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Voorwoord

De eindstreep van een marathon bereik je niet zonder aanmoediging en steun.
Supporters, medelopers en trainers, allemaal dragen ze op een specifieke manier
bij tot het bereiken van de eindstreep. Ze maken van een marathon eerder
een feest dan een lange lijdensweg. Ik wil in dit voorwoord dan ook alle
personen bedanken die van deze onderzoek-marathon een aangename tijd
gemaakt hebben.

Een atleet heeft in de eerste plaats nood aan een coach, een persoon
die een aangepast trainingsschema opstelt en bijstuurt indien nodig. Ik wil
mijn promotor Bart De Moor danken voor het aanreiken van het interessante
onderwerp. Bart z’n enthousiasme en z’n vernieuwende ideeën hebben een
stempel gedrukt op dit proefschrift.

Op het eerste verkennend gesprek met Bart, was er sprake dat ik in de
loop van mijn doctoraat misschien even aan de universteit van Michigan zou
kunnen verblijven voor een project in verband met ruimteweer. Nog geen half
jaar later zette ik in Michigan voet aan de grond voor het eerste verblijf uit
een reeks van vier. Ik heb Michigan leren kennen onder de meest verscheiden
omstandigheden, van barre koude en sneeuwstormen in de winter tot tropische
hittegolven en tornado’s in de zomer. I would like to thank Prof. Bernstein
for giving me the opportunity to visit his research group. Thanks for your warm
hospitality. The many interesting discussions that we had with Harish, Jaganath
and Aaron and the joint publications have contributed in considerable measure
to this dissertation.

Specifieke trainers richten zich vanuit hun achtergrond op een deelaspect van
de marathon. Ik bedank de juryleden Prof. J. Vandewalle, Prof. P. Van Dooren,
Prof. S. Poedts, Prof. D. Bernstein, Prof. J. Willems en Prof. H. Bruyninckx
voor hun begeleiding en voor de opbouwende kritiek. Ook dank ik Prof. P. Van
Houtte voor het waarnemen van het voorzitterschap.

Een atleet kan zich maar optimaal voorbereiden op een marathon als hij zich
niet hoeft te bekommeren over de administratieve kant zoals de inschrijving van
de wedstrijd. Bedankt Ida en Ilse voor jullie hulp en raad in de administratieve
en financiële zaken.

Mede-atleten zijn cruciaal voor het bereiken van de eindstreep. Ze sporen
je aan, geven je een duwtje in de rug of stellen je voor om in groep naar
de eindstreep te lopen. Enkele mede-doctoraatsstudenten zijn gedurende deze
vier jaren echte vrienden geworden. Ik denk hier in de eerste plaats aan mijn
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eilandgenoten Bart, Jeroen en Erik, maar ook aan Tom en Niels. Ook bedank ik
de groep waarmee ik op woensdag soms al eens naar de Alma ging en onze leuke
groep van nieuwkomers waarmee we het SISTA weekend organiseerden. Verder
denk ik met plezier terug aan de korte vakanties die we aan de conferenties in
Sydney en San Diego koppelden.

Elke atleet heeft op geregelde tijdstippen nood aan rust en ontspanning.
Ik vind de beste ontspanning door te wandelen of te sporten. Ik wil de vele
“Anders reizen” genoten danken voor de mooie wandelmomenten die we samen
beleefden. Uit deze reizen zijn enkele mooie vriendschappen gegroeid. Verder
wil ik ook de vrienden van de Furalopers, HRC en Sport en Vermaak bedanken
voor hun interesse in mijn werk en uiteraard ook voor de leuke babbels tijdens
en na de trainingen. Ook dank ik mijn vrienden uit de humaniora, Thomas en
Hans, voor de gezellige wandelingen, etentjes en babbels.

Vanzelfsprekend richt ik ook een woordje van dank aan mijn fans, aan de
personen die mij bestoken met vragen als “en, in vorm vandaag?” of “welke
plaats behaalde je?” Katleen & Bernard, Veerle & Hans, bedankt voor jullie
steun en voor de vele aangename en gezellige momenten die we met onze hechte
familie beleven. Uiteraard kan ik het ook niet nalaten om mijn oogappels
Thomas en Kirsten te bedanken. Jullie zijn mijn “grootste” fans.

Tot slot wil ik mijn vaste supporters in de bloemetjes zetten. De supporters
die mij op de voet volgen, wedstrijd na wedstrijd. De supporters die delen in
mijn vreugde en die mij bijstaan als het eens een dagje iets minder gaat. De
supporters die altijd voor mij klaar staan. Bedankt, liefste mama en papa.

Steven Gillijns,
Leuven, November 2007.
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Abstract

Since its introduction in 1960, the Kalman filter has gained increasing popu-
larity. It has become the standard technique for estimating the present state
of a dynamical system based on a numerical model of that system and a set
of observations. This thesis contributes to the popularity of the Kalman filter
by addressing the problems of system inversion and data assimilation from the
viewpoint of Kalman filtering.

In applications such as fault detection and cryptography, the dynamical
system is subject to inputs that are unknown, but yet are of major importance.
The problem of estimating the inputs of a dynamical system from observations
of that system’s outputs, has been termed system inversion. In the first part of
this thesis, a new inversion procedure based on joint input-state estimation is
developed. Conditions are derived under which the poles of the estimator can
be assigned and the speed of convergence can thus be tuned. In case of noise, it
is shown that the poles can be placed so that, in analogy to the Kalman filter,
the estimates of the system state and the system input are optimal in a least-
squares sense. Several computational and numerical issues such as reduced order
estimation and square-root estimation are addressed. The inversion procedure
is employed in four applications.

Due to its high computational cost and its immense storage requirements,
the Kalman filter is not directly applicable with the large-scale numerical models
that are usually employed in environmental problems such as weather prediction.
The challenging problem of assimilating observations in such complex numerical
models has been termed data assimilation. In the second part of this thesis, data
assimilation techniques are developed for nowcasting a space weather event that
emulates the topology and the dynamics of the bow shock that is formed when
the supersonic solar wind encounters the Earth. A suboptimal Kalman filter
is developed that is adapted to the data-sparse environment of space weather.
Simulation results on a large-scale model show that the estimates produced by
the new suboptimal filter outperform a data-free simulation, even if only a few
observations are available.
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Korte inhoud

Sinds de introductie in 1960, heeft het Kalman filter enkel aan populariteit
gewonnen. Het is momenteel de standaardmethode om de toestand van een
dynamisch systeem te schatten op basis van een numeriek model en van
metingen van dat systeem. Dit proefschrift draagt bij tot de populariteit van
het Kalman filter door de problemen van systeem inversie en data assimilatie te
behandelen vanuit het gezichtspunt van Kalman filtering.

In toepassingen zoals foutdetectie en cryptografie is het dynamisch systeem
onderhevig aan ongekende ingangen waarvan de waarde van cruciaal belang is.
Het probleem dat erin bestaat de ingangen van een systeem te schatten uit ken-
nis van de uitgangen van dat systeem, wordt systeem inversie genoemd. In het
eerste deel van dit proefschrift, wordt een nieuwe inversie procedure ontwikkeld
die gebaseerd is op het gelijktijdig schatten van de ingang en de toestand van een
systeem uit kennis van de uitgang. Voorwaarden worden afgeleid waaronder de
polen van de schatter geplaatst kunnen worden en de snelheid van convergentie
dus geregeld kan worden. In de aanwezigheid van ruis, wordt aangetoond dat de
polen zodanig geplaatst kunnen worden dat, in analogie met het Kalman filter,
de schattingen optimaal zijn volgens het criterium van de kleinste-kwadraten.
Verschillende computationele en numerieke problemen worden aangepakt, zoals
een reductie in rekencomplexiteit en een ontwikkeling van numeriek hoogstaande
algoritmes. De inversie procedure wordt aangewend in vier toepassingen.

Omwille van de hoge rekencomplexiteit en het extreme geheugenverbruik,
is het Kalman filter niet rechtstreeks toepasbaar op de grootschalige modellen
die gebruikt worden om onder andere het weer te voorspellen. Het uitdagende
probleem om metingen te verwerken in dergelijke grootschalige modellen wordt
data assimilatie genoemd. In het tweede deel van dit proefschrift worden
data assimilatie technieken ontwikkeld voor een toepassing in ruimteweer. De
toepassing bestaat erin de topologie en de dynamica van de boegschok te
schatten die gevormd wordt als de supersonische zonnewind de aarde passeert.
Een suboptimaal Kalman filter wordt ontwikkeld dat geoptimaliseerd is voor
de schaarsheid aan metingen in ruimteweer. Simulatieresultaten met een
grootschalig model tonen aan dat het suboptimale filter een data-vrije simulatie
overtreft, zelfs als er slechts metingen van enkele satellieten beschikbaar zijn.
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Glossary

Notation

Variables

a, b, c Vector variables
A, B, C Matrix variables
I Identity matrix of appropriate dimensions

Sets

R The set of real numbers
Rn The set of n−dimensional real vectors
Rn×m The set of n×m real matrices
C The set of complex numbers
Cn The set of n−dimensional complex vectors
{a1, . . . , an} The set consisting of the vectors a1, . . . , an

{ai}ni=1 Shorthand notation for the set {a1, . . . , an}

Matrix operations

AT Transpose of matrix A
A−1 Inverse of matrix A
A† Moore-Penrose generalized inverse of matrix A
A(1) One-inverse of matrix A,

i.e. any matrix satisfying AA(1)A = A

A1/2 Square-root of matrix A
rank(A) Rank of matrix A
trace(A) Trace of matrix A
Λ(A) The set of eigenvalues of A
diag(A, B, . . . ) A (block) diagonal matrix with entries A, B, . . .

Random variables

E[a] Expected value of the random vector a
â Estimate of the (random) vector a
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Norms and optimization

|x| Absolute value of the number x

‖x‖ Two-norm of vector x :
√

xTx

‖x‖W Weighted two-norm of vector x :
√

xTWx
minx Function minimization over x,

optimal function value is returned
arg minx Function minimization over x,

optimal value of x is returned

Operators
∂
∂x Partial differentiation with respect to x
× Vector product
· Scalar product
∇ Del operator
:= The left hand side is defined as the right hand side
=: The right hand side is defined as the left hand side
≈ Is approximately equal to
≪ Is orders of magnitude smaller than
≫ Is orders of magnitude larger than

Fixed symbols

x ∈ R
n System state

y ∈ Rp System output
u ∈ Rm System input
A, B, C, D, E System matrices
w, v Noise vectors
P, Q, R Covariance matrices

List of abbreviations

CME Coronal Mass Ejection
LS Least-Squares
LTI Linear Time Invariant
MHD Magnetohydrodynamics
MIMO Multiple Input / Multiple Output
MSE Mean Squared Error
MVU Minimum-Variance Unbiased
NMP Nonminimum Phase
ODE Ordinary Differential Equation
PDE Partial Differential Equation
RLS Recursive Least-Squares
SISO Single Input / Single Output
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Nederlandse samenvatting

Kalman filtering technieken

voor systeem inversie en

data assimilatie

Hoofdstuk 1: Inleiding

Voortbouwend op de methode van kleinste-kwadraten (KK) schatting, introdu-
ceerde Kalman in 1960 [83] een schattingsprocedure die nu het Kalman filter
genoemd wordt. In wezen is het Kalman filter een recursieve schatter die de
interne toestand van een dynamisch systeem schat op basis van een numeriek
model voor dat systeem en op basis van kennis van de ingangen (de drijvers) en
de uitgangen (de metingen) van dat systeem.

Het Kalman filter werd voor het eerst gebruikt in 1961, toen het de lan-
dingsmodule van de Apollo 11 ruimtevaartmissie begeleidde naar het oppervlak
van de maan. Al snel vond het Kalman filter toepassingen in andere domeinen,
zoals in de chemische industrie, de econometrie, het Global Positioning System
en de luchtvaartindustrie. Het aantal wetenschappelijke artikels en boeken
dat handelt over het Kalman filter groeit dag na dag. De wetenschappelijke
zoekrobot http://scholar.google.com/ geeft momenteel maar liefst 111000 hits
op het trefwoord “Kalman filter”.

Ondanks het enorme succes van het Kalman filter zijn in verschillende
toepassingen uitbreidingen of benaderingen van het algoritme nodig. In dit
doctoraat behandelen we twee schattingsproblemen die een uitbreiding vereisen.
Het eerste schattingsprobleem, genoemd data assimilatie, breidt het Kalman
filter uit naar grootschalige modellen. Het tweede schattingsprobleem, genoemd
systeem inversie, behandelt het geval waarbij de ingang van het systeem
ongekend is. De motivatie voor de studie van de deze problemen en de
persoonlijke bijdragen worden nu meer in detail besproken.

xiii
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Data assimilatie

Motivatie De motivatie om uitbreidingen van het Kalman filter voor groot-
schalige modellen te ontwikkelen, wordt gevoed vanuit een toepassing in
ruimteweer. De zon stoot een constante stroom van plasma, hoog energetische
deeltjes, de ruimte in. Dit fenomeen wordt de zonnewind genoemd. De
zonnewind beweegt zich doorheen de ruimte aan supersonische snelheden. Het
gevolg hiervan is dat er een boegschok gevormd wordt als de zonnewind een
obstakel zoals de aarde tegenkomt, net zoals er een schok gevormd wordt
bij een vliegtuig dat door de geluidsmuur gaat. Als gevolg van de geladen
deeltjes in het plasma, is de topologie en dynamica van de aardse boegschok
echter veel complexer dan deze bij een vliegtuig. Bovendien kan de snelheid
van de zonnewind significant wijzigen in een tijdschaal van enkele seconden.
Dit gebeurt onder andere wanneer er een coronale massa ejectie, een van de
meest energetische zonne-uitbarstingen, gesuperponeerd is op de zonnewind.
De topologie van de boegschok is dus erg dynamisch.

Gedurende de laatste decennia hebben wetenschappers numerieke modellen
ontwikkeld die de dynamica van de aardse boegschok (en talrijke andere
fenomenen die gerelateerd zijn aan de zonnewind) beschrijven [27]. Anderzijds
zijn er enkele satellieten gelanceerd die het weer in de ruimte waarnemen. Alle
ingrediënten (een numeriek model en metingen) voor de toepassing van het
Kalman filter zijn bijgevolg aanwezig.

Er zijn echter twee redenen die de toepassing van het Kalman filter
belemmeren. De eerste reden is de beperktheid van het Kalman filter tot
lineaire modellen. De numerieke modellen in ruimteweer zijn gebaseerd
op de stromingswetten van Navier-Stokes en de elektromagnetische wetten
van Maxwell en zijn bijgevolg erg niet-lineair. De tweede reden is de
rekencomplexiteit en het geheugenverbruik van het Kalman filter. De numerieke
modellen in ruimteweer propageren typisch 105 à 106 variabelen. De rekentijd
van het Kalman filter zou dan ongeveer 105 à 106 keer de tijd voor een simulatie
bedragen. Het geheugenverbruik van het Kalman filter, dat voornamelijk
bepaald wordt door de opslag van de zogenaamde foutencovariantiematrix,
zou dan oplopen tot enkele terabytes, dat is ongeveer de totale hoeveelheid
informatie in een grote universiteitsbibliotheek.

Het is duidelijk dat een benadering van het Kalman filter nodig is voor
dergelijke grootschalige modellen. Gedreven vanuit voornamelijk toepassingen
in de voorspelling van het aardse weer en de stroming in oceanen, werden
er verschillende suboptimale benaderingen van het Kalman filter voorgesteld
in de literatuur [39, 85, 112, 135]. In dit doctoraat bouwen we verder op het
gereduceerde-rang vierkantswortel filter [135], waarin de benadering gebaseerd
is op een optimale lagere-rang benadering van de foutencovariantiematrix. Het
doel is om dit algoritme aan te passen en te optimaliseren voor de specifieke
omstandigheden in ruimteweer. Deze omstandigheden onderscheiden zich van
andere toepassingen door het zeer beperkte aantal metingen aan de ene kant en
de enorme afmetingen aan de andere kant. De algoritme moet de schaarsheid
aan metingen vertalen in numerieke efficì‘entie en moet robuust zijn tegen de
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problemen die kunnen optreden als gevolg van het beperkte aantal metingen.

Persoonlijke bijdragen De belangrijkste bijdragen in data assimilatie zijn de
aanpassing van het gereduceerde-rang vierkantswortel filter aan de schaarsheid
van metingen in ruimteweer enerzijds en de succesvolle toepassing van het
resulterende suboptimale filter in een ruimteweer-simulatie anderzijds.

• De schaarsheid van metingen wordt aangepakt door een combinatie van
twee technieken. De eerste techniek maakt gebruik van het algoritme van
Potter [111] om de schaarsheid aan metingen te vertalen naar numerieke
efficiëntie. De tweede techniek is gebaseerd op het ruimtelijk gelokaliseerd
Kalman filter [9] en heeft als doel enkel de waarden van de variabelen te
schatten die effectief gecorreleerd zijn met de metigen. Een belangrijke
bijdrage van dit doctoraat is het verweven van beide technieken in het
gereduceerde-rang vierkantswortel filter. Het resulterende algoritme is
echt geschikt voor grootschalige toepassingen waarin het aantal metingen
erg beperkt is.

• Het algoritme wordt succesvol toegepast in grootschalige simulaties
(ongeveer 105 te schatten variabelen) die de dynamica van de aardse
boegschok modelleren onder veranderende condities van de zonnewind.
Zowel simulaties met gekende als ongekende randvoorwaarden worden
beschouwd. In het laatste geval wordt het filter uitgebreid zodanig dat
het de randvoorwaarden mee schat. De simulatieresultaten tonen aan dat
het suboptimale filter een signifancte reductie in de schattingsfout kan
leveren, zelfs als er metingen van slechts vier satellieten beschikbaar zijn.

Systeem inversie

Motivatie De motivatie om het probleem van systeem inversie te bestuderen,
wordt gevoed vanuit verschillende toepassingen.

• Foutdetectie: Voor bepaalde systemen, zoals vliegtuigen, mechanische
robots en chemische installaties, is er een kans op fouten of verstoringen
die ernstige verwondingen en schade tot gevolg kunnen hebben. Het
detecteren en schatten van dergelijke fouten is bijgevolg van cruciaal
belang. Vermits fouten kunnen gemodelleerd worden als ongekende
ingangen, komt de schatting ervan neer op het bepalen van de ingang
van een systeem uit kennis van de uitgang van het systeem.

• Schatten en verbeteren van modelfouten: Elk model is slechts een
benadering van het werkelijke systeem. Onnauwkeurigheden in fysische
modellen zijn te wijten aan ongekende dynamica, te grove benaderingen,
foute waarden van parameters,. . . Anderzijds zijn er voor de meeste sys-
temen metingen beschikbaar die informatie leveren over de onderliggende
dynamica en dus gebruikt kunnen worden om de modelfouten te schatten.
Net als verstoringen kunnen modelfouten gezien worden als ongekende
ingangen die inwerken op het systeem.
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In beide voorbeelden is er een nood om de ingang van een systeem te schatten uit
kennis van de uitgang van het systeem. De oplossing van dit probleem komt neer
op het ontwikkelen van een schatter die als ingang de uitgang van het systeem
heeft en als uitgang de ingang van het systeem. De ingangen en uitgangen van
de schatter zijn dus gëınverteerd ten opzichte van die van het systeem. Vandaar
de naam systeem inversie.

De eerste inversie technieken werden ontwikkeld op het einde van de jaren
zestig [16, 115, 116]. Bestaande methodes zijn echter beperkt tot het ideale
geval van ruis-vrije systemen. Het doel van dit doctoraat is om nieuwe inversie
technieken te ontwikkelen die eenvoudig uitbreiden naar systemen met ruis.

Persoonlijke bijdragen In dit doctoraat wordt een nieuwe techniek voor
systeem inversie ontwikkeld op basis van schattingstheorie. De inversie techniek
wordt eerst uitgewerkt voor ruis-vrije systemen en later uitgebreid naar
systemen die onderhevig zijn aan ruis.

• Zoals Sain en Massey [115], beschouwen we in dit doctoraat inverse
systemen die bestaan uit een bank van vertragingselementen, gevolgd door
een dynamisch systeem. Een belangrijke bijdrage van dit doctoraat is de
afleiding van de algemene vorm van zo een dynamisch systeem op basis
van schattingstheorie. In het ruis-vrije geval levert het inverse systeem
een exacte reconstructie van zowel de ingang als de toestand. Het inverse
systeem kan dus beschouwd worden als een gezamenlijke toestands- en
ingangsschatter.

• De algemene vorm van de schatter bevat twee parameters die vrij gekozen
kunnen worden. We leiden voorwaarden en methodes af om de polen van
de schatter te plaatsen door een gepaste keuze van deze parameters. Op
die manier kan de convergentiesnelheid van de schatter geregeld worden.

• In de aanwezigheid van ruis, tonen we aan dat de polen zodanig
kunnen geplaatst worden dat de schattingen onvertekend zijn en minimale
variantie hebben. Bovendien wordt een verband met KK schatting
afgeleid.

• Verschillende numerieke problemen worden aangekaart en aangepakt. In
het deterministische geval wordt een methode ontwikkeld om de orde van
de schatter en dus de rekencomplexiteit te reduceren. In de aanwezigheid
van ruis worden er zogenaamde informatie en vierkantswortel implemen-
taties uitgewerkt. Deze laatste implementaties reduceren de propagatie
van numerieke fouten.

De twee laatste bijdragen tonen aan dat verschillende methodes die reeds lang
gekend waren in de context van Kalman filtering ook uitbreidbaar zijn naar
systeem inversie. Het verband tussen het Kalman filter en KK schatting
is immers reeds gekend sinds het einde van de jaren zestig [77, 117]. Ook
vierkantswortel en informatie implementaties, die een direct gevolg zijn van



Nederlandse samenvatting xvii

de formulering van het Kalman filter als KK probleem, werden in de context
van Kalman filtering reeds uitvoerig bestudeerd [4]. Het regelsysteem dat de
landingsmodule van de Apollo 11 ruimtevaartmissie naar het oppervlak van de
maan begeleidde, maakte reeds gebruik van een vierkantswortel implementatie.

Hoofdstuk 2: Het Kalman filter herbekeken

Beschouw het lineaire tijdsinvariante systeem

S :

{
x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k] + v[k],

met x[k] ∈ Rn de toestandsvector op tijdstip k, y[k] ∈ Rp de uitgangsvector op
tijdstip k, en u[k] ∈ R

m de ingangsvector op tijdstip k. We veronderstellen dat de
systeem matrices A, B, C, D, en E evenals de ingang u gekend zijn. De vectoren
w[k] ∈ Rl en v[k] ∈ Rp stellen ongekende ruistermen voor die modelfouten,
verstoringen, meetfouten, . . . in rekening brengen. Indien het systeem vrij is
van ruistermen, spreken we van een deterministisch systeem.

Het schattingsprobleem bestaat er in om voor elke k een schatting van x[k]

te berekenen uit kennis van de uitgang y tot op tijdstip l. We noteren in het
vervolg zo’n schatting als x̂[k|l]. Als l = k, spreken we over filteren, als l > k
over effenen, en als l < k over voorspellen. Filtering is het meest bestudeerde
probleem van de drie aangezien dit overeenstemt met schatten in real-time.

Figuur 0.1 vat een aantal belangrijke concepten en technieken in verband
met het schattingsprobleem samen. De pijlen geven de verbanden tussen de
concepten en technieken weer. De nummers bij de pijlen duiden de hoofdstukken
en paragrafen aan waarin deze problemen bestudeerd worden. De nummers
tussen de haakjes slaan op paragrafen in verband met Kalman filtering, de
andere nummers op paragrafen in verband met systeem inversie. We beschouwen
nu deze concepten meer in detail in de context van Kalman filtering.

Ruis-vrij filteren

Eerst bestuderen we het filteren van ruis-vrije systemen meer in detail. Zoals
aangegeven in Figuur 0.1 bestaat een van de meest gebruikte technieken erin
om een recursieve toestandsschatter van de vorm

x̂[k+1|k] = Ax̂[k|k−1] + Bu[k] + K(y[k] − Cx̂[k|k−1] −Du[k])

te beschouwen en de zogenaamde winst-matrix K te bepalen zodanig dat de
schattingsfout x[k] − x̂[k|k−1] naar nul convergeert (het asymptotisch schat-
tingsprobleem) of exact nul wordt in een eindig aantal stappen (het deadbeat
schattingsprobleem). Zoals aangegeven in Figuur 0.1, berust de ontwikkeling
van een dergelijke schatter op voorwaarden en methodes om de polen van
de schatter, of equivalent de eigenwaarden van A − KC, te plaatsen. Een
asymptotische schatter bestaat als {A, C} detecteerbaar is, een deadbeat
schatter als {A, C} observeerbaar is [4].
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Figuur 0.1: Overzicht van een aantal belangrijke concepten en technieken
in schattingsproblemen. De pijlen geven de verbanden tussen de concepten
en technieken weer. De nummers bij de pijlen duiden de hoofdstukken en
paragrafen aan waarin deze problemen bestudeerd worden. De nummers tussen
de haakjes slaan op paragrafen in verband met Kalman filtering, de andere
nummers op paragrafen in verband met systeem inversie.
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Luenberger [92] toonde aan dat een deel van de toestandsvector x[k]

rechtstreeks uit de meting y[k] kan gereconstrueerd worden en ontwikkelde op
basis van dit principe een toestandsschatter van gereduceerde orde die dus de
rekencomplexiteit beperkt.

Filteren in de aanwezigheid van ruis

Zoals aangegeven in Fig. 0.1, onderscheiden we in de aanwezigheid van ruis
twee verschillende methodes. De eerste methode gaat uit van een stochastische
veronderstelling over de ruistermen en bestaat erin, zoals in het deterministische
geval, te vertrekken van een recursieve schatter en de winst-matrix te bepalen
zodat de schattingen onvertekend zijn en minimale variantie hebben. De tweede
methode bestaat erin een KK probleem op te stellen en dit recursief op te lossen.
In deze methode is geen stochastische veronderstelling over de ruistermen nodig.
Beide methodes leveren de Kalman filter vergelijkingen.

Onvertekend filteren met minimale variantie Ondanks de extreem snelle
convergentie, is een deadbeat schatter erg gevoelig aan ruis. In de aanwezigheid
van ruis, is het eerder aangewezen om de polen van de schatter te plaatsen zodat
er een optimale afweging gemaakt wordt tussen de snelheid van convergentie en
de gevoeligheid aan ruis. Op dit principe is de afleiding van het Kalman filter
gebaseerd.

In de veronderstelling dat de ruistermen w en v ongecorreleerde witte toe-
valsvariabelen zijn met verwachte waarde nul en gekende covariantie matrices,
beschouwde Kalman [83] een recursieve schatter van de vorm

x̂[k+1|k] = Ax̂[k|k−1] + Bu[k] + K[k](y[k] − Cx̂[k|k−1] −Du[k])

en bepaalde de winst-matrix K[k] zodanig dat de verwachte gekwadrateerde fout
E[‖x[k+1] − x̂[k+1|k]‖2] geminimaliseerd werd. De resulterende winst-matrix
wordt de Kalman winst-matrix genoemd. De berekening van de Kalman
winst-matrix vereist dat de zogenaamde foutencovariantiematrix P[k|k−1] :=

E[(x[k] − x̂[k|k−1])(x[k] − x̂[k|k−1])
T] gepropageerd wordt.

Kleinste-kwadraten filteren Zoals weergegeven in Figuur 0.1 kunnen de
Kalman filter vergelijkingen eveneens afgeleid worden door het recursief oplossen
van een groot KK probleem. Beschouwen we een KK probleem van de vorm

min
x[0],...,x[k+1]

‖x[0] − x̂[0|−1]‖2P−1
[0|−1]

+

k∑

i=0

‖v[i]‖2R−1 +

k∑

i=0

‖w[i]‖2Q−1

waarin P[0|−1], R en Q gewichtsmatrices zijn en met als beperkingen de
systeemvergelijkingen van S , dan kan er worden aangetoond [77, 99, 127, 136]
door recursieve oplossing van dit KK probleem, dat opnieuw de Kalman filter
vergelijkingen bekomen worden.
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In deze afleiding is geen stochastische veronderstelling van de ruistermen no-
dig. Bovendien geeft deze afleiding ook aanleiding tot alternatieve formuleringen
van de vergelijkingen, zoals een formulering in termen van de informatiematrix
(de inverse van de foutencovariantiematrix) of een opsplitsing in een zogenaamde
tijdsstap en meetstap, gegeven door

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Du[k])

x̂[k+1|k] = Ax̂[k|k] + Bu[k],

met K[k] = AL[k]. Ook numeriek betrouwbare implementaties die een vierkants-
wortel van de foutencovariantiematrix of informatiematrix propageren, volgen
rechtstreeks uit deze afleiding [4, 82].

Deel I: Systeem Inversie

Er moet een onderscheid gemaakt worden tussen twee varianten van het inversie
probleem. Een linker inverse van een systeem reconstrueert de ingang die
aangelegd werd aan dat systeem uit kennis van de uitgang van dat systeem.
Een linker inverse kan dus gëınterpreteerd worden als een schatter. Een
rechter inverse daarentegen, berekent een ingang zodat de uitgang een gewenste
waarde aanneemt. Een rechter inverse kan dus gëınterpreteerd worden als een
voorwaartse regelaar. In dit doctoraat wordt voornamelijk het probleem van
linker inversie bestudeerd.

De opbouw en samenhang van de belangrijkste resultaten is sterk gerelateerd
aan het schema uit Figuur 0.1. In Hoofdstuk 3 beschouwen we de inversie van
deterministische systemen. We leiden een recursieve schatter af en bepalen
voorwaarden en methodes om de polen te plaatsen. In Hoofdstuk 4 breiden we
de methode uit naar systemen met een stochastische component. We leiden een
optimale recursieve schatter af op twee verschillende manieren: ten eerste door
de polen van de schatter uit Hoofdstuk 3 optimaal te plaatsen en ten tweede
aan de hand van KK schatting.

Hoofdstuk 3: Inversie van Deterministische Systemen

De eerste inversie technieken voor deterministische systemen werden ontwikkeld
op het einde van de jaren zestig [16,115,116]. Al snel werd echter opgemerkt dat
deze technieken onstabiele inverses kunnen leveren. De afleiding van stabiele
inverses werd eerst aangekaart in [100]. Methodes om de polen te plaatsen,
werden eerst bestudeerd in [7].

In dit doctoraat beschouwen we zoals Sain en Massey [115] inverses die
bestaan uit een bank van vertragingselementen gevolgd door een dynamisch
systeem. De belangrijkste bijdragen van dit doctoraat bestaan uit de afleiding
van een algemene vorm van zo een dynamisch systeem, uit de afleiding van
methodes en voorwaarden waaronder de polen van het inverse systeem geplaatst
kunnen worden en uit een combinatie van polenplaatsing en reductie in orde.
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Beschouw opnieuw het systeem S , maar nu in de veronderstelling dat u
ongekend is en dat de ruistermen w en v nul zijn. Een inverse systeem van S

is dan eenvoudig te definiëren op basis van de transfer functie H(z) van S ,
gegeven door

H(z) = C(zI −A)−1B + D,

waarbij z een complexe variabele is. Het systeem S wordt dan L−vertraagd
links inverteerbaar genoemd als er een systeem bestaat met transfer functie
HL(z) zo dat H(z) links vermenigvuldigd met HL(z) een vertraging van L
stappen levert. In een vergelijking geeft dat

HL(z)H(z) = z−LIm.

Het systeem met transfer functie HL(z) wordt een L−vertraagde linker inverse
van S genoemd. Merk op dat dit inverse systeem inderdaad de ingang van S

reconstrueert met L tijdstappen vertraging.
Sain en Massey [115] toonden aan dat S L−vertraagd links inverteerbaar

is als en slechts als
rang(HL)− rang(HL−1) = m,

waarbij

HL :=










D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−1B CAL−2B CAL−3B · · · D










,

voor L ≥ 0 en rang(H−1) := 0. Sain en Massey beschouwden linker inverses die
bestaan uit twee delen. Het eerste deel is een bank van vertragingselementen
die de L vorige waarden van de systeemuitgang opslaat. Op het moment
dat we y[k+L] aanleggen aan de bank, geeft deze dus als uitgang y[k:k+L] :=

[yT

[k] yT

[k+1] . . . yT

[k+L]]
T. Het tweede deel bestaat uit een dynamisch systeem.

In dit doctoraat beschouwen we linker inverses met dezelfde structuur. Een
belangrijke bijdrage is de afleiding van een algemene vorm van het dynamische
systeem. Deze algemene vorm wordt gegeven door

S
−
L :

{
x̂[k+1] = (A−KLOL)x̂[k] +KLy[k:k+L]

û[k] = −MLOLx̂[k] +MLy[k:k+L],

waarbij OL := [CT (CA)T . . . (CAL)T]T en waarbij KL en ML gegeven zijn
door

KL = [B 0]H(1)
L + ZLΣL

ML = [I 0]H(1)
L + ULΣL

met ΣL := I −HLH
(1)
L en ZL en UL matrices die vrij gekozen kunnen worden.

Stel dat de initiële toestand x[0] van S gekend is. Als we dan x̂[0] gelijk nemen



xxii Nederlandse samenvatting

aan x[0], geldt er voor elke keuze van ZL en UL dat x̂[k] = x[k] en û[k] = u[k]

voor alle k.

Als de initiële toestand x[0] van S niet gekend is (wat meestal het geval
is), wensen we dat alle eigenwaarden van A − KLOL binnen de eenheidscirkel
liggen. In dat geval convergeert de schattingsfout immers naar nul. Merk op dat
de keuze van ZL de eigenwaarden A−KLOL bepaalt. Een belangrijk resultaat
van dit doctoraat is de afleiding van methodes en voorwaarden waaronder ZL

gekozen kan worden zodat de eigenwaarden van A − KLOL geplaatst zijn op
een gewenste positie. Meer bepaald tonen we aan dat de eigenwaarden van
A − KLOL (en dus ook die van het inverse systeem) kunnen geplaatst worden
als S geen onstabiele nullen heeft. Dit resulteert dan in een asymptotische
schatter (zie ook Figuur 0.1).

Tot slot wordt er op basis van de theorie van Luenberger [92] een methode
ontwikkeld om de orde van S

−
L te reduceren en tegelijkertijd de polen van de

gereduceerde orde schatter te plaatsen. Ook wordt een voorwaarde afgeleid
waaronder de ingang u[k] rechtstreeks uit y[k:k+L] berekend kan worden.

Hoofdstuk 4: Inversie van Gecombineerde Deterministische

- Stochastische Systemen

In dit hoofdstuk breiden we de inversie procedure van Hoofdstuk 3 uit naar
systemen met een stochastische component. In analogie met het Kalman filter,
tonen we aan dat we een optimale schatter op twee manieren kunnen afleiden:
ten eerste door de polen van de schatter uit Hoofdstuk 3 optimaal te plaatsen en
ten tweede aan de hand van KK schatting (zie ook Figuur 0.1). De belangrijkste
resultaten van deze twee methodes worden nu besproken.

Onvertekend schatten met minimale variantie

Beschouw opnieuw het systeem S waarbij de ruistermen w en v stochastisch
verondersteld worden. Naar analogie met het Kalman filter, is het idee om
een gezamenlijke toestandsschatter en ingangsschatter te ontwikkelen die een
optimale afweging maakt tussen de snelheid van convergentie en de gevoeligheid
aan ruis. Dit idee wordt in het doctoraat uitgewerkt in verschillende stappen.

In de eerste stap beschouwen we het meest eenvoudige geval, dat is
het geval L = 0, waarin de toestand en de ingang geschat worden zonder
vertraging. We beschouwen een schatter die de vorm van S

−
0 neemt, maar

met tijdsvariante winst-matrices K0[k] enM0[k] en bepalen deze winst-matrices
zodanig dat de verwachte gekwadrateerde fouten E[‖x[k+1] − x̂[k+1|k]‖2] en
E[‖u[k] − û[k|k]‖2] geminimaliseerd worden onder beperkingen die onvertekende
schattingen leveren. Een belangrijk resultaat is dat we aantonen dat de schatter
kan geschreven worden in de volgende vorm,

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Dû[k|k])

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k],
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waarbij û[k|k] staat voor een optimale schatting van u[k] uit kennis van y tot
op tijdstip k en waarbij AL[k] = K0[k]. Deze optimale schatting wordt bekomen
uit y[k] −Cx̂[k|k−1] met behulp van KK schatting en kan geschreven worden als
û[k|k] =M0[k](y[k]−Cx̂[k|k−1]). We bekomen dus een schatter waarvan de vorm
analoog is aan die van het Kalman filter, met als enige verschil dat de echte
waarde van de ingang vervangen is door een optimale schatting.

In een tweede stap beschouwen we het geval L = 1 en leiden analoge
resultaten af.

In een laatste stap ontwikkelen we een algemeen raamwerk voor willekeurige
L dat alle bestaande methodes voor het gezamenlijk schatten van toestanden
en ingangen generaliseert. We beschouwen hier een schatter die de vorm van
S

−
L neemt, maar waarbij de vrije parameters ZL[k] en UL[k] nu tijdsvariant zijn

en bepalen deze parameters zodanig dat de verwachte gekwadrateerde fouten
E[‖x[k+1] − x̂[k+1|k]‖2] en E[‖u[k] − û[k|k]‖2] geminimaliseerd worden. Merk op
dat deze aanpak verschillend is van diegene die we hierboven voor L = 0 en
L = 1 beschouwd hebben.

Tot slot leiden we in dit hoofdstuk een eenvoudige methode af om een systeem
te ontkoppelen van ongekende ingangen. Het concept van ingangsontkoppeling
biedt een rigoureuse aanpak tot het ontwerp van optimale toestandsschatters
voor systemen met ongekende ingangen [26, 67–70]. Het idee achter ingangs-
ontkoppeling is om de toestandsvergelijking van het systeem te transformeren
zodat een equivalente toestandsvergelijking bekomen wordt die ontkoppeld is
van de ongekende ingang. Door ook de uitgangsvergelijking te ontkoppelen
van de ongekende ingang, kunnen standaard technieken zoals het Kalman filter
toegepast worden om de toestand van het systeem te schatten. Bestaande
methodes voor ingangsontkoppeling zijn vrij complex en beperkt tot het geval
L = 0. In dit doctoraat wordt een eenvoudige procedure ontwikkeld die geldt
voor willekeurige L. Het ontkoppelde systeem dat afgeleid wordt in dit doctoraat
is van de vorm

x[k+1] = (A−KLOL)x[k] +KLy[k:k+L] + w̄[k:k+L−1]

ΣLy[k:k+L] = ΣLOLx[k] + v̄[k:k+L],

waarbij w̄[k:k+L−1] en v̄[k:k+L] ruistermen zijn waarvan de exacte uitdrukking
niet van belang is voor deze discussie. Door y[k:k+L] in de toestandsvergelijking
te beschouwen als ingang, kunnen nu de standaard technieken zoals het Kalman
filter toegepast worden om de toestand te schatten.

Kleinste-kwadraten schatting

We beschouwen hier enkel het geval L = 0. Het geval L = 1 kan op een analoge
manier behandeld worden. Beschouw het KK probleem

min
x[0],...,x[k+1]

u[0],...,u[k]

‖x[0] − x̂[0|−1]‖2P−1
[0|−1]

+

k∑

i=0

‖v[i]‖2R−1 +

k∑

i=0

‖w[i]‖2Q−1
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waarin P[0|−1], R en Q gewichtsmatrices zijn en met als beperkingen de
systeemvergelijkingen van S . Het grote verschil met het KK probleem dat
aanleiding geeft tot de Kalman filter vergelijkingen, is dat de ingangen nu
ongekend zijn en we bijgevolg ook optimaliseren over de ingangen. In dit
doctoraat wordt aangetoond dat het hoger beschouwde KK probleem een
oplossing heeft als en slechts als rang(D) = m en dat de oplossing gegeven
wordt door de hoger beschouwde schatter die de vorm heeft van het Kalman
filter, maar waar de echte waarde van de ingang vervangen is door een optimale
schatting.

Net als bij het Kalman filter, is er in deze afleiding geen stochastische
veronderstelling nodig over de ruistermen w en v. Een belangrijk resultaat is
ook dat we (voor het geval L = 1) op basis van deze afleiding vergelijkingen
in informatie vorm hebben ontwikkeld, alsook een numeriek betrouwbare
vierkantswortel implementatie.

Hoofdstuk 5: Toepassingen van Systeem Inversie

In dit hoofdstuk worden vier toepassingen van systeem inversie behandeld.

Filteren met ruizige ingangen en uitgangen

De eerste toepassing beschouwt het filtering probleem met ruizige ingangen
en uitgangen. Dit probleem werd eerst bestudeerd in [62], waar het errors-
in-variables filtering genoemd werd. De behandeling in [62] is echter beperkt
tot systemen met één ingang en één uitgang en houdt geen verband met het
Kalman filter. Het geval met meerdere ingangen en uitgangen is eerst beschouwd
in [94], waar er wordt aangetoond dat het probleem vertaald kan worden naar het
klassieke Kalman filtering probleem. Een gelijkaardig resultaat werd bekomen
in [31, 93].

In dit doctoraat wordt een uitbreiding van het filtering probleem met
ruizige ingangen en uitgangen beschouwd. We behandelen het geval waarin
er een lineaire combinatie van de ingangsvector gemeten wordt in plaats van
de volledige ingangsvector. We tonen aan dat het resulterende probleem kan
geherformuleerd worden als een inversie probleem en leiden filter vergelijkingen
af waarin de schatting van de ongekende ingang en de toestand verbonden zijn.
We tonen aan dat de vergelijkingen equivalent zijn aan deze aan in [31, 93] als
de volledige ingangsvector gemeten wordt.

Filteren in de aanwezigheid van vertekening

In verschillende toepassingen is het numerieke model onderhevig aan additieve
fouten waarvan de eigenlijke waarde ongekend is, maar waarvan de dynami-
sche vergelijkingen gekend zijn. Dergelijke fouten worden vertekeningsfouten
genoemd. De meest voorkomende types vertekeningsfouten zijn de constante
vertekeningsfouten, die voortvloeien uit ongekende parameters.
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Het probleem van optimaal filteren in de aanwezigheid van vertekening
heeft veel aandacht gekregen in het verleden. Een optimale oplossing bestaat
erin om de toestandsvector uit te breiden met de vector van ongekende
vertekeningsfouten en dan beide te schatten met behulp van een Kalman filter.
In 1969 stelde Friedland [45] het twee-traps filter voor waarin de schatting van de
toestand en de vertekening afzonderlijk verloopt en de resultaten slechts op het
einde samengevoegd worden. Een zorgvuldige studie van het twee-traps filter
kan gevonden worden in [3, 29, 30, 75].

In dit doctoraat leiden we een nieuw filter af door het model dat de dynamica
van de vertekeningsfout beschrijft, te integreren in de gezamenlijke ingangs- en
toestandsschatter die werd afgeleid in Hoofstuk 4. We tonen aan dat onze
aanpak een belangrijke voordeel heeft ten opzichte van het twee-traps filter.
Dit voordeel is dat het filter zowel overweg kan met totaal ongekende ingangen
als met vertekeningsfouten waarvan de dynamica gekend is en tijdens werking
kan overschakelen van de ene vorm naar de andere. Zoals aangetoond in
een numeriek voorbeeld, is zo’n overschakeling nuttig als de vertekeningsfout
constant is gedurende een bepaald tijdsinterval en dan plots een abrupte en
ongekende sprong maakt.

Schatten en verbeteren van modelfouten

Zowel modellen opgesteld aan de hand van fysische wetten als modellen
gëıdentificeerd uit data, zijn benaderend. In fysische modellen, zijn fouten
onder andere te wijten aan ongemodelleerde dynamica en incorrecte waarden
van parameters. In empirische modellen, zijn fouten te wijten aan de keuze van
een ongeschikte modelklasse of slechte data. We beschouwen in dit doctoraat
een lineair toestandsruimtemodel dat is afgeleid op basis van fysische wetten.
We veronderstellen dat dit model onderhevig is aan ongemodelleerde dynamica
die niet verwaarloosbaar is, zodat er een correctie van het model nodig is.

Fysische modellen met niet verwaarloosbare fouten worden ook beschouwd
in [108]. Een methode wordt voorgesteld waarin een correctie-model geplaatst
wordt in parallel, serie of terugkoppeling met het bestaande model en technieken
worden uitgewerkt om het correctie-model te identificeren op basis van data van
de ingangen en de uitgangen van het systeem. Deze methode heeft echter als
nadeel dat het correctie-model gewoonlijk complexer is dan het fysische model.

In dit doctoraat is een methode uitgewerkt waarin we rechtstreeks de foutieve
dynamica corrigeren in plaats van foutieve dynamica te corrigeren door in te
werken op de ingang en uitgang zoals in [108]. Onze methode bestaat uit twee
stappen. In de eerste stap modelleren we de fout als een ongekende ingang
en schatten we deze gezamenlijk met de toestand door gebruik te maken van
de technieken uit Hoofdstuk 4. In de tweede stap identificeren we met de
aldus bekomen data de ongekende dynamica met behulp van een deelruimte-
identificatie algoritme [105, 106]. We tonen met een numeriek voorbeeld aan
dat deze methode correctie modellen levert die van lagere orde zijn dan deze
in [108].
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Schatten van ongekende randvoorwaarden

De schatting van ongekende randvoorwaarden wordt intensief bestudeerd in
inverse warmtegeleidingsproblemen. In [19, 138] wordt er verondersteld dat
de functionele vorm van de randvoorwaarde in ruimte en tijd gekend is.
De ongekende parameters in de functionele vorm worden dan geschat met
behulp van KK schatting. Een uitbreiding naar het gezamenlijk schatten van
de randvoorwaarden en de initiële toestand, kan gevonden worden in [74].
Benaderingen waarin een Kalman filter gebruikt wordt, zijn terug te vinden
in [101, 121]. De toepasbaarheid van deze methodes is echter beperkt door de
veronderstelling dat de functionele vorm van de randvoorwaarde in ruimte en
tijd gekend is.

In dit doctoraat wordt een methode ontwikkeld die geen veronderstelling
maakt over de functionele vorm van de randvoorwaarde in de tijd. Wat betreft
de functionele vorm in de ruimte, wordt er verondersteld dat deze geschreven
kan worden als een lineaire combinatie van een beperkt aantal basisfuncties. Het
probleem wordt op deze manier herleid tot het schatten van de tijdsafhankelijke
coëfficiënten in de lineaire combinatie. Vermits deze coëfficiënten optreden als
ongekende ingangen, kunnen we de technieken uit Hoofdstuk 4 gebruiken om
ze te schatten. Een voorbeeld dat de warmtegeleiding in een tweedimensionale
plaat beschrijft waarvan de voorwaarden op één van de vier randen ongekend
zijn, toont de doeltreffendheid van deze techniek aan.

Deel II: Data Assimilatie

Hoofdstuk 6: Suboptimaal Vierkantswortel Filteren

Alhoewel het Kalman filter door zijn eenvoudige recursieve structuur zeer
aantrekkelijk is voor data-assimilatie, is het niet rechtstreeks toepasbaar.
Toepassing van het Kalman filter wordt voornamelijk belemmerd door de
hoge computationele kost en de immense opslagcapaciteit die nodig is om de
foutencovariantiematrix te propageren.

Met het oog op grootschalige schattingsproblemen, werden verschillende
benaderingen van het Kalman filter ontwikkeld. We noemen dergelijke bena-
deringen suboptimale filters. Veel gebruikte suboptimale technieken zijn het
ensemble Kalman filter [13, 38, 39, 71, 85] dat gebaseerd is op een Monte Carlo
aanpak, het gereduceerde-rang vierkantswortel filter [134, 135] dat gebaseerd
is op een optimale lagere-rang benadering van de foutencovariantiematrix,
en variationele data assimilatie [23, 88], een techniek die gebaseerd is op de
KK interpretatie van het Kalman filter en die momenteel de standaard is
in het Europees Centrum voor Weersverwachtingen op Middellange Termijn
(ECMWF). In dit hoofdstuk beschouwen we echter enkel het gereduceerde-rang
vierkantswortel filter.
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Gereduceerde-rang vierkantswortel filteren

Het idee achter het gereduceerde-rang vierkantswortel filter is om de foutenco-
variantiematrix P ∈ Rn×n te benaderen als

P ≈ SST,

waarbij S ∈ Rn×q (met q ≪ n) zodanig gekozen is dat SST een optimale rang q
benadering is van P. De Kalman filter vergelijkingen worden dan herschreven in
functie van deze vierkantswortel S. Zo een benadering heeft twee voordelen. Ten
eerste wordt de rekencomplexiteit en het geheugenverbruik sterk gereduceerd.
Ten tweede zorgt de propagatie van dergelijke vierkantswortel ervoor dat de
benaderende foutencovariantiematrix altijd positief semi-definiet is.

Het algoritme van het gereduceerde-rang vierkantswortel filter bestaat uit
drie stappen [134]: een tijdstap, een reductiestap en een meetstap.

• Tijdstap: Gedurende de tijdstap neemt het aantal kolommen van S, of
equivalent de rang van de foutencovariantiematrix, toe als gevolg van de
covariantiematrix van de procesruis.

• Reductiestap: De verhoging in rang tijdens de tijdstap, kan de bere-
keningstijd snel doen toenemen. Daarom wordt SST optimaal benaderd
door een matrix van lagere rang. Dit kan op een efficiënte manier door
de partiële eigenwaarden ontbinding van SST te berekenen uit die van de
veel kleinere matrix STS [134].

• Meetstap: Wat betreft de meetstap zijn er verschillende implementaties
mogelijk. We beschouwen twee mogelijke manieren om de metingen te
verwerken.

– Gelijktijdige verwerking: Bij een gelijktijdige verwerking van de
metingen, worden alle metingen tesamen verwerkt. Een verwerking
van dit type is het meest efficiënt als er veel metingen zijn [5, 13].

– Opeenvolgende verwerking: Bij een opeenvolgende verwerking van
de metingen, worden de metingen na elkaar en apart verwerkt. Een
verwerking van dit type is het meest efficiënt als het aantal metingen
beperkt is. Zoals aangetoond door Potter [111], kan de verwerking
gëımplementeerd worden zonder matrix-matrix vermenigvuldigingen,
maar enkel met efficiënte matrix-vector vermenigvuldigingen.

Ruimtelijk gelokaliseerd filteren

Houtekamer en Mitchell [71] merkten op dat de meetstap in het ensemble
Kalman filter kan verbeterd worden door enkel de waarde van roostercellen aan
te passen die dicht bij de meetlocatie gelegen zijn. Ze ontdekten dat dit deels
te wijten is aan de lagere-rang benadering van de foutencovariantiematrix, die
valselijk hoge correlaties introduceert tussen roostercellen die ruimtelijk ver ver-
wijderd zijn van elkaar. Sindsdien hebben veel onderzoekers geëxperimenteerd
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met technieken die de informatie in de foutencovariantiematrix ruimtelijk
lokaliseren [9, 63, 72]. In dit doctoraat bouwen we verder op de techniek in [9],
waar (in de veronderstelling dat D = 0) een meetstap van de vorm

x̂[k|k] = x̂[k|k−1] + Ψ[k]L[k](y[k] − C[k]x̂[k|k−1])

beschouwd wordt. Het verschil met de meetstap in het Kalman filter zit in de
aanwezigheid van de lokalisatiematrix Ψ[k] die gekozen kan worden zodanig dat
het effect van de meting gelokaliseerd wordt in de ruimte.

