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Péter Antal

U.D.C. 681.3*I2, 681.3*I21 20 December 2007



c©Katholieke Universiteit Leuven – Faculteit Toegepaste Wetenschappen
Arenbergkasteel, B-3001 Heverlee (Belgium)

Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of
openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron-
isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming
van de uitgever.

All rights reserved. No part of the publication may be reproduced in any form
by print, photoprint, microfilm or any other means without written permission
from the publisher.

D/2007/7515/99

ISBN 978-90-5682-865-3



Foreword

In my research I crossed many borders between systems, countries, disciplines,
and between the industry and the academy. Therefore, I am in debt and would
like to thank the people who helped me in my results presented in thesis.

First, I thank Herman Verrelst for inviting me to the Department of Elec-
trical Engineering at the Katholieke Universiteit Leuven, helping my first steps
in Leuven and sharing his ideas about the spin-off activity he followed.

I would like to express my gratitude to Prof. Bart De Moor for his support of
my research (planned for a half year, extended to four years), for the possibility
of participating in the stimulating environment of the emerging bioinformatics
group, and for his trust that the page count of my Ph.D. manuscript will ever
increase, then that it can be cut to a manageable level. I thank Prof. Yves
Moreau for his patient, parsimonious, and accurate advices on the content and
the style of our papers and the Ph.D. manuscript. I greatly appreciate the
professional and personal support of Prof. Dirk Timmermann in the IOTA
project, and his belief in Bayesian Bayesian networks. I am also in debt to
Prof. Sabine Van Huffel and Prof. Joos Vandewalle for their advices on ROC
methodology and Bayesian neural networks.

I would like to thank Stein Aerts, Janick Mathys, Gert Thijs, Frank De
Smet and Kathleen Marchal for their biomedical crash-courses. I thank Patrick
Glenisson for his professionalism to nurture our ideas on integrated analysis of
genomical text and data (from ATAGC to TextGate). I am very grateful to
Geert Fannes for his trust and work, because many of these concepts would
never have been finished without his propensity, fluency and perseverance w.r.t.
probability theory, Bayesianism, C-MATLAB coding and debugging (the trouble
is that we cannot grasp multitemporal causality. . . ;-) Dank u voor uw hulp!

At the Budapest University of Technology and Economics, I am in debt
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Abstract

We developed methods to incorporate expert knowledge and electronic literature
into Bayesian inference over domain models and conditional models. Particu-
larly, we investigated the relations between and the joint usage of three types
of probabilistic models: the “literature” model corresponding to free-text elec-
tronic literature, the “causal” domain model and a particular conditional model.
These models were applied to the preoperative classification of ovarian masses.

First, we collected and elicited textual, qualitative and quantitative informa-
tion about ovarian cancer, such as electronic resources, the qualitative and quan-
titative characterization of the associative pairwise relations between variables,
the causal and multivariate aspects of the relations, and complete probabilistic,
causal domain models as Bayesian networks annotated with free-text and links
to the electronic literature. This “annotated” Bayesian Network was the pre-
cursor of our proposal for probabilistic logical knowledge bases incorporating
complex distributions and free-text information.

Second, we characterized and investigated a model-based method for statis-
tical text analysis that uses Bayesian networks to support knowledge extraction
and discovery from biomedical publications.

Third, we performed a cross-comparison and evaluation of the elicited expert
priors and the posteriors for the models based on literature and clinical data.
We devised methods to perform Bayesian inference about classification oriented,
complex structural features of a causal model, such as sets of relevant features
or classification subgraphs, incorporating heterogeneous information sources.

Finally, we evaluated the classification performance of Bayesian classifiers
including logistic regression, multilayer perceptrons and various Bayesian net-
works. For Bayesian network classifiers we analyzed the induced joint posterior
over various structural features and performance measures. For logistic regres-
sion and multilayer perceptrons we proposed and investigated methods to derive
structural and parametric priors from priors over Bayesian networks.

The system, which we implemented performs personalized, domain-specific
Bayesian inferences over the optionally linked “literature” model, causal domain
model and conditional model by fusing expertise, electronic literature and obser-
vational data. Specifically, it performs a Bayesian, four-level, sequential analysis
of relevance — at the levels of pairs of variables, sets of variables, submodels,
and models — incorporating diverse priors; thus facilitating knowledge-rich sta-
tistical data analysis.
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Notation∗

List of symbols

x,x,x scalar, (column)vector or set, matrix
X, x, p(X) random variable X with value x, probability mass function or density of X
EX,p(X)[f(X)] expectation of f(X) w.r.t. p(X)
varp(X)[f(X)] variance of X w.r.t. p(X)
Ip(X |Z|Y ) observational conditional independence of X and Y given Z w.r.t. p
(X ⊥⊥ Y |Z)p Ip(X|Z|Y )

(X 6⊥⊥ Y |Z)p) ¬Ip(X |Z|Y )

CIp(X; Y |Z) interventional conditional independence of X and Y given Z w.r.t. p
≺ (partial) ordering
≺c a complete reference ordering of the domain variables
G, θ Directed Acyclic Graph (DAG)/Bayesian network (BN) structure, BN parameters
G∼ essential graph of DAG G

Ĝ≺
C(D) an optimal graph compatible with ordering ≺ w.r.t. data set D and score/method C
G(n)/Gk(n) set of DAGs over n nodes/with maximum k parents
G≺ set of DAGs compatible with ordering ≺
∼, (pa(Xi, G) ∼≺) compatibility relation (e.g., pa(Xi, G) parental set is compatible with ordering ≺)
F,F , f,F≺ feature function, its range, a feature value, set of values f compatible with ≺
Si(f,≺) the set of valid parental sets of Xi in feature f given ordering ≺
Ci(f,≺, pa) a clause expressing pa ∈ Si(f,≺)
MBp(Xi) a Markov Blanket of Xi in p
SMLP /S, ω Multilayer perceptron (MLP) structure, MLP parameters
pa, pa(Xi, G) set of parental variables, set of parents of Xi in G
paij the jth configuration of the values of the actual parents of Xi in some ordering
bd(Xi, G) set of parents, children and the children’s other parents of Xi in G
MBG(Xi, G) the Markov Blanket/Mechanism Boundary Graph of Xi in G
MB(Xi, G) Markov Blanket of Xi defined by bd(Xi, G) in p compatible with G
MBM(Xi, Xj , G) the binary Markov Blanket membership
n number of random variables
k maximum number of parents in DAGs
N number of observed samples
N+/N...,+,... the appropriate sum of Ni/N...,i,...

∗See also the remarks about style and notation in Section 2.2

v



vi Notation

DN/DL
N real/literature data set with N complete observations

D|X data set D restricted to the set of variables X

DIO1/IO2 clinical data sets

DMEHMR
O/R , DPMHMR

O/R literature data sets based on a Medline (ME)
and Pubmed (PM) corpus with H/M/R filters
binarized with Occurence/Relevance

D∗/D′ artifical data set generated by bootstrap/Monte Carlo methods
|| cardinality
1() indicator function

S
h/m/r/n
i set of undirected edges with node i with high, medium, reasonable and

negligible pairwise relevance
GH/M/R three prior DAG structures with high, medium and reasonable relevance

S
H/M/R
i the set of incoming edges/parents of node i in DAGs GH/M/R

f ′, f ′′ first and second derivatives of function f
AT transpose of the matrix A
A() free-text annotation for an object
ξ+/ξ− informative/noninformative background knowledge
KB knowledge base (axioms)
KB |= α the entailment (“truth”) of sentence α w.r.t. knowledge base (axioms) KB
M(KB) the set of models of a knowledge base KB
¬,∧,∨, 6=,→ the logical connectives of negation, and, or, exclusive or, implication
∩,∪, \, ∆ the operations of intersection, union, difference, and symmetric difference
KB ⊢i α the provability of sentence α by a proof system ⊢i w.r.t. axioms KB
Γ the Gamma function
Beta(x|α, β) the probability density function (pdf) of the Beta distribution
Dir(x|α) the pdf of the Dirichlet distribution
N(x|µ, σ), N(x|µ, Σ)the pdf of the normal distribution
BD,BDe Bayesian Dirichlet prior, (observationally) equivalent Bayesian Dirichlet prior
BDCH a Bayesian Dirichlet (BD) prior with hyperparameters 1
BDeu a BD prior, where the hyperparameters are the converse

of the number of parameters in the local dependency model of the variable
L(θ; DN ) the likelihood function p(DN |θ)
H(X, Y ), I(X ; Y ) the entropy and the mutual information of X and Y
KL(X‖Y ), H(X‖Y )the Kullback-Leibler divergence and the cross-entropy of X and Y
L1(, ), L2(, ) the Manhattan and the Euclidean distances

the absolute and the quadratic losses
L0(, ) the 0-1 1oss
O()/Θ() asymptotic, proportional upper/upper and lower bound
maxKth(s) the Kth value in decreasing ordering in the set of scalars s



Notation vii

Acronyms

ABN Annotated Bayesian Network
AUC Area Under the ROC curve
BAN-BN/BAN Bayesian Network Augmented Naive Bayesian Network
BMA Bayesian Model Averaging
BN Bayesian Network
BNC Bayesian Network Classifier
DAG Directed Acyclic Graph
FSS Feature Subset Selection (problem)
FGS Feature (sub)Graph Selection (problem)
HPD High Probability Density (region)
IDO IDO/99/03 project (K.U.Leuven) entitled “Predictive computer models

for medical classification problems using patient data and expert knowledge”
IOTA a multicenter study by the “International Ovarian Tumor Analysis” consortium
IR Information Retrieval
LR Logistic Regression
KE Knowledge Engineering
KB Knowledge Base
MAP Maximum A Posteriori
MD MEDLINE
MI mutual information
ML Maximum Likelihood
MLP Multilayer perceptron
MBG Markov Blanket/Mechanism Boundary Graph (a.k.a. classification or feature subgraph)
MB Markov Blanket/Boundary set
MBM Markov Blanket/Boundary Membership
(MC)MC (Markov Chain) Monte Carlo
MPFs Most Probable Features (problem)
Naive-BN/N-BN Naive Bayesian network
OC Ovarian Cancer
pABN-KB Probabilistic Annotated Bayesian Network Knowledge Base
PM PUBMED
ROC Receiver Operating Characteristic (ROC) Curve
TAN-BN/TAN Tree Augmented Naive Bayesian Network
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adástechnika, vol. 60, pages 40–49, 2005 (in Hungarian).

[25] P. Antal and A. Millinghoffer. A probabilistic knowledge base using an-
notated bayesian network features. In Proceedings of the 6th Interna-
tional Symposium of Hungarian Researchers on Computational Intelli-
gence, pages 1–12, 2005.

[26] P. Antal and A. Millinghoffer. Literature mining using bayesian networks.
In Proc. of third European Workshop on Probabilistic Graphical Models,
pages 17–24, 2006.
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Chapter 1

Introduction

The recent technological developments in life sciences enabling the sequencing
of genomes and high-throughout genomic, proteomic, metabolic techniques have
redefined biology and medicine and opened the genomic and post-genomic era.
The rapidly accumulating scientific knowledge and data, combined with the ef-
fect of the developing semantic web have expanded and redefined human cogni-
tion by creating the long sought “world brain” in the “e-science” context [103].
An important factor behind this development has been the sheer volume of
knowledge as even the narrowly interpreted “domain knowledge” increasingly
exceeds the limits of individual cognition. The semantic web offers a poten-
tial solution for this new growth of human knowledge, consequently biomedical
knowledge is becoming more and more “external” (i.e., distributed, collectively
shared and maintained in knowledge bases, databases and electronically acces-
sible repositories of natural language publications). These trends suggest that
further development of life sciences depends equally on efficient externalization
and fusion of knowledge as on further technological breakthroughs.

An important and inherent feature of this new voluminous knowledge is un-
certainty. Various forms of uncertainty may arise because of the multilevel and
multiple approaches in biomedicine, beside incompleteness and inherent uncer-
tainty, but many of these can be managed within the single framework of prob-
ability theory using a subjectivist interpretation. The corresponding Bayesian
framework offers a normative method for representing knowledge, learning from
observations and, with utility theory, reaching optimal decisions. In short, the
Bayesian approach provides a normative and unified framework for knowledge
engineering, statistical machine learning and decision support. Its ability to
incorporate consistently the voluminous and heterogeneous prior knowledge in
statistical learning connects statistics and knowledge engineering, leading to the
concept of adaptive knowledge bases or “knowledge intensive” statistics. The
Bayesian framework also offers a computational framework for learning and us-
ing complex probabilistic models, mainly by various stochastic simulations to
perform Bayesian inference, leading to computationally-intensive statistics. Ac-
tually, the exponential increase in computational power in the last fifty years

1



2 Chapter 1. Introduction

was the main condition for the sudden widespread of Bayesian techniques in
the nineties. As the complexity of the priors, the models and the queries can
be expected to grow further, new advances supporting the use of background
domain knowledge in prior incorporation and in posterior analysis are essential
in applied Bayesian statistics.

The vast biomedical domain knowledge, which is a mixture of human ex-
pertise, knowledge bases, databases and literature repositories has posed a new,
practical challenge for applied Bayesian data analysis: how to use heterogeneous
domain knowledge and data efficiently in knowledge engineering, machine learn-
ing and decision support. This challenge is particularly acute in the complex
and rapidly changing fields of medicine and genomics where much of the volu-
minous knowledge is only available as free-text scattered throughout the litera-
ture. Here the proper interpretation of the results of data analysis became an
important bottleneck. That is beside the technology of measurements and the
statistical aspects of data analysis, the support for understanding and revealing
the biomedical relevance of the results became essential.

This thesis investigates the integrative∗ analysis and fusion of heterogeneous
sources, such as expert knowledge, literature and statistical data with special
emphasis on classification, on the usage of domain literature and on multiple
models. Roughly speaking, our goal was to work out a theoretical framework and
implement a system for the formulation and inference of probabilistic queries
in a special domain as a prototype for a general view of the semantic web as a
probabilistic knowledge base. The topic of the thesis also contributes to knowl-
edge intensive and computation intensive Bayesian statistics by (1) investigating
the role of voluminous, heterogeneous, partly electronic a priori knowledge, in-
volving also beliefs arising from domain literature and knowledge bases and (2)
performing Bayesian statistical inferences over knowledge-based, multivariate
properties of complex models.

In our investigation of incorporating complex, heterogeneous priors in Bayesian
data analysis, the Bayesian network was the main model class. The Bayesian
network representation became an important tool in many disciplines related
to the engineering and induction of knowledge, such as in the overlapping fields
of decision theory, statistics, artificial intelligence, causality research, machine
learning and data mining. In the thesis we used Bayesian networks for knowl-
edge acquisition and representation, for statistical text mining, for inferring
complex, multivariate properties of the domain, and for performing prediction.

Whereas a pure prediction and classification task permits more specialized
solutions (such as various kernel methods for classification), frequently it is
equally important to understand the effects and interrelations of the domain
variables. We therefore investigated the applicability of Bayesian networks in
statistical text mining and in the integrative analysis. From the point of view
of conditional modeling this work supports the process of construction of a
classifier providing a methodology and a probabilistic framework to (1) collect

∗We use the term “integrated” to indicate joint usage of multiple sources, “integral” to
indicate the complete treatment of a domain and “integrative” to indicate the existence of
underlying overall models.
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domain knowledge manually, semi-automatically and automatically, (2) formal-
ize various priors for black-box classifiers or for hybrid systems and (3) support
the interpretation and understanding of the classifier and its predictions.

In the thesis the modeling and classification of ovarian tumors served as a real
world application domain. In the first part of the thesis, the derivation of various
priors related to clinical and partly biological models of ovarian cancer (OC)
are presented both with manual knowledge engineering and with automated
knowledge discovery and information extraction methods. The next topic of
the thesis is the fusion of the sources to perform inferences on model properties,
particularly related to classification such as the set of relevant variables and
the structure of their effect on a target variable. Finally, we present a method
that derives an informative distribution for black-box parametric classifiers from
the formalized priors for Bayesian networks and we investigate the role of such
priors in a classification problem.

1.1 A tour of the thesis

The general goal of the thesis was to develop an overall probabilistic framework
that incorporates the textual prior knowledge such as publications, various forms
of expert knowledge ranging from free-text comments to quantitative estimates,
domain models such as Bayesian networks and conditional models such as lo-
gistic regression, because such an overall probabilistic framework allows the
formulation and inference of complex, integrative queries. From an engineering
point of view this goal corresponds to the integrated treatment of the phases of
data analysis, such as preprocessing or interpretation. From a conceptual point
of view it means the development of new probabilistic models for publications
and the fusion of publication models, domain models and conditional models.

The idea of an integrative probabilistic framework led to the development of
the following concepts, methods and systems

1. Annotated Bayesian network based information retrieval, a model-based,
personalized information retrieval method (see Chapter 5);

2. Bayesian network based text-mining, literature mining with causal, prob-
abilistic publication models (see Chapter 6);

3. First-order probabilistic knowledge bases based on Annotated Bayesian net-
work, the concept of embedding complex posteriors in logical knowledge
bases (see Section 5.2);

4. Complex Bayesian network features for classification, the concept of the
Markov Blanket subgraph (MBG) feature† and the Bayesian inference
method for Markov blankets (MB) and MBG features, which is an inte-
grated estimation and search method using the sorted (ordering condi-
tional) MBG space (see Section 7.2 and Alg. 1);

†We follow the general practice that the term feature is used as a descriptor of the domain
(i.e., a domain variable) and as a property of a model as well.
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5. Bayesian, four-level, sequential analysis of relevance, the analysis of rel-
evant variables at the levels of pairs of variables, sets of variables, sub-
models, and models (i.e., at the levels of Markov Blanket Memberships,
Markov Blanket sets, Markov Blanket graphs, and Bayesian networks);

6. Prior transformation methods, a Bayesian network based method to induce
informative priors for parametric black-box classifiers, and the evaluation
of the advantages of priors in classification (see Chapter 10);

7. Probabilistically linked model spaces, the concept of literature based “pos-
terior priors” for domain models and the concept of induced priors for
conditional models from domain models (see Section 8.1 and Chapter 10).

These concepts and methods were responses to the following challenges in
biomedicine such as the availability of electronic prior knowledge, the flour-
ishment of Bayesianism and the growing importance of data exploration and
knowledge discovery beside hypothesis driven research.

1. Expert knowledge, literature and data. How can we support knowledge elic-
itation, information extraction, knowledge discovery and statistical data
analysis in a joint manner?

2. Probabilistic logic. How can we fuse logic and probability theory, specifi-
cally publications, free-text annotations and the results of Bayesian infer-
ences about complex models?

3. Domain and conditional modeling. How can we combine the advantages
of domain and conditional modeling, such as interpretability and the ex-
istence of prior vs. lower computational complexity and better perfor-
mance?

