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Introduction: the ovarian cancer problem

1. The first/second most commonly diagnosed gynecologic malignancy.

2. The leading cause of death from gynecological malignancy.

3. The fifth leading cause of cancer deaths in women.

4. Poor prognosis if diagnosed at an advanced stage.

5. ⇒ Early diagnosis is important (screening, prevention).

6. Multifactorial disease.
Personal data

Familial factors

Environmental factors

Tumor vascularization

Tumor morphology Tumor echogenicity

Tumor markers

Tumor type/stage

1. Goal: learning a diagnostic model

(a) Performance: Classification/prediction system
i. Incorporation of prior expert knowledge
ii. Handling incomplete data
iii. Decision support, value of further information
iv. Subclassification, suggestion of treatment

(b) Understanding: Relevant variables/risk factors
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The ovarian cancer problem

in the high-throughput context

Personal data ~102
Genotype data

Single nucleotide polymorphisms (SNPs) ~102-105/106

Copy Number Variations (CNVs) ~104

Environmental factors ~101

Tumor markers
Gene (mRNA) expression profile ~104

CGH profile ~105

Proteomic profile ~104

microRNA profile ~102

Tumor type/stage

High-throughput measurements:

higher number of variables with 2-4 orders

Goals

Understanding

Relevance of variables (e.g. for diagnosis)

Mechanisms (e.g. for intervention)

Automated study design

ÞSensitive, but multiple-testing proof data analysis

ÞKnowledge-rich data analysis

Performance

ÞFusion of prior knowledge

ÞAnalysis and fusion of electronic prior knowledge

ÞFusion of “classical” clinical expertise

Value of further information analysis

Clinical observations ~102

Bayesian

data

analysis
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International Ovarian Tumor Analysis

Consortium (IOTA)

1. Data (9-19 international centers)

(a) 68 parameters

(b) 1,066 cases IOTA − 1(2007)

2. Models

(a) logistic regression (LR) (1997),

(b) multilayer perceptrons (MLPs) (1998),

(c) support vector machines (SVMs) (1998),

(d) ⇒Bayesian logistic regression/multilayer perceptrons (2001),

(e) ⇒Bayesian Belief networks (BNs) (2001),

(f) least squares support vector machines (2002),

(g) Bayesian kernel methods (2007)
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Data

1. Parameters: 35 out of 68 are used in the thesis: FamHistBrCa, FamHistOvCa, FamHist,

PMenoAge, ReprYears, Meno, Age, PostMenoY, Hysterectomy, CycleDay, PillUse, Parity,

HormTherapy, Pathology, PapFlow, PapSmooth, Papillation, Solid, WallRegularity, Septum,

IncomplSeptum, Locularity, Echogenicity, Shadows, TAMX, PSV, PI, RI, ColScore, Volume, Ascites,

Fluid, Bilateral, Pain, CA125

2. Data sets in the thesis 6= IOTA − 1(2007)

(a) IDO, 11 variables, 300 cases (1997)

(b) IOTA − 1.1, 31 variables, 604 cases (2002)

(c) IOTA − 1.2, 35 variables, 782 cases (2003)

The biplot of the IOTA-1.2 data set:
(variables:‘o’, cases:‘+’/‘o’)
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Models:

Probabilistic conditional and domain models

Logistic regression (LR): P (y|x) = σ[

� n
i=0(βixi +

� n
j=1 (βi,jxixj + . . .)))],

Multilayer perceptron (MLPs): f(x, ω) = σ[

�L
i=1(ωi tanh[

�|X|
j=1(ωijxj + ωi0)])],

Naive Bayesian networks (N-BNs): p(y, x1, . . . , xn|θ) = p(y)

�n
i=1 p(xi|y),

Bayesian networks (BNs): p(x1, . . . , xn|θ, G) =
�n

i=1 p(xi| pa(Xi, G)).

Model: structure and parameters (LR/MLP:θ, BN:ω)
Bayesian network used for parameter elicitation (conditional probabilities are underlined):

Pathology

WallReg.

Meno

Ascites

PapSmooth

Locularity

CA125

ColScore

PillUse

Bilateral

Volume

P(PillUse) P(Meno)
P(Path.|PillUse,Meno)

P(Loc.|Path.)
P(Volume|Path.)

P(ColScore|Loc.,Path.,Meno)

P(WallReg.|Loc.,Path.)
P(Ascites|Loc.Path.,Vol.)

P(PapSmooth|Loc.,Path.,WallReg.)

