n Stacked vectors : [xT zT ]T ∈ R
n×2

SM Sample of size M
{xi, yi}N

i=1 Sample of N datapoints

‖x‖2, x ∈ R
n 2-norm of a vector :

√
xTx

K(xi, xj) Kernel function evaluated on points xi, xj

ϕ(·) Feature map
I Identity matrix
1 Vector in which all components are equal to 1
ϕ̂(·) Finite dimensional approximation to the feature map
ϕ̂i(·) i−th component of ϕ̂

A(z−1) Polynomial on the lag operator
minx Function minimization over x,

optimal function value is returned
arg minx Function minimization over x,

optimal value of x is returned
s.t. Subject to constraints
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Acronyms

LS-SVM Least Squares Support Vector Machines
FS-LSSVM Fixed-Size LS-SVM
SVM Support Vector Machines
AR Autoregression, Autoregressive (model)
ARX Autoregressive model with eXogenous inputs
NARX Nonlinear autoregressive model with eXogenous inputs
ARMA Autoregression with moving average
ARIMA Autoregression with integrated moving average
AR-ARX ARX model with autoregressive residuals
AR-NARX NARX model with autoregressive residuals
PL-NARX NARX model parameterized with a partially

linear structure
PL-AR-NARX AR-NARX model parameterized with a partially

linear structure
PAR Periodic Autoregression
NFIR Nonlinear Finite Impulse Response
SISO Single Input Single Output
OLS Ordinary Least Squares
RR Ridge Regression
PCA Principal Components Analysis
PLS Partial Least Squares
MSE Mean Squared Error
RMSE Root Mean Squared Error
MAPE Mean Absolute Percentage Error
STLF Short Term Load Forecasting
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Chapter 1

Introduction

To everything there is a season, and a time for every matter under the heaven; a
time to be born, and a time to die; a time to plant, and a time to uproot what is

planted.

- Ecclesiastes, 3:1-2.

The best way to predict the future is to create it.

- Peter F. Drucker (1905-2005).

If, for example, you come at four o’clock in the afternoon, then I shall begin to be
happy at three o’clock.

- The Fox from The Little Prince.

1.1 General Background

The general scope of this thesis is related to the application of nonlinear
regression techniques to time series data. Time series appear in virtually
all human activities and natural phenomena. Many elements of the
regressions models for time series may have a real-world interpretation, such
as trends, growth rates, sensitivities, elasticities, and others. Moreover, the
application of mathematical techniques for time series involves the notion
of prediction or forecasting, being, according to the dictionary, “to know
something before it happens”. Since ancient times it has been recognized
that knowing something before it happens usually has a benefit. Medieval
merchants trading in crops and wool started to use rudimentary methods
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2 Introduction

for identification of cycles and patterns [73], as typically a prediction can
be used to make appropriate manufacturing decisions, to trade based on it,
to borrow, to lend, to invest, to buy, to sell, and more. Time series are
usually represented in a graph with the time on the horizontal axis, the
magnitude of the series on the vertical axis. Typically a model is estimated
from available historical information up to a given moment in time. The
model is then used to compute forecasts for the future, as shown in Figure
1.1.

With the development of statistical tools and estimation methods, fore-
casting techniques have been investigated for the last two hundred years.
Pearson is often seen as one of the first to publish a rigorous treatment
on correlation and regression in 1897. His work was based on studies
of social impact, as that of many of his contemporaries. In the decades
of 1920 and 1930, the seminal work of Yule [142] and Wold laid the
ground for a powerful formalization of time series analysis, incorporating
the random disturbance elements. Since then, the problem of forecasting
has been tackled by researchers working in statistics, econometrics and
system identification. Although there are differences between the working
methodologies of each of these disciplines, they share the common philosophy
of building sound mathematical methods in order to be able to predict
the evolution of a variable, or a set of variables, for a given time in the
future. Important developments in the area of time series prediction were
obtained in the period 1940-1990 from all these disciplines: nonparametric
estimation [53], maximum likelihood estimation [140], nonlinear mixing
processes [46], unit-root tests and cointegration [26], seasonal analysis [64],
the Box-Jenkins methodology [13], ARIMA models [51], Kalman filtering
[70], model selection criteria [4], identification for control [74], and many
others.

From a different starting point, the field of artificial intelligence provided
new insights into forecasting methodologies. Work done [100] in the 1980s
renewed interest in the problem of neural networks applied to pattern
analysis, by presenting a learning algorithm for multilayer perceptrons, in
a direct generalization of the perceptrons developed in the 1950s. Since
then, neural networks started to be used as nonlinear forecasting tools
in different applications. Later, in the 1990s, another major development
took place. The framework developed by Vapnik [129] (Statistical Learning
Theory) proposed a new view to the problem of data modeling, based on
the concept of empirical risk minimization, leading to the development of



1.2 Challenges and Problems 3

M
a

g
n
it
u

d
e

Time Index
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Model estimation
Forecasts

Figure 1.1: Time series graphical representation. The available historical
information is used to build a model, which is later used to produce forecasts
for the future.

Support Vector Machines (SVMs) and further kernel methods. Shortly
after, the Least Squares Support Vector Machines (LS-SVM) technique
was formulated [116] as a modified version of standard SVMs, aiming to
a wider range of problems. In recent years, the field of system identification
has adopted these nonlinear techniques [105], among others, as estimation
methods for increasingly complex problems, focusing on issues like model
structure definitions, parameterizations, implementability, and others.

1.2 Challenges and Problems

This work is related to nonlinear estimation techniques and their use in
system identification for real-life problems. In this context, the current
challenges in these areas can be summarized as follows.

Large Scale Problems. Technological advances in hardware for data



4 Introduction

storage and computing power have led to the availability of large databases
in industry and business, as found in banking, finance, process industry,
and others. Large datasets pose a challenge to the techniques developed
for modeling and forecasting. Building and estimating a model to be used
with large datasets require, in many cases, specific implementations for
cases where, otherwise, it would be almost unfeasible to estimate a model.
Adaptive techniques, update mechanisms, subsampling, bagging, boosting,
ensemble methods, are modeling strategies originating from the practical
constraints raised by large scale problems. In this context, this thesis is
oriented towards the implementation of nonlinear regression techniques that
can handle large time series for industrial and business problems.

Nonlinear System Identification. In recent years, important advances
in nonlinear system identification have taken place. The discussion has
steadily moved from using black-box formulations towards the use of gray-
box models. Black-box refers to the case where the user has no information
about the structural form of the process under study, therefore only using
input-output measurements to build a nonlinear model. In such case, the
model is parameterized using neural networks, (LS)-SVMs, wavelets, or any
other technique, and it is estimated by solving an optimization problem
that minimizes the prediction errors. Depending on the technique, solving
the optimization problem may not be straightforward, due to the existence
of local-minima if the function is non-convex. When the user has some
knowledge on the problem at hand, this knowledge should be imposed to
the model, following the rule: “do not estimate what you already know”.
A model that contains some elements of prior knowledge yet still having
a black-box part are usually called “gray-box”. The way in which prior
knowledge is imposed to the model varies depending on the type of structures
being used. New distinctions on different “shades of gray” have also been
proposed nowadays. The current state of the art considers the following
properties to be desirable in the context of nonlinear system identification:

• Interpretability of the model. When the goal is not only to compute
predictions, but also to understand the underlying relation between
the input-output variables, it is desirable that the model can have a
degree of interpretability. The parameters of a linear model can be
directly interpretable in terms of sensitivities or elasticities. For the
case of black-box or gray-box models, this is more difficult to achieve,
as it depends on the particular estimation technique being used.
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• Imposing prior knowledge to reduce model complexity. It is known
that nonlinear black-box models are very general and powerful tech-
niques. However, they might be too general when the user has prior
knowledge on some parts of the process under study. It is important
to have a modeling strategy that can incorporate these elements in a
simple manner.

• Keeping the convexity of the problem. The advantage of working with
a convex optimization problem is that there is a unique solution. Some
black-box estimation methods do not have this property, making them
prone to the problem of local-minima.

In this context, the main contributions of this thesis are built towards the
above mentioned challenges.

Real-life applications. The time series considered in this thesis come
from a real-life industrial problem. The use of forecasting methods has
been particularly important in the energy sector. Electricity cannot be
efficiently stored in large quantities, meaning that the quantity generated at
any given time always has to cover all the demand by the final consumers,
including grid losses. Forecasts of power load demand are used to decide
if extra generation has to be provided by increasing the output of on-line
generators or by committing one or more extra units. Similarly, forecasts
are also used to decide if an already running generation unit should be
decreased in output or even switched off. Moreover, the flow along the
transmission lines is affected by the different generation profiles, possibly
leading to congestion problems. On the other hand, the liberalization of the
electric energy markets has led to the development of energy exchanges,
where consumers, generators and traders can interact leading to price
settings. In this respect also forecasts are extremely important. Large
datasets from the Belgian Transmission System Operator ELIA are used
in this thesis as examples to illustrate the importance and possibilities of
the implementation of nonlinear forecasting techniques for the problem of
short-term load forecasting. Building a model for load forecasting is not
straightforward, due to the presence of seasonal patterns in different levels.
There is a winter-summer pattern, a weekly pattern and an intra-daily
pattern. Figure 1.2 shows an example of a load series, where the seasonal
patterns are clearly visible. These different patterns also interact with other
external variables that affect the load, the weather fluctuations being one
of the most importants. When the weather is cold, there is a requirement
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for heating which translates in an increase of the energy demand. Hot days
in summer trigger the use of air conditioning equipment, also increasing the
demand. The effect of weather in the load is nonlinear, which is one of
the main reasons to use nonlinear models for this problem. However, for the
purposes of long-term and mid-term planning, year-to-year comparisons and
scenario analysis, it is important to have interpretable models. Particularly,
the identification of the normalized yearly peak load is important for a
correct estimation of the growth trends of the energy consumption [28].
A model has to be able to tell how much of the peak was due to the
weather conditions of that particular day, so it can be corrected towards
a normal meteorological year. Other types of analysis can be done by ,
for example, comparing the consumption of different regions or identifying
customer profiles.

Most of the properties of the load series are also present in observations
generated from other industrial or business activities. Utilities (gas, water)
also share seasonal patterns and large records available. Traffic in highways
is monitored and measured, with important peak hours and seasonal
effects. Internet traffic, mobile communications, credit-card transactions,
and others, also share some of the properties described above. The methods
developed in this work may be useful in those contexts as well.

1.3 Objectives

This work takes elements from statistical learning theory and optimization,
following the LS-SVM approach. It also covers elements from nonlinear
system identification, by formalizing model structures to be identified with
nonlinear regression methods; and finally it covers a real-life application
problem. The structure of this thesis starts from theoretical contents,
gradually working towards the application. In this context, the objectives
of this work can be summarized as follows.

1. In the LS-SVM context, the objective is to extend the nonlinear
regression formulation towards the inclusion of structured elements.
Following the rule that you “do not estimate what you already
know”, the objective here is to include elements of prior knowledge
from the problem at hand, in the form of additional constraints to
the least-squares optimization problem being the central formulation
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Figure 1.2: Example of a load series where the seasonal patterns are clearly
visible. The weekend is different from the working days. Every day has a
peak in the morning, and another in the evening. The yearly cycle is visible
when comparing the different week profiles.

of LS-SVM. The goal is to extend the formulation by means of a
modular approach, while maintaining the convexity of the optimization
problem.

2. The second objective has to do with formalizing the link between
nonlinear regression techniques and model structures in the context
of nonlinear system identification. The goal is to define model struc-
tures, parameterizations and the corresponding estimation methods,
exploiting the modular structure of the nonlinear regression techniques
developed around LS-SVM.



8 Introduction

Chapter 1

Introduction

Chapter 2

LS-SVM Regression
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Case Study: 
SilverBox
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Load Forecasting: 
Black-Box

Chapter 9

Load Forecasting: 
Structured Models

Chapter 10

Conclusions

This chapter describes the general 
background, objectives and overview of 
this work.

Part I consists of four chapters. Chapter 
2 presents the standard LS-SVM 
framework for regression. This 
framework is extended in this thesis with 
the contributions presented over the 
next three chapters. Chapter 3 presents 
the case of imposing symmetry. Chapter 
4 presents the formulation to include a 
linear parametric part in the model. 
Chapter 5 presents the extension to 
incorporate autocorrelated residuals in 
the model.

Part II consists of two chapters. Chapter 
6 takes the elements from Part I as 
building  blocks to be used in the 
formulation and estimation of several 
model structures. Chapter 7 shows an 
application to a benchmark study in 
nonlinear system identification. 

Part III considers the real-life problem of 
load forecasting with nonlinear models. 
Chapter 8 presents the implementation 
of black-box model structures, and 
Chapter 9 shows the improvement 
obtained when considering structures 
models. 

The general conclusions about the work 
and future research directions.

Figure 1.3: The structure of the thesis. The arrows suggest the reading
order of the chapters.
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3. The third objective is related to the real-life application of short-
term load forecasting. Given different model structures and estimation
methods, the goal is to build an implementation that can successfully
produce accurate forecasts from the large available load series.

1.4 Chapter by Chapter Overview

The thesis is organized in 3 parts as shown on Figure 1.3. With the exception
of Chapter 2, providing the setting for the thesis and providing the reader
with the introduction to the LS-SVM, all subsequent chapters contain the
different contributions of this work.

• Estimation Techniques. Part I is related to nonlinear regression
techniques built from the LS-SVM formulation. It is a more theoretical
part.

– Chapter 2 presents the standard LS-SVM formulation for nonlin-
ear regression [114]. The chapter starts with a basic description of
kernel functions and Mercer’s theorem, being one of the essential
elements for a correct understanding of LS-SVMs. The chapter
describes the LS-SVM estimation method in dual form, and the
methodology for estimation in primal space achieved by using
Nyström methods. Estimation in primal space is the basis for
the implementations of large scale problems [31].

– Chapter 3 extends the LS-SVM formulation to the case where it
is known beforehand that the nonlinear function being estimated
is symmetric. It describes the effect of imposing this prior
knowledge as an additional constraint, giving rise to the definition
of an equivalent kernel. It also explores the case of a “soft
constraint” in which the symmetry property may not be exact
[33]. Practical examples are presented.

– Chapter 4 continues the extensions of the LS-SVM regression by
considering a partially linear structure. It describes the inclusion
of a linear parametric term to the LS-SVM regression, discussing
links with related statistical techniques, and providing conditions
for a unique representation of the linear part [32,34]. It is shown
that the solution of the problem is unique. Practical examples
are given.
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Partially Linear
 Structure

LS-SVM

Regression

Autocorrelated

Residuals

Imposing

Symmetry

Modular Definition of the Model Structure

Figure 1.4: Modular approach for nonlinear model structures definition.
Elements from Part I are used as building blocks to define a model structure.
The model is estimated in primal space for large scale problems, starting
from a kernel matrix to be used in the Nyström approximation.

– Chapter 5 considers the case when the residuals of the LS-SVM
regressions are autocorrelated. It starts with the formulation
of a model where the residuals follow an AR(1) process [38].
It is shown that the correlation structure gets embedded into
the kernel level, yielding a very straightforward estimation in
primal space. The effect of the correlation of the residuals on the
final predictor of the model is discussed. The chapter continues
with the formalization of the general AR(q) case. In order to
retain the convexity of the problem, the parameters of the AR(q)
process are considered to be hyperparameters to be selected at
another level (for example, using cross-validation, together with
the kernel and regularization parameters). The chapter concludes
with illustrative examples.

• Nonlinear System Identification. Part II takes the results of Part
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I as building blocks, leading to a modular approach to model defintion
and estimation, as shown on Figure 1.4. It provides a mixture of theory
and practical implementations.

– Chapter 6 moves towards the framework of nonlinear system
identification. Using the modules from Part I, two model
structures are defined: NARX and AR-NARX. Each of them
is, in turn, parameterized either as a black-box nonlinear model,
or as a partially linear model [39]. By combining the different
alternatives, this chapter also provides the formalization of
the estimation of a partially linear AR-NARX model (PL-AR-
NARX), containing all structured elements from Part I in a single
formulation. For each model structure, the chapter provides its
equivalent kernel function, which is then used to formalize the
estimation methods in primal space using the Nyström methods.
Illustrative examples for large-scale chaotic time series [36] show
the benefits of the techniques.

– Chapter 7 presents the case-study of the so-called SilverBox
dataset, based on a benchmark study of nonlinear regression
methods [36]. The large dataset originates from a physical
device, and the modeling strategy is defined in such a way
that the generalization ability of the model is tested extensively.
This chapter presents the implementation of nonlinear methods,
including the symmetry and the partially linear extensions. It is
shown that the performance of black-box models improves when
structured elements are incorporated into the modeling stage.

• Short Term Load Forecasting. Part III implements the developed
models in the context of load forecasting.

– Chapter 8 provides the implementation of unstructured black-
box models for load forecasting. It starts with a description of
the available datasets and describes all practical steps towards
building large scale black-box NARX models. It discusses
the support vector selection by using quadratic Renyi entropy
maximization, the approximation in primal space, the effect
of having a sparse model, exploring different alternatives. In
addition, extensive performance assessments are made with 10
different load series, comparing the performance of the nonlinear
NARX model and the performance of a linear model estimated
from the same set of information. The main contribution of this
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chapter is the estimation of a nonlinear model using a sparse
representation taking only 3% of the available sample to build
the nonlinear mapping in primal space [37].

– Chapter 9 extends the analysis by considering the use of struc-
tured models, both linear and nonlinear. For the structured linear
model, it describes the Periodic Autoregressive (PAR) method.
For the structured nonlinear models, it considers the AR-NARX
and PL-AR-NARX models as defined in Chapter 6. The
estimation details, parameters interpretation and performance
assessment are described. The performance assessment is based
on 4 load series, and 50 different test datasets for each series.
The main contribution is twofold. On the one hand, it is the
first time that all of the structured models (linear and nonlinear)
are applied to the load forecasting problem [29, 39]. On the
other hand, it is shown that the use of partially linear model
structures provides the best empirical tool for load forecasting,
as they obtain a forecasting accuracy comparable to a fully
nonlinear model, yet retaining a linear parametric part giving
interpretability to the variables of interest. In addition, the
properties of the PAR models are further exploited in Appendix
A to provide a basis for clustering load profiles.

1.5 Contributions of this work

The main contributions of this work can be summarized as follows.

• Imposing structured elements to LS-SVM regression. Starting
from the standard LS-SVM formulation for regression, structured
elements have been added. We have considered cases where the struc-
tured elements can be described using additional equality constraints
preserving the convexity of the problem. In this context, the studied
structured elements are:

– Imposing Symmetry to the LS-SVM regression. We have shown
that it is possible to incorporate prior knowledge on the symmetry
of the unknown nonlinear function to be identified with LS-
SVMs. The symmetry, odd or even, is imposed as an additional
constraint. Solving the problem in dual space yields an equivalent
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kernel which embeds the information on symmetry. The case
when symmetry is not exact is also studied. In this case, a second
regularization term is included. It is shown that the LS-SVM
regression can improve substantially its prediction performance
when symmetry is imposed. The nonlinear model can identify
correctly the unknown function even when some datapoints are
missing, by using the symmetry information [Chapter 3, [33]].

– Formulation of a Partially Linear model with LS-SVM. The
addition of a linear parametric part has been studied in the
context of this work. It is shown that the model can have a unique
solution under quite general conditions. A unique representation
of the linear part is obtained when the linear and nonlinear parts
have no common regressors. This model is particularly powerful,
as it helps to reduce the complexity of the model, improving
the generalization ability. Links with statistical techniques are
studied [Chapter 4, [32, 34]].

– Including autocorrelated residuals in LS-SVM regression. Typi-
cally the residuals are assumed to be independent and identically
distributed (i.i.d.). However, in the presence of correlated
residuals, the LS-SVM regression is not able to identify correctly
the unknown function because it captures the behavior of the
function together with the structure of the residuals. We show
that it is possible to build a nonlinear regression where the
residuals follow an autoregressive process (AR). Moreover, the
correlation structure gives a time dimension to a seemingly
static problem. In order to preserve the convexity of the least-
squares problem, the correlation parameters are considered to
be hyperparameters, which are tuned in another level [Chapter
5, [38]].

• Nonlinear System Identification using LS-SVMs. In this
context, the contributions of this work are mostly related to the
definition and estimation of nonlinear model structures, and the
implementation using fixed-size LS-SVM regression.

– Definition of model structures using symmetry, partially linear
models and autocorrelation in the residuals as building blocks.
This modular approach has important practical advantages,
as the user can plug-in particular elements containing prior-
knowledge about the problem at hand. We have provided the
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formulations in primal and dual space, with the corresponding
equivalent kernel on each case [Chapter 6, [39]].

– Using LS-SVMs for chaotic time series prediction. It is known
that chaotic time series are not predictable beyond a certain
number of steps, which makes them a very hard test case for
forecasting methodologies. In this context, we have applied LS-
SVM regression, incorporating symmetry, to chaotic time series
with excellent results [Chapter 6 [36]].

– Implementation of LS-SVM regression for the benchmark Silver-
Box study. We have implemented several variants of the LS-
SVM regression in primal space for a dataset containing more
than 130,000 datapoints. This benchmark study was the basis
of a Special Session in the NOLCOS conference in 2004. The
simulation performance was the best among the results presented.
In addition, the results are further improved when considering
structured elements as partially linear models and/or symmetry
[Chapter 7, [30], [34]].

• Short-Term Load Forecasting. In the real-life problem of load fore-
casting, the contribution of this work is related to the implementation
and estimation of large-scale seasonal models for prediction.

– Implementation of black-box (N)ARX models using fixed-size LS-
SVM. We have shown that it is possible to build a nonlinear
regression model with excellent prediction performance using a
sparse representation based on less than 3% of the available
dataset. The effect of the size of the sparse representation on the
prediction performance is studied for 10 load series and compared
to a linear ARX model [Chapter 9, [35, 37]].

– Implementation of structured models. Using Periodic Autore-
gressive models (PAR), we have proposed a highly structured
model of 24 equations for short-term forecasting. The model
formulation is used as a template, being estimated individually
for different series. The linear character of the model makes it
possible to perform comparisons of the parameter estimates for
the variables of interest [Chapter 10, [29], [28]]. An interesting
by-product of the PAR models is that they allow to compute
a Typical Daily Profile which is used in clustering of the load
series [Appendix A, [29]]. Nonlinear structured models are
also proposed. Particularly, the use of autocorrelated residuals
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improve not only the prediction performance, but also the
simulations performance on a 24 hours ahead basis. The use
of partially linear models, in the context of load forecasting,
provides an interesting way of obtaining interpretable results from
the model [Chapter 10, [39]].

• Other contributions. Although not part of the main body of this
thesis, other contributions from this work are:

– Kernel based monotone regression. The case of a monotone
nonlinear regression is studied, where the monotonicity is im-
posed using inequality constraints. This leads to a quadratic
programming problem [93].

– Clustering of load series using cepstral distances. Unlike the
clustering done using the typical daily profile representation for
each load series, here the clustering is done directly on the time
series models (without building an explicit representation of each
series) [12].

– Energy islands modeling. Using genetic algorithms, the problem
of defining size and placement of distributed generation units
was addressed. Using different load profiles, a quasi-static
optimization problem is formulated that takes into account
transmission losses and seasonal changes [50].

– Modeling of the glycemia-insulin dynamics in critically ill pa-
tients. We have explored ARX models to predict the glycemia
of a patient at a given hour from the insulin, food and drugs
administered by the nurses and medical doctors [127,128].
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Chapter 2

Least Squares Support
Vector Machines

The objective of this chapter is to present the LS-SVM for-
mulation for regression [114] and to provide a description of the
main conceptual aspects. Particularly, the primal-dual formula-
tion and interpretation of LS-SVM makes it a powerful technique
for different applications in nonlinear modeling. Belonging to
the class of kernel methods, the LS-SVM is a modified version of
the SVM where the optimization problem is reformulated using a
least-squares specification with equality constraints. The original
variables are mapped implicitly into a high (and possibly infinite)
dimensional space based on Mercer’s theorem. The LS-SVM has
links with other kernel methods like Gaussian Processes [81,135],
Reproducing Kernel Hilbert Spaces (RKHS) [133], regularization
networks [40, 95], kernel ridge regression [101]. However, the
LS-SVM framework based on convex optimization theory can
be exploited further. In particular, the primal-dual structure
of LS-SVM makes it possible to find a methodology for model
estimation in primal space by using an explicit approximation of
the nonlinear mapping. Based on the eigendecomposition of the
kernel matrix and the use of Nyström techniques, it is possible
to obtain a sparse approximation of the problem in primal space.
The chapter is structured as follows. Section 2.1 introduces
the notion of kernel functions and Mercer’s theorem, which is

19
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a cornerstone of the LS-SVM formulation, and discusses other
kernel methods. Section 2.2 shows the derivation of the LS-SVM
nonlinear regression where the solution is expressed in dual form.
The estimation in primal space is presented in Section 2.3, where
the approximation of the nonlinear mapping leads to the Fixed-
Size LS-SVM.

2.1 Kernel Methods

Kernel methods are studied in different fields with several research direc-
tions. Although the methods are formulated in different ways, they all share
the use kernel functions and the application of Mercer’s theorem.

2.1.1 Kernel functions and Mercer’s Theorem

A kernel may be characterized as a function from X × X to R (usually
X ⊆ R

d). A frequently used kernel function is the Radial Basis Function
(RBF) kernel, shown in Figure 2.1, given by

K(x, z) = e−
||x−z||22

σ2 (2.1)

with σ a given coefficient.

Kernel functions have been used extensively in different domains, such as
nonparametric estimation [53] and integral equation analysis. Since the
1990s, important developments from statistical learning theory [129] led
to the incorporation of kernel functions into the class of so-called kernel
methods for pattern analysis. Kernel methods include Support Vector
Machines (SVMs, [129]) and Least-Squares Support Vector Machines (LS-
SVM, [114]) among others.

The importance of kernel functions within the context of this work
lies in allowing the computation of a model in a high (and possibly
infinite) dimensional feature space, without having to compute explicitly
the datapoints on the high dimensional space. This is illustrated in the
following example for the case of a linear regression.