4. Probabilistically linked models. How can we use multiple models with het-
erogeneous data such as literature data and clinical data in a semantically
transparent and computationally efficient way?

The developed results are illustrated with the following examples. Anticipat-
ing Chapter 3 about Bayesian networks, this model class uses directed acyclic
graphs (DAGs) to represent a probability distribution and optionally the causal
structure of the domain. In an intuitive causal interpretation, the nodes repre-
sent the uncertain quantities, the edges denote direct causal influences, defining
the model structure. A local probabilistic model is attached to each node to
quantify the stochastic effect of its parents (causes). Fig. 1.1 shows an artificial
Bayesian network structure G using variables from the OC domain. It intro-
duces also two central concepts of the thesis, the Markov Blanket set and the
Markov Blanket Graph of a given target variable Y in DAG G. The Markov
Blanket set of variable Y in DAG G denoted with MB(Y, G) is a sufficient set of
variables to shield probabilistically Y from the rest of the variables. The Markov
Blanket set MB(Y, G) induces the pairwise Markov Blanket Memberhip rela-
tion denoted with MBM(Y, X, G), which corresponds to the general concept of



1.1. A tour of the thesis 5

relevance/irrelevance (i.e., conditional probabilistic dependency/independency).
The Markov Blanket Graph of variable Y in DAG G MBG(Y, G) includes also
the incoming edges into Y and into its children in DAG G.
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Figure 1.1: An artificial Bayesian network structure G showing also the Markov
Blanket and the Markov Blanket Graph of a target variable Pathology. Underscore
denotes the Markov Blanket set MB(Pathology, G) (i.e., the members of the Markov
Blanket set MBM(Pathology, X, G)). Italic (with underscore) denotes conditionally
relevant variables (i.e., if a variable is pairwise irrelevant, but it is relevant of another
variable is known). Smaller font size denotes the irrelevant variables. Solid lines denote
the edges of the Markov Blanket Graph MBG(Pathology, G).

Example 1.1.1. Annotated Bayesian network based information retrieval.

Let us assume that we are in the middle of a knowledge elicitation or a data
analysis session with our domain experts using Bayesian networks. We have a
partially specified probabilistic domain model, a pile of papers about the do-
main, a mass of notes about multiple aspects and levels and we try to find further
related papers either to extend our prior model or to interpret and evaluate the
inferred model. How can we formulate a model-based and personalized informa-
tion retrieval query using our fragments, comments and papers collected about
the model? Because of the separation of the information retrieval, knowledge
engineering and inductive techniques, this task was dependent on the interplay
of a domain expert and data analyst or knowledge engineer. To support the in-
tegration using the electronic literature we developed a query language and im-
plemented an information retrieval system capable for incorporating annotated
Bayesian network fragments into the query. The following query expresses the
information need about a variable CA125 and its influencing factors (relevant
variables) in the ovarian cancer context with emphasis on “Meigs-syndrome”
(see Chapter 5). The relevant variables are referred as the Markov Blanket of
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Figure 1.2: The temporal evolution of the collective belief — inferred from the lit-
erature — that a given variable is relevant for the preoperative diagnostics of ovarian
cancer. Belief in (pairwise) relevance is represented by the posterior of the MBM
feature, thus the figure shows the sequential posteriors of the MBM(Pathology,Xi ,G)
relations with variables Xi with fast/slow convergence to 1 using the temporal se-
quence of publications between 1980 and 2005 in the large PubMed corpus binarized
with corelevance, BDeu priors, noninformative structure priors and conditionally on
the expert’s total causal ordering.

the variable CA125 in a given Bayesian network structure G (MB(CA125, G))
and A denotes annotations attached to various parts of the model.

“CA125′′, A(MB(CA125, G)), A(IOTA), “Meigs′syndrome′′

Example 1.1.2. Bayesian network based text-mining.

The ABN-IR system can help us to find further related papers to extend
our prior model for example with new structural aspects, but it is usually a
time-consuming task to extract and weight structural relations. A variety of
information extraction techniques can be applied for the automation of this
step, with linguistic or statistical roots, but these methods by definition have a
bottom-up characteristic: they assume explicit statements of the target relation
under reconstruction and the domain experts integrate them into an overall
prior domain model. First we experimented with such co-occurrence and co-
relevance based information extraction methods, but later we proposed a top-
down knowledge discovery method using Bayesian networks (see Chapter 6).
This method infers a confidence for relevance relations by Bayesian averaging
over generative publication models. It can discover prior causal information even
if only associated domain entities are reported in the literature. Fig. 1.2 shows
the sequential posteriors of the relevance of the variables w.r.t. the type of the
ovarian tumor using the publications between 1980 and 2005 (see Chapter 6).

Example 1.1.3. Probabilistically linked model spaces.

The introduced probabilistic publication models allow the definition of an
overall hierarchical metamodel including probabilistic models for corpora of the
literature and for the real statistical data sets. We discussed this data level
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fusion and proposed an approximation using probabilistically linked models at
the level of model features (see Chapter 6 and Section 8.1). Basically it uses
the transformed posteriors of model features given the literature as prior in a
subsequent inference phase as shown in Fig. 1.3.
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Figure 1.3: The reconstruction of prior knowledge in a biomedical domain from liter-
ature data and its incorporation in learning causal domain models. The steps show the
sources of mechanism uncertainty, their generative function in publications, the discov-
ery of mechanism uncertainty and the incorporation of the reconstructed mechanism
uncertainty in Bayesian inference methods. Arrows A1, . . . , An indicate generative
models of causal relevances from various points of view, such as different experimental
setup, analysis method and publication style. Arrow B denotes their publication. Ar-
row C indicates usage of the overall publications to integrate various fragments into
a combined causal domain model. Arrow D indicates that the accepted domain the-
ories are represented in the knowledge bases and are later transformed into a priori
distribution for the subsequent Bayesian learning. Arrow E and F shows the Bayesian
fusion of the reconstructed mechanism uncertainty as prior with real data.

Example 1.1.4. Probabilistic Annotated Bayesian network knowledge bases.

The development of a logical knowledge base for the prior knowledge in-
cluding free-text annotations, references to standard knowledge bases and to
publications raised the issue of the integration of complex posteriors over the
publication models and domain models. For this problem, we proposed the use
of such first-order probabilistic knowledge bases, in which complex distributions
are embedded in a logical knowledge base (see Def. 5.2. We discussed a model
based and syntactic interpretations of the induced probability over sentences of
such a probabilistic annotated Bayesian network knowledge base and discussed
the applicability of an ordering-based MCMC method for features having an
order conditional conjunctive normal form (see Section 8.1 and 7.1.6). For ex-
ample the probability of the following sentence expresses the posterior belief
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that in domain G there is a causal link from variable Age to Locularity and
the annotations (A) of all its edges e are rated as relevant by the expert (see
Section 5.2 for details).

DPath(G, Age, Locularity) ∧ ∀eDEdge(G, e)⇒ Contain(A(e), “relevant′′)

Example 1.1.5. Complex Bayesian network features for classification.

The probabilistic annotated Bayesian network knowledge base allows the for-
mulation of unrestricted first-order sentences including structural model prop-
erties, but the estimation of their truth value (i.e., their probability) poses a se-
rious computational challenge. Because of our interest in classification, we tried
to identify structural model properties sufficient for classification for which an
efficient estimation method exist. We proposed the Markov Blanket Subgraph
(MBG) feature as an ultimate feature from the point of view of conditional
modeling, a.k.a. Mechanism boundary subgraph, and classification or feature
subgraph (see Fig. 1.1 and Section 7.2). We generalized the feature subset se-
lection (FSS) problem — which corresponds to the Markov Blanket set (MB)
feature — by formulating its equivalent at the level of the MBG feature, as
the feature (sub)Graph Selection (FGS) problem (see Def. 7.2.3). Then we for-
malized the Most Probable Features problem (MPFs) (Def. 7.6.1) and analyzed
the effect of feature cardinality on estimating and selecting the optimal features
(see Th. 7.6.1). We proposed an integrated Monte Carlo estimation and search
method based on the truncated MBG-ordering space (see Alg.1). We demon-
strated that a full Bayesian inference over the feature sets and feature subgraphs
is feasible, which allows a new, separate level of data analysis. Based on this
we developed a “Bayesian, four-level, sequential analysis of relevance” at the
levels of Markov Blanket Memberships, Markov Blanket sets, Markov Blanket
graphs, and complete Bayesian networks (see Section 8.5).

Example 1.1.6. Prior transformation methods.

Beside the structural aspects of the domain model, the numerical values
of the model parameters were also investigated in the thesis. In this case the
literature was processed only manually and the domain expert provided prior es-
timates taking into account the literature, so we had no distinct literature based
parameter priors. Our primary interest was to transform such informative pri-
ors into priors for classification systems and investigate their effects. First we
evaluated the value of parameter estimates in the original model class used for
its elicitation. We used a hyperparameter to express a global confidence in
the parameters, which has a counting interpretation as the number of complete
cases incorporated into the estimates of the parameters. As the posterior of this
hyperparameter shows in Fig. 8.2, the prior estimates correspond to approx-
imately 150 cases with this data set, which agrees with our expectations (see
Section 8.2 for details). The next challenge was to integrate this parameter prior
for a particular domain model with a classification oriented model, which in our
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Figure 1.4: The temporal evolution of the belief — inferred from growing amount
of clinical data — that a given set of variables is (exactly) relevant for the preopera-
tive diagnostics of ovarian cancer. Belief in relevance is represented by the posterior
of the MB feature, thus the figure shows the sequential posteriors of high-scoring
MB(Pathology) feature values given the expert’s total causal ordering and using the
temporal sequence of the IOTA-1.2 data set, BDeu priors and noninformative structure
priors. These posteriors are less than 10−6 for sample size less than 400, so the x-axis
starts from this value. The ten most probably MB sets are defined in Table A.7.

case was a multilayer perceptron. Again, as in the case of publication models
and domain model, where we suggested the use of a two-step literature based
posterior prior, we proposed an analogous approximation to an overall meta-
model merging BNs and MLPs. We proposed transformation methods to induce
an informative parameter prior for a given multilayer perceptron structure from
the prior of a Bayesian network. Fig. 1.6 shows this two-step methodology us-
ing a hybrid BN-MLP representation for the fusion of knowledge and data in
classification (see Chapter 10 for details).

Finally we evaluated the effect of parameter and structural priors on the pre-
dictive performance of domain models and classification models. Fig. 1.7 reports
the detailed effect of the parameter prior incorporation for varying proportions
of samples used in the training set, which shows that the induced informative
prior is efficient in the small sample region and not restrictive in the large sam-
ple region (i.e., if the sample size is less or much larger than the number of free
parameters, see Section 10.6 for details)

To describe the background and clarify the joint works with my colleagues,
I summarize the chronological overview. The contributions of the thesis are
enumerated in Section 11.1.

1.2 Chronology of doctoral activities

1. Using prior domain knowledge formalized as a Bayesian network in clas-
sifier construction. The proposal of using Bayesian networks to organize
and formalize prior domain knowledge and to support the construction
of a specific classifier was the starting point for the thesis [10]. Its cen-
tral idea was to induce informative structure and parameter priors for a
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Figure 1.5: The temporal evolution of the belief — inferred from growing amount
of clinical data — that a given subgraph over the subset of the variables is (ex-
actly) relevant for the preoperative diagnostics of ovarian cancer. Belief in relevance
is represented by the posterior of the MBG feature. (Left) The maximum a pos-
teriori MBG subgraph (MBG-1). (Right) The sequential posteriors of high-scoring
MBG(Pathology) feature values given the expert’s total causal ordering and using the
temporal sequence of the IOTA-1.2 data set, BDeu priors and noninformative structure
priors. These posteriors are less than 10−6 for sample size less than 400, so the x-axis
starts from this value. The reported MBGs are defined in Table A.9.

parametric conditional model by projecting a domain model.

2. The transformation of Bayesian network parameter prior into a multi-
layer perceptron parameter prior using model projection and virtual sam-
ple. The general proposal of deriving informative parametric priors for
parametric black-box classifiers has been tested in the case of multilayer
perceptrons [18, 11, 15, 14]. This work has been done mostly in 2000
in cooperation with Geert Fannes, who developed and implemented the
proper treatment of parameter priors for multilayer perceptrons with re-
spect to symmetries in the parameter space. These results can be found
in his doctoral thesis, with many of his extensions, for example to use
continuous Bayesian networks to represent the parameter prior [85].

3. Web-based medical data collection, quality management and preprocessing.
The participation in the data collection of the IOTA project in 2000−2002
provided an excellent opportunity to become familiar with the real world
data set used in the thesis, particularly to have an overview of the process
of the web-based medical data collection and quality checking [5].

4. Integrated analysis of microarray data, gene annotations and literature
with clustering. The integrated usage of expert beliefs, expert annotation,
domain literature and statistical data was investigated in case of clustering
algorithms as well. The implemented text indexing and mining system has
provided the foundation in 2001 to develop a prototype system for the au-
tomated textual analysis of gene clusters (TXTGate). On the one hand it
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Figure 1.6: The two-step methodology covering the fusion of knowledge and data
for classification. First, we formalized the prior domain knowledge in a Bayesian net-
work. Second, we induced informative structure and parameter priors for parametric
conditional models to support various Bayesian inferences. The Bayesian approach to
classification can target three levels: the class label (discrimination), the class proba-
bility (regression) and the distribution of the class probability (right).

performed clustering in the “literature world” of gene annotations and do-
main literature and on the other hand it provided various textual profiling
of the clusters to support clustering in the “data world” of microarrays.
First results about its application were reported in [19, 20] in cooperation
with Patrick Glenisson, who was responsible for clustering and evaluation.
Related results can be found in his doctoral thesis “Integrating scientific
literature with large scale gene expression analysis” [113], describing also
the developed internet service TXTGate [115].

5. Model and domain explorations by ABN-KB keyword profiles. The con-
struction of Bayesian network models annotated with expert textual com-
ments and links to domain literature, together with the implemented text
indexing and mining system has provided the foundation in 2001 to de-
velop and implement an “Annotated Bayesian network”-based information
retrieval language to support contextualized (personalized and domain-
specific) information retrieval in cooperation with Tamás Mészáros from
the Budapest University of Technology and Economics [22, 23].

6. Bayesian network based statistical analysis of domain literature. After in-
vestigation of the pairwise, associative statistical analysis of the literature
in 2001, the next phase was the domain model based statistical analysis
of the domain literature. The proposed model based approach is aimed
at discovering latent causal knowledge in contrast to the individual rela-
tion based, associative text mining methods. Furthermore, the Bayesian
network based statistical analysis of domain literature offers a causal, gen-
erative foundation for prior elicitation from the literature [20, 13, 16, 26].
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Figure 1.7: The learning curves for the multilayer perceptron models using an in-
formative prior (MLP-Informative), a noninformative prior (MLP-Noninformative) or
prior samples (MLP-Prior sample). For the Bayesian network models, the learning
curves correspond to the Naive Bayes structure (BN-Naive) with noninformative prior,
a search in the generalized tree-augmented networks (BN-TAN) with noninformative
prior, and to the fixed prior structure in combination with the informative prior (BN-
Fixed Informative) (left). The other figure shows the learning curves for the multilayer
perceptron and Bayesian network models using an informative prior (MLP-Informative
and BN-Fixed Informative) in comparison with three Bayesian network models using a
noninformative prior in combination with a search over the generalized tree-augmented
network space (BN-TAN), the fixed prior structure (BN-Fixed Noninformative) and
a general Bayesian network structure learning algorithm (BN-General) (right). The x
axis indicates the proportion of samples used for training while the y axis represents
the corresponding area under the ROC curve.

7. Integrated analysis of expert beliefs, expert annotation, domain literature
and statistical data with Bayesian networks. A pairwise, associative ap-
proach towards an integrated analysis of expert beliefs, expert annotation,
domain literature and statistical data in Bayesian network learning was
reported in 2002. In this case both the elicitation from a domain expert
and the text mining method using the expert annotation and domain liter-
ature has produced prior beliefs over pairwise relations, which were cross-
compared and evaluated against the corresponding data scores [16]. The
multivariate extension of the analysis with complex features was devised
in 2003, such as the Markov Blanket subgraphs [25, 21]. Additionally,
since both the medical data set and the literature data is temporal, the
Bayesian inference over complex structural features was expanded with a
sequential analysis.

8. Evaluation of new parameter priors and multivariable structure priors.
The last phase of elicitation of expert beliefs over structure priors and over
parameterization for Bayesian networks with the new IOTA variables has
been performed in 2003.

9. Informative structural and parameter priors for parametric Bayesian clas-
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sifiers. We evaluated the classification performance of various Bayesian
network classifiers, such as naive, tree-augmented and general Bayesian
network classifiers, and of Bayesian logistic regression and multilayer per-
ceptron models extensively in 2000 and 2001, particularly with respect to
the effect of priors and in the Bayesian context with rejection [28, 18, 11,
15, 17, 12, 14]. The new classification oriented Markov Blanket spanning
subgraph features allowed to accomplish the original goal from 1998 to
derive priors also for the parameter structures of conditional classifiers.

1.3 Chapter-by-chapter overview

The structure of the dissertation follows the phases of the construction of a
classification model with the dual goal of understanding the domain and of per-
forming predictions. It starts with preparing domain resources, then exploring,
extracting, formalizing and transforming priors, finally using it in Bayesian in-
ference. Chapter 2 reviews the Bayesian framework, particularly the Markov
Chain Monte Carlo methods and the sequential model evaluation. Chapter 3
summarizes the representation, inference and learning of Bayesian networks. In
Chapter 4 we introduce the ovarian cancer domain. It contains the descrip-
tion of the clinical data sets from the IDO project at the K.U.Leuven) entitled
“Predictive computer models for medical classification problems using patient
data and expert knowledge” and from the IOTA project, which is a multicenter
study by the “International Ovarian Tumor Analysis” consortium. It describes
the original and the derived electronic resources, such as the literature data sets.
It summarizes the results of knowledge engineering including the elicited expert
knowledge and the results of various checks and evaluations. Chapter 5 first
describes a fusion method of complex distributions and logical knowledge bases,
specifically for the fusion of distributions specified by BNs or over BNs and tex-
tual knowledge bases. Then it presents a Bayesian network-based information
retrieval language for annotated Bayesian network to support the knowledge
engineering of complex Bayesian networks in the “e-science” era. Chapter 6 de-
scribes the statistical analysis of the domain literature with Bayesian networks.
It characterizes the proposed Bayesian network based analysis by positioning it
in the spectrum of text mining methods from shallow statistical approaches to
linguistic approaches. Chapter 7 describes methods how to perform Bayesian
inference over complex Bayesian network features, particularly over classifica-
tion oriented features. It introduces a special feature called Markov Blanket
spanning subgraph or Mechanism Boundary subgraph feature, discusses its rel-
evance for conditional modeling and for causal modeling. Chapter 8 contains the
results of the learning of Bayesian networks from heterogeneous sources, that
is the integrated analysis and fusion of heterogeneous information resources. It
contains results about comparing and combining expert prior knowledge, lit-
erature data, medical data on different levels, such as pairwise, higher order
feature and complete domain model level. Chapter 9 is an overview of Bayesian
classification, specifically the use of domain models as classifiers, the Bayesian
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conditional modeling and particularly the multilayer perceptron model and its
relation to the MBG feature. Finally, Chapter 10 discusses derivation of infor-
mative structure and parameter priors for parametric black-box classifiers. It
demonstrates of the proposed methodologies in the ovarian cancer domain and
the performance of various classification models with informative priors.