Gereduceerde-rang vierkantswortel filteren met ruimtelijke lokalisatie

Een belangrijke bijdrage is de ontwikkeling van een gereduceerde-rang vierkants-
wortel filter dat gebruik maakt van het principe van ruimtelijke lokalisatie. Met
de toepassing in ruimteweer (waar zoals eerder besproken het aantal metingen
zeer beperkt is) in het achterhoofd, wordt een meetstap beschouwd die de
metingen opeenvolgend verwerkt. Dergelijke meetstap heeft buiten efficiëntie
nog een bijkomend voordeel, namelijk dat we de lokalisatiematrix verschillend
kunnen kiezen voor elk van de metingen.

In dit doctoraat worden twee verschillende implementaties van het resul-
terende filter uitgewerkt. De eerst implementatie is het meest algemeen, in
die zin dat deze steeds geldig is. De tweede implementatie buit een specifieke
structuur van de foutencovariantiematrix uit en is daardoor efficiënter dan de
eerste implementatie. Er wordt meer bepaald verondersteld dat de correlatie
tussen twee roostercellen waarvoor de ruimtelijke afstand groter is dan een
bepaalde drempel, nul is. Deze implementatie is erg efficiënt, temeer omdat
ze, net zoals het algoritme van Potter, enkel gebruik maakt van matrix-vector
vermenigvuldigingen. Een simulatievoorbeeld op het chaotisch Lorenz model
met 40 roostercellen [90] toont de doeltreffendheid van deze methode aan.

Hoofdstuk 7: Simulatievoorbeeld in ruimteweer

Alhoewel data assimilatie bijna dagelijks uitgevoerd wordt in weerkunde, is de
toepassing in ruimteweer zo goed als onbestaande. Dit is enerzijds te wijten
aan het feit dat plasma-astrofysica een relatief jong onderzoeksdomein is en
anderzijds aan het beperkte aantal metingen in vergelijking met weerkunde.
Deze schaarsheid aan metingen maakt data assimilatie voor toepassingen in
ruimteweer erg uitdagend en vereist de ontwikkeling van nieuwe technieken die
aangepast zijn aan deze situatie. Enkele preliminaire studies die het effect van de
schaarsheid aan metingen bestuderen en aanpakken, kunnen gevonden worden
in [11, 17, 122].

De belangrijkste bijdrage van dit hoofdstuk bestaat in de toepassing van het
in Hoofdstuk 6 ontwikkelde filter op een grootschalig en vrij realistisch model.
We beschouwen het boegschok model in [27] en zetten een simulatie op die de
geschiktheid van het filter beoordeelt.
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Magnetohydrodynamica

De macroscopische stroming van een plasma wordt beschreven door magne-
tohydrodynamica (MHD). De interactie van een plasma met magnetische en
elektrische velden zorgt ervoor dat de MHD vergelijkingen complexer zijn dan
de hydrodynamische vergelijkingen die de stroming van een neutraal flüıdum
beschrijven. De MHD vergelijkingen zijn een combinatie van de Navier-Stokes
vergelijkingen en de vergelijkingen van Maxwell. Ze zijn bijgevolg erg niet-
lineair.

Analytische oplossingen van de MHD vergelijkingen zijn beperkt tot de meest
eenvoudige gevallen en zelfs dan moeten er vaak benaderingen gemaakt worden.
Numerieke simulaties daarentegen, laten toe om de meest complexe plasma
dynamica te bestuderen. Als gevolg hiervan, zijn er verschillende numerieke
codes ontwikkeld. De simulaties in dit doctoraat worden uitgevoerd met de
Versatile Advection Code (VAC) [130].

Net als bij hydrodynamische stromingen, kunnen er in MHD stromingen
schokken optreden. Daar waar in hydrodynamica slechts één type schok is,
laat MHD drie types schokken toe die onderscheiden kunnen worden door de
manier waarop ze de magnetische veldlijnen breken. Numerieke simulaties
die een tweedimensionale plasma stroming rondheen een cilinder modelleren
[27, 28, 119], hebben aangetoond dat de topologie van MHD schokken sterk
afhankelijk is van de eigenschappen van de inkomende stroming. Als de
stroming gedomineerd wordt door drukeffecten, wordt er één enkel schokfront
waargenomen dat gelijkaardig is aan het schokfront in hydrodynamica. Als de
stroming daarentegen gedomineerd wordt door magnetische effecten, worden
er verschillende opeenvolgende schokfronten waargenomen van een verschillend
type.

De simulaties in [27, 28, 119] leveren interessante inzichten in de topologie
van de aardse boegschok. In realiteit is de boegschok echter driedimensionaal
en heeft de aarde ook een eigen magnetisch veld, wat de topologie nog
complexer maakt. Hoe dan ook leveren de simulaties in [27] een eenvoudig
tweedimensionaal model dat de belangrijkste karakteristieken van de boegschok
beschrijft.

Opzet van de experimenten en resultaten

De simulaties die uitgevoerd worden in dit doctoraat volgen de numerieke opzet
in [27]. We beschouwen een cilindrisch rooster dat bestaat uit 124× 124 cellen.
Elke cel bevat 6 variabelen, wat resulteert in een toestandsvector van dimensie
92256. Alle MHD simulaties worden uitgevoerd met de VAC. De rest van de
code is gëımplementeerd in Matlab. Dit leidt helaas tot een constante conversie
van data formaten tussen de VAC en Matlab. Een gedeelte van de simulaties
werd uitgevoerd op de K.U.Leuven VIC cluster [1].

We maken gebruik van de procedure van tweelingsexperimenten, wat wil
zeggen dat we eerst ruizige data genereren met behulp van de VAC code en
nadien deze data assimileren in een tweede simulatie die start vanuit een foutieve
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begintoestand. Er worden twee reeksen van experimenten uitgevoerd. In de
eerste reeks veronderstellen we dat de eigenschappen van het inkomende plasma
gekend zijn en gaan we het effect na van de rang van de foutencovariantiematrix,
het aantal metingen en het type van ruimtelijke lokalisatie. In de tweede reeks
experimenten wordt er verondersteld dat de eigenschappen van het inkomende
plasma ongekend zijn en bovendien veranderen van druk-gedomineerd naar
magnetisch-gedomineerd. Het filter wordt uitgebreid om de randvoorwaarden
mee te schatten.

De simulatieresultaten van de eerste reeks experimenten tonen aan dat met
slechts 4 metingen een significante reductie van de schattingsfout kan bekomen
worden ten opzichte van een data-vrije simulatie. Verder geven de resultaten
aan dat ruimtelijke lokalisatie van de metingen een positief effect heeft op de
schattingsfout. Uit de resultaten van de tweede reeks experimenten kan besloten
worden dat het filter robuust is tegen veranderingen in de randvoorwaarden. De
simulaties geven echter aan dat een goede specificatie van de randvoorwaarden
cruciaal is.

We besluiten uit deze experimenten dat data assimilatie technieken een groot
potentieel hebben in ruimteweer toepassingen. Het valt echter af te wachten hoe
de technieken presteren met echte data en met meer realistsiche modellen die
bijvoorbeeld ook het magnetische veld van de aarde in rekening brengen.

Hoofdstuk 8: Besluit

Dit hoofdstuk vat de belangrijkste resultaten van dit proefschrift samen.
We beschouwen achtereenvolgens de resultaten in systeem inversie en data
assimilatie.

Systeem inversie

• Op basis van schattingstheorie werd een nieuwe inversie procedure afgeleid.
De procedure levert in het ruis-vrije geval een exacte reconstructie van
zowel de ingang als de toestand van het systeem. Voorwaarden werden
afgeleid waaronder de polen van het inverse systeem geplaatst kunnen
worden en de snelheid van convergentie dus geregeld kan worden.

• In geval van ruis werd er aangetoond dat de polen zodanig geplaatst
kunnen worden dat de schattingen optimaal zijn volgens het criterium
van de kleinste-kwadraten.

• Verschillende numerieke problemen werden aangepakt, zoals een reductie
in rekencomplexiteit en de ontwikkeling van numeriek hoogstaande imple-
mentaties.

Data assimilatie

• Een nieuw suboptimaal Kalman filter werd ontwikkeld dat uitermate
geschikt is voor toepassingen waarin slechts een beperkt aantal metingen
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beschikbaar is. Het filter vertaalt de schaarsheid aan metingen in
numerieke efficiëntie en is robuust tegen de problemen die kunnen optreden
als gevolg van het beperkte aantal metingen.

• Het suboptimale filter werd succesvol toegepast in een grootschalige
simulatie (ongeveer 105 te schatten variabelen) die de dynamica van de
boegschok modelleert die gevormd wordt als de supersonische zonnewind
de aarde passeert. Simulatieresultaten tonen aan dat het suboptimale
filter een significante reductie in de schattingsfout levert, zelfs als er slechts
metingen van vier satellieten beschikbaar zijn.





Chapter 1

Introduction

From the earliest times, people have been concerned with estimating un-
known quantities. Due to astronomical observations, Egyptian and Chinese
astronomers determined the period of alternation of the lunar phases within
several minutes of accuracy already in the fifth century before Christ [37].

The first attempt to the development of an estimation theory is due to
Galileo Galilei in the beginning of the seventeenth century. He tried to
systematize the minimization of various functions of the estimation error [65,80].
Perhaps the most important estimation theory is that of least-squares (LS)
estimation, connected to such important names as Legendre and Gauss. The
breakthrough of LS estimation came in 1801. Based on a limited number of
observations, it was the only method that could recover the position of the
asteroid Ceres after it had disappeared from sight for almost one year. However,
it was reported by Gauss that LS estimation has one major disadvantage: its
inability to take the laws governing the dynamics of Ceres into account [117].

In 1960, shortly after the introduction of linear state-space models, Kalman
[83] derived a recursive estimation procedure that takes both observations and
knowledge of system dynamics into account. It is well established by now that
Kalman’s estimation procedure, called the Kalman filter, recursively solves an
LS problem. Since its introduction, the Kalman filter has gained increasing
popularity. It was first successfully used in the Ranger, Mariner, and Apollo
space missions. In particular, it guided the Apollo 11 lunar module to the
Moon’s surface in 1961 [21]. Nowadays, the number of applications involving
the Kalman filter is almost uncountable. Variants of the Kalman filter are
used in airplanes, chemical plants, the Global Positioning System, econometrics,
weather prediction, and many other areas.

The popularity of the Kalman filter is due to its simple recursive structure
depicted in Fig. 1.1. Consider a dynamical system that is driven by a known
input and responds to this input by producing a certain output. The latter is
assumed to be measured at regular time instants. In order to estimate the state
of such a system, the Kalman filter starts from an initial estimate of the system
state and while new measurements become available, it consecutively applies

1
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the following two steps. The first step, the time update, propagates the present
state estimate ahead in time using a numerical model of the system. The second
step, the measurement update, updates the propagated state estimate based on
the newly available measurement.

1.1 Motivation and objectives

Despite its enormous success, extensions or approximations of the Kalman filter
are needed in most applications. In this thesis, two estimation problems are
considered in which the Kalman filter is not directly applicable.

• The first estimation problem, called data assimilation, extends the Kalman
filter for use with large-scale numerical models. Motivating examples and
objectives for this estimation problem, are given in Sect. 1.1.1.

• The second estimation problem, called system inversion, addresses the
case in which the system input is unknown. Motivating examples and
objectives for this estimation problem, are given in Sect. 1.1.2.

1.1.1 Data assimilation

The recursive two-steps structure of the Kalman filter is very appealing for
real-time environmental state estimation problems such as weather nowcasting.
Indeed, in such problems both ingredients of the Kalman filter, a numerical
models and measurements, are available. The numerical models are usually
obtained by discretizing partial differential equations (PDE’s) over a huge
spatial grid. The resulting number of grid cell ranges from 104 in tidal
flow forecasting [135] to as much as 106 in weather forecasting or ocean
circulation prediction [85]. In addition, the numerical models are usually highly
nonlinear. The challenging problem of assimilating observations in such large-
scale numerical models has been termed data assimilation.

Due to complexity of the numerical models, direct application of the Kalman
filter in data assimilation is not feasible. For a numerical model consisting
of 106 grid cells, for example, the Kalman filter would require approximately
eight terabytes of computer memory (using eight bytes per number), that is
approximately the total amount of information in a large university library.
The computational cost would then approximately be the time of 106 model
simulations. For a simulation of one minute, this comes down to almost two
years of computation.

It is clear that approximations of the Kalman filter are needed in data
assimilation. Such approximate filters have been termed suboptimal Kalman
filters. Suboptimal filters have been successfully used in such areas as weather
prediction [112], tidal flow forecasting [135], ocean circulation prediction [85],
ozone prediction [36], and the estimation of ecosystems [2]. Results show
that suboptimal filters at an expense of only a few hundred model simulations
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Figure 1.1: Recursive estimation procedure of the Kalman filter. Consider a
dynamical system that is driven by a known input and responds to this input
by producing a certain output. The latter is assumed to be measured at regular
time instants. In order to estimate the state of such a system, the Kalman filter
starts from an initial estimate of the system state and while new measurements
become available, it consecutively applies the following two steps. The first
step, the time update, propagates the present state estimate ahead in time
using a numerical model of the system. The second step, the measurement
update, updates the propagated state estimate based on the newly available
measurement.

perform significantly better than a data-free simulation, even for a large-scale
numerical model consisting of 106 grid cells.

In this thesis, suboptimal Kalman filtering techniques are developed for
space weather nowcasting. As will be discussed in the next section, the
complexity of the numerical models and the sparseness of observations make
the development of suboptimal Kalman filters for space weather nowcasting
even more challenging than for the applications considered above.

1.1.1.1 Space weather

Around 1930, scientists had discovered that the temperature in the corona, the
outer atmosphere of the Sun, is approximately one million degrees Celsius. A
surprisingly high temperature, knowing that the temperature at the surface
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of the Sun is only a few thousand degrees. Due to these extremely high
temperatures, all particles in the corona are in the plasma state, a state of
matter that can be considered as a gas consisting of positively and negatively
charged particles. Parker [109] showed that the Sun’s corona is so hot and so
energetic that the plasma must escape into space with supersonic velocity. He
termed this constant stream of plasma emerging from the Sun the solar wind.

The speed of the solar wind is not constant. It varies over the position on
the Sun (see Fig. 1.2) and over time. The average speed is 500 km/s, but speed
varies between 250 km/s in periods of solar minimum to as much as 2500 km/s
when the wind is due to a coronal mass ejection (see Fig. 1.3) or a flare, the
most energetic solar eruptions. Due to such eruptions, the speed of the solar
wind speed can vary significantly within time scales as short as seconds.

Just like an airplane that breaks the sound barrier, the supersonic solar wind
forms a bow shock when it encounters an obstacle such as the Earth. Across the
shock there is an extremely rapid change in the properties of the solar wind.
Like the wind on Earth, the properties of the solar wind can be characterized by
a speed, density, and pressure. However, due to the charged plasma particles,
the solar wind also drags a magnetic and electric field with it. When passing
the Earth, these fields start interacting with the magnetic field of the Earth. As
shown in Fig. 1.4, the Earth’s magnetic field is compressed at the day-side and
expanded at the night-side.

The fluctuations in the speed of the solar wind can strongly perturb
the magnetic environment of the Earth. The effects resulting from such
perturbations are referred to as space weather. Severe space weather can affect
human technology. Energy and radiation from flares and CME’s can harm
astronauts in space, damage sensitive electronics in satellites, disrupt long range
communication and navigation systems, create power blackouts and may even
have an effect on climate and on biological systems.

In order to observe weather conditions in space, several satellites have been
launched. The ACE, SOHO and WIND spacecrafts are located in front of the
bow shock. The CLUSTER II, DOUBLE STAR, GEOTAIL and INTERBALL
spacecrafts study the solar wind closer to Earth. Some of these spacecrafts cross
the Earth’s bow shock on a regular basis.

During the last decades, scientists have also developed numerical models
that simulate the flow of astrophysical plasmas [61]. The performance of such
numerical models has been tested by comparing model simulation to data
recorded from spacecrafts. In such simulations, it is usually observed that small
errors in the specification of the initial conditions and boundary conditions at
the Sun can lead to significant simulation errors at Earth. This motivates the
use of data assimilation techniques. A schematic overview of a state estimator
for space weather nowcasting, is shown in Fig. 1.5.

1.1.1.2 Challenges and objectives

Two issues make the development of data assimilation techniques for space
weather nowcasting even more challenging than for other applications.
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Figure 1.2: Variability in the speed of the solar wind. The speed varies over
the position on the Sun and over time. The average speed is 500 km/s, but
speed varies between 250 km/s in periods of solar minimum to as much as 2500
km/s when the wind is due to a coronal mass ejection (see Fig. 1.3) or a flare,
the most energetic solar eruptions. (Courtesy of SOHO consortium. SOHO is
a project of international cooperation between ESA and NASA.)

Figure 1.3: A coronal mass ejection (CME), one of the most energetic solar
eruptions. The discs in the middle of the figures cover the Sun, so that the
coronal mass ejection can be seen more clearly. Left figure: initiation of a CME.
Right figure: propagation of the CME through interplanetary space. (Courtesy
of SOHO consortium. SOHO is a project of international cooperation between
ESA and NASA.)
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Figure 1.4: Interaction of the solar wind with the magnetic field of the Earth.
Just like an airplane that breaks the sound barrier, the supersonic solar wind
forms a bow shock when it encounters an obstacle such as the Earth. Across
the shock there is an extremely rapid change in the properties of the solar wind.
The Earth’s magnetic field is compressed at the day-side and expanded at the
night-side due to interaction with the charged plasma particles in the solar
wind. The ellipse around the Earth represents the orbit of the four CLUSTER
II satellites which observe the weather conditions in space. (Figure taken from
http://clusterlaunch.esa.int/)

• The sparseness of observations: Contrary to Earthly weather observation,
where almost continuously in the order of 105 data points are available,
the number of satellites that observe space weather is very limited. In
addition, the length scales are enormous, in the order of millions of
kilometers.

• The complexity of the numerical models: The presence of charged particles
makes plasma behavior more complex than neutral gas behavior. The
equations that describe the behavior of a plasma are a combination of
the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism. They are consequently rich in nonlinearities.

As shown in Fig. 1.5, the objective of this thesis is to develop an advanced
suboptimal Kalman filter that is specifically adapted to the data sparse
environment of space weather. The filter must translate the sparseness of
measurements into numerical efficiency and must be robust against the problems
that may arise due to data sparseness. In other words, it must get as much
information as possible out of each measurement.
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Figure 1.5: Schematic overview of a state estimator for space weather
nowcasting. Due to the complexity of the numerical models (typically between
105 and 106 state variables), direct application of the Kalman filter in space
weather nowcasting is not feasible. In this thesis, an advanced suboptimal
Kalman filter is developed that is adapted to the data sparse environment of
space weather.

1.1.2 System inversion

The Kalman filter is based on the assumption that the system input is known
exactly. Such an assumption is valid in control applications, where the input
applied to the system is generated by a known control law, but can be too
restrictive in other applications. Indeed, in a lot of applications, the system is
subject to inputs of which the value is unknown. The second estimation problem
considered in this thesis, called system inversion, deals with estimating such
unknown inputs. Three examples that motivate the study of system inversion
are now given.
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1.1.2.1 Motivating examples

• Fault detection: For certain systems like e.g. airplanes, chemical plants
and mechanical robots, there is a potential for faults or disturbances that
may cause severe injury or property damage. The detection of faults is
therefore a prime concern in such systems. As shown in Fig. 1.6, this
thesis considers an actuator fault in an F16 aircraft. More precisely, it
will be assumed that the actuator which drives the elevator fails a certain
time instant. Actuator faults are typically hard to detect and may have
severe consequences. Indeed, the controller that steers the actuator is not
aware of the fault and will typically try to correct the movement of the
aircraft by steering the faulty actuator. There is thus a need to detect and
estimate such faults. Since faults can be modeled as an unknown input,
fault estimation can be performed by means of system inversion.

• Estimation of model errors: All numerical models are just ap-
proximations of the true system. In physical modelling, errors and
inaccuracies are due to unknown dynamics, incorrect parameter values,
rough approximations,. . . However, in most cases also measurements are
available that yield information about the underlying system dynamics.
This thesis addresses the use of such measurements in the estimation of
model errors. Just as faults, model errors can be seen as unknown inputs.

• Estimation of unknown boundary conditions: Consider again the
space weather example of Fig. 1.4. In order to simulate the effect of
space weather on the magnetic field of the Earth, the boundary conditions,
i.e. the properties of the incoming solar wind, need to be known. In
most environmental simulations, however, the boundary conditions are
unknown and thus have to specified conveniently or have to be estimated.

1.1.2.2 Challenges and objectives

In all of the examples above, there is a need for estimating an unknown input
from knowledge of the system output. As shown in Fig. 1.6, the estimation
of unknown inputs boils down to the development of an estimator that has as
input the output of the system and as output the input the system. The inputs
and outputs of the estimator are thus inverted in comparison to those of the
system. Hence, the name system inversion.

The first inversion techniques were introduced at the end of the sixties
[16, 115, 116]. However, existing inversion techniques are limited to the ideal
situation of noise-free systems. The objective of this thesis is to develop new
inversion techniques that extend to systems subject to noise. As shown in
Fig. 1.6, the inverse systems considered in this thesis consist of two parts. The
first part, the state estimator, yields and estimate of the system state. The
second part, the input estimator, uses the state estimate to produce an estimate
of the unknown input.
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Figure 1.6: Example of the use of system inversion in fault detection. Consider a
fault in the actuator that steers the elevator of an F16 aircraft. Actuator faults
are typically hard to detect and may have severe consequences. Indeed, the
controller that steers the actuator is not aware of the fault and will typically try
to correct the aircraft movement by steering the faulty actuator. The detection
of actuator faults is therefore a prime concern. Since faults can be modeled
as unknown inputs, fault estimation can be performed by means of system
inversion. The inverse systems considered in this thesis consist of two parts.
The first part, the state estimator, yields and estimate of the system state. The
second part, the input estimator, uses the state estimate to produce an estimate
of the fault.

1.2 Chapter-by-chapter overview

Figure 1.7 shows the outline of this thesis. The main body of the text is divided
in two parts. Part I deals with system inversion, Part II with data assimilation.
The two parts stand apart, meaning that e.g. Part II can be read before Part I.
Both parts build further on Chapter 2. A chapter-by-chapter overview of this
thesis is now given.

Chapter 2 provides a brief introduction to Kalman filtering. After a
formulation of the filtering problem, the Kalman filter is introduced as a
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recursive state estimator, optimal in the minimum-variance unbiased (MVU)
sense. Its relation to LS estimation is discussed afterwards. Two alternative
forms of the traditional equations are considered, the information form and the
square-root form, and their numerical advantages are discussed. Finally, the
extended Kalman filter, a nonlinear extension of the Kalman filter, is briefly
considered.

Part I: System Inversion

The first part of this thesis deals with system inversion. The exposition of
this part runs fairly parallel to the exposition in Chapter 2. Figure 1.8 yields an
overview of the most important concepts and methods concerning estimation
theory considered in this thesis. The arrows denote the relations between the
concepts and methods. The numbers denote the chapters and paragraphs
in which these relations are studies. Numbers between parentheses refer to
paragraphs dealing with Kalman filtering, the other numbers to paragraphs
dealing with system inversion.

• Chapter 3 addresses left inversion of linear discrete-time deterministic
systems in state-space form. The problems of left and right inversion are
first defined and conditions are derived under which a linear state-space
system is left invertible. Next, the state of the art in system inversion is
briefly discussed. We mainly consider the inversion approach of Sain and
Massey [115] and compare this approach to that of Silverman [116]. Next,
a new approach to left inversion based on joint input-state estimation is
introduced. Conditions and methods are derived under which the poles of
the inverse system can be assigned. Based on the theory of reduced order
observers, a technique is developed to simultaneously reduce the order
of the inverse system and place its poles. Several numerical examples
illustrate the new approach.

Publications related to this chapter: [56].

• Chapter 4 extends the inversion procedure of Chapter 3 to combined
deterministic-stochastic systems, where the aim is to optimally reconstruct
the deterministic input from knowledge of the noisy outputs. First,
the filtering problem is considered. Filters are developed in which the
estimation of the system state and the unknown input are interconnected.
An important contribution is the establishment of a relation between the
joint input-state estimators and (recursive) LS estimation. Based on this
relation, information and square-root information formulas are derived
almost instantaneously. Next, a general framework for the one step ahead
prediction, the filtering and the smoothing problem is derived that covers
both state estimation and joint input-state estimation.

Publications related to this chapter: [49,52,55–57].
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Figure 1.8: Overview of the concepts and techniques in estimation theory
considered in this thesis. The arrows denote the relations between the concepts
and techniques. The numbers denote the chapters and paragraphs in which
these relations are studies. Numbers between parentheses refer to paragraphs
dealing with Kalman filtering, the other numbers to paragraphs dealing with
system inversion.
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• Chapter 5 considers four applications of system inversion. First, a new
solution to the errors-in-variables filtering problem is derived in which the
estimation of the system state and the input are interconnected. Next, the
problem of filtering in the presence of bias is considered. A suboptimal
filter, closely related to the two-stage Kalman filter [45], is developed. The
last two applications are more practical. First, model error estimation and
dynamic model updating is addressed. An empirical technique is outlined
to correct a physical model for unknown dynamics. Finally, an approach
to joint state and boundary condition estimation is considered in which
the spatial component of the boundary condition is expanded as a linear
combination of orthogonal basis functions.

Publications related to this chapter: [50,51,53].

Part II: Data Assimilation

• Chapter 6 addresses the challenging problem of data assimilation. First,
a brief overview of the most commonly used suboptimal Kalman filtering
techniques is given. Next, the idea of suboptimal square-root filtering is
introduced and two procedures are described to process the measurements:
sequential processing and simultaneous processing. Two extensions of
the reduced rank square-root (RRSQRT) filter [135] are developed in this
chapter. The first extension speeds-up the RRSQRT filter by interweaving
the so-called reduction step into the measurement update. The second
extension addresses the problem of reduced rank spatially localized square-
root (RRSLSQRT) filtering, where the objective is to update only the
subset of the grid cells that is effectively correlated to the measurements.
The performance of the extensions is assessed in two numerical examples.

Publications related to this chapter: [48,54].

• Chapter 7 considers the application of data assimilation techniques for
nowcasting a space weather event. First, the magnetohydrodynamic
(MHD) equations are introduced and the different types of shocks that
occur in MHD are discussed. Next, the RRSLSQRT is applied with
a large-scale numerical MHD model, consisting of approximately 105

state variables, which emulates the dynamics of the bow shock that is
formed when the solar wind encounters the Earth. The performance of
the RRSLSQRT is investigated for different types of spatial localization
and different values of the rank of the approximate error covariance
matrix. Simulations with both known constant and unknown time-varying
boundary conditions are considered.

Publications related to this chapter: [48].

1.3 Personal contributions

This section summarizes the personal contributions of this thesis.
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1.3.1 System inversion

First, we consider the contributions in system inversion. The most important
contributions are development of a new inversion procedure for deterministic
system on the one hand, and the extension of this procedure to combined
deterministic-stochastic systems on the other hand.

• Based on estimation theory, a general form of a time-delay left inverse
system is derived in Sect. 3.5. Like the approach of Sain and Massey [115],
the left inverses considered in this thesis consist of a bank of delay elements
followed by a dynamical system. In this thesis, the most general form of
such a dynamical system is derived. This dynamical system reconstructs
both the system input and the system state and can thus be considered
as a joint input-state estimator. The general form consists of two matrix
parameters which can be free chosen. In Sect. 3.6, we derive methods
and conditions under which the poles of the estimator can be assigned
by the choice of these parameters. These conditions generalize earlier
results [7, 100].

Publications related to this topic: [56].

• An important contribution is the extension of the inversion procedure
to systems subject to both unknown inputs and noise, considered in
Chapter 4. Optimal recursive state estimators for such systems have been
extensively studied in literature. An important contribution of this thesis
is the extension to joint input-state estimation. In particular, it is shown
that the poles of the joint-input state estimator considered above can
be assigned so that the estimates are optimal in the minimum-variance
unbiased sense.

Publications related to this topic: [49,57].

• In Sects. 4.2.5 and 4.3.5, the relation between the joint input-state
estimator and LS estimation is established. More precisely, it is shown
that the joint input-state estimator can be derived by recursively solving
an LS problem. It is shown that the equations of the joint input-state
estimators can be split into a time update and a measurement update.
In particular, in Sect. 4.2, a state estimator is derived in which the time
update and the measurement update take the form of that in the Kalman
filter, except that the true value of the input is replaced by an optimal
estimate.

Publications related to this topic: [52,55].

• Considering state estimation in the presence of unknown inputs, a new
and straightforward procedure to decouple a system from unknown inputs
is developed in Sect. 4.4.1.1. The procedure generalizes existing results
[68, 70].

Publications related to this topic: [56].
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• Several computational and numerical issues are addressed. In Sect. 3.7, a
novel procedure is developed to reduce the order of the input estimator and
simultaneously place its poles. The problem of information and square-
root filtering, which was not yet considered in literature in the context of
system inversion, is addressed in Sects. 4.2.5, 4.3.5 and 4.3.6.

Publications related to this topic: [52,55,56].

• The inversion procedure is applied in four applications. In Sect. 5.2, a
new solution to the errors-in-variables filtering problem is derived. In
Sect. 5.3, a new solution to the optimal filtering problem in the presence
of bias errors is derived. Section 5.4 outlines a novel procedure for model
updating. Finally, in Sect. 5.5, a new approach to the estimation of
unknown boundary conditions is considered.

Publications related to this topic: [50,51,53].

1.3.2 Data assimilation

The most important contributions in data assimilation are the adaptation of the
RRSQRT filter to the sparseness of measurements in space weather on the one
hand, and the application of the resulting suboptimal filter in a space weather
simulation on the other hand.

• The sparseness of measurements is dealt with by a combination of two
techniques. The first technique uses the algorithm of Potter [111] to
translate the sparseness of measurements to numerical efficiency. The
second technique is based on the spatially localized Kalman filter [9] and
addresses the observability problem in data assimilation. An important
contribution of this thesis is the incorporation of both techniques in the
RRSQRT filter, considered in Sect. 6.5.2. The resulting suboptimal filter,
called the reduced rank spatially localized Kalman (RRSLSQRT) filter,
is well suited for large-scale applications in which only few measurements
are available.

Publications related to this topic: [48,53,54].

• In Chapter 7, the RRSLSQRT filter is successfully applied in a large-
scale simulation (approximately 105 state variables) which emulates
the dynamics of the bow shock under various conditions of the solar
wind. Simulation results indicate that the suboptimal filter yields a
significant reduction in estimation error over a data-free simulation, even
if measurements of only 4 satellites are available. However, it remains to
be seen how the method performs with more complex and realistic models.

Publications related to this topic: [48].





Chapter 2

The Kalman Filter

Revisited

This chapter provides a brief introduction to Kalman filtering.
After a formulation of the filtering problem, the Kalman filter is
introduced as a recursive state estimator, optimal in the minimum-
variance unbiased sense. Its relation to least-squares estimation
is discussed afterwards. Two alternative forms of the traditional
equations are considered, the information form and the square-root
form, and their numerical advantages are discussed. Finally, the
extended Kalman filter, a nonlinear extension of the Kalman filter, is
briefly considered. This chapter contains no personal contributions.

2.1 Introduction

The number of books and papers dealing with Kalman filtering is almost
uncountable. The objective of the present chapter is neither to give a detailed
and rigorous overview of literature on the Kalman filter, nor to provide a full
theoretical study of the technique, but rather to introduce those ingredients
of Kalman filtering that will be used in the remainder of this thesis. For
a deeper theoretical treatment, we refer the reader to e.g. [4, 47, 96]. It is
assumed throughout this chapter that the reader is familiar with probability
theory, stochastic processes, linear state-space models and LS estimation. An
introduction to probability theory and stochastic processes in the context of
filtering can be found in [77]. For an introduction to linear state-space models,
we refer the reader to [81] or [113]. A brief introduction to LS estimation can
be found in Appendix B.
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Chapter outline

This chapter is outlined as follows. Section 2.2 defines the filtering, prediction
and smoothing problems for linear dynamical systems. Next, in Sect. 2.3, the
concepts of observability and detectability are introduced and their significance
in the design of recursive filters for noise-free systems is discussed. The Kalman
filter is introduced in Sect. 2.4 as a recursive filter for linear systems subject
to noise, optimal in the MVU sense. Its relation to LS estimation is discussed
in Sect. 2.5, where also information formulas for the Kalman filter are derived.
Section 2.6 discusses the numerical advantages of square-root filtering. Finally,
in Sect. 2.7, the extended Kalman filter, an extension of the Kalman filter to
nonlinear systems, is considered.

2.2 Filtering, prediction and smoothing

This section defines the state estimation problem for dynamical systems, and
more particularly the filtering, prediction and smoothing problems. State
estimation for a dynamical system requires that a numerical model is available
which describes the dynamics of the system. We are concerned with linear time-
invariant (LTI) discrete-time models described by the state-space equations

x[k+1] = Ax[k] + w[k] (2.1a)

y[k] = Cx[k] + v[k], (2.1b)

where x[k] ∈ Rn denotes the state vector at the discrete time k and y[k] ∈ Rp

denotes the output vector at time k. The state equation (2.1a) usually follows
from the physical laws that govern the dynamics of the system, such as
e.g. the laws of mechanics, thermodynamics or electricity, or from black box
identification [106]. The output equation (2.1b) models the relation between
the state vector and the actual measurements of the system. The noise vectors
w[k] ∈ Rn and v[k] ∈ Rp account for the errors introduced in the modeling
procedure and are assumed to be unknown.

Without loss of generality, we assume that the initial time at which the
model (2.1) commences equals 0, so that (2.1) holds for k ≥ 0. We denote the
sequence {x[0], x[1], . . . , x[N ]} with N ≥ 0, by {x[k]}Nk=0.

Without loss of generality, we assume that there exists an initial state x[0]

and realizations of the noise processes {w[k]}∞k=0 and {v[k]}∞k=0 such that for all
k ≥ 0, x[k] equals the state of the true system at time instant k and y[k] equals
the measurement at time instant k. Although a system should actually not be
given a mathematical description, we will usually refer to (2.1) as the “system”.
The word “system” should in this context be interpreted as a model that we
consider to give a perfect mathematical description of the system. In the same
context, we refer to x[k] as the system state at time instant k.

We are now in place to define the filtering, prediction and smoothing
problems.
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Definition 2.1 (Estimation, Smoothing, Filtering, Prediction). Given a real-
ization of the output process of (2.1), that is, given a sequence of measurements
Y[l] := {y[k]}lk=0, the state estimation problem consists in computing an estimate
of the system state x[k] based on Y[l]. If k < l, the estimation problem is called
a smoothing problem. If k = l, it is called a filtering problem. And if k > l, it
is called a prediction problem.

If k = l + 1, we talk about a one step ahead prediction problem. In the
remainder, we denote an estimate of x[k] given Y[l] by x̂[k|l].

The difference between filtering, smoothing and prediction is schematically
shown in Fig. 2.1. The filtering and the prediction problems are usually em-
ployed in real-time operations, where the estimates are based on measurements
up to the present time instant. In the smoothing problem, a time delay between
the receipt of the last measurement and the production of the estimates is
allowed and the measurements that come available during that delay are used
in the estimation procedure.

2.3 Recursive estimation for noise-free systems

Let us start by considering the most simple state estimation problem, that is,
the estimation problem for the noise-free system

x[k+1] = Ax[k] (2.2a)

y[k] = Cx[k], (2.2b)

where x[k] ∈ Rn denotes the system state at time instant k and y[k] ∈ Rp denotes
the measurement at time k. The system matrices A and C are assumed to be
known. The initial state x[0], on the other hand, is assumed to be unknown.

This section is outlined as follows. In Sect. 2.3.1, conditions are derived
under which the state sequence {x[k]}∞k=0 of system (2.2) can be reconstructed
from knowledge of the sequence of measurements {y[k]}∞k=0. Next, in Sect. 2.3.2,
recursive state estimators for system (2.2) are derived.

2.3.1 Observability and detectability

The determination of conditions under which {x[k]}∞k=0 can be reconstructed
from knowledge of {y[k]}∞k=0, has led to the concepts of observability and
detectability.

2.3.1.1 Observability

We define observability both in terms of the system (2.2) and in terms of the
pair of matrices {A, C}.

Definition 2.2. The system (2.2) is said to be observable if there exists a
number N ≥ 0 such that given {y[k]}Nk=0, x[·] can be deduced.
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Figure 2.1: Filtering, smoothing and prediction: the index k denotes the time
at which the state vector is to be estimated.

Let N ≥ 0 and define

ON :=








C
CA
...

CAN








. (2.3)

Then, it is well known that observability of (2.2) can be checked by the rank of
the so-called observability matrix On−1 of (2.2).

Theorem 2.1 ( [12]). Rank(On−1) = n if and only if (2.2) is observable.

Proof: Defining y[0:N ] := [yT

[0] yT

[1] . . . yT

[N ]]
T, it follows from (2.2) that

y[0:N ] = ONx[0]. The initial state x[0] can be uniquely determined from the
latter equation if and only if rank(ON ) = n. It follows from the Cayley-Hamilton
theorem that rank(ON ) = rank(On−1) for all N ≥ n − 1, which concludes the
proof.

Instead of defining observability in terms of the system (2.2), observability
is sometimes also defined in terms of the pair of matrices {A, C}. The reason
is that, as we will see in Chapter 3, observability of a matrix pair may have a
meaning also if there is no system attached to that matrix pair.

Definition 2.3 ([12]). Let λ ∈ Λ(A), where Λ(A) denotes the set of eigenvalues
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of A. Then, λ is said to be an observable mode of {A, C} if

rank

([
λI −A

C

])

= n.

Otherwise, λ is said to be an unobservable mode of {A, C}.

Definition 2.4 ([12]). The pair {A, C} is said to be observable if all λ ∈ Λ(A)
are observable modes of {A, C}.

The following proposition yields a relation between observability of the pair
{A, C} and observability of the system (2.2).

Proposition 2.1 ([12]). The pair {A, C} is observable if and only if the system
(2.2) is observable.

It follows that observability of the pair {A, C} can be checked by the rank
of On−1. Consequently, we also refer to On−1 as the observability matrix of the
pair {A, C}.

2.3.1.2 Detectability

We define detectability in terms of the matrix pair {A, C} and give an
interpretation in terms of the system (2.2) afterwards.

Definition 2.5. The pair {A, C} is said to be detectable if all λ ∈ Λ(A) with
|λ| ≥ 1 are observable modes of {A, C}.

Notice that detectability is less strong than observability, that is, if the pair
{A, C} is observable, it is also detectable, but not vice versa.

In terms of the system (2.2), detectability of the pair {A, C} means that,
asymptotically, the state vector can be uniquely determined from knowledge of
the output, as will be shown in the next section.

2.3.2 Asymptotic and deadbeat estimation

In this section, we consider recursive state estimators for the system (2.2).
Such estimators are initialized with an estimate of the initial state of the
system. Every time instant a new measurement becomes available, the estimator
updates the previous estimate with this measurement according to a pre-
specified recursive law. The recursive law is usually designed so that the
estimates converge to the actual values.

We consider two types of estimators. In the asymptotic estimation problem,
the estimator is designed such that the estimation error converges asymptotically
to zero. We will see that detectability of the pair {A, C} is necessary for
the existence of such an estimator. In the deadbeat estimation problem, the
estimator is designed such that the estimation error becomes zero in a finite
number of steps. We will see that a necessary condition for the existence of
such an estimator is observability of the pair {A, C}.
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2.3.2.1 Asymptotic estimation

Consider a recursive state estimator for the system (2.2) of the form

x̂[k+1|k] = Ax̂[k|k−1] + K(y[k] − Cx̂[k|k−1]), (2.4)

initialized with an estimate x̂[0|−1] of the initial state x[0]. The term y[k] −
Cx̂[k|k−1] in (2.4) can be interpreted as the difference between the true and
estimated measurement at time instant k, and thus yields information about
the error in x̂[k|k−1]. The so-called gain matrix K is a design parameter. In
the asymptotic estimation problem, the gain matrix is determined so that
the estimation error x̃[k|k−1], defined by x̃[k|k−1] := x[k] − x̂[k|k−1], converges
asymptotically to zero for k →∞.

We now derive conditions under which such a gain matrix exists. It follows
from (2.2) and (2.4) that the estimation error obeys the following recursion,

x̃[k+1|k] = (A−KC)x̃[k|k−1]. (2.5)

Consequently, the estimation error converges asymptotically to zero if the gain
matrix K can be chosen so that |λ| < 1 for all λ ∈ Λ(A−KC), i.e. so that all
eigenvalues of A−KC lie inside the unit circle. The following theorem yields a
relation between the eigenvalues of A−KC and the unobservable modes of the
pair {A, C}.

Theorem 2.2 ([40]). Let λ be an unobservable mode of the pair {A, C}.
Then λ ∈ Λ(A − KC) for all K. In particular, let {A, C} have l distinct
unobservable modes, then l eigenvalues of A−KC will equal the unobservable
modes of {A, C}, while the other eigenvalues can be assigned by the choice
of K.

The following corollary, which immediately follows from Theorem 2.2, provides
conditions under which K can be chosen so that the eigenvalues of A−KC are
assigned.

Corollary 2.1.

(i) If and only if {A, C} is detectable, the gain matrix K can be chosen so
that |λ| < 1 for all λ ∈ Λ(A−KC).

(ii) If and only if {A, C} is observable, the gain matrix K can be chosen so
that all λ ∈ Λ(A−KC) can be assigned at any desired location.

It follows from (2.5) and from Corollary 2.1 that the gain matrix K can be
chosen so that x̃[k|k−1] converges asymptotically to zero for k →∞ if and only
if {A, C} is detectable. The procedure of assigning the eigenvalues of A −KC
by the choice of the gain matrix K is called pole placement. For pole placement
techniques and algorithms, we refer the reader to the specialized literature [40].
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2.3.2.2 Deadbeat estimation

The smaller the eigenvalues of A − KC, the faster the state estimator (2.4)
converges. It follows from Corollary 2.1 that if {A, C} is observable, the
eigenvalues can placed at any desired location. In deadbeat estimation, the
eigenvalues are placed at the origin, yielding convergence to the exact state
vector in only a few steps. A deadbeat estimator thus “beats” the error in the
initial state estimate to “death” in a finite number of steps.

2.4 The Kalman filter

Deadbeat estimators are attractive because of their extremely rapid conver-
gence. However, it is well-known that deadbeat estimators can be highly
sensitive to noise. In case of noise, it is more convenient to place the poles
of the estimator so that the estimates satisfy a certain optimality condition.
This is formalized in the Kalman filter.

This section assumes knowledge of basic statistical concepts and of stochastic
processes. The reader who is not familiar with these concepts is referred to [77].

Consider the LTI discrete-time system

x[k+1] = Ax[k] + Bu[k] + Ew[k] (2.6a)

y[k] = Cx[k] + Du[k] + v[k], (2.6b)

where x[k] ∈ Rn denotes the state vector at time instant k, y[k] ∈ Rp denotes
the measurement at time k, and u[k] ∈ Rm denotes the input vector at time k.
The system matrices A, B, C, D, and E and the input sequence {u[k]}∞k=0 are
assumed to be known. For the purpose of pole placement, we assume that the
pair {A, C} is observable.

We assume that the initial state x[0] is a random variable. The noise

processes {w[k] ∈ Rl}∞k=0 and {v[k] ∈ Rp}∞k=0 are assumed to be stochastic
with the properties given in the following assumption.

Assumption 2.1. The stochastic noise processes {w[k]}∞k=0 and {v[k]}∞k=0 are

(a) zero-mean processes with known covariance matrices

(b) stationary processes

(c) mutually uncorrelated processes

(d) white processes, meaning that for any k and l with k 6= l, the random
vectors w[k] and w[l] are uncorrelated and the random vectors v[k] and v[l]

are uncorrelated.

Notice that Assumptions 2.1 (b) – (d) can be summarized as

E

{[
w[k]

v[k]

] [

wT

[l] vT

[l]

]}

=

[
Q 0
0 R

]

δ[k−l],
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where Q and R denote the covariance matrices of the noise processes {w[k]}∞k=0

and {v[k]}∞k=0, respectively and where δ[k] := 1 for k = 0 and δ[k] := 0 otherwise.
We assume that R is positive definite.

2.4.1 Derivation of the Kalman filter equations

In his original derivation, Kalman used the concept of orthogonal projections
[83]. Afterwards, the Kalman filter equations have been rederived using
concepts such as maximum likelihood estimation, LS estimation and linear MVU
estimation [77]. The relation between the Kalman filter and LS estimation,
will be considered in Sect. 2.5. In this section, we consider the most simple
derivation, namely that based on MVU estimation.

Kalman considered a recursive state estimator of the form (2.4), except that
the gain matrix is now time-varying,

x̂[k+1|k] = Ax̂[k|k−1] + Bu[k] + K[k](y[k] − Cx̂[k|k−1] −Du[k]). (2.7)

It is assumed that an unbiased estimate x̂[0|−1] of the initial state x[0] is available,
that is, E[x[0]− x̂[0|−1]] = 0. The error x̃[0|−1] in the initial state estimate x̂[0|−1],
defined by x̃[0|−1] := x[0] − x̂[0|−1], is assumed to be uncorrelated to the noise
processes {w[k]}∞k=0 and {v[k]}∞k=0. Furthermore, it is assumed that the error
covariance matrix P[0|−1] defined by

P[0|−1] := E
[
(x[0] − x̂[0|−1])(x[0] − x̂[0|−1])

T
]
,

is known.
In the MVU setting of the Kalman filtering problem, the optimal value of

the gain matrix K[k] is defined as that value that satisfies the following two
conditions:

(i) The optimal gain matrix K[k] yields an unbiased estimate x̂[k+1|k] of
the form (2.7), meaning that E[x[k+1] − x̂[k+1|k]] = 0.

(ii) The optimal gain matrix K[k] minimizes the mean squared error

E[‖x[k+1] − x̂[k+1|k]‖2]

over all linear unbiased estimates of the form (2.7).

First, we determine the condition that the gain matrix should satisfy in order
that the estimator (2.7) is unbiased. Defining the error in x̂[k+1|k] by x̃[k+1|k] :=
x[k+1] − x̂[k+1|k], it follows from (2.7) and (2.6) that

x̃[k+1|k] = (A−K[k]C)x̃[k|k−1] −K[k]v[k] + w[k]. (2.8)

Since x̂[0|−1] is assumed to be unbiased, it follows from (2.8) that x̂[k+1|k] is
unbiased for all k ≥ 0 and for all values of the gain matrix K[k].
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The quantity y[k] − Cx̂[k|k−1] − Du[k] on the basis of which the Kalman
filter assimilates the measurements is called the innovation. Notice that the
innovation can be written as

y[k] − Cx̂[k|k−1] −Du[k] = Cx̃[k|k−1] + v[k].

It follows from the discussion above that the innovation has expected value
zero. The Kalman filter thus assimilates the measurement based on a zero-
mean random variable.

Now, we determine the gain matrix that minimizes the mean squared error.
It can be shown that minimizing the mean squared error E[‖x[k+1] − x̂[k+1|k]‖2]
is equivalent to minimizing the trace of the error covariance matrix P[k+1|k],
defined by

P[k+1|k] := E
[
(x[k+1] − x̂[k+1|k])(x[k+1] − x̂[k+1|k])

T
]
.

It follows from (2.8) that the error covariance matrix P[k+1|k] obeys the following
recursion,

P[k+1|k] = (A−K[k]C)P[k|k−1](A−K[k]C)T + K[k]RKT

[k] + EQET

= K[k]R̃[k]K
T

[k] −K[k]CP[k|k−1]A
T −AP[k|k−1]C

TKT

[k]

+ AP[k|k−1]A
T + EQET, (2.9)

where R̃[k] is defined by

R̃[k] := CP[k|k−1]C
T + R. (2.10)

Notice that R̃[k] is invertible since R was assumed to be positive definite.

The gain matrix K[k] minimizing the trace of (2.9) is then found by setting
the derivative of the trace of of (2.9) equal to zero. This yields,

K[k] = AP[k|k−1]C
TR̃−1

[k] . (2.11)

Substituting (2.11) in (2.9), yields the following equivalent expressions for the
update of the error covariance matrix,

P[k+1|k] = AP[k|k−1]A
T −AP[k|k−1]C

TR̃−1
[k] CP[k|k−1]A

T + EQET, (2.12)

= (A−K[k]C)P[k|k−1]A
T + EQET.

Summarizing, the Kalman filter equations are given by (2.7) and (2.12).
Since the latter equations actually yield a recursive procedure to update a one
step ahead predicted estimate x̂[k+1|k] and its corresponding error covariance
matrix, we refer to the these equations as the Kalman filter equations in
prediction form.
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2.4.2 Time and measurement update

Completely analogous the developments in the previous section, it is possible
to derive an MVU recursion in terms of a filtered estimate x̂[k|k] and its error
covariance matrix P[k|k], defined by

P[k|k] := E
[
(x[k] − x̂[k|k])(x[k] − x̂[k|k])

T
]
.

The resulting equations are called the Kalman filter equations in filter form.
The equations in filter form are very similar to those in prediction form, see
e.g. [4]. Both forms are related through the so-called measurement update and
time update.

Kalman filter

• Measurement update
The measurement update expresses the filtered quantities in terms of
the one step ahead predicted quantities,

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Du[k]) (2.13)

L[k] = P[k|k−1]C
T(CP[k|k−1]C

T + R)−1 (2.14)

P[k|k] = P[k|k−1] − P[k|k−1]C
T(CP[k|k−1]C

T + R)−1CP[k|k−1]. (2.15)

Notice that the gain matrix L[k] is related to (2.11) by K[k] = AL[k].

• Time update
The time update expresses the one step ahead predicted quantities in
terms of the filtered quantities,

x̂[k+1|k] = Ax̂[k|k] + Bu[k] (2.16)

P[k+1|k] = AP[k|k]A
T + EQET. (2.17)

It is easily verified that substituting (2.13)-(2.15) in (2.16)-(2.17), yields the
equations in one step ahead prediction form derived in the previous section.
Analogously, the equations in filter form can be derived by substituting (2.16)-
(2.17) in (2.13)-(2.15).

Due to the split-up in the time update and the measurement update, the
Kalman filter can be interpreted as a recursive state estimator that consecutively
updates the previously predicted state estimate with the new observation (the
measurement update) and then predicts the state at the next time instant based
on the model equations (the time update). This is schematically shown in
Fig. 2.2.
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u[k] y[k]
System

x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k] + v[k]

Time update

x̂[k+1|k] = Ax̂[k|k] + Bu[k]

Measurement update

x̂[k|k] = x̂[k|k−1]

+ L[k](y[k] − Cx̂[k|k−1] −Du[k])

Kalman filter

x̂
[k
|k
−

1
]

x̂
[k
|k

]

Figure 2.2: Interpretation of the Kalman filter as a recursive state estimator
that consecutively updates the previously predicted state estimate with the
new observation (measurement update) and then predicts the state at the next
time instant based on the model equations (time update).

2.5 Information filtering

Shortly after the introduction of the Kalman filter, alternative implementations
of the original formulas appeared. In this section, we consider one such
alternative implementation called information filtering. Instead of propagating
the error covariance matrix, information filters work with its inverse, the
information matrix. Such an approach is especially useful if no knowledge of
the initial state is available (P[0|−1] = ∞), since in that case the traditional
covariance formulas can not be used.