Consider the following simple linear regression to be estimated from a
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Figure 2.1: RBF kernel function, shown here for different values of the
parameter σ.

training dataset {xi, yi}N
i=1, with yi, xi ∈ R,

yi = wxi + ei, (2.2)

where ei is assumed to be independent and identically distributed (i.i.d.)
with zero mean and constant variance. This linear regression can be
estimated using least-squares, to obtain an estimate of w ∈ R. If the
system from which the dataset has been collected follows a linear process,
the above regression (2.2) provides a good approximation of the system
behavior. However, if the true system is given by

y = w1x
2 + w2

√
2x + w3, (2.3)

the regression (2.2) is not correctly specified as it does not contain the
nonlinear effect x2. The correct regression to be estimated is, therefore,

yi = w1x
2
i + w2

√
2xi + w3 + ei. (2.4)

In order to obtain the correct specification, the original input x has to be
mapped to a higher dimensional space by means of the nonlinear mapping
ϕ(x) : R → R

3

ϕ(x) = [x2,
√

2x, 1], (2.5)
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and then estimating the model

yi = wT ϕ(xi) + ei. (2.6)

In this example, the nonlinear mapping ϕ is assumed to be known, therefore
the points in the high-dimensional space can be computed directly to arrive
at the correct regression specification. However, it is possible to work with
an unknown nonlinear mapping, using a relation between kernel functions
and dot products in a Hilbert space. In the above example, it is possible to
verify that the dot product of two vectors in the high-dimensional space is
given by

ϕ(x1)
T ϕ(x2) = [x2

1,
√

2x1, 1]T [x2
2,
√

2x2, 1] (2.7)

= x2
1x

2
2 + 2x1x2 + 1 (2.8)

= (x1x2 + 1)2, (2.9)

which is equivalent to the polynomial kernel

K(x1, x2) = (xT
1 x2 + c)d, (2.10)

evaluated at the points x1, x2 using c = 1, d = 2.

This simple example illustrates that it is possible to build a kernel function
from a dot product of vectors in a high-dimensional space. However, the
opposite is also possible. Starting from a kernel function, it is possible to
obtain a high-dimensional space where the dot product is given by the kernel
function evaluation. A kernel function can therefore induce a nonlinear
mapping into a high dimensional space without explicitly computing it. This
result was provided by James Mercer in 1909 working in the field of integral
equations, in the form of the so-called Mercer’s Theorem [88]:

Theorem 2.1. (Mercer) Let X be a compact subset of R
n. Suppose K is a

continuous symmetric function such that the integral operator TK : L2(X) →
L2(X),

(TKf)(·) =

∫

X
K(·, x)f(x)dx,

is positive, i.e.,
∫

X×X
K(x, z)f(x)f(z)dxdz ≥ 0,

for all f ∈ L2(X). Then K(x, z) can be expanded in a uniformly converging
series (on X ×X) in terms of TK ’s eigenfunctions φj ∈ L2(X), normalized
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in such a way that ||φj ||L2
= 1 and positive associated eigenvalues λj > 0,

K(x, z) =
∞

∑

j=1

λjφj(x)φj(z).

¥

The last summation can be written as

K(x, z) =

nh
∑

j=1

√

λjφj(x)
√

λjφj(z), (2.11)

where a mapping ϕ : R
n → H can be defined with H a Hilbert space.

Furthermore, it is possible to write ϕj(x) =
√

λjφj(x) and ϕj(z) =
√

λjφj(z) such that the kernel function can be expressed as the dot product

K(x, z) = ϕ(x)T ϕ(z). (2.12)

The application of (2.12) is called kernel trick, as first published in 1964 [2] in
the context of pattern recognition. It means that any positive (semi) definite
kernel function induces a nonlinear mapping to a higher (and possibly
infinite) dimensional space, and provides the evaluation of the dot product
in that space.

Remark 2.1. [“Feature” space]. Usually the high dimensional space is
called “feature space”, and the nonlinear mapping ϕ “feature map” within
the context of kernel methods, although sometimes they are referred to as the
“hidden layer” using a multilayer perceptron interpretation. In the context
of machine learning or datamining the terminology may differ. For example,
in the case of clustering literature, the term “feature” refers to an input or
variable, and the problem of variable selection is called “feature selection
problem”, which may lead to confusion when using kernel methods in those
contexts. In this thesis, however, the term “feature space” is used to refer
to the high dimensional space where the inputs are mapped to by means of
the nonlinear mapping ϕ.

Remark 2.2. [Choices of Kernels] For a positive definite kernel function
K(xi, xj) some common choices are: K(xi, xj) = xT

i xj (linear kernel);
K(xi, xj) = (xT

i xj + c)d (polynomial of degree d, with c > 0 a tuning
parameter); K(xi, xj) = exp(−||xi − xj ||22/σ2) (RBF kernel), with σ a
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tuning parameter. On the other hand, the mapping ϕ(x) = x for x ∈ R
n

gives the linear kernel; the mapping ϕ(x) = [1;
√

2x; x2] for x ∈ R gives the
polynomial kernel of degree 2. The feature space related to the RBF kernel
has been shown to be infinite dimensional [129]. The feature map may not be
explicitly known in general. Taking a positive definite kernel guarantees the
existence of the feature map. It is also possible to build kernels from kernels;
e.g. a linear combination (using positive coefficients) of existing kernels is
a valid kernel; a product of kernels is a valid kernel. For more information
about building kernels from kernels, the reader is referred to [20].

2.1.2 Different Kernel Methods

The work in this thesis is developed using the Least Squares Support
Vector Machines (LS-SVMs [114]) nonlinear regression formulation as a basis
technique. LS-SVMs and Support Vector Machines (SVMs) [95, 129, 136]
follow the approach of a primal-dual optimization formulation, where both
techniques make use of a so-called feature space where the inputs have been
transformed by means of a (possibly infinite dimensional) nonlinear mapping
ϕ. This is converted to the dual space by means of Mercer’s theorem
and the use of a positive definite kernel, without computing explicitly the
mapping ϕ. The SVM model solves a quadratic programming problem in
dual space, obtaining a sparse solution [20]. The LS-SVM formulation, on
the other hand, solves a linear system under a least squares cost function
with equality constraints, where the sparseness property can be obtained
e.g. by sequentially pruning the support value spectrum.

Other directions in kernel methods follow different approaches. In Reproduc-
ing Kernel Hilbert Spaces (RKHS) [133] the problem of function estimation
is treated as a variational problem ; Gaussian Processes (GP) [81,135] follow
a probabilistic-Bayesian setting. Kriging [19] makes use of kernel methods
in the context of spatio-temporal modeling with a strong probabilistic
component. Although these different approaches have links with each other,
e.g. for the simple case of static regression without a bias term it is well-
known that GP, regularization networks and LS-SVM lead to the same set of
linear equations to be solved at the dual level, in general the methodologies
are different. Particularly, the primal-dual formulation of LS-SVM makes it
easy to add additional constraints, which in the context of the present work
makes it straightforward to incorporate more structure into the models, as it
will be illustrated in subsequent chapters. In addition, the LS-SVM models
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can be estimated in primal space directly with a sparse representation by
using Nyström methods (which originated in the GP literature) for the case
of large samples, which is also exploited in this thesis.

2.2 LS-SVM for Nonlinear Regression

The standard framework for LS-SVM estimation is based on a primal
formulation which is solved in dual form. Given the dataset {xi, yi}N

i=1

the goal is to estimate a model of the form

yi = wT ϕ(xi) + b + ei (2.13)

where xi ∈ R
n, y ∈ R and ϕ(·) : R

n → R
nh is the mapping to a high

dimensional (and possibly infinite dimensional) feature space, and the error
terms ei are assumed to be i.i.d. with zero mean and constant (and finite)
variance.

The following optimization problem with a regularized cost function is
formulated,

min
w,b,ei

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (2.14)

such that yi = wT ϕ(xi) + b + ei, i = 1, . . . , N.

where γ is a regularization constant. The solution is formalized in the
following lemma.

Lemma 2.1. Given a positive definite kernel function K : R
n × R

n → R,
the solution to (2.14) is given by the dual problem

[

Ω + 1
γ I 1

1T 0

] [

α

b

]

=

[

y

0

]

, (2.15)

where y = [y1, . . . , yN ]T , α = [α1, . . . , αN ]T , and Ω is the kernel matrix with
Ωij = K(xi, xj) ∀i, j = 1 . . . , N.

Proof: Consider the Lagrangian of problem (2.14) L (w, b, ei; α) =
1
2wT w + γ 1

2

∑N
i=1 e2

i −∑N
i=1 αi(w

T ϕ(xi) + b + ei − yi), where αi ∈ R are
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the Lagrange multipliers. The conditions for optimality are given by


















∂L

∂w
= 0 → w =

∑N
j=1 αjϕ(xj)

∂L

∂b = 0 → ∑N
i=1 αi = 0

∂L

∂ei
= 0 → αi = γei, i = 1, . . . , N

∂L

∂αi
= 0 → yi = wT ϕ(xi) + b + ei, i = 1, . . . , N

(2.16)

With the application of Mercer’s theorem [88] ϕ(xi)
T ϕ(xj) = K(xi, xj)

with a positive definite kernel K, it is possible to eliminate w and ei,
obtaining yj =

∑N
i=1 αiK(xi, xj) +b +

αj

γ . Building the kernel matrix
Ωij = K(xi, xj) and writing the equations in matrix notation gives the
final system (2.15)

The final model is expressed in dual form

y(x) =
N

∑

i=1

αiK(xi, x) + b, (2.17)

where it is not required to compute explicitly the nonlinear mapping ϕ(·) as
this is done implicitly through the use of positive definite kernel functions
K. When the bias term is not present (b = 0), the result is equivalent to
kernel ridge regression [101].

Remark 2.3. [Hyperparameter Selection] Lemma 2.1 gives the solution
of the LS-SVM regression estimation for a given kernel function K and a
given regularization parameter γ. Usually training of the LS-SVM model
involves an optimal selection of kernel parameters (σ for RBF kernel; c
and d for a polynomial kernel) and the regularization term γ, which are
typically denoted as hyperparameters. This is done in such a way that a good
model performance is obtained. Figure 2.2 shows an example of a function
approximation using LS-SVM with different kernel parameters. The original
function (Top-left panel) is approximated with LS-SVM estimated on the
available (noisy) points. By using different kernel parameters, clearly the
quality of the approximation changes drastically. Therefore it is important
to select optimal hyperparameters, using e.g. cross-validation techniques, or
Bayesian inference [80,94,123–125].

Remark 2.4. [LS-SVM and Mercer’s Theorem] The application of Mercer’s
theorem allows the final expression of the LS-SVM regression to be written
in terms of the dual Lagrange multipliers. In the primal space, the LS-SVM
regression can be viewed as a parametric model, while in the dual space
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Figure 2.2: Effect of using different kernel parameters for the same LS-SVM
regression. The original function (Top-left) is approximated with an LS-
SVM estimated on the available noise datapoints (’x’). Each one of the five
different approximations is obtained with a different σ in the RBF kernel
parameter. The selection of the optimal hyperparameters is important for
a good performance of the model.

it becomes non-parametric (the size of the solution vector grows with the
number of data). This primal-dual formulation can be exploited further. The
dimension of the system (2.15) is given by the number of datapoints, not by
the dimension of the input vectors x. This provides a practical advantage for
working with small samples of high-dimensional inputs. On the other hand,
when the available number of datapoints is too large, solving the system
(2.15) can become too time consuming or simply unfeasible. Under these
circumstances, it is possible to exploit the primal-dual formulation by finding
an explicit approximation of the nonlinear mapping ϕ by means of Nyström
methods. This concept is illustrated on Figure 2.2, and it is the subject of
the next section.

Remark 2.5. [LS-SVM framework.] In this work, the LS-SVMs are used
for regression estimation. However, the LS-SVM framework is more general
[114]. Given that the LS-SVM formulation works with equality constraints
and an L2 loss function, this optimization-based kernel methodology can
be extended to a wide range of problems, including kernel versions of
PCA (Principal Component Analysis) [115], FDA (Fisher Discriminant
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Primal space: (→ large data sets)

Dual space: (→ high dimensional inputs)

Parametric: estimate w ∈ R
d

Non-parametric: estimate α ∈ R
N

y(x) = wT ϕ(x) + b

y(x) =
∑

αiK(x, xi) + b

(Mercer Theorem)

(Nyström Approx.)

y(x)

y(x)

w1

wd

α1

αN

ϕ1(x)

ϕd(x)

K(x, x1)

K(x, xN )

x

x

Figure 2.3: LS-SVM primal-dual formulation for nonlinear regression. The
final model can be written in dual form using Mercer’s theorem (”kernel
trick”). For the case of large scale problems, the model can be used in
primal form by taking a finite dimensional approximation to the feature
map ϕ by means of the Nyström technique. Figure taken from [114].
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Analysis) [122], CCA (Canonical Correlation Analysis) [126], PLS (Partial
Least Squares) [60], spectral clustering [7], subspace methods, recurrent
networks, control, and others. In general, LS-SVMs can be seen as a
modular formulation from which more sophisticated kernel machines can be
built using additional constraints or different loss functions for robustness
or sparsity.

Remark 2.6. [Prediction Errors.] With any modeling technique, it may
be possible to obtain an estimation for the prediction error. In a linear
regression, for example, it is possible to build confidence intervals around
the predictions, starting from assumptions about the distributional properties
of the residuals [51]. In the context of nonlinear modeling, however, extra
assumptions may have to be taken. A Bayesian framework for LS-SVM
regression in which the hyperparameters are given a prior distribution can
produce prediction error bars, as developed in [114, 121]. Moreover, the
quality of the prediction error estimation may be improved with dedicated
methodologies. In the context of LS-SVM, bootstrapping methods have been
studied for the LS-SVM regression [22]. However, this topic is outside
the scope of this work, where the focus is on the incorporation of prior
knowledge in the form of additional constraints without taking assumptions
on distributional properties.

2.3 Estimation in Primal Space

In this section, the estimation in primal space is described in terms of the
explicit approximation of the nonlinear mapping ϕ, and the implementation
for a large scale problem.

2.3.1 Nyström Approximation in Primal Space

Explicit expressions for an approximation to ϕ can be obtained by means of
an eigenvalue decomposition of the kernel matrix Ω where Ωij = K(x, xj).
Given the integral equation

∫

K(x, xj)φi(x)p(x)dx = λiφi(xj), (2.18)
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with solutions λi and φi for a variable x with probability density p(x), we
can write

ϕ = [
√

λ1φ1,
√

λ2φ2, . . . ,
√

λnh
φnh

]. (2.19)

Given the dataset {xi, yi}N
i=1, it is possible to approximate the integral by a

sample average, as proposed in the context of Gaussian Processes [137,138].
This leads to the eigenvalue problem (Nyström approximation)

1

N

N
∑

k=1

K(xk, xj)ui(xk) = λ
(s)
i ui(xj), (2.20)

where the eigenvalues λi and eigenfunctions φi from the continuous problem

can be approximated from the sample eigenvalues λ
(s)
i and eigenvectors ui

as

λi =
1

N
λ

(s)
i , φi =

√
Nui. (2.21)

Based on this approximation, it is possible to compute the eigendecompo-
sition of the kernel matrix Ω and use its eigenvalues and eigenvectors to
compute the i−th required component of any point x (particularly those
points not included in the original subsample) by means of

ϕ̂i(x) =
N

√

λ
(s)
i

N
∑

k=1

ukiK(xk, x), (2.22)

leading to the M−dimensional approximation

ϕ̂(x) = [ϕ̂1(x), ϕ̂2(x), . . . , ϕ̂M (x)]T . (2.23)

This finite dimensional approximation ϕ̂(x) can be used in the primal
problem (2.14) to estimate w and b directly.

2.3.2 Sparse Approximations and Large Scale Problems

It is important to emphasize that the use of the entire training sample of
size N to compute the approximation of ϕ produces a vector ϕ̂(x) having
N components, where each of them can be computed by (2.22) for all x ∈
{xi}N

i=1. However, for a large scale problem, it has been motivated [138] to
use of a subsample of M ≪ N datapoints to compute ϕ̂. In this case, up
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to M components are computed, leading to a sparse representation of the
model when estimating in primal space [114]. The selection of the subsample
of size M , the initial set of support vectors, is made before the estimation
of the model, and the final performance of the model can depend on the
quality of the initial selection. It is possible to take a random selection of M
datapoints and use it to build the approximation of the nonlinear mapping ϕ

as in [138], or to perform a more optimal selection based on quadratic Renyi
entropy maximization as proposed in [114]. In this case, given a fixed-size
M , the aim is to select the support vectors maximizing the quadratic Renyi
entropy

HR = − log

∫

p(x)2dx (2.24)

that, given the link between kernel PCA and density estimation established
in [44], can be approximated by

∫

p̂(x)2dx =
1

N2
1TΩ1. (2.25)

The use of this active selection procedure can be quite important for large
scale problems, as it is related to the underlying density distribution of the
sample. It is important to note that the performance of a model having
an initial random selection of support vectors will be different from the
performance of a model having an entropy-based selection depending on
the characteristics of the dataset itself. A rather simple dataset may be
approximated well by both methods; whereas in a more complex dataset,
the models can show different performances. Intuitively, the initial selection
should contain some important regions of the dataset, as it will be seen in
the next chapters for the case of e.g. the Santa Fe Laser example [134].

The mechanism for selection of the initial support vectors by using the Renyi
quadratic entropy works as follows [114].

1. Select a sample SM of size M from the available data sample SN of
size N (typically M ≪ N).

2. Compute a small kernel matrix ΩM using only the data from the
subsample of size M :

ΩM
ij = K(xi, xj) with xi, xj ∈ SM

3. Evaluate the Renyi quadratic entropy using (2.24) and (2.25).
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4. Select a datapoint x1 ∈ SM . Select another datapoint x2 from the
remaining sample SN−M .

5. Exchange both points, and compute the entropy of the modified
subsample S ∗

M = SM \ {x1} ∪ {x2} .

6. If the entropy of S ∗
M increases with respect to that of SM , the

exchange is maintained. If the entropy does not increase, the exchange
is not maintained and the datapoints are put back at their original
positions.

7. Iterate from step 4 until convergence of the entropy magnitude is
reached.

Remark 2.7. [Links with Kernel Principal Components Analysis] It is
interesting to note that (2.20) is related to applying kernel PCA [103, 115].
However, in our case the conceptual aim is to obtain an optimal finite
dimensional approximation of the mapping ϕ in the feature space. Only
in the case where the entire sample of size N is used for the approximation
(i.e. M = N) then only (2.21) is computed and, therefore, the components
of ϕ̂ are directly the eigenvectors of the kernel matrix Ω.

2.3.3 Fixed-Size LS-SVM

Based on the explicit approximation ϕ̂ computed from an initial sample of M
datapoints from the given dataset {xi, yi}N

i=1, the Fixed-Size LS-SVM (FS-
LSSVM) nonlinear regression estimator [114] can be formulated as follows:

min
w,b,e

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (2.26)

s.t. yi = wT ϕ̂(xi) + b + ei, i = 1, . . . , N.

where γ is a regularization constant. Working with the explicit expression of
ϕ̂ makes the problem (2.26) a ridge-regression problem, where the solution is
given by the estimates of w and b. Solving the regression problem (2.26) can
be done with traditional statistical techniques. Using γ > 0 is equivalent to
ridge-regression [61]; using γ = ∞ , to Ordinary Least Squares (OLS) [30,31].
For a discussion about the use of a regularization term and its properties
in linear regression, the reader is referred to [11, 112, 113]. Given the fact
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that ϕ̂ is finite dimensional, other estimators can be used for the parametric
problem of estimating w, b. This leads to fixed-size kernel methods.

The algorithm for the final implementation can be described by the following
steps:

1. Consider the dataset {xi, yi}N
i=1

2. Select a subsample of size M of the training points {xi}N
i=1 using

maximization of the quadratic Renyi entropy (2.25)

3. Use the selected subsample of size M to build a small kernel matrix
ΩM

4. Compute the eigenvectors ui and eigenvalues λ
(s)
i of ΩM

5. Compute the approximation of the nonlinear mapping ϕ̂(xi) using
(2.22) for all points i = 1, . . . , N

6. Solve the ridge regression problem (2.26) by eliminating ei

Remark 2.8. [Equivalent Smoother matrix and Effective Number of
Parameters]. It is useful to write the vector of predictors from a model
in the form

ŷ = Sy,

where S denotes the smoother matrix. The effective number of parameters
(degrees of freedom) is given by the trace of S [83]. In case the model
is estimated with LS-SVM in dual space, and assuming the data has been
centered, the smoother matrix takes the form

S = Ω(Ω + γ−1I)−1,

with Ωi,j = K(xi, xj). In case the model is estimated in primal space with
Fixed-Size LS-SVM, the smoother matrix takes the form

S = (Φ̂
T
Φ + Iγ−1)−1Φ̂,

where Φ̂ of dimension N × M is the matrix of regressors

Φ̂ = [ϕ̂(x1)
T ; ϕ̂(x2)

T ; · · · , ϕ̂(xN )T ].
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2.4 Example

Consider a static nonlinear modeling problem, with unidimensional input x

and noisy target values yk = sinc(2πxk) + ek, where

sinc(x) =

{

1 , x = 0
sin(x)

x , otherwise
(2.27)

with e a white noise of variance 0.1 and x ∈ [−0.5, 0.5]. The sample size is
N = 200, and the subsample for the fixed-size application will be selected
with size M = 20.

• Case I. Using the full sample of size N to obtain the optimal
hyperparameter, define the regressors and the final estimation.

• Case II. Using only a fixed-size subsample for finding the optimal
hyperparameters, the regressors and the final model.

The results reported are:

1. The optimal σ found by minimizing the cross-validation MSE.

2. The MSE (mean squared error) both in-sample and out-of-sample.

The results are summarized in Table 2.1 and Figure 2.4. It is important to
note that the good performance of the cases when M ≪ N is due not only to
the quality of the Nyström approximation, but also to the good selection of
the support vectors by means of the quadratic Renyi entropy maximization.
For this example, the support vectors are quite uniformly distributed, as
shown in Figure 2.4. The performance of the predictions for both Cases is
also very good. For more complex datasets, it will be seen in Part II of this
work that the support vectors are remarkably located in important regions
of the dataset.

2.5 Conclusions

The Least Squares Support Vector Machines (LS-SVMs) formulation is a
powerful nonlinear regression method. It builds a linear model in a high
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σ M MSEIN MSEOUT

Case I 1.0 200 0.005 0.006
Case II 0.8 20 0.005 0.006

Table 2.1: Performance of the estimations using LS-SVM in primal space
for the Sinc function example. Case I uses of the full sample (M = N) to
build the approximation in primal space, Case II makes use of a fixed-size
LS-SVM (M ≪ N) version.
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Figure 2.4: Estimations for the noisy sinc function using LS-SVM in primal
space. Case I (‘-x’ line) uses the full sample to build the approximation
in primal space, Case II (‘-.’ line) uses only a small subsample of support
vectors to build the approximation. The support vectors for Case II are
depicted by the big dots.
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dimensional space where the inputs have been transformed by means of
a (possibly infinite dimensional) nonlinear mapping ϕ. This is converted
to the dual space using Mercer’s theorem and a positive definite kernel,
without explicitly computing the mapping ϕ. The LS-SVM formulation
solves a linear system in dual space under a least-squares cost function,
where sparseness can be obtained by e.g. sequentially pruning the support
value spectrum or by means of a fixed-size subset selection approach. The
LS-SVM training procedure involves the selection of a kernel parameter and
the regularization parameter of the cost function, which can be done e.g. by
cross-validation, Bayesian techniques or others.

The primal-dual formulation of the LS-SVM for regression can be exploited
in order to obtain a sparse approximation using a finite dimensional
approximation to the feature map ϕ with estimation in the primal space.
The approximation is based on the Nyström method, which uses the
eigendecomposition of the kernel matrix Ω computed from a small sample
of size M ≪ N . This framework leads to the Fixed-Size LS-SVM, suitable
for working with large datasets. The practical advantages of this estimation
technique are shown in Part II, where the technique is used as an estimation
method for a nonlinear system identification problem.



Chapter 3

Imposing Symmetry

One of the objectives of this work is to extend the LS-SVM
formulation to incorporate prior knowledge in the estimation
stage. This chapter presents one of the contributions of this
thesis. It is shown how to use relevant prior information by
imposing symmetry conditions (odd or even) to the Least Squares
Support Vector Machines regression formulation. The symmetry
property is found in many real-life applications, for example,
in hysteresis curves in mechanical and ferromagnetic systems,
in the behavior of chaotic systems, and others. The simple
knowledge that a nonlinear function may show an even or odd
symmetry can be imposed on the LS-SVM formulation in a
straightforward way. This is done by adding a new constraint
to the LS-SVM model, which finally translates into a new
kernel. The equivalent kernel embodies the prior information
on symmetry, and therefore the dimension of the final dual
system is the same as in the unrestricted case. It is shown
that using a regularization term and a soft constraint provides
a general framework containing the unrestricted LS-SVM and
the symmetry-constrained LS-SVM as extreme cases. Imposing
symmetry can substantially improves the performance of the
models, in terms of increasing the generalization ability and in
reducing the model complexity. This chapter is structured as
follows. Section 3.1 describes the derivation of the LS-SVM with
symmetry constraints. Section 3.2 shows the case where the prior

37
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information is imposed via a regularization parameter and a soft
constraint. Illustrative examples are given in Section 3.3.

3.1 LS-SVM with Symmetry Constraints

The proposed inclusion of symmetry constraints (odd or even) to the
nonlinearity within the LS-SVM regression framework can be formulated
as follows. Given the dataset {xi, yi}N

i=1, with xi ∈ R
n and yi ∈ R, the goal

is to estimate a model of the form

yi = wT ϕ(xi) + b + ei, i = 1, . . . , N, (3.1)

where ϕ(·) : R
n → R

nh is the mapping to a high dimensional feature space,
and the error terms ei are assumed to be i.i.d. with zero mean and constant
(and finite) variance, and where the knowledge of symmetry (odd or even)
is imposed on the nonlinear function as follows. A convex optimization
problem with a regularized cost function is formulated:

min
w,b,ei

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (3.2)

s.t.

{

yi = wT ϕ(xi) + b + ei, i = 1, . . . , N,

wT ϕ(xi) = awT ϕ(−xi), i = 1, . . . , N,

with a ∈ {−1, 1} a given constant, taking either the value of 1 or −1
depending on the type of symmetry to be imposed. The first restriction
is the standard model formulation in the LS-SVM framework. The second
restriction is a shorthand notation for the cases where we want to impose
the nonlinear function wT ϕ(xi) to be even (resp. odd) by using a = 1 (resp.
a = −1). The solution is formalized in the following lemma.