P(Bilateral|Path.,Asc.) P(CA125|Asc.,Path.,Meno)
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Methods

for Bayesian model averaging (BMA)

Frequentist statistics: optimization (w.r.t. likelihood)
Bayesian statistics: model averaging (w.r.t. posterior)
Predictive inference:

p(x|D) =
k

p(Mk|D) p(x|θk)p(θk|D, Mk) dθk. (1)

“Parametric” inference (inferring about a structural model property):
p(F (G) = f |DN ) = Ep(G|DN )[F (G) = f ] =

G

1(F (G) = f)p(G|DN ). (2)

Inference Model Target Method

Predictive LR/MLP p(y|x, S, DN ) = Ep(ω|DN )[f(x, ω] hybrid-MCMC

Predictive N-BN p(y|x, DN ) = Ep(G|DN )[p(y|x, G)] exact (by sum-prod flip)

Predictive BN p(y|x, DN ) = Ep(G|DN )[p(y|x, G)] ordering MCMC

Parametric BN p(F (G) = f |DN ) =

Ep(≺|DN )[p(F (G) = f | ≺)]

ordering MCMC

Parametric BN K most probable model properties integrated estimate&search
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Contributions of the thesis

1. Electronic prior knowledge.

(a) Statistical natural language processing
i. Text-mining by Bayesian networks (BNs).

(b) Bayesian logic.
i. Fusion of factual and uncertain knowledge.

2. Bayesian analysis of relevance.

(a) Generalizations of the feature subset selection (FSS) problem.

(b) Ordering MCMC for Markov Boundary subGraphs (MBG).

(c) Integrated estimate and search method for MBGs and Markov Boundary sets.

(d) The Bayesian, four-level analysis of relevance (B4s).

3. Fusion of prior expertise in predictive systems.

(a) Knowledge engineering textually enriched prior models (BNs).

(b) Prequential analysis of the value of priors.

(c) Structural priors for multilayer perceptrons (MLPs) using MBGs.

(d) Parametric priors for MLPs by a distance minimization projection method.
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Priors for the ovarian cancer

Document collections by querying Pubmed query with “ovarian cancer” (35, 562)

the most relevant papers (2, 256) in the most relevant journals (2),

the highly relevant papers (3, 301) the highly relevant journals (3),

the moderately relevant papers (9, 372) in the moderately relevant journals (33),

the relevant journals papers (12, 038) in the relevant journals (93).

Domain vocabulary (phrases, synonyms).

Variables

Discretization levels,

“Text kernel”: name, synonyms, annotations, references.

Hierarchical groupings of the variables.

Pairwise relations: relevance (existential), sign, logical/causal,

Parameterized Bayesian network: 11 variables, 400 estimates,

Three embedded BN structures: 35 variables,

Partial and complete orderings of the variables.
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Prior BN structures

Pathology

FamHist

Age

Parity

Meno

ReprYears

CycleDay

HormThera

PillUse

Bilateral

Volume

Pain

Ascites

Fluid
Septum

IncomplSe

Papillati

PapFlow

PapSmooth

Locularit

WallRegul

Shadows
Echogenic

ColScore

CA125

PI

RIPSV

TAMX

Hysterect

Solid

PMenoAge FamHistOvFamHistBr

PostMenoY

Dashed lines: high relevance, dashed-dotted lines: medium relevance, and dotted lines:
relevance (structures are embedded).
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Parametric priors
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The scatterplot of the conditional probabilities for all the IOTA variables using the expert’s
estimates (vertical axis) and the posterior expectations with BDeu priors (horizontal
axis). The coordinates are labeled with being inside/outside (./x) a credible region(0.99).
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The value of parameter prior: the

hyperposterior of the virtual sample size

0
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trained-uni

naïve-prior

naïve uni

prior-prior

trained-prior

prior-uni

Observations:

1. numeric estimates worth ≈150 complete cases,

2. in simpler model this drops to ≈50 cases,

3. even uniform pseudocounts are advantageous (corresponding to ≈10 cases).
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A multivariate, model-based, causal

text-mining by Bayesian networks

Causal domain model

Association-to-cooccurrence

publication model

Natural

Language

publications

Described

Explanation

End

Explanation

Start

Described

Explanation

End

Explanation

Start

Forward causal publication model

Measurement techniques, study design, analysis, explanation

Literature data

Docs

Terms

Indexed

Abstracts

Depending on the

phase of the domain,

there are many other

factors also……… ……………..