Chapter 2. A Bayesian primer

This chapter introduces the Bayesian framework including the interpretation
of probability, the interpretation of models (parameters) and its link to deci-
sion theory. Secondly, it summarizes certain techniques applied in the thesis,
particularly the Markov Chain Monte Carlo methods to perform Bayesian in-
ference, the approaches to model averaging and the sequential model evaluation
for model selection and data exploration.

Chapter 3. A Bayesian network primer

This review chapter starts with discussing the representational power of Bayesian
networks, including the interpretation of its parameters and structure. It pro-
vides an overview about the forms of independencies such as conditional, ob-
servational, interventionist, or contextual, and about the structure of indepen-
dencies of a probability distribution and its representation with directed acyclic
graphs. It summarizes the statistical equivalence of such graphical representa-
tion and the possible causal interpretation of directed acyclic graphs. Continuing
the Bayesian approach to Bayesian networks, various inferences in Bayesian net-
works are summarized as we can perform probabilistic inferences over domain
values, over parametric and structural properties of the model as well. First,
the three layers of probabilistic inferences about domain values are summarized,
the case of fixed structure and parameterization, the case of fixed structure and
a prior over the parameterization and the case of the full Bayesian approach
with priors over the structures and parameterization. Next, the probabilistic
inference over structural features of the Bayesian network model are outlined
in the full Bayesian context (i.e., with prior over the structures), though the
computational details are elaborated later in Chapter 7. The final topic in this
chapter is the learning of Bayesian networks.

Chapter 4. Prior knowledge and data about ovarian cancer

The chapter starts with an overview of the ovarian cancer domain, then it doc-
uments the results of knowledge engineering. On the one hand, it presents the
elicited expert knowledge such as the textually, qualitatively and quantitatively
characterized domain variables, pairwise relations and complete domain mod-
els, partly with complete parameterization. On the other hand, it presents the
description of the automatically collected original and the derived electronic re-
sources, such as the literature data sets. Then it continues with the description
of the medical statistical data sets from the IDO and the IOTA projects.
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Chapter 5. Fusing BNs and logical knowledge bases

This chapter first discusses the role of knowledge engineering within the Bayesian
data analysis as prior formulation when significant amount of electronic prior
knowledge and statistical data are available (i.e., Bayesian knowledge engineer-
ing). Second it describes a fusion method of complex distributions and logi-
cal knowledge bases, specifically the fusion of distributions related to Bayesian
networks and textual knowledge bases. Third it describes a numerical vector
representation (i.e., statistical keyword profiles) of parts of ABN-KBs, which
are formalized as elements of a language for ABN-KBs. The ABN-KB based
keyword profiles have multiple roles. First, they allow the exploration of the
knowledge base (e.g., the exploration of a complex Bayesian network) by direct
browsing, by clustering of the profiles or by the visualization of the similarity
of the profiles. As the profiles are part of the ABN-KB language, this exten-
sion allows more complex sentences with the standard probabilistic semantics
of the ABN sentences (e.g., based on the posterior of BN structures). Second,
if the knowledge base is expanded with a collection of domain publications, the
keyword profiling relations and functions can be applied on the publications
as well, which allows the integrated exploration of the knowledge-model and
the domain literature. A simple example of this integrated exploration is the
identification of relevant publications for a given aspect of the ABN-KB. We
report this usage, which supports contextual information retrieval by providing
a personal and domain-specific context through keyword profiles. Another kind
of integrated exploration of the ABN-KB and the domain literature is reported
in the next Chapter, in which certain ABN-profiles are used for text-mining.

Chapter 6. Statistical text mining with BNs

This chapter first provides an overview of various text mining methods from lin-
guistic to shallow statistical approaches for knowledge discovery and information
extraction. Then it proposes a Bayesian network based text mining method
that is oriented towards underlying generative models of associative patterns
(i.e., towards a consistent collection of relations forming a domain model). It
characterizes the applicability of various Bayesian network structures for the
statistical analysis of the occurrence patterns of domain concepts in the domain
literature and discusses their interpretation.

Chapter 7. Bayesian inference over BN features

This chapter first overviews various methods for learning properties of a Bayesian
network and to induce confidence measures for such properties, including boot-
strap. Then we provide a taxonomy of Bayesian network features, including
a structural feature called Markov Blanket spanning subgraph or Mechanism
Boundary subgraph feature. This complex feature embodies a classificational
submodel and it is on an intermediate level between simple features such as
edges or Markov Blanket memberships and complete Bayesian networks. Next,
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we describe general Bayesian methods to perform Bayesian inference over se-
mantic propositions about structural features of Bayesian networks (i.e., meth-
ods to compute or approximate the posterior probabilities of sets of Bayesian
networks with arbitrary properties, including textual conditions). Next, we de-
scribe methods to perform Bayesian inference over Markov Blanket spanning
subgraph features and over simpler structural features defined over them.

Chapter 8. Analysis of heterogeneous information

This chapter is about the integrated analysis of heterogeneous information re-
sources. It presents a unified probabilistic fusion of expert prior knowledge,
literature data and real, statistical data at the level of data, model features and
domain models. The chapter starts with the sequential evaluation of the expert
priors. Then it describes the comparison of the expertise, literature and data
at the pairwise level using visualization methods, rank statistics and classifica-
tion correspondence. Next, we compared complete causal domain models from
experts, literature and data using pairwise and multiparental, causal difference
measures. Then the comparison is performed at the level of conditional features.
Finally, we report the effect of incorporating expert priors and priors from text
mining in Bayesian inference with medical data.

Chapter 9. Bayesian classification

This review chapter first outlines the Bayesian approach to classification, par-
ticularly the use of Bayesian networks and multilayer perceptrons. It overviews
performance measures for discrimination and for prediction of probabilities, in-
cluding a discussion of classification with rejection. Next, it discusses the appli-
cation of Bayesian networks for classification, particularly the tree-augmented
Bayesian networks. The chapter summarizes the logistic regression, its relation
to Bayesian network classifiers and its extension to the multilayer perceptron.

Chapter 10. Bayesian classifiers with a prior domain model

This last chapter discusses the applicability of prior domain knowledge for-
malised as Bayesian network in the process of construction of a classifier. It
describes the developed projection-based method and a virtual sample based
prior transformation methods from Bayesian networks into parametric black-
box classifiers, such as logistic regression and multilayer perceptron models.
Then we present the joint posterior of various conditional features and perfor-
mance measures, which allows the derivation of structure priors for such regres-
sion models. Finally, we evaluated the classification performance of Bayesian
network classifiers and logistic regression models with informative priors.



Chapter 2

A Bayesian primer

We outline the Bayesian decision theoretic framework and define some of its
concepts. We also summarize some practical aspects of the Bayesian frame-
work such as performing Bayesian inference with Monte Carlo simulations and
evaluating models in the prequential framework.

In this thesis, uncertainties are formalized exclusively within the framework
of probability theory. There are numerous reasons for the probabilistic ap-
proach, particularly for its subjective interpretation, that is for the Bayesian
approach. We will discuss some of these concepts in relation to an application
in ovarian cancer diagnosis. We indicate the main points of an axiomatic argu-
ment based on decision theoretic considerations [34]. For a discussion of the ad-
vantages and disadvantages of the Bayesian approach in statistics, see [31, 214],
in artificial intelligence, see [43]; for a historical outlook and recent trends, see
[32, 183, 9].

Subsequently we will summarize Monte Carlo methods to estimate expecta-
tions and to provide confidence measures for the estimates as well, though the
sampling methods can be equally used to explore the posterior. We use mainly
the following works: [108, 111, 194, 176, 102, 120, 171]. For an overview of
analytic approaches to evaluate expectations if analytic forms of the posterior
are available, see [34, 108]. For a detailed treatment of Monte Carlo approaches
to compute other quantities such as credible regions, and Bayes factors, see [45].

Next we discuss a method based on the sequential evaluation of the pre-
dictive performance of the model, called “prequential analysis”. Because of its
sequential nature, it is capable to provide a detailed sample-by-sample compat-
ibility of the data and the model, which is particularly relevant if the data is
ordered. Finally we discuss methods to support the analysis of the posterior,
namely to find model classes with large posterior probability and modes of the
posterior.

17
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2.1 The subjective interpretation of probability

Regarding the variety of events present in knowledge and data analysis, it seems
to be an oversimplification to express the uncertainty over these events with a
scalar quantity subject to the axioms of probability theory (for the moment
we discuss only finite and discrete events). We assume that the uncertainty
is related to the occurrence of events and not to the relevance of the event
system itself (i.e., not to the applicability of propositions representing events).
The establishment of a system of complete and mutually exclusive events is
particularly challenging in medical applications because of the multiple levels
of analysis, the contextual (conditional) and ambiguous definitions (for an at-
tempt to establish a terminology in ovarian cancer diagnosis by ultrasonography
with well-defined meaning of quantitative measurements see [240]). Assuming a
proper event system, the following interpretations were proposed for the prob-
abilistic representation of uncertainties over these events. The physicalist or
propensity approach relies on some inherent randomness of the events [206].
The frequentist approach recourse to the limiting relative frequencies of certain
types of events (for an overview within a computational framework, see [251]).
The axiomatic approaches formally deduce the existence and uniqueness of sub-
jective (personal) probabilities corresponding to optimal decision in a decision
theoretic framework (for a formalization and references, see [34]). The instru-
mentalist approach takes a pragmatic point of view evaluating indirectly the
usage of subjective probabilities as a modeling tool [60, 108, 69].

The usage of probabilities with subjective interpretation to represent uncer-
tainties over outcomes is only the first step towards the Bayesian framework.
The so-called representation theorems show that the assumption of infinite ex-
changeability (i.e., that beliefs are independent of the ordering of the obser-
vations) implies as if the observables are conditionally independent random
samples from a sampling distribution with parameter θ and θ itself have a prob-
ability distribution representing beliefs over its limiting values. Whereas this
interpretation can be criticized on the ground of the asymptotic nature of these
results (note the infinite exchangeability assumptions and that certain finitely
exchangeable sequences have no mixture representation, see p226,[34]), this pro-
vide the second part of axiomatic foundations for the Bayesian framework.

Chaining these together, according to the adopted subjectivist interpretation
of probability, the uncertainties over outcomes are represented with probabilities
as beliefs over the outcomes, which can be represented as a mixture of parametric
distributions with a probability distribution over its parameter expressing beliefs
in its parameterization.

2.2 The general scheme of Bayesian inference

Irrespectively of whether the axiomatic approaches for the subjective interpre-
tation of probability and the Bayesian approach are accepted as normative or
suggestive, from an instrumentalist standpoint the Bayesian framework is con-
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ceptually very simple. First, in a certain context ξ one can express his beliefs
p(x|ξ) in observable quantities x by specifying his belief p(θ|ξ) in (unobserv-
able) parameter quantities θ of relevant parametric models p(x|θ) (ξ+ and ξ−

denote the availability and lack of relevant background knowledge). Second,
one can use the joint distribution p(x, θ|ξ) according to the rules of probability
theory for performing any inference over observable and parameter quantities.
The inference provides standard probabilistic conclusions p(α(x, θ)|ξ) reflecting
his personal belief in the proposition α with respect to this context, where the
proposition about x and θ usually includes parts of the background knowledge ξ
as well. This illustrates one of the main strengths of Bayesianism which is that
throughout the process from setting up the model to the final inference uncer-
tainties are expressed exclusively in a single coherent system of probabilities.

Before examining in detail various forms and properties of such inference,
note that we follow a standard notation in probability theory: using capitals for
random variables and possibly the same lower case letters for values PX(X = x),
omitting the names of the random variables, the indication of their distributions
and the range of summation or integration if it is unambiguous. The same no-
tation p(.) will be used for probability mass functions and densities, and we use
the terms density and distribution mass function interchangeably. Furthermore,
if possible X denotes the explanatory or independent variable, Y the outcome
or dependent variables and D denotes the observed data set. In the sequel we
assume that the data set consists of N complete cases DN = {x(1), . . . , x(N)}
(i.e., each variable Xi ∈ V is observed). The parameters of Bayesian networks
and multilayer perceptrons are differentiated with θ and ω. If necessary, vectors
are differentiated with underline and double underline denotes matrix.

2.2.1 Setting up the model

In an idealistic Bayesian approach the family of the included models should
be as broad as possible expressing beliefs in any potentially relevant model.
However, three issues have to be considered: the potential violation of the prin-
ciple of Ockham’s razor, the computational difficulty to cope with such a large
class of models and the practical difficulty of specifying a priori beliefs. The
first objection against Bayesianism related to Ockham’s razor’s preference for
simplicity can be rejected based on the explanation that, put it simply, more
general models corroborated less than more specific models if they fit to the
observations [146, 175, 194]. The second computational issue is treated in Sec-
tion 2.3, basically relying on the increased availability of computational power
to perform Bayesian inference with stochastic simulations. The third issue of
specification of a priori beliefs for a wide range of models is a central theme of
the thesis, for now we discuss only the concept of hierarchical modeling that we
need for the exposition of the Bayesian framework.

The set up of hierarchical models involves exchangeability considerations as
discussed in Section 2.1 (but now at the level of parameters θ) to validate a
mixture representation and leads to the concept of hierarchical priors using
hyperparameters φ:
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p(θ, φ) = p(φ)p(θ|φ). (2.1)

A frequently occurring form in practice is that the specification is usually
achieved by a structured specification of the relevant models using model classes
Mi, model structures Si

k or M i
k and parameters θi

k. Correspondingly the a priori
belief in a given model from model class i with structure k and parameters θi

k

can be expressed as a product

p(θi
k, M i

k,Mi) = p(Mi)p(M i
k|Mi)p(θi

k|M i
k). (2.2)

These specifications together with the conditional probabilistic model of ob-
servable quantities p(x|θ, φ) or p(x|θi

k, M i
k) provides the joint distribution.

2.2.2 Predictive inference

The specification of the a priori beliefs over relevant models allows us to perform
(prior) predictive inferences over the observable quantity x

p(x) =
∑

k

p(Mk)

∫
p(x|θk)p(θk|Mk) dθk. (2.3)

The operation of integration or summation over models and their parame-
terization implements marginalization and is termed in this context as Bayesian
model averaging [177, 180, 178, 136]. Postponing momentarily the discussion of
the a posteriori beliefs after observing a data set D, we can write the posterior
predictive distribution conditioned on the data set D as

p(x|D) =
∑

k

p(Mk|D)

∫
p(x|θk)p(θk|D, Mk) dθk. (2.4)

These equations illustrate that prediction in the Bayesian framework has
the following distinctive property w.r.t. the frequentist framework: it averages
over models (i.e., there is no model selection). Whereas this a normative result
to perform general predictive inference dictated by the axioms of probability
theory, related results about the advantage of specialized model averaging and
approximate model averaging have also been reported (for the case of binary
classifiers, see [128]; for regression models in the committee framework, see [36];
for Bayesian networks, see [180]; for an overview, see [136]). As we will see in
Chapter 3 and 9, frequently the integration and in special cases even the sum-
mation and the integration can be performed analytically, otherwise stochastic
simulation methods discussed in this chapter and in Chapter 7 can be used to
approximate the inference.

In a certain sense the predictive distributions are the target of the Bayesian
framework and the models are secondary devices, particularly in an instrumen-
talist interpretation of the Bayesian framework. Consequently, the ideal result
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of Bayesian analysis is the full report of the predictive distribution. If the re-
port of the full distribution is not possible, other descriptors are discussed in
Section 2.2.4.2. Now we continue with another type of probabilistic inference
using the a priori belief p(θ) and the model p(x|θ).

2.2.3 Parametric inference with Bayes’ rule

The specified joint distribution, in which observable quantities and parameters
have equal status, allows inference over parameters (i.e., parametric inference
conditioned on the observable quantity using the famous Bayes’ rule):

p(θ|x) =
p(x|θ)p(θ)∫
p(x|θ)p(θ) dθ

∝ p(x|θ)p(θ). (2.5)

In Eq. 2.5 p(θ) is the prior distribution or prior, p(x|θ) is the sampling
distribution that also defines the likelihood and the likelihood function L(θ; x).
p(x) is the marginal likelihood of the data that defines a normalizing constant and
p(θ|x) is the a posteriori distribution of the parameters or simply the posterior.
Eq. 2.5 also shows that the posterior is a kind of equilibrium between the prior
and the likelihood, and with an increasing number of observations, the posterior
is more and more dominated by the likelihood and the effect of prior becomes
negligible.

The posterior (parameter) distributions has already appeared in the poste-
rior predictive distribution in Eq. 2.4 after observing the data set D as p(θ|D),
P (Mk|D) and p(θk|D, Mk) (see [34]). In the discrete case the posterior of the
model p(Mk|D) is given by

p(Mk|D) =
p(D|Mk)p(Mk)

p(D)
(2.6)

where the marginal model likelihood or evidence for Mk is

p(D|Mk) =

∫
p(D|θk, Mk)p(θk|Mk) dθk (2.7)

and the marginal data likelihood is

p(D) =
∑

k

p(D|Mk)p(Mk). (2.8)

2.2.4 Reporting the posterior

The results of an idealized Bayesian analysis can be divided into three categories.
The first category includes the exact report of the predictive and parametric
posteriors (e.g., by the report of its analytic closed form). The second includes
the report of exact values of standard statistical descriptors, such as moments,
modes, quantiles, etc. The third group includes various expectations over these
posteriors, such as the posteriors of arbitrary domain-specific propositions or
expected losses of certain actions, which in the most general case can include
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any mixture of predictive and parametric random variables and domain-specific
background knowledge.

2.2.4.1 Reporting the posterior distribution

The report of the posterior is easy if it has an analytic form. It can be especially
informative if it is from the same parametric family as the prior, which property
also shows certain compatibility of the prior and the sampling distribution. In
fact, the easy specification of the prior and the tractability of the prior-to-
posterior analysis lead to the concept of conjugate prior.

Definition 2.2.1 ([108]). A family F of prior distributions p(θ) is said to be
conjugate for a class of sampling distributions p(x|θ), if the posteriors p(θ|x)
also belongs to F .