Lemma 3.1. Given the problem (3.2) and a positive definite kernel function
K : R

n × R
n → R satisfying the assumption K(xi,−xl) = K(−xi, xl)

∀i, l = 1, . . . , N , the solution to (3.2) is given by the system

[

1
2(Ω + aΩ∗) + γ−1I 1

1T 0

] [

α

b

]

=

[

y

0

]

, (3.3)

where y = [y1, . . . , yN ]T , α = [α1, . . . , αN ]T , Ωij = K(xi, xj) and Ω∗
ij =

K(−xi, xj) ∀i, j = 1, . . . , N .
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Proof: Building the Lagrangian of the regularized cost function

L (w, b, ei; α, β) =
1

2
wT w + γ

1

2

N
∑

i=1

e2
i −

N
∑

i=1

αi(w
T ϕ(xi) + b + ei − yi)−

−
N

∑

i=1

βi(w
T ϕ(xi) − awT ϕ(−xi)), (3.4)

with αi, βi ∈ R the Lagrange multipliers, and taking the optimality
conditions, the following system of equations is obtained:



























∂L

∂w
= 0 → w =

∑N
l=1(αl + βl)ϕ(xl) − a

∑N
l=1 βlϕ(−xl)

∂L

∂b = 0 → ∑N
i=1 αi = 0

∂L

∂ei
= 0 → αi = γei, i = 1, . . . , N

∂L

∂βi
= 0 → wT ϕ(xi) = awT ϕ(−xi), i = 1, . . . , N

∂L

∂αi
= 0 → yi = wT ϕ(xi) + b + ei, i = 1, . . . , N

(3.5)

Using Mercer’s theorem, ϕ(xi)
T ϕ(xj) = K(xi, xj) for a positive definite

kernel function K : R
n × R

n → R [114]. Under the assumption that
K(xi,−xj) = K(−xi, xj) ∀i, j = 1, . . . , N , the elimination of w, ei and
βi yields

yi =
1

2

N
∑

j=1

αj [K(xj , xi) + aK(−xj , xi)] + b +
1

γ
αi (3.6)

and the final dual system can be written as

[ 1
2(Ω + aΩ∗) + 1

γ I 1

1T 0

] [

α

b

]

=

[

y

0

]

, (3.7)

with Ωij = K(xi, xj) and Ω∗
ij = K(−xi, xj) ∀i, j = 1, . . . , N .

Remark 3.1. [Equivalent Kernel] The final model becomes

ŷ(x) =
N

∑

i=1

αiKeq(xi, x) + b. (3.8)

where

Keq(xi, x) =
1

2
[(K(xi, x) + aK(−xi, x)] (3.9)
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is the equivalent symmetric kernel that embodies the restriction on the
nonlinearity. It is important to note that the final dual system (3.3) has
the same size as the one obtained using the traditional unrestricted LS-
SVM. Therefore, imposing the second constraint does not increase the size
of the system to be solved, as the new information is translated to the kernel
level. In addition, this regression can be estimated in primal space applying
the Fixed-Size LS-SVM described in the previous chapter simply using the
equivalent kernel function Keq to build the approximation in (2.22).

Remark 3.2. [Validity of the Assumption] The assumption K(xi,−xj) =
K(−xi, xj) ∀i, j = 1, . . . , N is easily verified for all kernel functions that
can be expressed in terms of the distance between vectors, K(xi, xj) =
K(‖xi − xj‖) (stationary kernels, for example, the RBF kernel) and those
expressed in terms of the dot product K(xi, xj) = K(xT

i xj) (nonstationary
kernels, for example, the polynomial kernel), which are the most common
kernel functions used in practice. From a theoretical point of view, in
general the kernel function can be described by its spectral representation.
For the general class of kernels for which the polynomial and RBF kernels
are particular cases, the spectral representation can be written as [43]:

K(xi, xj) =

∫

Rp

∫

Rp

cos(θT
1 xi − θT

2 xj)F (θ1, θ2) (3.10)

where F is a bounded symmetric measure. In this representation, noticing
that cos(z) = cos(−z), it is easy to verify the required assumption:

K(xi,−xj) =

∫

Rp

∫

Rp

cos(θT
1 xi + θT

2 xj)F (θ1, θ2)

=

∫

Rp

∫

Rp

cos(−[−θT
1 xi − θT

2 xj ])F (θ1, θ2)

=

∫

Rp

∫

Rp

cos(−θT
1 xi − θT

2 xj)F (θ1, θ2)

= K(−xi, xj)

Therefore, for a large class of kernels, most used in practice for nonlinear
system identification, the required assumption holds. However, this may
not be a general property for all possible kernels, especially those still to
be defined in new applications fields (for example, text patterns, chemical
molecules, graphs, etc.).



3.2 Imposing Symmetry via a Regularization Term 41

3.2 Imposing Symmetry via a Regularization Term

In this section we propose to impose symmetry as a soft constraint, which
can be interpreted as a weak prior knowledge. Under the same definitions for
the initial dataset {xi, yi}N

i=1 and the model formulation, now the following
optimization problem with a regularized cost function is formulated:

min
w,b,ei

1

2
wT w + γ1

1

2

N
∑

i=1

e2
i + γ2

1

2

N
∑

i=1

r2
i (3.11)

s.t.

{

yi = wT ϕ(xi) + b + ei, i = 1, . . . , N,

wT ϕ(xi) = awT ϕ(−xi) + ri, i = 1, . . . , N,

with a ∈ {−1, 1} a given constant. The second restriction, imposing
wT ϕ(xi) to be even (resp. odd) by using a = 1 (resp. a = −1), contains a
residual term ri allowing the restriction not to be exact. The “fitting” of this
second restriction is included in the cost function via a new regularization
constant γ2. The solution is formalized in the following lemma.

Lemma 3.2. Given a positive definite kernel function K : R
n × R

n → R

satisfying K(xi,−xj) = K(−xi, xj) ∀i, j = 1, . . . , N , the solution of the
problem (3.11) is given by the system

[

Ωeq + γ−1
1 I 1

1T 0

] [

α

b

]

=

[

y

0

]

, (3.12)

where

Ωeq =
1

2
(Ω + aΩ∗) +

1

2γ2
(aΩ∗ − Ω +

1

2γ2
I)−1 (3.13)

and Ωij = K(xi, xj) and Ω∗
ij = K(−xi, xj) ∀i, j = 1, . . . , N .

Proof: Building the Lagrangian as in (3.4) and taking the optimality
conditions, we obtain the system



































∂L

∂w
= 0 → w =

∑N
l=1(αl + βl)ϕ(xl) − a

∑N
l=1 βlϕ(−xl)

∂L

∂b = 0 → ∑N
i=1 αi = 0

∂L

∂ei
= 0 → αi = γ1ei, i = 1, . . . , N

∂L

∂ri
= 0 → −βi = γ2ri, i = 1, . . . , N

∂L

∂βi
= 0 → wT ϕ(xi) = awT ϕ(−xi) + ri, i = 1, . . . , N

∂L

∂αi
= 0 → yi = wT ϕ(xi) + b + ei, i = 1, . . . , N.

(3.14)
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From this system, one can express a relation between the vectors of Lagrange
multipliers α and β as

(Ω − aΩ∗)α = (2aΩ∗ − 2Ω +
1

γ2
I)β (3.15)

On the other hand, the elimination of w and ei using the optimality
conditions gives, in matrix notation,

y = Ωα + Ωβ − aΩ∗β + 1b +
1

γ1
α (3.16)

Substituting β in terms of α by (3.15) in (3.16) gives the final system (3.12).

Remark 3.3. [Role of second regularization term] Imposing symmetry as a
soft constraint gives rise to a new equivalent kernel

Ωeq =
1

2
(Ω + aΩ∗) +

1

2γ2
(aΩ∗ − Ω +

1

2γ2
I)−1 (3.17)

equal to the equivalent kernel of Section 3.1 when γ2 → ∞. This means
that the hard constrained case of Section 3.1 is a particular case of the soft
constrained derivation. In addition, if γ2 → 0 the regularized cost function
from (3.11) becomes the cost function of the standard LS-SVM (2.14). When
γ2 → 0 working with the soft constraint, the optimality condition related
to ri gives βi = 0 thus eliminating the effect of the second constraint.
Therefore, imposing symmetry via a regularization parameter and a soft
constraint covers a continuum of cases: from the standard unconstrained
LS-SVM (γ2 → 0, no prior knowledge) to the hard constrained case of
Section 2 (γ2 → ∞, absolute prior knowledge). From this perspective,
the regularization term γ2 can measure the degree by which symmetry can
be imposed. This is also related to the Bayesian framework where prior
information can be imposed via a regularization term [82,114].

3.3 Examples

In this section, some examples of the effects of imposing symmetry to the LS-
SVM are presented. In all cases, an RBF kernel is used and the parameters
σ and γ are found by 10-fold cross validation over the corresponding training
sample. In each example, the results using the standard LS-SVM (that is,
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full black-box model) are compared to those obtained using the symmetry-
constrained LS-SVM (S-LS-SVM) (3.2). The examples are defined in such
a way that there are not enough training datapoints in every region of the
relevant space; thus, it is very difficult for a black-box model to“learn”
the symmetry just by using the available information. The examples are
compared in terms of complexity (effective number of parameters [132]),
performance in the training sample (cross-validation mean squared error,
MSE-CV) and generalization performance (MSE out of sample, MSE-OUT).
The results are shown on Table 3.1.

Cubic function. The model to be identified is yk = x3
k + ek, where ek is

drawn from a normal distribution with zero mean and variance 0.2. The
training data for this example consists of xk ∈ [0, 3] in increments of 0.1,
containing only positive values. The goal is to observe how well the model
generalizes to the negative values of xk. The model is formulated simply
as yk = ϕ(xk) + ek to be identified by standard LS-SVM and by S-LS-
SVM, where the symmetric condition is implemented using a = −1 in (3.2)
(odd function). Figure 3.1 shows the performance of the estimated models.
It is not surprising that the S-LS-SVM can generalize better by using the
symmetry information from the problem at hand. The effective number of
parameters is reduced from 4.4 (LS-SVM) to 3 (S-LS-SVM).

Sinc function in 2-D. The model to be identified is yk = 0.5[sinc(xk) +
sinc(zk)]+ ek, where ek is drawn from a normal distribution with zero mean
and variance 0.1. Training values for xk range from -2.9 to 2.9, while the
training values for zk only take positive values in the range 0 to 2.9. The
black box model is formulated as yk = ϕ(xk, zk) + ek and is estimated by
LS-SVM and S-LS-SVM. The final models are then used to generalize to the
other half of the space, where the input zk is negative. The inclusion of a
symmetry constraint (a = 1) exploits the prior knowledge that the problem
is symmetric and it can extrapolate correctly, as shown in the bottom panel
of Figure 3.2. In this case, the effective number of parameters is reduced
from 29 to 25.

3.4 Conclusions

We have proposed and shown how to impose simple constraints from prior
information on the symmetry of the unknown nonlinear function to be
identified using LS-SVM. The constraint with the symmetry condition (odd
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Figure 3.1: Example of a cubic function approximation imposing the
symmetry property to the LS-SVM. Training points and predictions with
LS-SVM (thin line), Symmetric LS-SVM (dot-dashed) and the actual values
(dashed line).

1-D Cubic 2-D Sinc

LS-SVM

Neff 4.4 29
MSE-CV 0.011 0.010
MSE-OUT 156.2 0.027

LS-SVM with Symmetry Constraint

Neff 3.0 25
MSE-CV 0.009 0.008
MSE-OUT 0.006 0.001

Table 3.1: Performance comparison between LS-SVM and S-LS-SVM for two
examples. The model that includes symmetry exploits the prior knowledge
of the problem and it is able to extrapolate to the region where there are no
training points.
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Figure 3.2: Example of a sinc function surface approximation imposing
symmetry to LS-SVM. Training points and predicted surface with LS-SVM
(Top) and Symmetric LS-SVM (Bottom). The Symmetric LS-SVM can
extrapolate correctly to the region where there are no training points given
the prior knowledge that the function is symmetric.
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or even) translates into an equivalent kernel. This makes the dimension
of the constrained dual system to remain equal to the unrestricted case.
Imposing prior knowledge as a hard constraint is a straightforward extension
of the LS-SVM, where the new kernel embodies the prior information. When
symmetry is imposed as a soft constraint, the associated regularization term
can be interpreted as the indicator up to which extent prior knowledge
can be imposed. When this regularization term goes to infinity, the hard
constraint case is recovered. When it goes to zero, the standard LS-SVM
is recovered. Practical examples of imposing symmetry show satisfactory
results. The benefits of imposing symmetry within the context of nonlinear
system identification will be illustrated in Part II of this thesis.



Chapter 4

Partially Linear Models

In this chapter, another contribution of this work is pre-
sented. The LS-SVM formulation is extended to define a
Partially Linear LS-SVM in order to estimate a regression
containing a linear part and a nonlinear component. The
fully nonlinear LS-SVM regression may be too general in some
situations when there are reasons to include a linear part in
the model. Furthermore, the goal of a specific problem may
be to identify a linear part based on first-principles, while
including a nonlinear black-box part in order to keep the overall
model accuracy within satisfactory limits. In these cases it is
desirable to have a technique that can lead to the estimation of
a regression containing both a linear and a nonlinear structure
[106]. Within the statistical literature, so-called “partially
linear models” [54, 98, 107] have been developed since the mid-
80s. These models contain a linear parametric part and also
a nonparametric component estimated using (local) smoothing
techniques, usually restricted to low dimensional input vectors
[52]. The concept can be extended to the LS-SVM framework by
defining a model for which the LS-SVM can capture a nonlinear
component while a parametric linear part can be simultaneously
identified, allowing the inclusion of large dimensional input
vectors for the nonlinear part. For a given kernel, a unique
solution exists when the parametric part has full column rank,
although identifiability problems can arise for certain structures.

47



48 Partially Linear Models

The solution has close links with traditional semiparametric
techniques from the statistical literature. The properties of the
model are illustrated by Monte Carlo simulations. This chapter is
organized as follows. In Section 4.1 the Partially Linear LS-SVM
is developed. Links with statistical techniques and properties of
the solution are given in Section 4.2. Practical applications are
reported in Section 4.3.

4.1 Partially Linear LS-SVM

Consider the following partially linear regression structure

yi = βT zi + f(xi) + ei, i = 1, . . . , N, (4.1)

where zi ∈ R
p, β ∈ R

p, xi ∈ R
n, and f : R

n → R is an unknown nonlinear
function. The terms ei are assumed to be i.i.d. random errors with zero
mean and constant variance. To avoid identifiability problems, it is assumed
that the variables z are not identical to x, and in general, that z can not
be mapped to x [98], as it will be further explained later.

Given the dataset {xi, yi}N
i=1, the goal is to estimate the nonlinear function

f using LS-SVM, and to estimate the parameter vector β simultaneously.
Using a regularized cost function, the proposed Partially Linear LS-SVM
(PL-LSSVM) can be formulated as follows:

min
w,β,b,ei

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (4.2)

s.t. yi = βT zi + wT ϕ(xi) + b + ei, i = 1, . . . , N,

where ϕ(·) : R
n → R

nh is the feature map. The solution is formalized in the
following lemma.

Lemma 4.1. Given a positive definite kernel function K : R
n × R

n → R,
the solution to (4.2) is given by the system





Ω + γ−1I 1 Z

1T 0 01×p

ZT 0p×1 0p×p









α

b

β



 =





y

0

0p×1



 , (4.3)
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where y = [y1, . . . , yN ]T , α = [α1, . . . , αN ]T , Ωij = K(xi, xj) and Z ∈ R
N×p

is the matrix of linear regressors zi. The solution is unique if Z has full
column rank.

Proof: Building the Lagrangian of the regularized cost function,

L (w, β, b, ei, αi) =
1

2
wT w + γ

1

2

N
∑

i=1

e2
i−

−
N

∑

i=1

αi(β
T zi + wT ϕ(xi) + b + ei − yi) (4.4)

where αi ∈ R the Lagrange multipliers, and taking the optimality conditions,
the following system of equations is obtained:



























∂L

∂w
= 0 → w =

∑N
j=1 αjϕ(xj)

∂L

∂β
= 0 → ∑N

i=1 αizi = 0p×1
∂L

∂b = 0 → ∑N
i=1 αi = 0

∂L

∂ei
= 0 → αi = γei, i = 1, . . . , N

∂L

∂αj
= 0 → yi = βT zi + wT ϕ(xi) + b + ei, i = 1, . . . , N,

(4.5)

where 0p×1 is a zero-valued vector of dimension p× 1. With the application
of Mercer’s theorem [88] ϕ(xi)

T ϕ(xj) = K(xi, xj) with a positive definite
kernel K, it is possible to eliminate w and ei, obtaining the final system
(4.3)

The final model in dual form becomes

ŷ(x, z) = β̂
T
z +

N
∑

i=1

αiK(x, xi) + b. (4.6)

The PL-LSSVM model defined by (4.3) always admits a unique solution for
(α, b, β̂) if and only if both of the following conditions hold:

• Z has full column rank, and

• Z should not contain a column c1N , c ∈ R.

In order to prove this, the following lemma is stated.
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Lemma 4.2. Let A ∈ R
N×N be a positive definite matrix; B ∈ R

N×p; d1, a1 ∈
R

N , and d2, a2 ∈ R
p. The linear system defined by

[

A B

BT 0

] [

d1

d2

]

=

[

a1

a2

]

, (4.7)

has a unique solution if and only if B has full column rank.

Proof: The solutions for d1, d2 can be written as

d1 = A−1a1 − A−1(BT AB)−1(BT A−1a1 − a2)

d2 = (BT AB)−1(BT A−1a1 − a2).

The unique solution exists if and only if the matrices A and BT AB are
invertible. As A is positive definite, it is always invertible. If A is positive
definite, then (BT AB) is also positive definite, and therefore invertible, if
and only if B has full column rank ( [62], Observation 7.1.6, p.399).

In the case of standard LS-SVM (2.14), the matrix A = Ω+γ−1I is positive
definite, and the matrix B corresponds to a vector of ones, having full rank.
Therefore, a unique solution always exists. In the case of the PL-LSSVM,
B = [1, Z]. By Lemma 4.2 a unique solution exists only if B has full rank,
therefore Z needs to have full rank. As the first column in B is a vector
of ones, it is also required that no such column (up to a constant) is found
within Z, otherwise there would be 2 linearly dependent columns in B.

4.2 Links with traditional statistical techniques

Partially linear models of the form (4.1) have been used in many appli-
cations, starting from the seminal study of Engle et al. on the relation
between electricity prices and temperature [25]. Statistical inference on the
estimated parameters has been developed based on asymptotic theory and
consistency results from nonparametric estimation theory [54]. Within the
statistical literature, the model (4.1) is estimated by approximating f by a
local smoother and solving a set of normal equations [107]

β̂ = (ZT (I − S)Z)−1ZT (I − S)y, (4.8)

where S is a smoother matrix. Usually S is related to local splines, or
variants of the Nadaraya-Watson estimator [90]. In practice, usually x is
constrained to have a very low dimensionality (typically one-dimensional).
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Within the LS-SVM framework, by working with the equations from system
(4.3), and assuming the data have been centered, it is possible to write

y = Zβ + Ω[(Ω + γ−1I)−1(y − Zβ)] + e. (4.9)

Pre-multiplying by ZT , and noting that ZT e = ZT α/γ = 0 as given by
one of the optimality conditions, yields

ZT y = ZT Sy − ZT SZβ + ZT Zβ, (4.10)

where

S = Ω(Ω + γ−1I)−1, (4.11)

is the equivalent smoothing matrix obtained under the LS-SVM estimator.
After solving for β in (4.10), one obtains (4.8), showing that the PL-LSSVM
estimate of β is linked to the traditional statistical techniques by using the
smoother S defined by (4.11). Moreover, the use of the LS-SVM improves
compared to traditional local techniques as it can use a more general set
of regressors in x, regardless of its dimensionality. A unique solution is
obtained for the global model, and the nonlinear behavior of f can be
correctly identified using the kernel trick on the variables x. Additionally,
non-local basis functions can be used for the approximation of the nonlinear
function f , for example, using a polynomial kernel.

Remark 4.1. [Unique representation of the linear part] The linear param-
eter vector β in (4.2) is not uniquely defined if there exists a mapping
g : R

n → R
p such that g(x) = z. This problem is already noted in [98].

It implies, for instance, that if a model contains only x variables, as
yi = βT xi + wT ϕ(xi) + b + ei, then the parameter of the linear part β

is not uniquely defined. To see this, we can write

yi = βT xi + wT ϕ(xi) + b + ei

= δT xi + wT ϕ(xi) − δT xi + βT xi + b + ei

= δT xi + w̃T ϕ̃(xi) + b + ei,

∀δ ∈ R
p. From the last equation we can define equivalently a new nonlinear

component

w̃T ϕ̃(xi) = wT ϕ(xi) − δT xi + βT xi,

where a linear part can be captured by the new nonlinearity defined by
w̃ = [w;−δ + β], ϕ̃(xi) = [ϕ(xi); xi]. As the function f in (4.1) is
defined in a general way, it can approximate a general class of functions,
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obviously including linear functions of the same inputs. The same reasoning
can be applied to a function g such that g(x) = z, leading to the same
identifiability problem. In practice, the partially linear model is used to
estimate a linear response over certain variables when it is suspected that
the total response also depends nonlinearly over a different set of variables,
therefore the identifiability problem rarely happens in applied work.

4.3 Examples

In this section, some examples of the PL-LSSVM performance are shown.
Its ability to identify correctly the linear and nonlinear components for
some examples is assessed by Monte Carlo simulations. Its out-of-sample
forecasting performance is examined for 3 model examples. In all cases, an
RBF kernel is used and the parameters σ and γ are found by 10-fold cross
validation over the corresponding training sample.

4.3.1 Methodology

The test cases are defined as follows:

• Case I: Linear trend + static nonlinearity. The model to be
estimated is of the form yt = a1t+2sinc(xt)+ et, where the true value
is a1 = 1.5 and xt is drawn from a uniform distribution over [0,2.5]; et

is a Gaussian white noise of variance 0.02.

• Case II: Static linearity + static nonlinearity. The model to
be estimated is of the form yt = a1zt + 2sinc(xt) + et, where the true
value is a1 = 1.5; zt and xt are drawn from a uniform distribution over
[0,2.5] and [0,1.5], respectively; et is Gaussian white noise of variance
0.02.

• Case III: Linear autoregression + static nonlinearity The
model to be estimated is of the form yt = a1yt−1 +a2yt−2 +2sinc(xt)+
et, where the true value are a1 = 0.6, a2 = 0.3; the xt is drawn
from a normal distribution with zero mean and variance 5; et is
Gaussian white noise of variance 0.02. This corresponds to a simple
Hammerstein system.
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• Case IV: Autoregression with linear and nonlinear compo-
nents. The model to be estimated is of the form yt = a1yt−1 +
a2yt−2 + sinc(yt−3) + et, where the true values are a1 = 0.6, a2 = 0.3;
et is Gaussian white noise of variance 0.02.

It worth noting that although the regressors contained in the linear part
might be correlated with those under the nonlinear part, they are neither
identical nor perfectly related. Therefore, there are no identifiability
problems.

Identification of the linear and nonlinear components: Monte Carlo
simulations are performed for all cases defined above. In order to compare
the PL-LSSVM model with traditional techniques, Ordinary Least Squares
(OLS) regression using all variables (in linear form) is implemented, as well
as the partially linear model with the Nadaraya-Watson (NW) [90] smoother
as in [107]. Data are generated by sampling the respective distributions
and/or using the autoregressive forms where it is appropriate. For all cases
the number of datapoints is N = 200, and the number of Monte Carlo
repetitions is 1,000.

4.3.2 Results

Table 4.1 shows the results, as averages and standard deviations of the
estimated parameters over 1,000 repetitions, together with the 10-fold
crossvalidation mean squared error (CV-MSE). In the simple cases I and
II, all techniques give similar performance for the identification of the linear
parameters. For Case III, a bias is present in the OLS-based estimation
of the linear parameter, due to the time-series nature of the problem. In
Case IV both the NW and OLS show an important bias in each one of the
estimates. The empirical distributions of the estimates obtained with this
sampling is visualized in Figures 4.1 and 4.2, for the comparison between
the estimated parameter â1 using PL-LSSVM (solid line) and NW (dashed
line) for Cases III and IV, respectively. Although the general conditions
for asymptotic consistence for the NW partially linear model estimator have
been studied extensively, in practice it is not straightforward to verify if they
are fulfilled by the problem at hand. By using Monte Carlo simulations for
particular types of problems, it is possible to verify the properties of each
estimator, especially when temporal or serial correlation is present in the
data [51]. Regarding identification of the nonlinear part, Figure 4.3 shows
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Figure 4.1: Empirical Distributions of the estimated parameter â1 under Case
III using PL-LSSVM (solid line) and the Nadaraya-Watson (dashed line) estimator
over 1,000 repetitions. The vertical line shows the ‘true’ value.

the identified nonlinear component of Case III. The ‘o’ shows the estimated
nonlinear component of the model, given by f̂(x) =

∑N
i=1 αiK(x, xi) + b,

and the line shows the true value of the nonlinear function, with excellent
performance. From the above examples it is clear that the PL-LSSVM
estimator gives a satisfactory global accuracy, and at the same time it
identifies successfully the linear part of each example.

4.4 Conclusions

Starting from the definition of LS-SVMs, we have shown how to define a
feasible estimator for a partially linear model by extending the regression
formulation in order to include a parametric part. The solution is shown
to be unique and to exist under the usual requirements for a set of linear
parametric regressors. This Partially Linear LS-SVM formulation is optimal
in a least-squares sense, and allows to identify a general class of model
structures. Its parametric part has the same structural form as classical
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Figure 4.2: Empirical Distributions of the estimated parameter â1 under
Case IV using PL-LSSVM (solid line) and the Nadaraya-Watson estimator
(dashed line) over 1,000 repetitions. The vertical line shows the ’true’ value.
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Figure 4.3: The nonlinear part for the model of Case III, as estimated by
the model (‘o’) and the true nonlinearity (line).
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Estimates CV-MSE

â1 σâ1
â2 σâ2

Mean S.Dev

Case I
PL-LSSVM 1.500 0.001 - - 0.007 0.001
NW 1.500 0.003 - - 0.09 0.01
OLS 1.498 0.007 - - 0.19 0.02

Case II
PL-LSSVM 1.50 0.01 - - 0.008 0.001
NW 1.50 0.04 - - 0.11 0.01
OLS 1.50 0.08 - - 0.21 0.02

Case III
PL-LSSVM 0.60 0.01 0.30 0.01 0.009 0.001
NW 0.59 0.01 0.30 0.01 0.17 0.01
OLS 0.57 0.01 0.32 0.01 0.25 0.01

Case IV
PL-LSSVM 0.60 0.03 0.30 0.04 0.006 0.001
NW 0.63 0.03 0.26 0.04 0.07 0.01
OLS 1.16 0.05 -0.5 0.06 0.28 0.04

Table 4.1: Mean and standard deviation for the parameter estimates and
the CV-MSE over 1,000 repetitions.

statistical methods, and it extends the classical notion of semiparametric
regression by allowing explicitly to include any potential nonlinear regressor
as the dimensionality of the system is defined in terms of the kernel matrix
under Mercer’s theorem. Practical examples over 4 particular types of
models show the overall ability of the PL-LSSVM to identify the linear
and nonlinear parts. Using Monte Carlo methods over 1,000 repetitions, it
is clear that this method has a better global accuracy for the models and a
better identification performance when compared to traditional techniques.