Information filters were derived by establishing a relation between the
Kalman filter and LS estimation. Rigorous derivations of such a relation can
be found in [32, 77, 127]. However, the first step towards the establishment of
such a relation already dates back to the work of Mowery [99]. Numerically
accurate implementations that make use of orthogonal operations can be found
in e.g. [97, 107].

This section is outlined as follows. In Sect. 2.5.1, we consider a sequence of
growing LS problems that yield smoothed, filtered and one step ahead predicted
estimates of the system state and discuss the relation to the Kalman filter. Next,
in Sect. 2.5.2, a recursive solution to the sequence of LS problems is derived.
Finally, in Sect. 2.5.3, it is shown that by solving this RLS problem analytically,
information formulas for the Kalman filter are obtained.



28 The Kalman Filter Revisited

2.5.1 Least-squares state estimation

This section assumes that the reader is familiar with both the stochastic and
the deterministic setting of the LS problem. A brief discussion of both settings
can be found in Appendix B.

We consider system (2.6) with E = I. Contrary to the derivation of the
Kalman filter in Sect. 2.4, we do not make any assumption about the properties
the initial state x[0] and the noise processes {w[k]}∞k=0 and {v[k]}∞k=0. For
this system, we set-up a sequence of growing LS problems. The LS problem
considered at time instant k yields estimates of the state sequence {x[i]}k+1

i=0

based on knowledge of {y[i]}ki=0 and {u[i]}ki=0. To this aim, the system equations
from time instant 0 to time instant k are written into a form that expresses the
data (i.e. the known vectors) as a linear combination of the unknowns (i.e. the
state sequence) plus noise terms. Appending an equation that summarizes the
information in the initial state estimate x̂[0|−1], yields
















x̂[0|−1]

y[0] −Du[0]

−Bu[0]
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...
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
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









︸ ︷︷ ︸

data

=
















I
C
A −I

C
A −I

. . .

C
A −I

























x[0]

x[1]

...
x[k]

x[k+1]










︸ ︷︷ ︸

unknowns

+
















−x̃[0|−1]

v[0]

w[0]

v[1]

w[1]

...
v[k]

w[k]
















︸ ︷︷ ︸

noise

. (2.18)

The LS problem considered at time instant k is then given by

min
x[0],...,x[k+1]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
















x̂[0|−1]

y[0] −Du[0]

−Bu[0]

y[1] −Du[1]

−Bu[1]

...
y[k] −Du[k]

−Bu[k]
















−
















I
C
A −I

C
A −I

. . .

C
A −I

























x[0]

x[1]

...
x[k]

x[k+1]










∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

W[k]

, (2.19)

where W[k] denotes the weighting matrix, which can be freely chosen.
The arguments that minimize the LS problem (2.19) consist of smoothed

estimates x̂[0|k], x̂[1|k], . . . , x̂[k−1|k], a filtered estimate x̂[k|k] and a one step ahead
predicted estimate x̂[k+1|k]. It has been proved [77,136] that by choosing W[k] =

diag(P−1
[0|−1], R

−1, Q−1, . . . , Q−1), where P[0|−1], Q and R denote matrices that

can be freely chosen, the filtered estimates x̂[k|k] that minimize two consecutive
LS problems (k = l and k = l + 1, l ≥ 0) of the form (2.19) obey the Kalman
filter recursion in filter form. Similarly, it has been proved that the one step
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ahead predicted estimates x̂[k+1|k] that minimize two consecutive LS problems
of the form (2.19) obey the Kalman filter recursion in one step ahead prediction
form. This is formalized in the following theorem.

Theorem 2.3. Consider for k = 0, 1, . . . an LS problem of the form (2.19).
The arguments x̂[k|k] and x̂[k+1|k] that minimize two consecutive LS problems
of this sequence (k = l and k = l+1, l ≥ 0) obey the Kalman filter recursion.

Although proving that x̂[k|k] and x̂[k+1|k] obey the Kalman filter recursion is
quite straightforward, deriving the Kalman filter equations based on the LS
problem (2.19) is very complicated and has been done only for the most simple
cases [77].

Notice, very importantly, that so far we have not imposed any filter structure,
nor have we given any interpretation to the initial state x[0] and to the noise
processes {w[k]}∞k=0 and {v[k]}∞k=0, and yet the recursive Kalman filter equations
are obtained. This shows first of all that the Kalman filter is optimal in an LS
sense also if no interpretation is given to the noise processes and secondly that
even though its recursive structure, it yields estimates that are globally optimal
in an LS sense. By giving the noise processes and the initial state the stochastic
interpretation considered in Sect. 2.4, and by choosing P[0|−1], R and Q as the
covariance matrices defined in Sect. 2.4, the LS problem (2.19) can be given the
interpretation of an MVU estimator. Consequently, under these assumption
about the noise processes, we again find that the Kalman filter is optimal in an
MVU sense.

It is easily verified that the regressor matrix in (2.19) always has full column
rank. By considering a modified LS problem that uses no information about the
initial state, that is by removing the first row of the regressor matrix, however,
it turns out that the regressor matrix has full column rank if and only if {A, C}
is observable. A proof can be found in Lemma C.1 in Appendix C.1.

2.5.2 Recursive least-squares filtering

If one is interested only in the one step ahead predicted estimates x̂[1|0], x̂[2|1], . . .
or the filtered estimates x̂[0|0], x̂[1|1], . . . , then solving an LS problem of the form
(2.19) for k = 0, 1, . . . can be very time consuming.

In this section, it is shown that x̂[k+1|k] can be computed from x̂[k|k−1] using
an RLS procedure. The idea behind the derivation is shown in Fig. 2.3. Consider
two consecutive LS problems of the form (2.19), the first one using measurements
up to time instant k− 1, the second one using measurements up to time instant
k. Then, due to the structure in the regressor matrix, x̂[k+1|k] can be computed
from x̂[k|k−1], as will now be shown.

For simplicity, we use a stochastic approach. We assume that an estimate
x̂[k|k−1] is available with error covariance matrix P[k|k−1] and seek for an LS
problem that allows to estimate x[k+1] based on knowledge of x̂[k|k−1] and of
the newly available measurement y[k]. Considering the equations of (2.18) that
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0 0

1 1

22

k−1 k

LS problem (2.19) LS problem (2.19)

RLS problem (2.21)

︷ ︸︸ ︷

x̂[0|k−1] . . . x̂[k|k−1]

︷ ︸︸ ︷

x̂[0|k] . . . x̂[k+1|k]

Time update (2.23)Measurement update (2.22)

Figure 2.3: Consider two consecutive LS problems of the form (2.19), the
first one using measurements up to time instant k − 1, the second one using
measurements up to time instant k. Then, due to the structure in the regressor
matrix, it can be shown that x̂[k+1|k] can be computed from x̂[k|k−1] using the
LS problem (2.21). This yields an RLS procedure to propagate a one step ahead
predicted estimate, from which the time update and the measurement update
follow.

depend on data at time instant k, i.e. the last two equations, and appending an
equation that summarizes the information in x̂[k|k−1], yields





x̂[k|k−1]

y[k] −Du[k]

−Bu[k]



 =





I 0
C 0
A −I





[
x[k]

x[k+1]

]

+





−x̃[k|k−1]

v[k]

w[k]



 . (2.20)

The corresponding LS problem is then given by

min
x[k],x[k+1]

∥
∥
∥
∥
∥
∥





x̂[k|k−1]

y[k] −Du[k]

−Bu[k]



−





I 0
C 0
A −I





[
x[k]

x[k+1]

]
∥
∥
∥
∥
∥
∥

2

W̄[k]

, (2.21)
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where W̄[k] denotes the weighting matrix. We give (2.21) the interpretation of an

MVU estimator by choosing W̄[k] = diag(P−1
[k|k−1], R

−1, Q−1), where P[k|k−1], R

and Q denote the error covariance matrices as defined above. The arguments
that minimize (2.21) consist of a filtered estimate x̂[k|k] and a one step ahead
predicted estimate x̂[k+1|k]. In addition, due to the stochastic assumption,
solution of the LS problem (2.21) may provide us with the error covariance
matrix P[k+1|k] of x̂[k+1|k]. Consequently, (2.21) yields a recursive procedure to
propagate a one step ahead predicted state estimate.

Proposition 2.2. Solution of the LS problem (2.21) yields the Kalman
filter equations.

In the next sections, LS problems for the time update and the measurement
update are extracted from (2.21).

2.5.2.1 Measurement update

The measurement update is obtained from (2.21) by extracting the subproblem
that depends only on x[k], which yields

min
x[k]

∥
∥
∥
∥

[
x̂[k|k−1]

y[k] −Du[k]

]

−
[

I
C

]

x[k]

∥
∥
∥
∥

W̄1[k]

, (2.22)

where W̄1[k] denotes the weighting matrix which we choose as W̄1[k] =

diag(P−1
[k|k−1], R

−1).

Proposition 2.3. Solution of the LS problem (2.22) yields the measurement
update of the Kalman filter.

2.5.2.2 Time update

For the time update, we extract from (2.20) the equation that depends on x[k+1]

and substitute x[k] for its estimate x̂[k|k]. This yields,

Ax̂[k|k] + Bu[k] = x[k+1] − (Ax̃[k|k] + w[k]).

The corresponding LS problem with interpretation of an MVU estimator is given
by

min
x[k+1]

∥
∥x[k+1] −Ax̂[k|k] − Bu[k]

∥
∥

W̄2[k]
, (2.23)

where W̄2[k] denotes the weighting matrix, which we choose as W̄2[k] =

(E[(Ax̃[k|k] + w[k])(Ax̃[k|k] + w[k])
T])−1.
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Proposition 2.4. Solution of the LS problem (2.23) yields the time update
of the Kalman filter.

2.5.3 Information Kalman filtering

In this section, we show that application of the Gauss-Markov theorem to the LS
problems (2.22) and (2.23) yields information formulas for the time update and
measurement update of the Kalman filter. We assume throughout this section
that A and Q are nonsingular.

2.5.3.1 Measurement update

It follows from Proposition 2.3 that information formulas for the measurement
update of the Kalman filter can be derived by application of the Gauss-Markov
theorem (Theorem B.2) to (2.22). This yields,

P−1
[k|k] = P−1

[k|k−1] + CTR−1C, (2.24)

P−1
[k|k]x̂[k|k] = P−1

[k|k−1]x̂[k|k−1] + CTR−1(y[k] −Du[k]). (2.25)

It is easily verified that application of the matrix inversion lemma (Lemma A.2)
to (2.24)-(2.25) yields the covariance formulas (2.13)-(2.15), which shows that
P−1

[k|k] is indeed the information matrix of x̂[k|k].

2.5.3.2 Time update

Information formulas for the time update of the Kalman filter can be derived
by application of the Gauss Markov theorem to (2.23), or by application of the
matrix inversion lemma to (2.16)-(2.17). In both cases, this yields,

P−1
[k+1|k] = (I −N[k])H

−1
[k] (2.26)

P−1
[k+1|k]x̂[k+1|k] = (I −N[k])A

−T(P−1
[k|k]x̂[k|k] + P−1

[k|k]A
−1Bu[k]),

where

N[k] = H−1
[k] (H−1

[k] + Q−1)−1

H−1
[k] = A−TP−1

[k|k]A
−1.

2.5.3.3 Duality relations

Notice that (2.26), the time update in information form, takes a form which is
very similar to (2.15), the measurement update in covariance form. Also, (2.24),
the measurement update in information form, is very similar to (2.17), the time
update in covariance form. These duality relations between the covariance and
information formulas are summarized in Table 2.1. The relations will be used in
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Sect. 2.6.2 to convert between covariance and information square-root formulas
almost immediately.

2.6 Square-root filtering

Already from the origin of the Kalman filter, several numerical problems of the
algorithm were reported. Numerical experiments have revealed that, due to
the build-up of numerical errors, the error covariance matrix can become non-
symmetric. Fitzgerald [43] showed that numerical errors may even lead to filter
divergence, a phenomenon in which the actual errors diverge out of proportion
to the values predicted by the filter.

To prevent loss of symmetry, Potter and Stern [111] introduced the idea
of expressing the Kalman filter equations in terms of a square-root, more
precisely a Cholesky factor of the error covariance matrix. By propagating such
a Cholesky factor, the computed error covariance matrix remains symmetric
and positive definite at all times. In addition, due to the numerically
stable operations (such as Householder reflections and Givens rotations) that
are usually employed in square-root implementations, square-root filters are
numerically better conditioned than a direct implementation [133].

This section is outlined as follows. In Sect. 2.6.1, we consider square-root
covariance filtering. Next, in Sect. 2.6.2, the problem of square-root information
filtering is addressed.

Throughout this section, we consider a system of the form (2.6) with E =
I, B = 0, and D = 0. In Sect. 2.6.2, we assume that A and Q are nonsingular.
For a matrix X, X1/2 denotes the lower triangular Cholesky factor of X.

2.6.1 Square-root covariance filtering

First, we derive a square-root algorithm for the Kalman filter equations in
prediction form. Afterwards, we indicate how square-root formulas for the time
update and measurement update can be extracted.

2.6.1.1 One step ahead prediction

The basic idea behind square-root filtering is to apply orthogonal transfor-
mations to a pre-array containing the prior estimates, forming a post-array
containing the updated estimates. Defining the block matrix

M[k] :=

[

R̃[k] CP[k|k−1]A
T

AP[k|k−1]C
T AP[k|k−1]A

T + Q

]

,

it follows from (2.10) thatM[k] can be decomposed asM[k] = Ca[k]CT

a[k], where

Ca[k] :=

[

R1/2 CP
1/2
[k|k−1] 0

0 AP
1/2
[k|k−1] Q1/2

]

.
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Time update in Measurement update in
covariance form information form

P[k+1|k] P−1
[k|k]

A CT

P[k|k] R−1

Q P−1
[k|k−1]

Measurement update in Time update in
covariance form information form

P[k|k] P−1
[k+1|k]

C I
P[k|k−1] A−TP−1

[k|k]A
−1

R Q−1

Table 2.1: Duality between the time update and the measurement update in
covariance and information form.

Similarly, it follows from (2.9) thatM[k] can be decomposed asM[k] = Cb[k]CT

b[k],
where

Cb[k] :=




R̃

1/2
[k] 0 0

K[k]R̃
1/2
[k] P

1/2
[k+1|k] 0



 .

Notice that all matrices in Ca[k] are known prior to the update. Hence, Ca[k] is
a pre-array. The block matrix Cb[k], on the other hand, contains matrices that
have to be deduced during the update. Hence, Cb[k] is a post-array.

It follows from the discussion above that

Ca[k]CT

a[k] = Cb[k]CT

b[k].

Consequently, there must exist a transformation matrix Θ[k], with Θ[k]Θ
T

[k] = I,
so that Ca[k]Θ[k] = Cb[k], that is, so that




R1/2 CP

1/2
[k|k−1] 0

0 AP
1/2
[k|k−1] Q1/2



Θ[k] =




R̃

1/2
[k] 0 0

K[k]R̃
1/2
[k] P

1/2
[k+1|k] 0



 . (2.27)

Notice that the post-array in (2.27) is lower triangular. Consequently, (2.27)
can be implemented by applying a sequence of orthogonal operations to the pre-
array that brings it into the lower triangular form of the post-array. Usually,
numerically stable operations like Householder reflections and Givens rotation
are used [82]. The algebraic equivalence of (2.27) to the Kalman filter equations
in prediction form can be verified by equating inner products on left and right
hand side of the equality sign.
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2.6.1.2 Time and measurement update

A square-root algorithm for the measurement update and time update can be
derived in a similar manner.

For the measurement update, we define the block matrix

M1[k] :=

[

R̃[k] CP[k|k−1]

P[k|k−1]C
T P[k|k−1]

]

.

Making a derivation similar to that in the previous section, yields the following
array algorithm,




R1/2 CP

1/2
[k|k−1]

0 P
1/2
[k|k−1]



Θ1[k] =




R̃

1/2
[k] 0

L[k]R̃
1/2
[k] P

1/2
[k|k]



 , (2.28)

where Θ1[k] denotes a sequence of orthogonal operations that brings the pre-
array into the lower triangular form of the post-array.

A square-root algorithm for the time update can be derived in similar
manner, yielding

[

AP
1/2
[k|k] Q1/2

]

Θ2[k] =
[

P
1/2
[k+1|k] 0

]

, (2.29)

where Θ2[k] denotes a sequence of orthogonal operations that brings the pre-
array into the lower triangular form of the post-array.

2.6.2 Square-root information filtering

Square-root algorithms for information filtering can be derived almost imme-
diately from the square-root covariance algorithms by duality relations. Using
Table 2.1, it follows from (2.28) that the time update in information form is
given by








Q−T/2 A−TP
−T/2
[k|k]

0 A−TP
−T/2
[k|k]

0 x̂T

[k|k]P
−T/2
[k|k]








Θ3[k] =








⋆ 0

⋆ P
−T/2
[k+1|k]

⋆ xT

[k+1|k]P
−T/2
[k+1|k]








, (2.30)

where Θ3[k] denotes a sequence of orthogonal operations that brings the pre-
array into the lower triangular form of the post-array and where the “⋆”-
symbols denote matrices that are not important for our discussion. Similarly,
using duality relations, it follows from (2.29) that the measurement update in
information form is given by




CTR−T/2 P

−T/2
[k|k−1]

yT

[k]R
−T/2 x̂T

[k|k−1]P
−T/2
[k|k−1]



Θ4[k] =




P

−T/2
[k|k] 0

x̂T

[k|k]P
−T/2
[k|k] ⋆



 , (2.31)
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where Θ4[k] denotes a sequence of orthogonal operations that brings the pre-
array into the lower triangular form of the post-array. Notice that we have
also included the updates of the state estimates in (2.30) and (2.31), as is
traditionally done in the information filters.

2.7 The extended Kalman filter

Until now, we have been concerned with LTI systems. The Kalman filter
equations are easily extended to linear time-varying systems, simply by replacing
the time invariant system matrices by their time-varying counterparts. In many
applications, however, the dynamics of the system are nonlinear. Optimal
filtering for nonlinear system is very hard and therefore not feasible in practice.
Consequently, a lot of approximate nonlinear filters have been proposed in
literature. In this section, we consider the nonlinear filter that is most widely
used, the extended Kalman filter (EKF).

2.7.1 Derivation of filter equations

We derive the equations using the approach in [4]. Consider a nonlinear discrete-
time system governed by

x[k+1] = f(x[k]) + Ew[k] (2.32a)

y[k] = Cx[k] + v[k], (2.32b)

where f(·) is a nonlinear function, x[k] denotes the state vector at time instant k
and y[k] denotes the output vector at time k. The initial state x[0] and the noise
processes {w[k]}∞k=0 and {v[k]}∞k=0 can be given the stochastic interpretations
considered in Sect. 2.4, however, due to the relation between the Kalman filter
and LS estimation, such an interpretation is not necessary.

The approximation in the EKF is based on expanding f(x[k]) in Taylor series
around the current state estimate and neglecting higher order terms. More
precisely, let x̂[k|k] denote the current state estimate, then the approximation is
given by

f(x[k]) ≈ f(x̂[k|k]) + A[k](x[k] − x̂[k|k]), (2.33)

where

A[k] :=
∂f

∂x
(x̂[k|k]).

By substituting (2.33) in (2.32), it follows that the nonlinear system (2.32) can
be approximated around the current state estimate by the linear time-varying
system

x[k+1] = A[k]x[k] + u[k] + Ew[k] (2.34a)

y[k] = Cx[k] + v[k], (2.34b)
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where u[k] := f(x̂[k|k])−A[k]x̂[k|k].

The equations of the EKF are then defined by the Kalman filter equations
for the system (2.34). It straightforward to show that the measurement update
of that Kalman filter is given by (2.13)-(2.15). In the time update, the nonlinear
function f(·) shows up. This yields:

Extended Kalman filter

• Measurement update

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Du[k])

L[k] = P[k|k−1]C
T(CP[k|k−1]C

T + R)−1

P[k|k] = P[k|k−1] − P[k|k−1]C
T(CP[k|k−1]C

T + R)−1CP[k|k−1]

• Time update

x̂[k+1|k] = f(x̂[k|k])

P[k+1|k] = A[k]P[k|k]A
T

[k] + EQET

Notice that even if P[0|−1], R, and Q are given the stochastic interpretations
considered in Sect. 2.4, P[k|k] and P[k+1|k] are no longer the error covariance
matrices of x̂[k|k] and x̂[k+1|k]. They can be considered as approximations to
these error covariance matrices.

2.7.2 Observability

Application of the EKF requires that the linear time-varying system (2.34) is
observable (or at least detectable). Observability for time-varying systems is
usually defined over an interval. More precisely, a time-varying system is said
to be observable over the interval [k0, k1] if, given y over that interval, we can
determine x[k0]. This leads to a time-varying observability matrix that needs
now to be of full column rank [113].

2.8 Conclusion

This chapter has provided a brief introduction to Kalman filtering. The Kalman
filter was introduced as an extension of asymptotic and deadbeat estimators.
It was shown that the Kalman filter equations can be easily derived based on
MVU estimation. The relation between the Kalman filter and least-squares
estimation was discussed. Two alternative forms of the traditional equations
were considered, the information form and the square-root form, and their
numerical advantages were discussed. Finally, the extended Kalman filter, a
nonlinear extension of the Kalman filter, was briefly considered.
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Chapter 3

Inversion of Deterministic

Systems

This chapter addresses left inversion of linear discrete-time
deterministic systems in state-space form. The main contribution
is the derivation of a general form of a time-delayed left inverse.
The general form contains a free matrix parameter which allows
to place the poles of the inverse system. It is shown that pole
placement is possible if a certain matrix pair is observable. This
pair turns out to be observable if the system has no zeros. Based on
the theory of reduced order observers, a new technique is developed
to simultaneously reduce the order of the inverse system and place
its poles. The results of this chapter generalize existing methods for
left inversion, and in addition also have direct implications for state
estimation in the presence of unknown inputs.

3.1 Introduction

The problem of inverting linear dynamical system has received a lot of attention
in the past due to its strong connection to control and estimation theory. System
inversion has applications in such areas as fault detection and isolation [128],
geophysical estimation [87], simultaneous stabilization of dynamical systems [18]
and adaptive tracking control [123].

In this chapter, we will be concerned with left inversion of deterministic
systems in state-space form, where the objective is to exactly reconstruct the
input applied to the system from knowledge of the system outputs.

A brief overview of the most important accomplishments in the early history
of systems inversion is shown in Fig. 3.1. The problem has been intensively
studied during the end of the sixties and the beginning of the seventies. The
earliest systematic approach to the inversion of deterministic systems is due
to Brockett & Mesarovic [15, 16] who considered SISO systems and derived

41
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necessary and sufficient conditions for invertibility as well as an inversion
algorithm.

Important contributions in the inversion of MIMO state-space systems were
obtained by Sain & Massey [95, 115] and Silverman [116]. Their contributions
have given a lot of insight in the structure and the properties of inverse systems.
Silverman obtained with his so-called structure algorithm the insight that an
inverse system can be realized with exactly the same number of differentiators
(or delay elements in the discrete-time case) as the original system. Sain &
Massey mainly studied left inversion and introduced the concept of the inherent
delay of a discrete-time system, which is the minimal time delay that needs to
be allowed in the reconstruction of the input.

A disadvantage of the inversion procedures by Silverman and Sain & Massey
is that the poles of the inverse system can not be tuned. Consequently, the
procedures can yield unstable inverses. Unstable inverses are of no harm if the
initial state of the system is known exactly. In applications, however, a stable
inverse is desired since this introduces robustness against errors in the initial
state. Moylan [100] was the first to develop an algorithm that always returns
a stable inverse (provided that the original system has no unstable zeros). His
algorithm is close to that of Silverman. A very straightforward approach to
stable inversion is given by Antsaklis [7]. His treatment is based on feedback
control and allows to assign the poles of the inverse system (except those that
equal the zeros of the given system). His method is, however, limited to systems
with inherent delay zero.

The inversion procedures considered above are all based on time-domain
approaches. However, because system inversion basically is an input-output
concept, frequency-domain approaches have also received at lot of attention,
see e.g. [34, 104,131,132] and the references therein.

In case the initial state of the system is unknown, it is more convenient
to consider the inverse system as an input estimator. In fact, all time-domain
approaches to left inversion considered above not only yield estimates of the
system input, but also of the system state. They can thus be considered as
joint input-state estimators. Frequency domain approaches lack the capability
of state estimation and are therefore only briefly considered in this chapter.

Since the end of the seventies, the problem of left inversion has received only
little attention. Most approaches are based on joint input-state estimation and
are limited to the one step ahead prediction or the filtering problem [42,67]. Only
few approaches for time-delayed estimation or smoothing have been considered
[44]. The problem of assigning the poles of inverses that reconstruct the input
with time delays has remained unsolved up to now.

The problem of state estimation for linear deterministic systems with
unknown inputs, which is actually closely related to system inversion, has
received considerably more attention the last few decades [26,68,139]. It is well
established by now that state reconstructors exist under less strict conditions
than inverse systems. During the last years, research has also shifted towards
time-delayed state estimation. The first systematic approach is due to Saberi et
al. [114] who handled time delays by state augmentation. Recently, Sundaram
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MIMO systems
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structure algorithm
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Stable inversion
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Figure 3.1: Brief overview of the most important accomplishments in the early
history system inversion. The first inversion procedures for SISO systems were
introduced by Brockett & Mesarovic in 1965. Important contributions in the
inversion of MIMO systems were obtained by Silverman and Sain & Massey in
1969. In 1977, Moylan was the first to derive an algorithm that returns stable
inverses. Pole placement was first considered by Antsaklis in 1978.

and Hadjicostis [126] showed that state augmentation is not necessary and
developed full order and reduced order observers. They showed that the poles
of their observer can be assigned if the system has no zeros.

Personal contributions

The personal contribution of this chapter is the development of a new inversion
procedure in Sects. 3.5 to 3.7.

• In Sect. 3.5, a general form of an L−delay left inverse system is derived
based on estimation theory. Like in the approach of Sain & Massey, this
general form consists of a bank of delay elements followed by a dynamical
system. The dynamical system derived in this thesis has the most general
form.

• The general form consists of a matrix parameter which can be freely
chosen. In Sect. 3.6, it is shown that an appropriate choice allows to
place the poles of the inverse system. Conditions are derived under which
pole placement is possible.
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• In Sect. 3.7, a procedure is developed to reduce the order of the inverse
system and simultaneously place its poles based on the theory of reduced
order state observers.

Chapter outline

This chapter is outlined as follows. Section 3.2 defines the problems of left
and right inversion. In Sect. 3.3, conditions for left invertibility of linear state-
space system are derived. Section 3.4.2 briefly describes the inversion approach
of Sain & Massey and discusses the advantages/disadvantages over that of
Silverman. The new inversion procedure based on estimation theory is developed
in Sect. 3.5. Section 3.6 addresses stable inversion. Conditions are derived under
which the poles of the inverse system can be assigned. In Sect. 3.7, a procedure
is developed to reduce the order of the inverse system. Finally, in Sect. 3.8,
three numerical examples are considered.

3.2 Problem formulation

Because system inversion is an input-output concept, it is most easily under-
stood in terms of the transfer function of a system. Consider a LTI discrete-time
system S . Let U(z) and Y (z) denote the z−transforms of the m−dimensional
input vector and the p−dimensional output vector of S , respectively. Then,
Y (z) and U(z) are related by

Y (z) = H(z)U(z),

where the p×m rational matrix H(z) is called the transfer function of S .
The problem of system inversion deals with deriving a system with input

Y (z) and output U(z). A distinction must be made between left inversion
and right inversion. As we will see, a left inverse can be interpreted as an
input estimator. A right inverse, on the other hand, can be interpreted as a
feedforward controller.

3.2.1 Left inversion

Like in [115], we define a left inverse of S in terms of transfer functions and
give an interpretation in the time domain afterwards.

Definition 3.1. A system is said to be an L−delay left inverse of S if its
transfer function HL(z) satisfies HL(z)H(z) = z−LI.

We now give an interpretation in the time domain. Consider the series
connection of the system S with transfer function H(z) and an L−delay left
inverse of S with transfer function HL(z), as shown in Fig. 3.2. Let YL(z)
denote the z−transform of the output of the left inverse. Then, it follows that

YL(z) = HL(z)H(z)U(z) = z−LU(z). (3.1)
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Converting (3.1) to the time domain, yields

yL[k] = u[k−L],

from which we conclude that an L−delay left inverse of S reconstructs at its
output the input applied to S with L steps delay.

Definition 3.2. The system S is said to be L−delay left invertible if it has an
L−delay left inverse.

Definition 3.3. The system S is said to be left invertible if it is L−delay left
invertible for some finite nonnegative integer L.

Notice from Definition 3.1 that a necessary condition for (L−delay) left
inversion is that H(z) has full column rank. This implies that p ≥ m, meaning
that the dimension of the output vector must be at least the dimension of the
input vector.

3.2.2 Right inversion

Definition 3.4. A system is said to be an L−delay right inverse of S if its
transfer function HR(z) satisfies H(z)HR(z) = z−LI.

We now give an interpretation in the time domain. Consider the series
connection of a right inverse of S with transfer function HR(z) and S itself, as
shown in Fig. 3.3. Let UR(z) denote the z−transform of the input of the right
inverse. Then, it follows that

Y (z) = H(z)HR(z)UR(z) = z−LUR(z). (3.2)

Converting (3.2) to the time domain, yields

y[k] = uR[k−L],

from which we conclude that, given a desired output uR of S , an L−delay
right inverse of S computes a signal that when applied to S yields the desired
output with L steps delay.

Definition 3.5. The system S is said to be L−delay right invertible if it has
an L−delay right inverse.

H(z) HL(z)
U(z) YL(z) = z−LU(z)

Figure 3.2: Series connection of a system with transfer function H(z) and a left
inverse of that system with transfer function HL(z).
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HR(z) H(z)
UR(z) Y (z) = z−LUR(z)

Figure 3.3: Series connection of a right inverse with transfer function HR(z)
and the system itself with transfer function H(z).

Definition 3.6. The system S is said to be right invertible if it is L−delay
right invertible for some finite nonnegative integer L.

Notice from Definition 3.4 that a necessary condition for (L−delay) right
inversion is that H(z) has full row rank. This implies that m ≥ p, meaning that
the dimension of the input vector must be at least the dimension of the output
vector.

It follows from the discussion above that a system can be both left and right
invertible only if it is square (p = m). A necessary and sufficient condition for
invertibility is then that H(z) is invertible.

3.2.3 Duality

The interpretations and necessary conditions for the existence of left and right
inverses derived above are summarized in Fig. 3.4. Notice the duality between
left and right inversion. Because the transfer function HL(z) of an L−delay left
inverse of a system with transfer function H(z) satisifies

HT(z)HT

L(z) = z−LI,

it follows that HT

L(z) is the transfer function of an L−delay right inverse of
a system with transfer function HT(z). Once a left (right) inverse has been
found, a right (left) inverse can thus easily be derived based on this duality.
This basically means that only one of both inversion problems needs to be
studied. Using duality relations, the results translate to the other problem.
In the remainder of this chapter, only the problem of left inversion will be
considered. We focus on LTI discrete-time systems in state-space form.

3.3 Left invertibility of state-space systems

Consider the LTI discrete-time system

S :

{
x[k+1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k],
(3.3)

where x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm denotes the
input vector at time k, and y[k] ∈ Rp denotes the output vector at time k. The
input vector u[k] is assumed to be deterministic and unknown. We assume in
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The transfer function HL(z)
of an L−delay left inverse
satisfies

HL(z)H(z) = z−LIm

The transfer function HR(z)
of an L−delay right inverse
satisfies

H(z)HR(z) = z−LIp

The output yL of an L−delay
left inverse reconstructs the
system input with L steps
delay

yL[k] = u[k−L]

Given a desired output signal
uR, an L−delay right inverse
computes an input signal that
yields the desired output with
L steps delay

y[k] = uR[k−L]

Necessary conditions for the
existence of an L−delay left
inverse are

rank(H(z)) = m, p ≥ m

Necessary conditions for the
existence of an L−delay right
inverse are

rank(H(z)) = p, m ≥ p

A necessary and sufficient
condition for existence of an
L−delay left inverse is

rank(HL)− rank(HL−1) = m

A necessary and sufficient
condition for existence of an
L−delay right inverse is

rank(HL)− rank(HL−1) = p

Figure 3.4: Interpretation and necessary condition for the existence of left and
right inverses. Notice the duality between left and right inversion: if HL(z)
is the transfer function of an L−delay left inverse of H(z), then HT

L(z) is the
transfer function of an L−delay right inverse of HT(z). In this chapter, only left
inversion is considered. However, due to the duality, it is expected that most
results translate easily to the problem of right inversion.
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the remainder of this chapter that p ≥ m. For clarity of exposition, we consider
only time-invariant systems. Most results are, however, easily generalized to
time-varying systems.

It follows from the discussion above that a SISO system is always invertible.
Let the transfer function be given by

H(z) =
f(z)

g(z)
,

where f(z) and g(z) are relatively prime polynomials. The roots of f(z) and
g(z) are then called the zeros and poles of the transfer function, respectively.
We say that the system has zeros at infinity if limz→∞ H(z) = 0. By inverting
the system, it is now clear that the poles become zeros and vice versa. This
means that a nonminimum phase (NMP) system, i.e. a system with unstable
zeros, can not have a stable inverse system.

For MIMO state-space systems, the derivation of invertibility conditions and
of relations between the poles and zeros of a system and its inverse, are much
more involved. This section addresses these problems. In Sect. 3.3.1, conditions
on the system matrices A, B, C and D are derived under which the system S

is L−delay left invertible.

3.3.1 The invertibility condition of Sain & Massey

Defining

y[k:k+L] :=








y[k]

y[k+1]

...
y[k+L]








, (3.4)

Sain & Massey [115] showed that S is L−delay left invertible under the
condition given in the following proposition.

Proposition 3.1 ([95]). The system S is L−delay left invertible if and
only if u[k] can be uniquely determined from knowledge of y[k:k+L] and x[k].

We now derive a condition under which u[k] can be determined from y[k:k+L]

and x[k]. It is readily checked from (3.3) that

y[k:k+L] = OLx[k] +HLu[k:k+L], (3.5)

where u[k:k+L] is defined similar to y[k:k+L], where OL is defined as in (2.3) and
where the p(L + 1)×m(L + 1) Toeplitz matrix HL, defined by

HL :=










D 0 0 · · · 0
CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAL−1B CAL−2B CAL−3B · · · D










, (3.6)
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contains the Markov parameters D, CB, CAB, . . .
Based on (3.5), Sain & Massey showed that u[k] can be uniquely determined

from knowledge of y[k:k+L] and x[k], and thus S is L−delay left invertible, under
the condition given in the following theorem.

Theorem 3.1 ([95]). System S is L−delay left invertible if and only if

rank(HL)− rank(HL−1) = m, (3.7)

where rank(H−1) := 0.

We give a proof of Theorem 3.1 which differs from that of Sain & Massey in [95].
In the proof, we make use of the following lemma.

Lemma 3.1. An m× p(L+1) matrixML satisfying MLHL = Ĭm, with Ĭm :=
[Im 0], exists if and only if rank(HL)− rank(HL−1) = m.

Proof: The proof assumes knowledge of the solution of linear matrix
equations, of which a brief introduction is given in Appendix A.1. It follows
from Theorem A.1 that a necessary and sufficient condition for the existence of
a matrixML satisfyingMLHL = Ĭm is

rank

([

Ĭm

HL

])

= rank(HL).

Noting that

rank

([

Ĭm

HL

])

= rank

([
Im 0
0 HL−1

])

= rank(HL−1) + m,

concludes the proof.
The proof of Theorem 3.1 can now be given.

Proof: Consider a linear combination of x[k] and y[k:k+L],

ALx[k] + BLy[k:k+L], (3.8)

where AL ∈ Rm×n and BL ∈ Rm×p(L+1) have to be determined so that ALx[k]+
BLy[k:k+L] = u[k]. Using (3.5), (3.8) is rewritten as

(AL + BLOL)x[k] + BLHLu[k:k+L]. (3.9)

Expression (3.9) equals u[k] for all possible x[k] and all possible u[k:k+L] if and
only if

AL = −BLOL (3.10)

and
BLHL = Ĭm. (3.11)

It follows from Lemma 3.1 that a matrix BL satisfying (3.11) exists if and only
if condition (3.7) obtains, which concludes the proof.
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Condition (3.7) for L−delay left invertibility is summarized in Fig. 3.7 for
L = 0 and L = 1.

Notice that it follows from (3.7) that if S has an L0−delay left inverse, it
has an L−delay left inverse for all L ≥ L0. To check whether S is invertible,
one could thus test (3.7) with increasing L until eventually an L is found for
which (3.7) obtains. However, the following theorem due to Willsky [137], yields
a more convenient way to check for invertibility.

Theorem 3.2 ([137]). Let q be the dimension of the nullspace of D, then S is
left invertible if and only if

rank(Hn−q+1)− rank(Hn−q) = m, (3.12)

that is, if S is invertible, its inherent delay can not exceed n− q + 1.

An important concept introduced by Sain & Massey is the inherent delay of a
system, which is the minimal delay that needs to be allowed in the reconstruction
of the input.

Definition 3.7. Let S be left invertible. Then, the least nonnegative integer L
for which S is L−delay left invertible is called the inherent delay of S .

3.3.2 Left inversion and system zeros

The inversion of systems with zeros requires special attention. In this section,
we first define a transmission zero of S and then show that the input of a
system with such a zero can not be uniquely reconstructed.

Definition 3.8. A number λ ∈ C is called a transmission zero of S if

rank

([
A− λI B

C D

])

< n + min(m, p).

If λ is a transmission zero of S , there thus exist vectors x0 ∈ Cn and g ∈ Cm

such that [
A− λI B

C D

] [
x0

g

]

=

[
0
0

]

.

The input

uz[k] =

{
g for k = 0

gλk for k = 1, 2, . . .

applied to S with initial condition x[0] = x0, then yields y[k] = 0 for k =
0, 1, 2 . . .

The physical interpretation of a transmission zero is thus that there exists
an input and an initial state for which the system output is zero. An important
consequence is that the input of a system with a zero can not be uniquely
reconstructed. Indeed, let S be initialized with x0. Let the response of S to
an input signal ur be given by yr, then the response of S to the input signal
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ur + uz will be the same signal yr. From knowledge of yr, we can thus not
distinguish whether ur or ur + uz was applied to the input of S .

If the zero lies inside the unit circle, it follows that uz[k] → 0 for k → ∞,
meaning that we can asymptotically reconstruct the input signal applied to S .
For an NMP system, however, asymptotic reconstruction is not possible because
uz grows unbounded instead of converging to zero. The input of an NMP system
can thus be uniquely reconstructed only if we have the prior knowledge that
input does not grow unbounded.

3.4 Inversion techniques: state of the art

This section consider the state of the art in left inversion. In Sect. 3.4.1,
we consider a technique for instantaneous inversion. Next, in Sect. 3.4.2, the
approach of Sain and Massey is discussed. Finally, in Sect. 3.4.3, the inversion
procedure of Sain & Massey is briefly compared to that of Silverman.

3.4.1 Instantaneous inversion

This section considers the problem of constructing an instantaneous left inverse
of S , i.e. an inverse that reconstructs the input without delay. It follows from
Fig. 3.7 that such an inverse exists if D is full column rank. The idea behind
the derivation is to derive an equation that expresses the input in terms of the
state and the output, and then subsitute this expression into the state equation
of the system.

By pre-multiplying the output equation of S by D†, it follows that u[k] can
be reconstructed from knowledge of x[k] and y[k] as

u[k] = −D†Cx[k] + D†y[k]. (3.13)

Substituting (3.13) in the state equation of S then yields

x[k+1] = (A−BD†C)x[k] + BD†y[k]. (3.14)

Consider now the system with state equation (3.14) and output equation (3.13),
that is, the system

x[k+1] = (A−BD†C)x[k] + BD†y[k] (3.15a)

u[k] = −D†Cx[k] + D†y[k]. (3.15b)

Choosing the initial state of (3.15) equal to that of S , it is easily verified
that when (3.15) is driven by the output sequence {y[k]}∞k=0 of S , it exactly
reconstructs the corresponding input sequence {u[k]}∞k=0, and is thus an
instantaneous left inverse of S .
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In case D is not full column rank, inversion of S is much more complicated.
The reason is that a certain delay in the reconstruction of the input needs to be
allowed.

3.4.2 The approach of Sain & Massey

Sain & Massey derived a very straightforward method for L−delay left inversion.
Their is approach is similar to that considered in the previous section in the
sense that first an expression for the input in terms of the state and the outputs
is derived, and then this expression is substituted in the state equation of the
system.

In this section, a derivation is considered that differs from that of Sain &
Massey [115] in the sense that we directly derive a state-space description of the
inverse system, whereas Sain & Massey derived a block diagram from which a
state-space description can be deduced.

Our derivation is based on Lemma 3.1. Pre-multiplying left and right hand
side of (3.5) by ML, shows that u[k] can be reconstructed from knowledge of
x[k] and y[k:k+L] as

u[k] = −MLOLx[k] +MLy[k:k+L]. (3.16)

Substituting (3.16) in the state equation of S then yields the following
dynamical system with input y[k:k+L] and output u[k],

x[k+1] = (A−BMLOL)x[k] + BMLy[k:k+L] (3.17a)

u[k] = −MLOLx[k] +MLy[k:k+L]. (3.17b)

Partitioning ML as ML = [ML,0 ML,1 · · ·ML,L] , where ML,i ∈ Rm×p, i =
0, 1, . . . , L it is now straightforward to show that the system depicted in Fig. 3.5
is an L−delay left inverse of S . It is easily verified that the inverse system
shown in Fig. 3.5 is equivalent to that of Fig. 1 in [115].

The inverse system shown in Fig. 3.5 consists of two parts.

• The first part consists of a bank of delay elements with input y[k+L] and
outputMLy[k:k+L]. Notice that pL delay elements are needed in order to
realize this bank of delay elements. However, as pointed out by Sain &
Massey [115], the number of delay elements in the bank can be reduced
by solving MLHL = Ĭm so that the ML,i, especially those with small i,
have a maximal number of zero columns.

• The second part is the dynamical system (3.17), which has been called the
dynamical portion by Sain & Massey. Notice that the dynamical portion
does not appear in [115] in the state-space form (3.17).

In the remainder of this chapter, we will denote a dynamical portion of an
L−delay left inverse of S by S

−
L .
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y[k+L]

u[k]

∆∆∆

∆

ML,L ML,L−1 ML,1 ML,0

A−BMLOL

B −MLOL

bank of delay elements dynamical portion

Figure 3.5: Structure of the L−delay left inverse system considered by Sain and
Massey.

3.4.3 Comparison to Silverman’s structure algorithm

In this section, we briefly compare the inversion procedure of Sain & Massey to
Silverman’s so-called structure algorithm [116].

In both approaches, the inverse system consists of a bank of delay elements
followed by a dynamical portion. While Silverman’s algorithm yields inverse
systems that can be realized with the same number of delay elements as the
original system, the number of delay elements needed to realize the inverse of
Sain & Massey can be higher or lower than the order of the original system,
depending on the particular system to be inverted. The approach of Sain &
Massey may thus require more computer memory. On the other hand, once the
inverse system has been computed, the input reconstruction procedure of Sain
& Massey is computationally more efficient.

The approach of Sain and Massey allows to derive inverses with arbitrary
delay larger than or equal to the inherent delay. Silverman’s structure algorithm,
on the other hand, is limited to inverses that reconstruct the system input with
delay equal to the inherent delay of the system.

3.5 An estimation approach to system inversion

The major disadvantage of the algorithms by Silverman and Sain & Massey
is that they can yield unstable inverses. Although some parameters during the
design can be freely chosen, there is no systematic way to tune these parameters
such that the inverse system is stable. As already discussed, Moylan [100]
was the first to derive an algorithm that yields stable inverses. Antsaklis [7]
developed a straightforward approach to assign the poles of the inverse system.
However, his treatment is limited to systems with inherent delay zero.

In this section, a general form of an L−delay left inverse system is derived
based on estimation theory. The inverses considered in this section consist
of a bank of delay elements, similar to that of Sain & Massey, followed by a
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dynamical portion. This structure of the inverse system is schematically shown
in Fig. 3.6. The dynamical portion derived in this chapter has the most general
form. This general form consists of a matrix parameter that can be freely
chosen. In Sect. 3.6, conditions and methods are derived under which the poles
of the dynamical portion can be assigned. These conditions basically extend
the results of Antsaklis from L = 0 to arbitrary L.

This section is outlined as follows. In Sect. 3.5.1, we consider the problem of
state reconstruction in the presence of unknown inputs. The general form of a
state reconstructor is derived. Next, in Sect. 3.5.2, a similar derivation is given
for input reconstruction. Finally, in Sect. 3.5.3, the state reconstructor and
input reconstructor are combined, yielding the dynamical portion of an inverse
system.

3.5.1 State reconstruction

First, we turn our attention to the derivation of the state reconstructor.
We consider a recursive state reconstructor that computes x[k+1] as a linear
combination of x[k] and y[k:k+L]. The general form of such a state reconstructor
and the condition under which it exists, are given in the following theorem. The
theorem assumes knowledge of generalized inverses, of which a brief introduction
is given Appendix A.1.

Theorem 3.3. If and only if

rank(HL) = rank(HL−1) + rank

([
B
D

])

, (3.18)

x[k+1] can be reconstructed as a linear combination of x[k] and y[k:k+L]. The
general form of the reconstruction can be written as

x[k+1] = (A−KLOL)x[k] +KLy[k:k+L], (3.19)

where KL is given by

KL = B̆H(1)
L + ZLΣL, (3.20)

with ZL an n× p(L + 1) arbitrary matrix parameter, B̆ := [B 0] and ΣL :=

I −HLH
(1)
L .

In the proof of Theorem 3.3, we make use of the following lemma.

Lemma 3.2. A matrix KL satisfying KLHL = B̆ exists if and only if condition
(3.18) obtains. Under condition (3.18), the general solution for KL is given by
(3.20).
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Bank of
delay

elements

y[k+L] y[k:k+L] u[k]
Dynamical portion

S
−
L

∆

∆

∆

Figure 3.6: Structure of the L−delay left inverses considered in this chapter.
The inverses consist of a bank of delay elements followed by a dynamical portion
denoted by S

−
L .

Proof: It follows from Theorem A.1 that a necessary and sufficient
condition for the existence of a matrix KL satisfying to KLHL = B̆ is

rank

([

B̆
HL

])

= rank(HL).

Noting that

rank

([

B̆
HL

])

= rank









B 0
D 0

OL−1B HL−1









= rank









B 0
D 0
0 HL−1









= rank(HL−1) + rank

([
B
D

])

,

concludes the first part of the proof. The second part immediately follows form
Theorem A.1.

The proof of Theorem 3.3 can now be given.
Proof: Consider a linear combination of x[k] and y[k:k+L],

ALx[k] + BLy[k:k+L], (3.21)

where AL ∈ Rn×n and BL ∈ Rn×p(L+1) have to be determined so that ALx[k] +
BLy[k:k+L] = x[k+1]. Using (3.5), (3.21) is rewritten as

(AL + BLOL)x[k] + BLHLu[k:k+L]. (3.22)
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Expression (3.22) equals x[k+1] for all possible x[k] and all possible u[k:k+L] if
and only if

AL + BLOL = A (3.23)

and

BLHL = B̆. (3.24)

It follows from Lemma 3.2 that a matrix BL satisfying (3.24) exists if and only if
condition (3.18) obtains, in which case the general form of the solution is given

by BL = B̆H(1)
L + ZLΣL with ZL an n× p(L + 1) arbitrary matrix parameter.

Finally, substituting (3.23) and (3.24) in (3.22), yields (3.19).

Since the matrix parameter ZL can be freely chosen, the matrix KL in the
linear combination (3.19) is in general not unique. It is unique only if HL has
full row rank, which for an invertible system can occur only if the system is
square (p = m) and D is invertible. The matrix HL is then invertible so that
ΣL = 0 and the unique matrix KL is given by KL = B̆H−1

L = [BD−1 0].

It follows from the following lemma that ΣL is not full rank if HL 6= 0.

Lemma 3.3. rank(ΣL) = p(L + 1)− rank(HL).

Proof: The lemma immediately follows from Lemma A.1.

It follows from Lemma 3.3 that no generality is lost by replacing ZLΣL in (3.20)
by Z̄Σ̄L, where the (p(L + 1)− rank(HL))× (p(L + 1)) matrix Σ̄L has full row
rank and is row equivalent to ΣL and where the n×(p(L+1)−rank(HL)) matrix
Z̄ is arbitrary. This fact may be used to reduce the number of computations
when implementing the methods described in this chapter. However, for clarity
of exposition, this issue is not addressed any further.

Notice that the condition (3.18) for state reconstructability is very similar
to (3.7), i.e. to that of left inversion. Furthermore, since rank([BT DT]) ≤ m, it
follows that condition (3.7) is stronger than condition (3.18). This means that
system invertibility implies state reconstructability, but not vice versa. Also, it
implies that rank([BT DT]) = m is a necessary condition for invertibility.

3.5.2 Input reconstruction

The general form of an input reconstructor can be derived in a manner
completely analogous to that in the previous section. This yields the following
theorem, which basically extends the results of Sain & Massey by giving the
general form of the matrixML satisfyingMLHL = Ĭm.
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Theorem 3.4. If and only if S is L−delay left invertible, that is, if
and only if condition (3.7) obtains, u[k] can be reconstructed as a linear
combination of y[k:k+L] and x[k]. The general form of the reconstruction can
be written as (3.16), where ML is given by

ML = ĬmH(1)
L + ULΣL, (3.25)

with UL an m× p(L + 1) arbitrary matrix parameter.

Proof: The proof is similar to that of Theorem 3.3 and is omitted. Notice
that part of the proof has already been given in the proof of Theorem 3.1.

Since the matrix parameter UL can be freely chosen, the matrix ML in the
linear combination (3.16) is in general not unique. It is unique only if HL has
full row rank, in which case it is given byML = ĬmH−1

L = [D−1 0].

3.5.3 A general form of an L−delay left inverse

Combining the state reconstructor of Theorem 3.3 with the input reconstructor
of Theorem 3.4, yields the most general form of the dynamical portion.

Theorem 3.5. Let S be L−delay left invertible, then the system

S
−
L :

{
x[k+1] = (A−KLOL)x[k] +KLy[k:k+L]

u[k] = −MLOLx[k] +MLy[k:k+L],
(3.26)

with KL given by (3.20) and ML by (3.25) is a dynamical portion of an
L−delay left inverse of S for all possible values of UL and ZL.

As already discussed, if HL has full rank, the matrix parameters KL and
ML are unique, so that S

−
L is unique. In addition, no matter what delay L is

chosen, S
−
L always reduces to (3.15) with the generalized inverses replaced by

inverses. This uniqueness will have negative consequences for the developments
in the remainder of this chapter. For example, tuning the stability of the inverse
by placing its poles is not possible for such systems.

As a special case of Theorem 3.5, consider a system S with full rank D.
Making the choices L = 0, UL = 0, ZL = 0 and taking as {1}-inverse the Moore-
Penrose generalized inverse, yields the instantaneous left inverse (3.15).