The conjugate priors for the broad class of the exponential family are up-
dated to posteriors by the updating their so-called hyperparameters using only a
summary statistics of the observations (see [108, 34]). In this case the hyperpa-
rameters frequently have an intuitive interpretation based on the observations
and the prior specification for the parameters corresponds to the specification of
summaries of real or virtual past observations (see Th. 3.1.6 for an application
with BNs).

Another reason that the posterior frequently has an approximately analytic
form is that according to the “Bayesian central limit theorem” under general
conditions the posterior of the parameters has a Gaussian distribution [34]. For
its application in case of MLP priors, see Section 10.2.3.5.

2.2.4.2 Reporting posterior quantities

If the full report of the posterior over observable quantities or model parameters
is not adequate, as it is often the case with complex models or moderate sample
size, we can report some standard statistical descriptors corresponding to the
posterior or simply the posterior probabilities of arbitrary propositions including
even semantic parts from our background knowledge.

If only a value x̂ of the observable quantity can be reported in case of x,
then the reporting can be interpreted as an action whose utility is specified by a
utility or loss function L(x, x̂). The optimal decision x∗ based on the posterior
predictive distribution is

x∗ = argminx̂

∫
L(x, x̂)p(x|D) dx. (2.9)

In the case of parameter estimation with loss function L(θ, θ̂) and observation

x (and prior p(θ)), the optimal estimate θ̂ minimizes the posterior expected loss

̺(p(θ), θ̂|x) =

∫
L(θ, θ̂)p(θ|x) dθ. (2.10)
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If the reported and reference values x̂i, xi can be interpreted as discrete
probability distributions p̂i, pi, a frequent choice for loss function is the log-
arithmic loss, which leads to the cross-entropy H and to the Kullback-Leibler
(semi)distance KL, which is always positive and can dominate L1 and L2 dis-
tances [99, 59]

H(p‖p̂) = −
∑

i

pi log(p̂i), (2.11)

KL(p‖p̂) =
∑

i

pi log(pi/p̂i). (2.12)

If regions can be reported then the concept of credible region and the highest
probability density (HPD) region minimizing the volume of the region are useful
quantities (see Section 8.2.1).

Definition 2.2.2. A region C ⊆ Range(Θ) is a 100(1-α)% credible region if

∫

C

p(θ|.) dθ ≥ 1− α.

Furthermore, the region C is a highest probability density region if

p(θ1|.) ≥ p(θ2|.) ∀θ1, θ2 : θ1 ∈ C, θ2 /∈ C almost everywhere.

Definition 2.2.3. Frequently only the ratios of marginal likelihoods of models
Mi and Mj are interesting, the so-called Bayes factor [149]:

Bij =
p(D|Mi)

p(D|Mj)
=

p(Mj)

p(Mi)

p(Mi|D)

p(Mj |D)
. (2.13)

The Bayes factor shows the change of the ratio of prior beliefs to the ratio of
the posteriors, which is interpreted as substantial, strong and decisive evidence
below 10, between 10 and 100, and above 100 (for applications, see Section 8.2).

2.2.5 Model transformation and reparameterization

We close the general discussion of the Bayesian framework with the issue of
model transformation, because of its relevance for Chapter 10. If ω = t(θ) is a
one-to-one differentiable function with inverse θ = t−1(ω) then the transformed
density exists and is given by

pω(ω) = pθ(t
−1(ω))|det(Jt−1(ω))|,

where det(Jt−1(ω)) is the determinant of the Jacobian of the inverse transfor-
mation θ = t−1(ω).

An important consequence is that in general a prior supposed to be neu-
tral (e.g., uniform) will loose its property (e.g., will not be uniform) after a
transformation. This led to the concept of the invariance principle and the cor-
responding Jeffreys’ prior and in multidimensional case to its extension of the



24 Chapter 2. A Bayesian primer

reference prior approach [34]. In the thesis we use the term noninformative
prior as a reference prior, which does not incorporate relevant domain knowl-
edge (such context is denoted with ξ−). Another consequence of transformation
is that the maximum a posteriori value, or in general the modes of the posterior
θMAP are not invariant to parameter transformations, contrary to the invariance
of the values maximizing the likelihood function.

2.3 Inference with Monte Carlo methods

The results of Bayesian inference are the predictive and parametric posterior dis-
tribution and usually various general statistical quantities and domain-specific
quantities defined by the posterior can be reported, such as the optimal ob-
servables and parameters with minimal losses, model posterior, posterior prob-
abilities of arbitrary semantic propositions or credible regions, Bayes factors.
All the previous examples, except the last two, actually have the same form of
an expectation with the posterior. For notational simplicity in this section we
will assume that the “target” probability space is defined by a vector-valued
random variable x ∈ Rk with “target” density π(x) and the target function to
be integrated w.r.t. π(x) is f(x), that is

f̄ = Eπ(X)[f(X)]. (2.14)

The computation of this integral or summation has a similarly central role in
the Bayesian framework as of optimization in the frequentist statistical frame-
work. Furthermore, as we have to resort to probabilistic algorithms such as
simulated annealing to approximate global optimization, because of the lack of
general deterministic global optimization methods, similarly, the expectation
above can be approximated with probabilistic algorithms in general. In the
thesis the following two kinds of expectation have to be computed

p(x|D) =

∫
p(x|θ)p(θ|D) dθ, (2.15)

p(α(M)|D) =

K∑

k=1

p(Mk|D)α(Mk). (2.16)

In the first predictive case we will fix the model structure in the case of
logistic regressions and multilayer perceptrons, so there is no summation over
model structures (see Chapter 9). In the second case we compute the probability
of a structural property of Bayesian networks defined by the sentence α, in which
case the parametric integration will have a closed form, see Chapter 3.

2.3.1 Markov Chain Monte Carlo methods

In the case of an unnormalized posterior π(X), importance sampling provides
a baseline tool to approximate the expectation in Eq. 2.14 and in a resampling
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setup it provides a method for the generation of samples from the target distri-
bution. However, a central issue in importance sampling is the iterative checking
and refinement of the closeness of the importance distribution to the posterior.
From this point of view, it is interesting that there are distribution free, au-
tomated methods to perform jointly an iterative approximation to the target
distribution, which asymptotically provide samples from the target distribution.
The general idea is to construct a stochastic process with a limiting distribu-
tion π(X) that can be efficiently simulated. The discrete time, homogeneous
processes with Markov property are an ideal candidate for this purpose because
of their analytic tractability and easy simulations. We start with summarizing
the essential concepts and results for discrete time, homogeneous Markov chains
with discrete and finite state space, which are mostly used in the thesis, then
we discuss a universal construction scheme and its practical application.

2.3.1.1 Markov chains

Let X = {X0, X1, . . .} is a sequence of random variables. The values of Xt

are frequently interpreted as states from a state space, the index parameter
frequently has a temporal or in biological sequence analysis a location interpre-
tation. In many problems, the assumption of bounded effect is a reasonable
assumption, which is formalized by the Markov assumption.

Definition 2.3.1. A sequence of random variables X = {X0, X1, . . .} is called
a (first-order) Markov chain, if p(Xt|Xt−1, . . . , X0) = p(Xt|Xt−1). The Markov
chain is (time-)homogeneous, if the transition kernel p(Xt|Xt−1) does not de-
pend on t.

In this section, unless otherwise stated the values of Xt are discrete and
finite, denoted by nonnegative integers S = {0, 1, . . . , K}. We use the notation

p(t) for the distribution of Xt and p(Xt = i) = p
(t)
i . We always assume homo-

geneity, which allows a shorthand notation pij for the transition probabilities as

pij = p
(t)
ij = p(Xt+1 = j|Xt = i), which are forming the (one-step) transition

probability matrix P = [pij ] (a stochastic matrix). Clearly, the “n-step” transi-

tion probability matrix P (n) containing p
(n)
ij = p(Xt+n = j|Xt = i) is the nth

power of P and

p(n)T
= p(0)T P (n), where P (n) = Pn. (2.17)

A special distribution is the so-called invariant distribution p̃.

Definition 2.3.2. The distribution p̃ is called an invariant distribution of a
homogeneous Markov chain X with transition probability matrix P , if p̃T = p̃T P .

Consequently, if p(0) = p̃, then p(t) = p̃ for ∀ t. The invariant distribution
p̃ is frequently called a stationary distribution, because for a first-order Markov
chain X the identical marginals imply that p(t) = p̃ (X is strongly stationary, if
the distributions of time-shifted finite marginals are identical).

This indicates that if we could construct P such that the target distribution
π(X) is a corresponding stationary distribution and we could sample from π(X)
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at least a correct prior distribution to start the chain, then we could sample from
the target distribution by an efficient simulation of the chain. In lack of this, we
try to construct such a P that p(t) converges to π(X). To formalize this idea,
we need the following concept [102, 120].

Definition 2.3.3. A Markov chain X is stable, if limt→∞ p(Xt) = p(∞) exists,
it is a distribution (called limiting distribution or equilibrium distribution), and
independent of the initial distribution p(X0).

Now we need the concept of irreducibility and aperiodicity to state a central
result about the limiting and invariant distributions.

Definition 2.3.4. The discrete and finite state space Markov chain X is called

1. Irreducible, if there exists nij > 0 for all i, j such that p
(nij)
ij > 0,

2. Aperiodic, if for some i (and with irreducibility, for all), there exists ni > 0

that for all n ≥ ni p
(n)
ii > 0.

Theorem 2.3.1 ([102]). If a discrete and finite state space Markov chain X is
irreducible and aperiodic, then the chain is stable and the limiting distribution
is the unique invariant distribution (i.e., p(∞) is a unique, nonnegative solution

of p(∞)T
= p(∞)T

P and
∑

i p
(∞)
i = 1).

To simplify notation, for a stable chain we denote this unique limiting and
invariant distribution (p(∞), p̃) with π(X), because in our case it will be the
target distribution. Frequently in the literature, a stable chain X is called
ergodic.

The convergence to the stationary distribution π(X) allows various ergodic
theorems, for example an analog of the law of large numbers [102, 120].

Theorem 2.3.2. If a discrete and finite state space Markov chain X is sta-
ble and f̄ = Eπ(X)[f(X)] < ∞, then P (limN→∞ f̂N = f̄) = 1, where f̂N =

1/N
∑N

t=1 f(Xt).

To state an analog “central limit theorem”, we need the following con-
cept [102].

Definition 2.3.5. The discrete and finite state space Markov chain X is geo-
metrically ergodic (convergent), if there exists 0 ≤ λ < 1 and function V (.) > 1
such that ∑

j

|p(t)
ij − πj | ≤ V (i)λt ∀ i. (2.18)

The smallest such λ is called a rate of convergence, expressing the con-
vergence speed to the limiting distribution (i.e., geometric convergence implies
stability).

An analog “central limit theorem” for Markov chains is as follows [235, 102].
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Theorem 2.3.3 ([102]). If a discrete and finite state space Markov chain X
is geometrically ergodic (and thus stable) and started with its invariant dis-
tribution π(X), then for a real valued function f with f̄ = Eπ[f(X)] and

σ2 = varπ(f(X)), Eπ[f(X)
2+ǫ

] ≤ ∞ with some ǫ > 0

τ2 = σ2 + 2
∞∑

k=1

Eπ[(f(X0)− f̄)(f(Xk)− f̄)] (2.19)

exists and nonnegative, and for f̂N = 1/N
∑N

t=1 f(Xt)

√
N

f̂N − f̄

τ
→ N(0, 1) in distribution as N →∞. (2.20)

This theorem provides the theoretical basis for the construction of asymp-
totic confidence intervals for the estimates f̂N based on the dependent samples
from a Markov chain Monte Carlo simulation by estimating τ , the so-called
Monte Carlo variance.

Finally we define a property that provides an efficient method to check the
invariance of a distribution and to construct Markov chains.

Definition 2.3.6. The discrete and finite state space Markov chain X with
transition probability matrix P and invariant distribution p̃ is called reversible,
if it satisfies the detailed balance condition

∀ i, j p̃iPij = p̃jPji. (2.21)

By summation it gives p̃T P.j = p̃j, which is the defining equation of an
invariant distribution. Consequently, if for a given P q satisfies detailed balance,
then q is an invariant distribution and vice versa, if for a given target distribution
π we can construct a P such that it satisfies detailed balance with π, then π
is its invariant distribution. Furthermore, if the constructed P is such that the
corresponding reversible Markov chain is irreducible and aperiodic as well, then
π is its unique, invariant, limiting distribution, so we can generate (dependent)
samples by sequential simulation and use it to approximate expectations and to
provide confidence measures.

2.3.1.2 MCMC with the Metropolis-Hastings scheme

The Metropolis-Hastings algorithm provides a scheme to generate samples from
a given unnormalized distribution by implicitly defining and simulating a re-
versible Markov chain. Besides the target distribution, the scheme can incorpo-
rate proposal distributions in the defined transition probabilities, offering the
possibility of specialization for a given domain, though the irreducibility and
aperiodicity of the chain has to be guaranteed.

Let π(X) denote the unnormalized, strictly positive target distribution over
S = {0, 1, . . . , K} (πi = π(X = i) ≥ 0). Let Q be a transition probability
matrix (Q1 = 1), the so-called proposal distribution (for transitions), such that
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(qij ≥ 0) iff (qji > 0). Define a Markov chain X with probability transition
matrix P such that

pij = qij min (1,
πjqji

πiqij
); ∀i 6= j (2.22)

and define pii = 1−
∑

j 6=i pij . Note that for the construction only the ratios of
the target distribution are needed, which fits to the practical case of unnormal-
ized posterior in Bayesian analysis.

Now π(X) is the stationary distribution of the defined Markov chain, which
can be proved by showing that the detailed balance condition is satisfied.

Furthermore, clearly, if Q is irreducible, so will be P and the same is true
for aperiodicity. Consequently, if we provide a proposal distribution Q that
(its corresponding Markov chain) is irreducible and aperiodic, then for a given
target distribution π(X) the construction above defines a stable and reversible
Markov chain with (invariant) limiting distribution π(X).

2.3.1.3 Convergence and confidence issues

The Metropolis-Hastings scheme offers complete freedom to design the proposal
distribution specific to the domain, because it is ensured that the distribu-
tion and the averages will converge asymptotically. However for a Metropolis-
Hastings algorithm with a specified proposal Q and target π(X) distributions
there are no analytic results with general, practical applicability for the rate
of convergence to the target distribution, for forgetting the starting values or
for the Monte Carlo variance of the average Eq. 2.19. Consequently, the length
of the necessary simulation is usually determined by observing and analyzing
simulations, practically based on the actual sampling.

These two problems of the convergence to the limiting distribution and the
convergence of the ergodic averages shows the dual usage of MCMC methods:
generation of samples from the target distribution for its exploration and com-
puting ergodic averages for approximating expectations. Because our primary
goal is the reliable approximation of expectations of the target quantities and
not per se the convergence of the induced distribution of the target quantity, an
optimal method would provide an estimate with a confidence interval without
answering the question of convergence to the limiting distribution (i.e., we need
only the convergence of the average of the target quantity).

The visual analysis of the sequence of a scalar target quantity Y = f(X)
(called trace plot) is usually based on the inspection of some form of stability
of the estimated mean, variance, smoothness of the curve, either in a single
simulation {Yi; i = 1, . . . , N}, or more frequently in multiple simulations M
with wide range of starting values {Yi,j ; i = 1, . . . , N j = 1 . . . , M}. However,
with many target quantities or with complex models more formal approaches
are required.

The methods used in the thesis can be grouped as determining the length
of burn-in (or convergence diagnostic tools), when the limiting distribution is
sufficiently approached for a reliable estimation of the target quantity, and as
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determining stopping time, when the Monte Carlo variance is sufficiently small
(see Section 8.5.3). Each of the methods is based on the sampled sequence
of the target quantity from a stable Markov chain with a Metropolis-Hastings
algorithm. For convergence diagnostics the single-chain test of Geweke and the
multiple-chain R score of Gelman-Rubin were used [102, 108, 45, 213]. The
Monte Carlo variances were estimated using partitionings of single-chains [102,
45].

2.3.2 The hybrid Markov Chain Monte Carlo method

The problem of designing an efficient proposal distribution, which ensures large
movements in the state space while maintaining high acceptance rate can be ap-
proached by the use of mixture of proposals (possibly compiling multiple propos-
als) [102]. An example is the hybrid Markov Chain Monte Carlo method, which
is applicable if the gradient is efficiently computable for log(π(x)), x ∈ Rk. It
utilizes the gradient information to replace the random steps in random walk
Metropolis with large deterministic movements and embeds the parameter space
in a larger space to ensure high acceptance rate and efficient full exploration
(see Section 10.2.3.2 and Section 10.6 for its applications).

2.4 Model evaluation and selection

In practice, model evaluation is of central importance first to enhance the pre-
dictive performance theoretically (i.e., by extending and refining the model),
second to enhance the predictive performance computationally (i.e., by ensur-
ing more efficient simulation) and third to support scientific understanding of
the model. Model evaluation can be particularly important, for example if the
prior elicitation, transformation and incorporation is a complex process with
multiple choices and the goal is the evaluation of the effect of prior (i.e., the
sensitivity analysis). As the prior is part of the joint model, model evaluation
and selection naturally includes the evaluation (and selection) of priors, so stan-
dard techniques for model evaluations can be used for the prior evaluation as
well (see Section 8.2 for its application).

2.4.1 The prequential framework

In the predictive sequential (prequential) framework, the quantification of the
performance of a forecasting system (i.e. model evaluation) is based purely on
the predictive sequential (online) performance of the forecasting system. It con-
sists of a forecasting system observing a sequence D = X1, X2, . . . of uncertain
quantities in turn, which provides a forecast Fn+1 for the next quantity given
the previous observations Dn = {x1, . . . , xn} at each step. The forecasts are
evaluated by a score function S(Fn+1, xn+1) and the total score S is defined by
the cumulative sum. We discuss the application of this framework for Bayesian
networks in Section 3.4 and report results in Section 8.2.
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This framework is applicable for various forecasting systems (for general
treatments see [68, 70]). If the forecasting system is probabilistic, then the
joint or the conditionals pn(Xn|X1, . . . , Xn−1) can be defined. In a Bayesian
forecasting system this is achieved by defining a prior and sampling distribution
and selecting the conditionals to define the appropriate posterior predictive
distributions.

The following example introduces a Bayesian forecasting system, when the
uncertain quantities have r discrete values denoted with integers 1, . . . , r.