Chapter 5

LS-SVM with
Autocorrelated Residuals

This chapter presents another contribution of this work.
Typically it is assumed that the residuals on the LS-SVM
regression are independent and identically distributed (i.i.d.).
However, there are cases in which this assumption does not hold.
When neglected, the presence of correlation in the error sequence
can lead to severe problems not only in the identification of
the function under study, but also in the predictions. In the
nonparametric regression literature, it has been noted [6] that
the presence of correlation in the error terms can mislead the
identification of the nonlinear function when using a black-box
identification technique. In plain terms, the black-box technique
“learns” the structure in the nonlinear function together with the
correlation structure in the errors. This problem can be solved by
incorporating the knowledge of the correlation structure into the
modeling stage. In this chapter, starting from prior knowledge
on the correlation structure, we extend the LS-SVM regression
formulation to incorporate autocorrelated residuals. We show
that the solution embeds the correlation information into the
kernel level for the approximation of the nonlinear function,
and that the model structure leads to a predictor which also
incorporates the correlation structure. By considering the cor-
relation parameters as tuning hyperparameters, the least-squares
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problem remains convex and Mercer’s theorem can be applied.
This chapter is organized as follows. Section 5.1 discusses the
general model formulation and gives an introductory discussion.
Section 5.2 discusses the derivations and the solution for the case
of AR(1) errors. Section 5.3 extends the proposed formulation
for the general AR(q) case. Section 5.4 shows examples where
the inclusion of the prior knowledge on correlation substantially
improves over the case where the correlation is neglected.

5.1 Regression Structure

The focus of this chapter is to estimate the nonlinear function f in the model

yi = f(xi) + ei (5.1)

for the case where the sequence ei is correlated.

The conditions under which the residual terms in (5.1) are correlated
depend on the interpretation of the term ei. The role of the ei term has
received different interpretations in the history of data modeling [96]. One
interpretation says that the ei term is considered a “random disturbance”,
as used in, for example, system identification [69, 76, 105]. Noise models
are common in system identification, where it is assumed that the data
generating process contains a component mainly driven by the inputs x, and
another component driven by noise. Under this interpretation, correlated
noise appears when the system produces the output yi not only as a result
of the effect of the input x but also as a result of a hidden mechanism
producing an observable random effect correlated across observations. For
instance, they can be instrumentation errors or non-avoidable characteristics
of the experimental setting (for example, a chemical plant in full operation).

A slightly different interpretation, that comes from the empirical point of
view, gives the ei term the meaning of “whatever is not explained by the
information contained in x”. This is motivated by the practical rule of
examining the whiteness of the residuals of a regression [76, 130], in such
a way that if there is some correlation structure in the residuals, it means
that there is still some information not captured by the variables in x. This
correlation can be caused by an error in the regression specification, which
can be a missing variable, or a wrong functional form.
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Consider as an example the case of the Boston housing dataset [24,56], where
the goal was to study the effect of air pollution on housing values. The data
consist of samples of median home values, with attributes such as nitrogen
oxide concentration, crime rate, average number of rooms, percentage of
nonretail business, and others. The goal is to build a regression that can
predict the price of a house (y) from its attributes (x). Consider the
hypothetical case where the value of the house also depends on the distance
from the local police station. Consider the situation where a house that is
closer to the police station has a higher value because of security issues.
If the attribute “distance to the police station” is not contained in the
set of observed attributes x that the researcher is using to estimate the
regression, the residuals will show a serial correlation between neighboring
houses. There is something that is not completely explained by the variables
in x in such a way that it appears as a correlation structure in the residuals.
On the other hand, a particular variable may affect the price of the house in a
nonlinear way, producing a sequence of correlated residuals if the regression
specification neglects the nonlinear effect. In this case, from the practical
point of view, the researcher has 2 options: either keep looking for the
perfect set of variables to be included in x, which may be expensive, or
simply unfeasible; or otherwise correct the effect of the correlation present
in the residuals. Moreover, the goal of a modeling task can be formulated
as to find the best possible representation of the system for a given set of
inputs x. From this point of view, very usual in empirical practice, the
best the researcher can do is to improve the correlation structure of the
residuals in order to estimate correctly the effect of the x variables. This
has been typically the case for datasets related to social, economic or medical
studies, where the goal is to build a representation based on a limited set of
variables [5, 104], and there is autocorrelation in the residuals which has to
be corrected [79].

It is important to notice that the (seemingly) static regression problem
between y and x (5.1) gets a new dimension given by the correlation
of the residuals. In the case of autocorrelated residuals, there is a new
time dimension embedded in the sequence of residuals, in such a way that
consecutive residuals are correlated.

In this chapter, the focus is towards time series prediction rather than cross-
sectional analysis. Therefore, it has been assumed that the correlation
structure in the residuals is given by autocorrelation (and not serial
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correlation). Consider the regression structure,
{

yi = f(xi) + ei

A(z−1)ei = ri
(5.2)

for i = 2, . . . , N . The residuals ei of the first equation are uncorrelated with
the input vector xi, and the sequence ei is assumed to follow an invertible
AR(q) process described by

A(z−1)ei = ri (5.3)

where ri is a white noise sequence with zero mean and constant variance
σ2

u, and where A(z−1) is a monic polynomial in the lag operator z−1 with
unknown parameters aj , j = 1, . . . , q,

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . . + aqz
−q. (5.4)

with z−1ei = ei−1. This leads to the equivalent representation of (5.2),
{

yi = f(xi) + ei

ei + a1ei−1 + a2ei−2 + . . . + aqei−q = ri
(5.5)

Prior knowledge on the existence and AR(q) structure of the correlation is
assumed. Therefore, the problem of detecting correlation is not addressed.
At the same time, the AR(q) parameters aj , j = 1 . . . , q, are considered as
tuning parameters rather than to be optimized at the training sample. As
a result, the problem remains convex, as it will be further explained.

5.2 LS-SVM with AR(1) errors

For clarity of the presentation, the derivations are first presented for the
case of q = 1, for which A(z−1)ei = ei − ρei−1. This case is often used
in applied work (for example, in the seminal work on electricity prices by
the Nobel laureates Engle and Granger [25]), and provides an interesting
starting point for further analysis. The inclusion of AR(1) errors to the
LS-SVM regression can be formulated as follows. Given the sample of N
points {xi, yi}N

i=1 and the model structure (5.5), the following optimization
problem with a regularized cost function is formulated:

min
w,b,ri,ei

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (5.6)
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s.t.

{

yi = wT ϕ(xi) + b + ei

ei = ρei−1 + ri

for i = 2, . . . , N , where γ is a regularization constant and the AR(1)
coefficient ρ is a tuning parameter satisfying |ρ| < 1 (invertibility condition
of the AR(1) process). The nonlinear function f from (5.2) is parameterized
as f(xi) = wT ϕ(xi)+b, where the nonlinear function ϕ(·) : R

n → R
nh is the

mapping to a high dimensional (and possibly infinite dimensional) feature
space. By eliminating ei, the following equivalent problem is obtained:

min
w,b,ri

1

2
wT w + γ

1

2

N
∑

i=q+1

r2
i (5.7)

s.t. yi = ρyi−1 + wT ϕ(xi) − ρwT ϕ(xi−1) + b(1 − ρ) + ri,

for i = 2, . . . , N , corresponding to the case of standard LS-SVM regression
for nonlinear identification of a dynamical regression structure, where a
time-series character is introduced into the model by the correlation of the
residuals ei. The residuals ri of this new model (5.7) are uncorrelated by
construction and, therefore, standard LS-SVM regression can be applied.
The solution is formalized in the following lemma.

Lemma 5.1. Given a positive definite kernel function K : R
n × R

n → R,
with K(xi, xj) = ϕ(xi)

T ϕ(xj), the solution of (5.7) is given by the dual
problem

[

0 1T

1 Ω(ρ) + γ−1I

] [

b

α

]

=

[

0

ỹ

]

, (5.8)

with ỹ = [y2 − ρy1, . . . , yN − ρyN−1]
T , α = [α1, . . . , αN−1]

T , and Ω
(ρ)
ij =

K(xi+1, xj+1)−ρK(xi, xj+1)−ρK(xi+1, xj)+ρ2K(xi, xj) ∀i, j = 1 . . . , N−
1.

Proof: Consider the Lagrangian of problem (5.7)

L (w, b, ri; α) =
1

2
wT w + γ

1

2

N
∑

i=2

r2
i −

N
∑

i=2

αi−1[w
T ϕ(xi) (5.9)

−ρwT ϕ(xi−1) + ρyi−1 − yi − ri],

where αi ∈ R, i = 1, . . . , N − 1 are the Lagrange multipliers. Taking the
optimality conditions ∂L

∂w
= 0, ∂L

∂b = 0, ∂L

∂ri
= 0, ∂L

∂αi
= 0 yields

w =
N

∑

i=2

α
i−1

[ϕ(xi) − ρϕ(xi−1)],



62 LS-SVM with Autocorrelated Residuals

ri = αi−1/γ, i = 2, . . . , N,

0 =
N−1
∑

i=1

αi,

yi = ρyi−1 + wT ϕ(xi) − ρwT ϕ(xi−1)

+b(1 − ρ) + ri, i = 2, . . . , N.

With the application of Mercer’s theorem [129] ϕ(xi)
T ϕ(xj) = K(xi, xj)

with a positive definite kernel K, we can eliminate w and ri, obtain-
ing yi − ρyi−1 =

∑N
i=2 αi−1(K(xi, xj) − ρK(xi−1, xj) − ρK(xi, xj−1) +

ρ2K(xi−1, xj−1)) +b + αi

γ . Building the kernel matrix Ω
(ρ)
ij and writing

the equations in matrix notation gives the final system (5.8)

Remark 5.1. [Equivalent Kernel] The final approximation of f in the
original model (5.2) with q = 1 can be expressed in dual space as

f̂(xi) =
N

∑

j=2

αj−1Keq(xj , xi) + b (5.10)

where Keq(xj , xi) = K(xj , xi)− ρK(xj−1, xi) is an equivalent kernel which
embodies the information on the AR(1) error correlation.

Remark 5.2. [Partially Linear Structure] The existence of correlated errors
in (5.5) results into new dynamics into the system, leading to the model
structure (5.7) which is a partially linear model [34,107] with a very specific
restriction on the coefficients: the past output yi−1 is included as a linear
term with coefficient ρ, and the past input vector xi−1 is included under the
nonlinear function which, in turn, is weighted by the value −ρ.

Remark 5.3. [Considering ρ as an unknown] If ρ is considered as an
unknown instead of a tuning parameter in (5.6), an additional optimality
condition from the Lagrangian ∂L

∂ρ = 0 gives

N
∑

i=2

α
i−1

[yi−1 − wT ϕ(xi−1) − b] = 0.

Noting that ei−1 = yi−1 − wT ϕ(xi−1) − b and α
i−1

= riγ = [ei − ρei−1]γ,
the estimate ρ̂ is obtained as a solution of

N
∑

i=2

[ei − ρei−1]ei−1 = 0, (5.11)
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or,

ρ̂ =

∑N
i=2 eiei−1

∑N
i=2 e2

i−1

, (5.12)

corresponding to the ordinary least squares (OLS) estimator of the slope
parameter from a linear regression of ei on ei−1. This is a very intuitive
result, but unfortunately the sequence ei is unobserved. Moreover, con-
sidering ρ as an unknown parameter in (5.6) gives rise to a non-convex
problem, as the remaining optimality conditions include products of ρ and
the other unknowns. Thus, considering ρ as an unknown in (5.6), makes
the optimization problem more difficult to solve.

Remark 5.4. [Considering ρ as a tuning parameter] The parameter ρ is
considered as a tuning parameter in order to work with a feasible convex
optimization problem in which Mercer’s Theorem can be applied and a unique
solution can be obtained. Therefore, the parameter ρ is determined on
another level (for example, by means of cross-validation) to yield a good
generalization performance of the model, although this does not necessarily
mean that the optimality condition (5.12), obtained for the case where ρ is
an unknown in (5.6), is enforced. In this way, the selected ρ is the value that
gives the best cross-validation performance. This approach may increase the
computational load, as each time a grid of possible values has to be defined
for ρ, which may become computationally intensive for a general AR(q)
case with q > 1. However, the definition of possible values can be guided
from theoretical ranges for allowed values of ρ, derived from the invertibility
condition of the AR(q) process: for q = 1, we have |ρ| < 1; for q = 2, a
sufficient condition is |ρ1 + ρ2| < 1. In general it is required for all roots of
the equation 1+a1x+a2x

2 + . . .+aqx
q = 0 to be outside the unit circle [51].

5.3 Autocorrelated Residuals: The general AR(q)
case

Consider the general case for a model with a AR(q) noise process:

{

yi = f(xi) + ei

A(z−1)ei = ri
(5.13)

for i = 2, . . . , N , and where

A(z−1)ei = ri (5.14)
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is an invertible autoregressive process of order q. The following regression
problem can be formulated with LS-SVM:

min
w,b,ri

1

2
wT w + γ

1

2

N
∑

i=q+1

r2
i (5.15)

s.t. A(z−1)yi = A(z−1)(wT ϕ(xi) + b) + ri, i = q + 1, . . . , N

The solution is formulated in the following lemma.

Lemma 5.2. Given a positive definite kernel function K : R
n × R

n → R,
with K(xi, xj) = ϕ(xi)

T ϕ(xj), the solution to (5.15) with A(z−1) = 1 +
a1z

−1 + a2z
−2 + . . . + aqz

−q =
∑q

k=0 akz
−k is given by the dual problem

[

0 1T

1 Ω(A) + γ−1I

] [

b

α

]

=

[

0

ỹ

]

, (5.16)

where ỹ = [A(z−1)yq+1, . . . , A(z−1)yN ]T , α = [α1, . . . , αN−q]
T , and Ω(A) is

the kernel matrix with Ω
(A)
ij =

∑q
k=0

∑q
l=0 akalK(xi+q−k, xj+q−l) ∀i, j =

1 . . . , N − q.

Proof: Consider the Lagrangian of problem (5.15)

L (w, b, ri; α) =
1

2
wT w + γ

1

2

N
∑

i=q+1

r2
i

−
N

∑

i=q+1

αi−q[w
T A(z−1)ϕ(xi) − A(z−1)yi + A(z−1)b − ri],

where αi ∈ R, i = 1, . . . , N − q are the Lagrange multipliers. Taking the
optimality conditions ∂L

∂w
= 0, ∂L

∂b = 0, ∂L

∂ri
= 0, ∂L

∂αk−q
= 0 yields

w =
N

∑

i=q+1

αi−q[A(z−1)ϕ(xi)],

ri = αi−q/γ, i = q + 1, . . . , N,

0 =

N−q
∑

q=1

αi,
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A(z−1)yi = wT A(z−1)ϕ(x) + A(z−1)b + ri, i = q + 1, . . . , N.

With the application of Mercer’s theorem [129] ϕ(xi)
T ϕ(xj) = K(xi, xj)

with a positive definite kernel K, it is possible to eliminate w and ri.

Building the kernel matrix Ω
(A)
i,j and writing the equations in matrix notation

gives the final system (5.16)

Remark 5.5. [Equivalent Kernel and Final Predictor] The equivalent kernel
for the general AR(q) case is given by:

Keq(xi, xj) =

q
∑

k=0

q
∑

l=0

akalK(xi+q−k, xj+q−l). (5.17)

The final model can be written in terms of ỹ = A(z−1)y. Given a new
datapoint xN+1, the predicted ỹ(xN+1) is given as

ỹ(xN+1) =
N

∑

j=q+1

q
∑

k=0

q
∑

l=0

akalK(xj+q−k, xN+1+q−l)αj−q + b

q
∑

j=0

aj , (5.18)

from which the predicted y(xN+1) can be recovered from

y(xN+1) = ỹ(xN+1) −
N

∑

j=1

ajy(xN+1−j). (5.19)

The final summation in (5.19) makes it explicit that the new datapoints
are indeed correlated with the previous points in the sample. As mentioned
before, the seemingly static regression obtains the temporal dimension from
the correlation of the residuals.

Remark 5.6. [Effect of the polynomial A(z−1)] The polynomial A(z−1)
acts as a linear operator. It transforms the datapoint yt into ỹt = yt +
a1yt−1 + a2yt−2 + aqyt−q. In the econometric literature, this is commonly
referred as “quasi-differencing” [51,67]. In the linear regression context, this
linear operator commutes with the coefficient of the regression, thus making
it possible to apply an iterative estimation process. In this process, first the
data {yt, xt} is preprocessed by “quasi-differencing”, and then the regression
is estimated on the transformed data {ỹt, x̃t}, i.e. A(z−1)(wT xt) =
wT A(z−1)xt = wtx̃t. In the econometric literature, a practical iterative
method for the case of AR(1) residuals has become very popular in applied
work (so-called “Cochrane-Orcutt” method [10, 16]). In the case of a
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nonlinear regression with LS-SVM, this is not possible, because the linear
operator does not commute with the nonlinear mapping. It is not true that
A(z−1)(wT ϕ(xt)) = wT ϕ(A(z−1)xt) = wtϕ(x̃t), and therefore it is not
possible to transform the data first and then perform the nonlinear regression
on the transformed data.

5.4 Examples

In this section, two examples are considered to illustrate the effect of
AR(1) residuals. The first is a static regression model, the second is an
autoregressive formulation. In each case, an RBF kernel is used, and the
hyperparameters are tuned by 10-fold cross-validation. By assumption,
|ρ| < 1. The considered values for the tuning parameter ρ range from -0.9 to
0.9 with 0.1 steps. Each example involves the estimation of the correlation-
corrected LS-SVM (C-LS-SVM) and standard LS-SVM for comparison.

Example 1: Static Nonlinearity.

Consider the following example where the true underlying system (5.2) is
defined to contain a static formulation f(x) = 1− 6x + 36x2 − 53x3 + 22x5.
The input values xi are sampled i.i.d. from a uniform distribution between
0 and 1, with N = 100 datapoints. The error sequence ei is built using
ρ = 0.7 and σ2

u = 0.5. In this case, the original system is static, and the
correlation induces a dynamical behavior in the observed values. Figure
5.1 shows the plot of y versus x, in order to visualize the true polynomial
function as a function of x. The true f function is shown as a thin line,
and the estimated function from (5.10) as a thick one. For comparison,
the estimated function with standard LS-SVM (neglecting correlation) is
shown in dashed-line. Clearly, the estimation with the corrected LS-
SVM can better identify the true function, whereas the standard LS-SVM
mixes the true function with the correlation structure. The parameter ρ
minimizing the cross-validation mean squared error (MSE) coincides with
the true AR(1) parameter 0.7. This example of a static nonlinearity already
shows the effect of the error correlation, where the apparently independent
sequence of inputs and outputs obtains a temporal correlation by means of
the residuals of the equation.

Example 2: Autoregressive model
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Figure 5.1: True (thin) function and identified functions estimated with
AR(1)-LSSVM (thick) and standard LS-SVM (dashed) for a static nonlinear
function given by f(x) = 1 − 6x + 36x2 − 53x3 + 22x5.

This example considers the identification of the model
{

yi = 2 · sinc(yi−1) + ei

ei − ρei−1 = ri
(5.20)

generated with ρ = 0.6, σu = 0.1 for 150 datapoints. The first 100 points
are used for identification, and the remaining 50 points for out-of-sample
assessment of the prediction performance.

• Identification of the AR(1) parameter. Following the standard method-
ology, 10-fold cross-validation is performed to select the hyperparame-
ters γ (regularization term), σ (RBF kernel parameter) and the ρ (the
AR(1) parameter). Figure 5.2 (top) shows the cross-validation MSE
for different combinations of hyperparameters, plotted for the values
of ρ. In other words, for a given ρ, different MSE results are obtained
depending on the combinations of σ and γ. The best performance
is obtained for ρ=0.6 corresponding to the true value of the AR(1)
process.
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Figure 5.2: (Top) Evolution of the cross-validation MSE for different
combination of hyperparameters. The optimal performance is found at
ρ=0.6.(Bottom) True (thin) function and the identified functions estimated
with AR(1)-LSSVM (thick) and standard LS-SVM (dashed) for Example 2.
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Figure 5.3: Out-of-sample predictions obtained with C-LSSVM (thick) and
standard LS-SVM (dashed) compared to the actual values (thin line) for
Example 2.

• Identification of the nonlinear function. Once the hyperparameters
are selected, the approximation of f is obtained from (5.10). Figure
5.2 (bottom) shows the training points (dots), the identified function
f̂ (thick line), the true function (thin line) and the approximation
obtained with standard LS-SVM (dashed line) for comparison. As in
the previous example, the corrected LS-SVM is able to separate the
correlation effects from the nonlinear function.

• Prediction Performance. Using the expression (5.19), out-of-sample
predictions are computed for the system (5.20) for the next 50
datapoints. Table 5.1 shows the MSE calculated over the test set,
compared to the results obtained from predicting using standard LS-
SVM. The better performance of the correlation-corrected LS-SVM
reflects the fact that the optimal predictor includes all information
on the model structure, whereas the standard LS-SVM considers all
dynamical effects being due to the nonlinear function only. Figure
5.3 shows the actual values (thin) and the predictions generated by
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C-LSSVM (thick) and standard LS-SVM (dashed).

Performance LS-SVM C-LS-SVM

MSE in-sample 0.13 0.09
MSE cross-validation 0.17 0.10
MSE out-of-sample 0.18 0.09

Table 5.1: In-sample, cross-validation and out-of-sample performance of the
models for Example 2.

5.5 Conclusions

In this chapter the LS-SVM formulation for regression is extended to
incorporate autocorrelated residuals. Starting from the prior knowledge
of the correlation structure, the modeling is treated as a convex problem
where the coefficients of the AR residual process are considered to be tuning
parameters. The dual solution of the model incorporates the correlation
information into the kernel level. Additionally, the optimal one-step-ahead
predictor includes the correlation structure explicitly. The correlation
structure causes a very specific dynamic behavior in the final model.
Practical examples show how the inclusion of the correlation structure into
the model gives a much better identification of the nonlinear function, and
better out-of-sample performance in terms of prediction and simulation.
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Chapter 6

Nonlinear System
Identification with LS-SVM

This chapter shifts the estimation techniques developed in
Part I into the context of nonlinear system identification, with
the contribution of providing a general framework in which a
nonlinear model structure can be defined following a modular
approach. In the context of system identification, the problem
of finding a model structure from available data has been studied
extensively for the case of linear models [3, 76, 108, 111]. In
the context of nonlinear system identification, however, the task
of model selection and estimation is more complicated. One
reason is that there is a vast choice of nonlinear estimation
techniques that can be used for this purpose, giving rise to a
very rich spectrum of options available for the user. Neural
networks [57], wavelets [141], nonparametric kernel regression
[52], and others, confront the user with the challenge of not only
defining the model structure and obtaining an estimation from
available data, but also to deal with the intrinsic architecture of
the selected nonlinear technique, that can have its advantages,
limitations and drawbacks. For the case of neural networks,
for instance, it is also required to be familiar with different
training algorithms, like e.g. backpropagation, early stopping
criterion, being aware of multiple local minima, etc. The
estimation techniques developed in the first part of this work, on
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the other hand, can be used for nonlinear system identification
following a modular approach built around a convex optimization
problem with a unique solution. This provides an important
degree of flexibility in the design of the model structure; the
estimator is based on LS-SVMs, but it contains different elements
that can be tailored to the prior knowledge of the problem
at hand, following the rule of “do not estimate what you
already know” [105]. Moreover, thanks to this flexibility, the
path from a full linear parameterization towards a nonlinear
specification can be made more gradually, which is important
for practical applications. In this work 2 model structures are
considered: a NARX model, being a Nonlinear AutoRegression
with eXogenous inputs [69, 105], and an AR-NARX model,
that is, a Nonlinear AutoRegression with eXogenous inputs and
AutoRegressive residuals [48]. Each model structure can be
formulated in terms of the different parameterizations using
the results from Part I. This chapter is structured as follows.
Section 6.1 describes the model structures. Section 6.2 describes
the different nonlinear parameterizations for each of the model
structures. The estimation methodology in dual space and primal
space are given in Section 6.3 and Section 6.4, respectively.
Section 6.5 shows illustrative examples.

6.1 Model Structures

Consider the following regression vector zt ∈ R
n zt = [yt−1; · · · ; yt−p;

ut; ut−1; · · · ; ut−q] containing p past values of the output yt ∈ R and q past
values of input vectors ut ∈ R

Nu . A NARX model structure [69,76,105] can
be formulated as

yt = g(zt) + et (6.1)

where the error term et is assumed to be i.i.d. with zero mean and constant
variance σ2

e . The AR-NARX [38, 48, 76] model structure incorporates an
autoregressive process on the error terms et. The AR(1)-NARX model
structure can be described as

{

yt = g(zt) + et

A(z−1)et = rt
(6.2)
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The residuals et of the first equation are uncorrelated with the input vector
zt, and the sequence et is assumed to follow an invertible autoregressive
AR(q) process described by

A(z−1)et = rt (6.3)

where rt is a white noise sequence with zero mean and constant variance
σ2

u, and where A(z−1) is a monic polynomial in the lag operator z−1 with
unknown parameters aj , j = 1, . . . , q,

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . . + aqz
−q. (6.4)

with z−1ei = ei−1. For clarity purposes (and practical considerations, taking
into account the tuning of the parameters of the polynomial A(z−1)), only
the AR(1) case is considered in the remaining of this chapter.

6.2 Model Parameterizations

For the parameterization of the function g(·) in (6.1) or (6.2) the following
alternatives are considered.

6.2.1 Black-Box Parameterization

The nonlinear function g(·) for a NARX (6.1) or AR-NARX (6.2) structure
is parameterized under a black-box formulation in primal space using LS-
SVMs (2.13):

g(zt) = wT ϕ(zt) + b (6.5)

where b is a constant (bias) term, and ϕ(·) : R
n → R

Nh is the feature map
from the input space to the so-called feature space (of dimension Nh which
can be possibly infinite). As explained in previous chapters, this feature
map is used in relation to a Mercer kernel [114,129], in such a way that the
feature map is not computed explicitly.

6.2.2 Partially Linear Parameterization

In this case, some of the regressors are included as linear terms, and others
are included under a nonlinear black-box term. Consider a partition of the
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regression vector zt as follows. Consider the set

Z = {x : x is a component of the vector zt},

and define an arbitrary partition

Z = ZA ∪ ZB

with
ZA ∩ ZB = ∅. (6.6)

Define a vector zA,t ∈ R
Na with regressors x ∈ ZA, and a vector zB,t ∈ R

Nb

with regressors x ∈ ZB. The original regression vector is thus partitioned
as zt = [zA,t , zB,t]. The subscript A (resp. B) represents the subset
of regressors entering linearly (resp. nonlinearly) into the model. The
nonlinear component of this Partially Linear parameterization is expressed
under a black-box formulation using LS-SVMs. The nonlinear function g(·)
for a PL-NARX (6.1) or a PL-AR-NARX (6.2) is parameterized as

g(zt) = βT zA,t + wT ϕ(zB,t) + b (6.7)

for a given partition zt = [zA,t , zB,t]. The condition (6.6) is imposed to
ensure a unique representation of the parameter β, as discussed on remark
4.1.