V
a
ri
a
b
le

s

Variables

Association

/similarity

INTEGRATIVE ANALYSIS OF DATA, LITERATURE, AND EXPERT KNOWLEDGE BY BAYESIAN NETWORKS – p. 14/41



Analysis of the association-cooccurrence

relation

Docs

Terms

Indexed Abstracts

V
a
ri
a
b
le

s

Variables

Association

/similarity

Cooccurrence/corelevance

DataR

ExpertRTextR

DataR

ExpertRTextR

Visualization of text- and data-based scores

Text clustering

Correlations, rank correlations

Publications

COREL

TextR COOC

TextR

ExpertRASIM

TextR

COREL

TextR COOC

TextR

ExpertRASIM

TextR

Observations:
The expert is closer to the truth/data.
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Analysis of the forward-causal assumption:

Bayesian, sequential, pairwise approach

The temporal evolution of the collective belief — inferred from the literature — that a
given variable is relevant for the preoperative diagnostics of ovarian cancer.
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The figure shows the sequential posteriors of Bayesian network based relevances - the
MBM(Pathology,Xi,G) relations - using the temporal sequence of publications between
1980 and 2005 in the large PubMed corpus.

Observations:

1. convergence to 0/1 corresponds well to clinical irrelevance/relevance,

2. high level of uncertainty⇒MAP model-based evaluations are problematic!,
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Learning Bayesian network features from

heterogeneous sources

From prior incorporation to BN features???

1. Scarcity of data ⇒ Bayesian analysis of model properties (BN features).

2. 2000: Bayesian analysis of pairwise relevances [5, 6] ⇒ fragmentary theory.

3. The questions are conditional ones (relevance of “attributes” for target).

4. Even the prior is conditionally biased.

5. Idea: Bayesian analysis of restricted, but “conditionally complete” feature.

INTEGRATIVE ANALYSIS OF DATA, LITERATURE, AND EXPERT KNOWLEDGE BY BAYESIAN NETWORKS – p. 17/41



Conditional relevance

and relevance by Bayesian networks

A probabilistic concept of relevance (the “filter” approach)
Definition 1. A feature Xi is strongly relevant, if there exists some xi, y and

si = x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0 such that p(y|xi, si) 6= p(y|si). A

feature Xi is weakly relevant, if it is not strongly relevant, and there exists a subset of features S ′
i of Si for

which there exists some xi, y and s′i for which p(xi, s
′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i). A

feature is relevant, if it is either weakly or strongly relevant; otherwise it is irrelevant [7, 8].

A graph-theoretic representation of relevance
Theorem 1 ([16]). If distribution P is stable w.r.t. the DAG G, then the variables corresponding to the

nodes in the boundary of Y , bd(Y, G) (the parents and children of Y and other parents of its children)

forms a unique and minimal Markov blanket of Y , MBP (Y ) (the Markov boundary). Furthermore,

Xi ∈ MBP (Y ), if Xi is strongly relevant.

Observation (filter vs. wrapper approach): this filter approach is

1. model-free: independent of the function class,

2. method-free: independent of the optimization method,

3. loss-free: independent of the performance measure,
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Bayesian network features:

pairwise, set-based, subgraph-based

Pathology

FamHist

Age

Parity

Meno

PostMenoY

CycleDay
HormTherapy

PillUse
Bilateral

Volume

Pain

Ascites

Fluid

Septum

IncomplSeptum

Papillation

PapFlow

PapSmooth Locularity

WallRegularity

Shadows

Echogenicity

ColScore

CA125

PI RI

PSV
TAMX

Hysterectomy

Solid

Multivariate (set):Markov blanket [set] (MB(Pathology,G))

Univariate (pairwise): Markov Blanket Members MBM(Pathology,X,G))

Multivariate with interactions (subgraph):Markov Blanket subgraph (MBG(Pathology,G))

Observation: these features form a hierarchy of decreasing complexity (cardinality):
BN→MBG→MB→MBM
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The Markov Blanket (sub)Graph feature

Proposition 1. Under standard assumptions, the Markov Blanket structural and parametric marginals

define the conditional distribution of Y given other variables V \ Y :

p(Y |V \ Y )=

MBG(Y,G)=mbg

p(mbg)p(Y |mbg),

The space of DAGs can be collapsed to the MBG subspace in BMA (O(n!2n2

) →).

Theorem 2 ([4]). Under standard assumptions, the ordering-conditional posterior

p(MBG(Y, G) = mbg | ≺, DN ) can be computed in polynomial time.