Example 2.4.1. Assume that the observed sequence Dn = {Xi; i = 1, 2, . . . , n}
contains i.i.d. multinomial samples with r discrete values. The prior p(θ) is a
Dirichlet prior with hyperparameters α = (α1, . . . , αr) and α+ =

∑
k αk:

Dir(θ|α) = c
∏

k

θαk−1
k , where c =

Γ(α+)∏
k Γ(αk)

. (2.23)

This prior is conjugate for multinomial sampling, so the posterior predictive
distributions of the defined Bayesian forecasting system are the updated Dirichlet
with hyperparameters αi at step i and the posterior prediction for value xi (i.e.,
the marginal posterior probability E[θxi ]) is

p(xi|x1, . . . , xi−1)=

∫
p(xi|θ)Dir(θ|αi) dθ

=c

∫
θxi

∏

k

θ
αi,k−1
k dθ, where c =

Γ(αi,+)∏
k Γ(αi,k)

=c

∫∏

k

θαi+1,k−1dθ, where αi+1,k=αi,k, exceptαi+1,xi=αi,xi+1

=
Γ(αi,+)

Γ(αi+1,+)

∏
k Γ(αi+1,k)∏

k Γ(αi,k)

=
αi,xi

αi,+
, (2.24)

so the marginal probability of the data set Dn with prior θ ∼ Dir(α1) and nk

occurrences of values k = 1, . . . , r is

p(x1, . . . , xn) =

n∏

i=1

p(xi|x1, . . . , xi−1) (2.25)

=

∏r
k=1 (α1,k . . . (α1,k + nk))

α1,+ . . . (α1,+ + n)
(2.26)

=
Γ(α1,+)

Γ(α1,+ + n)

∏r
k=1 Γ(α1,k + nk)∏r

k=1 Γ(α1,k)
. (2.27)

Now we turn to the question of score function assuming that the uncer-
tain quantities have r discrete values s1, . . . , sr and the forecasts qn of the
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probabilistic system are based on the posterior predictive distributions qn =
pn(Xn|x1, . . . , xn−1).

If we interpret the forecasts in a decision theoretic framework as reporting of
the posteriors, then the score function is a loss function S(q, sk) and qn should
correspond to the minimal loss forecast (see Eq. 2.9)

arg min
q

r∑

k=1

S(q, sk)pn(Xn = sk|x1, . . . , xn−1). (2.28)

It can be shown that the requirements of honesty (“reporting true beliefs”),
smoothness (“proportional penalty for errors”) and decomposability (penalty
depends on pairs of {forecasts-outcomes}) characterize a logarithmic score func-
tion, S(q, sk) = A log(qk)+Bk where A < 0 and Bk are arbitrary constants [34].

Note that the expected loss of reporting q 6= p under the logarithmic score
function corresponds to the cross-entropy H(p‖q) = KL(p‖q)+H(p) (see Eq. 2.12
and Eq. 2.11).

Returning to the scoring of a probabilistic forecasting system, the adoption
of a logarithmic score

Sn(pn(Xn|x1, . . . , xn−1), xn) = − log(pn(Xn = xn|x1, . . . , xn−1)) (2.29)

has other useful consequences w.r.t. batch evaluation.
First, the score over a given data set Dn is the logarithm of the marginal

data likelihood (see Eq. 2.8) and independent of the ordering (i.e., the score
equivalently can serve as a batch score for analyzing the joint data set and the
model):

S =

n∑

i=1

Si(pi(Xi|x1, . . . , xi−1), xi) (2.30)

= − log

n∏

i=1

pi(xi|x1, . . . , xi−1) (2.31)

= − log p(x1, . . . , xn). (2.32)

Second, in the relative approach to model evaluation, the score of the fore-
casting system (M) is compared to the score of a reference system M ref . The
relative logarithmic score

exp(S − Sref ) =
p(x1, . . . , xn|M)

p(x1, . . . , xn|M ref)
(2.33)

is the Bayes factor (see Eq. 2.13).

2.4.2 Maximum a posteriori analysis

Finding model classes Mk with large posterior probability and modes of the
posterior p(θk|D, Mk) is of essential importance in practice. Assume that our
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goal is to find a maximum a posteriori (MAP) or maximum likelihood (ML)
parameterization θ ∈ Rk

θML = arg max
θ

L(θ; D), where L(θ; D) = log(p(D|θ)), (2.34)

θMAP = arg max
θ

log(p(θ)|D), (2.35)

when L(θ; D) is efficiently computable, furthermore its gradient vector L′(θ; D)
and the Hessian matrix H = L′′(θ, D) are available as well. In lack of analytic
solutions, a standard choice is to use deterministic optimization techniques such
as gradient descent, which starts from θ0 selected at random or based on prior
knowledge and iteratively updates it as

θt+1 = θt − ǫL′(θt; D). (2.36)

An attempt to solve the question of optimal step size ǫ is the extension of
the Eq. 2.36 with a so-called momentum term, which is the geometric average
of the earlier updates with parameter µ. A more automated method is the line
search, which performs an optimization along a given direction dt

θt+1 = θt − λdt, where λ = arg min
λ

L(θ + λdt), (2.37)

and selects appropriate (non-interfering) directions dt such that consecutive
steps will not deteriorate the results of previous optimization steps. This is
achieved (up to a second-order approximation of L(θ; D)) by selecting conjugate
directions

dt+1 = −L′(θt+1; D) + βtdt, that dT
t+1Hdt = 0. (2.38)

For derivation and formulas for βt including only gradients and not the
Hessian (in the so-called conjugate gradient algorithms) see [36]. Furthermore,
the line search can be replaced by using a second-order approximation based on
the approximation of the Hessian as suggested in the so-called scaled conjugate
algorithm [190]. These deterministic optimization algorithms provide only a
local optimum, but they can be incorporated in a stochastic framework called
simulated annealing that is theoretically capable for global optimization (it can
be interpreted as random walk Metropolis algorithm with gradually decreased
acceptance rate). The conjugate gradient algorithm and the scaled conjugate
gradient algorithm is applied in the thesis for finding maximum a posteriori
parameters of classifiers (see Section 10.2.3.3 for its application).



Chapter 3

Bayesian networks primer

We summarize the Bayesian network model class, its probabilistic and causal
interpretations and its Bayesian application. Then we overview the main issues
of knowledge engineering, model evaluation and finally the learning of Bayesian
networks.

The Bayesian framework overviewed in Chapter 2 leaves open the question
of the model class, it is equally applicable with domain models discussed in this
chapter or with conditional models discussed in Chapter 9. In this chapter we
investigate a domain model class called Bayesian networks, conditional models
are discussed in Chapter 9. Bayesian networks form a subclass of graphical
models that is using directed acyclic graphs (DAGs) instead of more general
graphs to represent a probability distribution and optionally the causal struc-
ture of the domain. In an intuitive causal interpretation, the nodes represent
the uncertain quantities, the edges denote direct causal influences, defining the
model structure. A local probabilistic model is attached to each node to quan-
tify the stochastic effect of its parents (causes). The descriptors of the local
models give the model parameters.

The widespread popularity of this representation is probably the consequence
of its applicability in multiple disciplines. The multifaceted nature of Bayesian
networks follows from the fact that this representation addresses jointly three au-
tonomous levels of the domain: the causal model, the probabilistic dependency-
independency structure, and the distribution over the uncertain quantities. Ad-
ditionally, the Bayesian network, as a complete probabilistic domain model, can
be applied as an input-output model, for example as a classifier, so it can be
investigated in the conditional framework as well (see Chapter 9 and 10).

First we summarize the probabilistic interpretation of Bayesian networks,
which is based on a DAG representation of an independence model of a distri-
bution and on a decomposed representation of a distribution by DAGs annotated
with local probabilistic models. Then we introduce the causal interpretation of
Bayesian networks. Next we discuss the Bayesian approach to the parameters
and to the structure. Then we discuss the knowledge acquisition methods and
model (prior) evaluation methodologies. Finally we discuss fundamental results

33
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for model identification.

3.1 Representational issues

3.1.1 Three aspects: belief, relevance and causation

Suppose that our goal is to model uncertain events, furthermore we assume
that the number of events and the corresponding outcomes (observables) are
finite. According to the discussion in Chapter 2, it corresponds to modeling a
subjective joint distribution over the event space with elementary events defined
by the Cartesian product of the possible outcomes. We denote the joint set of
random events with V , p(V ) denotes the joint (mass) probability distribution
representing the personal belief over events. If it is necessary to differentiate,
capitals with underline such as X, Y , Z denotes subsets and capitals such as
X, Y, Z single random events, lowercase letters denotes values (outcomes) such
as X = x. To simplify terminology we call each discrete random event a random
variable (i.e., as if their outcomes would be always in R).

3.1.1.1 The model of observational independencies

We introduce now the notation for the independencies of random events.

Definition 3.1.1. Let p(V ) be a joint distribution over V and X, Y , Z ⊆ V are
disjoint subsets. Then denote the conditional independence of X and Y given
Z with Ip(X |Z|Y ), that is

Ip(X|Z|Y ) iff (∀x, y, z p(y|z, x) = p(y|z) whenever p(z, x) > 0). (3.1)

Note that conditional independence is required for all the relevant values of Z.
A weakened form of independence is the contextual independence, if conditional
independence is valid only for a certain value c of another disjoint set C. Then
denote the contextual independence of X and Y given Z and context c with
Ip(X|Z, c|Y ), that is

Ip(X |Z, c|Y ) iff (∀x, y, z p(y|z, c, x) = p(y|z, c) whenever p(z, c, x) > 0). (3.2)

Another notation for Ip(X |Z|Y ) is (X ⊥⊥ Y |Z)p. If it is nonambiguous, the
subscript from Ip(.) is omitted as well as the empty condition part. The negated
independence proposition (i.e., dependency) is denoted with (X 6⊥⊥ Y |Z)p. It is
a direct dependency, if for any disjoint X, Y, Z ⊆ V (X 6⊥⊥ Y |Z) holds. A set of
independence statements is called independence model (note that this is always
a finite set in our case). We use the terms (probabilistic) independence and
(information) irrelevance interchangeably.

Whereas the independencies or the complete independence model is an ideal
candidate to represent qualitatively the target distribution, the autonomous,
local mechanisms (rules) composing modularly the domain are the basis of both
common sense and scientific understanding and explanation. The autonomous
relations are asymmetric w.r.t. time and interventions suggesting a causal in-
terpretation.
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3.1.1.2 The model of causal (in)dependencies

For the discussion of causality, we need a concept and notation for intervention.

Definition 3.1.2. Let do(x) denote the intervention of setting variable(s) X to
value x and p(Y |do(x)) the corresponding interventional distribution [201].

Note that despite the symmetry of the probabilistic dependence relation, the
causal dependence relation is asymmetric. For example in a hypothetical world
with two variables X, Y and a single causal relation X → Y inducing p(X, Y ),
the intervention on X and the observation of X are identical operations, but the
intervention on Y will not influence the cause X (i.e., p(Y |do(x)) = p(Y |x), but
p(X |do(y)) is equal to p(X) and not to p(X |y)). Now we introduce a notation
for the causal irrelevance (independency) [202, 101].

Definition 3.1.3. Let p(.|do(.)) denote the appropriate interventional distri-
butions over V and X, Y , Z ⊆ V are disjoint subsets. Then denote the causal
independence of X and Y given Z with CIp(X ; Y |Z), that is

CIp(X; Y |Z) iff (∀x, y, z p(y|do(z), do(x)) = p(y|do(z))) (3.3)

A set of causal (in)dependence statements is called causal model.

3.1.2 Probabilistic Bayesian networks

Before investigating the role of directed acyclic graphs (DAGs) in representing
causal relations, we have to clarify their purely probabilistic role in representing
a joint distribution numerically and its (in)dependence model.

3.1.2.1 Markov conditions

Assume that each vertice (node) in DAG G corresponds to a random variable.
We need the following concepts (cited from [200, 169, 60, 202]).

Definition 3.1.4. A distribution p(X1, . . . , Xn) is Markov relative to DAG G
or factorizes w.r.t G, if

p(X1, . . . , Xn) =

n∏

i=1

p(Xi|Pa(Xi)), (3.4)

where Pa(Xi) denotes the parents of Xi in G.

Definition 3.1.5. A distribution p(X1, . . . , Xn) obeys the ordered Markov con-
dition w.r.t. DAG G, if

∀ i = 1, . . . , n : (X≺(i) ⊥⊥ {{X≺(1), . . . X≺(i−1)} \ Pa(X≺(i))}|Pa(X≺(i)))p,
(3.5)

where ≺ is some ancestral ordering w.r.t. G (i.e., compatible with arrows in
G) and {X≺(1), . . . X≺(i−1)} \ Pa(X≺(i)) denotes all the predecessors of X≺(i)

except its parents.
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Definition 3.1.6. A distribution p(X1, . . . , Xn) obeys the local (or parental)
Markov condition w.r.t. DAG G, if

∀ i = 1, . . . , n : (Xi ⊥⊥ Nondescendants(Xi)|Pa(Xi))p, (3.6)

where Nondescendants(Xi) denotes the nondescendants of Xi in G (i.e., without
directed path from Xi).

Definition 3.1.7. A distribution p(X1, . . . , Xn) obeys the global Markov con-
dition w.r.t. DAG G, if

∀ X, Y, Z ⊆ V : (X ⊥⊥ Y |Z)G ⇒ (X ⊥⊥ Y |Z)p, (3.7)

where (X ⊥⊥ Y |Z)G denotes that X and Y are d-separated by Z, that is if every
path p between a node in X and a node in Y is blocked by Z as follows

1. Either path p contains a node n in Z with non-converging arrows (i.e.,
→ n→ or ← n→),

2. Or path p contains a node n not in Z with converging arrows (i.e., → n←)
and none of the descendants of n is in Z.

Now we can state a central result connecting the DAG representation of the
joint distribution and the DAG representation of the independence model [169].

Theorem 3.1.1 ([169]). Let p(V ) be a probability distribution and G a DAG,
then the conditions in Def. 3.1.4, 3.1.5, 3.1.6, and 3.1.7 are equivalent:

(F) p is Markov relative G or p factorizes w.r.t G,

(O) p obeys the ordered Markov condition w.r.t. G,

(L) p obeys the local Markov condition w.r.t. G,

(G) p obeys the global Markov condition w.r.t. G.

Because of their equivalence, we can refer to these as the (directed) Markov
condition for the pair (p, G). To show the necessity and sufficiency of these
conditions, we refer to a result that a sound and complete, computationally
efficient algorithm exists to read off exactly (!) the independencies that are
valid in all distributions that are Markov relative to a given DAG G [200].

Theorem 3.1.2 ([200]).

∀ X, Y, Z ⊆ V : (X ⊥⊥ Y |Z)G ⇔ ((X ⊥⊥ Y |Z)p in all p Markov relative to G.

Two further properties are implied by any of the (FOLG) conditions: the
pairwise Markov condition [169] and the boundary Markov conditions [200].

Definition 3.1.8. A distribution p(X1, . . . , Xn) obeys the pairwise Markov con-
dition w.r.t. DAG G, if for any pair of variables Xi, Xj nonadjacent in G
and Xj ∈ Nondescendants(Xi), (Xi ⊥⊥ Xj |Nondescendants(Xi) \ {Xj})p holds

[169].
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To state the other implication, we need the following concepts.

Definition 3.1.9. A set of variables MBp(Xi) is called a Markov blanket of
Xi w.r.t. the distribution p(X1, . . . , Xn), if (Xi ⊥⊥ V \MB(Xi)|MB(Xi))p (see
Fig. 3.1). A minimal Markov blanket is called Markov boundary [200].

Definition 3.1.10. A distribution p(X1, . . . , Xn) obeys the boundary Markov
condition w.r.t. DAG G, if the boundary bd(Xi, G) is a Markov blanket of Xi,
where bd(Xi, G) denotes the set of parents, children and the children’s other par-
ents for Xi (i.e., parents with common child with Xi, see Fig. 1.1 and Fig. 3.1):

bd(Xi, G) = {Pa(Xi, G) ∪Ch(Xi, G) ∪ Pa(Ch(Xi, G), G)}. (3.8)

The boundary bd(Xi, G) coincides with the standard graph-theoretic notion
of boundary (i.e., set of neighbours) of Xi in the moral graph of G, which is
the graph where edges are added between parents with a common child and the
orientation is dropped [60].

Theorem 3.1.3 ([200]). The (FOLG) Markov condition for (p, G) implies that
the set bd(Xi, G) is a Markov blanket (MBp(Xi)) for Xi.

Note that the set bd(Xi, G) is not necessarily Markov boundary as it may not
be minimal (because of the non-optimality of G to p). In the Bayesian context
this problem is negligible as Th. 7.1.2 and the discussion in Section 3.1.2.3
show, so we will also refer to bd(Xi, G) as the Markov blanket for Xi in G using
the notation MB(Xi, G) by the implicit assumption that p is Markov compatible
with G and stable. The induced (symmetric) pairwise relation MBM(Xi, Xj, G)
w.r.t. G between Xi and Xj

MBM(Xi, Xj , G)⇔ Xj ∈ bd(Xi, G) (3.9)

is called Markov blanket membership [96]. In short, the set {MBM(Xi, G)}
includes the variables with non-blockable pairwise (observational) dependen-
cies 3.1 to Xi including the unconditionally related variables (parents and chil-
dren) and the purely conditionally related ones (the rest).

Finally, we introduce here the definition of the Markov Blanket (sub)Graph
(MBG) (for a discussion of the MBG feature, see Section 7.2).

Definition 3.1.11. A subgraph of G is called the Markov Blanket (sub)Graph
or Mechanism Boundary (sub)Graph MBG(Xi, G) of variable Xi if it includes
the nodes in the Markov blanket defined by bd(Xi, G) and the incoming edges
into Xi and into its children Ch(Xi, G) (see Fig. 1.1 and Fig. 3.1).

Fig. 3.1 shows an example for a Markov Blanket set and the Markov Blanket
graph in a Markov chain.

3.1.2.2 Definitions of Bayesian networks

The equivalence of the conditions FOLG in Th. 3.1.1 allows versatile definitions
of Bayesian networks. A neutral definition is as follows.
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X1 X2 Y X4 X5

Figure 3.1: A Bayesian network structure G defining a Markov chain
p(X1, X2, Y, X4, X5). Underscore denotes the members of a Markov Blanket set of
variable Y MBp(Y ), which is the unique Markov Boundary MB(Y, G) as well (de-
fined by the boundary bd(Xi, G)). Solid lines denote the edges of the Markov Blanket
Graph MBG(Y,G).

Definition 3.1.12. A directed acyclic graph (DAG) G is a Bayesian network
of distribution p(V ), if the variables are represented with nodes in G and (G, p)
satisfies any of the conditions F, O, L, G such that G is minimal (i.e., no edge(s)
can be omitted without violating a condition F, O, L, G).

If the distribution P is strictly positive, then the Bayesian network compat-
ible with a given ordering ≺ is unique (i.e., composed of the unique minimal
parental sets that makes the variable independent of the variables before w.r.t
≺) [200]. Note that depending on the ordering different Bayesian networks can
be gained, representing more or fewer independencies of P .