6.3 Model Estimation in Dual Space

The different nonlinear model structures can be estimated using the LS-
SVM regression framework. Starting from a given dataset {zi, yi}N

i=1, the
different estimation problems are presented for each of the model structures
defined in section 6.2.

6.3.1 Black-Box NARX Model

For the NARX model (6.1), with g(·) parameterized as in (6.5), the following
optimization problem with a regularized cost function is formulated:

min
w,b,ei

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (6.8)
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s.t. yi = wT ϕ(zi) + b + ei, i = 1, . . . , N.

where γ is a regularization constant. The solution is obtained using (2.15)
from lemma 2.1.

6.3.2 PL-NARX Model: Considering a Partially Linear
Structure

For the PL-NARX model (6.2), with g(·) parameterized as in (6.7),
the following optimization problem with a regularized cost function is
formulated:

min
w,b,ei,β

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (6.9)

s.t. yi = βT zA,i + wT ϕ(zB,i) + b + ei, i = 1, . . . , N,

where γ is a regularization constant. The solution is obtained using (4.3)
from lemma 4.1.

6.3.3 AR-NARX Model: Incorporating a noise model

Consider the AR-NARX model (6.2), with g(·) parameterized as in (6.5).
With the inclusion of an AR(1) noise correlation model, the following
regularized optimization problem is formulated:

min
w,b,ri,ei

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (6.10)

s.t.

{

yi = wT ϕ(zi) + b + ei, i = 2, . . . , N,

ei = ρei−1 + ri, i = 2, . . . , N,

where γ is a regularization constant and the noise model coefficient ρ is a
tuning parameter satisfying |ρ| < 1 (invertibility condition of the process).
The solution is obtained using (5.8) from lemma 5.1.

6.3.4 PL-AR-NARX Model: Combining it all

Consider now the PL-AR-NARX model, with g(·) parameterized as in
(6.7). With the inclusion of an AR(1) noise correlation model, the following
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regularized optimization problem is formulated:

min
w,b,ri,ei

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (6.11)

s.t.

{

yi = βT zA,i + wT ϕ(zB,i) + b + ei, i = 2, . . . , N,

ei = ρei−1 + ri, i = 2, . . . , N,

where γ is a regularization constant and the noise model coefficient ρ is a
given tuning parameter satisfying |ρ| < 1. By eliminating ei, the following
problem is formulated:

min
w,b,ri

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (6.12)

s.t. yi = ρyi−1 + wT ϕ(zB,i) − ρwT ϕ(zB,i−1)

+b(1 − ρ) + βT (zA,i − ρzA,i−1) + ri, i = 2, . . . , N.

The solution is formalized in the following lemma.

Lemma 6.1. Given a positive definite kernel function K : R
Nb ×R

Nb → R,
the solution to (6.12) is given by the dual problem







0Na×Na 0Na×1 Z̃
T

01×Na 0 1T

Z̃ 1 Ω(ρ) + γ−1I











β

b

α



 =





0Na×1

0

ỹ



 , (6.13)

where Z̃ = [zT
A,2−ρzT

A,1; · · · ; zT
A,N −ρzA,N−1] ∈ R

(N−1)×Na is the matrix of

linear regressors; ỹ = [y2−ρy1, . . . , yN −ρyN−1]
T , α = [α1, . . . , αN−1]

T , and

Ω(ρ) is the kernel matrix with entries Ω
(ρ)
ij = K(zB,i+1, zB,j+1) −ρK(zB,i,

zB,j+1) − ρK(zB,i+1, zB,j) + ρ2K(zB,i, zB,j), ∀i, j = 1 . . . , N − 1.

Proof: Consider the Lagrangian of problem (6.12)

L (w, b, ri, β; α) =
1

2
wT w + γ

1

2

N
∑

i=2

r2
i −

N
∑

i=2

αi−1[β
T (zA,i − ρzA,i−1)

+ wT ϕ(zB,i) − ρwT ϕ(zB,i−1) + ρyi−1 − yi − ri],

where αj ∈ R, j = 1, . . . , N − 1 are the Lagrange multipliers. Taking the
optimality conditions ∂L

∂w
= 0, ∂L

∂b = 0, ∂L

∂ri
= 0, ∂L

∂αj
= 0, ∂L

∂β
= 0 yields

w =
N

∑

k=2

α(k−1)[ϕ(zB,k) − ρϕ(zB,k−1)],
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ri = αi−1/γ, i = 2, . . . , N,

0 =
N−1
∑

k=1

αk,

0 =
N

∑

i=2

αi−1(zA,i − ρzA,i−1),

yi = ρyi−1 + wT ϕ(zB,i) − ρwT ϕ(zB,i−1)

+b(1 − ρ) + βT (zA,i − ρzA,i−1) + ri, i = 2, . . . , N. (6.14)

With application of Mercer’s theorem [129] ϕ(zB,i)
T ϕ(zB,j) = K(zB,i, zB,j)

with a positive definite kernel K, w and ri can be eliminated, yielding

yi−ρyi−1 =
N

∑

k=2

αk−1[K(zB,i, zB,k)−ρK(xB,i−1, xB,k)−ρK(zB,i, zB,k−1)

+ ρ2K(zB,i−1, zB,k−1)] + b + βT (zA,i − ρzA,i−1) +
αk−1

γ
,

i = 1, . . . , N − 1. (6.15)

Building the kernel matrix Ω
(ρ)
ij and writing the equations in matrix notation

gives the final system (6.13).

The estimated model in dual space becomes

ŷt = ρyt−1 + h(zB,t) − ρh(zB,t−1) + βT (zA,i − ρzA,i−1), (6.16)

where h(zB,t) is

h(zt) =

N
∑

i=2

αi−1 [K(zB,i, zB,t) − ρK(zB,i−1, zB,t)] + b. (6.17)

Remark 6.1. [Including Symmetry] For all model structures above it is
straightforward to impose symmetry to the nonlinear function g(·) in (6.7)
using the equivalent kernel function (3.9) in each case. In this way,
symmetry is already embedded at the kernel level. This makes the entire
methodology for (AR)-NARX model estimation much more modular.

A summary of the different nonlinear model structures and representations
is given in Table 1.
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NARX Model

Primal ŷt = wT ϕ(zt) + b

Dual ŷt =
∑N

i=1 αiK(zi, zt) + b

AR-NARX Model

Primal ŷt = ρyt−1 + wT ϕ(zt) − ρwT ϕ(zt−1) + (1 − ρ)b

Dual ŷt = ρyt−1 + h(zt) − ρh(zt−1)
with

h(zt) =
∑N

i=2 αi−1 [K(zi, zt) − ρK(zi−1, zt)] + b

PL-NARX Model

Primal ŷt = βT zA,t + wT ϕ(zB,t) + b

Dual ŷt = βT zA,t +
∑N

i=1 αiK(zB,i, zB,t)

PL-AR-NARX Model

Primal ŷt = ρyt−1 + wT ϕ(zB,t) − ρwT ϕ(zB,t−1) + b(1 − ρ)

+βT (zA,t − ρzA,t−1)

Dual ŷt = ρyt−1 + h(zB,t) − ρh(zB,t−1) + βT (zA,i − ρzA,i−1)
with

h(zB,t) =
∑N

i=2 αi−1 [K(zB,i, zB,t) − ρK(zB,i−1, zB,t)] +
b

Table 6.1: Summary of Nonlinear Model Structures and Representations
using LS-SVMs.
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6.3.5 Links with other model representations

In general, a Hammerstein single-input-single-output (SISO) model

yt =

p
∑

i=1

aiyt−i +

q
∑

j=1

bjh(ut) + et,

contains a static nonlinearity h applied over the input ut. The Generalized
Hammerstein model extends the concept to include a nonlinear finite impulse
response (NFIR) formulation instead of a static nonlinearity,

yt =

p
∑

i=1

aiyt−i +

q
∑

j=1

bjh(ut, ut−1, . . . , ut−k) + et.

In these formulations it is possible to apply a PL-NARX structure to identify
the coefficients of the linear part and the nonlinear total component by an
obvious definition of f in (4.1) as

f(ut) =

q
∑

j=1

bjh(ut),

in the first case, and

f(ut, . . . , ut−k) =

q
∑

j=1

bjh(ut, ut−1, . . . , ut−k),

in the second case. However, with the exception of simple cases (q = 1), the
identification of f does not translate directly to an identification of h; for
a detailed identification of the function h eventually an ad-hoc structure is
required [45] where further restrictions are imposed to the function f .

Consider the AR-NARX model described in (6.2). Interesting links with
existing and well known model representations can be established for the case
where zi does not contain past values of the output, that is, the nonlinear
function g(zi) is a static nonlinearity. Considering zi as an exogenous input,
the model structure

A(z−1)yt = A(z−1)g(zt) + rt, (6.18)

is equivalent to a Hammerstein system [18]

yt =
r

∑

i=1

ciyt−1 +
s

∑

i=0

dig(zt−i) + rt, (6.19)
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where the order is given by the order of the AR(q) residual process (r = s =
q), and the following conditions on the coefficients hold: ci = −ai, di = ai,
i = 1, . . . , q and d0 = 1.

Alternatively, additional insights into the model structure can be obtained
when considering the model formulation as a state-space description.
Consider the case for q = 1 of model (6.2), described as

{

et+1 = ρet + rt+1

yt = et + g(zt).
(6.20)

The AR(1) process representation corresponds to the state equation. In
this interpretation, et corresponds to the unobserved state of the system,
rt+1 is the process noise, and ρ is the parameter for the state equation of
this system. The output equation consists of the state ek with coefficient
equal to 1, and an input described as a nonlinear function of the vector
zt. The above description gives explicit expressions for optimal prediction,
where not only the nonlinear function g has to be approximated, but also the
corresponding state should be predicted as well. With this interpretation,
the optimal predictor for t + 1 given the information up to time t can be
easily obtained in terms of both the predictors of the future state tt+1|t and
the output yt+1|t by means of, for example, Kalman filter applied to (6.20),
and is equivalent to the predictor obtained from the system (5.19) for the
case of a static nonlinearity.

6.4 Model estimation in Primal Space

All models described above are expressed in terms of the dual solution,
requiring solving a linear system of size (N + Na)× (N + Na) (for a NARX
model, Na = 0). This system is obtained with the application of Mercer’s
theorem, without having to compute the nonlinear mapping ϕ explicitly.
However, for large sample sizes this may become too time consuming
or simply unpractical. In such a case, the models can be estimated in
primal space using the Nyström approximation (2.22) and (2.23). The
approximation has to be computed with the generic kernel matrix Ωeq

with entries Ωeq
ij = Keq

model(xi, xj), where the kernel function Keq
model can

be defined for each of the model structures, as listed in Table 6.2, and where
the vector x represents z or zB depending on the model.

From a kernel matrix Ωeq evaluated over a data subsample of fixed-size M ,
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Keq
narx(xi, xj) = K(zi, zj)

Keq
ar−narx(xi, xj) = K(zi+1, zj+1)− ρK(zi, zj+1) − ρK(zi+1, zj) +

ρ2K(zi, zj)

Keq
pl−narx(xi, xj) = K(zB,i, zB,j)

Keq
pl−ar−narx(xi, xj) = K(zB,i+1, zB,j+1) − ρK(B,zB,i, zB,j+1) −

ρK(zB,i+1, zB,j) +ρ2K(zB,i, zB,j)

Table 6.2: Equivalent kernel function Keq
model for the different model

structures. The vector x represents z or zB, depending on the model
structure. The finite dimensional approximation for the feature map can
be computed using the Nyström method with any of these kernel functions.
This provides a modular approach for large scale nonlinear regression
problems.

the approximation ϕ̂ is obtained using (2.22) for each of the components.
Let ϕ̂model(zt) be the approximation of the feature map for a datapoint zt

for a given model structure. The model can now be estimated in primal space
directly using ridge regression techniques with regularization parameter γ.
In other words, the problem can be solved by minimizing a regularized least-
squared cost function as follows.

• For the NARX model in Primal Space, the solutions w, b are obtained
from

min
w,b,ei

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (6.21)

s.t. yi = wT ϕ̂narx(zi) + b + ei, i = 1, . . . , N.

With the explicit expression for ϕ̂narx(zi), the model is solved in primal
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space by eliminating ei from (6.21),

min
w,b

1

2
wT w + γ

1

2

N
∑

i=1

(yi − wT ϕ̂narx(zi) − b)2. (6.22)

• For the AR-NARX model, the solutions w, b are obtained from

min
w,b,ri

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (6.23)

s.t. yi = ρyi−1 − wT ϕ̂ar−narx(zi) + b + ri, i = 2, . . . , N.

where the autocorrelation structure for the nonlinear function is
embedded into the evaluation of ϕ̂ar−narx(zi) computed from the kernel
matrix Ωeq. With the explicit expression for ϕ̂ar−narx(zi), the model
is solved in primal space by eliminating ri from (6.23),

min
w,b

1

2
wT w + γ

1

2

N
∑

i=1

(yi − ρyi−1 − wT ϕ̂ar−narx(zi) − b)2. (6.24)

• For the PL-NARX model, the solutions β, w, b are obtained from

min
w,b,ei,β

1

2
wT w + γ

1

2

N
∑

i=1

e2
i (6.25)

s.t. yi = βT zA,i + wT ϕ̂pl−narx(zB,i) + b + ei, i = 1, . . . , N,

With the explicit expression for ϕ̂pl−narx(zB,i), the model is solved in
primal space by eliminating ei from (6.25),

min
w,b,β

1

2
wT w + γ

1

2

N
∑

i=1

(yi −βT zA,i −wT ϕ̂pl−narx(zB,i)− b)2. (6.26)

• Finally, for the PL-AR-NARX model structure, the solutions β, w, b
are obtained from

min
w,b,ri,β

1

2
wT w + γ

1

2

N
∑

i=2

r2
i (6.27)

s.t. yi = ρyi−1 + βT (zA,i − ρzA,i−1) + wT ϕ̂pl−ar−narx(zB,i) + b + ri,
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for i = 2, . . . , N . With the explicit expression for ϕ̂pl−ar−narx(zB,i),
the model is solved in primal space by eliminating ri from (6.27),

min
w,b,β

1

2
wT w + γ

1

2

N
∑

i=2

(yi − ρyi−1 − βT (zA,i − ρzA,i−1)−

wT ϕ̂pl−ar−narx(zB,i) − b)2. (6.28)

6.5 Examples

This section shows some illustrative examples for the estimation of NARX
models using LS-SVM. Most of the examples are implemented in primal
space, that is, the initial sample of size M is selected using the quadratic
Renyi entropy criterion. On each example, an RBF kernel is used and
the parameters σ and γ are found by 10-fold cross validation over the
corresponding training sample.

6.5.1 Examples for NARX Models

1. Time Series forecasting. The laser example of the Santa Fe compe-
tition [134] of time series prediction is used. Given 1000 historical
datapoints, the goal is to predict the next 100 values using an iterative
simulation procedure. This is, predict the first point out of sample,
then use this prediction to compute the next prediction, and so on.
A NARX model is estimated of the form ŷt = f(yt−1, yt−2, . . . , yt−p),
selecting p = 50. In this setting, the training sample size is N = 900.
The subsampling technique is implemented with a sample size of
M = 200 datapoints.

2. Input-Output Model. This example is taken from the DaISy [23]
datasets. The process is a liquid-saturated steam heat exchanger,
where water is heated by pressurized saturated steam through a copper
tube. The output variable yt is the outlet temperature, and the
input variable ut is the flow rate. A NARX model of the form
ŷt = f(yt−1, . . . , yt−p, ut−1, . . . , ut−p) with p = 5 is estimated, with
a sample size of N = 1800, and M = 200 initial support vectors. Out-
of-sample predictions are computed for the next 200 values. This is
an example of a larger dataset, where working with the full sample N
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would add computational cost. For comparison, the result of the same
model under a linear estimation with the same p is reported.

Each one of these applications is independently trained and estimated for
the following cases:

• Case I. Using the full sample of size N to obtain the optimal
hyperparameter, define the regressors and the final estimation.

• Case II. Using only a fixed-size subsample for finding the hyperparam-
eter, the regressors and the final model.

The goal is to perform the training and estimation procedures independently,
using only the available information for each Case. In other words, no
information from Case I is used in Case II, as for large scale problems the
only feasible way to proceed is to use the fixed-size method. The results
reported on each case are:

1. The optimal σ found by minimizing the cross-validation MSE;

2. The value of M , the number of support vectors selected for the
regression in primal space;

3. The MSE (mean squared error) both in-sample and out-of-sample.

The results are summarized in Table 6.3 and accompanying figures. In
general, we observe satisfactory results on the performance of the models. It
is important to notice that the good performance of the cases when M ≪ N
is due not only to the quality of the Nyström approximation, but also to the
appropriate selection of the support vectors by means of the Renyi quadratic
entropy maximization. In the Laser problem, the way the support vectors
spread around the zones where important changes on the levels of the series
are taking place is remarkable. With this selection of the support vectors, the
results obtained for the iterative prediction are very close to those obtained
using the entire sample, as seen in Figures 6.1 and 6.2 respectively. Figure
6.3 shows the evolution of the entropy during the support vector selection
for the Laser and the Heat-Exchanger examples. The performance of the
methodology on the 200 predicted values for the Heat-Exchanger example
is shown in Figure 6.4.
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Problem σ M MSEIN MSEOUT

Laser (Santa Fe)
Case I 5.3 900 0.01 0.05
Case II 4.2 200 0.02 0.06

Heat Exchanger
Case I 5.8 1800 0.04 0.06
Case II 4.7 200 0.04 0.07
Linear (same p) - 1800 0.04 0.23

Table 6.3: Performance of the estimations in primal space. Case I uses the
full sample (M = N), and Case II uses a fixed-size (M ≪ N) version.
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Figure 6.1: Training sample for the Santa Fe Laser data. Case I estimations
uses of the full sample. The 200 selected support vectors can be visualized
in terms of their time index position, indicated by the dark bars at the
bottom. Remarkably, the selected support vectors are placed around critical
transition regions of the dataset.
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Figure 6.2: Iterative prediction for the Laser example, for Case I (‘-x’ line),
Case II (‘-.’ line), and ‘true’ values (full line).

6.5.2 Examples for Partially Linear Structures

The test cases for partially linear parameterizations are defined as follows:

• Example PL-I: Autoregression with linear and nonlinear
components. The model to be estimated is of the form yt = a1yt−1 +
a2yt−2 + sinc(yt−3) + et, where the true values are a1 = 0.6, a2 = 0.3;
et is a Gaussian white noise of variance 0.02.

• Example PL-II: Hammerstein Model. The true model is yt =
a1yt−1 +a2yt−2 + a3yt−3 +b1sinc(ut−1) +b2sinc(ut−2) + et, with a1 =
0.6, a2 = 0.2, a3 = 0.1, b1 = 0.4, b2 = 0.2. The input ut comes from a
Gaussian distribution with mean 0 and variance 2, and et is a Gaussian
noise with variance 0.1.

• Example PL-III: Generalized Hammerstein Model. The true
model is a Generalized Hammerstein model yt = a1yt−1 +a2yt−2

+arctan(ut)u
2
t−1 + εt, with a1 = −0.6, a2 = −0.1 and the input series
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Figure 6.3: Convergence of the Renyi entropy for the support vector selection
in the Laser problem (full line) and the Heat Exchanger problem (‘-.’ line).
Values have been normalized for comparison.

is generated by ut = b1ut−1 + εt−1 + εt−2 where εt is Gaussian noise
with variance 1 (this example is taken from [27]).

It worth noting that although the regressors contained in the linear part
might be correlated with the regressors under the nonlinear part, they are
neither identical nor perfectly related to each other. Therefore, there linear
part is uniquely represented. The out-of-sample performance, on an iterative
basis (simulation mode) is examined for the models. 1,000 datapoints are
generated and the first 400 are dismissed to remove any transient effect.
500 datapoints are then used for training, and the performance is measured
over the next 50 out-of-sample points running the model iteratively in
simulation mode, each time using past predictions as inputs to produce
the next forecasts.

The models are estimated where the hyperparameters are selected using a
10-fold crossvalidation. The results are reported in Table 6.4 in terms of
the estimation results and out-of-sample performance. The MSE obtained



90 Nonlinear System Identification with LS-SVM

0 20 40 60 80 100 120 140 160 180 200
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time index

y

Figure 6.4: Iterative prediction for the Heat-Exchanger example, for Case I
(‘-x’ line), Case II (‘-.’ line), and ‘true’ values (full line).

in the out-of-sample exercise (MSE simulation) is very close to the MSE
level obtained within the training procedure by 10-fold cross validation
(CV-MSE). At the same time, the linear parameters for each model are
identified successfully. The out-of-sample iterative prediction is computed
by sequentially using past predictions as new inputs for the autoregressive
part, in simulation mode [76]. All models perform substantially well, as
shown in Figure 6.5 for Example PL-I (top), Example PL-II (middle) and
Example PL-III (bottom), for the comparison between the predictions and
the true values for the next 50 points out-of-sample.

6.5.3 Examples for Models with Symmetry

In this subsection, examples of imposing symmetry to the LS-SVM are
presented for two cases of chaotic time series. In each example, an RBF
kernel is used and the parameters σ and γ are found by 10-fold cross
validation over the corresponding training sample. The results using the
standard LS-SVM are compared to those obtained with the symmetry-
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Estimates MSE

â1 â2 â3 CV (train) Simulation

Example PL-I 0.598 0.302 - 0.006 0.005

Example PL-II 0.597 0.195 0.11 0.007 0.010

Example PL-III -0.592 -0.098 - 1.19 1.18

Table 6.4: Parameter estimates, MSE (CV-training and Simulation) for
Example PL-I (NAR), Example PL-II (Hammerstein) and Example PL-III
(Generalized Hammerstein).
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Figure 6.5: Simulated (dashed) and Observed (solid) values for the next 50
time steps out-of-sample for Example PL-I (top), Example PL-II (middle)
and Example PL-III (bottom).
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constrained LS-SVM (S-LS-SVM) from (3.2). The examples are defined
in such a way that there are not enough training datapoints in every region
of the relevant space. Therefore, it is very difficult for a black-box model to
”learn” about the symmetry just by using the available information. The
examples are compared in terms of the performance in the training sample
(cross-validation mean squared error, MSE-CV) and the generalization
performance (MSE out of sample, MSE-OUT). In each case, a NAR(X)
black-box model is formulated:

yt = g(yt−1, yt−2, . . . , yt−p) + et

where g is to be identified by LS-SVM and S-LS-SVM. The order p is selected
during the cross-validation process as an extra parameter. After each model
is estimated, it is used in simulation mode, where the future predictions are
computed with the estimated model ϕ̂ using past predictions:

ŷt = ĝ(ŷt−1, ŷt−2, . . . , ŷt−p).

1. Lorenz attractor. This example is taken from [1]. The x−coordinate of
the Lorenz attractor is used as an example of a time series generated
by a dynamical system. A sample of 1000 datapoints is used for
training, corresponding to an unbalanced sample over the evolution of
the system, shown on Figure 6.6 as a time-delay embedding. Figure 6.7
(top) shows the training sequence (thick line) and the future evolution
of the series (test zone). Figure 6.7 (bottom) shows the simulations
obtained from both models on the test zone. Results are presented in
Table 6.5. Clearly the S-LS-SVM can simulate the system for the next
500 timesteps, far beyond the 100 points that can be simulated by the
LS-SVM.

2. Multi-scroll attractors. This dataset was used for the 1998 K.U.Leuven
Time Series Prediction Competition [117]. This series is generated by

ẋ = h(x) (6.29)

LS-SVM S-LS-SVM

MSE-CV 3.41 × 10−4 1.62 × 10−4

MSE-OUT 52.057 0.085

Table 6.5: Performance of LS-SVM and S-LS-SVM on the Lorenz attractor
data.
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of the Lorenz attractor.
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Figure 6.7: (Top) The series from the x−coordinate of the Lorenz attractor,
part of which is used for training (thick line). (Bottom) Simulations with
LS-SVM (dashed line), S-LS-SVM (thick line) compared to the actual values
(thin line).
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y = W tanh (V x)

where h is the multi-scroll equation, x is the 3-dimensional coordinate
vector, and W , V are the interconnection matrices of the nonlinear
function (a 3-units multilayer perceptron, MLP). This MLP function
hides the underlying structure of the attractor [86]. A training set of
2,000 points is available for model estimation, shown on Figure 6.8, and
the goal is to predict the next 200 points out of sample. The winner
of the competition followed a complete methodology involving local
modelling, a specialized parameters tuning procedure through many-
steps-ahead cross-validation, and the exploitation of the symmetry
properties of the series by flipping the series around the time axis.

Following the winner approach, both LS-SVM and S-LS-SVM are
trained using 10-step-ahead cross-validation for hyperparameters se-
lection. To illustrate the difference between both models, the out
of sample MSE is computed considering only the first n simulation
points, where n = 20, 50, 100, 200. It is important to emphasize that
both models are trained using exactly the same methodology for order
and hyperparameter selection; the only difference is the symmetry
constraint for the S-LS-SVM case. Results are reported in Table 6.6.
The simulations from both models are shown on Figure 6.9.