3.5.3.1 State-space form

Theorem 3.5 yields a general form of the dynamical portion of an L−delay
left inverse, and thus not of the inverse system itself. Partitioning ML and
KL as ML = [ML,0 ML,1 · · ·ML,L] , and KL = [KL,0 KL,1 · · · KL,L] , with
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ML,i ∈ Rm×p and KL,i ∈ Rn×p, i = 0, 1, . . . , L, it is, however, straightforward
to show that

x[k+1] =












A−KLOL KL,0 KL,1 . . . KL,L−1

0 I
0 I

. . .
. . .

0 I
0












x[k] +












ML,L

0
0
...
0
I












y[k+L]

u[k] =
[
−MLOL ML,0 ML,1 . . . ML,L−1

]
x[k] +ML,Ly[k+L]

then is a general state-space form of an L−delay left inverse of S
−
L .

3.5.3.2 Transfer function

Using the state-space form derived above, it is easily verified that the transfer
function of the L−delay left inverse system can be written as

HL(z) =ML,L −MLOL [zI − (A−KLOL)]
−1

[
(I + z−LKL,0 + · · ·+ z−1KL,L−1)KL,L

]
.

This transfer function has the property that HL(z)H(z) = z−LI, with H(z) the
transfer function of S .

3.6 Stable inversion

So far, we have actually implicitly assumed that the initial state of S is known.
In this section, we consider the initial state to be unknown. It is then more
convenient to consider S

−
L as a joint input-state estimator and to denote its

state vector and output vector by x̂[k] and û[k], that is, by estimates of x[k]

and u[k]. In all applications, it is desired that the estimator is stable such that,
starting from any arbitrary estimate x̂[0] of the initial state x[0], the estimates
x̂[k] and û[k] converge to x[k] and u[k] for k →∞. This is the problem addressed
in the present section.

This section is outlined as follows. In Sect. 3.6.1, we consider the
interpretation of S

−
L as a joint input-state estimator in more detail. Next, in

Sect. 3.6.2, we derive conditions under which the poles of S
−
L can be assigned.

3.6.1 Joint input-state estimation

For convenience of notation, we rewrite (3.26) in this section as

S
−
L :

{
x̂[k+1] = Ax̂[k] +KL(y[k:k+L] −OLx̂[k])

û[k] = ML(y[k:k+L] −OLx̂[k]).
(3.27)
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We chose the matrices KL and ML as given in (3.20) and (3.25), respectively,
such that if S is L−delay left invertible and S

−
L is initialized with x̂[0] = x[0],

it holds that x̂[k] = x[k] and û[k] = u[k] for all k ≥ 0.

Notice that according to our notation, we should actually write x̂[k+1|k+L]

and û[k|k+L]. However, for clarity of exposition, we simply write x̂[k] and û[k].
For L = 0, (3.27) yields a one step ahead predicted state estimate x̂[k+1|k] and
a filtered input estimate û[k|k]. For L = 1, it yields a filtered state estimate
x̂[k+1|k+1] and a smoothed input estimate û[k|k+1]. And finally, for L > 1, it
yields smoothed state estimates and input estimates.

The state equation of S
−
L can be considered as a state estimator for a

system with unknown inputs. When initialized with x̂[0] = x[0], it exactly
reconstructs the state sequence of S under condition (3.18), which is less strict
than condition (3.7) for system invertibility. Conditions (3.18) and (3.7) under
which S

−
L reconstructs the system state and both the system state and the

system input, respectively, are summarized in Fig. 3.7 for different values of L.

The interpretation of S
−
L as a joint input-state estimator is schematically

shown in Fig. 3.8. Notice that the state estimator and the input estimator of
S

−
L exchange information in one direction, i.e. the input estimator uses the

estimate x̂[k] produced by the state estimator, but the state estimator does not
use the input estimate produced by the input estimator. As will now be shown,
(3.27) can be written in a form where the input estimator and state estimator
exchange information in both directions, i.e. in a form where the state estimator
uses the estimate produced by the input estimator. First, notice that the general
forms (3.20) and (3.25) of KL andML are related by KL = BML+LLΣL where
LL is an arbitrary matrix. Consequently, (3.27) can be rewritten as

x̂[k+1] = Ax̂[k] + Bû[k] + LLΣL(y[k:k+L] −OLx̂[k]) (3.28a)

û[k] =ML(y[k:k+L] −OLx̂[k]). (3.28b)

The state estimator (3.28a) and the input estimator (3.28b) exchange informa-
tion in both directions. Indeed, the state estimator now also uses the input
estimate û[k] produced by the input estimator. This is schematically shown by
the dashed arrow in Fig. 3.8.

3.6.2 Pole placement

In this section, we assume that S
−
L is initialized with an arbitrary initial

state and establish conditions under which the estimation error converges
asymptotically to zero. The derivation in this section can be compared to that
of the asymptotic and deadbeat estimators considered in Sect. 2.3.2.

Like in Sect. 2.3.2, we start by deriving an expression for the dynamical
evolution of the estimation error. Defining the error in x̂[k] by x̃[k] := x[k]− x̂[k],
it follows from (3.27) that (if condition (3.18) obtains),

x̃[k+1] = (A−KLOL)x̃[k]. (3.29)
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u[k] y[k]
System

x[k+1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k]
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x̂[k+1] = Ax̂[k] +KL(y[k:k+L] −OLx̂[k])

or

x̂[k+1] = Ax̂[k] + Bû[k]
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Figure 3.8: Interpretation of the inverse system as a joint input-state estimator

Similarly, defining ũ[k] := u[k]− û[k], it follows from (3.27) that (if S is L−delay
left invertible),

ũ[k] = −MLOLx̃[k]. (3.30)

Let S be L−delay left invertible, then it follows from (3.29) and (3.30) that
x̃[k] → 0 and ũ[k] → 0 for k →∞ if and only if all eigenvalues of A− KLOL lie
inside the unit circle. Since

A−KLOL = (A− B̆H(1)
L OL)− ZL(ΣLOL), (3.31)

the position of the eigenvalues of A−KLOL can be influenced by the choice of
the matrix parameter ZL. The freedom in the choice of ZL thus allows to tune
the eigenvalues of A−KLOL (and consequently also the poles of S

−
L ).

Conditions are now derived under which ZL can be chosen so that all
eigenvalues of A − KLOL lie inside the unit circle. The following corollary
immediately follows from Corollary 2.1.

Corollary 3.1.

1. If and only if {A− B̆H(1)
L OL, ΣLOL} is observable, ZL can be chosen so

that all eigenvalues of A−KLOL are assigned at any desired location.
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2. If and only if {A − B̆H(1)
L OL, ΣLOL} is detectable, ZL can be chosen so

that all eigenvalues of A−KLOL lie inside the unit circle.

A relation between the unobservable modes of {A− B̆H(1)
L OL, ΣLOL} and

the rank of a matrix pencil is given in the following lemma.

Lemma 3.4. Let condition (3.18) obtain. Then, the unobservable modes λ ∈ C

of {A− B̆H(1)
L OL, ΣLOL} satisfy

rank

([
λI −A B
−C D

])

< n + rank

([
B
D

])

. (3.32)

Proof: The unobservable modes of {A−B̆H(1)
L OL, ΣLOL} are those λ ∈ C

for which

rank

([

λI − (A− B̆H(1)
L OL)

−ΣLOL

])

< n.

This implies

rank

([

λI − (A− B̆H(1)
L OL) B̆

−ΣLOL HL

])

< n + rank

([

B̆
HL

])

. (3.33)

Using the fact that

rank

([

λI − (A− B̆H(1)
L OL) B̆

−ΣLOL HL

])

= rank

([

λI −A B̆
−OL HL

] [
I 0

H(1)
L OL I

])

,

= rank

([

λI −A B̆
−OL HL

])

,

(3.33) is rewritten as

rank

([

λI −A B̆
−OL HL

])

< n + rank

([

B̆
HL

])

,

or, because (3.18) obtains, as

rank

([

λI −A B̆
−OL HL

])

< n + rank(HL). (3.34)

On the other hand, it is easily verified that

rank

([

λI − A B̆
−OL HL

])

= rank









λI −A B 0
−C D 0

−OL−1A OL−1B HL−1







 ,

≥ rank

([
λI − A B
−C D

])

+ rank(HL−1). (3.35)
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Combining (3.34) and (3.35), yields

rank

([
λI −A B
−C D

])

+ rank(HL−1) < n + rank(HL), (3.36)

which, under condition (3.18), can be rewritten as (3.32).
Notice, very importantly, that Lemma 3.4 only holds in one direction. That

is, all unobservable modes λ of {A − B̆H(1)
L OL, ΣLOL} satisfy (3.32), but

not necessarily vice versa. In other words, Lemma 3.4 does not exclude the
existence of λ for which (3.32) obtains, but which are observable modes of

{A− B̆H(1)
L OL, ΣLOL}. We will come back to this further in the text.

We consider the implications of Lemma 3.4 separately for state estimation
and input estimation.

3.6.2.1 State estimation

Considering state estimation, we have from Corollary 3.1 and Lemma 3.4 the
following theorem.

Theorem 3.6. Let condition (3.18) obtains. Then, if

rank

([
λI −A B
−C D

])

= n + rank

([
B
D

])

(3.37)

∀λ ∈ C with |λ| ≥ 1, the matrix parameter ZL can be chosen so that the
state estimator (i.e. the state equation) of S

−
L is stable. If (3.37) holds

∀λ ∈ C, the poles of the state estimator can be arbitrary assigned.

Similar results were derived in [68] for disturbance decoupled filtering and in
[126] for (reduced order) time delayed state estimation.

3.6.2.2 Input estimation

As will now be shown, for a left invertible system, Lemma 3.4 yields a relation

between the unobservable modes of {A−B̆H(1)
L OL, ΣLOL} and the transmission

zeros of S .

Proposition 3.2. If S is L−delay left invertible, the unobservable modes

of {A− B̆H(1)
L OL, ΣLOL} are transmission zeros of S .

Proof: For an L−delay left invertible system, condition (3.32) becomes

rank

([
λI −A B
−C D

])

< n + m. (3.38)

The λ satisfying (3.38) are transmission zeros of S .
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Notice again that Proposition 3.2 only holds in one directions. That is,
Proposition 3.2 does not exclude the existence of L for which the zeros of S

are observable modes of {A− B̆H(1)
L OL, ΣLOL}.

The following theorem is a direct consequence of Theorems 3.4 and 2.2 and
Proposition 3.2.

Theorem 3.7. Consider an L−delay left invertible system S . If all the
zeros of S are at infinity, ZL can be chosen so that all the poles of S

−
L are

arbitrary assigned. If S has no unstable zeros, ZL can be chosen so that
S

−
L is stable.

Now, let λ be an unobservable modes of {A − B̆H(1)
L OL, ΣLOL}. Then, it

follows from Theorem 2.2 that λ ∈ Λ(A − B̆H(1)
L OL − ZLΣLOL) for all ZL, or

equivalently, λ ∈ Λ(A−KLOL) for all ZL.

We then conclude from Proposition 3.2 that the set of eigenvalues of A −
KLOL contains transmission zeros of S .

3.7 Stable reduced order inversion

Silverman [116] noticed that the order of the dynamical portion obtained with
his structure algorithm can be reduced so that an inverse system is obtained
which can be realized with exactly the same number of delay elements as the
original system. His approach to reduced order inversion is based on calculating
part of the state vector directly from the measurements. An approach to the
design of inverses of the lowest possible order is given by Yuan [140] and Emre
& Silverman [35]. Their methods are based on the concepts of elementary null
sequences and minimal dynamical covers, respectively. In [129], minimality of
the inverses of singular systems is addressed.

In this section, the problem of reducing the order of the dynamical portion
S

−
L is addressed. Like the approach of Silverman, the reduction is based

on calculating part of the state vector directly from the measurements. The
procedure has some similarities to the classical design of reduced order state
observers [92].

This section is outlined as follows. In Sect. 3.7.1, we show how part of the
state vector can be calculated directly from the measurements and derive the
reduced order dynamical portion. Next, in Sect. 3.7.2, pole placement of the
reduced order dynamical portion is addressed.

3.7.1 Reduced order inversion

First, notice that (3.5) can be decoupled from u[k:k+L] by pre-multiplying left
and right hand side by ΣL, which yields

ΣLy[k:k+L] = ΣLOLx[k]. (3.39)
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Equation (3.39) yields a relation between x[k] and y[k:k+L] which allows to
calculate part of x[k] directly from the measurements, as will now be shown.
Let the singular value decomposition of ΣLOL be given by

ΣLOL = X

[
Ξ 0
0 0

]

V T, (3.40)

where X ∈ Rp(L+1)×p(L+1) and V ∈ Rn×n are orthogonal and where Ξ ∈ RrL×rL

contains the rL := rank(ΣLOL) singular values on its diagonal. Notice that
(3.40) can be rewritten as

ΣLOL = X̃

[
IrL 0
0 0

]

V T,

where the i-th column of X̃ equals the i-th column of X multiplied by the i-th
singular value, i = 1, 2, . . . , rL. Consequently, pre-multiplying (3.39) by X̃−1,
yields

X̃−1ΣLy[k:k+L] =

[
IrL 0
0 0

]

V Tx[k]. (3.41)

Define x̄[k] := V Tx[k], and partition x̄[k] as x̄[k] = [x̄T

1[k] x̄T

2[k]]
T with x̄1[k] ∈ R

rL

and x̄2[k] ∈ R
n−rL . Also, define X̄ := X̃−1ΣL and partition X̄ as X̄ = [X̄T

1 X̄T

2 ]T

with X̄1 ∈ RrL×p(L+1) and X̄2 ∈ R(p(L+1)−rL)×p(L+1). Then, it follows from
(3.41) that

x̄1[k] = X̄1y[k:k+L], (3.42)

meaning that x̄1[k] can be computed directly from y[k:k+L].
The remaining part of the derivation is closely related to the design of

reduced order observers in [92]. Since x̄1[k] can be computed directly from
y[k:k+L], we consider as state equation of the reduced order dynamical portion a
dynamic equation for x̄2[k]. First, notice that under a similarity transformation

with transformation matrix V T, the pair {A−KLOL,KL} becomes {Ā, B̄} with
Ā := V T(A − KLOL)V and B̄ := V TKL. Consequently, under the similarity
transformation, the state equation of S

−
L becomes

[
x̄1[k+1]

x̄2[k+1]

]

=

[
Ā11 Ā12

Ā21 Ā22

] [
x̄1[k]

x̄2[k]

]

+

[
B̄1

B̄2

]

y[k:k+L], (3.43)

where Ā11∈R
rL×rL , Ā12 ∈R

rL×(n−rL), Ā21 ∈R
(n−rL)×rL , Ā22 ∈R

(n−rL)×(n−rL),
B̄1 ∈ RrL×p(L+1), and B̄2 ∈ R(n−rL)×p(L+1). The state equation of the reduced
order dynamical portion is then easily extracted from (3.43) and (3.42),

x̄2[k+1] = Ā22x̄2[k] + (B̄2 + Ā21X̄1)y[k:k+L]. (3.44)

For the output equation of the reduced dynamical portion, we first rewrite
the output equation of S

−
L as

u[k] = −MLOLV x̄[k] +MLy[k:k+L].
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Defining C̄ := −MLOLV and partitioning C̄ as C̄ = [C̄1 C̄2], with C̄1 ∈ Rm×rL

and C̄2 ∈ Rm×(n−rL), yields

u[k] = C̄1x̄1[k] + C̄2x̄2[k] +MLy[k:k+L]. (3.45)

Substituting (3.42) in (3.45), yields the following output equation of the reduced
order dynamical portion,

u[k] = C̄2x̄2[k] + (ML + C̄1X̄1)y[k:k+L]. (3.46)

Finally, combining (3.46) and (3.44) yields the dynamical portion

x̄2[k+1] = Ā22x̄2[k] + (B̄2 + Ā21X̄1)y[k:k+L] (3.47a)

u[k] = C̄2x̄2[k] + (ML + C̄2X̄1)y[k:k+L], (3.47b)

of order n − rL. Even if all eigenvalues of A − KLOL lie inside the unit circle,
this dynamical portion can, however, be unstable. The problem of assigning the
poles of the reduced order dynamical portion is addressed in the next section.

3.7.2 Stable reduced order inversion

The approach of assigning the poles of the reduced order dynamical portion is
closely related to that in [92]. Notice from (3.43) that (3.44) can be written as

x̄2[k+1] = Ā22x̄2[k] + Ā21x̄1[k] + B̄2y[k:k+L]

+ N(x̄1[k+1] − Ā11x̄1[k] − Ā12x̄2[k] − B̄1y[k:k+L]) (3.48)

= (Ā22 −NĀ12)x̄2[k] + B̄2y[k:k+L] + Ā21x̄1[k]

+ N(x̄1[k+1] − Ā11x̄1[k] − B̄1y[k:k+L]), (3.49)

where N is an arbitrary matrix. The freedom in the choice of N will be used
to assign the poles of the reduced order dynamical portion. The term x̄1[k+1]

in (3.49) can be eliminated by defining s[k] := x̄2[k] − Nx̄1[k]. Substituting the
latter equation in (3.49) yields together with (3.42) the following state equation,

s[k+1] = (Ā22 −NĀ12)s[k] + B̃y[k:k+L], (3.50)

where B̃ := B̄2 −NB̄1 + Ā21X̄1 −NĀ11X̄1 + Ā22NX̄1 −NĀ12NX̄1.
For the output equation, we first rewrite (3.45) as

u[k] = C̄1x̄1[k] + C̄2(s[k] + Nx̄1[k]) +MLy[k:k+L]. (3.51)

Substituting (3.42) in (3.51), yields the following output equation of the reduced
order dynamical portion,

u[k] = C̄2s[k] + C̃y[k:k+L], (3.52)

where C̃ :=ML + C̄1X̄1 + C̄2NX̄1.
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Finally, combining (3.50) and (3.52) yields the reduced order dynamical
portion

s[k+1] = (Ā22 −NĀ12)s[k] + B̃y[k:k+L] (3.53a)

u[k] = C̄2s[k] + C̃y[k:k+L], (3.53b)

of order n− rL. Notice that x[k] can be reconstructed from s[k] and y[k:k+L] as

x[k] = V

[
X̄1y[k:k+L]

s[k] + NX̄1y[k:k+L]

]

.

Conditions are now derived under which the poles of (3.53) can be assigned
by the choice of the matrix parameter N. The derivation is based on the following
lemma.

Lemma 3.5. If {A− B̆H(1)
L OL, ΣLOL} is observable, then so is {Ā22, Ā12}.

Proof: First, notice that {A− B̆H(1)
L OL, ΣLOL} is observable if and only

if {A − KLOL, ΣLOL} is observable. The remainder of the proof follows by
considering the system consisting of (3.19) and (3.39),

x[k+1] = (A−KLOL)x[k] +KLy[k:k+L] (3.54a)

ΣLy[k:k+L] = ΣLOLx[k], (3.54b)

and proving that this system is observable if and only if {Ā22, Ā12} is observable.
The proof is very similar to that in [92] and is hence omitted.

The following theorem is a direct consequence of Lemma 3.5 and Lemma 3.2.

Theorem 3.8. Let S be an n-th order L−delay left invertible system with
all its zeros at infinity. Then, there exists an (n − rank(ΣLOL))-th order
dynamical portion of the form (3.53) whose poles can be assigned by the
choice of N.

It follows from Theorem 3.8 that if rank(ΣLOL) = n, there exists a
dynamical portion of order 0. Indeed, if rank(ΣLOL) = n, it follows from (3.39)
that x[k] can be reconstructed from y[k:k+L] as

x[k] = (ΣLOL)†ΣLy[k:k+L]. (3.55)

Substituting (3.55) in the output equation of (3.26), yields

u[k] =ML(I −OL(ΣLOL)†ΣL)y[k:k+L], (3.56)

which is the desired 0-th order dynamical portion.
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3.8 Numerical examples

We consider three numerical examples. The first example deals with instanta-
neous inversion, the second example with time-delayed inversion and the third
example with stable inversion of an NMP system.

Example 3.1. Instantaneous inversion
Consider the minimal LTI system

x[k+1] =

[
0.6 −0.45
0 0.3

]

︸ ︷︷ ︸

A

x[k] +

[
1
−1

]

︸ ︷︷ ︸

B

u[k] (3.57a)

y[k] =

[
1 1
0 1

]

︸ ︷︷ ︸

C

x[k] +

[
0
1

]

︸ ︷︷ ︸

D

u[k]. (3.57b)

The system (3.57) has poles at 0.6 and 0.3 and is thus stable. Since D is full
column rank, (3.57) has an instantaneous left inverse. The instantaneous left
inverse (3.15), given by

x[k+1] =

[
0.3 −1.45
0 1.3

]

x[k] +

[
0 1
0 −1

]

y[k]

u[k] =
[

0 −1
]
x[k] +

[
0
1

]

y[k],

however, has a pole at 1.3 and is thus unstable.
However, since all zeros of (3.57) lie at infinity, it follows from Theorem 3.7

that there exists a stable instantaneous left inverse of which the poles can
be arbitrary placed. Suppose that the following complex conjugate poles are
desired: 0.7± 0.6i. These poles can be assigned by calculating the matrix Z0 so
that the eigenvalues of (A−BD†C)−Z0(I−DD†)C are at the desired locations,
which can be achieved using pole placement. Together with the choice U0 = 0,
this yields the instantaneous full order inverse system

x[k+1] =

[
−0.86 −2.91
0.96 2.26

]

x[k] +

[
1.46 1
−0.96 −1

]

y[k], (3.59a)

u[k] =
[

0 −1
]
x[k] +

[
0 1

]
y[k]. (3.59b)

In Figure 3.9, the inverse system (3.59) is simulated starting from an arbitrary
initial state, but with inputs equal to the outputs of (3.57). Since the
inverse system is stable, the output of (3.59) converges to the input of (3.57).
Convergence is rather slow because the poles of (3.59) have been chosen close
to the unit circle.

Notice that the observability and controllability matrix of (3.59) have full
rank. However, there exist left inverses of lower order than (3.59). Indeed, since
rank(Σ0O0) = rank((I −DD†)C) = 1, it follows from Theorem 3.8 that there
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exists an instantaneous left inverse of order 1 of which the poles can be arbitrary
assigned. Suppose now that a first order left inverse with the deadbeat property
is desired, that is, starting from an arbitrary initial state, the inverse system
should exactly reconstructs the state vector and the input vector of (3.57) from
time instant k = 1 on. This is achieved by placing the pole of the reduced order
inverse at 0, which yields

x̄[k+1] = 0x̄[k] +
[

1.4708 −1.4142
]
y[k]

u[k] = − 0.7071x̄[k] +
[

1.7333 1.0000
]
y[k].

Notice that in order to realize this inverse system, only 1 delay element is
needed. Using Silverman’s structure algorithm, at least 2 delay elements would
be needed.

Now, we allow a delay of one step in the reconstruction. Because
rank(Σ1O1) = 2, it follows from Theorem 3.8 that there exists a 1−delay left
inverse without dynamical portion. Applying (3.56) with U1 = 0, yields

u[k] =
[
−0.8 1 1.333 0

]
y[k:k+1].

This result indicates that the rank of ΣLOL increases with L and thus, that by
increasing L, an inverse without dynamical portion may be found.

Example 3.2. Time-delayed inversion
Consider again the system (3.57), but now with D = 0. This minor change
increases the inherent delay of the system from 0 to 1. Since for the resulting
system rank(Σ1O1) = 2, it follows that there exists a 1−delay left inverse
without dynamical portion. Applying (3.56) with U1 = 0, yields

u[k] =
[
−0.070 0.212 −0.117 −1

]
y[k:k+1].

Example 3.3. Inversion of a nonminimum phase system
Consider the observable and controllable LTI SISO system

x[k+1] =

[
0.5 0.25
0.25 −0.6

]

x[k] +

[
0
1

]

u[k] (3.60a)

y[k] =
[
−1 0.1

]
x[k]. (3.60b)

The system (3.60) has a transmission zero at 3 and is thus NMP. Its inherent

delay equals 1, however the pair {A − B̆H(1)
1 O1, Σ1O1} is not detectable so

that there does not exist a stable full order 1−delay left inverse. Since the
unobservable modes of the pair are zeros of the system, one of the poles of the
inverse system will equal the zero of the system, so that the 1−delay left inverse
system is unstable.

Figure 3.10 plots the condition number (i.e. the ratio of the maximal singular
value to the minimal singular value) of ΣLOL as function of L. We observe that
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for small L, the condition number is larger than the inverse of machine precision,
indicating that ΣLOL is singular. The ratio decreases with increasing L and
becomes constant from L = 30. For L = 30, ΣLOL is clearly nonsingular, which
means that we can reconstruct u[k] from knowledge of y[k:k+30] using (3.56).

Because we are dealing with an NMP system, the input can however not be
exactly reconstructed. Indeed, there exists a number g and a vector x0 ∈ R2 so
that [xT

0 g]T lies in the null space of

[
A− 3I B

C D

]

.

A basis for the null space is given by [−0.0269268 − 0.26928 − 0.96268]T.
Consequently, the input signals ur and ur + uz, with ur arbitrary and

uz[k] =

{
−0.96268 for k = 0

−0.96268× 3k for k = 1, 2, . . .

yield exactly the same output when (3.60) is initialized with x[0] = [−0.0269268−
0.26928]T. Since uz grows unbounded, unique input reconstruction is possible
only if prior knowledge is available that the input applied to the system is
bounded.

3.9 Conclusion

A new procedure for left inversion of linear discrete-time systems in state-space
form was introduced. The procedure is most closely related to that of Sain
and Massey [115], in the sense that inverse systems with a similar structure
are considered, that is, inverse systems consisting of a bank of delay elements,
followed by a dynamical system. An important contribution is the derivation of
the most general form of such a dynamical system.

Conditions were derived under which the poles of the inverse system can be
assigned. It was shown that pole placement is possible if a certain matrix pair
is observable. This pair turns out to be observable if the original system has no
zeros.

Based on the theory of reduced order observers, a technique was developed
to simultaneously reduce the order of the inverse system and place its poles. A
condition was derived under which an inverse system without dynamical portion
exists. Further research should investigate the relation between the order of the
inverse system and the delay of reconstruction in more detail, e.g. by how
much can the order of the inverse system be decreased given a certain allowable
increase in the delay of reconstruction?

The results of this chapter not only have direct implications for joint input-
state estimation, but also for optimal state estimation in the presence of
unknown inputs. A condition was derived under which the state vector of a
system with unknown inputs can be reconstructed from knowledge of the system
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Figure 3.9: Starting from an arbitrary initial state, the output of the left inverse
(3.59) converges to the input of the original system (3.57).
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Figure 3.10: Condition number of ΣLOL as function of L for the NMP system
(3.60). It is found that ΣLOL has full rank for L ≥ 30, so that we can invert
the NMP system (3.60) using (3.56). However, because we are dealing with an
NMP system, the input can not be uniquely reconstructed.
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outputs. In particular, it was shown that input reconstructability implies state
reconstructability, but not vice versa.

Although only left inversion has been studied, it is expected that most results
translate easily to the dual problem of right inversion. Also, it is expected that
most results translate to continuous-time systems.



Chapter 4

Inversion of Combined

Deterministic-Stochastic

Systems

This chapter extends the inversion procedure of Chapter 3 to
combined deterministic-stochastic systems, where the objective is
to optimally reconstruct the deterministic inputs from knowledge
of the noisy outputs. Optimal recursive state estimators for such
systems have been extensively studied in literature. One of the main
contributions of this chapter is the extension to joint input-state
estimation. Another important contribution is the establishment of
a relation between the joint input-state estimators and least-squares
estimation. Based on this relation, information and square-root
information formulas are derived almost instantaneously. In a final
contribution, a unified framework for state estimation and joint
input-state estimation in the context of both filtering and smoothing
is established.

4.1 Introduction

This chapter extends the inversion procedure developed in Chapter 3 to com-
bined deterministic-stochastic systems. With inverting such a system, we mean
estimation of the unknown deterministic input based on the measurements. The
step from the previous chapter to this chapter can be compared to that from
asymptotic or deadbeat estimation to the Kalman filter. Indeed, due to the
noise it is not possible to exactly or asymptotically reconstruct the input of
a combined systems. Hence, similar the Kalman filtering problem, it is most
convenient to determine the estimates that satisfy a certain optimality criterion.

The choice of the optimality criterion may reflect prior knowledge about the

73
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unknown input. For example, if it is known that the amplitude of the input
is small, one may consider minimizing the norm of the input. Another type
of prior knowledge may for example be that the unknown input is constant in
time. The estimation problem, referred to as optimal estimation in the presence
of constant bias, can then be reduced to a standard state estimation problem.
This problem will be discussed in more detail in Chapter 5.

In many applications, like e.g. in fault detection or model error estimation,
however, no prior knowledge about the unknown inputs is available. As shown
in Fig. 4.1, the earliest approach to the estimation of completely unknown
inputs in combined deterministic-stochastic systems is due to Glover [58], who
considered the best way of estimating the unknown input as a linear combination
of past outputs. His treatment, however, is limited to a special class of systems.
Unknown inputs are also estimated in [73], however, no proof of optimality is
given.

In contrast to the inversion of combined systems, which has received only
little attention in the past, the problem of optimal state estimation, and in
particular optimal filtering, for combined systems with unknown inputs has
received a lot of attention. Numerous methods to deal with unknown inputs
in optimal filtering can be found in literature. The earliest approach is due
to Kitanidis [87], who considered an optimal filter for a system without direct
feedthrough of the unknown input to the output. His approach consists in
parameterizing the filter equations using a gain matrix and then calculating the
optimal value of the gain matrix by minimizing the trace of the error covariance
matrix under an unbiasedness condition. Stability and convergence conditions
of the Kitanidis filter were developed in [24]. The approach of Kitanidis has
been extended to systems with direct feedthrough of the input to the output
in e.g. [25]. Another straightforward method is given by Hou et al. [68, 69].
Their approach consists in first transforming the system into another system
that is decoupled from the unknown inputs, but whose state sequence equals
that of the original system. Standard filtering techniques, like e.g. the Kalman
filter can then be applied to estimate the state of the unknown input decoupled
system. Other approaches to the filtering problem consist in transforming the
estimation problem into a filtering problem for a descriptor system [102] or in
the use of sliding mode observers [33].

It is important to notice that the filters referred to above, which are all
based on stochastic assumptions about the noise, yield unbiased estimates under
the conditions given in Fig. 3.7. This indicates that for combined systems
unbiased estimates can be obtained under the same conditions that allow exact
reconstruction in the deterministic case.

Only recently, research has also shifted towards time-delayed state estimation
or smoothing [78, 124, 125]. As can be anticipated from Fig. 3.7, smoothing
simplifies the unbiasedness conditions of the state estimators. As shown by
Sundaram and Hadjicostis [125], a consequence of time-delayed estimation is
that the noise processes become correlated with the estimation error, which
complicates the state estimation problem.
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Figure 4.1: Schematic of the history in optimal estimation in the presence of
unknown inputs. Although the first contribution, due to Glover, addressed
input estimation, the joint input-state estimation problem has received only
little attention in the past. The optimal state estimation problem, in contrast,
has received a lot of attention. The paragraphs in which the estimation problems
are studied, are also listed.

Personal contributions

Although the optimal state estimation problem for systems with unknown inputs
has received a lot of attention in the past, the input estimation problem has
received only little attention. The most important contribution of this chapter
is the development of optimal input and joint-input state estimators.

• In Sect. 4.2, we derive a joint input-state filter for a system with direct
feedthrough. The filter takes the form of the Kalman filter, except that
the true value of the input is replaced by an optimal estimate. In addition,
a relation to LS estimation is established.

• In Sect. 4.3, a similar analysis is given for the filtering problem of a system
without direct feedthrough. We show that the optimal filter derived by
Kitanidis [87] implicitely estimates the unknown input and derive a joint
input-state filter based on this observation. A relation to LS estimation
is established, and a square-root information algorithm is derived.

• In Sect. 4.4, we derive a general framework for optimal filtering, one step
ahead prediction and smoothing in the context of both state estimation
in the presence of unknown inputs and joint input-state estimation. A
new and straightforward procedure for unknown input decoupled state
estimation is derived.
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Chapter outline

Section 4.2 starts by considering the most simple estimation problem, i.e. that
for a system with direct feedthrough. In Sect. 4.3, a similar analysis is given for a
system without direct feedthrough. Finally, in Sect. 4.4, the general framework
is developed.

4.2 Optimal filtering with direct feedthrough

As discussed in the introduction, the optimal state estimation problem for a
combined system with unknown input has first been considered by Kitanidis [87].
He addressed the filtering problem for a system without direct feedthrough of
the unknown input to the output and derived a recursive filter, optimal in the
MVU sense. In this section, we consider a similar derivation for the more simple
problem of filtering with direct feedthrough. Important results of the section are
the derivation of a method to estimate the unknown input and the establishment
of a relation to LS estimation.

Consider the LTI discrete-time system

x[k+1] = Ax[k] + Bu[k] + w[k] (4.1a)

y[k] = Cx[k] + Du[k] + v[k], (4.1b)

where x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm denotes
an unknown deterministic input vector at time k, and y[k] ∈ Rp denotes the
vector of measurements at time k. The noise processes {w[k] ∈ Rn}∞k=0 and
{v[k] ∈ Rp}∞k=0 are assumed to be stochastic with the properties given in

Assumption 2.1. We define Q := E[w[k]w
T

[k]] and R := E[v[k]v
T

[k]] and assume
that R is positive definite. In addition, we assume that the initial state x[0] is a
random variable.

Throughout this section, it will be assumed that rank(D) = m, such that
the deterministic system corresponding to (4.1) is instantaneously left invertible.
We will see that under this condition also unbiased estimates of u[k] and x[k]

can be obtained based on knowledge of the measurements up to time instant k.

This section is outlined as follows. In Sect. 4.2.1, we start by considering
the state estimation problem for a system with direct feedthrough. Next, in
Sect. 4.2.2, the optimal input estimation problem is addressed. In Sect. 4.2.3,
the equations are split into a time update and a measurement update. The
resulting equations are summarized in the form of a joint input-state filter in
Sect. 4.2.4. Finally, in Sect. 4.2.5, the relation to LS estimation is established.

4.2.1 State estimation

We consider a recursive one step ahead predictor of the form

x̂[k+1|k] = Ax̂[k|k−1] +K[k](y[k] − Cx̂[k|k−1]), (4.2)
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where the gain matrix K[k] is a design parameter. Notice that (4.2) takes the
same form as that of the Kalman filter for a system without external inputs.
We assume that an unbiased estimate x̂[0|−1] of the initial state x[0] is available
with covariance matrix P[0|−1]. The error in the estimate x̂[0|−1] is assumed to
be uncorrelated to the noise processes {v[k]}∞k=0 and {w[k]}∞k=0.

Similar to the optimality condition considered in the derivation of the
Kalman filter, we define the optimal value of K[k] as the value that minimizes
the mean squared error E[‖x[k+1]− x̂[k+1|k]‖2] over all linear unbiased estimates
x̂[k+1|k] of the form (4.2).

First, we determine the condition that K[k] should satisfy in order that (4.2)
is unbiased. It follows from (4.2) and (4.1) that the dynamical evolution of the
estimation error x̃[k+1|k] := x[k+1] − x̂[k+1|k] is governed by

x̃[k+1|k] = (A−K[k]C)x̃[k|k−1] + (B −K[k]D)u[k] − K[k]v[k] + w[k]. (4.3)

Consequently, (4.2) is unbiased for all k ≥ 0 and all possible u[k] if and only if
K[k] satisfies the unbiasedness condition

K[k]D = B. (4.4)

So, in contrast to the Kalman filter, the estimator (4.2) is not unbiased for all
values of K[k].

Now, we determine under all gain matrices K[k] that satisfy the unbiasedness
condition (4.4) the one that minimizes the mean squared error E[‖x[k+1] −
x̂[k+1|k]‖2], which is the one that minimizes the trace of the error covariance

matrix P[k+1|k] := E[x̃[k+1|k]x̃
T

[k+1|k]]. The calculation of the optimal gain matrix

thus requires that P[k+1|k] is expressed as function of K[k]. Let K[k] satisfy (4.4),
then it follows from (4.3) that P[k+1|k] obeys the recursion

P[k+1|k] = (A−K[k]C)P[k|k−1](A−K[k]C)T +K[k]RKT

[k] + Q,

= K[k]R̃[k]KT

[k] −K[k]CP[k|k−1]A
T −AP[k|k−1]C

TKT

[k]

+ AP[k|k−1]A
T + Q, (4.5)

where

R̃[k] := CP[k|k−1]C
T + R.

The optimal gain matrix K[k] is then given in the following theorem.

Theorem 4.1. The gain matrix K[k] given by

K[k] = K[k](I −DM[k]) + BM[k], (4.6)

with K[k] := AP[k|k−1]C
TR̃−1

[k] and

M[k] := (DTR̃−1
[k] D)−1DTR̃−1

[k] , (4.7)

minimizes the trace of (4.5) under the unbiasedness condition (4.4).
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Proof: Following the approach of Kitanidis, we solve the minimization
problem using Lagrange multipliers. The Lagrangian is given by

trace{K[k]R̃[k]KT

[k] − 2K[k]CP[k|k−1]A
T + AP[k|k−1]A

T + Q}
− 2trace{(K[k]D −B)ΛT

[k]}, (4.8)

where Λ[k] ∈ Rn×m denotes the matrix of Lagrange multipliers and where the
factor “2” before the second “trace{·}” is introduced for notational convenience.
Setting the derivative of (4.8) with respect to K[k] and Λ[k] equal to zero, yields

R̃[k]KT

[k] − CP[k|k−1]A
T −DΛT

[k] = 0, (4.9)

and (4.4), respectively. Together, (4.9) and (4.4) form the linear system of
equations

[

R̃[k] −D
DT 0

][ KT

[k]

ΛT

[k]

]

=

[
CP[k|k−1]A

T

BT

]

, (4.10)

which has a unique solution if and only if the coefficient matrix is nonsingular.
The coefficient matrix is nonsingular since R is assumed to be positive definite
and rank(D) = m. Finally, pre-multiplying left and right-hand side of (4.10) by
the inverse of the coefficient matrix, yields (4.6).

The assumption that rank(D) = m, which we have made in the beginning
of this section, has led to a unique solution of (4.10) and thus to a unique gain
matrix K[k] minimizing the trace of (4.5). The assumption that rank(D) = m, is
thus sufficient for MVU state estimation. However, as we will see in Sect. 4.4, it
is not a necessary condition. It will be shown in that section that the necessary
and sufficient condition is (4.4),

rank(D) = rank

([
B
D

])

. (4.11)

Notice that (4.4) is the necessary and sufficient condition for exact reconstruc-
tion in the deterministic case (see Fig 3.7).

This indicates, very importantly, that MVU estimates in the combined case
can be obtained under the conditions that allow for exact reconstruction in
the deterministic case.

One can easily derive an expression for the gain matrix without assuming that
rank(D) = m. Proceeding as in the proof of Theorem 4.1, it is then found that
the solution to (4.10) is not unique, so that the gain matrix K[k] minimizing the
trace of (4.5) is also not unique.
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4.2.2 Input estimation

In the deterministic case, the condition rank(D) = m is necessary and sufficient
for instantaneous input reconstruction, see Fig. 3.7. In this section, we show that
this condition is also sufficient to obtain an unbiased estimate of the unknown
input in the combined case. The procedure is based on estimating the unknown
input from the innovation using LS estimation.

Defining the innovation by y[k] − Cx̂[k|k−1], it follows from (4.1) that

y[k] − Cx̂[k|k−1] = Du[k] + e[k], (4.12)

where e[k] := Cx̃[k|k−1] + v[k]. Notice that, in contrast to the Kalman filter,
the innovation is not zero mean. Let x̂[k|k−1] be unbiased, then it follows that
E[y[k] − Cx̂[k|k−1]] = Du[k]. This indicates that an unbiased estimate of the
unknown input u[k] can be obtained from the innovation using LS estimation.

Theorem 4.2. Let x̂[k|k−1] be unbiased, then

û[k|k] =M[k](y[k] − Cx̂[k|k−1]), (4.13)

with M[k] given by (4.7) is the MVU estimator of u[k] given the innovation
y[k] − Cx̂[k|k−1]. The error covariance matrix Pu[k|k] of û[k|k], defined by

Pu[k|k] := E[(u[k] − û[k|k])(u[k] − û[k|k])
T], is given by

Pu[k|k] = (DTR̃−1
[k] D)−1.

Proof: Theorem 4.2 immediately follows by applying the Gauss-Markov
theorem (Theorem B.2) to (4.12) and noting that E[e[k]e

T

[k]] = R̃[k].

It will now be shown that the state estimator (4.2) with K[k] given by (4.6)
implicitly estimates the unknown input. Substituting (4.6) in (4.2), yields

x̂[k+1|k] = Ax̂[k|k−1] + BM[k](y[k] − Cx̂[k|k−1])

+ K[k](I −DM[k])(y[k] − Cx̂[k|k−1]),

= Ax̂[k|k−1] + Bû[k|k] + K[k](y[k] − Cx̂[k|k−1] −Dû[k|k]), (4.14)

where the last step follows from (4.13). Equation (4.14) indeed reveals the
optimal input estimate û[k|k].

Notice, very importantly, that (4.14) takes the form of the Kalman filter
in one step ahead prediction form, except that the true value of the input
is replaced by an optimal estimate. Equation (4.14) not only takes a form
similar to that of the Kalman filter, but in addition, the expression for the
gain matrix K[k] (given in Theorem 4.1) also equals that of the Kalman
gain.
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4.2.3 Time and measurement update

Like for the Kalman filter, it is possible to split the state estimator into a time
update and a measurement update. The time update yields a one step ahead
predicted estimate x̂[k+1|k]. The measurement update yields a filtered estimate
x̂[k|k].

4.2.3.1 Measurement update

We define the measurement update as

x̂[k|k] := x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1]), (4.15)

where the gain matrix L[k] has to be determined so that x̂[k|k] is unbiased and
has minimal variance. It follows from (4.15) and (4.12) that

x̃[k|k] = (I − L[k]C)x̃[k|k−1] − L[k]Du[k] − L[k]v[k]. (4.16)

Assuming that x̃[k|k−1] is unbiased, it follows that x̃[k|k] is unbiased for all u[k]

if and only if L[k] satisfies the unbiasedness condition L[k]D = 0. Under the
unbiasedness condition, the error covariance matrix P[k|k], defined by P[k|k] :=

E[x̃[k|k]x̃
T

[k|k]], is given by

P[k|k] = (I − L[k]C)P[k|k−1](I − L[k]C)T + L[k]R[k]LT

[k]. (4.17)

The optimal gain matrix L[k] is then given in the following theorem.

Theorem 4.3. The gain matrix L[k] minimizing the trace of (4.17) under the
unbiasedness condition L[k]D = 0 is given by

L[k] = L[k](I −DM[k]), (4.18)

where M[k] is given by (4.7) and L[k] := P[k|k−1]C
TR̃−1

[k] .

Proof: The proof is very similar to that of Theorem 4.1 and can be found
in [57].

Notice that for L[k] given by (4.18), (4.15) can be rewritten in a form that
reveals the optimal estimate of the unknown input,

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Dû[k|k]). (4.19)

Also, it can be shown that the expression for P[k|k] can be written as a function
of Pu[k|k] as

P[k|k] = P[k|k−1] − L[k](R̃[k] −DPu[k|k]D
T)LT

[k]. (4.20)
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4.2.3.2 Time update

It follows from (4.19) and (4.14) that the time update is then given by

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k]. (4.21)

Consequently, the error covariance matrix P[k+1|k] of x̂[k+1|k] can be written in
terms of that of x̂[k|k] as

P[k+1|k] =
[

A B
]
[

P[k|k] Pxu[k|k]

Pux[k|k] Pu[k|k]

] [
AT

BT

]

+ Q,

where Pxu[k|k] = PT

ux[k|k] := E[x̃[k|k]ũ
T

[k|k]]. An expression for Pxu[k|k] is now

derived. It follows from (4.13) and (4.12) that ũ[k|k] := u[k] − û[k|k] is given by

ũ[k|k] = (I −M[k]D)u[k] −M[k]e[k] = −M[k]e[k]. (4.22)

Using (4.16) and (4.22), it follows that

Pxu[k|k] = −L[k]DPu[k|k].

4.2.4 Summary of filter equations

The filter equations derived above can be written in three steps: the estimation
of the unknown input, the measurement update and the time update. These
steps are given by:

Joint input-state estimation

• Input estimation:

R̃[k] = CP[k|k−1]C
T + R (4.23)

M[k] = (DTR̃−1
[k] D)−1DTR̃−1

[k] (4.24)

û[k|k] = M[k](y[k] − Cx̂[k|k−1]) (4.25)

Pu[k|k] = (DTR̃−1
[k] D)−1 (4.26)

• Measurement update:

L[k] = P[k|k−1]C
TR̃−1

[k] (4.27)

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − Cx̂[k|k−1] −Dû[k|k]) (4.28)

P[k|k] = P[k|k−1] − L[k](R̃[k] −DPu[k|k]D
T)LT

[k] (4.29)

Pxu[k|k] = PT

ux[k|k] = −L[k]DPu[k|k] (4.30)



82 Inversion of Combined Deterministic-Stochastic Systems

• Time update:

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k] (4.31)

P[k+1|k] =
[

A B
]
[

P[k|k] Pxu[k|k]

Pux[k|k] Pu[k|k]

] [
AT

BT

]

+ Q (4.32)

As already discussed, the time update and the measurement update take the
form of the Kalman filter, except that the true value of the input is replaced by
an optimal estimate. Also, notice that in case D = 0 and B = 0, the Kalman
filter equations for a system without deterministic inputs are obtained.

A block diagram of the joint input-state estimator summarized above is given
in Fig. 4.2.

4.2.5 Relation to least-squares estimation

In this section, we establish the relation between the filter derived above and LS
estimation. In Sect. 4.2.5.1, we set-up a sequence of growing LS problems that
yield smoothed, filtered and one step ahead predicted estimates of the system
state and the unknown input. Next, in Sect. 4.2.5.2 an RLS procedure is derived
that propagates a one step ahead predicted state estimate and the relation to
the filter derived above is established.

4.2.5.1 Least-squares input and state estimation

We consider system (4.1), but contrary to the derivations in the previous
sections, we do not make any stochastic assumption about the initial state x[0]

and about the noise processes {v[k]}∞k=0 and {w[k]}∞k=0.
The derivation in this section, should be compared to that for the Kalman

filter in Sect. 2.5.1. We start by setting-up a sequence of growing LS problems.
The LS problem considered at time instant k estimates the state sequence
{x[i]}k+1

i=0 and the unknown input sequence {u[i]}ki=0 based on knowledge of

{y[i]}ki=0. To this aim, the equations of the system (4.1) from time instant 0
to time instant k are written into a form that expresses the data (i.e. the known
vectors) as a linear combination of the unknowns (i.e. the state sequence and
the unknown input sequence) plus noise terms. This yields the following system
of equations,











x̂[0|−1]

y[0]

0
...

y[k]

0












︸ ︷︷ ︸

data

=












I
C D
A B −I

. . .

C D
A B −I























x[0]

u[0]

...
x[k]

u[k]

x[k+1]












︸ ︷︷ ︸

unknowns

+












−x̃[0|−1]

v[0]

w[0]

...
v[k]

w[k]












︸ ︷︷ ︸

noise

. (4.33)
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u[k] y[k]
System

x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k] + v[k]

Time update

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k]

Measurement update

x̂[k|k] = x̂[k|k−1]

+ L[k](y[k] − Cx̂[k|k−1] −Dû[k|k])

Input estimation

û[k|k] =M[k](y[k] − Cx̂[k|k−1])

Joint input-state estimator

û[k|k]

x̂
[k
|k
−

1
]

x̂
[k
|k

]

Figure 4.2: Block diagram of the joint input-state estimator summarized in
Sect. 4.2.4. Notice that the time update and the measurement update take the
form of that in the Kalman filter, except that the true value of the input is
replaced by an optimal estimate.

The LS problem corresponding to (4.33), is given by

min
x[0],...,x[k+1]

u[0],...,u[k]

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥
∥


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
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
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

−
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

x[0]

u[0]
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
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∥
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∥
∥

2

W[k]

,

(4.34)

where W[k] denotes the weighting matrix, which can be freely chosen. Notice
that the LS problem (4.34) has n + (k + 1)(n + m) unknowns and is build up
from n+(k+1)(n+p) equations. Consequently, it is overdetermined for p ≥ m.
The problem has a unique solution if the coefficient matrix has full column rank.
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As proven in Lemma C.2, a necessary and sufficient condition for this to hold
is that rank(D) = m.

The arguments that minimize the LS problem (4.34) consist of smoothed
estimates x̂[0|k], . . . , x̂[k−1|k] and û[0|k], . . . , û[k−1|k], filtered estimates x̂[k|k] and
û[k|k], and a one step ahead predicted estimate x̂[k+1|k].

Recall from Sect. 2.5.1 that the one step ahead predicted estimate and
the filtered estimate obtained as solution of two consecutive LS problems
of the form (2.19) obey the Kalman filter equations. Choosing W[k] =

diag(P−1
[0|−1], R

−1, Q−1, . . . , Q−1), where P[0|−1], Q and R denote matrices that

can be freely chosen, the question can now be posed whether the LS estimates
x̂[k|k], û[k|k] and x̂[k+1|k] obtained as solution of two consecutive LS problems of
the form (4.34) (k = l, k = l + 1) obey the recursive filter equations derived in
the previous sections. Although no proof is given, there is strong belief that
this indeed holds.

The LS problem (4.34) can be given the interpretation of an MVU estimator
by choosing the weighting matrix W[k] = diag(P−1

[0|−1], R
−1, Q−1, . . . , Q−1),

where P[0|−1], Q and R denote the error covariance matrices defined above.

4.2.5.2 Recursive LS estimation

We now derive an RLS procedure that propagates a one step ahead predicted
state estimate. For simplicity of derivations, we use a stochastic approach. We
assume that an estimate x̂[k|k−1] is available with covariance matrix P[k|k−1] and
seek for an LS problem that allows to estimate x[k+1] based on x̂[k|k−1] and the
newly available measurement y[k]. Considering the last two equations of (4.33)
and appending an equation that summarizes the information in x̂[k|k−1], yields





x̂[k|k−1]

y[k]

0



 =





I 0 0
C D 0
A B −I









x[k]

u[k]

x[k+1]



+





−x̃[k|k−1]

v[k]

w[k]



 . (4.35)

The corresponding LS problem is given by

min
x[k],u[k],x[k+1]

∥
∥
∥
∥
∥
∥





x̂[k|k−1]

y[k]

0



−





I 0 0
C D 0
A B −I









x[k]

u[k]

x[k+1]





∥
∥
∥
∥
∥
∥

2

W̄[k]

, (4.36)

where W̄[k] denotes the weighting matrix. We give the LS problem (4.36) the in-

terpretation of an MVU estimator by choosing W̄[k] = diag(P−1
[k|k−1], R

−1, Q−1),

where P[0|−1], Q and R denote the error covariance matrices defined above.
Solution of the LS problem yields a one step ahead predicted estimate x̂[k+1|k]

and its error covariance matrix which are used to initialize the next step of the
RLS procedure.
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Like in the previous section, there is strong belief that the LS estimates
x̂[k|k], û[k|k] and x̂[k+1|k] obtained as solution of (4.36) obey the recursive filter
equations summarized in Sect. 4.2.4.