In engineering practice Bayesian networks are frequently informally defined
as a DAG annotated with local probabilistic models for each node.

Definition 3.1.13. A Bayesian network model M of a domain with variables V
consists of a structure G and parameters θ. The structure G is a directed acyclic
graph (DAG) such that each node represents a variable and local probabilistic
models p(Xi| pa(Xi)) are attached to each node w.r.t. the structure G, that is
they describe the stochastic dependency of variable Xi on its parents pa(Xi). As
the conditionals are frequently from a certain parametric family, the conditional
for Xi is parameterized by θi, and θ denotes all the parameters of the model.

When the conditionals are combined together as in Eq. 3.4, they define an
overall joint distribution p. It trivially satisfies Markov relativity to G and the
structure satisfies the conditions O, L, G. The lack of minimality requirement
causes only potential redundancy (parameters) and fewer implied independen-
cies. In most cases, we use the term Bayesian network to refer to both structure
and parameters.

3.1.2.3 Stability

A limitation of DAGs to represent a given (in)dependency model is that (1)
probabilistic dependencies are not necessarily transitive and (2) lower order
(e.g., pairwise) probabilistic independencies does not imply higher order (e.g.,
multivariate) independencies. These are illustrated with the following examples.

Example 3.1.1. Consider p(X, Y, Z) with binary X, Z and ternary Y in a
Markov chain (X → Y → Z). The intransitivity condition — (X 6⊥⊥ Y ), (Y 6⊥⊥ Z),
and (X ⊥⊥ Z) — can be rewritten as an equation system with the probabilities.
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Its solvability demonstrates that the “naturally” expected transitivity of depen-
dency can be destroyed by properly selected values. For the other case, con-
sider p(X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and p(Z|X, Y )
is defined by the logical function Z = XOR(X, Y ). In this case (X ⊥⊥ Z) and
(Y ⊥⊥ Z), but ({X, Y } 6⊥⊥ Z), which demonstrates that pairwise independence does
not imply total independence.

However, such numerically encoded independencies correspond to solutions
of systems of equations describing these constraints, which are not stable for
numerical perturbations. This leads to the following definition.

Definition 3.1.14. The distribution p is stable∗ (or faithfull), if there ex-
ists a DAG called perfect map exactly representing its (in)dependencies (i.e.,
(X ⊥⊥ Y |Z)G ⇔ (X ⊥⊥ Y |Z)p, ∀ X, Y, Z ⊆ V ). The distribution p is stable
w.r.t. a DAG G, if G exactly represents its (in)dependencies.

Whereas in many domains the possibility of an unstable distributions is a real
cause for concern, particularly containing deterministic relations, the following
result shows that it is reasonable to expect that in a natural, “noisy” domain
almost all the distributions are stable in a strict sense, which is also relevant for
the applied Bayesian framework. If a “smooth” distribution is defined over the
distributions Markov relative to G (such as in Section 3.1.5.1 in the Bayesian
framework), it can be shown that the measure of unstable distributions is zero
(as being a solution of a system of equations) [186]. It allows to sharpen Th. 3.1.2
that the DAG-based relation (X ⊥⊥ Y |Z)G offers a computationally efficient
algorithm to read off exactly the independencies that are valid in a distribution
Markov relative to G in case of “almost all” such distributions.

3.1.2.4 Equivalence classes of Bayesian networks

The assumption of stability and strict positivity does not exclude the possibility
of having multiple perfect maps encoding the same independencies in p.

Example 3.1.2. Consider a Markov chain X = {X1, . . . , Xn} with a stable dis-
tribution. Its independence model includes i=1, . . . , n:(Xi ⊥⊥{X1, . . . Xi−2}|Xi−1),
and also the implied (Xi ⊥⊥ {X1, . . . Xi−2, Xi+2, . . . , Xn}|{Xi−1, Xi+1}). This
independence model can be exactly represented by n equivalent linear Bayesian
networks without introducing convergent arrows, including the two special cases
of the “forward” and the “backward” network (see Fig. 3.2).

The induced independence models allow the definition of an equivalence
relation between DAGs [200, 248, 186].

Definition 3.1.15. Two DAGs G1, G2 are observationally equivalent, if they
imply the same set of independence relations (i.e., (X⊥⊥Y |Z)G1

)⇔(X ⊥⊥ Y |Z)G2
).

∗For a different interpretation of this term in probability theory, see [212].
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X1 X2 X3X1 X2 X3

X1 X2 X3X1 X2 X3

X1 X2 X3
X1 X2 X3X1 X2 X3

Figure 3.2: The equivalence classes of Bayesian network structures over three vari-
ables with direct dependences between X1, X2 and X2, X3, but not between X1,
X3.

The implied equivalence classes may contain n! number of DAGs (e.g., all
the full networks representing no independencies) or just 1 (e.g., the empty
DAG representing total independence of the variables). The characterization of
the DAGs within the same equivalence class relies on two observations. First,
the undirected skeleton of the observationally equivalent DAGs are the same,
because an edge in a DAG denotes a direct dependency, which has to appear in
any Markov compatible DAG [200]. Second, the direct dependencies between
X, Y and Y, Z without direct dependence between X, Z and without indepen-
dence such that (X ⊥⊥ Z|{Y, S}) has to be expressed with a unique converging
orientation X → Y ← Z creating a so-called v-structure according to the global
semantics. The theorem characterizing the DAGs within the same observational
(and distributional) equivalence class is as follows.

Theorem 3.1.4 ([200, 49]). Two DAGs G1, G2 are observationally equiva-
lent, iff they have the same skeleton (i.e., the same edges without directions)
and the same set of v-structures (i.e., two converging arrows without an arrow
between their tails) [200]. If in the Bayesian networks (G1, θ1) and (G2, θ2) the
variables are discrete and the local conditional probabilistic models are multi-
nomial distributions, then the observational equivalence of G1, G2 implies equal
dimensionality and bijective relation between the parameterizations θ1 and θ2

called distributional equivalence [49].

The limitation of DAGs to represent uniquely a given (in)dependency model
poses a problem for the interpretation of the direction of the edges. It also
poses the question of representing the identically oriented edges in observation-
ally equivalent DAGs. As the definition of the observational equivalence class
suggests the common v-structures identify the starting common edges and fur-
ther identical orientations are the consequences of the constraint that no new
v-structures can be created. This leads to the following definition (for an effi-
cient, sound, and complete algorithm, see [186]).

Definition 3.1.16. The essential graph representing DAGs in a given obser-
vational equivalence class is a partially oriented DAG (PDAG) that represents
the edges that are identically oriented among all DAGs from the equivalence
class (called compelled edges) in such a way that exactly the compelled edges are
directed in the common skeleton, the others are undirected representing incon-
clusiveness.
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3.1.3 Causal Bayesian networks

Now we continue with the causal interpretation of Bayesian networks, because
of its relevance for prior acquisition and incorporation (i.e., knowledge acqui-
sition from experts, for the discovery from scientific publications and for prior
incorporation in Chapters 6, 8).

3.1.3.1 On the possibility of causal interpretation

The classical problem of “from (observational) correlation to causation”, that
is the question of determining causal status of a passively observed dependency
between X and Y can be decomposed using the concepts introduced earlier to
the question about the DAG-based representation of independencies (i.e., prob-
abilistic Bayesian network), the existence of exact representation (i.e., stability)
and the existence of unambiguous representation (i.e., essential graph). First, we
have to consider whether all direct dependencies among the constructed domain
variables are causal. This assumption is highly questionable and is discussed
in detail below. Second, we have to consider stability that would guarantee
that a corresponding Bayesian network exactly represents the independencies.
Third, we have to adopt the “Boolean” Ockham principle, namely that only the
minimal, consistent models are relevant (see Section 7.4, for the “soft” Ockham
principle in the Bayesian approach to causal discovery). The essential graph
resulting from the joint analysis of the observational conditional independencies
(i.e., “correlations) indicates causal relations under these conditions. In short,
under the condition of stability the essential graph represents the direct causal
dependencies and the orientations that are dictated by (in)dependencies in the
domain through the minimal models (DAGs) compatible with them. Further-
more, the direction of the edges corresponds to the intuitive expectation as the
intransitive dependency triplets are represented as v-structures.

Correspondingly we can define a causal model as a Bayesian network accord-
ing to Definition 3.1.13 with the causal interpretation that edges denote direct
influences.

Definition 3.1.17. A DAG is called a causal structure over a set of variables
V , if each node represents a variable and edges direct influences. A causal model
is a causal structure extended with local probabilistic models p(Xi| pa(Xi)) for
each node w.r.t. the structure G describing the causal stochastic dependency
of variable Xi on its parents pa(Xi). As the conditionals are frequently from
a certain parametric family, the conditional for Xi is parameterized by θi, and
θ denotes all the parameters, so a causal model consists of a structure G and
parameters θ.

With further assumption of stability, the essential graph shows exactly the
independency relations and exhaustively the identifiable causal relations, which
suggests that whereas the question of causation is underconstrained for a pair
of variables (restricted to “no dependency-no causation), the joint analysis of
the system of independencies allows partial identification.
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3.1.3.2 The Causal Markov Condition

The following condition ensures the validity and sufficiency of a causal structure.

Definition 3.1.18. A causal structure G and distribution p satisfies the Causal
Markov Condition, if p obeys the local Markov condition w.r.t. G.

The Causal Markov condition relies on Reichenbach’s “common cause prin-
ciple” that dependency between events X and Y occurs either because X causes
Y , or Y causes X or there is a common cause of X and Y (it is possibly an
aggregate of multiple events) [202, 116]. Consequently, the precondition of the
Causal Markov condition for (p, G) is that the set of variables V is causally
sufficient for P , that is all the common causes for the pairs X, Y ∈ V are inside
V . Note that hidden variables are allowed fitting to the usually high level of
abstraction of the model, only variables that influence two or more variables in
V are necessary for causal sufficiency. Interestingly, in the presence of potential
hidden common causes (confounders), that is if the Causal Markov Condition
is violated, certain causal dependencies can still be identified [202].

The causal Markov condition links the causal relations to dependencies and
states sufficiency to model the observed probabilistic dependencies. On the
other hand, the condition of stability of P w.r.t. a causal structure G states the
necessity of G.

These two assumptions guarantee that observational (in)dependence (3.1) is
exactly represented by the DAG-based relation (Def. 3.1.7) in a Markov com-
patible graph G and that causal (in)dependence (Def. 3.3) is exactly represented
by standard separation in the causal structure G [101]. Furthermore, the Causal
Markov condition allows the computation of interventional distributions corre-
sponding to the do() operation (3.1.2) according to the “Manipulation theorem”
([229]) or “graph surgery” ([202]). It is performed simply by deleting the incom-
ing edges for the intervened variables in the do() operator and omitting these
factors from the factorization in Eq. 3.4.

3.1.3.3 The interventionist and mechanistic views

In general, the causal structure G satisfying the Causal Markov Condition for
a domain with (observational) distribution P can encode all the interventional
distributions in a single causal model, which is formalized in the interventionist
definition of “causal Bayesian networks” [202].

This definition of causal Bayesian networks explicitly shows that the concept
of causation is based on the concept of intervention, more exactly on the sys-
tematic ability to intervene. This boils down to the assumption of autonomous,
local “mechanisms” composing the domain, which can be triggered by interven-
tions independently and can be understood independently. A formalization of
this “mechanism-based interpretation” of DAG representations is offered by the
so-called “functional Bayesian networks” using a formalism of mechanisms as de-
terministic functions with disturbances (cf. with structural equation) [78, 202].
Whereas the functional Bayesian network formalism allows the probabilistic
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modeling of counterfactuals, in the thesis we adopt a more modest causal in-
terpretation termed “mechanism-based interpretation” meaning that under the
Causal Markov condition the local probabilistic dependency models correspond
to the autonomous, local mechanisms in the causal model.

3.1.3.4 Pairwise causal relations

The causal interpretation of Bayesian networks allows the definition of the fol-
lowing logical pairwise relations in a causal structure (recall that in stable causal
models the dependency relations always represent exactly the probabilistic de-
pendency relations):

1. Causal path (P, CaP (Xi, Xj |G)): There is a directed path from node Xi

to node Xj in DAG G (also denoted by Xi ≺G Xj).

2. Causal edge (E, CaE(Xi, Xj |G)): There is an edge from node Xi to node
Xj in DAG G (also denoted by (Xi →G Xj)).

3. Compelled edge (CompE, CompE(Xi, Xj |G)): There is a compelled edge
from node Xi to node Xj in the essential graph for DAG G.

4. (Pure) Confounded (Conf, Conf(Xi, Xj |G)): The two nodes Xi and Xj

have a common ancestor in DAG G. The confounded relation is said to
be pure, if there is no edge or path between the nodes.

5. Independent (I, Ind(Xi, Xj |G)): None of the previous.

Note that these pairwise relations can be also used in an acausal context
using the differences w.r.t. the independence relation.

3.1.4 On the relativity of the interpretations

The causal interpretation has been challenged from many points of view. The
Causal Markov assumption can be questioned as the presence of unobserved
(hidden) variables as potential confounders seriously constrains the causal in-
terpretation and automated causal discovery (for the Bayesian analysis of po-
tentially infinite number of confounders, see [116]). Another violation called
selection bias can occur if the observations depend on the joint combination of
otherwise independent events, which induces non-causal dependencies between
them. The next difficulty is related to the mixture of causal models, if condi-
tionally both X causes Y and vice versa. A similar problem is the presence of
feedback and indirectly temporality. Finally, the causal nature of the relations
can be questioned because of global physical and semantic constraints between
the variables [257]. It can occur if there is a global constraint on the joint set
of the variables, outside the scope of the modeled domain or if the definitions
of the variables are overlapping (i.e., there are logical dependencies).

In both the causal and probabilistic interpretations, the assumption of sta-
bility can be also questioned, for example because of deterministic dependencies,
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resulting in the lack of guarantee for the uniqueness and exactness of the rep-
resentation.

Finally, obviously the (in)dependencies are relative to the set of variables
and specifically, also to the values of the variables (consider the conversion of
a nth order Markov chain into a first-order by augmenting the state space), so
both the probabilistic and causal interpretation has to be conditional on the set
of variables and values [116].

These considerations are free of any data size issue and they are free of the
question of the subjectivity of the prior in the Bayesian analysis of causation.
The data set and the subjective prior information are further essential factors
in the relativity of the causal and probabilistic inferences.

3.1.5 Bayesian networks in the Bayesian framework

In the Bayesian framework the prior probabilities over the Bayesian network
model is represented by a joint distribution p(G, θ)) over the DAG structures
G and corresponding parameters θ. Because of the generality of the Bayesian
network representation this distribution itself can be represented by a Bayesian
network as we shall see below. However the specification of the joint or the
conditionals p(G) and p(θ|G) requires practical simplifications and careful the-
oretical considerations, because of the huge size of the space and because of the
observational equivalence of the structures. As in the thesis in general, in this
section we also assume that the variables V = {X1, . . . , Xn} are discrete with
ri number of values. We start with the parameter prior and then discuss the
structure prior.

3.1.5.1 Parameter priors for Bayesian network models

The specification of parameter prior p(θ|G) for Bayesian networks poses the
following questions: the parametric form of the prior, the relation of the de-
composition of the prior to the decomposition of P , the consistent confidence of
the decomposed priors for the parts of a single structure, the consistency of the
priors for observationally equivalent structures (recall that observational equiv-
alence implies distributional equivalence in the discrete, multinomial case, see
Th. 3.1.4). There is a remarkable result to clarify these problems. First, if the
parameter prior decomposes w.r.t. the structure and the parameter priors are
equivalent for observationally equivalent structures, then the parameter prior is
a Dirichlet distribution. Furthermore, if the parts of the decomposed parameter
prior are invariant w.r.t. the structure, then for any structure G p(θ|G) can be
derived from a point-specification θ0 of a complete model and from the number
of a priori seen complete cases. To state this formally, we need the following
concepts. The concept of parameter independence ([228, 60]) is as follows:

Definition 3.1.19. For a Bayesian network structure G, the global parameter
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independence assumption means that

p(θ|G) =

n∏

i=1

p(θi|G), (3.10)

where θi denotes the parameters corresponding to the conditional p(Xi|Pa(Xi))
in G. The local parameter independence assumption means that

p(θi|G) =

qi∏

j=1

p(θij |G), (3.11)

where qi denotes the number of parental configurations (pa(Xi)) for Xi in G and
θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j) in
some fixed ordering of the pa(Xi) configurations. The parameter independence
assumption means global and local parameter independence.

The concept of likelihood equivalence extends observational equivalence of
the structure coherently to the parameters ([131, 104]).

Definition 3.1.20. The likelihood equivalence assumption means that for two
observationally equivalent Bayesian network structures G1, G2,

p(θV |G1) = p(θV |G2), (3.12)

where θV denotes a non-redundant set of the multinomial parameters for the
joint distribution over V . (The multinomiality of local models ensures distribu-
tional equivalence and that the Jacobian for parameter transformation exists.)

Now the following theorem can be stated [104, 131].

Theorem 3.1.5 ([104, 131]). The assumption of positive densities, likelihood
equivalence and parameter independence for complete structures Gc implies that
p(θV ) is a Dirichlet distribution with hyperparameters Nx1,...,xn.

The p(θi|Gi) = JGip(θV ), where JGi is the Jacobian of the transforma-
tion from θV to θGi

. It is remarkable that a structure level acausal constraint
(i.e., likelihood equivalence of structures with multinomial local dependency
models) implies a strong parameter-level constraint (i.e., Dirichlet parameter
priors). To state the following theorem it is convenient to rewrite the hyper-
parameters as N ′ =

∑
x1,...,xn

Nx1,...,xn called prior or virtual sample size and

p(x1, . . . , xn|ξ+) = Nx1,...,xn/N ′. Furthermore, we need the following concept:

Definition 3.1.21. The parameter modularity assumption means that if pa(Xi)
are identical in two Bayesian network structures G1, G2, then

p(θij |G1) = p(θij |G2), (3.13)

where θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j)
in some fixed ordering of the pa(Xi) configurations.
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The assumption of parameter modularity allows to induce parameter distri-
butions for incomplete models from the parameter prior of a complete model.

Theorem 3.1.6 ([104, 131]). If N ′ is the global prior sample size and p(θV ) is
a Dirichlet distribution with hyperparameters Nx1,...,xn = N ′p(x1, . . . , xn) and
the parameter modularity assumption holds and for all complete networks Gc,
p(Gc) > 0, then for any network structure G the parameter independence and the
likelihood equivalence holds and the decomposed distribution of the parameters
is the product of Dirichlet distributions

p(θ|G, ξ+) =
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
N ′p(Xi=k,pa(Xi,G|ξ+)=paij)−1

ijk , (3.14)

where ri denotes the number of values of Xi, qi denotes the number of parental
configurations pa(Xi, G) and paij denotes the values of the parents for the jth
parental configuration in some fixed ordering of the pa(Xi) configurations.