6.6 Conclusions

In the context of applied nonlinear system identification, it is possible to use
the LS-SVM as an estimation method. This chapter shows that it is possible
to build a modeling methodology around the central LS-SVM formulation,

LS-SVM S-LS-SVM

MSE-CV 0.15 0.11
MSE-OUT (1-20) 0.03 0.03
MSE-OUT (1-50) 0.05 0.03
MSE-OUT (1-100) 0.05 0.03
MSE-OUT (1-200) 0.64 0.24

Table 6.6: Performance of LS-SVM and S-LS-SVM for the K.U.Leuven data.
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Figure 6.8: Training sample (thick line) and future evolution (thin line) of
the series from the K.U.Leuven Time Series Competition.

taking the results of the previous chapters in a modular approach. This
methodology has been developed to work with NARX and AR-NARX
model structures, which can be parameterized as a fully nonlinear black-
box model or in a partially linear form. For the case of the AR-NARX
model structure, it has been shown to be equivalent to a very specific
Hammerstein formulation. The derivations have been presented for both
dual and primal formulations, with their corresponding representations and
practical expressions for the equivalent kernel in each case. This leads to
a powerful methodology for a modular modeling strategy, suitable for both
large dimensional (dual space formulation) and large scale (primal space
formulation) problems. Practical examples for chaotic time series show the
effect of the selection of support vectors by means of the quadratic Renyi
entropy, the satisfactory forecasting performance of the models, and the
additional benefit of incorporating prior-knowledge of the problem at hand.
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compared to the actual values (thin line) for the next 200 points of the
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Chapter 7

Case Study: The SilverBox

This chapter presents an application to a large scale ex-
perimental case study. In the context of nonlinear system
identification, we apply different variants of LS-SVM to the
SilverBox dataset in the framework of a benchmark study.
Starting from the dual representation of the LS-SVM, and using
Nyström techniques, it is possible to compute an approximation
of the nonlinear mapping to be used in the primal space. In this
way, primal space based techniques as Ordinary Least Squares
(OLS), Ridge Regression (RR) and Partial Least Squares (PLS)
are applied to the same dataset together with the dual version of
LS-SVM. The results obtained with black-box parameterizations
are the best in this benchmark study. In addition, the results are
further improved when using structured models with a partially
linear formulation. This chapter is structured as follows. The
description of the dataset and the modeling strategy is given
on Section 7.1. The implementation using a nonlinear black-
box model is described in Section 7.2. Further implementations,
including symmetry and partially linear models are described in
Section 7.3 and Section 7.4, respectively.

99
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7.1 The SilverBox Benchmark Study

The SilverBox dataset gets its name from the physical device from where it
originates. It is an electrical circuit that simulates a mechanical oscillatory
system with damping [102]. The system is known to contain a cubic
nonlinearity. Data is generated by using signals of different amplitude. The
benchmark study was defined as follows. The data to be used for model
estimation is generated using a constant amplitude. The data in which the
models should be tested, on the contrary, is generated using an increasing
amplitude. The important element of this design is that the final part of the
test data contains a zone of larger amplitude than the data used for model
estimation and selection. By putting together all data, the zones of different
amplitudes gets the shape on an arrow. An initial plot of the output (the
“arrow”) is given in Figure 7.1. The results of the study formed the basis of
a special session in the 14th IFAC NOLCOS (Nonlinear Control Systems)
conference [30, 77, 92, 109, 131]. The data contains samples for input ui and
output yi, with i = 1, . . . , N , with N = 131, 072 datapoints. The working
strategy for using the data in terms of training, validation and testing is as
follows:

• Training Sample: First half of the “body of the arrow”, i.e. datapoints
40,001 to 85,000. Models are estimated using this part of the data.
The mean squared error (MSE) of a one-step-ahead prediction can be
computed directly using this training sample.

• Validation Sample: Second half of the “body of the arrow”, datapoints
85,001 to the end. Having estimated the model parameters using the
training sample, the model is validated using new datapoints. The
MSE on the validation set is computed on a one-step-ahead basis.
Model selection is based on the validation MSE.

• Test Sample: “Head of the arrow”, datapoints 1 to 40,000. After
defined the optimal model using the validation MSE, the prediction
for the test set is generated. In this case, an iterative prediction is
computed for the entire test set (each time using past predictions as
inputs, using the estimated model in simulation mode). The MSE on
the test set is computed.
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Figure 7.1: Available data of the Silver Box identification problem. The
zones for training, validation and testing are indicated.

7.2 Nonlinear Black-Box approach

The general model structure is a NARX specification of the form yt =
g(yt−1, . . . , yt−p, ut, ut−1, . . . , ut−p)+et. Exploratory analysis for estimating
the order p is done based on the validation data. By using a black-box
parameterization with LS-SVM as given by (6.5), the model is estimated
using (6.8). No prior knowledge on the true system is available at this
stage.

Given that there are approximately 40,000 datapoints to estimate this
model, a Fixed-Size LS-SVM (2.26) formulation is used, leading to the
estimation in primal space. For this analysis, the regression (6.8) is
estimated in primal space using different traditional techniques. Ordinary
Least Squares (OLS), Ridge Regression (RR) and Partial Least Squares
(PLS) are applied. In the case of OLS, only m < M components of ϕ̂ are
used, and they are selected by looking at the eigenspectrum of the M × M
kernel matrix ΩM used to build the approximation (2.22). In the case of
RR [20], all components of ϕ̂ are used, and the regularization parameter γ
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needs to be tuned accordingly. Finally, PLS involves an explicit construction
of the set of regressors to be included in the model in order to take into
account the information on the dependent variable and its correlation with
the explanatory variables [99].

The different variants of LS-SVM to be applied are:

• LS-SVM in dual space (LS-SVM): for this method, a subsample of size
1000 is used for training, as using the full training sample is prohibitive.

• Fixed Size LS-SVM in primal space with OLS (FS-OLS), RR (FS-RR)
and PLS (FS-PLS): for these methods, different numbers of support
vectors are selected and the subsamples are selected by maximization
of the quadratic entropy criterion.

The LS-SVM formulation requires to use a kernel matrix Ωij = K(xi, xj).
Given that the nonlinear system is known to have a dominant linear
behavior, we implemented not only the RBF kernel K(xi, xj) = exp(−||xi−
xj ||22/σ2), but also the polynomial kernel K(xi, xj) = (xT

i xj + c)d.
Parameters σ, d, c and the regularization parameter γ are tuned based on
the training-validation scheme.

7.2.1 Estimation and Model Selection

Using the definition of training and validation data described above, different
lag orders and general parameters are tested. Each time the model is
estimated using the training set and then evaluated in the validation set,
always using the model to build predictions on a one-step-ahead basis. The
combination of lag orders, kernel function and hyperparameters that gives
the lowest MSE on the validation set (MSEval) is selected.

An initial analysis using a linear ARX model with increasing lags of inputs
and outputs, with the same training/validation scheme, shows that the MSE
for the validation set can easily reach levels of 1.0 × 10−7, corresponding to
a root mean squared error (RMSE) of 3.2 × 10−4. Figure 7.2 shows the
MSEval obtained when the number of lags varies from 5 to 40. This small
error level at high lags can be a symptom of overfitting.

For the NARX models, Table 7.1 shows the best results (RMSE) achieved
for each of the different techniques. It is important to remember that all
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Figure 7.2: Mean Squared Error in the validation set using a linear ARX
model with increasing number of lags.

techniques based on the Fixed-Size primal space version use the complete
training/validation set; whereas the LS-SVM in dual space is limited to a
subsample of 1000 points for training and validation. All RMSE figures are
expressed in the original units of the data.

For all cases the polynomial kernel outperforms the RBF kernel, by up
to 2 orders of magnitude. Although the RBF kernel is widely used, the
dominant linear behavior of the data is better captured by the polynomial
kernel. Additionally, the performance of the FS-RR and FS-PLS models
with polynomial kernel is much better than the one obtained with the FS-
OLS in the training/validation scheme.

The effect of selecting different numbers M of initial support vectors on
the validation performance is shown in Table 7.2, for the FS-OLS version
with polynomial kernel. clearly, the performance is improving marginally for
M > 500. Therefore, taking into account practical considerations, M = 500
is chosen for the whole modeling exercise. The position of the selected 500
support vectors can be visualized in terms of the corresponding time index
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Method γ Kernel p RMSEtrain RMSEval

LS-SVM 10 Poly 5 5.1 × 10−5 6.7 × 10−5

10 RBF 5 2.4 × 10−4 2.7 × 10−4

FS-OLS - Poly 7 3.6 × 10−4 3.5 × 10−4

- RBF 7 6.0 × 10−4 1.3 × 10−3

FS-RR 1000 Poly 10 2.3 × 10−4 2.2 × 10−4

1000 RBF 10 6.0 × 10−4 5.4 × 10−4

FS-PLS 1000 Poly 10 2.31 × 10−4 2.25 × 10−4

1000 RBF 10 1.1 × 10−3 1.00 × 10−3

Table 7.1: Best models, based on the RMSEval. For all cases shown, σ =
5.19p−1/2 with p=number of lags (for RBF kernel); d = 3, c = 11 (for
Polynomial kernel).

position of the output data yt. Figure 7.3 shows the output variable in
the training set, and the dark bars at the bottom represent the position of
the selected support vectors. The quite uniform distribution of the support
vectors shows that this part of the dataset does not have critical transition
regions or critical zones. Finally, the effect of the inclusion of different lags
is tested for the NARX models, using lags from 2 to 10. Figure 7.4 shows
the evolution of the MSE in the validation set for FS-RR (full line), FS-OLS
(dash-dot) and FS-PLS (dashed).

7.2.2 Final Results on Test Data Set

After selecting the order of the models and the parameters involved, each one
of the estimated models is used to build an iterative prediction (simulation
mode, using only past predictions and input information) for the first 40,000
datapoints (the “head of the arrow”). As this is a completely unseen dataset,
from the point of view of the modeling strategy, two types of error sources
may be expected: the first one is due to the iterative (recurrent mode) nature
of the simulations, so past errors can propagate to the next predictions. The
second one is due to the fact that there are datapoints located beyond the
amplitude range on which the models are trained, namely the wider zone of
the “head of the arrow”. The iterated prediction series is compared to the
true values, and then this RMSE is computed on the test set (RMSEtest).

Table 7.3 shows the results obtained with the iterative prediction, for all
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Figure 7.3: (Top) Output training sample; (Bottom) The position, as time
index, of the 500 selected support vectors is represented by dark bars

Number of RMSEtrain RMSEval

Support Vectors M

100 2.8 × 10−3 2.5 × 10−3

200 4.6 × 10−4 4.4 × 10−4

300 4.0 × 10−4 3.8 × 10−4

400 3.8 × 10−4 3.7 × 10−4

500 3.6 × 10−4 3.5 × 10−4

1000 3.5 × 10−4 3.4 × 10−4

1500 3.5 × 10−4 3.4 × 10−4

Table 7.2: Effect of M on the performance of the FS-OLS estimator,
measured by the root mean squared error (RMSE).
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Figure 7.4: MSE on the validation set obtained for FS-RR (full line), FS-
PLS (dashed) and FS-OLS (dash-dot) using different number of lags.

models, including the linear ARX model for comparison. The result for
the linear model shows its lack of generalization ability for this example.
The NARX models show a satisfactory result, where FS-PLS and FS-RR
obtain quite the same level of performance. Finally, LS-SVM with a direct
subsampling for the computation of the model in dual space, obtains a
RMSE level in the test set within the same order of magnitude, but almost
twice the one obtained by FS-PLS or FS-RR.

Figure 7.5 shows the residuals of the iterative prediction (simulation mode),
where it can be seen that the error remains within a stable zone, with the
exception of very few peaks close to the wider zone of the “head of the
arrow”. In any case, the larger peak represents a 5% absolute error with
respect to the level of the output series in that point. The FS-PLS variant
of the LS-SVM achieves a root mean squared error (RMSE) of 3.2 × 10−4,
being the best results of the benchmark study.
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Technique Lags RMSEtest

Linear 30 0.2680
LS-SVM 5 6.2 × 10−4

FS-OLS 7 6.1 × 10−4

FS-RR 10 3.3 × 10−4

FS-PLS 10 3.2 × 10−4

Table 7.3: RMSE with the final iterative prediction (simulation mode) on
the test data.
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Figure 7.5: Residuals of the iterative prediction (simulation mode) in the
test set. Only few peaks with larger errors are visible.
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7.3 Including Symmetry

The nonlinear component of the system is later known to be a cubic term,
which has a symmetry that can be included in the LS-SVM formulation.
Remarkably, starting from the polynomial kernel selected from the previous
section, and building the equivalent kernel for the case of an odd function
(3.9) from it, the results improve substantially with respect to the fully black
box model.

Figure 7.6 shows the residuals obtained with standard LS-SVM (top) and
symmetric LS-SVM (Bottom) in the simulation exercise. In spite of the very
good performance of the black-box model, achieving a root mean squared
error (RMSE) of 3.2 × 10−4, there are still some larger residuals to the
end of the sequence, the zone of wider amplitude of the dataset. Imposing
symmetry improves the generalization performance on the simulation by
reducing the RMSE to 2.8 × 10−4. Fewer peaks are visible in the residuals
obtained with symmetric LS-SVM.

7.4 Using a Partially Linear Model

The full black-box model reached excellent levels of performance using 10
lags of inputs and outputs, obtaining a root mean squared error (RMSE)
of 3.2 × 10−4 in simulation mode. Now the objective is to check if the
knowledge of the existence of linear regressors can further improve the
simulation performance. A partially linear model using p = q = 10 is
formulated using past and current inputs as linear regressors,

yt = βT [ut; ut−1; ut−2; . . . ; ut−p]

+wT ϕ([yt−1; yt−2; . . . ; yt−p]) + et

and estimated with PL-LSSVM (6.9). Due to the large sample size, a
fixed-size PL-LSSVM in primal space is used. It improves the simulation
performance over the full black-box model, as it is shown in Figure 7.7.

Table 7.4 shows a comparison between both models in terms of in-sample
accuracy, validation performance, the simulation accuracy and the model
complexity. By imposing a linear structure the simulation root mean squared
error decreases to 2.7 × 10−4. Moreover, when considering only the last
10,000 points of the test data, the improvement is more important, as shown
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Figure 7.6: Residuals of the SilverBox simulations on the test set. Standard
LS-SVM (Top) and improved results by the symmetric LS-SVM (Bottom).
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Black-Box model Partially Linear Model

RMSEval 1.05 ×10−4 0.45 ×10−4

RMSEtest 1.70 ×10−4 0.57 ×10−4

RMSEsim 3.24 ×10−4 2.71 ×10−4

Neff 490 190

Table 7.4: Performance comparison between the models for the Silverbox
data in terms of RMSE for validation, testing and simulation.

in Table 7.5. Using the full black-box model, the maximum absolute error is
8.1 × 10−3, which is reduced to 3.7 × 10−3 with the PL-LSSVM. The mean
absolute error for the full black-box model is 2.3×10−4 and for the partially
linear model, 2.02 × 10−4. The effective number of parameters is reduced
from 490 to 190.

Case Indicators Black-Box model Partially Linear Model

Case I max(|ei|) 8.1 × 10−3 3.7 × 10−3

mean(|ei|) 2.30 ×10−4 2.02 ×10−4

RMSE(ei) 3.24 ×10−4 2.71 ×10−4

Case II max(|ei|) 8.1 × 10−3 3.7 × 10−3

mean(|ei|) 3.72 ×10−4 2.31 ×10−4

RMSE(ei) 5.86 ×10−4 3.34 ×10−4

Table 7.5: Simulation errors for the Silverbox data, over the full test set
(Case I) and only for the last 10,000 points of the test set (Case II).

7.5 Conclusions

The application of the LS-SVM methodology in a large scale nonlinear
identification problem implies the challenge of working with a large number
of datapoints. In this case, Fixed-Size variants of the LS-SVM are developed
to work in primal space using approximations of the nonlinear mapping ϕ.
These techniques have the advantage that traditional tools available for
regression can be applied successfully, and clearly they can deal with large
scale problems. In this chapter, we have applied LS-SVM in dual space and
3 variants in primal space (fixed size - ordinary least squares, FS-OLS; fixed
size ridge regression, FS-RR; and fixed size partial least squares, FS-PLS)
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Figure 7.7: Simulation errors in the test region of the Silverbox data. Full
black-box LS-SVM model (Top), PL-LSSVM (Bottom).
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to the identification of a nonlinear dynamical system using the “Silver Box”
data.

The results show that methods relying on regularization and active construc-
tion of a regression in primal space (FS-RR and FS-PLS) obtain the best
performance in the iterative prediction exercise. FS-OLS obtains a lower
performance, but still better than the one obtained by the LS-SVM method
with a direct sampling. The best performance yields an RMSE on the test
set of 3.2×10−4. Computationally, the full estimation methodology can take
a few hours, including the selection of hyperparameters. The above results
are obtained with models under a suboptimal strategy for model validation
and selection. Usually crossvalidation in multiple training/validation sets
are done, and in this case we only used one dataset for training and one
for validation. Although this is a practical decision, mainly related to
the number of datapoints available, results could be improved with a more
optimal strategy.

In addition, this chapter shows that it is possible to use prior knowledge to
improve over the black-box results. Using a partially linear model with LS-
SVM, the methodology is able to successfully identify a model containing
a linear part and a nonlinear component, with better performance than a
full nonlinear black-box model. The structured model may show a better
generalization ability, and a reduced effective number of parameters, than
a full nonlinear black-box model. In the same way, incorporating the
symmetry of the nonlinear function gives a similar improvement over the
initial results.
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Short-Term Load Forecasting
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Chapter 8

A Black-Box Approach for
Load Forecasting

In the previous chapters, a framework for nonlinear system
identification based on modular LS-SVM extensions has been
developed. This framework is now applied to the real-life
industrial problem of short-term electric load forecasting. This
chapter presents the application of black-box NARX models,
describing all steps required, from the initial support vector
selection, hyperparameter selection, estimation in primal space
using a small fraction of the available data to build the nonlinear
mapping approximation, and the final assessment of the quality
of the model. A comparison is made with a linear ARX model
estimated from the same set of explanatory variables, in terms
of the forecasting ability of the models for different forecasting
horizons. This chapter is structured as follows. An introduction
to the problem of short-term load forecasting is given in Section
8.1. The description of the available data, the definition of
the model structure and the estimation method are described on
Section 8.2. The empirical results are discussed in detail in
Section 8.3.
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8.1 Problem Description

This section provides an introduction to the short-term load forecasting
context. The practical importance for electric energy generators, grid oper-
ators, suppliers and other market players is described, and an assessment of
existing forecasting techniques is given.

8.1.1 The Short-Term Load Forecasting Problem

The problem of short-term load forecasting (STLF) is an important area
of quantitative research in power systems [29, 63, 78, 97]. STLF refers
to the prediction of the system load over an interval ranging from an
hour (or fraction) to one week. From the power generation perspective,
accurate tracking of the load by the system generation at all times is a
basic requirement in the operation of power systems [47,84], which must be
accomplished for different time intervals. It is a task that is used on a daily
basis on every major dispatch center or by grid managers. For example,
for the time scale of hours, variations of the load can occur which would
require the startup or shutdown of entire generating units. It is therefore
important not only to be able to predict the hourly load in general, but also
the daily peak system load in particular. Electricity cannot be efficiently
stored in large quantities, meaning that the amount generated at any given
time always has to cover all the demands from the final consumers, including
grid losses. Forecasts of the load are used to decide whether extra generation
has to be provided by increasing the output of on-line generators or by
committing one or more extra units. Similarly, forecasts are also used to
decide whether an already running generation unit should be decreased in
output or even switched off. Moreover, the flow along the transmission lines
is affected by the different generation profiles, possibly leading to congestion
problems. On the other hand, the liberalization of the electric energy
markets has led to the development of energy exchanges, where consumers,
generators and traders can interact leading to price settings. In this respect
also forecasts are extremely important, as the liberalization of the electricity
sector has given a new dimension to the problem of STLF [14, 17]. Large
time series, provided by the Belgian Transmission System Operator (TSO)
ELIA, are used in this article as examples to illustrate the importance
and possibilities of the implementation of nonlinear system identification
techniques for short-term load forecasting. The available time series contains
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hourly load values taken from different substations within the Belgian grid.
Such substations correspond to the off-take points used by local distribution
companies. The voltage is converted from high-voltage, usually above 70 kV,
to the required level on each substation [87].

In general, building a model for load forecasting is not straightforward, due
to the presence of seasonal patterns in different levels. There is a winter-
summer pattern, a weekly pattern and an intra-daily pattern. Figure 8.1
shows an example of a load series in a week, at hourly values starting at 00:00
h on Monday, until 24:00 h on Sunday. These different patterns also interact
with other external variables that affect the load, the weather fluctuations
being one of the most importants. When the weather is cold, there is
a requirement for heating which translates in an increase of the energy
demand. Hot days in summer trigger the use of air conditioning equipment,
also increasing the demand. On the other hand, the load on a Monday
looks like the previous Monday, but a Monday in winter is different from a
Monday in summer, as shown on Figure 8.2. The same can be observed for
weekends. However, special days (for example, May 1st, Easter, Christmas)
can show a different behavior. All these effects can combine with each other,
and for example the effect of the weather on a winter Monday is different
from the effect of the weather on a summer Friday. The effect of weather in
the load is nonlinear, which is one of the main reasons for using nonlinear
models for this problem, as seen on Figure 8.3. In addition, for the purposes
of long-term and mid-term planning, year-to-year comparisons and scenario
analysis, it is important to have interpretable models. A model has to be
able to tell how much of the peak was due to the weather conditions of that
particular day, so it can be corrected towards a normal meteorological year.
Other types of analysis can be done by e.g. comparing the consumption of
different regions or identifying customer profiles.

8.1.2 Existing Methodologies

For the problem of STLF, the main goal is to generate a model that can
capture all the dynamics and interactions between possible explanatory
variables of the load. For this task, it is found in the literature that
there is a broad consensus about possible explanatory variables: past
values of the load, weather information, calendar information, and possibly
some past-errors correction mechanisms. In the literature, it is often
found that some local models of the load are used to produce short-term
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forecasts; the local models are selected in order to isolate a seasonal pattern
(working only with winter, summer, evenings, working-days, etc). By
following a seasonal-modelling approach, it is possible to incorporate a
priori information by appropriately choosing the model structure. Then,
a priori information concerning the seasonalities at several levels (daily,
weekly, yearly, etc.) can be included directly in the model. Within the time
series literature, it is known that seasonality can be modelled in different
ways. The simplest approach is to assume deterministic seasonality that
can be represented by including binary or dummy variables in the model.
More complex approaches include the assumption of stochastic seasonality,
in the framework of Box-Jenkins seasonal ARIMA models [13, 91], leading
to testing for seasonal unit roots in time series analysis [64]; the use of
nonparametric models with seasonal components [139]; or, more recently,
the application of seasonal-varying parameters in an autoregression [29,42].
This has led to the development of a wide range of models based on different
techniques. In recent literature, some interesting examples are related to
traditional time series analysis [8, 63, 97], and neural networks applications
[41,71,72,89,110].

8.2 Modeling Strategy

In this section, the modeling strategy is described in terms of dataset
definition, model structure and estimation procedure.

8.2.1 Data Definition

The dataset consists of several time series, each containing hourly load
values from different HV-LV substations within the Belgian grid for a
period of approximately 5 years (from January 1998 until September 2002).
The load series differ in their behavior as they represent different types
of underlying customers (residential, business, industrial, etc.). A linear
regression containing only a linear trend is estimated for each load series,
to remove any growth trend present in the sample. Finally, the series are
normalized using the mean and standard deviation of the sample.
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Figure 8.1: Example of a Load series within a week. Daily cycles are visible,
as well as the weekend effects. Also visible are the intra-day phenomena,
such as peaks (morning, noon, evening) and valleys (night hours).

8.2.2 Using Nonlinear Black-Box Models

(N)ARX type of models are considered in the context of this chapter. The
load at a given hour is explained by the evolution of the load in previous
hours, and by the effect of exogenous variables keeping track of the different
seasonal patterns. For example, the dummy (binary) variable Wd ∈ R

7

is a vector of zeros with a “1” in the position of the day d in the week,
e.g. Monday (Wd = [1; 0; · · · ; 0]), Tuesday (Wd = [0; 1; 0; · · · ; 0]), etc.
Similarly, the variable Md ∈ R

12 is defined as a vector of zeros with a
“1” in the position of the month to which the day d belongs1. In addition,
temperature variables are included in order to capture the effect due to the
weather conditions. The hourly temperature variable Th is the observed local
temperature at hour h at a reference location (Ukkel) in Belgium. From
Th, 3 new variables are built to capture the effect of cooling and heating

1In case of a linear ARX model, to avoid exact collinearity between all the calendar
variables and the constant terms in the original system (9.2) only 6 of the Wd components
and only 11 of the Md components are incorporated in the model. This is a standard
implementation of dummy variables in any econometric estimation procedure [67].
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Figure 8.2: Comparison of a weekly profile over the year. The load in Winter
(dark-top curve) is different from the load in Summer (bottom-light curve),
both being different from a profile from Spring or Autumn (intermediate
curves). Notice the pronounced evening peaks that only occur in Winter for
this substation.

requirements [25] in the load. The variable CRh = max(Th − 20o, 0) is
defined for capturing the cooling requirement, if the ambient temperature is
above 20oC. Similarly, heating and extra-heating variables are defined using
HRh = max(16.5o − Th, 0) and XHRh = max(5.0o − Th, 0), respectively,
with the temperature thresholds taken from standard techniques within the
energy industry. Therefore, Th has been expanded into a vector vh = [CRh,
HRh, XHRh].

The model formulation to be used contains the following explanatory
variables:

• An autoregressive part of 48 lagged load values (i.e. the last 2 days)

• Temperature-related variables measuring the effect of temperature on
cooling and heating requirements (3 variables)

• Calendar information in the form of dummy variables for month of the
year, day of the week and hour of the day (43 variables)
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Figure 8.3: Nonlinear relation between temperature and load. One of
the reasons to use nonlinear models is due to the relation between the
ambient temperature and the observed load. Cold days trigger more
energy consumption, as well as very warm days. The daily peak load is
plotted against the daily mean temperature, for working days (’.’) and
weekends (’x’). The nonlinear relation is captured by a LS-SVM regression,
represented by thick lines on each case. A forecasting model needs to be
able to cope with this nonlinear effect.

This leads to a set of 94 (48+3+43) explanatory variables to be included in
the regression vector zt of the black-box NARX model

yt = wT ϕ(zt) + b (8.1)

where yt is the load at time t, b is a constant (bias) term, and ϕ(·) : R
n →

R
Nh is the feature map.

A sample of 1500 days (36,000 hours) is considered for training the
models, estimated (due to the large number of datapoints) in primal space
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(6.21) using the Nyström method described on Chapter 2. Tuning of
the RBF kernel hyperparameter σ and the regularization parameter γ is
performed by 10 fold cross validation in the training sample, selecting those
hyperparameters that minimize the cross validation mean squared error
(MSE).

To illustrate the effect of M , the number of initial support vectors from
which the nonlinear approximation (2.22) is computed, on the forecasting
performance of the estimated model, the methodology is tested for sizes of
M = 200, 400, 600, 800 and 1000 support vectors. Each time, the support
vectors are selected using the quadratic Renyi entropy criterion. It is
important to stress out that between 0.5% and 3% of the dataset is used to
build the nonlinear mapping for the entire sample, translating in a sparse
representation of the nonlinear mapping. Having a sparse representation
makes the model less prone to overfitting, which has been an important
issue in recent literature [59]. Values of M larger than 1000 are possible, as
the only constraint in this approach is the computational time depending
on the resources at hand.

The performance of this fixed-size LS-SVM black-box model is compared
to the performance of a linear ARX model estimated with the same initial
set of variables, i.e., using the same regression vector zt. In addition, the
comparison is extended to include the performance of a standard LS-SVM
in dual form, estimated using only the last 1000 datapoints of the sample.
In this way, it is possible to compare the difference in performance between
2 nonlinear models in the following two cases: when the full sample is taken
into account (fixed-size LS-SVM) or only when the most recent 1000 hours
(last 42 days) are considered.