In the next sections, LS problems for the time update and the measurement
update are extracted from (4.36) and the relation to the recursive filter equations
summarized in Sect. 4.2.4 is established. For simplicity of derivation, we use a
stochastic approach.

Measurement update
Similar to the derivation of the Kalman filter considered in Sect. 2.5.2.1, the

measurement update is derived from (4.36) by extracting the rows that depend
only on x[k] and u[k]. This yields,

min
x[k],u[k]

∥
∥
∥
∥

[
x̂[k|k−1]

y[k]

]

−
[

I 0
C D

] [
x[k]

u[k]

]∥
∥
∥
∥

2

W̄1[k]

, (4.37)

where W̄1[k] denotes the weighting which we give a stochastic interpretation by

choosing W̄1[k] = diag(P−1
[k|k−1], R

−1). Using the Gauss-Markov theorem, it is

now straightforward to prove the following proposition.

Proposition 4.1. Solution of the LS problem (4.37) yields the equations for
the measurement update and the estimation of the unknown input considered
in Sect. 4.2.4.

Proof: See Appendix C.2.

Time update
For the time update, we extract from (4.36) the equation that depends on

x[k+1] and substitute x[k] and u[k] for their LS estimates x̂[k|k] and û[k|k] obtained
during the measurement update. This yields,

Ax̂[k|k] + Bû[k|k] = x[k+1] − (Ax̃[k|k] + Bũ[k] + w[k]).

The corresponding LS problem (with interpretation of an MVU estimator) is
given by

min
x[k+1]

∥
∥x[k+1] −Ax̂[k|k] −Bû[k|k]

∥
∥

W̄2[k]
, (4.38)

where W̄2[k] denotes the weighting matrix which we choose as W̄2[k] =

(E[(Ax̃[k|k] + Bũ[k] + w[k])(Ax̃[k|k] + Bũ[k] + w[k])
T])−1.

Proposition 4.2. Solution of the LS problem (4.38) yields the equations
for the time update considered in Sect. 4.2.4.

Proof: The proof is straightforward and hence omitted.
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4.3 Optimal filtering without direct feedthrough

In this section, we consider an approach similar to that in the previous section,
but now for a system without direct feedthrough of the unknown input to the
output. The optimal state estimation problem for such a system has first been
considered by Kitanidis [87]. The main contributions of the section are the
extension to joint input-state estimation, the establishment of a relation to LS
estimation and the derivation of a square-root information algorithm.

Consider the system

x[k+1] = Ax[k] + Bu[k] + w[k] (4.39a)

y[k] = Cx[k] + v[k], (4.39b)

where, as usual, x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm

denotes an unknown deterministic input at time k, and y[k] ∈ Rp denotes the
measurement vector at time k. It is assumed that the initial state x[0] is a
random variable. The noise processes {w[k] ∈ Rn}∞k=0 and {v[k] ∈ Rp}∞k=0 are
assumed to be stochastic with the properties given in Assumption 2.1. We define
Q := E[w[k]w

T

[k]] and R := E[v[k]v
T

[k]] and assume that R is positive definite.

Like Kitanidis, we assume throughout this section that rank(CB) = m, so
that the deterministic system corresponding to (4.39) is 1−delay left invertible.
We will see that under this condition also unbiased estimates of u[k] can be
obtained using measurements up to time instant k.

Although the derivations considered in this section are closely related to
those considered in the previous section, the optimal state estimation problem
for (4.39) is conceptually very different from that of a system with direct
feedthrough. The reason is that now the measurement y[k] does not contain
any information about u[k]. Consequently, no unbiased estimate of x[k+1] can be
obtained using measurements up to time instant k. As a result, our discussion
will now not start with the derivation of a recursive one step ahead predictor,
but with the derivation of a recursive filter.

This section is outlined as follows. In Sect. 4.3.1, we start by considering
the state estimation problem. Next, in Sect. 4.3.2, the equations are split into
a time update and a measurement update. In Sect. 4.3.3, the optimal input
estimation problem is addressed. The resulting equations are summarized in
the form of a joint input-state filter in Sect. 4.3.4. In Sect. 4.3.5, the relation to
LS estimation is established. Finally, in Sect. 4.3.6, a square-root information
algorithm is derived.

4.3.1 State estimation

Following Kitanidis [87], we consider a recursive filter of the form

x̂[k|k] = Ax̂[k−1|k−1] + L[k](y[k] − CAx̂[k−1|k−1]), (4.40)

where the gain matrix L[k] is a design parameter. We assume that an unbiased
estimate x̂[0|0] of the initial state x[0] is available with covariance matrix P[0|0].
The error in x̂[0|0] is assumed to be uncorrelated to {v[k]}∞k=0 and {w[k]}∞k=0.
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Similar to Sect. 4.2, the optimal value of the gain matrix L[k] is defined as
that value that minimizes the mean squared error E[‖x[k] − x̂[k|k]‖2] over all
linear unbiased estimates x̂[k|k] of the form (4.40).

First, we determine the condition that L[k] should satisfy in order that (4.40)
is unbiased. It follows from (4.40) that the dynamical evolution of x̃[k|k] :=
x[k] − x̂[k|k] is governed by

x̃[k|k] = (I − L[k]C)(Ax̃[k−1|k−1] + Bu[k−1] + w[k−1])− L[k]v[k]. (4.41)

Consequently, (4.40) is unbiased for all k ≥ 0 and all possible u[k−1] if and only
if L[k] satisfies the unbiasedness condition

L[k]CB = B. (4.42)

Under the assumption that (4.42) holds, the following recursion for the error
covariance matrix P[k|k], defined by P[k|k] := E[x̃[k|k]x̃

T

[k|k]], is easily derived from

(4.41),

P[k|k] = (I − L[k]C)(AP[k−1|k−1]A
T + Q)(I − L[k]C)T + L[k]RLT

[k]. (4.43)

Defining

P̄[k|k−1] := AP[k−1|k−1]A
T + Q, (4.44)

and R̄[k] := CP̄[k|k−1]C
T + R, (4.43) is rewritten as

P[k+1|k+1] = L[k]R̄[k]LT

[k] − P̄[k|k−1]C
TLT

[k] − L[k]CP̄[k|k−1] + P̄[k|k−1]. (4.45)

The gain matrix L[k] minimizing the trace of (4.45) under the unbiasedness
condition (4.42) is then given in the following theorem.

Theorem 4.4. The gain matrix L[k] minimizing the trace of (4.43) under
the unbiasedness condition (4.42) is given by

L[k] = L̄[k] + (I − L̄[k]C)BM̄[k], (4.46)

where L̄[k] := P̄[k|k−1]C
TR̄−1

[k] and

M̄[k] := (FTR̄−1
[k] F )−1FTR̄−1

[k] , (4.47)

with F := CB.

Proof: The proof is similar to that of Theorem 4.1 and can be found
in [87].

The assumption that rank(CB) = m has led to a unique gain matrix L[k]

minimizing the trace of (4.43). The condition that rank(CB) = m is thus
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sufficient for the existence of an optimal state estimator. However, it will be
shown in Sect. 4.4, that it is not necessary. We will show in that section that a
necessary and sufficient condition is

rank(CB) = rank(B), (4.48)

which is the necessary and sufficient condition for the existence of a gain matrix
L[k] satisfying (4.42) and which also is the necessary and sufficient condition for
exact state reconstruction in the deterministic case (see Fig. 3.7).

4.3.2 Time and measurement update

The equations of the optimal filter derived in the previous section are now split
into a time update and a measurement update.

4.3.2.1 Time update

Assume that a filtered estimate x̂[k−1|k−1] and its error covariance matrix
P[k−1|k−1] are available. Notice that no unbiased estimate of x[k] can be obtained
using measurements up to time instant k−1. On the other, an unbiased estimate
of x̄[k] := Ax[k−1]+w[k−1] can be obtained. Therefore, we define the time update
as

ˆ̄x[k|k−1] := Ax̂[k−1|k−1]. (4.49)

It is easily verified that the error covariance matrix P̄[k|k−1] of ˆ̄x[k|k−1], defined

by P̄[k|k−1] := E[˜̄x[k|k−1]
˜̄xT

[k|k−1]], with ˜̄x[k|k−1] := x̄[k] − ˆ̄x[k|k−1], is given by

(4.44).

4.3.2.2 Measurement update

It follows from (4.40) and (4.49) that the measurement update is given by

x̂[k|k] = ˆ̄x[k|k−1] + L[k](y[k] − C ˆ̄x[k|k−1]), (4.50)

with L[k] given by (4.46). An expression for the error covariance matrix P[k|k]

of x̂[k|k] in terms of P̄[k|k−1] has already been derived, see (4.43).

4.3.3 Input estimation

Like in the case of direct feedthrough, it can be shown that an unbiased
estimate of the unknown input can be determined from the innovation using LS
estimation. Defining the innovation by y[k] − C ˆ̄x[k|k−1], it follows from (4.49)
that

y[k] − C ˆ̄x[k|k−1] = Fu[k−1] + ē[k], (4.51)

where ē[k] := C ˜̄x[k|k−1]+v[k]. It is easily verified that the error covariance matrix

of ē[k] is given by E[ē[k]ē
T

[k]] = R̄[k]. The LS estimate of u[k−1] is then given in
the following theorem.
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Theorem 4.5. Let ˆ̄x[k|k−1] be an unbiased estimate of x̄[k], then

û[k−1|k] = M̄[k](y[k] − C ˆ̄x[k|k−1]), (4.52)

with M̄[k] given by (4.47), is the MVU estimator of u[k−1] given the
innovation y[k] − C ˆ̄x[k|k−1]. The error covariance matrix Pu[k−1|k], defined

by Pu[k−1|k] := E[(u[k−1] − û[k−1|k])(u[k−1] − û[k−1|k])
T], is given by

Pu[k−1|k] = (FTR̄−1
[k] F )−1.

Proof: The proof is similar to that of Theorem 4.2 and can be found
in [49].

It can now be shown that the state estimator derived by Kitanidis [87]
implicitly estimates the unknown input.

Substituting (4.46) in (4.50) and using (4.52), yields

x̂[k|k] = ˆ̄x[k|k−1] + L̄[k](y[k] − C ˆ̄x[k|k−1]) + (I − L̄[k]C)Bû[k−1|k]. (4.53)

Equation (4.53) indeed reveals the optimal estimate û[k−1|k] of the unknown
input u[k−1]. It follows from (4.53) that the measurement update can be split
in two steps by defining the first step as

ˆ̄x[k|k] := ˆ̄x[k|k−1] + Bû[k−1|k],

so that the second step is given by

x̂[k|k] = ˆ̄x[k|k] + L̄[k](y[k] − C ˆ̄x[k|k]).

Both ˆ̄x[k|k] and x̂[k|k] are unbiased estimates of x[k]. The first step updates
ˆ̄x[k|k−1] with the unbiased estimate û[k−1|k] of u[k−1] so that ˆ̄x[k|k] is unbiased.
The second step is similar to the measurement update in the Kalman filter. It
minimizes the variance of the state estimate by assimilating the measurement
y[k]. Expressions for the covariance matrices of ˆ̄x[k|k] and x̂[k|k] can be found
in [49] and are also summarized in the following section.

4.3.4 Summary of filter equations

The filter equations derived above can be split into three steps: the time update,
the estimation of the unknown input and the measurement update. These steps
are given by:
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Joint input-state estimation

• Time update:

ˆ̄x[k|k−1] = Ax̂[k−1|k−1] (4.54)

P̄[k|k−1] = AP[k−1|k−1]A
T + Q (4.55)

• Estimation of unknown input:

R̄[k] = CP̄[k|k−1]C
T + R

M̄[k] = (FTR̄−1
[k] F )−1FTR̄−1

[k]

û[k−1|k] = M̄[k](y[k] − C ˆ̄x[k|k−1])

Pu[k−1|k] = (FTR̄−1
[k] F )−1

• Measurement update:

ˆ̄x[k|k] = ˆ̄x[k|k−1] + Bû[k−1|k]

L̄[k] = P̄[k|k−1]C
TR̄−1

[k]

P̄[k|k] = P̄[k|k−1] + BPu[k−1|k]B
T − BPu[k−1|k]F

TL̄T

[k] − L̄[k]FPu[k−1|k]B
T

x̂[k|k] = ˆ̄x[k|k] + L̄[k](y[k] − C ˆ̄x[k|k])

P[k|k] = P̄[k|k] − L̄[k](R̄[k] − FPu[k−1|k]F
T)L̄T

[k]

Notice that for B = 0, that is, if the system (4.39) is not subject to unknown
inputs, the time update and the measurement update take the form of that of
a Kalman filter for a system without external inputs.

A block diagram of the joint input-state estimator summarized above is given
in Fig. 4.3.

4.3.5 Recursive least-squares estimation

In this section, we establish the relation between the filter derived above and LS
estimation. In Sect. 4.3.5.1, we set-up a sequence of growing LS problems that
yield smoothed, filtered and one step ahead predicted estimates of the system
state and the unknown input. Next, in Sect. 4.3.5.2 an RLS procedure is derived
that propagates a one step ahead predicted state estimate and the relation to
the filter derived above is established.

4.3.5.1 Least-squares input and state estimation

We consider system (4.39), but contrary to the derivations in the previous
sections, we do not make any stochastic assumption about the initial state x[0]
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u[k] y[k]
System

x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k] + v[k]

Time update

ˆ̄x[k|k−1] = Ax̂[k−1|k−1]

Measurement update A
ˆ̄x[k|k] = ˆ̄x[k|k−1] + Bû[k−1|k]

Measurement update B

x̂[k|k] = ˆ̄x[k|k] + L̄[k](y[k] − C ˆ̄x[k|k])

Input estimation

û[k−1|k] = M̄[k](y[k] − C ˆ̄x[k|k−1])

Joint input-state estimator

û[k|k]

ˆ̄ x
[k
|k
−

1
]

x̂
[k
|k

]
ˆ̄ x
[k
|k

]

Figure 4.3: Block diagram of the joint input-state estimator summarized in
Sect. 4.3.4. Notice that for B = 0, that is, if the system (4.39) is not subject to
unknown inputs, the time update and the measurement update take the form
of that of a Kalman filter for a system without external inputs.

and about the noise processes {v[k]}∞k=0 and {w[k]}∞k=0.

The derivation in this section should be compared to that for the Kalman
filter in Sect. 2.5.1 and to that for the case of direct feedthrough in Sect. 4.2.5.1.
The main difference to Sect. 4.2.5.1 is that the input now has to be estimated
with one step delay.

Since y[k] does not contain any information about u[k], we consider at time in-
stant k an LS problem that estimates the state sequence {x[0], x[1], . . . , x[k], x̄[k+1]}
and the unknown input sequence {u[i]}k−1

i=0 based on knowledge of the sequence

{y[i]}ki=0. To this aim, the equations of the system (4.39) from time instant 0 to
time instant k are written into a form that expresses the data (i.e. the known
vectors) as a linear combination of the unknowns (i.e. the state sequence and
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the unknown input sequence) plus noise terms. This yields,
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

︸ ︷︷ ︸

noise

. (4.56)

The LS problem corresponding to (4.56), is given by

min
x[0],...,x[k],x̄[k+1]

u[0],...,u[k−1]

∥
∥
∥
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∥
∥
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2

W[k]

,

(4.57)

where W[k] denotes the weighting matrix, which can be freely chosen. Notice
that the LS problem (4.57) has 2n + k(n + m) unknowns and is formed on the
basis of n+(k+1)(n+p) equations. Consequently, the problem is overdetermined
for p ≥ m. It has a unique solution if the coefficient matrix has full column rank.
A necessary and sufficient condition for this to hold is that rank(CB) = m. The
proof is similar to that of Lemma C.2, and is hence omitted.

The arguments that minimize the LS problem (4.57) consist of smoothed
estimates x̂[0|k], . . . , x̂[k−1|k] and û[0|k], . . . , û[k−1|k], a filtered estimate x̂[k|k] and
the one step ahead predicted estimate ˆ̄x[k+1|k].

Choosing W[k] = diag(P−1
[0|−1], R

−1, Q−1, . . . , Q−1), where P[0|−1], Q and R

denote matrices that can be freely chosen, the question now poses whether the
LS estimates x̂[k|k], û[k|k−1] and ˆ̄x[k|k−1] obtained as solution of two consecutive
LS problems of the form (4.57) (k = l, k = l + 1) obey the recursive filter
equations derived in the previous sections. A strong indication that this holds
has been given in [86] and [49], where it is shown that the recursive filter
summarized in Sect. 4.3.4 is globally optimal over all linear estimators (also
those not constrained to be recursive) in a stochastic LS sense.
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4.3.5.2 Recursive LS estimation

We now derive an RLS procedure that propagates a one step ahead predicted
estimate of x̄[k]. For simplicity of derivation, we use a stochastic approach. We
assume that an estimate ˆ̄x[k|k−1] is available with covariance matrix P̄[k|k−1] and
seek for an LS problem that yields an estimate of x̄[k+1] based on ˆ̄x[k|k−1] and
on the newly available measurement y[k]. Considering the last two equations of
(4.56) and appending an equation that summarizes the information in ˆ̄x[k|k−1],
yields





ˆ̄x[k|k−1]

y[k]

0



 =





I −B 0
C 0 0
A 0 −I









x[k]

u[k−1]

x̄[k+1]



+





−˜̄x[k|k−1]

v[k]

w[k]



 . (4.58)

The corresponding LS problem is given by

min
x[k],u[k−1],x̄[k+1]

∥
∥
∥
∥
∥
∥





ˆ̄x[k|k−1]

y[k]

0



−





I −B 0
C 0 0
A 0 −I









x[k]

u[k−1]

x̄[k+1]





∥
∥
∥
∥
∥
∥

2

W̄[k]

,

(4.59)

where W̄[k] denotes the weighting matrix. We give the LS problem (4.59) the in-

terpretation of an MVU estimator by choosing W̄[k] = diag(P̄−1
[k|k−1], R

−1, Q−1),

where P[0|−1], Q and R denote the error covariance matrices as defined above.
Solution of the LS problem (4.59) yields a one step ahead predicted estimate
ˆ̄x[k+1|k] and its covariance matrix, which can be used to initialize the next step
of the RLS procedure.

In the next sections, LS problems for the time update and the measurement
update are extracted from (4.59) and the relation to the recursive filter equations
summarized in Sect. 4.3.4 is established. For simplicity of derivation, we use a
stochastic approach.

Measurement update

The measurement update is derived from (4.59) by extracting the rows that
depend only on x[k] and u[k−1]. This yields the LS problem,

min
x[k],u[k−1]

∥
∥
∥
∥

[
ˆ̄x[k|k−1]

y[k]

]

−
[

I −B
C 0

] [
x[k]

u[k−1]

]∥
∥
∥
∥

2

W̄1[k]

, (4.60)

which we give the interpretation of an MVU estimator by choosing W̄1[k] =

diag(P̄−1
[k|k−1], R

−1). Using the Gauss-Markov theorem, it is now straightforward

to prove the following proposition.
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Proposition 4.3. Solution of the LS problem (4.60) yields the equations for
the measurement update and the estimation of the unknown input considered
in Sect. 4.3.4.

Proof: The proof is similar to that of Proposition 4.1 and hence omitted.
It can be found in [52, 55].

The derivation in [52, 55] yields information formulas for the measurement
update and the estimation of the unknown input. As will now be shown, there
is a duality between the information formulas and the Kalman filter equations.
First, we summarize the information formulas in [52, 55]:

• Estimation of unknown input:

P−1
u[k−1|k] = FTR−1F − Ľu[k]C

TR−1F (4.61)

P−1
u[k−1|k]û[k−1|k] = FTR−1y[k] − Ľu[k](C

TR−1y[k] + P̄−1
[k|k−1]

ˆ̄x[k|k−1]),

(4.62)

with Ľu[k] := FTR−1C(P̄−1
[k|k−1] + CTR−1C)−1.

• Measurement update:

P−1
[k|k] = P̄−1

[k|k−1] + CTR−1C − Ľ[k]B
TP̄[k|k−1] (4.63)

P−1
[k|k]x̂[k|k] = P̄−1

[k|k−1]
ˆ̄x[k|k−1] + CTR−1y[k] − Ľ[k]B

TP̄−1
[k|k−1]

ˆ̄x[k|k−1],

(4.64)

with Ľ[k] := P̄−1
[k|k−1]B(BTP̄−1

[k|k−1]B)−1.

The duality between (4.61), (4.63) and the recursion (2.12) for P[k|k−1] in the
Kalman filter is given in Table 4.1. It will be used in Sect. 4.3.6 to derive a
square-root information algorithm almost instantaneously.

Time update
For the time update, we extract from (4.59) the equation that depends on

x̄[k+1] and substitute x[k] for its LS estimates x̂[k|k]. This yields,

Ax̂[k|k] = x̄[k+1] − (Ax̃[k|k] + w[k]).

The corresponding LS problem with interpretation of MVU estimator is given
by

min
x̄[k+1]

∥
∥x̄[k+1] −Ax̂[k|k]

∥
∥

W̄2[k]
, (4.65)

where W̄2[k] := (E[(Ax̃[k|k]+w[k])(Ax̃[k|k]+w[k])
T])−1. The following proposition

follows immediately from the equivalence of (4.65) to the time update in the
Kalman filter.
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Kalman filter, Eq. (2.12) Eq. (4.63) Eq. (4.61)

P[k|k−1] P̄−1
[k|k−1] R−1

A I FT

R 0 P̄−1
[k|k−1]

C BT CT

E CT 0

Q R−1 0

Table 4.1: Duality between the recursion (2.12) for P[k|k−1] in the Kalman filter,
the measurement update (4.63) and the estimation of the unknown input (4.61).

Proposition 4.4. Solution of the LS problem (4.65) yields the equations
for the time update considered in Sect. 4.3.4.

4.3.6 Square-root information filtering

In this section, we use the duality relations established in Table 4.1 to derive a
square-root information algorithm. Like the square-root implementations of the
Kalman filter, the algorithm applies orthogonal transformations to triangularize
a pre-array, which contains the prior estimates, forming a post-array which
contains the updated estimates.

We assume throughout this section that A and Q are nonsingular. For a
matrix X, X1/2 denotes the lower triangular Cholesky factor of X.

4.3.6.1 Time update

Since the time update (4.54)-(4.55) takes the form of that in the Kalman filter,
a square-root information algorithm can be implemented as in (2.30),


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


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


,

where the “⋆”-symbols denote measurements that are not important for our
discussion and where Θ1,k denotes an orthogonal transformation matrix that
brings the pre-array into the lower triangular form of the post-array.
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4.3.6.2 Measurement update

Based on Table 4.1 and on the square-root covariance algorithm (2.27) for the
Kalman filter, we obtain the following update,
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0 BTP̄
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0 P̄
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⋆ x̂T
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






, (4.66)

where Θ2,k denotes an orthogonal transformation matrix that brings the pre-
array into the lower triangular form of the post-array. The algebraic equivalence
of (4.66) to (4.63) and (4.64) can be verified by equating inner products of
corresponding block rows of the post- and pre-array.

4.3.6.3 Input estimation

Using the duality given in Table 4.1, we obtain the following array algorithm
for the estimation of the unknown input,
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⋆ 0 0

⋆ P
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u[k−1|k] 0

⋆ ûT

[k−1|k]P
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
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

, (4.67)

where Θ3,k denotes an orthogonal transformation matrix that brings the pre-
array into the lower triangular form of the post-array. The algebraic equivalence
of (4.67) to (4.61) and (4.62) can be verified by equating inner products of
corresponding block rows of the post- and pre-array.

4.3.7 A note on square-root covariance filtering

A standard approach to convert between square-root covariance and square-root
information implementations is to augment the post- and pre-array with extra
rows and columns such that they become nonsingular and then invert both of
them [98]. However, this procedure can not be carried out for the post- and pre-
arrays in (4.66) due to the zero-matrix in the upper-left entry of the pre-array.
This indicates that square-root covariance filtering in the presence of unknown
inputs is not possible.

A second indication for this fact is now given. It follows from Table 4.1 that
the dual of deriving a square-root covariance algorithm for the measurement
update is deriving a square-root information algorithm for the Kalman filter
equations of a system with perfect measurements. The latter problem is,
however, unsolved.
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4.4 A general framework

So far, we have considered only the filtering and one step ahead prediction
problems. In this section, a general framework for one step ahead prediction,
filtering and smoothing in the context of both state estimation and joint input-
state estimation is established.

We consider the LTI discrete-time system

x[k+1] = Ax[k] + Bu[k] + w[k] (4.68a)

y[k] = Cx[k] + Du[k] + v[k], (4.68b)

where, as usual, x[k] ∈ R
n denotes the state vector at time instant k, u[k] ∈ R

m

denotes an unknown deterministic input vector at time k, and y[k] ∈ Rp denotes
the measurement vector at time k. The initial state x[0] is assumed to be a
random variable. The noise processes {w[k] ∈ Rn}∞k=0 and {v[k] ∈ Rp}∞k=0 are
assumed to be stochastic with the properties given in Assumption 2.1. We define
Q := E[w[k]w

T

[k]] and R := E[v[k]v
T

[k]] and assume that R is positive definite.
The derivations in this section can be considered as extensions of the

inversion procedure developed in Chapter 3. More precisely, we consider an
estimator for (4.68) of the form (3.27) and show that unbiased estimates of the
system state and the unknown input are obtained under the conditions derived
in Fig. 3.7. Also, we show how to compute the matrix parameters ZL and UL

so that the estimates of the system state and the unknown input are MVU.
This section is outlined as follows. In Sect. 4.4.1, we consider the problem of

optimal state estimation in the presence of unknown inputs. Next, in Sect. 4.4.2,
the input estimation problem is addressed. And finally, in Sect. 4.4.3, an
estimator is developed in which the estimation of the system state and the
unknown input are interconnected.

4.4.1 State estimation

We consider two approaches to optimal state estimation. In the first approach,
we design a new and straightforward method for unknown input decoupled
state estimation. In the second approach, a state estimator similar to that in
Chapter 3 is considered and the gain matrix is determined so that the estimate
of the system state has minimal variance.

4.4.1.1 Unknown input decoupled state estimation

The concept of unknown input decoupling yields a rigorous and straightforward
approach to the design of optimal filters for systems with unknown inputs [26,
67–70]. The idea behind unknown input decoupling is to transform the state
equation of the system into an equivalent state equation that is decoupled from
the unknown input. By also deriving an output equation that is decoupled from
the unknown input, standard filtering techniques, like e.g. the Kalman filter,
can be employed to estimate the system state.
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In this section, a new and very straightforward derivation of an unknown
input decoupled system is given. In contrast to existing techniques, which are
limited to the filtering and one step ahead prediction case, the derivation in this
section yields a general framework for one step ahead prediction, filtering and
smoothing.

Before deriving the unknown input decoupled system, some notations have
to be introduced. We recursively define

N0 := 0, N1 :=

[
0
C

]

,

Nk :=

[
0 0
Ok−1 Nk−1

]

, k ≥ 2.

Furthermore, we define y[k:k+L] := [yT

[k] yT

[k+1] . . . yT

[k+L]]
T, and use similar

definitions for u[k:k+L], v[k:k+L] and w[k:k+L−1].
The response of (4.68) over L + 1 consecutive time units is then given by

y[k:k+L] = OLx[k] +HLu[k:k+L] +NLw[k:k+L−1] + v[k:k+L], (4.69)

where OL denotes the extended observability matrix as defined in (2.3) and
where HL, as defined in (3.6), contains the Markov parameters.

The derivation of the unknown input decoupled system is then based on the
following lemma.

Lemma 4.1. If condition (3.18) obtains, Bu[k] can be expressed as

Bu[k] = KL(y[k:k+L] −OLx[k])−KLNLw[k:k+L−1] −KLv[k:k+L], (4.70)

where the general form of KL is given by (3.20).

Proof: Using (4.69), (4.70) is rewritten as (B̆ − KLHL)u[k:k+L] = 0. It

follows from Lemma 3.2 that the equation B̆ = KLHL has a unique solution if
and only if condition (3.18) obtains.

Substituting (4.70) in (4.68), yields the state equation of the unknown input
decoupled system,

x[k+1] = (A−KLOL)x[k] +KLy[k:k+L] + (Ĭn −KLNL)w[k:k+L−1] −KLv[k:k+L].

This state equation is decoupled from the unknown input, but yet is equivalent
to the state equation of (4.68) if condition (3.18) obtains.

An output equation that is decoupled from u[k] is obtained by pre-
multiplying (4.69) by ΣL, which yields

ΣLy[k:k+L] = ΣLOLx[k] + ΣLNLw[k:k+L−1] + ΣLv[k:k+L]. (4.71)

Since ΣL does not have full rank, the p(L + 1) linear equations of (4.71) are
linearly dependent. Therefore, ΣL in (4.71) may also be replaced by Σ̄L :=
βLΣL, where the p(L + 1) × p(L + 1) − rank(HL) matrix βL is chosen so that
Σ̄L has full row rank.
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Summarizing, the unknown input decoupled system is given by

x[k+1] = (A− KLOL)x[k] +KLy[k:k+L] + w̄[k:k+L−1] (4.72a)

Σ̄Ly[k:k+L] = Σ̄LOLx[k] + v̄[k:k+L], (4.72b)

with w̄[k:k+L−1] := (Ĭn − KLNL)w[k:k+L−1] − KLv[k:k+L] and v̄[k:k+L] :=
Σ̄LNLw[k:k+L−1] + Σ̄Lv[k:k+L]. Notice that w̄[k:k+L−1] is correlated to
v̄[k:k+L].

By treating Σ̄Ly[k:k+L] in (4.72b) as output and y[k:k+L] in (4.72a) as input,
standard estimation techniques like the Kalman filter can be employed to obtain
optimal estimates of x[k]. The optimal state estimation problem for the system
(4.68) has thus been transformed into a standard Kalman filtering problem.

In order to place the poles of the state estimator, the pair {A−KLOL, Σ̄LOL}
must be observable. It is straightforward to prove that this pair is observable if

and only if {A− B̆H(1)
L OL, ΣLOL} is observable. A sufficient condition for the

latter pair to be observable was given in Theorem 3.6.

4.4.1.2 MVU state estimation

Consider the state estimator of Theorem 3.3. In this section, it is first shown
that this state estimator yields unbiased estimates of the state vector of (4.68).
Next, the matrix parameter ZL in the design of the state estimator is chosen so
that the estimate of the system state has minimal variance.

Consider the state estimator of Theorem 3.3, but with time-varying gain
matrix,

x̂[k+1] = Ax̂[k] +KL[k](y[k:k+L] −OLx̂[k]). (4.73)

Notice that in accordance to our notation we should actually write x̂[k|k+L−1]

instead of x̂[k]. However, for conciseness of equations, we will use x̂[k] in the
remainder of this chapter. It is assumed that an unbiased estimate x̂[0] of x[0]

is available with covariance matrix P[0]. The error in x̂[0] is assumed to be
uncorrelated to {w[k]} and {v[k]}.

The optimal value of the gain matrix KL[k] is defined as that value that
minimizes the mean squared error E[‖x̂[k+1] − x[k+1]‖2] over all linear unbiased
estimates x̂[k+1] of the form (4.73).

First, we derive a condition that KL[k] should satisfy in order that (4.73)
is unbiased. Using (4.68) and (4.73), we obtain the following expression for
x̃[k+1] := x[k+1] − x̂[k+1],

x̃[k+1] = Ax̃[k] + Bu[k] + w[k] −KL[k]ỹ[k:k+L], (4.74)

where ỹ[k:k+L] := y[k:k+L] −OLx̂[k]. It follows from (4.68) that

ỹ[k:k+L] = OLx̃[k] +HLu[k:k+L] +NLw[k:k+L−1] + v[k:k+L]. (4.75)
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Substituting (4.75) in (4.74), yields

x̃[k+1] = (A−KL[k]OL)x̃[k] + (B̆ −KL[k]HL)u[k:k+L]

+ (Ĭn −KL[k]NL)w[k:k+L−1] −KL[k]v[k:k+L]. (4.76)

We conclude from (4.76) that the estimator (4.73) is unbiased for all possible
u[k:k+L] if and only if KL[k] satisfies KL[k]HL = B̆. It follows from Lemma 3.2
that a solution to the latter equation exists if and only if condition (3.18) obtains,
in which case the general solution is given by

KL[k] = B̆H(1)
L + ZL[k]ΣL, (4.77)

where ZL[k] is an arbitrary matrix. This yields the following lemma.

Lemma 4.2. For KL[k] given by (4.77), the estimator (4.73) is unbiased if and
only if condition (3.18) obtains.

Now, we determine the value of ZL[k] that minimizes the mean squared error
E[‖x̂[k+1] − x[k+1]‖2], or equivalently the trace of the error covariance matrix

P[k+1] := E[x̃[k+1]x̃
T

[k+1]]. It follows from (4.76) that P[k+1] obeys the following
recursion,

P[k+1] = KL[k]R̄[k]KT

L[k] −KL[k]S̄
T

[k] − S̄[k]KT

L[k] + T̄[k], (4.78)

where

R̄[k] := E[(ỹ[k:k+L] −HLu[k:k+L])(ỹ[k:k+L] −HLu[k:k+L])
T],

= OLP[k]OT

L + R[k:k+L] +NLQ[k:k+L−1]NT

L

+OLPxw[k]NT

L +NLPwx[k]OT

L +OLPxv[k] + Pvx[k]OT

L,

S̄[k] := AP[k]OT

L + ĬnQ[k:k+L−1]NT

L + ĬnPwx[k]OT

L + APxw[k]NT

L + APxv[k],

T̄[k] := AP[k]A
T + Q + APxw[k]Ĭ

T

n + ĬnPwx[k]A
T,

with

R[k:k+L] := E[v[k:k+L]v
T

[k:k+L]],

Q[k:k+L−1] := E[w[k:k+L−1]w
T

[k:k+L−1]],

Pxw[k] = (Pwx[k])
T := E[x̃[k]w

T

[k:k+L−1]],

Pxv[k] = (Pvx[k])
T := E[x̃[k]v

T

[k:k+L]].

Closed form expressions for R[k:k+L] and Q[k:k+L−1] are obtained from (4.68),

R[k:k+L] = diagL+1
0 (R, R, . . . , R) and Q[k:k+L−1] = diagL

0 (Q, Q, . . . , Q), where

diagi
j(·) denotes a matrix with the i entries between the brackets on the j-th

diagonal above the main diagonal and zeros elsewhere. Using (4.76), we obtain
the following closed form expressions for Pxw[k] and Pxv[k],

Pxw[k] = (Ĭn −KL[k−1]NL)E[w[k−1:k+L−2]w
T

[k:k+L−1]]
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+ (A−KL[k−1]OL)E[x̃[k−1]w
T

[k:k+L−1]],

=

min {k,L−1}
∑

i=1





i−1∏

j=1

(A− KL[k−j]OL)



 (Ĭn −KL[k−i]NL)diagL
−i(Q, . . . , Q),

and

Pxv[k] = −KL[k−1]E[v[k−1:k+L−1]v
T

[k:k+L]]− (A−KL[k−1]OL)E[x̃[k−1]v
T

[k:k+L]],

= −
min {k,L}
∑

i=1





i−1∏

j=1

(A−KL[k−j]OL)



KL[k−i]diagL+1
−i (R, . . . , R),

where
∑j

i (·) := 0 for i > j and
∏j

i (·) := I for i > j.
Substituting (4.77) in (4.78), yields

P[k+1] = ZL[k]ΣLR̄[k]Σ
T

LZT

L[k] + T̄[k] + B̆H(1)
L R̄[k](B̆H(1)

L )T

− ZL[k]ΣLŠT

[k] − Š[k]Σ
T

LZT

L[k] − B̆H(1)
L S̄T

[k] − S̄[k](B̆H(1)
L )T, (4.79)

where Š[k] := S̄[k] − B̆H(1)
L R̄[k]. Uniqueness of the gain matrix ZL[k] minimizing

the trace of (4.79) requires invertibility of ΣLR̄[k]Σ
T

L. However, it follows from
Lemma 3.3 that ΣL does not have full rank if HL 6= 0.

Based on the rank of ΣLR̄[k]Σ
T

L, we consider three cases.

• Case 1: rank(ΣLR̄[k]Σ
T

L) = 0
Notice that this occurs e.g. when HL has full row rank. The matrix ZL[k]

minimizing the trace of (4.79) is then given by ZL[k] = 0, so that KL[k]

becomes time-invariant,

KL[k] = B̆H−1
L . (4.80)

Substituting (4.80) in (4.79), yields

P[k+1] = T̄[k] + Š[k]R̄
−1
[k] Š

T

[k] − S̄[k]R̄
−1
[k] S̄

T

[k].

This corresponds to the finding in Chapter 3 that the state estimator of
Theorem 3.3 is unique if HL has full row rank.

• Case 2: 0 < rank(ΣLR̄[k]Σ
T

L) < p(L + 1)
The optimal gain matrix is not unique. One of the matrices ZL[k]

minimizing the trace of (4.79) is obtained by the use of the Moore Penrose
generalized inverse,

ZL[k] = Š[k]Σ
T

L(ΣLR̄[k]Σ
T

L)†. (4.81)

Substituting (4.81) in (4.77) and (4.79), yields

KL[k] = B̆H(1)
L + Š[k]Σ

T

L(ΣLR̄[k]Σ
T

L)†ΣL, (4.82)

and

P[k+1] = T̄[k] − S̄[k]R̄
−1
[k] S̄

T

[k] + Š[k](R̄
−1
[k] − ΣT

L(ΣLR̄[k]Σ
T

L)†ΣL)ŠT

[k]. (4.83)
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• Case 3: rank(ΣLR̄[k]Σ
T

L) = p(L + 1)
This can occur only if (4.68) is unaffected by unknown inputs, that is, if
B = 0 and D = 0. Since ΣLR̄[k]Σ

T

L is invertible, the optimal gain matrix is

unique and the generalized inverse of ΣLR̄[k]Σ
T

L in (4.81) can be replaced
by an inverse. Furthermore, it is straightforward to verify that we obtain
the Kalman filter equations in filter form for L = 0 and in prediction form
for L = 1. For L > 1, we obtain fixed-lag smoothing formulas.

4.4.2 Input estimation

In this section, we address the problem of optimal input estimation. We consider
the input estimator of Theorem 3.4 and determine the gain matrix UL so that
the estimate of the input is unbiased and has minimal variance.

Consider the input estimator of Theorem 3.4, but now with time varying
gain matrix,

û[k] =ML[k](y[k:k+L] −OLx̂[k]), (4.84)

where x̂[k] denotes the optimal estimate of the system state obtained with (4.73).
First, we determine the condition that ML[k] should satisfy in order that

û[k] is unbiased. It follows from (4.84) that ũ[k] := u[k] − û[k], is given by

ũ[k] = (Ĭm −ML[k]HL)u[k:k+L] −ML[k](OLx̃[k] +NLw[k:k+L−1] + v[k:k+L]).
(4.85)

The estimator (4.84) is thus unbiased for all possible u[k:k+L] if and only ifML[k]

satisfiesML[k]HL = Ĭm. We know from Lemma 3.1 that a solution to the latter
equation exists if and only if condition (3.7) obtains, that is, if and only if the
deterministic system corresponding to (4.68) is L−delay left invertible. The
general solution is then given by

ML[k] = ĬmH(1)
L + UL[k]ΣL, (4.86)

where UL[k] is an arbitrary matrix. This yields the following lemma.

Lemma 4.3. For ML[k] given by (4.86), the estimator (4.84) is unbiased if
and only if condition (3.7) obtains.

Now, we calculate the value of UL[k] that minimizes the trace of the error

covariance matrix Pu[k] := E[ũ[k]ũ
T

[k]]. It follows from (4.85) that Pu[k] is given
by

Pu[k] =ML[k]R̄[k]MT

L[k]. (4.87)

Substituting (4.86) in (4.87), yields

Pu[k] = UL[k]ΣLR̄[k]Σ
T

LUT

L[k] + UL[k]ΣLR̄[k](ĬmH(1)
L )T

+ ĬmH(1)
L R̄[k]Σ

T

LUT

L[k] + ĬmH(1)
L R̄[k](ĬmH(1)

L )T. (4.88)
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Based on the rank of ΣLR̄[k]Σ
T

L, we distinguish two cases. Notice that

rank(ΣLR̄[k]Σ
T

L) = p(L + 1) is not possible for a system for which (3.7) obtains.
Therefore, this case is not considered.

• Case 1: rank(ΣLR̄[k]Σ
T

L) = 0
The matrix UL[k] minimizing the trace of (4.88) is given by UL[k] = 0, so
thatML[k] becomes time-invariant,

ML[k] = ĬmH−1
L . (4.89)

Substituting (4.89) in (4.88), yields

Pu[k] = ĬmH−1
L R̄[k](ĬmH−1

L )T.

• Case 2: 0 < rank(ΣLR̄[k]Σ
T

L) < p(L + 1)
The matrix UL[k] minimizing the trace of (4.88) is not unique. One of the
optimal gain matrices is given by

UL[k] = −ĬmH(1)
L R̄[k]Σ

T

L(ΣLR̄[k]Σ
T

L)†. (4.90)

Substituting (4.90) in (4.86) and (4.88) yields

ML[k] = ĬmH(1)
L R̄−1

[k] R̃[k], (4.91)

and

Pu[k] = ĬmH(1)
L R̃[k](ĬmH(1)

L )T, (4.92)

respectively.

4.4.3 Joint input-state estimation

Combining the state estimator (4.73) and the input estimator (4.84) derived
in the previous section, yields a joint input-state estimator. Notice that
the resulting estimator is time-varying, and can at every time instant
be considered as an L−delay left inverse of the deterministic system
corresponding to (4.68). Furthermore, if the covariance matrices P[k] and
Pu[k] converge for k → ∞, also ZL[k],KL[k], UL[k] and ML[k] will converge.
The joint input-state estimator then converges to the dynamical portion
(3.26) with ZL = ZL[∞] and UL = UL[∞].

The state estimator (4.73) and input estimator (4.84) exchange information
in one direction: the input estimator uses information from the state estimator.
In this section, we show that if condition (3.7) obtains, the state estimator
implicitly estimates the unknown input. This will yield a joint input-state
estimator in which the state estimator and input estimator exchange information
in both directions.

Based on the rank of ΣLR̄[k]Σ
T

L, we distinguish two cases.
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• Case 1: rank(ΣLR̄[k]Σ
T

L) = 0

Using the fact that B̆ = BĬm, it follows from (4.89) that (4.80) can be
written as KL[k] = BML[k]. The state estimator (4.73) can thus be written
as x̂[k+1] = Ax̂[k]+BML[k]ỹ[k:k+L] = Ax̂[k]+Bû[k], where the last equality
follows from the assumption that condition (3.7) obtains. We conclude
that the state estimator implicitly estimates the unknown input.

• Case 2: 0 < rank(ΣLR̄[k]Σ
T

L) < p(L + 1)
It follows from (4.91) that (4.82) can be rewritten as

KL[k] = B̆H(1)
L R̄−1

[k] R̃[k] + S̄[k]Σ
T

L(ΣLR̄[k]Σ
T

L)†ΣL

= BML[k] + S̄[k]Σ
T

L(ΣLR̄[k]Σ
T

L)†ΣL.

The state estimator (4.73) can thus be written as

x̂[k+1] = Ax̂[k] +
[
BML[k] + S̄[k]Σ

T

L(ΣLR̄[k]Σ
T

L)†ΣL

]
ỹ[k:k+L]

= Ax̂[k] + Bû[k] + S̄[k]Σ
T

L(ΣLR̄[k]Σ
T

L)†ΣLỹ[k:k+L], (4.93)

where the last equality follows from the assumption that condition (3.7)
obtains. We conclude that the state estimator implicitly estimates the
unknown input. It follows from (4.83) and (4.92) that P[k+1] can be written
in function of Pu[k] as

P[k+1] = T̄[k] + BPu[k]B
T − S̄[k]R̄

−1
[k] S̄

T

[k] − B̆H(1)
L R̃[k](B̆H(1)

L )T

+ (S̄[k]R̄
−1
[k] − B̆H(1)

L )R̃[k](S̄[k]R̄
−1
[k] − B̆H(1)

L )T.

Combining (4.93) with (4.84) yields a joint input-state estimator in which
the estimators exchange information in both directions.

4.5 Numerical examples

We consider two numerical examples. The first example deals with optimal
filtering, the second one with optimal smoothing.

Example 4.1. Fault reconstruction in an F16 aircraft
This example addresses reconstruction of actuator and sensor faults in an F16
aircraft. We assume that the class and the location of the fault is known, and
address the problem of fault estimation. Consider the following linearized F16
longitudinal model [120],

dx

dt
(t) =







−0.0193 8.82 −32.2 −0.48
−0.000254 −1.02 0 0.91

0 0 0 1
0 0.82 0 −1.08







x(t) +







0.17
−0.00215

0
−0.18







ue(t)

y(t) =

[
0 0 1 0
0 −1 1 0

]

x(t),



4.5 Numerical examples 105

where x = [V α θ q]T with V the velocity (ft/s), α the angle of attack (rad), θ
the pitch angle (rad), and q the pitch rate (rad/s). The control input ue is the
elevator angle deflection (deg). The outputs are the pitch angle θ and the flight
path angle θ − α.

The linearized model is discretized in time using a first order hold method
with time step 0.1 s, resulting in an LTI discrete-time state-space model. We
assume that the dynamics of the true system can be written as the discrete-
time model plus normally distributed random white process noise with variance
Q = 10−8I and measurement noise with variance R = 10−7I, meaning that
the pitch angle and the flight path angle can be measured accurately up to one
tenth of a degree.

In a first experiment, an actuator fault is simulated. It is assumed that the
actuator that steers the elevator to the desired position fails at time step 50.
The desired elevator angle and the actual value due to the failure of the actuator
are shown in Fig. 4.4. In order to deal with actuator faults, we consider the
elevator angle deflection as an unknown input. Notice that this unknown input
only enters the state equation so that the true system can be written as (4.39).
We now apply the filter summarized in Sect. 4.3.4 to simultaneously estimate
the elevator angle deflection and the system state. The estimate of the elevator
angle deflection is shown in Fig. 4.4. An estimate of the actuator fault can be
obtained by subtracting the desired elevator deflection from the estimated one.
Fig. 4.5 shows true and estimated values of the pitch rate. For the purpose
of comparison, the Kalman filter estimate and the pitch rate that would be
obtained if no offset on the actuator were present, are also shown. As can be
seen, the joint input-state estimator follows the true trajectory very closely. The
Kalman filter, on the other hand, diverges at the time the actuator fault occurs
because it gives to much weight to the model equations.

In a second experiment, a sensor fault is simulated. More precisely, it is
assumed that the flight path measurement is subject to an unknown disturbance.
The objective is to estimate this disturbance based on the measurement of
the pitch angle. Notice that the disturbance can be modeled as an unknown
input that enters the output equation. We thus apply the filter summarized in
Sect. 4.2.4 to simultaneously estimate the system state and the sensor error. We
assume that Q = 10−4I and R = 10−4I. The true and estimated value of the
sensor errors are compared in Fig. 4.6. The estimator reconstructs the sensor
error with high precision.

Example 4.2. Optimal smoothing
In a second example, we investigate the benefit of smoothing on the estimation
accuracy. Consider again the system of Example 3.1, but now subject to
normally distributed random white noise processes {v[k]}∞k=0 and {w[k]}∞k=0 with
covariance matrices Q = 10−3I and R = 10−2I, respectively. The initial state
of the system equals x[0] = 0. It is assumed that an unbiased estimate x̂[0] is
available with covariance matrix P[0] = 10−2I.

We compare the estimation accuracy of the joint input-state estimator
developed in Sect. 4.4.3 for L = 0 (filtering) and L = 5 (smoothing). It is found
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Figure 4.4: Actuator fault detection in a linearized F16 model. Top figure:
comparison between desired value, true value and estimated value of the elevator
angle deflection. Bottom figure: error in the estimate of the elevator angle
deflection.
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Figure 4.5: Actuator fault detection in a linearized F16 model. The joint input-
state estimator follows the true trajectory of the pitch rate very closely. For the
purpose of comparison, the Kalman filter estimate and pitch rate that would be
obtained if no offset on the actuator were present, are also shown.
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Figure 4.6: Sensor fault detection in a linearized F16 model. Top figure:
comparison between true and estimated value of sensor error. Bottom figure:
error in the estimate of the sensor error.
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Figure 4.7: Effect of smoothing on the estimation accuracy in Example 4.2.
The errors in the smoothed (L = 5) and the filtered (L = 0) estimates of the
system input are compared. The true value of the unknown input is also shown.
Smoothing clearly increases estimation accuracy.
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that the error covariance matrices of the state estimator and input estimator
converge as k →∞. For L = 0, they converge to

P[∞] ≈
[

0.1644 −0.0986
−0.0986 0.0627

]

, Pu[∞] ≈ 0.0406.

For L = 5, we obtain

P[∞] ≈
[

0.0078 −0.0038
−0.0038 0.0038

]

, Pu[∞] ≈ 0.0035.

These results indicate that the smoothed estimates are more accurate than the
filtered ones. The errors in the smoothed and filtered estimates of the system
input are compared in Fig. 4.7. This figure confirms that estimation accuracy
is highest in the case of smoothing.

4.6 Conclusion

This chapter has studied the problems of state estimation and joint input-state
estimation for combined deterministic-stochastic systems. Existing techniques
were mainly concerned with the state estimation problem and in particular with
filtering.

In a first contribution, the problem of joint input-state filtering was
addressed. Based on MVU estimation, filter equations were derived in which
the estimation of the system state and the unknown input are interconnected.
Next, the relation to least-squares estimation was established. More precisely,
it was shown that the filtered state and input estimates can be obtained as
the solution of a least-squares problem that takes the same form as that of
the Kalman filter, except that the inputs are now unknown and thus have to
be estimated. Solution of the least-squares problem has provided information
formulas for joint input-state filtering. By establishing duality relations to the
Kalman filter equations, square-root information formulas were derived almost
immediately. Finally, it was shown that square-root covariance filtering in the
presence of unknown inputs is not possible.

In a second contribution, the one step ahead prediction, filtering and
smoothing problems for both state estimation and joint input-state estimation
were put in a general framework. This framework generalizes all previous results.
The derivation of the joint input-state estimator is closely related to that of the
inverse system in Chapter 3. More precisely, the joint input-state estimator
can at every time instant be interpreted as the inverse of the corresponding
deterministic system.

Numerical examples have indicated that the covariance matrices of the
joint input-state estimators converge. Further research should investigate
convergence conditions and properties of the corresponding difference equation.



Chapter 5

Applications of System

Inversion

This chapter considers four applications of system inversion.
First, filtering with noisy inputs and outputs is addressed. Recursive
filter equations are derived in which the estimation of the system
state and the input are interconnected. Next, the problem of filtering
in the presence of bias is considered. A suboptimal filter, closely
related to the two-stage Kalman filter [45], is developed. The last
two applications are more practical. First, model error estimation
and dynamic model updating is addressed. An empirical technique
is outlined to correct a physical model for unknown dynamics. Next,
an approach to joint state and boundary condition estimation is
considered in which the spatial component of the boundary condition
is expanded as a linear combination of orthogonal basis functions.

5.1 Introduction

One application of system inversion, namely fault detection, has already
been addressed in Example 4.1. In this chapter, four other applications are
considered.

Personal contributions

The personal contribution of this chapter is the application of the inversion
procedure developed in Chapters 3 and 4 in four concrete problems.

• In Sect. 5.2, a new solution to the errors-in-variables filtering problem is
derived in which the estimation of the system state and the unknown input
are interconnected. The solution is shown to be algebraically equivalent
to existing solutions.