Th. 3.1.6 offers a practical method to specify (likelihood equivalent) parame-
ter priors for all the structures: by specifying point parameters for a complete or
for a maximally detailed model p(V |Gc, ξ

+) and expressing confidence by speci-
fying a prior sample size N ′ representing the complete cases underlying the point
estimates (see Section 8.2.1 and Section 10.6 for its application). Then for any
other model G we can compute hyperparameters according to the theorem.

However, Th. 3.1.6 also indicates that incomplete prior observations induc-
ing different confidence for various parts of the network cannot be incorporated
without violating these assumptions. For example, specifying a parameter prior
as product of Dirichlets according to a structure with hyperparameters incom-
patible w.r.t. the theorem cannot be transformed to a product of Dirichlets
for another observationally equivalent structure (i.e., the parameter prior will
be different for observationally equivalent structures). In this case, the prior
knowledge can be represented by a collection of incomplete cases called prior
database instead of a prior data set with complete cases [116].

In case of a fixed structure G, the usage of Dirichlets with parameter inde-
pendence can be attractive on its own right to specify a parameter distribution
p(θ|G, ξ+) as follows

p(θ|G, ξ+) =

n∏

i=1

qi∏

j=1

Dir(θij |Nij) ∝
n∏

i=1

qi∏

j=1

ri∏

k=1

θ
Nijk−1
ijk . (3.15)

3.1.5.2 Structure priors for Bayesian network models

The Bayesian approach to the parameters of Bayesian network models (reported
from the end of the eighties [226, 227, 60]) provided answers for many long-
standing objections against the elicitation and usage of complex probabilistic
models ([43]). The Bayesian approach to the structure of Bayesian networks
was similarly proposed from the beginning of the nineties, but was hindered
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by the high computational demand. An ordering-specific, analytic approach
was reported in [40], general analytic results and methodology were reported
in [57], and the application of MCMC methods to perform Bayesian inference
over structural features in [178]). With the increase in computational resources
it became possible to investigate structural properties of Bayesian networks.
Consequently, recently there is much emphasis on the automated or manual
construction of the structure prior p(G) for incorporation and for evaluation
against a reference as well (see Section 8.1, 8.4, 8.6 and 10.7). Note the structure
prior p(G) complements the earlier investigated parameter prior p(θ|G).

3.1.5.2.1 Using a prior data set Whereas the parameter prior and the
structure prior can be specified independently, the structure prior can be induced
from the prior data set D+

N ′ using Eq. 3.34 [179].

3.1.5.2.2 Using reference structure and substructures Other sugges-
tions for the structure prior include the use of deviation priors (penalizing the
deviations from a prior “reference” structure) and the feature priors (penaliz-
ing the presence and absence of various independent or dependent structural
features).

The deviation prior [131] is defined by a “reference” network structure G0

and a probability κ penalizing each missing or extra edge eij independently:

p(G) ∝ κδ, where δ =
∑

1≤i<j≤n

1(1(eij ∈ G) 6= 1(eij ∈ G0)).

The feature priors are defined proportionally by the product of priors for the
individual features (as they were totally independent). By denoting the value
of feature Fi in G with Fi(G) = fi, i = 1, . . . K, we have

p(G) = c

K∏

i=1

p(Fi(G)), (3.16)

where the c normalizing constant deals with the probability of inconsistent fea-
ture combinations f1, . . . , fK . The possible structural features include the undi-
rected edges or compelled edges (as direct relations or direct causal relations
under the causal Markov Assumption), pairwise or partial ancestral ordering
(related to causal ordering), relevance relations (Markov blankets) and even ar-
bitrary subgraphs. However, these features are dependent in general, because of
the global DAG constraint, so either the feature set should be selected carefully,
or preprocessing can be applied to increase its approximation or the strength of
the attached prior should reflect its approximative nature.

3.1.5.2.3 Modular priors It is particularly useful in the Bayesian analysis,
if the features are “modular” in the following sense [40, 57, 131, 97]
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Definition 3.1.22. The structure modularity holds, if each feature function
Fi(G) depends only on the parents of Xi for i = 1, . . . n, defining the modular
prior

p(G) ∝
n∏

i=1

p(pa(Xi, G)). (3.17)

Because the DAG constraint creates dependencies, the modular features are
not independent (i.e., (Fi(G) 6⊥⊥ Fj(G)|DAG(G)), see Section 7.1.6), but it pro-
vides an efficient approach to define a decomposable ratio for the priors of valid
structures (for certain automated corrections of the distortion because of the
DAG constraint, see [42]).

A generalization of the modular prior is the ordering-modular prior, when
modularity holds only conditionally on the orderings.

3.1.5.2.4 Edge priors With further assumption about the a priori inde-
pendence of membership of edges in parental sets, we get the directed pairwise
prior that defines the probability of each parental set as a product of individual
arc probabilities. In general, the prior is defined only proportionally as follows
by denoting the parents of Xi with pa(Xi) = {pa(Xi)1, . . . , pa(Xi)Li

}:

p(pa(Xi)) ∝
Li∏

k=1

p(pa(Xi)k ∈ Pa(Xi))
∏

Y 6∈pa(Xi)

(1 − p(Y ∈ Pa(Xi))).

Originally, modular priors and directed pairwise priors were suggested con-
ditional on a fixed ordering ≺0 of the variables [40],

p(pa(Xi))=
∏

Xj≺0Xi

Xj∈pa(Xi)

p(Xj ∈ Pa(Xi)| ≺0)
∏

Xj≺0Xi

Xj /∈pa(Xi)

(1− p(Xj ∈ Pa(Xi)| ≺0)), (3.18)

in which case these features remain independent in the joint distribution over
DAGs compatible with the ordering ≺0. In fact, the assumption of “edge inde-
pendence” first appeared implicitly in the noisy-OR canonical local dependency
model, because its parameterization can be interpreted as encoding the proba-
bility of the edges [200].

To reach independent pairwise features for DAGs without constraining the
ordering, we have to further simplify the features to avoid global constraints
due to their interactions. Note that with independence, the marginals are not
distorted and the prior is normalized, which allows the introduction of hyperpa-
rameters for modifying the prior to satisfy higher-order constraints as follows.
By defining the prior over the skeleton in a pairwise manner (i.e., by retaining
only the directness and omitting directionality), we get the undirected pairwise
prior pij , p(Xj ∈ Pa(Xi)∨Xi ∈ Pa(Xj)) represents the beliefs in direct influ-
ence between Xi and Xj [16]. The edge probabilities define the following prior
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probability for a structure G:

P (G|ξ) ∝
n∏

i=1

i−1∏

j=1

p
1(eij∈G)
ij (1 − pij)

1(eij /∈G). (3.19)

The expectation of the number of edges L is given by
∑

0<i<j<n pij . As-
suming that there is an a priori estimate for the number of direct influences in
the overall model or related to a single variable, the prior pij can be scaled by
an exponent ν to approximate this edge density in the prior Bayesian network
(see [16]). By denoting the value that scales the expectation of the number of
parental edges to L0 with ν(L0) we define the following scaling (it is always
possible if we apply a lower limit ǫ < pij for the edge probabilities):

qij , p
ν(L0)
ij , with ν(L0) so that

∑

0<i<j<n

qij = L0. (3.20)

Note that the scaling of pij provides an option to control the penalization
(i.e., to express the prior beliefs in the prior structure). These priors except
the undirected pairwise prior assign potentially different values for observation-
ally equivalent structures (i.e., violates the structural prior equivalence prop-
erty [131]). Because they are closely related to the causal, mechanism-based
interpretation of Bayesian networks, they offer the possibility of representing a
priori beliefs about the individual mechanisms in the domain and we call them
causal (structure) priors vs acausal (structure) priors.

3.2 Inference methods

The Bayesian network model makes possible various types of inferences thanks
to the possibility of

1. the multiple interpretation, such as causal vs. probabilistic,

2. the multilevel interpretation, such as at the level of domain values, inde-
pendence relations or causal relations,

3. the adoption of the Bayesian framework at the parameter or the structure
level,

4. embedding the Bayesian network model into a larger knowledge base to
formulate more complex propositions (see Chapter 5).

Next we catalogue these inferences, summarize results and techniques used
in the thesis.

3.2.1 Inference over values with observations

The goal in the following cases is to compute the value of marginal or conditional
probabilities over domain values P (y|x) and possibly related quantities.
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3.2.1.1 Fixed parameter and fixed structure

In the simplest case the structure and the parameters of a Bayesian network
model are fixed. The computation of p(y|x) is NP-complete in general in the
number of variables [55]. However in practice, an exact inference method has
demonstrated its applicability, the clique-tree or join-tree algorithm [226]. We
used this exact algorithm following the recommendations for implementation
from [143]. The algorithm is exponential in the largest clique size of an inter-
mediate Markov network and our experience similarly shows that the networks
arisen in knowledge engineering and learning can be efficiently managed with
this algorithm. A general result shows that the Monte Carlo approximation is
hard as well: if NP * RP , then there is no random algorithm with polynomial
time-complexity, whose estimate p̂ is |p(y|x)− p̂| < ǫ accurate with δ confidence
for all ǫ, δ < 1/2 [64].

3.2.1.2 Bayesian parameter and fixed structure

In case of a Bayesian approach to parameters with a fixed structure G, a pa-
rameter distribution p(θ|G) is specified. The conditional probability over the
domain values p(y|x, Θ) is a random variable and its mean, variance, credible
regions are the target.

If the parameter distribution p(θ|G) is specified according to the conditions
of Th. 3.1.6, then it guarantees that p(Y |x, Θ) has a Dirichlet distribution with
hyperparameters Np0(Y , x), so the mean and credible regions can be efficiently
computed.

If the parameter distribution p(θ|G) is specified by using Dirichlet distribu-
tions and assuming parameter independence, but with arbitrary hyperparam-
eters according to Eq. 3.15, then the marginal distribution p̄(X1, . . . , Xn) over
the domain values is given by

p̄(x1, . . . , xn) =

∫
p(x1, . . . , xn, θ1, . . . , θn)

n∏

i=1

p(θi) dθ (3.21)

=

n∏

i=1

∫
p(xi| pa(xi), θi)p(θi) dθi (3.22)

=

n∏

i=1

p̄(xi| pa(xi)), (3.23)

where the p̄(xi| pa(xi)) are the local mean probabilities [228, 227, 60]. The
expectations of the parameters at each node for each parental configuration
(i.e., the integration of the Dirichlets) have a closed form solution (see Eq. 2.24)

p̄(Xi = k| pa(Xi) = paij) = EΘi
[p(Xi = k|paij , Θi)] = EΘij

[Θijk] = Nijk/Nij .

The closed solution for p̄(X1, . . . , Xn) ensures that any Bayesian inference
over the domain values can be equivalently performed using this mean-valued
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point parameters, instead of Bayesian averaging over the parameter space [228,
57], that is

EΘ[p(y|x, Θ)] = p̄(y|x). (3.24)

3.2.1.3 Bayesian parameter and structure

In the general case there is a distribution over the structures p(G) and over the
corresponding parameters p(θ|G). The conditional probability over the domain
values p(y|x, Θ, G) is a random variable itself and its mean, variance, credible
regions are the target. The computation of these quantities, for example of the
mean involves both a summation over the space of DAGs and the integration
over the parameters.

p̄(y|x) = Ep(G)[Ep(θ|G)[p(y|x, θ, G)]]. (3.25)

3.2.2 Inference over domain values with interventions

In the thesis the analyzed data set is observational. The interventional “do”
semantics was necessary only for the causal interpretation, which is used in de-
veloping models for the analysis of domain literature with Bayesian networks.
For the conversion of causally defined quantities P (y|do(x), z) into “do”-free ob-
servational quantities P (y|w) (question of identifiability) or to more appropriate
causal quantities P (y|do(x′), z′) see [201, 101, 202].

3.2.3 Inference over model parameters

After the inference over the domain values we summarize now a basic result
about the inductive Bayesian inference over the parameters. Let us assume the
observation of a complete case x, parameter independence, and Dirichlet priors
θij ∼ Dir(αij1, . . . , αijri ) for i = 1, . . . , n and j = 1, . . . , qi (where ri is the
number of values of variable Xi, qi are the number of parental configurations
pa(Xi, G)j = paij for variable Xi w.r.t. the Bayesian network G). Then the a
posteriori distribution for an “observed” parameter family θij0 where j0 is the
index of pai(x) is given by

p(θ|x) =

∏n
i=1 p(xi|pai(x), θij0)p(θij0 )

p(x)

n∏

i=1

∏

j 6=j0

p(θij) (3.26)

∝
n∏

i=1

θij0xiDir(θij0 |αij0 ) (3.27)

∝
n∏

i=1

Dir(θij0 |αij01, . . . , αij0xi + 1, . . . , αij0ri), (3.28)

which shows that the parameter posterior preserves the parameter independence
property and that local standard Bayesian updating is performed on the hy-
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perparameters of the “observed” Dirichlets (the hyperparameters for the other
parameter families θi0j with j 6= j0 are unchanged).

3.2.4 Inference over model structures

The posterior of the Bayesian network (structure) is the product of the model
likelihood and the structure prior.

p(G|DN ) ∝ p(G)

∫
p(DN |θ, G)p(θ|G) dθ = p(G)p(DN |G). (3.29)

To reach a closed form for the likelihood term we continue with the assump-
tion of the previous paragraph: N complete observations, i.i.d. multinomial
sampling, Bayesian network model with parameter independence and Dirichlet
parameter priors following [57, 227, 131]. Under these assumptions the obser-
vation of a complete case results in a local standard Bayesian updating of the
hyperparameters of the “observed” Dirichlets retaining the parameter indepen-
dence (see Eq. 3.26). The maintained parameter independence allows a standard
parental decomposition w.r.t. the Bayesian network G for each observation (see
Eq. 3.21), which allows the following rearrangement:

p(x(1), . . . , x(N)|G) =

N∏

l=1

n∏

i=1

p(x
(l)
i |pa

(l)
i ) (3.30)

=

n∏

i=1

N∏

l=1

p(x
(l)
i |pa

(l)
i ) (3.31)

=
n∏

i=1

qi∏

j=1

N∏

l=1

p(x
(l)
i |paij)

1(paij=pa
(l)
i ), (3.32)

where pa
(l)
i denotes the value(s) of parental set of Xi in case l. The marginal

probability of the data for a single Dirichlet prior and multinomial sampling was
derived in Eq. 2.24 and Eq. 2.24, 2.25. Now if ri denotes the cardinality of the
discrete values of variable Xi, αijk the initial Dirichlet hyperparameters, and
nijk the number of occurrences for the variable Xi, its parental configuration
paij and its value rk, then for each variable Xi and parental configurations j
independently

N∏

l=1

p(x
(l)
i |paij , G)1(paij=pa

(l)
i ) =

∏ri

k=1 (αijk . . . (αijk + nk))

αij+ . . . (αij+ + n)
(3.33)

=
Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk + nijk)

Γ(αijk)
,

Putting everything together, if the prior satisfies the structure modularity,
then the posterior of the Bayesian network structure has the following product
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form

p(G|DN ) ∝
n∏

i=1

p(Pa(Xi, G))S(Xi, Pa(Xi, G), DN ) where (3.34)

S(Xi, Pa(Xi, G), DN ) =

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk + nijk)

Γ(αijk)
.

3.3 Knowledge engineering

As discussed in Section 3.1 and enumerated in List 3.2, the Bayesian network can
serve as a multilevel (structural or parametric), multiple-point-of-view (proba-
bilistic or causal) representation of the domain. Besides being a model (“surro-
gate”), it fulfills other important roles of a knowledge representation (following
the proposed roles from [67]): ontological (what kind of objects and relations
exists in the domain), inferential (what kind of inference is possible in the do-
main), computational (what kinds of embedding of the model and real-world
applications are possible), communicational (what kind of understanding and
communication is supported by the model between domain experts, knowledge
engineers, and users).

Because of the versatility of the Bayesian network representation as a knowl-
edge representation, knowledge engineering methodologies are necessary for
proper and efficient real-world applications. Particularly, if a Bayesian network
model serves as a probabilistic expert system or as the engine of a decision sup-
port system, its construction should be subject to engineering standards, which
include specifications with quantitative quality measures for the process and
the product and complexity measures related to budgetary, personal and time
limits, etc. However, these issues are still largely unexplored and the knowledge
engineering of Bayesian networks is still in its early stage (described for exam-
ple in [1]). The main reasons are the versatility of the representation mentioned
above, the continuing extensions of the representation and the newly evolved
knowledge engineering context of the “e-science” era.

The “classical” knowledge engineering of Bayesian networks in complex do-
mains was criticized as aiming at a “one-shot” and “monolithic” Bayesian net-
work. Its extension led to new representational methods, especially to modu-
larized representations [207, 182, 77, 196, 168]. The object-oriented and frame-
based approaches were partly responses to problems of modularization, vali-
dation, verification, maintenance and reuse [167, 155, 156]. Other approaches
extended the Bayesian network representation itself. The multi-net representa-
tion was partly a response to a problem related to the elicitation and represen-
tation of contextual independencies [105]. The qualitative Bayesian networks
and other semantic extension of the represented relations were partly a response
to the problem of the elicitation and refinement of parameters [254, 170, 211],
similarly to the investigation of special local dependency models [130, 94].
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3.4 Prequential analysis by Bayesian networks

The Bayes factor in Eq. 2.13 is typically used in a non-sequential setup. In
Section 2.4.1 we summarized the prequential framework, which evaluates the
model from a forecasting point of view by scoring its sequential predictions
based on the actual observations [227, 60]. Because of its sequentiality, it also
offers a sample-by-sample evaluation of the compatibility of the data and the
model (see Section 8.2). For us, the case of a (discrete and finite) probabilistic
forecasting system (PFS) is relevant predicting a distribution p(Xi|x1, . . . , xi−1)
for the observation at step i. For the application of the prequential evaluation
for Bayesian networks and parts of the model we have to interpret them as PFSs
and compare them using the logarithmic score (see Eq. 2.33).

The PFS shall be defined as a Bayesian forecasting system (see Section 2.4.1)
using a fixed Bayesian network structure with Dirichlet parameter priors under
the condition of parameter independence.

The global monitor tracks the overall performance of the Bayesian network
model M = (G, θ) over a data set DN :

S(M ; DN) =
N∑

l=1

− log p(x(l)|x(1), . . . , x(l−1), M) (3.35)

= − log p(x(1), . . . , x(N)|M). (3.36)

The equation shows the ordering-insensitivity and batch-sequential equiv-
alence of the log-score for PFSs. By noting that this is the model likelihood
derived in Eq. 3.30, 3.33, the score is given by

S(M ; DN) = − log

n∏

i=1

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

∏ri

k=1 Γ(αijk + nijk)∏ri

k=1 Γ(αijk)
. (3.37)

In line with the decomposition w.r.t. the structure (see Eq. 3.34) various
monitors were suggested for the parts of the Bayesian network model.