The forecasting performance is assessed as follows. The simplest scheme is
to forecast the first out-of-sample load value using all information available,
then wait one hour until the true value of this forecast has been observed,
and then forecast the next value again using all available information (one-
hour-ahead prediction). However, planning engineers require forecasts with
a longer time horizon, at least a full day in advance. In this case, it is required
to predict the first out-of-sample value using the full working sample, then
predict the second value out-of-sample using this first prediction, and so
on (iterative simulation). In practice, it is reasonable to stop this iterative
process after 24 hours and update the information with actual observations.
The methods are compared by looking at their test set performance, defined
on a test data not used during training/estimation consisting of the block
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of 15 days after the last training point. The performance is assessed via
the Mean Squared Error (MSE) for the one-step-ahead prediction and the
24-hours-ahead-simulation with updates at 00:00 hrs. of each day. In these
forecasting exercises, the external variables are assumed to be known. This is
not a problem for the calendar variables, although external weather forecasts
[118] should be used instead of actual temperature values. Nevertheless,
using actual values for temperature as inputs for the load forecasting helps
to assess the model performance without additional error sources. On the
other hand, using different temperature values leads to simulation exercises,
where the aim is to look at what would be the load if the temperature
pattern changes.

8.3 Empirical Results

In this section the results of the fixed-size LS-SVM methodology applied to
the load modelling problem are discussed, regarding the training procedure,
selection of support vectors and out of sample performance.

8.3.1 Cross-Validation Performance

The above procedure is applied for M = 200, 400, 600, 800 and 1000.
Training using 10 fold crossvalidation is performed for each case, looking
for an optimal value of the hyperparameter σ in the RBF kernel. Figure
8.4 shows the evolution of the MSE in the 10 fold crossvalidation training
procedure for the cases of M = 200 and M = 400 in one of the load series,
where it can be seen that the optimal value is σ = 2.01. For the cases
M = 600, M = 800 and M = 1000 the crossvalidation process using
only the selected σ is performed. The results for the computed MSE in
a crossvalidation basis, and the equivalent result for the linear model, are
shown in Table 8.1 using the optimal σ.

8.3.2 Support Vector Selection

The initial set of M support vectors has been selected by maximizing
the quadratic Renyi entropy (2.24). In this way, it is possible to obtain
a selection of those M points that converge to a maximum value of the
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Estimation Mean Squared Error (CV)

Linear 0.043
M=200 0.032
M=400 0.022
M=600 0.017
M=800 0.016
M=1000 0.015

Table 8.1: Performance of the Fixed-Size LS-SVM models where the
nonlinear mapping approximation is built with M support vectors, on a
crossvalidation basis using the optimal σ.
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Figure 8.4: Performance evolution in the training procedure. The lines
show the evolution of the MSE in a 10 fold crossvalidation for the cases
M = 200 (full line) and M = 400 (dashed line). The optimal value for the
σ hyperparameter is 2.01.
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quadratic entropy. Figure 8.5 shows the evolution of the entropy value within
this iterative process (for a selected load series), for the case of M = 400.
Figure 8.6 shows the position (time index) of the first element of the selected
support vectors for the case of M = 400. It is interesting to see how the
selected support vectors are those for which the output series is located in
the regions of high load values (Winter), some in the lower values (Summer)
and almost none of them in Spring or Autumn.

8.3.3 Effect of Selection Method

It is interesting to verify the effect of the support vector selection method
into the final accuracy of the model. Maximizing the quadratic entropy is a
fast procedure, as it only requires the computation of a small kernel matrix
of dimension M . However, it is interesting to check what would happen if
a random selection of support vectors is made. Consider the following 2
cases. In the first case (Case I), a random sample of M support vectors is
used as the starting point for the iterative procedure of maximization of the
quadratic Renyi entropy. After the process has converged, the final selection
of support vectors is used to build the approximation of the nonlinear
mapping ϕ using the Nyström techniques. In the second case (Case II), the
random sample of M support vectors is used directly to build the nonlinear
approximation, thus no entropy is maximized. Both models are estimated in
primal space, and the forecasting performance on a test set is compared. For
this purpose, 20 different experiments are computed. Table 8.2 and Figure
8.7 show the comparison of the results after 20 random initial selections,
for the case where the model is estimated after doing a quadratic entropy
selection (Case I), or estimated directly (Case II). In all tests it has been
used M = 200.

The existence of the standard deviation in Case I accounts for the fact
that the convergence of the entropy selection is not unique, especially for
a selection of 200 points out of 36,000 possible samples. However, starting
from different random selections, the entropy-based selection yields lower
dispersion in the forecasting errors. For this dataset, and after 20 repetitions,
the average MSE for both models are quite similar, but there is no guarantee
that the random-selection will show this performance for a more complex
dataset.
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Figure 8.5: Evolution of the quadratic Renyi entropy within the iterative
search for support vectors with M = 400.

Support Vector Selection Method Mean Squared Error (MSE)
Average Standard Deviation

Entropy-based Selection (Case I) 0.0311 0.0016
Random-based Selection (Case II) 0.0317 0.0025

Table 8.2: Comparison of the average and standard deviation of the MSE for
a test set performance using M = 200 over 20 randomizations. Case I refers
to the random selection of support vectors and immediate estimation of the
model. Case II starts from the same random selection, performs quadratic-
based selection using the random sample as starting point, and then the
model is estimated.
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Figure 8.6: Normalized load from Series 1 used as training sample, shown
here only as daily averages rather than hourly values. The position of
the selected support vectors corresponding to the load sample output is
represented by dark bars at the bottom, showing the time index position of
the first element of the support vector.

8.3.4 Test Set Performance

The forecasting ability of the models is compared on a test set consisting of
the next 15 days after the last training point. The performance is assessed
over 2 forecasting modes: one-hour-ahead prediction, and 24-hours-ahead-
simulation with updates at 00:00 hrs. of each day. The performance of the
predictions obtained from any given model can be assessed by using both
MSE and MAPE (Mean Absolute Percentage Error).

The MSE is typically used within the general context of applied modeling.
Here the MAPE is also used as it is common practice in the particular
context of the STLF. Therefore, in this case study the performance of the
models is assessed using both indicators. Three models are estimated for
each load series: the fixed-size LS-SVM (FS-LSSVM) estimated using the
entire sample, the standard LS-SVM in dual version estimated with the last
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Figure 8.7: Box-plot of the MSE in a test set for models estimated with
entropy-based (1) and random (2) selection of support vectors. Results for
20 repetitions.

1000 datapoints of the training sample, and a linear model estimated with
the same variables as the FS-LSSVM.

The fixed-size LS-SVM models are computed using M = 1000 initial support
vectors. The difference across the forecasting ability over the series is due
to the different behavior of each particular load series. Tables 8.3 and
8.4 show the comparison between the models performance for the different
forecasting modes over the 10 load series. Clearly, the fixed-size LS-SVM
improves over the traditional LS-SVM, mostly as it uses more information
by including the entire datasample available, rather than just using the
last 1000 datapoints. In the context of load-forecasting, the existence
of important seasonal variations makes it important to include as many
datapoints as possible into the model. On the other hand, the linear model
shows good performance in some series, but it is always outperformed by the
fixed-size LS-SVM. Linear models for load forecasting have to be designed in
more detail to improve its performance, through the explicit incorporation of
their seasonal variations across days and weeks into the model (e.g. periodic
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linear autoregressions, as it will be seen on Chapter 9). The nonlinear model
requires less effort from the user in the definition of the model, and the whole
procedure can be programmed to be done automatically.

The comparison between the forecasts obtained with the fixed-size LS-SVM
and the linear model are shown on Figures 8.8, 8.9 and 8.10 for Series 3,
4 and 9, respectively. In each figure, the top panels show the performance
using one-hour-ahead forecasts. The bottom panels show the comparison
using 24-hours-ahead simulation. Each plot shows the first 7 days of the
test set, starting with 00:00 hrs on Monday. Clearly, the fixed-size LS-SVM
model provides better forecasts, particularly for the case of 24-hours-ahead
prediction. It is also interesting to notice the different daily profile of each
load series.

8.4 Conclusions

This chapter illustrated the application of a black-box NARX model to the
short-term load forecasting problem, estimated using a large-scale nonlinear
regression technique. It has been shown that it is possible to build a
large scale nonlinear regression model, using the fixed-size LS-SVM, from a
dataset consisting of N = 36, 000 datapoints. This is done by selecting an
initial subsample of size M ≪ N , providing a sparse representation of the
nonlinear mapping. The results show that the nonlinear regressions in primal
space improve their accuracy with larger values of M . The maximum value
of M to be used depends on the computational resources at hand, and also
on the underlying distributional properties of the dataset. In this context, it
is shown that quadratic entropy active selection of support vectors leads to
performances with a lower dispersion as those obtained by random selection
of support vectors.

The forecasting performance, assessed for 10 different load series, is very
satisfactory. The MSE levels are below 3% in most cases. Not only the model
estimated with fixed-size LS-SVM produces better results than a linear
model estimated with the same variables, but also it produces better results
than a standard LS-SVM in dual space estimated using only the last 1,000
datapoints. This shows that it is important to consider as much datapoints
as possible into the modeling task. Furthermore, the good performance
of the fixed-size LS-SVM is obtained based on a subsample of M = 1000
initial support vectors, representing less than 3% of the available sample.
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Series Mode Performance LS-SVM FS-LSSVM Linear

Series 1 1-h-ahead MSE 2.2% 0.6% 1.4%
MAPE 2.8% 1.5% 2.5%

24-h-ahead MSE 5.0% 2.7% 9.5%
MAPE 4.3% 3.1% 5.9%

Series 2 1-h-ahead MSE 3.4% 2.3% 3.0%
MAPE 4.3% 3.4% 3.9%

24-h-ahead MSE 20.2% 11.5% 11.9%
MAPE 10.6% 7.4% 7.9%

Series 3 1-h-ahead MSE 9.7% 6.7% 10.2%
MAPE 29.4% 17.7% 24.9%

24-h-ahead MSE 15.1% 9.4% 15.0%
MAPE 30.1% 23.1% 29.7%

Series 4 1-h-ahead MSE 4.9% 4.0% 7.4%
MAPE 12.6% 10.5% 16.2%

24-h-ahead MSE 10.1% 6.0% 14.7%
MAPE 20.7% 14.5% 22.3%

Series 5 1-h-ahead MSE 2.2% 0.9% 1.7%
MAPE 2.6% 1.7% 2.2%

24-h-ahead MSE 9.0% 3.8% 6.7%
MAPE 5.5% 3.4% 4.4%

Table 8.3: Model performance on the test set for different forecasting modes,
for series 1-5.

Further research on a more dedicated definition of the initial input variables
(e.g. incorporation of external variables to reflect industrial activity, use of
explicit seasonal information, etc.) should lead to further improvements.
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Series Mode Performance LS-SVM FS-LSSVM Linear

Series 6 1-h-ahead MSE 0.8% 0.3% 1.1%
MAPE 2.3% 1.4% 2.2%

24-h-ahead MSE 3.9% 2.6% 7.5%
MAPE 5.1% 4.4% 7.1%

Series 7 1-h-ahead MSE 2.6% 1.6% 3.0%
MAPE 2.9% 2.2% 3.1%

24-h-ahead MSE 5.7% 3.8% 6.8%
MAPE 4.5% 3.5% 4.7%

Series 8 1-h-ahead MSE 2.4% 1.5% 2.2%
MAPE 3.0% 2.4% 2.8%

24-h-ahead MSE 9.8% 5.3% 7.7%
MAPE 7.3% 4.4% 5.3%

Series 9 1-h-ahead MSE 0.9% 0.5% 1.3%
MAPE 1.8% 1.3% 2.0%

24-h-ahead MSE 3.2% 2.1% 6.9%
MAPE 3.4% 2.8% 5.3%

Series 10 1-h-ahead MSE 2.8% 2.3% 3.5%
MAPE 5.7% 4.9% 6.0%

24-h-ahead MSE 9.9% 8.2% 12.7%
MAPE 11.0% 10.9% 13.4%

Table 8.4: Model performance on the test set for different forecasting modes,
for series 6-10.



132 A Black-Box Approach for Load Forecasting

20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual Load
FS−LSSVM

Hour index — One Week

N
or

m
al

iz
ed

L
oa

d

20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual Load
Linear

Hour index — One Week

N
or

m
al

iz
ed

L
oa

d

20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual Load
FS−LSSVM

Hour index — One Week

N
or

m
al

iz
ed

L
oa

d

20 40 60 80 100 120 140 160

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Actual Load
Linear

Hour index — One Week

N
or

m
al

iz
ed

L
oa

d

Figure 8.8: Forecasts comparison. FS-LSSVM and Linear one-hour-ahead
predictions (Top-left and Top-right, respectively). FS-LSSVM and Linear
24-hours-ahead predictions (Bottom-left and Bottom-right, respectively), for
a full week (Series 3).
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Figure 8.9: Forecasts comparison. FS-LSSVM and Linear one-hour-ahead
predictions (Top-left and Top-right, respectively). FS-LSSVM and Linear
24-hours-ahead predictions (Bottom-left and Bottom-right, respectively), for
a full week (Series 4).
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Figure 8.10: Forecasts comparison. FS-LSSVM and Linear one-hour-ahead
predictions (Top-left and Top-right, respectively). FS-LSSVM and Linear
24-hours-ahead predictions (Bottom-left and Bottom-right, respectively), for
a full week (Series 9).



Chapter 9

Load Forecasting with
Structured Models

The implementation of structured models for the problem of
short-term load forecasting is developed in this chapter. The
models are extended to include autocorrelated residuals, and/or
linear parametric parts, thus using the AR-NARX, PL-NARX
and AR-PL-NARX model structures. In order to make an
assessment of the forecasting ability as strict as possible, these
structured nonlinear models are estimated using different load
series, and their performance is compared with that of a highly
structured linear model also developed within the context of this
work. The structured linear model provides a strong benchmark
for the nonlinear models. In this context, the goal of this chapter
is to show the improvement of using structured over unstructured
models, and to provide a methodological basis for the use of the
structured nonlinear models developed for the problem of STLF.
In addition, the use of partially linear structures leads to a set
of identified parameters which may yield a direct interpretation,
as in the case of linear models, for a set of variables of interest.
This chapter is designed as follows. Section 9.1 presents the
structured linear model formulation to be used. The nonlinear
model formulations to be considered are described on Section 9.2.
The empirical methodology and results are reported in Sections
9.3 and 9.4, respectively.
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9.1 Structured Linear Models

This section describes the structured linear model formulation based on
Periodic Autoregressions.

9.1.1 Periodic Autoregressions

One of the recent approaches for the seasonal modeling of time series is
related to the so-called Periodic Autoregressions (PAR) [42, 85, 120]. In
simple terms, an autoregression is said to be periodic when the parameters
are allowed to vary across seasons. Consider the case of a univariate time
series yt, t = 1, · · · , N , (in this case, the hourly load measurements) available
for a sample of Nd = N/24 days, corresponding to the N hours. A periodic
autoregressive model of order p (PAR(p)) can be written as

yt = Cs + θs,1yt−1 + θs,2yt−2 + · · · + θs,pyt−p + εs,t (9.1)

where Cs is a seasonally varying intercept term and the θs,i are the
autoregressive parameters up to the order p, varying across the Ns seasons
(s = 1, 2, · · · , Ns). The choice of Ns depends on the frequency of the data
and the seasonal pattern under study. The error term εt,s can be a standard
white noise with zero mean and variance σ, or it can be allowed to have
a variance σs corresponding to seasonal heteroskedasticity. Equation (9.1)
gives rise to a system of Ns equations that can be estimated using Ordinary
Least Squares (OLS).

9.1.2 Model Formulation

For the model implementation [29,49], the monthly and weekly seasonals are
modelled by their corresponding dummy variables as defined in Chapter 8,
and the intra-daily seasonal pattern is assumed to be captured by the PAR
parameters. In other words, Ns = 24 is the number of different “seasons”
to be identified using the PAR model. Denote by yh,d the value of the load
measured in hour h of day d, with h = 1, 2, · · · , 24 and d = 1, 2, · · · , Nd.
A formulation is built where the hourly load yh,d is a function of the last
48 hourly values. The parameter p of the PAR(p) is, therefore, p = 48.
This value is defined by trying first p = 24, p = 36 and finally p = 48 in
order to obtain a satisfactory model performance and, at the same time,
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keeping model parsimony. The PAR(48) model applied to the hourly load
forecasting problem defines the following set of equations:

y1,d = C1 + θ1,1y24,d−1 + θ1,2y23,d−1 + · · · + ε1,d

y2,d = C2 + θ2,1y1,d + θ2,2y24,d−1 + · · · + ε2,d

y3,d = C3 + θ3,1y2,d + θ3,2y1,d + · · · + ε3,d (9.2)

...

y24,d = C24 + θ24,1y23,d + θ24,2y22,d + · · · + ε24,d.

This basic PAR template consists of 24 × 49 = 1176 parameters. This
template is further extended to include exogenous variables to account for
temperature effects as well as monthly and weekly seasonal variations, as
described in Chapter 8, by the variables v, Md, Wd.

With the inclusion of the exogenous variables (6 for the week calendar, 11
for the month calendar, and 3 for the temperature-related variables), the
total number of coefficients to be estimated using a PAR(48) with Ns = 24
is 24 × (49 + 6 + 11 + 3) = 1656. The augmented system (9.3) is estimated
individually for each one of the available time series, using OLS with t−tests
of significance to keep only those coefficients statistically different from zero.
By using the same model template for all substations in the electricity grid
makes it possible to perform all kinds of comparisons in terms of their
parameter estimates, accuracy obtained, etc.

y1,d = C1 + θ1,1y24,d−1 + θ1,2y23,d−1 + · · · + θ1,48y1,d−2 +

+αT
1 Wd + βT

1 Md + γT
1,dv1,d + ε1,d

y2,d = C2 + θ2,1y1,d + θ2,2y24,d−1 + · · · + θ2,48y2,d−2 +

+αT
2 Wd + βT

2 Md + γT
2,dv2,d + ε2,d

y3,d = C3 + θ3,1y2,d + θ3,2y1,d + · · · + θ3,48y3,d−2 + (9.3)

+αT
3 Wd + βT

3 Md + γT
3,dv3,d + ε3,d

...

y24,d = C24 + θ24,1y23,d + θ24,2y22,d + · · · + θ24,48y24,d−2 +

+αT
24Wd + βT

24Md + γT
24,dv24,d + ε24,d
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9.2 Structured Nonlinear Models

9.2.1 AR-NARX Model

The black-box NARX model estimated in Chapter 8 is extended by imposing
autocorrelation on the residuals,

{

yt = g(zt) + et

et = ρet−τ + rt,
(9.4)

using τ = 24 to include the correlation with the load observed in the same
hour of the previous day. The parameter ρ is optimized as a hyperparameter
on a cross-validation basis. The model is estimated on primal space using
the fixed-size version (6.23).

9.2.2 PL-AR-NARX

Consider the partially linear parameterizations PL-NARX (6.9) estimated
in primal space by using (6.25), and the PL-AR-NARX formulation (6.11)
estimated through (6.27). By using these structures, it is possible to
observe the different performances which can be obtained by using different
regressors as linear or nonlinear. Since the seminal work of partially linear
models applied to electricity prices [25], it has been common practice to
separate the inputs which are the past values of the load, from those inputs
which are calendar and temperature effects. In the notation used here,
starting from the original regression vector zt from (8.1), the following
partitions are defined to be used in the PL-AR-NARX models:

• Use the past values of the load yt−i, i = 1, . . . , 48 as nonlinear regres-
sors, and the exogenous inputs ut (calendar and temperature effects)
as linear regressors. This is, zA,t = ut, zB,t = [yt−1; yt−2, . . . , yt−48].

• Use the past values of the load yt−i, i = 1, . . . , 48 as linear regressors,
and the exogenous inputs ut (calendar and temperature effects) as
nonlinear regressors: zA,t = [yt−1; yt−2, · · · , yt−48], zB,t = ut.

The corresponding PL-AR-NARX models are estimated from these formu-
lation by also including a correlation structure with τ = 24 as in the case of
(9.4).
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9.3 Methodology

A description of the methodology for model estimation and final assessment
is described on this section.

9.3.1 Available data

A set of 4 different load series, each one containing 36,000 datapoints for
the training set, is considered for this exercise. The linear PAR models are
estimated individually for each series. Following the same procedure as in
Chapter 8, a first linear regression is estimated for each series to remove
any growth trend existing in the data. Each series is normalized using the
sample average and standard deviation.

9.3.2 Implementation using Fixed-Size versions

The size M of the subsample from which the feature map approximation
is computed can affect the performance of the final model. For this
implementation we use M = 1000, which accounts for 4% of the available
dataset. As observed on Chapter 8, the size of M = 1000 can produce very
good results for this problem without requiring too much computational
effort. Larger values for M improve the results only marginally at a higher
computational cost. For every load series, the selection of support vector is
made by maximization of the quadratic Renyi entropy.

The tuning of the RBF kernel hyperparameter σ, the regularization term γ
and the AR coefficient ρ are performed by 10 fold cross-validation (CV) in
the training sample. For a given kernel function (built with σ and ρ using the
equivalent kernel formulations given on Table 7.4) and a given regularization
parameter γ, the training sample is divided in 10 parts, 9 of which are used
for model estimation. The performance of the estimated model is assessed in
the remaining data part (used as a test set). By repeating the process over
the 10 parts, the cross-validation performance of the model is the average of
the 10 individual performances. The whole process is repeated for different
hyperparameters.
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9.3.3 Performance Assessment

The final models, linear and nonlinear, are evaluated on different test
samples (not part of the training set), where their performance is measured
by the Mean Squared Error (MSE). Usually models for short-term load
forecasting may be used for prediction during a certain number of days,
after which the models are re-estimated with the new information available.
Typically a model might be re-estimated after no more than one week, in
some cases in a matter of a few days. Rarely a model remains valid for
more than 7 days without re-estimation. In this context, for the purposes of
evaluation of the models in this study, 50 different non-overlapping weeks are
used to assess the model performances. Denote by d the last day contained in
the training dataset. The first test period is the week occurring immediately
after the training data, going from d + 1 until d + 7. The second test week
begins at d + 8, finishing at d + 14, the third period begins at d + 15 until
d + 21, and so on, until the last test period which begins at d + 344 and
ends on d + 350. The model performances are assessed by using MSE on
each of the test periods, after which the average and standard deviation are
reported for each case.

9.4 Results

In this section, the empirical results are presented. First, an individual
description for linear and nonlinear models is presented, and a final
comparison concludes the section. It is important to keep in mind that we
are using a highly structured multi-equation linear model as a benchmark
towards the single-equation structured nonlinear models. Therefore the PAR
models probably belong to a different class of models than those comparable
to the nonlinear variants of the NARX models used in this work. However,
from a practical perspective it is a very strict benchmark for checking the
quality of the (AR)-NARX models.

9.4.1 PAR Model

One practical advantage of linear models is that the coefficients have a direct
interpretation, capturing the effect of each of the explanatory variables on
the load behavior. The particular advantage of the PAR model structure
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is that it provides a coefficient for each variable for each hour of the
day. In this way, it is possible to compare the behavior of different
load series by looking into the estimated values of parameters of interest.
One example is the set of parameters related to temperature CRh,d,HRh,d,
XHRh,d; the difference between corresponding parameters gives information
on temperature sensitivity.

Figure 9.1 shows the results for heating and cooling requirements (HRh,d

and CRh,d, respectively), where their estimated coefficients are depicted as
bars. Usually, it is accepted that heating and cooling requirements increase
the energy consumption; this is shown by Series 1 in Figure 9.1.

However, other series exhibit a different sensitivity. Series 2 does not seem
to show temperature sensitivity for cooling. Series 3 and 4 show that the
maximum effects from temperature-related variables can occur at different
hours of the day.

The forecasting performance of the PAR models is very satisfactory in
terms of the one-hour-ahead predictions and the 24-hour-ahead simulations.
Figures 9.2 and 9.3 illustrate the performance of the PAR models for the
different forecasting modes for Series 1 and Series 2 for one of the test
weeks. The actual load (thin line) is compared to the one-hour-ahead
predictions (thick line, top panel) and the 24-hours-ahead simulations (thick
line, bottom panel).

9.4.2 AR-NARX

The autocorrelation parameter ρ is tuned by minimizing the cross-validation
MSE, obtaining an optimal ρ∗ close to -0.4 for Series 1, as shown in Figure
(9.4). According to this result, a negative correlation on the residuals of the
NARX model can be captured using the AR-NARX parameterization.

9.4.3 PL-AR-NARX

Finally, it is still possible to check the effect of imposing an autocorrelation
structure to the partially linear models using AR-PL-NARX formulations.
Using the partitions over the original regression vector defined above, two
models are estimated, PL-AR-NARX-1 and PL-AR-NARX-2.
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Figure 9.1: Parameters Identification with PAR models. The estimated
coefficients for Heating (top) and Cooling (Bottom) requirements show
different types of sensitivities across substations. Those with zero value are
not statistically significant. Maximum effects can occur at different hour of
the day, and also with different sign: sometimes cooling increases the load,
sometimes the need for cooling has a decreasing effect.

In the case of the PL-AR-NARX-1 model (which uses zA,t = ut, zB,t =
[yt−1; yt−2, . . . , yt−48]), the optimal ρ∗ is found to be -0.2, while in the case of
the PL-AR-NARX-2 model (which uses zA,t = [yt−1; yt−2, . . . , yt−48], zB,t =
vecUt), ρ∗ = −0.5 for Series 3, as shown in Figure 9.7.