109
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• In Sect. 5.3, a new solution to the optimal filtering problem in the presence
of bias errors is derived. A suboptimal filter, closely related to the two-
stage Kalman filter [45] is developed. The major difference is that the new
filter can be used also if the equation governing the dynamical evolution
of the bias error is unknown.

• In Sect. 5.4, model error estimation and dynamic model updating is
addressed. An empirical technique is outlined to update a non-satisfactory
accurate physical state-space model. The technique consists in first
estimating the model error and then identifying an empirical correction
model based on the estimated data.

• In Sect. 5.5, a new approach to the estimation of unknown boundary
conditions is considered in which the temporal component of the boundary
is assumed to be unknown and the spatial form is expanded as a linear
combination of orthogonal basis functions.

Chapter outline

This chapter consists of four sections. Each section is devoted to one application.
Section 5.2 addresses filtering with noisy input and output measurements. Next,
in Sect. 5.3, the problem of optimal filtering in the presence of bias errors
is considered. Section 5.4 deals with model error estimation and dynamic
model updating. Finally, in Sect. 5.5, the problem of joint state and boundary
condition estimation is addressed.

5.2 Filtering with noisy inputs and outputs

Closely related to system inversion is the noisy input-output filtering problem,
in which the system input is known up to an additive noise term. The noisy
input-output filtering problem is first considered in [62], where it is called errors-
in-variables filtering. The treatment of [62] is, however, limited to SISO systems
and is not linked to the classical Kalman filter. The MIMO case is first addressed
in [94], where it is shown that the problem can be translated into a standard
Kalman filtering problem. A similar result is obtained in [31, 93].

In this section, we address an extension of the noisy input-output filtering
problem. We consider the case where a linear combination of the input vector
is measured instead of the entire input vector. We show that the resulting
filtering problem can be reformulated as that considered in Sect. 4.3 and derive
filter equations in which the estimation of the system state and the unknown
input are interconnected. As a special case, the filter provides a new solution
to the errors-in-variables filtering problem which is shown to be algebraically
equivalent to the filters in [31, 93].
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5.2.1 Problem formulation

Consider the set-up in Fig. 5.1. This set-up consists of a discrete-time LTI
system and two sensors. The input u[k] of the LTI system is assumed to be
unknown. One of the sensor measures a noisy linear combination z2[k] of the
system input u[k]. The other sensor measures a noisy linear combination z1[k] of
the system output y[k].

The equations of the system and the sensors are assumed to be given by:

• System:
The dynamics of the LTI system are assumed to be governed by

x[k+1] = Ax[k] + Bu[k] + w[k] (5.1)

y[k] = Cx[k] + Du[k], (5.2)

where x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm

denotes the unknown input vector at time k, and y[k] denotes the output
vector at time k. The noise process {w[k]}∞k=0 is assumed to be a zero-mean
white stationary stochastic process with covariance matrix Q. The initial
state x[0] is assumed to be unknown and random.

• Sensor 1:
It is assumed that sensor 1 measures the following linear combination of
the output y[k] of (5.1),

z1[k] = S1y[k] + v1[k],

where z1[k] ∈ Rp1 denotes the measurement at time instant k and where
the noise process {v1[k]}∞k=0 is assumed to be zero-mean stationary white

and uncorrelated to {w[k]}∞k=0. We define E[v1[k]v
T

1[k]] =: R1.

• Sensor 2:
It is assumed that sensor 2 measures the following linear combination of
the input u[k] of (5.1),

z2[k] = S2u[k] + v2[k],

where z2[k] ∈ Rp2 denotes the measurement at time instant k and where
the noise process {v2[k]}∞k=0 is assumed to be zero-mean stationary white.

We define E[v2[k]v
T

2[k]] =: R2. The noise processes {v2[k]}∞k=0 is assumed to

be uncorrelated to {w[k]}∞k=0 and {v1[k]}∞k=0.

The interconnection of the system and both sensors yields the LTI system

x[k+1] = Ax[k] + Bu[k] (5.3a)
[

z1[k]

z2[k]

]

︸ ︷︷ ︸

z[k]

=

[
C̄1

0

]

︸ ︷︷ ︸

C̄

x[k] +

[
D̄1

D̄2

]

︸ ︷︷ ︸

D̄

u[k] +

[
v1[k]

v2[k]

]

︸ ︷︷ ︸

v[k]

, (5.3b)
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u[k] y[k]

x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k]

z2[k] = S2u[k] + v2[k] z1[k] = S1y[k] + v1[k]

z1[k]z2[k]

System

Sensor 2 Sensor 1

Figure 5.1: Set-up of the filtering problem with noisy input and output
measurements.

where C̄1 := S1C, D̄1 := S1D, D̄2 := S2 and where we have eliminated the
output y[k] of the LTI system (5.1). We define R := diag(R1, R2).

The objective of this section is to design an optimal filter that recursively
estimates both the system state x[k] and the unknown input u[k] from knowledge

of the sequences of measurements {z1[i]}ki=0 and {z2[i]}ki=0. It is assumed that
the pair {A, C} is observable and that an unbiased estimate x̂[0|−1] of the initial
state x[0] is available with covariance matrix P[0|−1]. The error in the initial
estimate x̂[0|−1] is assumed to be uncorrelated to {v[k]}∞k=0 and {w[k]}∞k=0.

5.2.2 Errors-in-variables filtering

Note that the errors-in-variables filtering problem considered in [31, 93] is
obtained for D̄2 = S2 = I, that is, when sensor 2 measures the entire input
vector. Substituting u[k] = z2[k]−v2[k] in (5.3), then yields the following system
which is decoupled from the unknown input,

x[k+1] = Ax[k] + Bz2[k] + w̃[k]

z1[k] = C̄1x[k] + D̄1z2[k] + ṽ1[k],

where w̃[k] := −Bv2[k] is correlated to ṽ1[k] := v1[k] − D̄1v2[k]. The optimal
filtering problem for the system (5.3) has thus been transformed into a standard
Kalman filtering problem for a system with correlated noise processes. The
solution of the resulting Kalman filtering problem, together with equations for
the optimal estimate of the input can be found in e.g. [93].

5.2.3 Filtering with noisy input measurements

In this section, we extend the errors-in-variables filtering problem to the case
where a linear combination of the input vector is measured instead of the entire
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input vector, that is, we do no longer assume that D̄2 = I.
It is readily observed that the filtering problem formulated in Sect. 5.2.1 is

a special case of the joint input-state filtering problem addressed in Sect. 4.2.
Based on the equations summarized in Sect. 4.2.4, we now derive explicit filter
formulas by exploiting the specific structure of the output equation of (5.3).
Like in Sect. 4.2.4, the equations are split into a time update, a measurement
update and a step in which the unknown input is estimated.

We assume that rank(D) = m, which, as shown in Sect. 4.2, is a necessary
and sufficient condition for MVU estimation of the unknown input. We use the
same notations as in Sect. 4.2.

5.2.3.1 Time update

The time update is given by (4.31)-(4.32),

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k]

P[k+1|k] =
[

A B
]
[

P[k|k] Pxu[k|k]

Pux[k|k] Pu[k|k]

] [
AT

BT

]

+ Q.

5.2.3.2 Measurement update

For a reformulation of the measurement update (4.27)-(4.30), we first note from
(5.3) that

z[k] − C̄x̂[k|k−1] =

[
z1[k] − C̄1x̂[k|k−1]

z2[k]

]

. (5.4)

Furthermore, it follows from (5.3) that (4.23) can now be written as R̃[k] :=

diag(R̃1[k], R2), with R̃1[k] = C̄1P[k|k−1]C̄
T

1 + R1. Substituting the latter

expression for R̃[k] in (4.27), yields

L[k] = [L1[k] 0], (5.5)

where L1[k] ∈ Rn×p1 is given by L1[k] = P[k|k−1]C̄
T

1 R̃−1
1[k]. Finally, substituting

(5.4) and (5.5) in (4.27)-(4.30), yields

x̂[k|k] = x̂[k|k−1] + L1[k](z1[k] − C̄1x̂[k|k−1] − D̄1û[k|k]) (5.6)

P[k|k] = P[k|k−1] − L1[k](R̃1[k] − D̄1Pu[k|k]D̄
T

1 )LT

1[k]

Pxu[k|k] = PT

ux[k|k] = −L1[k]D̄1Pu[k|k].

5.2.3.3 Estimation of unknown input

By substituting (5.4) in (4.24)-(4.26), we obtain the following equations for the
estimation of the input,

û[k|k] = Pu[k|k]

[

D̄T

1 R̃−1
1[k](z1[k] − C̄1x̂[k|k−1]) + D̄T

2 R−1
2 z2[k]

]

(5.7)
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Pu[k|k] = (D̄T

1 R̃−1
1[k]D̄1 + D̄T

2 R−1
2 D̄2)

−1. (5.8)

In case of errors-in-variables filtering (D̄2 = I), equations (5.7) and (5.8)
can be written into a more convenient form, as will now be shown. Substituting
D̄2 = I in (5.8) and applying the matrix inversion lemma, yields

Pu[k|k] = (I − Lu[k]D̄1)R2, (5.9)

where the gain matrix Lu[k] is defined by

Lu[k] := R2D̄
T

1 (D̄1R2D̄
T

1 + R̃1[k])
−1.

Furthermore, substituting (5.9) in (5.7), yields the following estimate of the
input,

û[k|k] = z2[k] + Lu[k](z1[k] − C̄1x̂[k|k−1] − D̄1z2[k]).

5.2.4 Summary of filter equations

The filter equations derived above can be split into three steps: the estimation
of the unknown input, the measurement update and the time update. These
steps are given by:

Filtering with noisy inputs and outputs

• Estimation of unknown input:

z̃1[k] = z1[k] − C̄1x̂[k|k−1]

R̃1[k] = C̄1P[k|k−1]C̄
T

1 + R1

– General case

û[k|k] = Pu[k|k](D̄
T

1 R̃−1
1[k]z̃1[k] + D̄T

2 R−1
2 z2[k])

Pu[k|k] = (D̄T

1 R̃−1
1[k]D̄1 + D̄T

2 R−1
2 D̄2)

−1

– Errors-in-variables filtering (D̄2 = I)

û[k|k] = z2[k] + Lu[k](z̃1[k] − D̄1z2[k])

Lu[k] = R2D̄
T

1 (D̄1R2D̄
T

1 + R̃1[k])
−1

Pu[k|k] = (I − Lu[k]D̄1)R2
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• Measurement update:

L1[k] = P[k|k−1]C̄
T

1 R̃−1
1[k]

x̂[k|k] = x̂[k|k−1] + L1[k](z̃1[k] − D̄1û[k|k])

P[k|k] = P[k|k−1] − L1[k](R̃1[k] − D̄1Pu[k|k]D̄
T

1 )LT

1[k]

Pxu[k|k] = PT

ux[k|k] = −L1[k]D̄1Pu[k|k]

• Time update:

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k]

P[k+1|k] =
[

A B
]
[

P[k|k] Pxu[k|k]

Pux[k|k] Pu[k|k]

] [
AT

BT

]

A block diagram of the errors-in-variables filter summarized above is given in
Fig. 5.2.

In contrast to the results in [31,93], the equations for the errors-in-variables
filter derived in this section are written in a form in which the state estimator
and the input estimator exchange information in both directions, that is, in
contrast to existing results, the state estimator is written in a form that reveals
optimal estimates of the unknown input. By eliminating the first step, i.e. the
estimation of the unknown input, it can be show that the errors-in-variables
filter derived above, is algebraically equivalent to the filters in [31, 93]. A proof
of equivalence can be found in [51].

5.2.5 Numerical example

Example 5.1.
Consider the system described by

[
A B
C D

]

=









0 1 0 1 0
−0.3 0.4 −0.2 0 0.5
−0.1 0.2 0.4 0 0

1 0 0 0 1
0 1 0 0 0









,

with initial state x[0] = 0. The sensors are assumed to be described by S̄1 = I
and S̄2 = [1 0]. Note that the errors-in-variables filters of [31, 93] can not be
applied to this system because D̄2 = S̄2 6= I. The noise processes are assumed
to be characterized by R1 = 0.025I and R2 = 0.025. Fig. 5.3 compares the true
and estimated values of the second component of the unknown input vector.
Simulation results were obtained with x̂[0|−1] = 0 and P[0|−1] = 10−2I.
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u[k] y[k]
System

x[k+1] = Ax[k] + Bu[k] + w[k]

y[k] = Cx[k] + Du[k]

Time update

x̂[k+1|k] = Ax̂[k|k] + Bû[k|k]

Measurement update

x̂[k|k] = x̂[k|k−1]

+ L1[k](z1[k] − C̄1x̂[k|k−1] − D̄1û[k|k])

Input estimation

û[k|k] = z2[k]

+ Lu[k](z1[k] − C̄1x̂[k|k−1] − D̄1z2[k])

Sensor 1

z1[k] = S1y[k] + v1[k]

Sensor 2

z2[k] = u[k] + v2[k]

D̄1 = S1D, C̄1 = S1C
Joint input-state estimator

x̂
[k
|k
−

1
]

x̂
[k
|k

]

û[k|k]

Figure 5.2: Block diagram for the errors-in-variables filter summarized in
Sect. 5.2.4.

5.3 Filtering in the presence of bias

In many applications, the numerical model is subject to an additive error of
which the actual value is unknown, but the equations governing its dynamics
are known. Such errors are called bias errors. The most common type of bias
errors, is the constant bias error, in which the error obeys u[k+1] = u[k].

The problem of optimal filtering in the presence of bias errors has received
a lot of attention in the past. The optimal solution of the problem consists
in augmenting the state vector with the vector u[k] of bias errors and then
estimating both of them using the Kalman filter. This procedure is called
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Figure 5.3: Comparison between true and estimated value of the input in
Example 5.1.

augmented state filtering. To reduce the computational cost of the augmented
state filter, Friedland [45] proposed the two-stage filter, in which the estimation
of the system state and the bias error are separated. As the name suggests,
the two-stage filter consists of two stages. The first stage yields a bias-unaware
estimate of the system state. The second stage consists in estimating the bias
error. Both stages are computed in parallel (with little exchange of information)
and their results are merged afterwards, yielding bias-aware state estimates. A
detailed treatment of two-stage filtering can be found in e.g. [3, 29, 30, 75].

An extension of Friedland’s algorithm to bias models with a stochastic
component, i.e. bias models of the form u[k+1] = u[k]+µ[k] with µ[k] a zero-mean
random vector, were first considered in [75]. It has become common practice to
use such a bias model in case the dynamics of the bias error are unknown. The
variance of µ[k] is then a design parameter that should be carefully chosen.

Dee and Da Silva [29,30] further decreased computational costs by deriving a
suboptimal variant of the two-stage filter. In their approach, the state estimator
and the bias estimator are interconnected. More precisely, a feedback from the
bias estimator to the state estimator is introduced, making the state estimator
no longer bias-blind.

In this section, we consider a system without direct feedthrough of the input
to the output and derive a bias filter by incorporating a bias model of the form
u[k+1] = u[k] + µ[k] into the joint input-state estimator of Sect. 4.3. In contrast
to existing techniques, the filter considered in the section estimates the bias
with one step delay, that is, it estimates u[k−1] based on measurements up to
time instant k. This delay in estimation introduces a major advantage over the
augmentation method. It allows to switch to the joint input-state estimator of
Sect. 4.3 and back during operation. As will be show in Example 5.2, such a
switching regime is especially useful if e.g. the bias is constant for some time
interval and then suddenly undergoes an abrupt and unknown change.
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5.3.1 Derivation of filter equations

We consider a system without direct feedthrough of the unknown input to the
output, i.e. a system of the form

x[k+1] = Ax[k] + Bu[k] + w[k] (5.10a)

y[k] = Cx[k] + v[k], (5.10b)

where x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm denotes
the bias error at time k, and y[k] ∈ R

p denotes the measurement at time k. The
initial state x[0] is assumed to be a random variable. The noise processes {w[k] ∈
Rn}∞k=0 and {v[k] ∈ Rp}∞k=0 are assumed to be stochastic with the properties

given in Assumption 2.1. We define Q := E[w[k]w
T

[k]] and R := E[v[k]v
T

[k]] and
assume that R is positive definite.

We assume that the dynamical evolution of the bias error is governed by
u[k+1] = u[k] + µ[k] where {µ[k]}∞k=0 is a zero-mean stationary white noise
process, assumed to be uncorrelated to {w[k]}∞k=0 and {v[k]}∞k=0. We define

Qu := E[µ[k]µ
T

[k]].

We assume that unbiased estimates x̂[0|0] and û[0|0] of the initial state and
the bias vector are available with covariance matrices P[0|0] and Pu[0|0]. The
errors in x̂[0|0] and û[0|0] are assumed to be uncorrelated to {w[k]}∞k=0, {v[k]} and
{µ[k]}∞k=0.

Like the joint input-state estimator of Sect. 4.3, we consider a filter that
consist of three steps: a time update, a step in which the bias is estimated and
a measurement update. These three steps are now addressed.

5.3.1.1 Time update

Assume that knowledge of the measurements up to time instant k − 1 has
provided us with estimate x̂[k−1|k−1] and û[k−2|k−1]. Like in Sect. 4.3, we define
x̄[k] := Ax[k−1] + w[k−1], and consider a time update in which x̄[k] is estimated
instead of x[k]. More precisely, we assume that x̂[k−1|k−1] is unbiased and has
covariance matrix P[k−1|k−1] and we consider a time update of the form

ˆ̄x[k|k−1] = Ax̂[k−1|k−1]. (5.11)

As shown in Sect. 4.3, the update of the error covariance matrix is then given
by

P̄[k|k−1] = AP[k−1|k−1]A
T + Q,

where P̄[k|k−1] denotes the error covariance matrix of ˆ̄x[k|k−1]. Also, we assume
that û[k−2|k−1] is unbiased and has error covariance matrix Pu[k−2|k−1] and we
consider a time update of the bias estimate of the form

û[k−1|k−1] = û[k−2|k−1].



5.3 Filtering in the presence of bias 119

It is easily verified that the update of the error covariance matrix is given by

Pu[k−1|k−1] = Pu[k−2|k−1] + Qu,

where Pu[k−1|k−1] denotes the error covariance matrix of û[k−1|k−1]. Notice that
the estimation of the system state runs one time step ahead of that of the bias
vector.

5.3.1.2 Estimation of bias

In contrast to the joint input-state estimation problem of Sect. 4.3, where only
one source of information about u[k−1] is available, namely the innovation y[k]−
Cx̂[k|k−1], here two sources of information are available, namely the innovation
and û[k−1|k−1]. It follows from (4.51) that the LS problem obtained by combining
the information about u[k−1] contained in the innovation and in û[k−1|k−1], is
given by

û[k−1|k] = arg min
u[k−1]

∥
∥
∥
∥

[
y[k] − C ˆ̄x[k|k−1]

û[k−1|k−1]

]

−
[

F
I

]

u[k−1]

∥
∥
∥
∥

2

W[k]

, (5.12)

where F := CB and where W[k] denotes the weighting matrix of the LS problem,

which we choose as W[k] = diag(R̄−1
[k] , P

−1
u[k−1|k−1]), where R̄[k] := E[ē[k]ē

T

[k]] with

ē[k] := y[k] − Cx̂[k|k−1] − Fu[k−1]. It follows from (5.10) and (5.11) that

ē[k] = C ˜̄x[k|k−1] + v[k],

with ˜̄x[k|k−1] := x[k] − ˆ̄x[k|k−1]. Consequently, R̄[k] is given by R̄[k] =

CP̄[k|k−1]C
T + R. Note that choosing the weighting matrix W[k] as given above

does in general not yield the MVU estimate of u[k−1]. The reason is that ē[k]

is correlated to the error in û[k−1|k−1]. Although the choice of the diagonal
weighting matrix is suboptimal from an MVU point of view, we proceed with it
for conciseness of equations.

The solution to (5.12) can then be written as

û[k−1|k] = û[k−1|k−1] + Ku[k](y[k] − C ˆ̄x[k|k−1] − F û[k−1|k−1]), (5.13)

where Ku[k] is given by

Ku[k] = Pu[k−1|k−1]F
T(FPu[k−1|k−1]F

T + R̄[k])
−1.

The error covariance matrix Pu[k−1|k] of û[k−1|k] is given by

Pu[k−1|k] = (I −Ku[k]F )Pu[k−1|k−1].

5.3.1.3 Measurement update

We consider a measurement update that is similar to that of the joint input-state
estimator of Sect. 4.3. It consists of two steps,

ˆ̄x[k|k] = ˆ̄x[k|k−1] + Bû[k−1|k] (5.14)
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x̂[k|k] = ˆ̄x[k|k] + L̄[k](y[k] − C ˆ̄x[k|k]). (5.15)

It straightforward to show that both ˆ̄x[k|k] and x̂[k|k] are unbiased estimates of
x[k]. The calculation of the gain matrix L̄[k] that minimizes the variance of x̂[k|k]

is straightforward, but quite involved and is therefore given in Appendix C.3.
The resulting equations are summarized in the next section.

5.3.2 Summary of filter equations

The filter equations can be split into three steps: the time update, the estimation
of the bias vector and the measurement update. These steps are given by:

Filtering in the precense of bias

• Time update:

ˆ̄x[k|k−1] = Ax̂[k−1|k−1]

P̄[k|k−1] = AP[k−1|k−1]A
T + Q

û[k−1|k−1] = û[k−2|k−1]

Pu[k−1|k−1] = Pu[k−2|k−1] + Qu

• Bias estimation:

û[k−1|k] = û[k−1|k−1] + Ku[k](y[k] − C ˆ̄x[k|k−1] − F û[k−1|k−1])

Ku[k] = Pu[k−1|k−1]F
T(FPu[k−1|k−1]F

T + R̄[k])
−1

R̄[k] = CP̄[k|k−1]C
T + R

Pu[k−1|k] = (I −Ku[k]F )Pu[k−1|k−1]

• Measurement update:

ˆ̄x[k|k] = ˆ̄x[k|k−1] + Bû[k−1|k]

P̄[k|k] = (I −BKu[k]C)(P̄[k|k−1] + BPu[k−1|k]B
T)(I −BKu[k]C)T

+ BKu[k]RKT

u[k]B
T

x̂[k|k] = ˆ̄x[k|k] + L̄[k](y[k] − C ˆ̄x[k|k])

L̄[k] = P̄[k|k−1]C
TR̄−1

[k]

P[k|k] = (I − L̄[k]C)P̄[k|k](I − L̄[k]C)T + L̄[k]RL̄T

[k]

+ (I − L̄[k]C)BKu[k]RL̄T

[k] + L̄[k]RKT

u[k]B
T(I − L̄[k]C)T

The structure of the filter equations summarized above is very similar to that
of the suboptimal filter proposed by Dee and Da Silva [30]. The main difference
is that we estimate the bias with one step delay. Also, the equations are very
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similar to those of the joint input-state estimator summarized in Sect. 4.3.4.
In fact, one can switch from the bias filter to the joint input-state estimator
of Sect. 4.3.4 and vice versa during operation. As will be shown in the next
example, such a switching is especially useful if e.g. the bias is constant for some
time interval and then suddenly undergoes an abrupt and unknown change.

5.3.3 Numerical example

Example 5.2. Fault reconstruction in an F16 aircraft
Consider again the actuator fault in the linearized F16 model of Example 4.1.
In this example, we model the elevator angle deflection as u[k+1] = u[k] + µ[k],
where the zero-mean random vector µ[k] represents the uncertainty or error
in the model. The value of Qu, is a design parameter. Fig. 5.4 compares
the estimates of the elevator angle deflection for Qu = 10−4, Qu = 10−2 and
Qu = 106. As expected, smaller values of Qu yield more accurate estimates of
the deflection in regions where the latter is constant. On the other hand, larger
values of Qu follow the fast changes in the elevator angle deflection more closely.
This suggest to adaptively update Qu according to the rate of change of the bias
estimate.

Fig. 5.4 should be compared to Fig. 4.5 in which no model for the bias
was used. Comparison of both figures indicates that the bias filter for Qu = 106

performs almost identical to the unknown input filter used in Fig. 4.5. In fact, it
is found that the estimates of the bias filter converge to those of the joint input-
state estimator of Sect. 4.3.4 for Qu → ∞. Indeed, Qu = ∞ means that the
uncertainty in the bias model is infinite. Therefore, the bias estimate produced
during the time update will be completely neglected during the measurement
update. This suggests that one should switch to the joint input-state estimator
of Sect. 4.3.4 if the bias undergoes an unknown and rapid change.

Finally, we investigate the error made by neglecting the correlation between
ē[k] and the error in û[k−1|k−1]. To this aim, the estimates of the filter derived
above are compared to those of a filter in which the correlation is not neglected.
The equations of the latter filter are involved and are not derived here. The
difference in the estimates of the angle deflection, averaged over 100 steps, equals
0.00022, showing that the error made by neglecting the correlation is almost
negligible.

5.4 Model error estimation and model updating

Models induced from physical laws and models identified from data are always
approximate. In this section, we consider the case where model accuracy is not
satisfactory, so that a correction or update of the model is needed. In physical
models, inaccuracies can be due to unmodeled dynamics or incorrect parameter
values. In empirical models, inaccuracies can be due to an inappropriate choice
of the model class or to bad data quality.
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Figure 5.4: Actuator fault detection in a linearized F16 model. Top figure:
comparison between desired value, true value and estimated value of the elevator
angle deflection. Bottom figure: error in the estimate of the elevator angle
deflection.

We consider the case where the known dynamics of the system have been
incorporated into a linear state-space model. However, this physical model is
assumed to be subject to non-negligible unmodeled dynamics. The objective of
this section is to correct or update the physical model using empirical modeling
techniques, while the states keep their physical meaning.

Physical models with non-negligible errors are also considered in [110].
A method is outlined for adaptively updating a nonlinear state observer for
a system subject to unmodeled dynamics and incorrect parameter values.
However, the aim of [110] not to correct the model, but rather to design the
observer such that it compensates model errors. In [79], a nonlinear model
representation consisting of an interpolation of several physical models, that
are valid within certain operation regimes, is considered. In operational points
where the physical models are not satisfactory accurate, they are integrated
with empirical models to compensate for unmodeled dynamics. Finally, in [108]
linear state space models are updated by adding a correction model, called a
delta in [108], in parallel, cascade or feedback with the initial model. However,
this method yields delta models that are generally of higher order than the
initial model.
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This section is outlined as follows. In Sect. 5.4.1, we consider the problem
of estimating the model error. Next, in Sect. 5.4.2, a technique is developed to
correct or update the dynamics of a model that is not satisfactory accurate.

5.4.1 Model error estimation

Consider a set of linear ODE’s representing a physical model. Introducing
measurements that are linearly dependent on the physical variables, the model
can be written in state-space form as

dx

dt
(t) = A(t)x(t) + Bc(t)uc(t) + w(t) (5.16a)

y(t) = C(t)x(t) + v(t), (5.16b)

where the x(t) ∈ R
n denotes the state vector at time t, uc(t) ∈ R

mc the control
input vector at time t and the y(t) ∈ Rp the vector of measurements at time
t. It is assumed that these vectors have a physical meaning. The vectors w(t)
and v(t) denote noise terms. For simulation on a computer, the continuous-
time model (5.16) is usually discretized in time, resulting in a LTI discrete-time
model of the form

x[k+1] = Ax[k] + Bcuc[k] + w[k] (5.17a)

y[k] = Cx[k] + v[k], (5.17b)

where x[k] ∈ Rn denotes the state vector at the discrete time instant k, uc[k] ∈
Rmc denotes the input vector at time k, and y[k] ∈ Rp denotes the vector of
measurements at time k. We assume that the noise processes {w[k] ∈ Rn} and
the measurement noise {v[k] ∈ R

p} have the properties given in Assumption 2.1.
For linear ODE’s, a substantial amount of discretization methods are available.
While some methods preserve the physical meaning of the state, other methods
lack this property. We consider discretization methods that preserve the physical
meaning of the state, such that x[k] ≃ x(kTs), with Ts the sampling time.

For physical models, the measurements are usually direct observations of a
state variable or well-known linear combinations of only a few state variables.
Consequently, the output equation (5.17b) is assumed to be very accurate. On
the other hand, we assume that the state equation (5.17a) is subject to incorrect
parameters and/or unmodeled dynamics. To compensate for these model errors,
we add a correction term u[k] ∈ Rm to (5.17a), resulting in the LTI discrete-time
model

x[k+1] = Ax[k] + Bcuc[k] + Bu[k] + w[k] (5.18a)

y[k] = Cx[k] + v[k], (5.18b)

where the matrix B is assumed to be known, or chosen appropriately. We will
refer to u[k] as the model error vector.

The objective of this section is the estimate the model error vector from
knowledge of the measurements up to time instant k. Note that u[k] enters
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(5.18) like an unknown input. Consequently, the joint input-state estimators of
Sect. 4.3 can be employed.

Example 5.3. Tape drive modeling example
Consider errors in a tape drive model. The tape drive comprises one tape, two
drive wheels and two DC-motors. The DC-motors drive the wheels and are
independently controllable by voltage sources V1 and V2. The armature circuit
of DC-motor j (j = 1, 2) is expressed as

La,j
dIj(t)

dt
+ Ra,jIj(t) + Ke,jωj(t) = Vj(t), (5.19)

where La is the armature inductance, Ra is the armature resistance, Ke is the
electrical constant of the motor, I is the current and ω is the rotational speed
of the drive wheel. The position p of the drive wheels is related to ω by the
radius r,

dpj(t)

dt
= rjωj(t). (5.20)

The equation for the rotational speed of the drive wheels is given by

Jj
dωj(t)

dt
= −T (t)rj − βωj(t) + Ktj Ij(t), (5.21)

where J is the inertia of the drive wheel and motor, β is the rotational friction
of the drive wheel and motor, Kt is the torque constant of the motor and T is
the tape tension. This tension is given by

T (t) =
K

2
∆p(t) +

D

2

(
d∆p(t)

dt

)

, (5.22)

where K is the spring constant of the tape, D is the damping in the tape-stretch
motion and ∆p(t) = p2(t) − p1(t). The parameter values used in the example,
are given in Table 5.1.

Now, assume that the dynamics describing the tension in the tape are not
known and thus omitted in the modeling procedure. Hence, the physical model
is given by (5.19)-(5.20) and

Jj
dωj(t)

dt
= −βωj(t) + KtjIj(t). (5.23)

A continuous-time state space model is obtained by defining the state vector
x(t) := [I1(t) I2(t) p1(t) p2(t) ω1(t) ω2(t)]

T and the control input vector
uc(t) := [V1(t) V2(t)]

T. It is assumed that measurements of all state variables are
available. The continuous-time model is discretized in time using the zero order
hold method with sampling time Ts = 10−4s. To account for the unknown
tension, we add a term Bu[k] to the state equation of the discretized model,
where

B =
[

0 0 0 0 − r1

J1
− r2

J2

]T
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Table 5.1: Parameter values used in the tape drive example

Parameter Value Unit

La 10−3 H
Ra 1 Ω
Ke 3.10−2 V.s
r 25.10−3 m
J 5.10−5 kg.m2

β 5.10−2 kg.m2.s−1

Kt 3.10−2 N.m.A−1

K 2.104 N.m−1

D 10 N.m−1.s−1

is chosen so that u[k] = T (kTs). The noise processes {w[k]}∞k=0 and {v[k]}∞k=0 are
assumed to have the properties given in Assumption 2.1. Their covariance matri-
ces are assumed to be given by Q = R = diag(10−6, 10−6, 10−8, 10−8, 10−4, 10−4).

We now apply the joint input state estimator summarized in Sect. 4.3.4
to simultaneously estimate the system state and the tape tension. The
“measurements” used in the simulation were obtained by simulating a discrete-
time model in which the dynamics describing the tension in the tape are not
omitted. The true value (i.e. the value obtained in the simulation just described)
and the estimated value of the tape tension are shown in Fig. 5.5 together with
95% confidence intervals. The confidence intervals are calculated from the error
covariance matrix Pu[k]. The procentual estimation error (EE), defined by

EE :=
100

p

p
∑

i=1





√
√
√
√

∑N
k=1((y[k])i − (ŷ[k|k])i)2
∑N

k=1((y[k])i)2



%, (5.24)

with ŷ[k|k] = Cx̂[k|k], equals 0.2. For comparison, the EE of the Kalman filter
equals 29.5.

5.4.2 Subsystem identification and model updating

So far, we have considered the problem of estimating model errors. The objective
of this section is to correct or update the dynamics of a model that is not
satisfactory accurate. We consider the case where the model error is arising
from an unknown linear subsystem.

5.4.2.1 Problem formulation

We make the assumption that the true system can be written as (5.18) with u[k]

arising from an unknown LTI subsystem driven by uc[k] and x[k],

z[k+1] = Adz[k] + Bduuc[k] + Bdxx[k] + ω[k] (5.25a)
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Figure 5.5: Tape drive modeling example. Comparison between true and
estimated value of unknown tape tension.

u[k] = Cdz[k] + ν[k], (5.25b)

where z[k] ∈ Rnd denotes the state vector and where the noise processes
{ω[k] ∈ Rnd}∞k=0 and {ν[k] ∈ Rmd}∞k=0 are assumed to have the properties given

in Assumption 2.1. We define Qω := E[ω[k]ω
T

[k]] and Rν := E[ν[k]ν
T

[k]]. The

objective of the next sections is to update the initial model (5.17) in case of
unmodeled dynamics of the form (5.25).

5.4.2.2 State of the art

The parallel delta-augmentation method of [108] updates an inaccurate initial
model by identifying a delta-model with input uc[k] and with output an additive
correction term for the output of the initial model. Let the initial model be
given by (5.17) and let the identified delta-model be given by

z[k+1] = Â∆z[k] + B̂∆uc[k] + ̟[k] (5.26a)

∆y[k] = Ĉ∆z[k] + υ[k], (5.26b)

then the updated model with corrected output y̌[k] is given by

[
x[k+1]

z[k+1]

]

=

[
A 0

0 Â∆

] [
x[k]

z[k]

]

+

[
Bc

B̂∆

]

uc[k] +

[
w[k]

̟[k]

]

(5.27a)

y̌[k] =
[

C Ĉ∆

]
[

x[k]

z[k]

]

+ v[k] + υ[k]. (5.27b)
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(5.26)

(5.18)

(5.28)

a) Parallel delta-augmentation

b) Dynamic model updating

Figure 5.6: Comparison between the parallel delta augmentation method of
Sect. 5.4.2.2 (a) and the dynamic model updating technique of Sect. 5.4.2.3 (b).
Note that dynamic model updating introduces feedback.

A schematic of parallel-delta augmentation is shown in Fig. 5.6a.
In case the unknown subsystem takes the form (5.25), it is easy to show

that the best possible delta-model has order n + nd. In cases where n is large,
while nd is relatively small, this may yield a delta-model that is of much higher
order than the unknown subsystem (5.25). Furthermore, this method does only
correct the output equation, but not the erroneous state equations of the initial
model. This is a major disadvantage if the states have a physical meaning that
is of importance for e.g. control.

5.4.2.3 Dynamic model updating

To overcome the problems encountered with the method of [108], we consider
the problem of identifying a correction model of the form (5.25). The updated
model then has the structure shown in Fig. 5.6b.

Notice that the optimal filter summarized in Sect. 4.3.4 yields estimates
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x̂[k|k] of the inputs x[k] and estimates û[k|k] of the outputs u[k] of the unknown
subsystem (5.25). More precisely, after running the filter from time instant
k = 0 to k = N + 1, the following two data-sets are obtained,

XN = {x̂[j|j]}Nj=0,

UN = {û[j]}Nj=0.

Hence, noisy datasets of the inputs and outputs of the unknown subsystem
(5.25) are available. A LTI correction model approximating the dynamics of the
subsystem can be identified from these data-sets by a combined deterministic-
stochastic subspace identification algorithm [106]. Subspace identification is an
empirical identification technique that yields a linear state space model from a
set of input-output data only. The major advantage of subspace identification
algorithms over the classical prediction error methods is the absence of non-
linear parametric optimization problems. Subspace identification algorithms
are non-iterative, and thus never get stuck in local minima or never suffer from
convergence problems. They always produce a result, which is often surprisingly
good for practical data. The algorithm is based on geometric and algebraic
operations like projections and singular value decompositions, for which efficient
and stable numerical implementations have been developed. The algorithm
returns the identified system matrices and the covariance matrices of the noise.
Hence, the identified correction model takes the form

z[k+1] = Âdz[k] + B̂duu[k] + B̂dx x̂[k] + ω̂[k] (5.28a)

û[k|k] = Ĉdz[k] + ν̂[k], (5.28b)

where z[k] ∈ Rn̂d denotes the state vector and where the noise processes {ω[k] ∈
Rn̂d}∞k=0 and {ν[k] ∈ Rm}∞k=0 have the properties given in Assumption 2.1 and

have covariance matrices Q̂ω̂ and R̂ν̂ , respectively. In practical applications
where a lot of data is available, it is to be expected that n̂d is close to nd. In
cases where the true system is high order, while the error is relatively low order,
this may yield a considerable storage and computational saving over the parallel
delta-augmentation method.

The initial model (5.17) is then augmented with the identified correction
model (5.28), resulting in the model

[
x[k+1]

z[k+1]

]

=

[
A BĈd

B̂dx Âd

] [
x[k]

z[k]

]

+

[
Bc

B̂du

]

uc[k] +

[
w[k] + Bν̂[k]

ω̂[k]

]

(5.29a)
[

y[k]

û[k|k]

]

=

[
C 0

0 Ĉd

] [
x[k]

z[k]

]

+

[
v[k]

ν̂[k]

]

, (5.29b)

of order n + n̂d. In contrast to the parallel delta-augmentation method, this
kind of model updating directly corrects errors in the state equation of the
initial model. The difference between both methods is also noticeable in the
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interconnection between the dynamics of the initial model and the correction
model. This interconnection can be seen in the “A” matrix of the augmented
model (5.29a), which is dense, in contrast to (5.27a), where it is block-diagonal.

Example 5.4. Tape drive modeling example
Consider again the tape drive example. Using the data sets UN and XN , we
identify an unknown subsystem of the form (5.25) with the N4SID subspace
identification algorithm [105]. The order of the identified model is determined
by the N4SID algorithm and equals 1. The nominal model is then augmented
with the identified correction model, resulting in an updated model of order
7. For comparison purpose, we also identified a correction model using the
parallel delta-augmentation method. The delta model has order 6, resulting in
an updated model of order 12. This confirms the theoretical result that the
parallel delta-augmentation method yields updated models which are generally
of higher order than the dynamic model updating technique.

The updated models are validated is two different ways. Firstly, the initial
model and the updated models are simulated using validation inputs and the
outputs are compared to the measurements of the true system. Table 5.2
compares the simulation error (SE) and the one step ahead prediction error
(PE) for all models. The SE is defined by (5.24) with ŷ[k|k] replaced by the
simulated model output. The PE is defined by (5.24) with ŷ[k|k] replaced by
ŷ[k|k−1] = Cx̂[k|k−1], where x̂[k|k−1] is obtained with a Kalman filter. Secondly,
the dynamically updated model is validated by computing the autocorrelation
of the one step ahead prediction residuals y[k] − Cx̂[k|k−1]. Optimally, the
residuals are uncorrelated in time. Fig. 5.7 shows the autocorrelation (with
99% confidence intervals) for the initial model (top) and the updated model
(bottom). For the initial model, the correlation between the current and
future residuals falls out the confidence region, indicating that the residuals
are strongly correlated. For the updated model, correlation is much smaller.

5.5 Boundary condition estimation

The estimation of unknown boundary conditions has been intensively studied in
inverse heat conduction problems. In [19,138] it is assumed that the initial state
and the functional form in space and time of the boundary condition are known.

Table 5.2: Comparison between simulation error (SE) and prediction (PE) of
initial and updated models.

Model Order SE (%) PE (%)

Initial model 6 38.6 26.4
Dynamic updating 7 5.2 0.3
Parallel updating 12 6.7 4.5
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Figure 5.7: Tape drive modeling example; autocorrelation of the prediction
residuals y[k] − Cx̂[k|k−1] (with 99% confidence intervals, indicated by the grey
rectangles) for the initial model (top) and the updated model (bottom).

The unknown parameters in the functional form are then estimated using LS
estimation. An extension to simultaneous boundary condition and initial state
estimation, can be found in [74]. Approaches using an augmented state Kalman
filter are developed in [101, 121]. The applicability of all of these methods is,
however, limited by the assumption that the functional form of the boundary
condition in space and time is known.

In this section, we address the problem of estimating time and space varying
boundary conditions. In contrast to existing techniques, we make no assumption
about the functional form in time. However, it is assumed the functional form
in space can be written as a linear combination of basis functions.

This section is outlined as follows. The problem is formulated in more detail
in Sect. 5.5.1. In Sect. 5.5.2, the expansion of the boundary condition as a linear
combination of basis functions is addressed. Finally, in Sect. 5.5.3, a numerical
example is considered.

5.5.1 Problem formulation

Consider a set of linear PDE’s with (partially) unknown boundary conditions.
After discretization in space and time, this yields an LTI discrete-time model
that can be written into the state-space form

x[k+1] = Ax[k] + Bu[k] + w[k] (5.30a)

y[k] = Cx[k] + v[k], (5.30b)
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where x[k] ∈ Rn denotes the state vector at time instant k, y[k] ∈ Rp denotes the
measurement at time k, and u[k] ∈ Rm denotes the influence of the unknown
boundary conditions at time k. The initial state x[0] is assumed to be a random
variable. The noise processes {w[k]}∞k=0 and {v[k]}∞k=0 are assumed to have

the properties given in Assumption 2.1. We define Q := E[w[k]w
T

[k]] and R :=

E[v[k]v
T

[k]]. The problem considered in the next sections is that of simultaneously
estimating the system state x[k] and the unknown boundary condition u[k].

5.5.2 Basis function expansion

It follows from the theory in Chapters 3 and 4 that a necessary condition
for reconstructing the unknown boundary condition using system inversion
techniques is that p ≥ m. In many practical applications, however, this condition
is too restrictive. As will now be shown, the condition can be relaxed by
expanding the unknown boundary condition as a linear combination of basis
functions. More precisely, we assume that u[k] can be written as a linear
combination of N, with N ≪ m, prescribed basis vectors φi ∈ Rm, i = 1 . . .N.
That is,

u[k] =

N∑

i=1

ai[k]φi. (5.31)

Defining the vector of coefficients a[k] ∈ R
N by a[k] := [a1[k] a2[k] . . . aN [k]]

T,
and defining the matrix Φ := [φ1 φ2 . . . φN ], (5.31) is rewritten as u[k] = Φa[k].
By substituting the latter equation in (5.30a), the problem of estimating the
unknown boundary condition u[k] is transformed to that of estimating the vector
of coefficients a[k]. A necessary condition for reconstruction of a[k] is that p ≥ N.
Since N ≪ m, this condition is less strong than p ≥ m.

5.5.3 Heat conduction example

As shown in Figure 5.8, we consider heat conduction in a plate with dimensions
Lx × Ly. The plate is heated from below by a flame. At three boundaries, the
temperature is fixed at 300 K. The temperature of the fourth boundary is to be
estimated.

Heat conduction in the two-dimensional plate is governed by the PDE

∂T

∂t
= α

(
∂2T

∂x2
+

∂2T

∂y2

)

+ u(x, y, t), (5.32)

where T (x, y, t) denotes the temperature at position (x, y) and time instant t,
u(x, y, t) denotes the influence of an external heat source and α denotes the
thermal diffusivity, which is material dependent. The dimension of the plate is
Lx = 1m by Ly = 2m, the thermal diffusivity is α = 10−4 m2/s and the external
heat input is assumed to be given by

u(x, y, t) =
1

2
e
−

„

(x−Lx/2)2

2σ2 +
(y−Ly/2)2

2σ2

«
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Figure 5.8: Setup of the heat conduction example. A plate with dimensions
Lx × Ly is considered. The plate is heated from below by a flame. At three
boundaries, the temperature is fixed at 300 K. The temperature of the fourth
boundary is to be estimated.

with σ = 10−1, which represents the influence of a flame centered under the
middle of the plate. The boundary condition at x = 0 is unknown. The other
boundary conditions are given by

T (Lx, y, t) = T (x, 0, t) = T (x, Ly, t) = 300K.

The initial condition is given by T (x, y, 0) = 300K.
The PDE (5.32) is discretized in space and time using finite differences with

∆x = ∆y = 0.1m and ∆t = 2s, resulting a linear discrete-time state space model
of order n = 200. Process noise with variance 10−6 is introduced. The matrix
B is chosen so that u[k] ∈ R20 represents the unknown boundary condition at
x = 0. It is assumed that p = 14 measurements are available. The covariance
matrix of the measurement noise is R = 10−3Ip.

In a first experiment, we set up a simple problem in order to test the
performance of the approach. We use the method of twin-experiments. First,
we simulate the discretized model and add process noise and measurement
noise. The boundary condition at x = 0 is chosen as a linear combination
of the first 4 Chebyshev polynomials. Next, we use the joint input-state
estimators of Chapter 4 to simultaneously estimate the system state and the
boundary condition at x = 0. By expanding the boundary condition as a linear
combination of the first 4 Chebyshev polynomials, the problem boils down to the
joint estimation of the system state and the coefficients in the expansion. Note
that in order to apply the filter of Sect. 4.3, we must have rank(CBΦ) = N = 4.
This condition implies that values of at least 4 boundary states should be
incorporated into the measurements. We consider the measurement locations
indicated by the stars in Fig. 5.9(a). The latter figure shows the estimation
error after 250 steps. The estimation error is clearly largest at the boundary
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x = 0. In Fig. 5.10, the estimation error of the joint input-state estimator is
compared to that of a Kalman filter (where the boundary condition is assumed
to be known). Note that both estimators have approximately the same speed
of convergence.

The condition that values of the boundary states should be incorporated into
the measurements can be relaxed by considering the smoother of Sect. 4.4. We
now consider the measurement locations indicated by the stars in Fig. 5.9(b).
It turns out that the corresponding system is 3−delay left invertible. The
estimation error of a smoother with L = 3 is shown in Fig. 5.9(b). Note that the
estimation error is largest at the boundary x = 0. Also, note that the estimation
error is larger than in part (a) of the figure.

5.6 Conclusion

Four applications of system inversion were considered.
The first application extends the Kalman filtering problem to the case where

the system input is unknown, but a noisy linear combination of the inputs
is available. Based on the joint input-state estimator developed in Sect. 4.2,
filter equations were developed in which the estimation of the system state and
the unknown input are interconnected. As a special case, the filter provides a
new solution to the errors-in-variables filtering problem, which is shown to be
algebraically equivalent to existing techniques [31, 93].

The second application has considered the optimal filtering problem for
systems subject to bias errors. By incorporating the bias model into the joint
input-state estimator of Sect. 4.3, a suboptimal estimator was developed in
which the bias is estimated with one step delay. It was shown in a simulation
example that such an approach is especially useful if the bias error is constant for
a certain period of time and then suddenly undergoes an abrupt and unknown
change.

The third application has dealt with model error estimation and dynamic
model updating. An empirical technique was outlined to update a non-
satisfactory accurate physical state space model. The technique consists in first
estimating the model error and then identifying an empirical correction model
based on the estimated data. It was shown in a numerical example that this
procedure yields updated models which are more usually of much lower order
than existing techniques.

The last application has addressed the problem of joint state and boundary
condition estimation. In contrast to existing methods, boundary conditions that
vary in space and time were considered and no assumption was made about the
time evolution. Concerning the variation in space, it was assumed that boundary
condition can be expanded as a linear combination of a few basis functions. A
simulation example has shown that the estimator converges as fast as a Kalman
filter in which the boundary conditions are assumed to be known. The major
drawback of the method is that a lot of measurements close to the boundary
are needed.
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Figure 5.9: Heat conduction example: estimation error after 250 simulation
steps. The stars denote the locations where measurements are taken. (a) Results
for the filter of Sect. 4.3. (b) Results for the smoother of Sect. 4.4.
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Kalman filter (where the boundary condition is assumed to be known) and the
joint input-state estimator.



Part II

Data Assimilation
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Chapter 6

Suboptimal Square-Root

Filtering

This chapter addresses the challenging problem of data assimi-
lation, which is concerned with assimilating observations into large-
scale numerical models. After a brief overview of the most commonly
used suboptimal Kalman filtering techniques, two extensions of
the reduced rank square-root filter [135] are developed. The first
extension speeds-up the RRSQRT filter by interweaving the so-called
reduction step into the measurement update. The second extension
addresses the problem of reduced rank spatially localized square-root
filtering. The resulting algorithm is extremely efficient if only few
measurements are available.

6.1 Introduction

Although the Kalman filter may seem very appealing for data assimilation
because of its simple recursive structure, it is not directly applicable. The
application of the Kalman filter is hampered by its high computational cost
and its immense storage requirements needed to propagate the error covariance
matrix.

The update of the error covariance matrix in the Kalman filter requires
O(n3) flops, where n is the dimension of the state vector. The number of
memory elements needed to store the covariance matrix depends on n as O(n2).
As a result, the Kalman filter is feasible on today’s computers until n = 104.

The numerical models used in data assimilation, however, usually have a
much higher state dimension. Numerical models in data assimilation are mostly
based on physical laws, usually PDE’s. For accurate simulation on a computer,
these PDE’s are discretized over a huge spatial grid. The number of cells in the
grid determines the dimension n of the state vector. This dimension is usually
chosen so that a single simulation can be performed in a reasonable amount
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of time. In contrast to Kalman filtering, simulating typically takes only O(n)
flops. Consequently, the state dimension ranges from n = 104 in tidal flow
forecasting [135] to as much as n = 107 in space weather forecasting [61].

State estimation for such high dimensional systems thus requires approxima-
tions of the Kalman filter algorithm. In the remainder of this section, we give a
short historical overview of suboptimal filtering techniques for data assimilation.

The earliest systematic approaches to data assimilation were called objective
analyses. The objective methods used simple interpolation techniques. Before,
scientists used subjective analyses, i.e. their expertise, to assimilate observations
in numerical model predictions. A simplified form of the Kalman filter, called
optimal interpolation, made its introduction in data assimilation already in
1963 [46]. Since then, researchers have been experimenting with all kinds of
approximations of the Kalman filter algorithm. We refer to such approximate
filters as suboptimal Kalman filters. A substantial amount of suboptimal Kalman
filters have been proposed in literature.

Variational data assimilation [23, 88] is an approach that is based on the
LS interpretation of the Kalman filter. In this approach, the squared difference
between the real observations and their simulated counterparts is minimized.
This requires the solution of a huge optimization problem. The development of
efficient iterative solvers have made this approach the standard at the European
Center for Medium-Range Weather Forecasts. Despite its success, variational
assimilation is based on the assumption that the numerical model is perfect.

Boggs et al. [14] proposed a suboptimal approximation of the Kalman filter
equations based on a banded approximation of the error covariance matrix.
This approximation is motivated by the fact that correlations in environmental
applications have only a limited spatial range. However, creating artificial zeros
in the error covariance can lead to the occurrence of negative eigenvalues. This
problem is tackled in [14] by adopting a square-root decomposition of the error
covariance matrix.

A disadvantage of a banded approximation of the error covariance matrix is
that it may sometimes discard large eigenvalues. It is well known that this may
lead to filter divergence. To prevent divergence as much as possible, one can
make an optimal lower rank approximation of the error covariance matrix. This
idea is worked out in the partial eigendecomposition Kalman filter [22] where,
as the name suggests, the lower rank approximation is based on an eigenvalue
decomposition. Efficiency is increased by storing and propagating the error
covariance matrix relative to the space spanned by its leading eigenvectors.