The MBG subspace can be reduced to the space of orderings in BMA (→ O(n!)):

Ep(G|DN )[MBG(Y, G) = mbg] = Ep(≺|DN )[p(MBG(Y, G) = mbg | ≺, DN )]

Using dynamic programming with O(n2n) space complexity [9]:
The space of orderings can be reduced to space of subsets in BMA (→ O(n2n)).
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Generalizations of the feature subset

selection (FSS) problem I.: learn subgraph

Definition 2. In case of a stable distribution p(Y, X), the feature (sub)graph selection problem (FGS)

denotes the identification of a Markov Blanket subgraph MBG(Y, G), where DAG G denotes a perfect

map of distribution p (i.e., Markov Blanket set + substructure).
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Generalizations of the FSS II.:

learn multiple, most probable features

Definition 3. The Most Probable Features problem (MPFs(K)) consists of the selection of K most

probable feature values f ∈ F .

The “Monte Carlo top K selection problem”:

1. estimation of the posteriors,

2. optimization (search).

A statistical result using uniformly good estimates:

Theorem 3 ([10]). Assuming M i.i.d. samples, the expected error in MPFs(K) is

E[
1

K
(

K

i=1

P̂i −
K

i=1

P∗
i )] ≤

log(2|F|) + 1

M/2
.

An algorithm for MPFs-MBG(K):
Integrated estimation and search using the MBG-ordering spaces [3].
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A method for the integrated estimation and

search for MBGs (MBs)

Require: p(≺),p(pa(Xi)| ≺),k,R,ρ,LS ,ρS ,LT ,M;
Ensure: K MAP feature value with estimates

for l = 0 to M do {the sampling cycle}
Draw next ordering;
Compute p(≺l |DN );
Construct order conditional MBG-Subspace(Π,Ψ, R, ρ)=Φ

SS=UniformCostSearch(Φ,LS, ρS );
for all mbg ∈ SS do

if mbg /∈ T then
Insert(T , mbg)

if LT < |T | then
T =PruneToHPD(T ,LT );

for all mbg ∈ T do
p̂(mbg|DN )+ = p(mbg| ≺l, DN );
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Why Bayesian? Uncertainty at all levels.

The relative log posteriors of ranked BNs, MBs, MBGs.
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Why multilevel? Autonomy at all levels.

Idea: Low-order approximation of a distribution (at least for ranking).
The MB SET(!) posteriors can be approximated by the PAIRWISE(!) MBM posteriors:
p(MB(Y ) = mb |DN ) ≈

Xi∈mb

p(MBM(Y, Xi)|DN )

Xi /∈mb

(1− p(MBM(Y, Xi)|DN )).

(3)

0

0.01

0.02

0.03

0.04

0.05
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0.08

1 6 11 16

MB-FixO./BD

MBM-FixO./BD

MB-FixO./CH

MBM-FixO./CH

MB-MCMC/CH

MBM-MCMC/CH

Observations:

1. numeric approximation is tragic,

2. approximation of rankings is poor,

3. particularly in the unconstrained case,

4. In general: MAP-MBG 6=MBG(MAP-BN), MAP-MB 6=MB(MAP-MBG) 6=MB(MAP-BN),

MAP-MBM6=MBM(MAP-MB)6=. . .
INTEGRATIVE ANALYSIS OF DATA, LITERATURE, AND EXPERT KNOWLEDGE BY BAYESIAN NETWORKS – p. 25/41



The sequential analysis of relevance:

the pairwise (MBM) level

The temporal evolution of the belief — represented by the posterior of the MBM feature
and inferred from growing amount of clinical data — that a given variable is relevant for
the preoperative diagnostics of ovarian cancer (conditional on the expert’s ordering).
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The horizontal axis is the sample size with step size 10.
Observations:

1. non-monotonic behaviour (Age replacing Meno),

2. uncertainty even for all data,

3. trends after 500 cases,

4. corresponds well to expert’s rating of relevance.
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The sequential analysis of relevance:

the set (MB) level

The sequential posteriors of high-scoring MB(Pathology) feature values using the
temporal sequence of the IOTA-1.2 data set and given the expert’s total causal ordering.

Observations:

1. The posteriors are less than 10−6 for sample size less than 400,

2. uncertainty even for all data, BUT POSTERIORS can be used to support the
optimized design of subsequent studies.
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Informative priors for parametric black-box

models

Goals:

1. improved Bayesian prediction,

2. fair Bayesian model comparison,

3. model interpretation,

4. bridging the gap between symbolic and sub-symbolic knowledge representation.