The PL-AR-NARX models contain a subset of linear regressors. Therefore
it is possible to explore the coefficients of the explanatory variables of
interest. For example, PL-AR-NARX-1 model contains a linear set of
coefficients for the calendar and temperature variables. Figure 9.8 shows
the coefficients for calendar (monthly) effects for Series 2 (relative to the
effect of December). This series has a clear winter-summer cycle, where the
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Figure 9.2: Prediction performance of the PAR model for Series 1 for a week
in the test set. The actual load (thin line) is compared to the predictions
from the PAR models (thick line) for the one-hour-ahead prediction mode
(top) and the 24-hours-ahead simulation mode (bottom).
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Figure 9.3: Prediction performance of the PAR model for Series 2 for a week
in the test set. The actual load (thin line) is compared to the predictions
from the PAR models (thick line) for the one-hour-ahead prediction mode
(top) and the 24-hours-ahead simulation mode (bottom).
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Figure 9.4: Cross-validation performance of the AR-NARX model for Series
1 for different values of ρ.

lower bars are located in the summer months, and only the January effect is
slightly higher than that of December (reference level). Although the same
exercise can be done with a purely linear model, the PL-NARX structure
makes sure the parameters are estimated in a better way (Chapter 4) by
taking into account the nonlinear effects of the other regressors. Figure
9.9 shows the same exercise for the case of Series 3, where the effects from
January until March still show an increase in the load over the December
value. Surprisingly, the effect of October is also above the reference level
of December. It is important to remember that these effects have been
cleaned from the weather variations (which, in turn, obtain their own set
of parameters). Therefore, these monthly effects are related to non-weather
seasonal patterns, like e.g. more daylight in summer and holiday periods.
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Figure 9.5: Prediction performance of the AR-NARX for Series 3 for a week
in the test set. The actual load (thin line) is compared to the predictions
from the AR-NARX (thick line) for the one-hour-ahead prediction mode
(top) and the 24-hours-ahead simulation mode (bottom).
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Figure 9.6: Prediction performance of the AR-NARX model for Series 4
for a week in the test set. The actual load (thin line) is compared to the
predictions from the AR-NARX models (thick line) for the one-hour-ahead
prediction mode (top) and the 24-hours-ahead simulation mode (bottom).
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Figure 9.7: Cross-validation performance on Series 3 of the PL-NARX-2
model for different values of ρ.

9.4.4 Forecasting Comparison

The forecasting performance of the different models is reported in Table 9.1
for the case of one-hour-ahead predictions. The performance of the PAR
models is not as good as those from the nonlinear models. The comparison
across nonlinear models shows consistent results. In general, it is possible to
conclude that the addition of the autocorrelated noise to a model structure
improves the results over the case where autocorrelation is not included. In
some cases this improvement is small or even non-existing, as in the case of
the change between the NARX and AR-NARX models for Series 3. However,
for the partially linear structures, a substantial improvement is observable,
particularly for the PL-NARX-2 models. Using a partially linear structure
gives the user the freedom to experiment with different set of regressors,
particularly using a linear term for certain parameters of interest. Although
the partially linear models do not achieve the excellent performances of
the NARX models for these load series, clearly they improve substantially
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Figure 9.8: Monthly effects captured by the PL-AR-NARX-1 model for
Series 1. Each bar shows the contribution due to “being in January” (1st
column), “being in February” (2nd column), until “being in November”
(11th column). Each bar is relative to the month of December (level 0). A
month with a negative value, indicates that its associated effect contributes
to a lower value of the load than the one observed in December.

over the linear models, even for the highly structured linear models. When
the goal of modelling is not only prediction accuracy, but also descriptive
information about load series, the partially linear models (with AR noise)
can give the best of both worlds. The results are depicted on Figures 9.10,
9.11 and 9.12.

For the 24-hour-ahead simulation mode, the comparison is made between
unstructured and structured models. Table 9.2 shows the big improvement
in the linear models when moving from an unstructured ARX (as the one
used in Chapter 8) towards a PAR model. For Series 3 and 4, the PAR
model produces even better results than the fully black-box NARX model.
However, the NARX models also improve when including the structure in
the residuals. The inclusion of the autocorrelated residuals as defined in
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Figure 9.9: Monthly effects captured by the PL-AR-NARX-1 model for
Series 3. Each bar shows the contribution due to “being in January” (1st
column), “being in February” (2nd column), until “being in November”
(11th column). Each bar is relative to the month of December (level 0). A
month with a negative value, indicates that its associated effect contributes
to a lower value of the load than the one observed in December.

(9.4) produces an improvement in such way that the final nonlinear model
outperforms the PAR model as well. This set of results is also depicted on
Figures 9.13 and 9.14.

9.5 Conclusion

For the problem of short-term load forecasting, it has been shown that the
use of structured models can improve over the case of the ARX and NARX
models of Chapter 8. In the linear case, the Periodic Autoregressive (PAR)
models provide a highly-structured linear parameterization for this problem,
substantially improving the performance over the one of the linear ARX
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Figure 9.10: One-hour-ahead forecasting performance over 50 different test
weeks for all the models, for Series 1. The PAR model provides the worst
performance; the unstructured NARX model is already much better. The
inclusion of the autocorrelated residuals improves the model performances,
particularly for the PL-NARX-2 model.

Without AR noise With AR noise
PAR NARX PL-1 PL-2 NARX PL-1 PL-2

1 0.0142 0.0110 0.0124 0.0130 0.0107 0.0122 0.0120
(0.0016) (0.0018) (0.0014) (0.0017) (0.0016) (0.0015) (0.0017)

2 0.0180 0.0081 0.0107 0.0120 0.0074 0.0086 0.0100
(0.0035) (0.0018) (0.0005) (0.0018) (0.0012) (0.0008) (0.0021)

3 0.0115 0.0057 0.0060 0.0090 0.0057 0.0060 0.0081
(0.0016) (0.0016) (0.0012) (0.0013) (0.0015) (0.0014) (0.0013)

4 0.0140 0.0073 0.0081 0.0106 0.0071 0.0081 0.0101
(0.0040) (0.0017) (0.0022) (0.0026) (0.0017) (0.0021) (0.0028)

Table 9.1: Results for the 4 load series and the different model structures for
the case of one-hour-ahead forecasting mode over 50 different test sets. The
average MSE is reported, and the standard deviation is given in brackets.



152 Load Forecasting with Structured Models

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0.022

M
S
E

on
te

st
se

ts

PAR NARX PL1 PL2 ARNX PLAR1 PLAR2

Figure 9.11: One-hour-ahead forecasting performance over 50 different test
weeks for all the models, for Series 4. The PAR model provides the worst
performance; the unstructured NARX model is already much better. The
inclusion of the autocorrelated residuals improves the model performances,
particularly for the PL-NARX-2 model.

models. The PAR models require the estimation of a set of 24 equations,
one for each hour of the day, in such a way that each input variable obtains
an estimated coefficient varying across 24 hours. As this is a linear model,
it provides interpretable results for each of the variables of interest.

The nonlinear models, on the other hand, have been estimated including
an autocorrelation with the residuals lagged 24 hours. The large sample
size makes it necessary to estimate the models in primal space, for which
the support vectors are selected by maximizing the quadratic Renyi entropy
with a subsample of 1000 datapoints. The parameter of the autocorrelated
residuals is tuned as a hyperparameter under a cross-validation procedure.
This increases the computational cost of the models, although everything
can be done in such a way that no user interaction is required.
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Figure 9.12: One-hour-ahead forecasting performance over 50 different test
weeks for all the models, for Series 2. The PAR model provides the worst
performance; the unstructured NARX model is already much better. The
inclusion of the autocorrelated residuals improves the model performances,
particularly for the PL-NARX-2 model.

The models are compared on a one-hour-ahead forecasting mode, where
the nonlinear models show better results than the PAR model. In
addition, adding the extra autocorrelation to the residuals on each of the
corresponding nonlinear structures (NARX, PL-NARX-1 and PL-NARX-
2), does not deteriorate the results. On the contrary, particularly for
the partially linear structures, the results show substantial improvements,
bringing them closer to the fully black-box NARX models. This result is of
major practical importance, as it shows that the partially linear structures
can obtain forecasting performances similar to a fully nonlinear model, yet
keeping some regressors in linear form in such a way that there is a set of
interpretable coefficients for the variables of interest.

Finally, a comparison is made in a 24-hours-ahead simulation mode, for
the case of structured versus unstructured models. The improvement from
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Figure 9.13: 24 hours ahead simulation performance over 50 different test
weeks. The performance of the (unstructured) linear ARX model improves
when changing to a structured PAR formulation. The NARX model also
improves its performance when including the structured autocorrelated part.
Results shown for Series 2.

an unstructured linear ARX to a highly structured PAR model is clearly
observable. However, the NARX model improves towards a AR-NARX
formulation, consistently obtaining the best results over the different test
sets and load series. From a practical perspective, the use of PAR models
may require more supervision or direct user interaction. The nonlinear
models implemented for this chapter can take more computing time, but
almost no interaction is required. The framework of nonlinear models
using different structures can lead to further improvements not only on
load forecasting, but also as support for long term planning and scenario
analysis.
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Figure 9.14: 24 hours ahead simulation performance over 50 different test
weeks. The performance of the (unstructured) linear ARX model improves
when changing to a structured PAR formulation. The NARX model also
improves its performance when including the structured autocorrelated part.
Results shown for Series 4.
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Linear Models Nonlinear Models
Series ARX PAR NARX AR-NARX

Series 1 0.0628 0.0447 0.0401 0.0400
(0.0197) (0.0184) (0.0152) (0.0171)

Series 2 0.0843 0.0447 0.0338 0.0301
(0.0337) (0.0238) (0.0248) (0.0237)

Series 3 0.0874 0.0390 0.0468 0.0309
(0.0365) (0.0307) (0.0386) (0.0320)

Series 4 0.0572 0.0241 0.0267 0.0221
(0.0243) (0.0256) (0.0237) (0.0228)

Table 9.2: Summary of Results for the 4 load series and the selected model
structures for the case of 24-hour-ahead simulation mode over 50 different
test sets. The average MSE is reported, and the standard deviation is
given in brackets. This table shows the improvement when using structured
models.



Chapter 10

General Conclusions

10.1 Concluding Remarks

The research described on this thesis covers a series of topics related to
applied nonlinear modeling of time series. First, nonlinear estimation
techniques are presented, with a modular design for different cases of
nonlinear regression structures. Second, these techniques are incorporated
in the framework of nonlinear system identification, leading to practical
implementations for large scale problems, with very good results in terms
of forecasting ability. Third, the nonlinear system identification techniques
are further used in the context of the real-life problem of Short-Term load
forecasting.

The first part of the thesis presents the results in the context of regression
estimation. Taking as starting point the Least-Squares Support Vector
Machines formulation for nonlinear regression, this thesis extends the
framework by considering the following cases:

• Imposing symmetry to the nonlinear function estimated with LS-SVM
(Chapter 3)

• Imposing an additional parametric term for a new set of regressors
(Chapter 4), and

• Incorporating autocorrelation in the noise process of the nonlinear
regression (Chapter 5).

157
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All these extensions over the standard LS-SVM regression have been
formulated and discussed, including their links with related techniques from
statistics and/or econometrics. For each extension, the goal has been
to include the additional structures, which may be interpreted as prior
knowledge, in the form of equality constraints such that the least-squares
optimization problem remains convex, and Mercer’s theorem can be applied
to move from primal to dual space. An important conclusion is that the new
information contained in the additional constraints becomes embedded at
the kernel level. This equivalent kernel contains the information imposed to
the training datapoints, and it can be used directly to evaluate the models
for new datapoints without having to include the restrictions again. The
equivalent kernel makes an important contribution in terms of modularity
of the model formulation, in the sense that different types of prior knowledge
can be tested in practice simply by changing the kernel function being used.
In addition, the large scales versions of the different extensions of the LS-
SVM can be formulated in primal space by using the Nyström method in
the same way as in the standard LS-SVM, as the approximation is built
from any kernel matrix. Therefore, this kernel matrix can be built with any
of the obtained equivalent kernels, embedding the prior knowledge into the
approximation in primal space.

The second part of the thesis considers the nonlinear system identification
framework. By considering each one of the developed LS-SVM extensions
as building blocks, a modular approach for the case of nonlinear system
identification is proposed (Chapter 6). It has been shown that this
framework can be used for the estimation of NARX and AR-NARX model
structures, with different possible parameterizations. This framework also
provides a practical approach for moving gradually from a fully nonlinear
black-box model towards a linear model, being very important in applied
work. In addition, there is the practical advantage of formulating the
model in dual space and computing the estimation in primal space for very
large sample sizes, by using the equivalent kernel representation. Practical
examples for chaotic time series and the SilverBox dataset (Chapter 7) show
the merits of this methodology in applied work, where large scale problems
are successfully tackled using nonlinear regressions formulated in dual space
and estimated in primal space.

The third part of the thesis shows a real-life industrial application of
the methods developed in the previous two parts. The nonlinear system
identification methods are tested for the case of the short-term electric load
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forecasting problem. Large time series are available for this task, leading to
the estimation of the models in primal space. A first comparison between
a linear ARX and a nonlinear black-box NARX model, both formulated
with the same set of inputs, shows that the nonlinear model can capture
the behavior of the load series and generate more accurate forecasts than
the linear one, on one-hour-ahead and on 24-hours ahead basis, which
was verified empirically for 10 different load series. A second step in this
comparison has involved the formulation of more structured models, both
linear and nonlinear. A linear Periodic Autoregressive (PAR) formulation,
being a highly structured set of 24 hourly equations, is compared to different
parameterizations of AR-NARX models, where the structure is embedded
in the 24-hours correlation of the residuals. The results show the benefits
of including structure into the models. The improvement of the PAR linear
model is seen in the performance of the 24-hours-ahead simulations. The
nonlinear models can improve over the highly structured multi-equations
linear PAR models when the 24 hours correlation is taken into account. This
shows that structured single-equation nonlinear models can produce more
accurate forecasts on a one-hour-ahead basis, and they also can produce
more accurate 24 hours-ahead simulations than their linear counterparts.
From the practical point of view, it requires more practical expertise to
define and estimate a PAR model than any of the AR-NARX models based
on the solution of a linear system and where the required hyperparameters
are tuned by cross-validation.

The work described in this thesis starts from a theoretical perspective
and gradually descends towards practical examples and real-life industrial
applications. The modular approach proposed in this thesis is also reflected
in its chapter structure, where previous chapters are used to build the
subsequent chapters. It has been shown that such as approach can be quite
successful in the definition, estimation and final forecasting performance of
nonlinear time series models for real-life problems.

10.2 Future Research

The research presented in this work can be further extended in several
directions.

• One research topic is related to shifting from “Imposing” to “Detect-
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ing”. In the proposed framework, structured elements (symmetry,
correlated noise) can be imposed to the NARX models when the user
has prior knowledge about them. However, it is yet unclear how to
use this framework for detection of symmetry, or correlated residuals
for a given dataset.

• Another direction for future research is related to the hyperparameters
selection procedure. The current selection of hyperparameters is
performed following a training-validation scheme. However, this
procedure is time consuming. It works well for a limited number
of hyperparameters to be tuned, but it becomes a limiting factor
when the number of hyperparameters grows. In such case, this
approach is often too time consuming in practice. In the framework
presented in this thesis, the use of correlated noise has been developed
theoretically for a general AR(q) process containing q parameters to be
identified, but in practice this is only implemented as AR(1) because
the parameters are tuned in a cross-validation basis. As the correlation
parameters in the noise models get into the kernel function, the kernel
matrix has to be built before the other parameters of the model are
estimated. If, on the other hand, the correlation parameters are
considered to be unknowns at the same level as the lagrange multipliers
and the bias term, then the problem becomes nonconvex. In this sense,
future research involves the development of an efficient optimization
method for this possibly nonconvex problem in order to be able to
estimate models beyond the AR(1).

• Another line for future research involves the extensions towards other
model structures. Not only NARX or AR-NARX models, but also
nonlinear output-error models (NOE), nonlinear Box-Jenkins (NBJ),
nonlinear ARMAX models, etc. Currently only past values of inputs
and outputs are used as regressors in the nonlinear models presented
in this thesis. The other model structures require the use of past
predictions and/or past residuals in the model formulation, which leads
to recurrent models and/or nonconvex optimization formulations.

• It is also important to incorporate the quantification of the error for the
predictions. Existing techniques for error bars, based on probabilistic
assumptions and/or dedicated bootstrap methods, are derived only for
the standard LS-SVM regression. It is interesting to study the effect
of imposing the extra constraints into the error bars quantification.
Imposing more structure into the model may translate in reducing the
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prediction errors.

• Finally, the implementations in the case of load forecasting can be
improved for more specific applications. Other real-life problems show
similar properties of seasonal behavior and large datasets available, e.g.
gas consumption, utilities, internet traffic, logistics and distribution,
and others. In these contexts, knowledge extraction, identification of
local weather sensitivities, applications for decision support, hedging
and pricing mechanisms, risk management on energy prices, are all
applications which can benefit from the framework presented on this
thesis.
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Appendix A

Clustering Load Series using
PAR representations

The multi-equations structure of the Periodic Autoregressive
(PAR) models used in Chapter 9 can be used to compute a Typical
Daily Profile, leading to a representation which can be used for
clustering. This appendix discusses the implementation of a
clustering exercise using the PAR models.

A.1 Clustering of Customer Profiles

Within the electricity sector the need for strategic information has become
extremely important. Not only accurate forecasts are needed for the short-
term operations and mid-term scheduling, but also network managers need
to have insight in the type of customers they have to supply as a support
for long-term planning. The unbundling between generation, transmission,
distribution and supply induced by the market liberalization has led to
network managers being partially blind beyond a certain substation level
with respect to the final customers. In these cases, it is required to
use indirect techniques to assess the type of demand they have to face
[58, 75] in order to support their long-term investment planning. In this
context, categories of residential, business and industrial customers have
been documented for some locations [15,66] and usually they are recognized
by their “typical” load pattern over a day.
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The two problems outlined above, forecasting and profiling, usually have
been tackled independently. However, from a manager point of view, the
boundary between both problems is irrelevant, and eventually unnecessary.
Given a set of measurements, it is possible to produce accurate short-term
forecasts and at the same time generate a tool for extracting information on
the overall demand structure. In this chapter, it is shown how to identify
and remove the influence of temperature fluctuations and how to use the
forecasting model to identify the type of customer being modelled. This
methodology is demonstrated on a set of 245 time series provided by the
Belgian National Grid Operator ELIA, details of which are described below.
The methodology is oriented towards handling the problems of short-term
forecasting and profile segmentation in a unified framework based on the
PAR models described on Chapter 9. By exploiting the structure of the
PAR models, a smooth transition from a forecasting towards a clustering
problem is achieved.

A.2 Typical Daily Profiles

The definition of a Typical Daily Profile for each substation from the
parameters of the system (9.3) is described in this section.

A.2.1 Equivalent Vectorial Notation and Convergence

By defining a vector yd = [y1,d y2,d y3,d · · · y23,d y24,d]
T ∈ R

24,
containing the load information for the 24 hours of day d, it is possible to
write (9.3) as

Φ0yd = c + Φ1yd−1 + Φ2yd−2 + Φ3Xd + εd (A.1)

with Φ0, Φ1, Φ2 and Φ3 containing the coefficients θ of the system (9.3)
[42]. The matrix Xd contains all exogenous variables for temperature
and calendar information. The system is now written in a Vector Auto-
Regression (VAR) form with 2 lagged values for yd [51], and it is easily seen
that the original PAR(48) is equivalent to a VAR(2) formulation. Once the
system (9.3) has been estimated, all coefficients of the matrices Φ0, Φ1, Φ2

and Φ3 are known. The next-day forecasts can be simply written as

Ed[yd+1] = ŷd+1 = Φ−1
0 {c + Φ1yd + Φ2yd−1 + Φ3Xd+1}
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where Ed is the expectation taken at time d. The matrix Φ0 is always
invertible as it is a lower triangular matrix with ones in the main diagonal.
Applying this formulation iteratively for n days, a multi-step ahead
prediction can be obtained. The above equation requires the knowledge
of the values of Xd+1 on day d. At least the calendar information is always
available for the future, and for the temperature information one should
rely on the best available weather-temperature forecasts. In any case, the
information contained in the variables Xd are exogenous (to the load) as
they are capturing seasonal effects to the load itself. Thus, a very interesting
question is to check what happens to the load when these variables are
defined to be zero, or in other words, when all seasonal effects are captured
and removed from the load model1.

Setting Xd = 0, the system becomes

Φ0yd = c + Φ1yd−1 + Φ2yd−2 + εd. (A.2)

If this equation is used in iterative-forecasting mode for n periods ahead,
it converges, under stability conditions, to a unique value y∗, which can be
computed as

y∗ = {Φ0 − Φ1 − Φ2}−1c. (A.3)

Convergence is achieved if and only if the VAR system (A.2) is stationary,
i.e., if the equation

|Φ0 − Φ1z − Φ2z
2| = 0 (A.4)

has all its roots zi outside the unit circle [51].

A.2.2 Typical Daily Profile Definition

The convergence condition (A.4) is verified for each of the 245 substations.
This is not surprising, since an autoregressive model defined with a “correct”
order leads to a stationary formulation, otherwise it can not be used as a
stable forecasting model. A model that does not satisfy the convergence
condition should be allowed to include extra lag terms, in order to write a
VAR with a higher order until it achieves stationarity. In this dataset, every
load series has its own convergence vector y∗, computed from the estimated

1Removing temperature and seasonal effects is a usual task in long-term grid
management, to compute year-to-year growth trends, to identify how much of the yearly
peak was due to weather, scenario analysis, etc.
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model coefficients contained in Φ0, Φ1, and Φ2. As each vector yd contains
daily information of the load, the y∗ convergence vector, computed after
all seasonal effects have been removed, can be interpreted in terms of daily
load information: it contains information about the typical daily profile of
the load in absence of seasonal and temperature information. Therefore, we
define the Typical Daily Profile (TDP) as follows.

Definition: The Typical Daily Profile (TDP) y∗ of a sample load series yd ∈
R

24, d = 1, · · · , Nd is the convergence vector of a VAR(q) system obtained
from an equivalent PAR(p) after extracting all exogenous information.

The definition requires the obtained VAR(q) system to be stationary, a
condition attainable in the process of defining the order of the PAR(p)
process. It is also an empirical definition, as it is based on a statistically
sound procedure which is the estimation of a set of autoregressions. The
TDP can be used as a representation of the corresponding substation for
which a PAR(p) model was initially computed. The main advantage of the
TDP is that it provides a representation, in terms of a daily load profile,
which is independent of the seasonal and calendar variations present in
the load. In other words, the difference between the TDP and the actual
observed daily load profile for a given day is attributable only to the seasonal
and calendar effects for that particular day.

A.2.3 Typical Daily Profiles in the current sample

The dataset contains information on 245 substations. Each substation
can be estimated using the PAR(48) model template, and its TDP can
be computed, leading to a set of 245 TDPs. To have an assessment of
the difference between each TDP and its underlying load history, Figure
A.1 shows 8 substations for which the TDP (thick line) is compared with
actual daily load profiles observed over 500 days randomly selected from the
dataset. For each substation, the TDP captures the behavior of the load that
is not attributable to seasonal and calendar variations. It is also clear that
the daily behavior of these substations are not the same, with peaks located
at different hours of the day. Using TDPs is thus a simple and powerful
procedure for comparing the profiles of substations. Once these profiles
have been identified, a natural question to ask is how many different types
of profiles there are in the sample. If it is assumed that a different profile
means a different type of underlying customer (or group of customers), the
question translates into customer segmentation, or customer clustering.
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Figure A.1: TDPs for selected 6 substations. Each panel shows the TDP of
a substation (thick line) in relation to the corresponding daily loads (dotted
lines) observed over 500 random days.

A.3 Clustering using Typical Daily Profiles

This sections describes the implementation of a clustering exercise. Having
identified the 245 Typical Daily Profiles (TDP), they are used as repre-
sentations for the original load series. Unsupervised clustering aims at
identifying different groups or patterns in a data sample, doing so without
external information from the user. In this setting, the aim is to know how
many different types of load profiles have to be considered, having no a priori
information about the particular composition of the demand beyond each
substation level.

A.3.1 Implementation

Clustering is a wide concept within statistics and machine learning [9,12,65].
In plain terms, the goal of a clustering algorithm is to identify groups of
“similar” data within the dataset, without using external information, and
assign each datapoint into (at least) one of the groups, or clusters. In this
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application K-means is used [119], a classic clustering technique available
as an standard function in many mathematical software packages. As a
preprocessing step, Principal Components Analysis [68] is applied to the
data in order to reduce the dimensionality of the problem. It is found
that by keeping 9 principal components it is possible to recover 99% of the
original set of TDPs. The application of K-means requires the user to give
the number of desired clusters NC as input parameter to the algorithm.
For this case, NC is tested from 2 to 15, which is a reasonable range, as
empirical research has identified a similar number of different profiles [66,75].
In order to choose the “best” clustering, performance or validity indices
are typically used [55]. In this paper the so-called Davies-Bouldin (DB)
validity index [21], which is a function of the ratio of the sum of within-
cluster scatter to between-cluster separation, is applied. For clusters denoted
Qi, i = 1, . . . NC , the DB index is

DB =
1

NC

NC
∑

j=1

max
l 6=j

S(Qj) + S(Ql)

d(Qj , Ql)
(A.5)

where S(Qk) is the (average) distance within cluster Qk and d(Qj , Ql) is the
distance between clusters Qj and Ql. The “optimal” number of clusters NC

is the one for which the DB validity index shows a minimum value.

A.3.2 Clustering Results

A local minimum for the Davies-Bouldin validity index is found at NC = 8
clusters (Figure A.2). The 8 different clusters are represented on Figure
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Figure A.2: Davies-Bouldin Validity Index. The local minimum at NC = 8 shows that
a partition containing 8 clusters can be selected.
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A.3. According to interpretations by industry experts, the sample contains
an important quantity of profiles with “residential” behavior, particularly
clusters 1 and 5. Clusters 4 and 7 can be related to “commercial” or
“business” activities. Cluster 1 captures a profile with equal peaks in the
morning and evening, and a low demand in between. Clusters 3, 6 and
8 capture different variants of substation with very low demand during
daytime, as e.g. street lightning or other industrial activities for which
electrical energy is used at night. Possibly a more detailed characterization
of the profiles based on the clustering exercise can be achieved by applying
more complex techniques, or by defining an ad-hoc clustering technique for
load profiles, to take into account e.g. the unbalanced presence of different
profiles in the sample. Although the present exercise can be a start for
industry managers to draw conclusions on the current sample, it is certainly
an interesting research topic for further development.

A.4 Conclusion

The general problems of short-term load forecasting and profile identification
can be addressed within a unified framework by using the proposed
methodology based on the use of Periodic Autoregressive (PAR) models.
By exploiting the stationarity properties of the PAR model, it is possible
to compute a convergence vector that can be interpreted as a Typical Daily
Profile. This convergence vector is computed from the estimated coefficients
of the PAR model. This methodology is successfully applied within a
sample of 245 substations. After individual PAR models are estimated,
their convergence vectors are computed and the original sample can now be
represented by 245 Typical Daily Profiles. This set of 245 Typical Daily
Profiles can be used for clustering, in order to quantify how many different
groups or classes of profiles can be identified within the sample. Using a
classic clustering technique, it is possible to identify 8 different clusters,
capturing the different types of profiles within the sample. This information
can be used for further specific refinement of the forecasting models, such as
building ad-hoc models for each specific cluster. It can be a starting point
for the application of more complex clustering techniques.
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Figure A.3: Clustering Exercise. Using K-means and the DB validity index
it is possible to identify 8 clusters in the set of 245 TDPs.
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