Verlaan and Heemink [134] extended the approach of [22] by expressing
the equations in square-root form. Their suboptimal filter, which is called
the reduced rank square-root (RRSQRT) filter, thus combines the efficiency of
the partial eigendecomposition filter with the numerical advantages of square-
root filtering. In addition, the RRSQRT filter is algebraically equivalent to the
Kalman filter if the rank of the error covariance matrix is chosen equal to the
state dimension. For nonlinear systems, efficient extensions based on the EKF
have been developed.

The ensemble Kalman filter (EnKF) [13, 38, 39, 71, 85] approximates the
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error covariance matrix based on a Monte Carlo approach. The starting point
of the EnKF is an ensemble of state estimates that tries to captures the
probability density function of the initial state. The ensemble of estimates is
then propagated through the nonlinear model and the error covariance matrix
of the actual state is approximated from the ensemble of estimates. Although
one would expect that an enormous amount of ensemble members is needed,
literature suggests that only a few hundreds are sufficient, even for a model
with 106 grid cells. The major advantage of the EnKF over other techniques
is that it is relatively simple to implement and well suited for highly nonlinear
models. The EnKF, however, introduces sampling errors due to the low number
of ensemble members.

Personal contributions

The main contribution of this chapter is the development of two extensions of
the RRSQRT filter.

• The first extension, considered in Sect. 6.4.2, speeds-up the RRSQRT
filter by eliminating the so-called reduction step. However, the resulting
filter is more approximate than the RRSQRT filter in the sense that it
underestimates the error covariance matrix more.

• The second extension, considered in Sect. 6.5.2, combines ideas from the
RRSQRT filter with those of spatially localized filtering [9]. Two variants
of the extension are developed. The first variant is equivalent to the
spatially localized Kalman filter if no lower rank approximation of the
error covariance matrix is made. The second variant is based on the
assumption that correlation between grid cells drops to zero within a
distance of a relatively low number of grid cells. Although being more
approximate, this variant turns out to be extremely efficient, especially if
only few measurements are available.

Chapter outline

This chapter is outlined as follows. Section 6.2 introduces the basic ideas behind
suboptimal square-root filtering. Section 6.3 briefly summarizes some existing
square-root measurement updates for large-scale systems. In Sect. 6.4, the
RRSQRT filter is discussed and a more efficient variation, the reduced rank
transform square-root filter is introduced. Next, in Sect. 6.5, we address the
problem of spatially localized filtering. We derive a reduced rank spatially
localized filter that is extremely efficient if only few measurements are available.
In Sect. 6.6, filter degradation due to a lower rank approximation of the error
covariance matrix is addressed. Finally, in Sect. 6.7, two numerical examples
are considered.
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6.2 Suboptimal square-root filtering: the idea

As already discussed, the idea of square-root filtering has been introduced
to avoid numerical problems in a direct implementation of the Kalman filter
equations. As will now be discussed, most suboptimal filters also employ a
square-root formulation, but mainly for a different reason, namely to increase
computational efficiency.

Consider an error covariance matrix P[k|k−1] ∈ Rn×n of rank q with q ≪ n.
Then, P[k|k−1] can be decomposed as

P[k|k−1] = S[k|k−1]S
T

[k|k−1],

where S[k|k−1] is n × q. Consequently, the memory consuming matrix P[k|k−1]

can be constructed from its much smaller square-root S[k|k−1]. The idea behind
suboptimal square-root filtering is to propagate S[k|k−1] instead of P[k|k−1] and
to ensure that S[k|k−1] has rank q for all k. As we will see, the latter requires some
approximations to be made, such as e.g. an optimal lower rank approximation.

In the remainder of this chapter, the symbols P[k|k−1] and S[k|k−1] will
denote approximations to the true error covariance matrix and its square-root,
respectively.

Notice that the conventional square-root filters would decompose P[k|k−1] as

P[k|k−1] = P
1/2
[k|k−1]P

T/2
[k|k−1],

where P
1/2
[k|k−1] denotes an n × n Cholesky factor of P[k|k−1]. Consequently,

conventional square-root filters do not decrease computational load or storage
requirements, in contrast. Figure 6.1 compares suboptimal square-root filtering
to the conventional approach. In practical applications, q is chosen in the order
of 102 while n can be in the order of 106 or 107. Suboptimal square-root filtering
then yields a huge decrease in computation times and storage requirements over
the conventional Kalman filter.

We consider in this chapter linear time-varying systems of the form

x[k+1] = A[k]x[k] + B[k]u[k] + E[k]w[k], (6.1a)

n n q

P P 1/2 PT/2 S ST

conventional square-root
filtering

suboptimal square-root
filtering

= =

Figure 6.1: Conventional versus suboptimal square-root filtering. It is assumed
that P has rank q with q ≪ n.
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y[k] = C[k]x[k] + v[k], (6.1b)

where x[k] ∈ Rn denotes the state vector at time instant k, u[k] ∈ Rm denotes
a known deterministic input at time k and y[k] ∈ Rp denotes the measurement
at time k. The initial state x[0] is assumed to be a random variable. The noise

processes {w[k] ∈ Rl}∞k=0 and {v[k] ∈ Rp}∞k=0 are are assumed to be zero-mean
with

E

{[
w[k]

v[k]

] [

wT

[j] vT

[j]

]}

=

[
Q[k] 0
0 R[k]

]

δ[k−j],

where δ[k] := 1 for k = 0 and δ[k] := 0 otherwise.
The equations of suboptimal square-root filters are usually split into a time-

update and a measurement update. The measurement update is addressed in
the next section.

6.3 Square-root measurement updating

Consider the measurement update of P[k|k−1] in the Kalman filter,

P[k|k] = P[k|k−1] − P[k|k−1]C
T

[k](C[k]P[k|k−1]C
T

[k] + R[k])
−1C[k]P[k|k−1], (6.2)

and assume that P[k|k−1] has rank q. Then, Potter [111] showed that (6.2) can
be written in terms of S[k|k−1] as

P[k|k] = S[k|k−1]

[

I − V[k](V
T

[k]V[k] + R[k])
−1V T

[k]

]

ST

[k|k−1], (6.3)

where the q × p matrix V[k] is defined as V[k] := (C[k]S[k|k−1])
T.

It turns out that the measurement update (6.2) does not increase the rank
of the error covariance matrix. Consequently, P[k|k] has rank q and may be

decomposed as P[k|k] = S[k|k]S
T

[k|k] with S[k|k] an n× q matrix.
As shown by Potter, the measurement update can be rewritten in a form

that computes S[k|k] directly in terms of S[k|k−1]. For convenience of notation,
we define the square matrix T[k] ∈ Rq×q as

T[k] := I − V[k]R̃
−1
[k] V

T

[k], (6.4)

where R̃[k] := V T

[k]V[k] + R[k]. Decomposing T[k] as

T[k] = G[k]G
T

[k],

with G[k] ∈ Rq×q, it follows from (6.3) that S[k|k] can be computed as

S[k|k] = S[k|k−1]G[k]. (6.5)

This procedure yields a very convenient manner to update the error covariance
matrix. Indeed, it shows that the actual error covariance matrix P[k|k] never
needs to be computed.
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Potter’s algorithm has been extended in a variety of ways. We discuss
two extensions. Section 6.3.1 considers simultaneous processing, which is
most efficient when the number of measurements is high. Section 6.3.2
discusses sequential processing, which is most efficient when there are only few
measurements.

6.3.1 Simultaneous processing

A direct implementation of the procedure above can be very inefficient if the
number of measurements p is much larger than q. Indeed, the inversion of R̃[k]

then takes up a lot of the computation time. This inversion is avoided in the
measurement update of the ensemble transform Kalman filter (ETKF) [13] and
the ensemble adjustment Kalman filter (EAKF) [5] by the use of the matrix
inversion lemma. We discuss here the update of the ETKF. That of the EAKF
is very similar.

Using the matrix inversion lemma, Bishop et al. [13] observed that (6.4) can
be rewritten as

T[k] = (I + V[k]R
−1
[k] V

T

[k])
−1.

Now, define the square matrix W[k] ∈ Rq×q as

W[k] := V[k]R
−1
[k] V

T

[k].

Let the eigenvalue decomposition of W[k] be given by

W[k] = U[k]Λ[k]U
T

[k], (6.6)

where Λ[k] contains the eigenvalues, ordered from large to small. Then, it is
straightforward to show that

T[k] = U[k](I + Λ[k])
−1UT

[k] (6.7)

is the eigenvalue decomposition of T[k]. Consequently, G[k] can be obtained as

G[k] = U[k](I + Λ[k])
−T/2.

Notice that the algorithm mainly works with small matrices. For example,
the eigenvalue decomposition (6.6) is performed on the small q× q matrix W[k].
The algorithm still requires the inversion of one large p×p matrix, namely that
of R[k]. However, the inverse of R[k] is mostly easy to compute since R[k] is
usually diagonal or at least structured.

6.3.2 Sequential processing

The update in the previous section is performed simultaneously on all mea-
surements. In this section, we consider an update that processes measurements
sequentially, i.e. one after another.
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Assume for the moment that p = 1. Then, Potter [111] showed that the
measurement update can be implemented with matrix-vector multiplications
only, that is, without any matrix-matrix multiplication. This yields a significant
decrease in computational complexity.

For p = 1, it follows that R[k] and R̃[k] are scalars and V[k] is a vector. For
convenience of notation, we define

σ[k] := R[k]

υ[k] := V[k]

α[k] := R̃−1
[k] =

1

vT

[k]v[k] + σ[k]

.

Potter observed that if a scalar γ[k] can be found so that

T[k] = (I − α[k]υ[k]υ
T

[k])

= (I − γ[k]α[k]υ[k]υ
T

[k])
2, (6.8)

then the update (6.5) can be written as

S[k|k] = S[k|k−1](I − γ[k]α[k]υ[k]υ
T

[k]). (6.9)

Solving (6.8) for γ[k], yields

γ[k] =
1

1 +
√

α[k]σ[k]
. (6.10)

Furthermore, it follows from (2.14) that Kalman gain l[k] ∈ Rn can be obtained
as

l[k] = α[k]S[k|k−1]υ[k]. (6.11)

Consequently, (6.9) can be rewritten as

S[k|k] = S[k|k−1] − γ[k]l[k]υ
T

[k]. (6.12)

Notice that the calculation of the gain matrix (2.14) and the update of error
covariance square-root (6.9) indeed require only matrix-vector multiplications.

For p > 1, the measurements can be processed sequentially, that is, one
after another [111]. It is assumed here that the noise on the measurements
is uncorrelated. In case of correlation, the measurement vector must first

be multiplied by R
−1/2
[k] . The algorithm thus requires R

−1/2
[k] to be computed.

However, the latter matrix is easy to compute since R[k] is usually diagonal or
at least structured.

6.4 Reduced rank filtering

So far, we have been concerned only with the measurement update. In
this section, we consider also the time update. We address the problem of



144 Suboptimal Square-Root Filtering

propagating a reduced rank approximation of the error covariance matrix and
show that approximations are generally needed in order to preserve the rank
during the time update.

This section is outlined as follows. In Sect. 6.4.1, we discuss the RRSQRT
filter. Next, in Sect. 6.4.2, an extension of the RRSQRT filter is proposed that
speeds up the algorithm, but is more approximate.

6.4.1 The reduced rank square-root filter

The RRSQRT filter [134] is a square-root algorithm based on an optimal
lower rank approximation of the error covariance matrix. Although there exist
nonlinear extension of the algorithm [66,135], we will mainly focus on the linear
case. A nonlinear extension based on the EKF will be briefly summarized.
For linear systems, the RRSQRT filter has the interesting property that it is
algebraically equivalent to the Kalman filter if the rank of the error covariance
matrix equals the dimension of the state vector.

The algorithm of the RRSQRT for such a system consists of three steps: the
time update, the reduction step and the measurement update. These steps are
now addressed.

6.4.1.1 Time update

It follows from (2.16)-(2.17) that the time update can be written in square-root
form as

x̂[k+1|k] = A[k]x̂[k|k] + B[k]u[k], (6.13)

S[k+1|k] =
[

A[k]S[k|k] E[k]Q
1/2
[k]

]

. (6.14)

Notice that the number of columns in the square-root of the error covariance
matrix grows from q to q + l. If this number of columns is not reduced,
computation times will quickly blow up.

If the process noise is negligible, speed-up can be obtained by assuming
Q[k] = 0. The update of the error covariance square root and the computation
of the Kalman gain can then efficiently be implemented by using the QR-
decomposition. This leads to the singular square-root Kalman filter [10].

6.4.1.2 Reduction step

The augmentation of the rank during the time update, can quickly blow up
computation times. Therefore, the number of columns in S[k+1|k] is reduced
from q + l back to q by truncating the approximate error covariance matrix

P[k+1|k] := S[k+1|k]S
T

[k+1|k] ∈ R
n×n

after the q largest eigenvalues and corresponding eigenvectors. It turns out
that the eigenvalue decomposition of P[k+1|k] can be computed without forming
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the matrix P[k+1|k]. Indeed, the eigenvalue decomposition of P[k+1|k] can be
computed from the one of the much smaller matrix

ST

[k+1|k]S[k+1|k] ∈ R
(q+l)×(q+l),

as will now be shown. Let the eigenvalue decomposition of ST

[k+1|k]S[k+1|k] be
given by

ST

[k+1|k]S[k+1|k] = X[k]Ω[k]X
T

[k],

then it is straightforward to show that

P[k+1|k] = (S[k+1|k]X[k]Ω
−1/2
[k] )Ω[k](S[k+1|k]X[k]Ω

−1/2
[k] )T

is the reduced eigenvalue decomposition of P[k+1|k]. And thus,
[
S[k+1|k]X[k]

]

(:,1:q)
,

where A(:,1:q) denotes the matrix formed from A by retaining only its first q
columns,is a square-root of the optimal rank-q approximation of P[k+1|k]. Since
q, l ≪ n this procedure is much faster than first forming P[k+1|k] and then
applying an eigenvalue decomposition directly on P[k+1|k].

6.4.1.3 Measurement update

The RRSQRT filter was proposed in [134] with the sequential update of Potter.
However, any square-root formulation of the Kalman filter measurement update
can in principle be used.

6.4.1.4 Extension to nonlinear systems

In case of a nonlinear system of the form,

x[k+1] = f(x[k], u[k], k) + E[k]w[k]

y[k] = C[k]x[k] + v[k],

where w[k] and v[k] have the usual properties, one can use an EKF-like approach
to deal with the nonlinearity. This results in a time-update of the error
covariance square-root of the form

S[k+1|k] =

[
∂f

∂x
(x̂[k|k], u[k])S[k|k] E[k]Q

1/2
[k]

]

.

However, computing the Jacobian
∂f

∂x
can be very time consuming. A more

simple and efficient approach consists in approximating
(

∂f

∂x
(x̂[k|k], u[k])

)

S[k|k]

using finite differences [135]. The resulting time update then requires q + 1
evaluations of the nonlinear model f(·).
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6.4.1.5 Summary of filter equations

This section summarizes the equations of the RRSQRT filter for a nonlinear
system. The equations consist of three steps: a measurement update, a time
update and a reduction step. For the measurement update, we employ the
sequential processing technique of Sect. 6.3.2.

Reduced rank square-root filter (RRSQRT)

• Time update

x̂[k+1|k] = f(x̂[k|k], u[k])

S[k+1|k] =

[
∂f

∂x
(x̂[k|k], u[k])S[k|k] E[k]Q

1/2
[k]

]

• Reduction step

ST

[k+1|k]S[k+1|k] = X[k]Ω[k]X
T

[k]

S[k+1|k] ←
[
S[k+1|k]X[k]

]

(:,1:q)

• Measurement update

– update of state estimate:

x̂[k|k] = x̂[k|k−1] + L[k](y[k] − C[k]x̂[k|k−1])

L[k] = α[k]S[k|k−1]υ[k]

α[k] =
1

υT

[k]υ[k] + σ[k]

υ[k] = (c[k]S[k|k−1])
T

– Update of error covariance matrix:

S[k|k] = S[k|k−1] − γ[k]L[k]υ
T

[k]

γ[k] =
1

1 +
√

α[k]σ[k]

6.4.2 The reduced rank transform square-root filter

The SVD-based reduction step in the RRSQRT filter can be very costly. It
has been reported that the reduction step is in some cases even the most time
consuming step of the RRSQRT filter. This motivates research to speed-up
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the reduction step. In this section, we propose a variant of the RRSQRT filter
in which the reduction is interweaved in the measurement update. We take
as measurement update a variant of that in the ETK and therefore call the
resulting filter the reduced rank transform square-root (RRTSQRT) filter.

6.4.2.1 The algorithm

The idea behind the RRTSQRT filter is very simple. Instead of approximating
the error covariance matrix, we make a lower rank approximation of another
matrix in the simultaneous update of the ETKF. It turns out that approximating
T[k] is most convenient for a combined reduction and update.

Let S[k|k−1] be an n× (q + l) error covariance square root obtained after the
time update of the RRSQRT filter. Suppose that we want to reduce the number
of columns back to q during the measurement update. It follows from (6.7) that
the optimal rank q approximation of the (q + l)× (q + l) matrix T[k] is given by

T̃[k] = Ũ[k](I + Λ̃[k])
−1ŨT

[k],

where Λ̃[k] := [Λ[k]](:,l+1:q+l) and Ũ[k] := [U[k]](:,l+1:q+l). Consequently,

S[k|k] = S[k|k−1]Ũ[k](I + Λ̃[k])
−T/2

performs simultaneously a measurement update and a reduction based on an
optimal rank q approximation of T[k]. Notice that in order to make the optimal
rank q approximation of T[k], the smallest q eigenvalues of W[k] need to be
retained.

6.4.2.2 Properties

Since the reduction step is eliminated, it should come as no surprise that the
RRTSQRT filter is computationally more efficient than the RRSQRT filter. The
computational complexity of the RRTSQRT filter is compared to that of the
RRSQRT filter and that of the Kalman filter in Table 6.1. It is assumed here that
n > p≫ q. Also, it is assumed that A[k] is sparse, so that the covariance update
in the Kalman filter takes O(n2) flops instead of O(n3). It follows from Table 6.1
that the computational saving of the RRTSQRT filter over the RRSQRT filter
is roughly that of one reduction step.

KF RRSQRT RRTSQRT
time update O(n2) O(nq) O(nq)

measurement update O(n2p) O(nq(q + r)) O(nq(q + r))
reduction step – O(n(q + r)2) –

Table 6.1: Comparison between the complexity of the Kalman filter (KF), the
RRSQRT and the RRTSQRT.
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The SVD based reduction step of the RRSQRT leads to an underestima-
tion of the trace of the error covariance matrix, which is equivalent to an
underestimation of the total variance. Due to the optimality of the lower rank
approximation, the norm of the truncated part of the error covariance matrix
is minimal and equals the first eigenvalue of the error covariance matrix that
has been ignored. In the RRTSQRT filter, the norm of the truncated part is
always larger than or equal to the first eigenvalue that has been ignored. The
RRTSQRT filter thus gives less weight to the measurements and is therefore
more vulnerable to filter divergence. It will turn out in a numerical example
that underestimation in the RRTSQRT filter can be quite large, making the
filter very sensitive to divergence.

6.5 Spatially localized filtering

In enviromental problems, the correlation between grid cells drops relatively
quickly with distance. When assimilating a single observation with the Kalman
filter, this means that the value of a lot of cells will almost not change. As
shown in Fig. 6.2, the idea behind spatially localized Kalman filtering is to
update only those cells of which the actual correlation to the measurement lies
above a certain threshold.

Houtekamer and Mitchell [71] even noted that the measurement update in
the EnKF can be improved by excluding observations greatly distant from the
grid point to be updated. They found out that this is due to the approximation
of the error covariance matrix, which may cause spuriously large correlations
between greatly separated grid points. A lot of researchers have since been
experimenting with techniques that localize the covariance information. In [63,
72], the estimated covariances are multiplied element by element with a distance
dependent correlation function that drops to zero beyond some prespecified
distance.

A more theoretical treatment is given in the spatially localized Kalman filter
(SLKF) of Barrero et al. [9], where the gain matrix is constrained a priori
to update a specified subset of the states. The optimal gain matrix is then
determined by a procedure similar to that of the Kalman filter in Sect. 2.4.1.

Constraining the states that are updated is also motivated by the observabil-
ity problem that occurs in data assimilation. For example, in some applications,
the number of available measurements may be too small to determine the entire
state vector. Constraining the update to the observable part of the state vector
can be beneficial in such cases.

This section is outlined as follows. In Sect. 6.5.1, we discuss the SLKF. Next,
in Sect. 6.5.2, a reduced rank version of the SLKF is developed that processes
measurements sequentially.
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⋆

⋆ Measurement location

Cells of which the correlation
with the measurement is above
a certain threshold

Region in which the cells are
updated by the measurement;
Determines Ψ[k] in (6.15b).

Figure 6.2: The idea behind spatially localized Kalman filtering. In
enviromental problems, the correlation between grid cells drops usually very
quickly with distance. When assimilating a single observation with the Kalman
filter, this means that the value of a lot of cells will almost not change. The idea
is to update only those cells of which the actual correlation to the measurement
lies above a certain threshold.

6.5.1 The spatially localized Kalman filter

Barrero et al [9] attached to the system (6.1) a recursive state estimator of the
form

x̂[k+1|k] = A[k]x̂[k|k] + B[k]u[k] (6.15a)

x̂[k|k] = x̂[k|k−1] + Ψ[k]L[k](y[k] − C[k]x̂[k|k−1]), (6.15b)

where Ψ[k] ∈ Rn×np and L[k] ∈ Rnp×p. The nontraditional feature of (6.15) is
the presence of the matrix Ψ[k], which equals the identity matrix in the classical
Kalman filter case. Here, Ψ[k] constrains the state estimator so that only the
states in the range of Ψ[k] are updated by the measurements. We assume that
Ψ[k] has full column rank. For example, Ψ[k] can have the form

Ψ[k] =

[
Inp

0

]

,

denoting that we want to update only the first np components of the state vector
with the measurements. For an unobservable system, one can choose Ψ[k] so that
only the observable part of the state vector is updated by the measurements.

It is shown in [9] that the optimal value of the gain matrix L̃[k] can be derived
in a manner that is very similar to the derivation of the Kalman gain considered
in Sect. 2.4.1. We now summarize the filter equations in a time update and a
measurement update.
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Spatially localized Kalman filter (SLKF)

• Measurement update
Due to the presence of the matrix Ψ[k], the measurement update is
more complex than that of the Kalman filter. The update is given by

x̂[k|k] = x̂[k|k−1] + Π[k]L[k](y[k] − C[k]x̂[k|k−1]) (6.16)

Π[k] = Ψ[k](Ψ
T

[k]Ψ[k])
−1ΨT

[k] (6.17)

L[k] = P[k|k−1]C
T

[k]R̃
−1
[k]

R̃[k] = C[k]P[k|k−1]C
T

[k] + R[k]

P[k|k] = P[k|k−1] − P[k|k−1]C
T

[k]R̃
−1
[k] C[k]P[k|k−1]

+ Π⊥[k]P[k|k−1]C
T

[k]R̃
−1
[k] C[k]P[k|k−1]Π

T

⊥[k] (6.18)

Π⊥[k] = I −Π[k]. (6.19)

• Time update
The time update takes the form of the update in the Kalman filter
and is given by,

x̂[k+1|k] = A[k]x[k] + B[k]u[k]

P[k+1|k] = A[k]P[k|k]A
T

[k] + E[k]Q[k]E
T

[k].

Notice that the square matrix Π[k] ∈ Rn×n is an orthogonal projector, that is,

Π2
[k] = Π[k] and ΠT

[k] = Π[k].

6.5.2 Reduced rank spatially localized filtering

Due to the complexity of the measurement update, the SLKF is computationally
more demanding than the Kalman filter. Hence, for use in data assimilation, the
algorithm needs to be approximated. Barrero et al. [9] proposed a suboptimal
spatially localized filter based on the principles of the EnKF.

In this section, we develop a reduced rank version of the spatially localized
Kalman filter that processes measurements sequentially. We consider two
variants. The first variant, considered in Sect. 6.5.2.1 is most general in the
sense that it holds for any Ψ[k] and any P[k|k−1]. The second variant, considered
in Sect. 6.5.2.2, exploits the specific structure of Ψ[k] and P[k|k−1] to further
reduce the computation times. We address the structure that is obtained if the
correlation between grid cells drop to zero within a distance of a few grid cells.
The resulting algorithm is extremely efficient, especially if there are only few
measurements.
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6.5.2.1 General form

We propose an algorithm that uses the same principles as the RRSQRT filter
and thus makes an optimal lower rank approximation of the error covariance
matrix. We consider sequential processing of measurements.

Derivation of filter equations

We consider only the measurement update. The time update can be
implemented as in (6.13)-(6.14). Assume for the moment that p = 1 and define
for convenience of notation the row vector c[k] := C[k]. Notice that (6.18) can
be rewritten as

P[k|k] = P1[k|k] + P2[k|k],

where P1[k|k] and P2[k|k] are defined by

P1[k|k] := P[k|k−1] − α[k]P[k|k−1]c
T

[k]c[k]P[k|k−1], (6.20)

and

P2[k|k] := α[k]Π⊥[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

⊥[k], (6.21)

respectively, with P[k|k−1] = S[k|k−1]S
T

[k|k−1]. Consequently, S[k|k] can be
obtained as

S[k|k] =
[
S1[k|k] S2[k|k]

]
,

where S1[k|k] and S2[k|k] obey S1[k|k]S
T

1[k|k] = P1[k|k] and S2[k|k]S
T

2[k|k] = P2[k|k].

The problem has thus reduced to finding such S1[k|k] and S2[k|k]. Since (6.20)
takes the form of the update in the Kalman filter, it immediately follows from
(6.12) that S1[k|k] can be computed as

S1[k|k] = S[k|k−1] − γ[k]l[k]υ
T

[k],

where γ[k] is given by (6.10) and L[k] by (6.11). An expression for S2[k|k] follows
from (6.21),

S2[k|k] =
√

α[k]Π⊥[k]P[k|k−1]c
T

[k]

=
1
√

α[k]
Π⊥[k]l[k].

Notice that the number of columns in the error covariance square-root grows
with one during the update. Consequently, a reduction step is needed in order
to confine the computational complexity.
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Summary of filter equations

The filter equations consist of three steps: a measurement update, a time
update and a reduction step. These step are given by:

Reduced rank spatially localized Kalman filter (RRSLSQRT) –
general form

• Measurement update
We give an update for p = 1. For p > 1, measurements can be
processed sequentially.

– Update of state estimate:

x̂[k|k] = x̂[k|k−1] + Π[k]L[k](y[k] − c[k]x̂[k|k−1])

Π[k] = Ψ[k](Ψ
T

[k]Ψ[k])
−1ΨT

[k] (6.22)

L[k] = α[k]S[k|k−1]υ[k]

α[k] =
1

υT

[k]υ[k] + σ[k]

υ[k] = (c[k]S[k|k−1])
T.

– Update of error covariance matrix:

S[k|k] =
[
S1[k|k] S2[k|k]

]

with

S1[k|k] = S[k|k−1] − γ[k]L[k]υ
T

[k]

γ[k] =
1

1 +
√

α[k]σ[k]

and

S2[k|k] =
1
√

α[k]
Π⊥[k]L[k]

Π⊥[k] = I −Π[k].

• Time update
The time update takes the form of the update in the RRSQRT filter
and is given by,

x̂[k+1|k] = A[k]x̂[k|k] + B[k]u[k],

S[k+1|k] =
[

A[k]S[k|k] E[k]Q
1/2
[k]

]

.
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• Reduction step
The reduction step consists of an eigenvalue decomposition and a
truncation,

ST

[k+1|k]S[k+1|k] = X[k]Ω[k]X
T

[k]

S[k+1|k] ←
[
S[k+1|k]X[k]

]

(:,1:q)
.

Notice that one can actually choose a different Ψ[k] for each of the p
measurements, meaning that one can determine the components of the state
estimate that are updated individually for each measurement.

Except for the calculation of Π[k], the measurement update can be im-
plemented with matrix-vector products only. This yields a huge decrease in
computational complexity. Furthermore, in practice Π[k] is not computed based
on (6.22), but is mostly chosen as a diagonal matrix, see Example 6.2. This
further reduces computation times.

6.5.2.2 Efficient form

In this section, we consider yet a further reduction in computational complexity.
This reduction is based on the assumption that correlation between grid cells
decreases to zero within a distance of only a few grid cells.

Derivation of filter equations

Consider a PDE that has been discretized over a one-dimensional grid with
n cells. Results are easily generalized to higher dimensional problems. Assume
that c[k] takes the form c[k] = [0 . . . 0 1 0 . . . 0], where the 1 is in the i-
th column. That is, the value of the i-th grid cell is measured. Furthermore,
assume that correlation between grid cell i and its neighboring cells drops to
zero in a distance of j > 0 grid cells. Then, only the grid cells i − j, i − j +
1, . . . , i, . . . , i + j − 1, i + j will be updated by the measurement of grid cell i.
Consequently, we may choose the matrix Ψ[k] as

Ψ[k] =





0
I2j+1

0



 ,

where the identity matrix goes from row i − j to row i + j. For this choice of
Ψ[k], it follows from (6.17) that Π[k] takes the form

Π[k] =





0 0 0
0 I2j+1 0
0 0 0



 .
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By exploiting this particular structure, we will now reduce the computations
needed for the update of the error covariance matrix. First, note that (6.18)
can be rewritten for p = 1 as

P[k|k] = P[k|k−1] + α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k]

− α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1] − α[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k].

(6.23)

The structure and the sum of the last three terms is schematically shown in
Fig. 6.3. The shaded squares denote the nonzero entries in the matrices. The
white areas are zero due to the structure of Π[k]. The gray areas are zero because
the correlation between grid cell i and its neighboring grid cells is assumed to
drop to zero in a distance of j cells. It follows from the sum in Fig. 6.3 that
(6.23) reduces to

P[k|k] = P[k|k−1] − α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k]. (6.24)

Notice that (6.24) updates only the area in the error covariance matrix
represented by the shaded square. The update of this shaded square can be
summarized as

Π̄[k]P[k|k]Π̄
T

[k] = Π̄[k]P[k|k−1]Π̄
T

[k] − α[k]Π̄[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π̄
T

[k],

where Π̄[k] := [0 I2j+1 0].
We now derive the efficient square-root update. Defining

P̄[k|k] := Π̄[k]P[k|k]Π̄
T

[k]

P̄[k|k−1] := Π̄[k]P[k|k−1]Π̄
T

[k]

S̄[k|k−1] := Π̄[k]S[k|k−1]

c̄[k] := c[k]Π̄
T

[k],

it follows that

P̄[k|k] = P̄[k|k−1] − ᾱ[k]P̄[k|k−1]c
T

[k]c[k]P̄[k|k−1]

= S̄[k|k−1](I − ᾱ[k]ῡ[k]ῡ
T

[k])S̄
T

[k|k−1], (6.25)

where ῡ[k] := (c̄[k]S̄[k|k−1])
T and ᾱ[k] := 1/(ῡT

[k]ῡ[k] + σ[k]). Equation (6.25)

follows from the fact that cT

[k] = Π̄T

[k]Π̄[k]c
T

[k]. Using a procedure similar to that
of Sect. 6.3.2, we finally obtain the following square-root update,

S̄[k|k] = S̄[k|k−1](I − γ̄[k]ᾱ[k]ῡ[k]ῡ
T

[k])

= S̄[k|k−1] − γ̄[k]L̄[k]ῡ
T

[k],

where γ̄[k] = 1/(1 +
√

ᾱ[k]σ[k]) and

L̄[k] = ᾱ[k]S̄[k|k−1]ῡ[k].

The filter equations are summarized in the following section.



6.5 Spatially localized filtering 155

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����������������������������������������������������������

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k]

−α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]

−α[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k]

−α[k]Π[k]P[k|k−1]c
T

[k]c[k]P[k|k−1]Π
T

[k]

+
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Figure 6.3: Structure and sum of the last three terms in (6.23). The shaded
squares denote the nonzero entries in the matrices. The white areas are zero due
to the choice of Π[k]. The gray areas are zero because the correlation between
grid cell i and its neighboring grid cells is assumed to drop to zero in a distance
of j cells.
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Summary of filter equations

The filter equations consist of three steps: a measurement update, a time
update and a reduction step. These step are given by:

Reduced rank spatially localized Kalman filter (RRSLSQRT) –
efficient form

• Measurement update

– Initialization:

x̂[k|k] ← x̂[k|k−1]

S[k|k] ← S[k|k−1]

– Select appropriate rows or columns:

S̄[k|k−1] = Π̄[k]S[k|k−1]

ˆ̄x[k|k−1] = Π̄[k]x̂[k|k−1]

c̄[k] = c[k]Π̄
T

[k]

– Update of state estimate:

Π̄[k]x̂[k|k] ← ˆ̄x[k|k−1] + L̄[k](y[k] − c̄[k] ˆ̄x[k|k−1])

L̄[k] = ᾱ[k]S̄[k|k−1]ῡ[k]

ᾱ[k] =
1

ῡT

[k]ῡ[k] + σ[k]

ῡ[k] = (c̄[k]S̄[k|k−1])
T.

– Update of error covariance matrix:

Π̄[k]S[k|k] ← S̄[k|k−1] − γ̄[k]L̄[k]ῡ
T

[k]

γ̄[k] =
1

1 +
√

ᾱ[k]σ[k]

• Time update
The time update takes the form of the update in the RRSQRT filter
and is given by,

x̂[k+1|k] = A[k]x̂[k|k] + B[k]u[k],

S[k+1|k] =
[

A[k]S[k|k] E[k]Q
1/2
[k]

]

.
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• Reduction step
The reduction step consists of an eigenvalue decomposition and a
truncation,

ST

[k+1|k]S[k+1|k] = X[k]Ω[k]X
T

[k]

S[k+1|k] ←
[
S[k+1|k]X[k]

]

(:,1:q)
.

In practical applications, it is to be expected that correlation drops almost to
zero over a number of grid cells that is much smaller than the total number of
cells in the grid. Consequently, the measurement update will perform operations
on matrices of which the size is much smaller than the total number of grid
cells. This yields a huge decrease in computation times over the equations of
the general algorithm.

6.6 Filter degradation due to a lower rank ap-

proximation of the error covariance matrix

As already discussed, the SVD based reduction step in the reduced rank filter
described above leads to an underestimation of the total variance. In this
section, another consequence of a lower rank approximation will be discussed.
It will be shown that a lower rank approximation may lead to an increase in the
actual variance of some grid cells although the filter thinks that the variance
has decreased.

The analysis in this section considers the effect of deterministic error in the
covariance matrix (for example due to an SVD based reduction) on the actual
variance of the estimates. A similar analysis has been used by Houtekamer
and Mitchell [71] for random errors. The derivation in this section allows to
determine the grid cells of which the actual variance will increase by assimilating
a particular measurement due a lower rank approximation of the error covariance
matrix.

For conciseness of equations, we use the following notations: Cov(x1, x2)
denotes the covariance matrix of x1 ∈ R and x2 ∈ R, Var(x) denotes the variance
of the random variable x ∈ R.

Consider two random variables x1 ∈ R and x2 ∈ R that have to be estimated
based on a measurement y1 of x1, a priori estimates x̂1 and x̂2, and the
covariance matrix

Cov(x1, x2) =:

[
σ2

1 c12

c12 σ2
2

]

.

Assuming that the measurement error is uncorrelated to the errors in x̂1 and
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x̂2, the MVU estimates x̂1|y and x̂2|y of x1 and x2, are given by

x̂1|y = x̂1 +
σ2

1

σ2 + σ2
1

(y1 − x̂1)

x̂2|y = x̂2 +
c12

σ2 + σ2
1

(y1 − x̂1), (6.26)

and their variances by

Var(x̂1|y) = σ2
1

(

1− σ2
1

σ2 + σ2
1

)

(6.27)

Var(x̂2|y) = σ2
2 −

c2
12

σ2 + σ2
1

, (6.28)

where σ2 denotes the variance of the measurement error. These equations are
not more than the Kalman filter equations in scalar form. It follows from
(6.27)-(6.28) that the variances reduces by assimilating the observation (or stays
constant for c12 = 0). As will be shown in the next section, this no longer
necessarily holds if there is an error in the covariance c12.

6.6.1 Error in the covariances

Consider the approximate covariance matrix

[
σ2

1 c12 + e12

c12 + e12 σ2
2

]

,

with an error e12 in the covariance. It follows from (6.26) that the estimate of
x2 now becomes

ˆ̄x2|y = x̂2 +
c12 + e12

σ2 + σ2
1

(y1 − x̂1).

Its variance is given by

Var(ˆ̄x2|y) = E[(x2[k] − ˆ̄x2|y)(x2[k] − ˆ̄x2|y)T]

= σ2
2 +

(c12 + e12)
2

σ2 + σ2
1

− 2
(c12 + e12)c12

σ2 + σ2
1

= σ2
2 −

c2
12

σ2 + σ2
1

(

1−
(

e12

c12

)2
)

.

If |e12/c12| > 1, it follows that Var(ˆ̄x2|y) > σ2
2 , meaning that the estimate

degrades by assimilating the measurement y1.
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6.6.2 Error in the variances and the covariances

Now, consider the approximate error covariance matrix
[

σ2
1 + e1 c12 + e12

c12 + e12 σ2
2 + e2

]

.

in which both the variances and covariances have an error. The estimate of x2

now becomes

ˆ̄x2|y = x̂2 +
c12 + e12

σ2 + (σ2
1 + e1)

(y1 − x̂1).

This estimate has variance

Var(ˆ̄x2|y) = σ2
2 +

(c12 + e12)
2(σ2

1 + σ2)

(σ2 + (σ2
1 + e1))2

− 2
(c12 + e12)c12

σ2 + (σ2
1 + e1)

= σ2
2 +

(e2
12 − c2

12)(σ
2 + σ2

1)− 2c12e1(c12 + e12)

(σ2 + (σ2
1 + e1))2

.

We conclude that the estimate degrades if

e2
12(σ

2 + σ2
1) > c2

12(σ
2 + σ2

1) + 2c12e1(c12 + e12).

The estimate of x1 becomes

ˆ̄x1|y = x̂1 +
σ2

1 + e1

σ2 + (σ2
1 + e1)

(y1 − x̂1).

This estimate has variance

Var(ˆ̄x1|y) = σ2
1 +

(σ2
1 + e1)

2(σ2
1 + σ2)

(σ2 + (σ2
1 + e1))2

− 2
(σ2

1 + e1)σ
2
1

σ2 + (σ2
1 + e1)

= σ2
1 +

e2
1σ

2 − σ6
1 − σ4

1σ2 − e2
1σ

2
1 − 2e1σ

4
1

(σ2 + (σ2
1 + e1))2

.

We conclude that the estimate degrades if

e2
1σ

2 > e2
1σ

2
1 + σ6

1 + σ4
1σ

2 + 2e1σ
4
1 .

6.7 Numerical examples

Two numerical examples are considered. The first example compares the
RRSQRT filter and RRTSQRT filter on a linear heat conduction example. The
second example applies the RRSLSQRT filter to a chaotic nonlinear system.

Example 6.1. Linear heat conduction
Consider heat transfer in an infinitely thin ring, governed by the PDE

∂T

∂t
= α

∂2T

∂x2
,



160 Suboptimal Square-Root Filtering

where T (x, t) denotes the temperature at position x and time t and α = 2.10−3

m2/s denotes the thermal diffusivity. Using a central difference method, the
PDE is discretized over a grid with 100 cells. Discretization in time is achieved
with a forward difference method with time step 10−2s.

We assume that the discretized model is corrupted by noise that affects only a
few cells, so that the matrix E[k] ∈ Rn×l has only few columns. We choose l = 5
and take the noise term w[k] as a zero-mean white process with Q[k] = 10−4I. It
is assumed that measurements of every third grid cell are available. The noise
term v[k] is chosen as a zero-mean white process with R[k] = 10−2I.

We choose q = 25 and compare the assimilation result of the RRTSQRT filter
to that of the RRSQRT filter and the Kalman filter. Fig. 6.4 shows the MSE in
the state estimates. It can be seen that the RRSQRT filter converges almost as
fast as the Kalman filter. The RRTSQRT filter, on the other hand, converges
much slower. This is due to the underestimation of the error covariance matrix.
For comparison, during the first simulation step the reduction of the RRSQRT
filter retained 99.68% of the total variance, whereas that of the RRTSQRT filter
retained only 86.52%. The underestimation not only yields slower convergence,
but also makes the filter more sensitive to divergence. The reason is that the
filter gives too less weight to the measurements.

To reduce filter divergence in the EnKF, Anderson [6] introduced the idea
of covariance inflation. Covariance inflation is a heuristic technique where the
error covariance matrix (or a square-root of it) is multiplied by a factor κ > 1
that increases the total variance artificially. We choose the inflation factor so
that the RRTSQRT filter retains the same amount of the total variance as the
RRSQRT filter during the first simulation step. This yields an inflation factor
of κ = 1.075. As can be seen in Fig. 6.4, covariance inflation strongly increases
the speed of convergence.

Example 6.2. Nonlinear Lorenz model
In a second example, we consider the nonlinear Lorenz [90] model. This
model mimics the propagation of an unspecified meteorological quantity along
a latitude circle. It exhibits chaotic behavior. The equations are governed by

dxi

dt
(t) = (xi+1(t)− xi−2(t))xi−1(t)− xi(t) + f,

where the index i = 1, . . . , n is cyclic so that xi−n(t) = xi+n(t) = xi(t). The
symbol xi(t) denotes the meteorological quantity at the i−th grid point at time
t. We choose n = 40 and f = 8 and discretize the model using a fourth-order
Runge-Kutta scheme with a sampling time of 0.05s. Figure 6.5 illustrates the
chaotic behavior of the system. This figure shows two trajectories of x20. The
initial state x(0) of the second simulation differs only slightly from that of the
first simulation. However, due to the chaotic behavior, the trajectories diverge
very quickly.

We assume that the discretized model is corrupted by noise that affects only
a few cells, so that the matrix E[k] ∈ Rn×l has only few columns. We choose
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Figure 6.4: Comparison between the MSE of the RRSQRT, RRTSQRT,
RRTSQRT with covariance inflation, and the Kalman filter on a linear heat
transfer problem in an infinitely thin ring.
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Figure 6.5: Illustration of the chaotic behavior of the Lorenz [90] model. The
initial state of the second simulation differs only slightly from that of the first
simulation. However, due to the chaotic behavior, the trajectories diverge very
quickly.
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l = 10 and take the disturbance w[k] itself as a zero-mean white process with
Q[k] = 10−4I. It is assumed that measurements of the following six grid cells are
available: 3, 10, 17, 24, 31 and 38. The measurement noise v[k] ∈ R6 is chosen as
a zero-mean white process with R[k] = 10−4I.

We use the procedure of twin experiments. This means that we first simulate
the discretized model from an arbitrary initial state. We call the resulting
trajectory the “true” trajectory. Then, we artificially create measurements
based on the “true” trajectory. Finally, we add a perturbation to the initial
state and let the filter recursively estimate the state trajectory based on the
artificially created measurements.

In a first experiment, we study how the value of q affects the filter
performance. We consider two criteria. The first criterion is the percentage
of the total variance that is retained by the lower rank approximation. To this
aim, we first apply the RRSQRT filter with a value of q that is assumed to give
the correct picture of the error covariance matrix. We take q = 200 and consider
the error covariance matrix after 100 simulation steps. Fig. 6.6 shows the
percentage of the variance that is retained when making an optimal lower rank
approximation of this error covariance matrix. A rank 10 approximation retains
approximately 90%, a rank 15 approximation 95% and a rank 20 approximation
97.5%. As a second criterion, we consider “correctness” of the measurement
update. With a “correct” update of a grid cell, we mean that the variance
of that grid cell decreases by assimilating observations. Fig. 6.7 compares the
“correctness” of the update for different values of q. A black square denotes a grid
cell of which the variance increases by assimilating the particular measurement.
The grid cell at which the measurement was taken, is denoted by a star. For
a rank 5 approximation, almost half of the grid cells degrade by assimilating
measurements. For q = 20, less than 20% of the grid cells degrade. In addition,
for the latter value of q, mostly grid cells that are distant from the measurement
point degrade. It turns out that correlation between the measurement and such
grid points is very small, so that filter degradation will be only minor.

The discussion above indicates that estimation accuracy for q = 20 will be
only slightly worse than for q = 200. On the other hand, the RRSQRT filter
is far more efficient for q = 20 than for q = 200. A simulation example indeed
confirms these findings. The state estimates for q = 20 and q = 200 are almost
indistinguishable.

In a second experiment, we address the problem of spatially localized
filtering. Fig. 6.8 compares the correlation matrices computed from an
approximate error covariance matrix with q = 200 and a rank 20 approximation
of that covariance matrix. The values show in the figure are actually the
log10 of the computed correlations. Notice that correlation drops almost to
zero in a distance of approximately 10 grid cells. This motivates the use of
the RRSLSQRT filter. Simulation results show that the general form and the
efficient form of the RRSLSQRT filter perform almost equal. In fact, simulation
results with q = 20 are almost indistinguishable from the RRSQRT filter with
q = 200. Table 6.2 compares the processing time of the measurement update
for various filter algorithms. Notice that the efficient form of the RRSLSQRT
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Figure 6.6: Percentage of the variance that is retained when making an optimal
lower rank approximation of the error covariance matrix obtained with an
RRSQRT filter with q = 200.

filter outperforms the general form. However, the efficient form is slower than
the sequential update of the traditional RRSQRT filter. This is due to the
overhead of selecting the rows of the error covariance square-root that need to
be updated. It is, however, expected that the RRSLSQRT will also outperform
the RRSQRT for lager values of n. The row selection will then turn into a
computational advantage rather than into a disadvantage.

In a third experiment, we study the effect of decreasing the rank of the error
covariance matrix below 20. Fig. 6.9 compares the MSE of the RRSQRT filter
and the RRSLSQRT filter (efficient form) for q = 15. Notice that the RRSQRT
filter blows up around simulation step 500. The RRSLSQRT filter, on the other,
still performs satisfactory for q = 10. Simulations indicate that the efficient form
is more accurate than the general form for such low values of q.

6.8 Conclusion

Two extensions of the RRSQRT filter were considered in this chapter.
The first extension, the reduced rank transform square-root (RRTSQRT)

filter, speeds up the RRSQRT filter by interweaving the reduction step into the
measurement update. The time saving is approximately that of the reduction
step in the RRSQRT filter. The major drawback of the method is that the error
covariance matrix is more underestimated, making the filter more sensitive to
divergence. A simulation example has indicated that underestimation of the
error covariance matrix really is an issue in the RRTSQRT.



164 Suboptimal Square-Root Filtering

2 4 6

5

10

15

20

25

30

35

40

number of measurement

nu
m

be
r 

of
 g

rid
 c

el
l

q = 5

2 4 6

5

10

15

20

25

30

35

40

q = 10

2 4 6

5

10

15

20

25

30

35

40

q = 20

2 4 6

5

10

15

20

25

30

35

40

q = 30

Figure 6.7: “Correctness” of the measurement update for different values of
q. A black square denotes a grid cell of which the actual variance increases
by assimilating the particular measurement, although the filter thinks that the
variance has decreased. The grid cell at which the measurement was taken, is
denoted by a star.

The second extension has addressed the problem of reduced rank spatially
localized square-root (RRSLSQRT) filtering. Sequential updating of measure-
ments was considered in which the grid cells that are updated can be defined
for each of the measurements individually. Two versions of the algorithm were
derived. The first form is equivalent to the spatially localized Kalman filter [9] if
the rank of the error covariance matrix is chosen equal to the order of the system.
The second form approximates the equations of the first from by assuming
that correlation between widely separated grid cells equals zero. A simulation
example on a nonlinear chaotic model has illustrated the advantages of spatially
localized filtering. The spatially localized filter seems to be more robust to filter
divergence than the traditional RRSQRT filter. The efficient form was in this
example least sensitive to filter divergence.
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algorithm absolute time relative time
RRSQRT (q = 200) 1.449 ms 1.57
RRSQRT (q = 20) 0.924 ms 1
RRSLSQRT (general form, q = 20) 2.781 ms 3.01
RRSLSQRT (efficient form, q = 20) 1.097 ms 1.19

Table 6.2: Processing time of the measurement update in Example 6.2.
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of that covariance matrix. The values show actually are the log10 of the
computed correlations. Notice that correlation drops quickly with distance.
This motivates the use of the RRSLSQRT filter.
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Chapter 7

Space Weather Nowcasting

Example

This chapter considers the application of data assimilation
techniques for nowcasting a space weather event. The RRSLSQRT
developed in Chapter 6 is applied with a large-scale model, consisting
of approximately 105 state variables. The model emulates the
dynamics of the bow shock that is formed when the solar wind
encounters the Earth. The performance of the RRSLSQRT is
investigated for different types of spatial localization and different
values of the rank of the approximate error covariance matrix.
Simulations with both known constant and unknown time-varying
boundary conditions are considered. It is found that even with only
a few measurements, the RRSLSQRT yields a significant reduction
in estimation error over a data-free simulation. Results also indicate
that spatial localization of the measurements has a positive effect on
estimation accuracy.

7.1 Introduction

Although data assimilation is performed almost routinely in meteorology, it
is largely unknown in the space physics community. This is due to the fact
that space physics is a relatively young research field in which the number of
observations is quite small, orders of magnitude smaller than in meteorological
applications. As the research and insight in space dynamics increases, it is to be
expected that more and more satellites will be launched for the observation of
space weather phenomena. However, the amount of data can almost impossibly
reach that of Earthly weather observations. This sparseness of observations,
together with the enormous length scales, makes data assimilation for space
weather applications very challenging and requires the development of new
techniques that are adapted to this situation.

167
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A first step towards data assimilation for space weather nowcasting has
been set by Chandrasekar et al. [17]. They derived a linearized model for
plasma flow in a two-dimensional channel and compared the performance of
the Kalman filter and the RRSQRT filter. In [122], sparseness of observations
is addressed in a relatively simple nonlinear model. It is found that for a
model with 100 grid cells, a systematic reduction in estimation error can be
achieved with as few as 2 observations. A large-scale assimilation problem has
first been considered by Barrero et al. [11]. They considered a simulation with
approximately 104 state variables which emulates a solar storm interacting with
the Earth’s magnetosphere. The performance of the EnKF was compared for
different numbers of observations. An extension to spatially localized filtering
was addressed in [8], where it was shown that the localization introduces
robustness against filter divergence in case of very few observations.

Personal contributions

This chapter addresses the use of the RRSLSQRT for estimating the topology
of the bow shock that is formed when the solar wind encounters the Earth.
We consider the complex bow shock model of [27] and set-up a large-scale data
assimilation experiment. The grid considered in the assimilation experiment
consists of approximately 105 cells, that is only a factor 10 smaller than
the most realistic weather assimilation problems which are run on the most
advanced supercomputers on Earth. The performance of the RRSLSQRT will
be assessed in two series of experiments. In the first series, it is assumed that the
boundary conditions, i.e. the properties of the incoming solar wind, are constant
and known. The ability of the RRSLSQRT to reconstruct the actual plasma
flow, starting from an incorrect initial estimate, will be studied under various
conditions. For example, the influence of the type of spatial localization and the
rank of the approximate error covariance matrix will be studied. In the second
series of experiments, the boundary conditions are assumed to be time-varying
and unknown. The RRSLSQRT is extended to estimate the boundary condition
and its stability and performance under such conditions is assessed. It is found
that even with only a few measurements, the RRSLSQRT yields a significant
reduction in estimation error over a data-free simulation. Results also indicate
that spatial localization of the measurements has a positive effect on estimation
accuracy.