(Some) related works:

1. Knowledge-Based Artificial Neural Network [15],

2. Bayesian networks with neural local models [14],

3. Mapping of Bayesian networks onto stochastic neural networks [11],

4. Mixture of Experts [17],

5. Incorporating Prior Information by Creating Virtual Examples [13],

6. Donor-receiver link by imaginary samples [12].
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The two-step, Bayesian methodology for the

fusion of knowledge and data

Black -box 
model

Samples

Expertise

Knowledge engineering   Learning and inference

Literature
Annotated 
Belief
Network

Class label

Class probability

Distribution 
of class 
probability

0?1

P=?

First, we formalized the prior domain knowledge in a Bayesian network. Second, we
induced informative structure and parameter priors for parametric conditional models to
support various Bayesian inferences.
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The prior sample/sample prior

transformations

Definition 4.

P (ω|D+
N′

, DN , ξ−)∝P (DN |ω)P (ω|D+
N′

, ξ−)=P (DN |ω, ξ−)P ′(ω|ξ−). (4)

Definition 5.

p(ω|ξ+) ,

D+

N′

p(ω|D+
N′

, ξ−)p(D+
N′

|ξ+) (5)

=

D+

N′

p(ω|D+
N′

, ξ−) p(D+
N′

|θ)p(θ|ξ+) dθ (6)

∝

D+

N′

p(ω|ξ−)p(D+
N′

|ω) p(D+
N′

|θ)p(θ|ξ+) dθ. (7)
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The conditional distance minimization

transformation

Definition 6 ([1, 2]). Let θ and ω denote the parameters of a domain model and a conditional model. The

direct transformation of an informative prior from a domain model into an informative prior over a parametric

black box conditional model (T : Θ → Ω) is defined as

TKL(θ) = arg min
ω′

Ep(X|θ)[KL(p(Y |X, ω′)‖p(Y |X, θ))] + c(ω) (8)

TL2
(θ) = arg min

ω′

Ep(X|θ)[L2(p(Y |X, ω′), p(Y |X, θ))] + c(ω). (9)

1, Generate Bayesian network parameters {θ1, . . . , θl}

2, Generate block of prior samples from each parameter {Dp
1 , . . . , Dp

l }

3, Train a multilayer preceptron for each block of samples resulting in a block of
perceptron parameters {ω1, . . . , ωl}

3, Approximate the posterior with mixture of Gaussians (G.Fannes:symmetries in the
MLP parameter space).
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Performance of Bayesian classification with

informative priors

The learning curves for the multilayer perceptron models using an informative prior
(MLP-Informative), a noninformative prior (MLP-Noninformative) or prior samples
(MLP-Prior sample).
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1. the same performance as the prior Bayesian network,

2. better performance throughout,

3. not restrictive in the large sample region,

4. high computational complexity of deriving the informative prior,

5. lower complexity in the inference,

6. collapse of a complex general Bayesian model into a task specific, simpler
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Software platform

1. 105 lines of code written in C++ and MATLAB,

2. graphical user interface in the MS-Windows MFC environment,

3. command line version runs in a parallel computing grid environment,

4. Software Environment for Bayesian and Neural Networks (SEBANN),

5. LINUX version with continuous variables (Geert Fannes),

6. System for Probabilistic Annotated Networks (SPAN),

7. modules are migrated into the GEnomic Study Design and Analysis platform.
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Applicability in the postgenomic era

1. Statistical text-mining of multivariate relations.

(a) Text-mining by Bayesian networks.

(b) Goals: minimal preparation, early applicability, model-based.

2. Bayesian four-level analysis of relevance.

(a) Integrated estimate and search method for MBGs and Markov Boundary sets.

(b) Goals: expression, representation, and communication (publishing) of
uncertainty at multiple, linked levels.

3. Fusion of electronic, factual knowledge and probabilistic data analysis.

(a) Bayesian logic by annotated Bayesian networks.

(b) Goal: knowledge-rich data analysis using complex, semantical hypotheses.

4. Fusion of prior expertise in predictive systems.

(a) Fusion using the conditional distance minimization transformation.

(b) Goal:Fusing clinical diagnostic knowledge into models developed by
high-throughput data.
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Challenges

1. Text-mining by Bayesian networks.

(a) Neutral omission,

(b) Negation,

(c) Temporality,

(d) Utility models,

2. Bayesian analysis of relevance.

(a) Multiple target variables,

(b) Continuous variables,

(c) Incomplete data,

(d) Scaling up the number of variables from 100 to 1000: hierarchical-MCMC and
coupled-MCMC.
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