Chapter outline

This chapter is outlined as follows. Section 7.2 introduces the magnetohydro-
dynamic equations that govern the flow of plasma and thus form the basis of
all simulation concerning the solar wind. In Sect. 7.3, the different types of
shocks than occur in magnetohydrodynamics are discussed and their topology
is considered. Finally, in Sect. 7.4, the application of the RRSLSQRT in the
estimation the bow shock topology is considered.
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7.2 Magnetohydrodynamics

Almost all matter on Earth is either in the solid, the liquid or the gas state. On
the other hand, most of the matter in space is in the plasma state. A plasma can
be considered as a gas consisting of positively and negatively charged particles.
It is electrically neutral overall, but the presence of charged particles means that
a plasma can support electric currents and that it can interact with electric and
magnetic fields. This makes plasma behavior more complex and varied than
neutral gas behavior. Plasma is therefore considered to be a distinct state of
matter.

The behavior of a plasma can be modeled at three different levels. In the
lowest level, the individual movement of particles is considered. For large
plasma system, however, such a description is computationally not feasible.
In the second level, the average behavior of the particles is described based
on kinetic phenomena. Finally, in magnetohydrodynamics (MHD), the highest
level, plasma is considered as a fluid. MHD thus yields a macroscopic description
of a plasma.

The interaction of a plasma with magnetic and electric fields makes the MHD
equations more complex than the equations that govern the flow of an electrically
neutral fluid. The set of equations which describe MHD are a combination
of the Navier-Stokes equations of fluid dynamics and Maxwell’s equations of
electromagnetism. The MHD equations are thus rich in nonlinearities.

In this chapter, the most simple form of MHD, ideal MHD, is considered.
Ideal MHD basically assumes that the fluid has so little resistivity that it can
be treated as a perfect conductor. The derivation of the ideal MHD equations
is based on several assumptions and approximations of which the validity needs
to be assessed in every application. The ideal MHD equations are applicable if
the following conditions are satisfied [60]:

• The plasma is strongly collisional. The time scale of collisions is shorter
than the other characteristic times in the system.

• The resistivity due to collisions is small, meaning that the magnetic
diffusion times must be longer than any time scale of interest.

• The length scales and time scales under consideration are much longer than
the characteristic length scales and time scales of the individual particles.

For the large-scale application considered in this chapter, the last two conditions
are almost certainly satisfied. The first condition, on the other hand, is probably
not satisfied. However, it turns out that in collisionless MHD, the part of the
dynamics that is inaccurately described by MHD does not matter [60], which
validates the use of the ideal MHD equations in this chapter. The ideal MHD
equations are now discussed.
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7.2.1 The ideal MHD equations

The ideal MHD equations can be written in several different forms. In
Sect. 7.2.1.1, we write the equations in a traditional form that relates to
the Navier-Stokes and Maxwell’s equations. In Sect. 7.2.1.2, the equations
are reformulated in terms of conservation laws. A rigorous derivation of the
equations and a discussion concerning the conditions of their validity can be
found in e.g. [59, 60],

7.2.1.1 Traditional form

At a given point in space and time, the state of a plasma fluid can be described
by eight quantities: the density ρ, the pressure p, the three components of the
velocity vector v and the three components of the magnetic field vector B. The
dynamical evolution of these variables is governed by eight equations.

• The mass continuity equation

∂ρ

∂t
+∇ · (ρv) = 0

describes the conservation of mass in the plasma flow.

• The momentum equation

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇p + J ×B (7.1)

provides the next three equations. The current density J is given by
Ampère’s law,

J =
1

µ0
∇×B,

where µ0 denotes the permeability of free space.

• The induction equation

∂B

∂t
= ∇× (v ×B) (7.2)

provides three more equations. Notice that (7.2) derives from
Faraday’s law and from Ohm’s law of induction,

E = −v ×B,

where E is the electric field.
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• The final equation is the pressure equation,

∂p

∂t
+ (v · ∇)p + γp∇ · v = 0,

where ideal gas behavior is assumed and where the adiabatic index
γ = 5/3.

Because magnetic field lines are always closed, the MHD equations have to
be supplemented with the divergence free condition

∇ ·B = 0,

which can be seen as a constraint to the MHD equation.

7.2.1.2 Conservative form

The ideal MHD equations summarized above can be reformulated in terms of
conservation laws by introducing the total energy e, defined by

e :=
p

γ − 1
+ ρ

v · v
2

+
B ·B

2
.

The ideal MHD equations can then be written in conservative form as

∂

∂t







ρ
ρv
B
e







+∇ ·







ρv
ρvv + I(p + B · B/2)−BB

vB −Bv
(e + p + B · B/2)v − (v ·B)B







= 0.

The conservative form is used most often in computational MHD.

7.2.2 Computational MHD

Analytical solutions of the MHD equations are limited to the most simple cases,
and even then a lot of approximations are usually made. Numerical simulations
provide an effective manner to study the most complex plasma dynamics. Of
course, numerical simulations also have their limitations, but in most cases they
yield results that are more than satisfactory. MHD simulations have given new
and interesting insights in space weather phenomena such as the propagation of
the solar wind or of a coronal mass ejection.

The MHD simulations considered in the remainder of this chapter are
performed with the Versatile Advection Code (VAC) [130]. The VAC is a general
code developed for solving MHD and hydrodynamical problems on parallel
computers. It allows the user to solve a hyperbolic system of PDE’s with
a variety of modern numerical schemes and provides methods to numerically
maintain the ∇ ·B = 0 condition.
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7.3 MHD shocks

When an airplanes flies at supersonic speeds, a bow shock is formed in front of
it. Upstream from the shock, the flow is supersonic, and downstream the flow
is subsonic. Similarly, the supersonic solar wind induces a bow shock when it
encounters the Earth. As we will see in this section, due to the magnetic field
that is dragged by the solar wind, the topology of the latter bow shock can be
much more complicated than that formed by an airplane.

Several MHD models have been developed that describe the topology of the
Earth’s bowshock (see e.g. [119] and the references therein) or the bowshock of
other planets like Saturn [64] or Jupiter [89].

This section is outlined as follows. In Sect. 7.3.1, the topology of MHD shocks
is discussed. Next, in Sect. 7.3.2, we consider the numerical technique in [27],
which deals with two-dimensional MHD flow around a perfectly conduction
cylinder.

7.3.1 Shock topology

While the equations of neutral gas dynamics only allow for one type of wave,
the sound wave, MHD allows for three different types of waves: the Alfvén wave
and the fast and slow magnetosonic wave. The wave speeds depend strongly on
the angle between the direction of wave propagation and the direction of the
local magnetic field. MHD waves are thus anisotropic.

As a result, there exist three different types of MHD shocks. As shown in
Fig. 7.1, they can be distinguished by considering the way in which they refract
the magnetic field lines.

• In slow MHD shocks (Fig. 7.1a), the magnetic field is refracted towards
the shock normal such that the upstream angle between the shock normal
and the magnetic field θ1 is larger than the downstream angle θ2.

θ1
θ1

θ2 θ2 θ2

a) slow b) intermediate c) fast d) fast switch-on

Figure 7.1: MHD shock types. The thick vertical line represents the shock front,
the dotted line is the shock normal. The arrowed lines denote magnetic field
lines that are refracted through the shock surface. (From [119]).
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• In intermediate MHD shocks (Fig. 7.1b), the magnetic field line is reflected
by the shock normal.

• In fast MHD shocks (Fig. 7.1c), the magnetic field is refracted away from
the shock normal such that the upstream angle between the shock normal
and the magnetic field θ1 is smaller than the downstream angle θ2.

Fast switch-on MHD shocks (Fig. 7.1d) are characterized by an upstream
magnetic field that is perpendicular to the shock front, but downstream there
exists an angle θ2 between the shock normal and the magnetic field. Switch-
on shocks arise when the magnetic field is strong so that magnetic forces
dominate over thermal pressure. This occurs if the following two conditions
are satisfied [84].

1. First, the plasma β, which is defined as the ratio of the thermal pressure
over the magnetic pressure,

β :=
2p

‖B‖2 ,

must satisfy β < 2/γ.

2. Secondly, the incoming plasma velocity must lie between the fast MHD
wave speed and roughly twice this speed. This is equivalent to the
condition

1 < MAx <

√

γ(1− β) + 1

γ − 1
,

where MAx denotes the Alfvénic Mach number in the upstream direction,
defined by MAx := |vx|/cAx, with vx and cAx the plasma velocity and the
Alfvén speed in the upstream direction, respectively. The Alfvén speed is
given by cAx = |Bx|/√ρ.

An upstream flow for which switch-on shocks occur is called a magnetically
dominated flow. If a switch-on shocks does not occur, the flow is referred to as
pressure dominated [27].

7.3.2 Two-dimensional MHD flow around a cylinder

The shock conditions above can be derived from the Rankine-Hugoniot jump
equations across a shock [84,118]. Analytical solutions of the Rankine-Hugoniot
equations are mostly impossible to obtain, so that numerical simulations are
necessary to study the shock topology.

De Sterck et al. [27, 28, 119] considered numerical simulations of the bow
shock that is formed when plasma flows around a perfectly conducting cylinder
at supersonic speed. It was observed that, as long as the upstream flow is
pressure dominated, MHD shocks exhibit a topology similar to hydrodynamic
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shocks. As shown in Fig. 7.2a, a bow shock with a single front is formed
that is entirely of the fast type. However, numerical simulations have revealed
that MHD bow shocks exhibit an entirely different topology when the flow is
magnetically dominated. As shown in Figs. 7.2b and 7.3, several consecutive
shock fronts of various shock types are formed among which intermediate shocks
and fast switch-on shocks.

The simulation results presented in Figs. 7.2 and 7.3 were generated using
the VAC on a cylindrical 124×124 grid (taking the ghost cells for the boundary
conditions into account). Top-bottom symmetry is exploited so that only the
upper part of Figs. 7.2a and 7.2b is actually simulated. Part of the simulation
grid is shown in Fig. 7.3. Notice that the grid is stretched so that resolution
is highest in the region of the consecutive shock fronts. The parameters of the
incoming plasma flow (which are assumed to be uniform over the boundary) are
chosen so that β = 0.4. In Fig. 7.2a, the Alfvénic Mach number is chosen as
MAx = 2. In Fig. 7.2b, it is chosen as MAx = 1.5, so that both conditions for a
switch-on shock are satisfied.

The numerical simulation considered above provides a simple two-dimensional
model for the bow shock that is formed when the solar wind encounters the
Earth. In reality, the Earth is of course not a perfectly conducting cylinder, but
rather a sphere that produces its own magnetic field which is compressed by
the solar wind at the day-side and expanded at the night-side. Consequently,
the real bow shock is more complex than in the simulation above. However, the
simulations of De Sterck et al. are considered to give a quite accurate picture
of the features involved in the topology of the Earth’s bow shock. Observations
from satellites indicate that the solar wind at the Earth is approximately 8% of
the time in the switch-on regime.

7.4 Data assimilation for two-dimensional MHD

flow around a cylinder

In this section, we consider data assimilation for 2D MHD flow around a
perfectly conducting cylinder. Using the numerical technique of De Sterck et
al., we set up a large scale simulation with the RRSLSQRT filter developed in
Sect. 6.5.2. The performance of the RRSLSQRT filter is studied under various
conditions.

This section is outlined as follows. Section 7.4.1 describes the setup of the
simulations. Next, in Sect. 7.4.2, we consider data assimilation under known,
constant boundary conditions and study the ability of the RRSLSQRT to
reconstruct the true state, starting from an incorrect initial estimate. Next,
in Sect. 7.4.3, it is assumed that the boundary condition is unknown and
in addition also time varying. More precisely, we consider the case where
the incoming plasma flow changes from pressure dominated to magnetically
dominated. The RRSLSQRT will be extended such that it simultaneously
estimates the boundary condition and the system state and its stability under
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Figure 7.2: Bow shock topology in 2D MHD flow around a perfectly conducting
cylinder. Density contours (pilled up in the shocks) and magnetic field lines
(coming in horizontally from the left) are shown. (a) Pressure dominated flow:
MAx = 2, β = 0.4. (b) Magnetically dominated flow: MAx = 1.5, β = 0.4.
(From [27]).

such conditions will be assessed.

7.4.1 Setup of the simulations

The setup of the numerical simulations is schematically shown in Fig. 7.4.
All MHD simulations are performed with the VAC. The equations of the
RRSLSQRT filter, on the other hand, are implemented in Matlab. This requires
a constant conversion and exchange of data between Matlab and VAC, which
unfortunately leads to a high computational overload.

The numerical grid used in the VAC is chosen as described in the previous
section, i.e. a stretched cylindrical grid consisting of 124× 124 cells. Each cell
contains six variables (one for the density ρ, two for the momentum density
ρv, two for the magnetic field B and one for the energy e), resulting in a state
dimension of n = 92256. The actual values of the variables used during the
simulations do not have any physical meaning. The nominal values of the
incoming variables, i.e. the variables at the left boundary, are chosen in the
order of one.
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Figure 7.3: Detail of the stretched simulation grid. Density contours and
magnetic field lines of the magnetically dominated flow presented in Fig. 7.2b
are shown. Several consecutive shock fronts of various shock types are formed
among which intermediate shocks and fast switch-on shocks.

In order to study the performance of the RRSLSQRT filter, we use the
procedure of twin experiments. This means that we first artificially create
“measurements” by simulating the plasma flow using the VAC. During the
simulation, random noise sampled from a normal distribution with mean zero
and variance 10−8 is added to the state variables every 5.10−4 s. The process
noise covariance matrix is chosen of rank 250. Furthermore, random noise
sampled from a normal distribution with mean zero and variance 10−6 is added
to the measurements. It is assumed that measurements are available every
5.10−4 s.

In the second step of the twin procedure, the RRSLSQRT filter is initialized
with an estimate x̂[0|−1] of the initial state x[0] that was used in the simulation
and with a square-root S[0|−1] ∈ Rn×q that is obtained from an ensemble of
initial state estimates. The RRSLSQRT filter is then employed to recursively
estimate the actual state, i.e. the state vector simulated during the first step of
the twin procedure, based on the measurements generated in the first step.

The measurement update of the RRSLSQRT filter is implemented entirely
in Matlab on a single processor. The nonlinear nature of the numerical model
is dealt with during the time update using the extension of the RRSQRT filter
considered in Sect. 6.4.1.4. Such an extension requires during each time update
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q + 1 simulations with the VAC. The simulations exchange no information
and can therefore be implemented in parallel. The simulations results for
the highest values of q presented in the next sections were obtained using
parallel computations on the K.U.Leuven VIC cluster [1], which at the time
of the simulations consisted of 876 processors and had a peak performance of
approximately 4 teraflops/s. For the lowest values of q, however, it was found
that the conversion of data formats between Matlab and VAC leads to such a
high computational overload that sequential simulations on a single processor
are almost as fast as a parallel computation.

The dash-dot line from the boundary condition to the time update in Fig. 7.4
denotes that in some simulations the left boundary condition, i.e. the properties
of the incoming plasma flow, will be assumed to be known, while in others it
will be assumed to be unknown and thus estimated by the filter.

7.4.2 Known, constant boundary conditions

In a first series of experiments, we consider the boundary conditions at the left
hand side of the grid, i.e. the properties of the incoming plasma flow, to be
known and constant. The ability of the RRSLSQRT to converge to the actual
state, starting from an arbitrary initial estimate, will be tested under various
conditions. The main objective is to assess the influence of the number of
measurements, the type of spatial localization and the rank q of the approximate
error covariance matrix on the speed of convergence.

The plasma β and the Alfvénic Mach number of the incoming plasma flow are
chosen as in Fig. 7.2b, that is, so that the flow is magnetically dominated. The
initial state estimate x̂[0|−1], which is chosen exactly the same in all experiments,
is constructed by adding a random perturbation to the flow pattern shown in
Fig. 7.2b. The error in the initial state estimate can be seen in Fig. 7.5 for
k = 1.

In a first experiment, we carry out simulations without spatial localization.
The RRSLSQRT filter then reduces to the RRSQRT filter. The error in the
density estimates of the RRSQRT filter as function of q and of the simulation
step k is shown in Fig. 7.5. It was assumed that measurements are available at
8 locations. These locations are indicated by the crosses. Density contours of
the actual flow are also shown. Notice that the estimation error decreases with
k, which means that the filter is converging. Also, notice that for k = 1000, the
estimation error is largest in the region of the consecutive shock fronts.

In a second experiment, simulations with spatial localization are performed.
The localization patterns that determine the matrices Π[k] in the RRSLSQRT
(Π[k] is chosen differently for each of the 8 measurements) are shown in
Fig. 7.7. Locations where measurements are available are denoted by stars.
The box around each of the stars denotes the region over which this particular
measurement has an influence on the grid cells. The color intensity of a grid cell
denotes the number of measurements that influence this particular grid cell. The
MSE in the estimates of the RRSLSQRT is shown in Fig. 7.6 as function of the
type of spatial localization and the rank approximation q of the error covariance
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Figure 7.4: Setup of the numerical simulations with the RRSLSQRT. The
“measurements” are generated by simulating the plasma flow with the VAC and
adding noise. The measurement update is implemented in Matlab on a single
processor. The time update requires q + 1 simulations with the VAC code. The
simulations are implemented in parallel on the K.U.Leuven VIC cluster [1]. The
dash-dot line from the boundary condition to the time update denotes that in
some simulations the properties of the incoming plasma flow will be assumed
unknown.
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Figure 7.5: Error in the density estimates of the RRSQRT filter as function
of the rank q of the error covariance matrix and of the simulation step k. The
locations where measurements are available, are denoted by the crosses. Density
contours of the actual flow, which is magnetically dominated, are shown. Notice
that the estimation error for k = 1000 is largest in the region of the consecutive
shock fronts.
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matrix. As expected, the MSE decreases with increasing q. Spatial localization
of the measurements clearly has a positive effect on estimation accuracy. Notice
that even for q as low as 75, the RRSLSQRT filter with localization of type
B performs more than satisfactory. It clearly outperforms the RRSQRT filter
with q = 250.

In a third experiment, simulations with a reduced number of 4 measurements
are carried out. The localization patterns used in the experiment are shown in
Fig. 7.8. Figure 7.9 shows the MSE in the estimates as function of the type of
spatial localization and the rank q of the approximate error covariance matrix.
The results are very similar to those in the experiments with 8 measurements
(Fig. 7.6). In particular, it is found that the filters without spatial localization
perform almost identical to a data free simulation. The results for spatial
localization, however, clearly outperform a data free simulation. As in Fig. 7.6,
localization of type B is more accurate than type A.

Both the experiments with 8 and 4 measurements suggest that localization
of type B is to be preferred over type A, meaning that the regions over which
the measurements influence the grid cells should be taken quite small. Evidence
of this is obtained by considering the correlation information contained in the
approximate error covariance matrix of the RRSLSQRT. Figure 7.10 plots the
absolute value of the correlation between the density at the grid cell indicated
by the star (at which a measurement was assumed to be taken during the
simulations) and all other cells computed from the approximate error covariance
matrix of the RRSLSQRT for q = 250 and localization of type A. As expected,
correlation drops relatively quickly with distance. However, even for grid
points greatly distant, correlation is certainly not exactly zero. Notice that the
correlations at the left of the bow shock and in the upper right corner are rather
noisy. These correlations are probably spurious and due to the approximation.
In Example 6.2, it was shown that such spurious correlations may increase
the variance of the corresponding grid cell. This may explain the superior
performance of localization type B (which confines the left boundary of the
localization region closer to the bow shock) over type A. Also, notice that the
correlation inside the region of the consecutive shocks is significantly different
from zero and not noisy. This may indicate that extending the localization
region in that direction may further increase estimation accuracy.

Table 7.1 compares the relative processing times for the measurement update
in the RRSLSQRT as function of the type of localization and the rank q of
the approximate error covariance matrix. Results for the simulations with 8
measurements are presented. Contrary to Table 6.2 where the results of a
relatively small scale example were presented, the RRSQRT is now most time
consuming. The procedure of updating only a selected number of rows has now
turned into a computational advantage.
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Figure 7.6: MSE in the estimates of the RRSLSQRT for the simulations with 8
measurements. The MSE is plotted as function of the type of spatial localization
and the rank q of the approximate error covariance matrix. As expected,
the MSE decreases with increasing q. Spatial localization of the measurements
clearly has a positive effect on estimation accuracy.

q
Algorithm 75 150 250

RRSQRT 5.67 11.33 18.96
RRSLSQRT Loc. A 1.89 4.41 10.44
RRSLSQRT Loc. B 1 2.22 4.74

Table 7.1: Relative processing times for the measurement update in the
RRSLSQRT. The actual processing time for q = 75 and localization of type
B was 2.7 s. For comparison, the time update under the same circumstances
took approximately 115 s.
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Figure 7.7: Localization patterns used in the simulations with 8 measurements.
The pattern determines the matrix Π[k] in the RRSLSQRT, which is chosen
differently for each of the 8 measurements. Locations where measurements are
available are denoted by stars. The box around each of the stars denotes the
region over which this particular measurement has an influence on the grid
cells. The color intensity of a grid cell denotes the number of measurements
that influence this particular grid cell.
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Figure 7.8: Localization patterns for the simulations with 4 measurements.
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Figure 7.9: MSE in the estimates of the RRSLSQRT for the simulations with 4
measurements. The MSE is plotted as function of the type of spatial localization
and the rank q of the approximate error covariance matrix.

7.4.3 Unknown, time-varying boundary conditions

In a second series of experiments, we consider the properties of the incoming
plasma flow to be unknown and in addition also time-varying. More precisely,
experiments are conducted in which the flow changes from pressure dominated to
magnetically dominated. The RRSLSQRT is extended to estimate the unknown
boundary condition based on the measurements at the left hand side of the
bow shock, which observe changes in the boundary condition with a relatively
short time delay. The extension is based on the use of a separate Kalman filter
which estimates the unknown boundary condition based on the dynamical model
u[k+1] = u[k] + η[k], where u[k] denotes the boundary condition at the discrete
time instant k and η[k] denotes a zero-mean random vector. The variance of
η[k] is a design parameter. A low variance yields optimal performance if the
boundary condition is constant in time. A high variance, on the other hand,
yields more noisy estimates for a constant boundary condition, but can better
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Figure 7.10: Absolute value of the correlation between the density at the grid
cell indicated by the star (at which a measurement was assumed to be taken
during the simulations) and all other cells. The correlation is computed from
the approximate error covariance matrix of the RRSLSQRT for q = 250 and
localization of type A. The thick lines mark the region in which the grid cells
are updated by the measurement.

track a time-varying boundary condition. The estimates obtained with the
Kalman filter are then employed as boundary condition in the VAC.

Figure 7.11 compares the true and estimated value of the momentum density
of the plasma flow coming in at the left boundary. As expected, the change in
the boundary condition is reconstructed only with a certain time delay. Notice
the overshoot in the estimate around simulation step 350.

The time evolution of the MSE in the state estimates is compared in Fig. 7.12
for a data free simulation, an RRSLSQRT where the boundary condition is
estimated from the three measurements at the left of the bow shock and an
RRSLSQRT where the boundary condition is known up to a small additive
noise term. The results of the RRSLSQRT were obtained for q = 250
and covariance localization type B. Although the RRSLSQRT extended with
boundary condition estimation performs significantly better than a data free
simulation, the estimation error increases very rapidly between simulation step
200 and 400, which is due to the delay and overshoot in the estimate of the
boundary condition. The RRSLSQRT in which the boundary condition is known
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Figure 7.11: Comparison between true and estimated value of the momentum
density of the plasma flow coming in at the left boundary. The estimates are
obtained using the three measurements at the left of the bow shock.

up to an additive noise term, on the other hand, is relatively insensitive to the
change in the properties of the incoming plasma flow and performs orders of
magnitude better. This result indicates that the simulations are quite sensitive
to the specification of the boundary condition and that estimation accuracy can
be significantly increased if accurate measurements or estimates of the incoming
plasma flow are available.

Figure 7.13 shows the estimation error of the RRSLSQRT (q = 250) extended
with boundary condition estimation as function of time and of the type of spatial
localization. Density contours of the plasma flow are shown. Notice that at time
instant k = 300, the error is highest left of the shock front, at k = 500 right of
the front, and at k = 700 in the region where the consecutive shock fronts have
just been formed.

7.5 Conclusion

This chapter has considered the use of the RRSLSQRT filter, developed in
Chapter 6, for data assimilation in a space weather application. Based on the
numerical results presented in [27], a simulation was set-up that emulates the
topology of the bow shock that is formed when the solar wind encounters the
Earth. The numerical model consists of approximately 105 grid cells. Two series
of experiments were conducted.

In the first series, the boundary condition was assumed to be known
and constant and the performance of the RRSLSQRT was investigated under
various conditions. It was found that even for as few as 4 measurements, the
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Figure 7.12: Comparison in the MSE between a data free simulation,
an RRSLSQRT where the boundary condition is estimated from the three
measurements at the left of the bow shock and an RRSLSQRT where the
boundary condition is known up to a small additive noise term.

RRSLSQRT may yield a significant reduction in estimation error over a data-
free simulation. Results also indicate that spatial localization of measurements
has a positive effect on estimation accuracy.

In the second series, the boundary condition was assumed to be unknown and
in addition also time-varying. More precisely, experiments were conducted in
which the flow changes from pressure dominated to magnetically dominated and
in which the bow shock consequently undergoes a complete change in topology.
The RRSLSQRT was extended to simultaneously estimate the time-varying
boundary condition and the system state. It was found that the extended
RRSLSQRT is robust against changes in the boundary condition. Results
indicate that estimation accuracy is strongly dependent on the quality of the
boundary condition estimates.
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Figure 7.13: Estimation error of the RRSLSQRT (q = 250) extended with
boundary condition estimation as function of time and of the type of spatial
localization. Density contours of the actual plasma flow, which changes from
pressure dominated to magnetically dominated, are also shown.





Chapter 8

Conclusions and directions

for further research

This chapter summarizes the most important results obtained in
this thesis and suggests some directions for further research.

8.1 Conclusions

The first part of this thesis has addressed the problem of inverting linear
dynamical systems. In Chapter 3, a new and straightforward inversion
procedure for deterministic system was introduced. This procedure was
extended in Chapter 4 to combined deterministic-stochastic systems. Finally,
in Chapter 5, four applications of system inversion were considered. The main
conclusions of these three chapters are now discussed.

• Chapter 3
Based on estimation theory, a new procedure for left inversion of linear
deterministic systems was introduced. Like the approach of Sain and
Massey [115], the left inverses considered in this thesis consist of a bank
of delay elements followed by a dynamical system. In this thesis, the most
general form of such a dynamical system was derived. This dynamical
system reconstructs both the system input and the system state and can
thus be considered as a joint input-state estimator. The general form
consists of two matrix parameters which can be free chosen. It was shown
that the poles of the inverse system can be assigned by tuning one of
these parameters if a certain matrix pair is observable. This pair turns
out to be observable if the system has no zeros. Based on the theory of
reduced order observers, a new technique was developed to simultaneously
reduce the order of the inverse system and place its poles. The results of
this chapter not only generalize existing methods for left inversion, but
also have direct implications for optimal state estimation in the presence

189



190 Conclusions and directions for further research

of unknown inputs. It is expected that most results translate easily to
continuous-time systems and to the dual problem of right inversion.

• Chapter 4
The inversion procedure developed in Chapter 3 was extended to com-
bined deterministic-stochastic systems by determining the two matrix
parameters so that the estimates of the system state and the input are
optimal in the minimum-variance unbiased sense. Although optimal state
estimation in the presence of both unknown inputs and noise has received
a lot of attention in the past, this is the first extension to joint-input
state estimation. The estimator yields a general framework for the one
step ahead prediction, the filtering and the smoothing problem. Another
important contribution is the establishment of a relation between the
joint input-state estimator and least-squares estimation. Although not
explicitly proven, this relation suggests that the joint input-state estimator
is optimal in a the least-squares sense. Based on the relation, information
and square-root information formulas were derived almost instantaneously.
Finally, it was shown that square-root covariance filtering in the presence
of unknown inputs is not possible. A numerical example has indicated that
the error covariance matrices of the joint input-state estimator converge.
Further research should establish convergence conditions.

• Chapter 5
Four applications of system inversion were considered. First, the problem
of optimal filtering with noisy input and output measurements was
addressed. Recursive filter equations were derived in which the estimation
of the system state and the input are interconnected. As a special
case, the filter provides a new solution to the errors-in-variables filtering
problem, which was shown to be algebraically equivalent to existing
techniques. Next, the problem of filtering in the presence of bias errors
was considered. A suboptimal filter, closely related to the two-stage
Kalman filter [45], was developed. The major difference is that the new
filter can be used also if the equation governing the dynamical evolution
of the bias error is unknown. A simulation example has shown that
such an approach is especially useful if the bias error is constant for
a certain period of time and then suddenly undergoes an abrupt and
unknown change. The last two applications are more practical. First,
model error estimation and dynamic model updating was addressed. An
empirical technique was outlined to update a non-satisfactory accurate
physical state-space model. The technique consists in first estimating the
model error and then identifying an empirical correction model based on
the estimated data. Finally, an approach to joint state and boundary
condition estimation was considered in which the temporal component of
the boundary is completely unknown and the spatial form is expanded as
a linear combination of orthogonal basis functions. It was shown that such
an expansion strongly simplifies the existence conditions of the joint input-
state estimator. Simulation results on a linear heat conduction model
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indicate that measurements in the close neighborhood of the boundary
are needed in order to accurately reconstruct the unknown boundary
condition.

The second part of this thesis has addressed the problem of suboptimal
square-root filtering for large-scale numerical models obtained by discretizing
partial differential equations over a huge spatial grid. In Chapter 6, a spatially
localized variant of the reduced rank square-root (RRSQRT) filter [135] was
developed that is extremely efficient if only few measurements are available. In
Chapter 7, this variant was used in a simulation to study the effectiveness of
data assimilation for the estimation of the bow shock that is formed when the
solar wind encounters the Earth. The main conclusions of both chapters are
now discussed.

• Chapter 6
Two extensions of the RRSQRT filter were developed. The first extension
speeds up the RRSQRT filter by interweaving the so-called reduction step
into the measurement update. The reduction in time is approximately that
of the reduction step. However, a numerical example has shown that the
resulting filter is more vulnerable to divergence than the RRSQRT because
the error covariance matrix is more underestimated. The second extension
has addressed the problem of reduced rank spatially localized square-root
(RRSLSQRT) filtering, where the objective is to update only a subset of
the grid cells by the measurement. The development of such an extension
is motivated by the lower rank approximation which, as was shown in a
theoretical study, may cause an increase in the actual variance of grid
cells that are greatly distant from the cell at which the measurement is
taken. Two variants of the RRSLSQRT were developed. The first variant
is equivalent to the spatially localized Kalman filter [9] if no lower rank
approximation of the error covariance matrix is made. The second variant
is based on the assumption that correlation between grid cells drops to
zero within a distance of a relatively low number of grid cells. Although
being more approximate, this variant turns out to be extremely efficient,
especially if only few measurements are available. A simulation example
on a nonlinear chaotic model has indicated that the RRSLSQRT is more
robust to filter divergence than the traditional RRSQRT filter, especially
if the error covariance matrix is approximated by one of very low rank.

• Chapter 7
The RRSLSQRT is applied with a large-scale model, consisting of
approximately 105 state variables, which emulates the dynamics of the
bow shock that is formed when the solar wind encounters the Earth.
Two series of simulations were performed. The first series assumes that
boundary conditions are known and investigates the performance of the
RRSLSQRT under various conditions It was found that even for as few
as 4 measurements, the RRSLSQRT may yield a significant reduction in
estimation error over a data-free simulation. Results also indicate that
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spatial localization of measurements has a positive effect on estimation
accuracy. In the second series, the boundary condition was assumed to be
unknown and in addition also time-varying. More precisely, experiments
were conducted in which the bow shock undergoes a complete change
in topology. The RRSLSQRT was extended to simultaneously estimate
the time-varying boundary condition and the system state. It was found
that the extended RRSLSQRT is robust against changes in the boundary
condition. Results indicate that estimation accuracy is strongly dependent
on the quality of the boundary condition estimates.

8.2 Directions for further research

In this section, some directions for further research are given. In Sect. 8.2.1,
we consider directions concerning system inversion. Directions concerning data
assimilation are considered in Sect. 8.2.2.

8.2.1 System inversion

A lot of open questions remain in the inversion of linear systems remain. The
main problems are now briefly discussed.

• Due to the duality between left and right inversion, it is expected that
most results derived in this thesis for left inversion translate easily to
right inversion. It can, however, be interesting to study the problem of
right inversion from the viewpoint of estimation theory. To set the idea,
consider the LTI discrete-time system

x[k+1] = Ax[k] + Bu[k] (8.1a)

y[k] = Cx[k] + Du[k], (8.1b)

with x[k] ∈ Rn the state vector, y[k] ∈ Rp the output vector and u[k] ∈ Rm

the vector of inputs. Assume that the system

x̄[k+1] = Āx̄[k] + B̄ȳ[k] (8.2a)

u[k] = C̄x̄[k] + Dȳ[k] (8.2b)

is an instantaneous right inverse of (8.1). Assuming that x̄[k] = x[k], it is
sufficient to require that y[k] = ȳ[k] and x[k+1] = x̄[k+1].

– It follows from (8.1) and (8.2) that

y[k] − ȳ[k] = (C + DC̄)x[k] + (DD̄ − I)ȳ[k].

Consequently, y[k] = ȳ[k] if

{
C + DC̄ = 0
I −DD̄ = 0.
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Solutions to the latter equations exist if rank(D) = p, in which case
the general solutions are given by

C̄ = D(1)C + (I −D(1)D)Z

D̄ = D(1) + (I −D(1)D)U,

where Z and U are matrix parameters that can be freely chosen.

– Furthermore, it follows from (8.1) and (8.2) that

x[k+1] − x̄[k+1] = (C + DC̄)x[k] + (DD̄ − I)ȳ[k].

Consequently, x[k+1] = x̄[k+1] if
{

A + BC̄ − Ā = 0
BD̄ − B̄ = 0,

which yields

Ā = A + BC̄

B̄ = BD̄.

The procedure above yields a general form of an instantaneous right
inverse of (8.1). An important research question is whether this
technique can be extended to the concept of L−delay right inversion.

• Theorem 3.5 provides a general form of an L−delay left inverse of a system.
However, how general is this form exactly? In other words, which subset
of the set of all possible L−delay left inverses does it yield?

• The numerical examples in Sect. 4.5 indicate that the joint input-state
estimators developed in Chapter 4 converge. Further research should
investigate conditions under which convergence occurs. How do the
algebraic equations from which we can compute the steady-state gain
matrices look like? Are they, like in the case of Kalman filtering, algebraic
Riccati equations? If not, what are the properties of the equations and
how do we solve them?

• A necessary condition for left invertibility is that the system has more
inputs than outputs. If this is not the case, the system input can not
be uniquely reconstructed from knowledge of the output. The least-
squares problem (4.34), for example, is then underdetermined. An
underdetermined LS problem of the form

min ‖v‖2
s.t. y = Ax + v,

where y is given and x has to be deduced, has infinitely many solution.
However, by considering the problem

min ‖v‖2 + ‖x‖2
s.t. y = Ax + v,
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that is, by imposing that the norm of the solution must be minimal, the LS
solution becomes again unique. In case the system of which the input has
to be estimated has more inputs than outputs, it can thus be convenient
to consider a minimum-norm extension of (4.34). An interesting research
problem is then whether this minimum-norm solution can be computed
recursively.

• Is there a notion of ill-conditioning in system inversion, just as there is
a notion of ill-conditioning in the inversion of a matrix? To set the idea,
let A be a square n × n matrix that is ill-conditioned with respect to
inversion. Special attention must then be paid to the numerical solution of
an equation y = Ax where y is given and x has to be deduced. The notion
of ill-conditioning in system inversion is most easily understood in terms
of the transfer function H(z). Since Y (z) = H(z)U(z), with U(z) and
Y (z) the z−transforms of the system input and output, system inversion
basically comes down to inverting the transfer function H(z) (assuming
the latter is square). Can we define a condition number in terms of the
transfer function that tells us how the conditioning of certain inversion
problem is?

8.2.2 Data assimilation

Although the results of Chapter 7 are very promising, we are still far from a
real-life implementation in which the RRSLSQRT, or another data assimilation
technique, is used to estimate the topology of the Earth’s bow shock in real-
time. Such an implementation requires further research in which to following
problems are addressed.

• The numerical model used in the experiments is still relatively simple.
First of all, the model is two-dimensional, whereas the actual bowshock is
three-dimensional. The extension to three-dimensional simulations will
probably require the development of advanced data assimilation tech-
niques in which parallel computation and code optimization are carefully
studied. Secondly, the model neglects several important phenomena such
as the influence of the Earth’s magnetic field.

• The simulations considered in this thesis assume that the measurements
are taken at fixed locations. Simulations should be performed in which
the actual orbits of the satellites are taken into account. In addition,
simulations should be considered in which the time interval between the
availability of two consecutive measurements is realistic.

• The performance and stability of data assimilation techniques should be
tested under more various conditions. For example, the influence of the
magnitude of the measurement noise and process noise on the stability
must be assessed.
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• Placing a satellite in an orbit is very costly. The orbit of a new satellite
should thus be carefully chosen. This motivates the development of
methods that determine the optimal location for a supplementary satellite.
A preliminary study in the context of Earthly weather models can be found
in e.g. [91].

• The data assimilation techniques developed in this thesis are aimed to
estimate the effects of the solar wind close to the Earth. Considering
space weather forecasts, it can be more interesting to estimate the initial
conditions at the origin of the solar wind, i.e. at the Sun. These estimates
may then serve as the initial conditions of a space weather forecast.

• Finally, simulations with real measurements observed by satellites should
be considered.





Appendix A

Generalized inverses and

the matrix inversion lemma

A.1 Generalized inverses

Definition A.1. Let A∈Rm×n. Then, A(1)∈Rn×m is said to be a {1}− inverse
of A if AA(1)A = A.

Definition A.2. Let A∈Rm×n. Then, the Moore-Penrose generalized inverse
A† ∈ Rn×m of A is the unique matrix satisfying AA†A = A, A†AA† =
A†, (AA†)T = AA†, (A†A)T = A†A.

Generalized inverses play a fundamental role in the solution of linear matrix
equations. Consider the equation Y = CX, where Y ∈ Rp×m and C ∈ Rp×n

are known matrices, and X ∈ Rn×m has to be deduced. The following theorem
characterizes the solutions in terms of a {1}−inverse of C.

Theorem A.1. Let Y ∈ Rp×m and C ∈ Rp×n be known. Then, there exists a
matrix X ∈ Rn×m satisfying Y = CX if and only if rank C = rank

[
C Y

]
.

The general solution for X is given by X = C(1)Y + (I − C(1)C)Z, where
Z ∈ Rn×m is an arbitrary matrix.

Lemma A.1. Let A ∈ Rn×m, then rank (In −AA(1)) = n− rank A.

Proof: First, note that AA(1) is idempotent. Consequently, the rank of
In −AA(1) is given by

rank (In −AA(1)) = n− rank (AA(1)),

= n− rank A,

see e.g. [12].
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A.2 The matrix inversion lemma

Lemma A.2 (Matrix inversion lemma). Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n

and D ∈ Rm×m be real matrices. If A, D − CA−1B, and D are nonsingular,
then A−BD−1C is nonsingular, and

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

The matrix is inversion lemma is used in this thesis for two purposes.

• It can be used to reduce the number of computations when inverting an
expression of the form A − BD−1C. Suppose that n ≫ m and that the
inverse of A is easy to compute, e.g. A is diagonal. Then, the matrix
inversion lemma provides a very efficient manner to calculate the inverse
of A−BD−1C.

• It can be used to convert between covariance and information filter
formulas.

The following formula provides a manner to invert a 2×2 block matrix based
on the matrix inversion lemma,

[
A B
C D

]−1

=

[
(A−BD−1C)−1 0

0 (D − CA−1B)−1

] [
I −BD−1

−CA−1 I

]

.

(A.1)

Indeed, the diagonal entries of the first matrix on the right hand side of the
equality sign can be computed using the matrix inversion lemma.



Appendix B

Least-squares estimation:

deterministic vs. stochastic

setting

In many applications, one is interested in determining an unknown vector x ∈ Rn

based on a vector of measurements y ∈ Rp and a model that relates x to y. In
linear LS estimation, the model is assumed to have the form y = Cx+ v, where
C ∈ Rp×n is chosen appropriately and where the noise vector v ∈ Rp denotes
the mismatch between the model and the measurement.

Depending on the nature of the noise vector v, two settings of the LS problem
are usually considered: the deterministic setting and the stochastic setting.

B.1 Deterministic setting

In the deterministic setting of LS estimation, the noise vector v is assumed to
be deterministic. This setting of the LS problem has been studied by both
Legendre and Gauss. It deals with determining an estimate x̂LS ∈ R

n that
minimizes the weighted sum of squares of the residuals ‖y − Cx‖2W , i.e.

x̂LS = argmin
x

‖y − Cx‖2W , (B.1)

where the weighting matrix W ∈ Rp×p represents the degree of confidence in
the individual measurements.

The solution to the LS problem (B.1) is given in the following theorem.

Theorem B.1. Consider the equation y = Cx + v, where x ∈ R
n, y ∈ R

p and
v ∈ Rp are deterministic. Let rank C = n and let the weighting matrix W be
positive definite. Then, the LS estimate (B.1) is unique and given by

x̂LS = (CTWC)−1CTWy. (B.2)
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Proof: First, note that (B.1) can be rewritten as

x̂LS = argmin
x

xT(CTWC)x− 2xTCTWy + yTWy.

Setting the derivative of the objective function with respect to x equal to zero,
yields CTWy = (CTWC)x̂LS. The latter equation has a unique solution if and
only if CTWC is non-singular, that is, if and only if C has full column rank and
W is positive definite. The unique solution is then given by (B.2).

B.2 Stochastic setting

Usually, however, a stochastic assumption is made regarding the noise vector
v. Consider again the model y = Cx + v, where x is still deterministic, but v
is assumed to be a zero-mean random variable, i.e. E[v] = 0, with covariance
matrix R := E[vvT]. The objective of the stochastic LS problem is to determine
an estimate x̂LS of x that satisfies the following two conditions: (i) The estimate
x̂LS is unbiased, meaning that E[x−x̂LS] = 0, and (ii) the estimate x̂LS minimizes
the mean squared error E[‖x − x̂LS‖2] over all linear unbiased estimates. It is
straightforward to show that the second condition is equivalent to minimization
of the trace of the error covariance matrix PLS defined by

PLS := E[(x− x̂LS)(x − x̂LS)T].

The estimate x̂LS referred to above is called the best linear unbiased estimate
or the minimum-variance unbiased (MVU) estimate of x. It is characterized by
the Gauss-Markov theorem.

Theorem B.2 (Gauss-Markov theorem). Consider the equation y = Cx + v,
where x ∈ Rn is deterministic and y ∈ Rp and v ∈ Rp are random vectors. It is
assumed that v is zero-mean and has covariance matrix R. Let rank C = n and
let R be non-singular, then

x̂LS = (CTR−1C)−1CTR−1y (B.3)

is the unique best linear unbiased estimator of x. The covariance matrix PLS of
x̂LS, is given by PLS = (CTR−1C)−1.

Proof: See e.g. [82].

Note that by making the choice W = R−1, (B.2) reduces to (B.3). This
yields the interesting insight that an LS problem of the form (B.1) can be given
a stochastic interpretation by weighting the norm by the covariance matrix of
the random vector between the ‖ · ‖ signs.

The inverse of the covariance matrix, P−1
LS , is called the information matrix of

x̂LS. Note that it follows from Theorem B.2 that P−1
LS x̂LS = CTR−1y. This kind

of expression in which the LS estimate x̂LS is pre-multiplied by its information
matrix, is said to be the LS solution in information form.



Appendix C

Proofs and derivations

C.1 Rank proofs

Lemma C.1. Let A ∈ Rn×n and C ∈ Rp×n. Then, the matrix

AN :=














C
A −I

C
A −I

. . .

C
A −I














}

1
}

2

...
}

N

with N ≥ n, has full column rank if and only if {A, C} is observable.

Proof: The idea behind the proof is to apply column and row operations
that preserve the rank, but transform the matrix so that an extended
observability matrix of {A, C} appears in the first column. Without loss of
generality, we assume that N is even. The proof consists of two steps.

• In the first step, we apply a sequence of column operations that preserve
the rank. This sequence is determined by









I
A I

A I
. . .

A I










︸ ︷︷ ︸

U1,N

,










I
0 I

A2 0 I
. . .

A2 0 I










︸ ︷︷ ︸

U2,N

, . . . ,










I
0 I
0 0 I
...

...
. . .

AN 0 0 · · · I










︸ ︷︷ ︸

UN,N

.

It then follows that

rank (AN ) = rank (ANU1,NU2,N · · · UN,N)
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= rank



























C
0 −I

CA C
0 0 −I
...

...
. . .

CAN−1 CAN−2 · · · C
0 0 · · · 0 −I



























︸ ︷︷ ︸

ĀN

.

• In the second step, we apply row operations by left multiplication with
















I
0 I
0 C I
0 0 0 I
0 CA 0 C I
...

...
...

...
. . .

0 CAN−2 0 CAN−2 · · · C I
0 0 0 0 · · · 0 I
















︸ ︷︷ ︸

VN

.

It then follows that

rank(ĀN ) = rank(VN ĀN )

= rank































C
0 −I

CA 0
0 0 −I

CA2 0 0
...

...
...

. . .

CAN−1 0 0 · · · 0
0 0 0 · · · 0 −I































.

The latter matrix has full column rank if and only if ON−1 has full column
rank. Finally, it follows from Theorem 2.1 and Proposition 2.1 that ON−1,
with N ≥ n, has full column rank if and only if {A, C} is observable.
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Lemma C.2. The matrix

BN :=
















I
C D 0
A B −I

C D 0
A B −I

. . .

C D 0
A B −I
















}

1
}

2

...
}

N

has full column rank if and only if D has full column rank.

Proof: The proof is similar to that of Lemma C.1. The idea is to apply
column and row operations that preserve the rank, but transform the matrix.
We will see that by a convenient choice of column and row operations, the matrix
HN now turns up in the transformed matrix.

We give a short outline of the proof. Without loss of generality, we assume
that N is even. The proof consists of two steps.

• In the first step, we apply a sequence of column operations that preserve
the rank. This sequence is determined by














I
0 I
A B I

. . .

I
0 I
A B I














,












I
0 I
0 0 I
0 0 0 I

A2 AB 0 0 I
. . .












, . . .

• In the second step, we apply row operations by left multiplication with
















I
C I
0 0 I

CA 0 C I
...

...
...

. . .

CAN−2 0 CAN−2 · · · C I
0 0 0 · · · 0 I
















.

We then find that BN has full column rank if and only if HN (defined by (3.6))
has full column rank. A necessary and sufficient condition for this to hold is
that D has full column rank.
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C.2 Proof of Proposition 4.1

Proof: It follows from the Gauss-Markov theorem (Theorem B.2) that the
solution to (4.37) is given by

[
x̂[k|k]

û[k|k]

]

=

[
P−1

[k|k−1] + CTR−1C CTR−1D

DTR−1C DTR−1D

]−1

[
P−1

[k|k−1] CTR−1

0 DTR−1

] [
x̂[k|k−1]

y[k]

]

, (C.1)

where the block matrix on the right hand side of the equality sign can be
identified as the error covariance matrix of [x̂T

[k|k] ûT

[k|k]]
T. It follows from (A.1)

that the error covariance matrix is given by

[
P−1

[k|k−1] + CTR−1C CTR−1D

DTR−1C DTR−1D

]−1

=

[
P[k|k] 0

0 Pu[k|k]

]

[
I −DTR−1C(P−1

[k|k−1] + CTR−1C)−1

−CTR−1D(DTR−1D)−1 I

]

, (C.2)

where the inverses of P[k|k] and Pu[k|k] are given by

P−1
[k|k] = P−1

[k|k−1] + CTR−1C − CTR−1D(DTR−1D)−1DTR−1C, (C.3)

and

P−1
u[k|k] = DTR−1D −DTR−1C(P−1

[k|k−1] + CTR−1C)−1CTR−1D, (C.4)

respectively. Note that, as suggested by the notation, P[k|k] and Pu[k|k] can
be identified as the error covariance matrices of x̂[k|k] and û[k|k], respectively.
Consequently, (C.3) and (C.4) yield equations for the information matrices.
Substituting (C.2) in (C.1), yields the following equation for the estimate of the
system state and the unknown input in information form,

P−1
[k|k]x̂[k|k] = P−1

[k|k−1]x̂[k|k−1] + CTR−1y[k]

− CTR−1D(DTR−1D)−1DTR−1y[k],

and

P−1
u[k|k]û[k|k] = DTR−1y[k] −DTR−1C(P−1

[k|k−1] + CTR−1C)−1

(P−1
[k|k−1]x̂[k|k−1] + CTR−1y[k]),

respectively. Applying the matrix inversion lemma to the information formulas
yields, after some calculation, the equations for the measurement update and
the estimation of the unknown input considered in Sect. 4.2.4.
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C.3 Derivation of the Eqs. in Sect. 5.3.2

First, we derive an equation for P̄[k|k] := E[˜̄x[k|k]
˜̄xT

[k|k]]. It follows from (5.14)
that

˜̄x[k|k] = Ax[k−1] + Bu[k−1] − ˆ̄x[k|k−1] + Bû[k−1|k],

= ˜̄x[k|k−1] + Bũ[k−1|k]. (C.5)

An equation for ũ[k−1|k] is obtained from (5.13), which yields

ũ[k−1|k] = (I −Ku[k]F )ũ[k−1] −Ku[k](C ˜̄x[k|k−1] + v[k]), (C.6)

where ũ[k−1] := u[k−1] − û[k−1]. Substituting (C.6) in (C.5), yields

˜̄x[k|k] = (I −BKu[k]C)(˜̄x[k|k−1] + Bũ[k−1])−BKu[k]v[k].

Consequently,

P̄[k|k] = (I −BKu[k]C)(P̄[k|k−1] + BPu[k−1|k]B
T)(I −BKu[k]C)T

+ BKu[k]RKT

u[k]B
T.

Now, we derive an expression for P[k|k] in terms of L̄[k]. It follows from (5.15)
that

x̃[k|k] = (I − L̄[k]C)˜̄x[k|k] − L̄[k]v[k].

Consequently,

P[k|k] = (I − L̄[k]C)P̄[k|k](I − L̄[k]C)T + L̄[k]RL̄T

[k]

+ (I − L̄[k]C)BKu[k]RL̄T

[k] + L̄[k]RKT

u[k]B
T(I − L̄[k]C)T.

After some calculation, it is found that the gain matrix L̄[k] minimizing the
trace of P[k|k] can be written as

L̄[k] = P̄[k|k−1]C
T
[
(I − FKu[k])(R̄[k] + FPu[k−1|k−1]F

T)
]−1

= P̄[k|k−1]C
TR̄−1

[k] .
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