The (unconditional) node monitor tracks the performance of the Bayesian
network model M w.r.t. a given variable Xi:

S(Xi; DN ) = − log
N∏

l=1

p(x
(l)
i |x(1), . . . , x(l−1), M). (3.38)

Two variants of the node monitor are the conditional node monitors, because
the target variable is predicted conditioned on all the other variables or only
on the parental set in the actual case. This monitor was called a “conditional
node monitor” [227]), but in the case of complete data assumption this is equiv-
alent with scoring the predictive performance of the Markov blanket subgraph
MBG(Xi, G). So we will adopt the term Markov blanket subgraph monitor.

S(MBG(Xi, G); DN ) = − log

N∏

l=1

p(x
(l)
i |x(l) \ {Xi}, x(1), . . . , x(l−1)). (3.39)
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Conditioning only on the parental set in a causal approach, we get the mech-
anism monitor that tracks the performance of the parental set Pa(Xi, G) in
forecasting a variable:

S(Pa(Xi, G); DN ) = − log

N∏

l=1

p(x
(l)
i | pa(Xi) = pa

(l)
i , x(1), . . . , x(l−1)). (3.40)

The specialization of the mechanism monitor is the configuration monitor
that tracks the performance of a parental set in case of a specific parental
configuration paij :

S(paij ; DN) = − log

N∏

l=1

p(x
(l)
i |paij , x

(1), . . . , x(l−1))1(pa
(l)
i =paij). (3.41)

By these definitions we can rewrite the model score as the sum of the mech-
anism monitors or the total sum of all of the configuration monitors in M .

S(M ; DN) =

n∑

i=1

S(Pa(Xi, G); DN ) =

n∑

i=1

qi∑

j=1

S(paij ; DN ). (3.42)

The application of the model monitor, mechanism monitor and parent-child
monitor in the ovarian cancer domain are reported in Section 8.2.

3.5 Learning Bayesian networks

By now we summarized a framework for general, normative, inductive inferences
using probabilistic domain models: the Bayesian decision-theoretic framework
with Bayesian networks. Frequently, it is restricted to optimization, particularly
over structures, which is termed the “standard” Bayesian network (structure)
learning, not necessarily within the Bayesian decision theoretic framework. This
mode of operation is particularly relevant if a large amount of data is available
w.r.t. the complexity of the model. So, in this section we finish our overview
with the summary of the score-based learning of Bayesian networks, including
Bayesian and non-Bayesian inductive scores and search algorithms.

Another large family of methods for finding complete models best fitting the
observations are the constraint-based algorithms. These construct a network
by performing independence tests with certain prespecified significance level.
Assuming no hidden variables, a stable distribution and correct hypothesis tests,
the Inductive Causation (IC) algorithm correctly identifies a Bayesian network
that exactly represents the independencies (see [202, 116, 229]). It means that
the score-based and the constraint-based learning algorithms behave identically
for stable distributions in the limit w.r.t. the sample size. However, there is
no generally recommendable prespecified significance level and final significance
level for the identified model. Furthermore, because of the frequentist approach,
there is no principled way to incorporate uncertain prior information. On the
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other hand, efficient constraint-based algorithms exist that work in the presence
of hidden variables, which is currently not tractable with Bayesian methods.

Our assumption of complete, observational and discrete data modeled with
a fixed set of discrete variables is a serious restriction, but it provides a suf-
ficient conceptual framework to develop the main topics in the thesis such as
the (automated) construction of priors, the computation of posteriors of com-
plex structural features and their role in classification. We direct the reader
to the following sources regarding the treatment of mixture of discrete and
continuous variables [169, 60, 131]; the mixture of observational and interven-
tional data [116]; the issue of incomplete data[108, 90]; the issue of special
local probabilistic dependency models [94] and the issue of temporal data and
variables [218].

3.5.1 Score functions and their properties

The score-based learning of Bayesian networks best fitting to the data DN

consists of the definition of a score function S(G, DN ) : {G×DN} → R and a
search method in the space of DAGs. In a Bayesian decision theoretic framework
the score function is specified as the expected loss EP (Ĝ|D)[L(G, Ĝ)] of selecting

(i.e., reporting) the structure Ĝ. Whereas the advantages of knowledge rich
utility functions are apparent, standard score functions lack domain knowledge.
For example, in case of 0-1 utility function the model with maximum expected
utility corresponds to the structure with maximum a posteriori probability or
in case of uniform prior to finding the maximum likelihood structure.:

GMAP = arg max
Ĝ

Ep(G|D)[L(G, Ĝ)] = argmax
Ĝ

p(Ĝ|D), if L(G, Ĝ) = 1(G = Ĝ).

(3.43)

In Eq. 3.34 we derived a closed form for the posterior of a structure G,

p(G, DN ) = p(G)

n∏

i=1

qi∏

j=1

Γ(αij+)

Γ(αij+ + nij+)

ri∏

k=1

Γ(αijk+nijk
)

Γ(αijk)
, (3.44)

termed Bayesian Dirichlet metric [131]. If the initial hyperparameters α satisfy
the conditions of Th. 3.1.6 (ensuring indistinguishability within an equivalence
class), then it is denoted as BDe. If the initial hyperparameters α are constant 1
then it is denoted by BDCH [57]. If the initial hyperparameters are the converse
of the number of parameters corresponding to the local, overall multinomial
models of the variables then it is denoted by BDeu [40, 131]. The corresponding
score functions are defined as BD(G; DN ) = log(p(G, DN )).

Another family of non-Bayesian score functions can be derived within the
likelihood framework. The maximum likelihood score is defined as follows

ML(G; DN ) = maxθp(DN |G, θ). (3.45)
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We used only the following MDL/BIC-score defined as follows

BIC(G; DN ) = log(ML(G; DN )) − 1

2
dim(G) log(N), (3.46)

where dim(G) denotes the number of free parameters. For overviews of other
score functions and for the derivation of the BIC-score, see [163, 39, 50, 99, 132].
We discuss now the properties scoring metrics w.r.t. observational equivalence
and sample size.

Definition 3.5.1. A score function S(G; DN ) is called score equivalent, if for
each pair of observationally equivalent Bayesian network structure G1, G2 the
scores are equal S(G1; DN ) = S(G2; DN ) for all DN [131].

Theorem 3.5.1 ([131]). The BDe(G; DN ) scoring metric is likelihood equiva-
lent, that is if G1, G2 are observational equivalent, then p(DN |G1) = p(DN |G2).
Furthermore, if the structure prior is acausal (i.e., equal for such G1, G2), then
the BDe scoring metric is score equivalent [131].

Consequently, the score can be used directly in an acausal approach if the
hypotheses are the observational equivalence classes. In a causal approach to
Bayesian network structure learning with the BD metrics the structure prior can
incorporate information differentiating observationally equivalent structures,
which means an asymptotically vanishing term w.r.t. the likelihood term. The
differentiation within an equivalence class by a non-likelihood equivalent BD
score (i.e., by a non-likelihood equivalent parameter prior such as the BDCH) is
similarly vanishing.

The score equivalence of the BIC score is the direct consequence of the result
that the number of free parameters (i.e., the term dim(G)) are equal in observa-
tionally equivalent Bayesian networks (here again as throughout the thesis, we
assume discrete variables and multinomial local dependency models) [39, 50, 49].

Theorem 3.5.2 ([49]). The BIC(G; DN ) scoring metric is score equivalent.

Results about asymptotic consistency and rate of convergence results for
maximum likelihood scores are derived in [39, 99]. For the sample complexity
of parameter learning, see [65].

3.5.2 Search algorithms for finding high-scoring BNs

As discussed in the beginning of this section, the recently used loss functions or
more generally the score functions S(G, DN) are usually efficiently computable
inO(nN). It is partly the consequence of the decomposability of the score, which
allows even further computational speed-ups as discussed later on. However, the
global DAG constraint does not allow the decomposition, so we have to perform
a combinatorial optimization in the space of DAGs over n nodes (variables).
The cardinality of the space of DAGs is given by a recursion [57]. By neglecting
the DAG-constraint, this can be bounded by the number of the combinations of
the edges between different nodes (2n(n−1)). By limiting the maximum number
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of parents to k it is still super-exponential (consider that the number of parental
sets for a given ordering of the variables is in the order of nkn, so 2O(kn log n) [96]).

The computational complexity of learning BNs in the constraint-based and
in the score-based framework is bounded by the following two theorems (assum-
ing P 6= NP ). The first states the NP-hardness of finding a Bayesian network
for the observations (as minimal representation of the observed independencies,
see Def. 3.1.12) [39]. The second theorem states the NP-hardness of finding
a best scoring Bayesian network (i.e., the NP-hardness of optimization over
DAGs) [50].In the special case of k = 1 (that is for trees and polytrees) stan-
dard maximum weight spanning tree (MWST) construction algorithms can be
applied, which has polynomial time complexity, see [200, 50]. The NP-hard
nature of the problem remains if the learning takes place over the smaller space
of equivalence classes [50, 152].

Consequently, a frequently used suboptimal approach is to use iterative im-
provement algorithms with local search. These start from a good or at least a
neutral candidate satisfying the prior knowledge and the DAG constraint. In
each step i a structure with an improved score is selected from the prespeci-
fied neighborhood Nb(Gi) of Gi, otherwise the algorithm is stopped. Usually
this neighborhood is defined as structures with 1 edge difference. However, the
result of the iterative improvement algorithms with local search is probably a
local optimum, so frequently the algorithms are restarted with a random initial
candidate. This problem can be avoided by replacing the greedy element of the
algorithm with a stochastic scheme allowing selections of structures with worse
score, as in the simulated annealing algorithm. A greedy algorithm called K2
can be applied if the score is decomposed and the ordering of the variables are
well-restricted, because for each ordering the parental sets can be optimized in-
dependently with a greedy algorithm [57]. Studies of the performance of various
iterative improvement algorithms using local search and simulated annealing are
reported in [50, 39], which indicate a robustly good performance with relatively
low computational complexity for the K2 algorithm without tuning to the do-
main, data set, etc. Our experiments in the ovarian cancer domain with various
iterative improvement algorithms with local search and simulated annealing al-
gorithm similarly strengthened this result. In the thesis the reported results
are usually computed with a K2 variant algorithm using the implementational
tricks of the sample tree to compute the score for a parental set in O(N) as
proposed in [57] and storing the parental scores as also proposed in [40].



Chapter 4

Prior knowledge and data
about ovarian cancer

We overview domain variables, known risk factors, preoperative classification
models, and we describe the statistical data sets from the IDO and the IOTA
project. We document the results of knowledge engineering. On the one hand,
this chapter summarizes the elicited expert knowledge about domain variables,
pairwise relations and complete domain models, partly with complete parameter-
ization. On the other hand, it summarizes the automatically collected original
and the derived, secondary electronic resources, such as the so-called “literature
data” sets.

4.1 The biomedical background, the IDO, and

the IOTA projects

We shall illustrate our theoretical developments on a real-world medical problem
related to ovarian cancer. Ovarian malignancies represent the greatest challenge
among gynecologic cancers. Early detection is of primary importance for the
survival of the patient, since currently more than two-thirds of the patients are
diagnosed only at an advanced stage and therefore have poor prognosis. A reli-
able test to discriminate between benign and malignant tumors before surgery
(i.e., a preoperative diagnosis) would be of considerable help to clinicians. It
would help them recognize patients for whom treatment with minimally invasive
surgery or conservative management suffices versus those for whom referral to a
gynecologic oncologist is needed for more aggressive treatment. There are two
different types of information for the development of such predictive models: the
biological and medical information about the disease and the growing amount
of patient data.

The doctoral research started within the framework of the IDO project at the
K.U.Leuven, which was aimed at developing “Predictive computer models for

59
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medical classification problems using patient data and expert knowledge”. The
main work took place in the context of the International Ovarian Tumor Anal-
ysis Consortium (IOTA), which is a multicenter study on ovarian tumors [240].
Its main goal is the preoperative prediction of malignancy of ovarian masses
by fusing expert knowledge and statistical data. This study also includes the
multicenter collection of patient data and the corresponding data collection pro-
tocols. For an overview of the process of the web-based medical data collection
and quality checking, see [5].

4.1.1 The domain and domain concepts

The abundant background knowledge is diverse: for example, the MEDLINE
collection of abstracts from biomedical journal papers contains thousands of
items about ovarian cancer. The most common ovarian malignancies are the
epithelial cancers, which arise from the cover of the ovary. Various theories
hypothesize that the malignant transformation is related to the number of ovu-
lations, to the level of gonadotropins, carcinogens, and also to genetic defects.
Factors known to affect the risk of malignancy are parity (number of pregnan-
cies), infertility treatment, duration of lactation, oral contraceptives, foreign
bodies (carcinogens), family history of breast and ovarian cancer, genetic de-
fects, age, age at menopause, and hysterectomy. Besides clinical data, additional
measurements and observations used in standard clinical diagnosis are the fol-
lowing: bilaterality of the tumor, pelvic pain, morphological descriptors of the
mass (such as smoothness and solidness), descriptors of its echogenicity and
vascularization, level of several serum tumor markers, such as CA125, amount
of fluid in the abdominal cavity and the day of the cycle. While the effect of
some of these variables can be quantified reliably such as the effect of the family
history and genetic defects (e.g., familial BRCA1 and BRCA2 mutations), other
effects are only qualitatively known and highly subjective (e.g., the use of the
vascularization indices).

In the experiments, we used thirty-five domain variables, which had been
previously evaluated as the most relevant domain variables, such as pathol-
ogy (benign vs. malignant), parity, drug treatment for infertility, use of oral
contraceptives, family history of breast and ovarian cancer, age, bilaterality of
the tumor, pain, descriptors of the morphology, echogenicity, and vasculariza-
tion of the mass, or the level of CA125 tumor marker (see Table A.1 for their
definitions). For the IOTA nomenclature and taxonomy, and the measurement
procedures, see [240]. Twenty of the variables are nominal or a nominal interpre-
tation has been provided by the IOTA protocol. For the rest of the variables,
a medical expert provided commonly used thresholds for their discretization,
which are shown in Table A.2.

4.1.2 Previous predictive models

The first predictive models were based on single variables (such as CA125, resis-
tance index) or risk indices (Lerner’s scoring system, risk of malignancy index
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(RMI)). Standard statistical studies indicated that a multimodal approach —
the combination of several variables — is necessary for the discrimination be-
tween benign and malignant tumors [63, 41, 137]. Therefore several studies have
applied logistic regression [239], multilayer perceptrons [249, 250, 238], support
vector machines [173, 172], and Bayesian networks [15, 14].

4.2 The data sets

In addition to the prior background information, two continuously growing data
sets were used in our work, the IDO and IOTA data sets.

4.2.1 The IDO data set

The IDO data set has been collected prospectively from 300 consecutive patients
who were referred to a single institution (University Hospitals Leuven, Belgium)
from August 1994 till June 1997. The data collection protocol excludes other
causes with similar symptoms, such as infection or ectopic pregnancy and en-
sures that the patients with persistent extrauterine pelvic mass undergo surgery.
This eliminates the possibility of false negatives and the quality of this single
center study provides reliable pathology values as gold standard (for a detailed
description, see [237, 238, 240]).

4.2.2 The IOTA data sets

The IOTA data sets have been collected in the framework of the IOTA project,
consisting of 68 parameters for over 1,150 tumors [240]. In our experiments, we
included the cases satisfying the IOTA protocol, excluded cases without mea-
surement of the serum CA125 level and use of oral contraceptives, which were
not mandatory variables for the data collection but used in our prior extraction.

Because of the ongoing data collection, two data sets have been formed from
this source. The IOTA-1.1 data set contains thirty-one variables and the com-
pletely observed cases with respect to the selected variables (604 cases) denoted
by DIO1 . The variables and the corresponding univariate statistics is shown
in Table A.2. Figure A.1 shows the biplot of the IOTA-1.1 data set and the
variables. The biplot shows variables and cases in the plane spanned by the
first two principal components. In particular, a small angle between variables
such as (Age, Meno, PostMenoY) indicates high correlation between those vari-
ables. The observations of malignant tumors (indicated by ♦) tends to be cor-
related with high values for certain morphologic variables, such as Papillation
or WallRegularity, but with relatively low values for variables such as PillUse
and Shadows. The IOTA-1.2 data set DIO2 includes four additional variables:
the “Familial history of breast cancer” (FamHistBrCa) and the “Familial his-
tory of ovarian cancer” (FamHistOvCa) (which are the original variables from
which the variable “Familial history” variable (FamHist) is derived), and the
“Postmenopausal age” (PMenoAge) and the “Reproductive years” (ReprYears)
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derived from the variables “Age”, “Postmenopausal years” (PMenoY) assuming
12 years for the age at menarche. It contains 782 complete cases, including the
samples of the IOTA-1.1, but with a few errors detected and corrected. The
biplot and the sorted eigenvalues of the covariance matrix of the IOTA-1.2 data
set containing 782 complete cases are shown in Fig. A.2 and Fig. A.3. Note
that both the IOTA-1.1 and IOTA-1.2 data sets differ from the data set of the
official first release of the IOTA consortium [239, 137].

4.3 Knowledge engineering BNs

We developed a series of Bayesian networks and various corresponding formal
and informal resources as the prior background information. In the first phase
between 1999-2000 we followed a “classical” knowledge engineering methodology
to construct Bayesian belief networks with parameter priors. It was done with
the help of a domain expert Dirk Timmerman and by pooling statistics manually
from heterogenous sources reported in the literature. This phase took place
within the framework of the IDO project using its data. It was reported in [28,
27] and it is summarized in Section 4.3.1. This model was applied in our work for
use as an auxiliary domain model with classifiers, particularly in the experiments
on transforming a Bayesian network parameter prior into a parameter prior for
a conditional model by projection and virtual sample.

In the second phase between 2000 and 2001 at the start of the IOTA project,
first we concentrated on the electronic domain literature and domain ontologies,
and we constructed various textual resources as a foundation for the ABN-
KB. This is reported in Section 4.3.4. Mainly influenced by the evaluation of
the pairwise, associative statistical text-mining methods, with the help of Dirk
Timmerman we constructed a knowledge base about the relevance (dependency)
relations in the domain, particularly focusing on the direct, pairwise dependency
relations and identifying the acausal, semantic relations.

In the third phase in 2002, we performed on the one hand an experiment to
elicite the point parameters for a small Bayesian network and on the other hand
a domain expert constructed three embedded causal domain structures. The
pairwise relevance information and the reference structures from the domain
experts are reported in Section 4.3.3, the estimated point parameters are in
Section 4.3.2.

4.3.1 An early Bayesian network for ovarian cancer

For the early Bayesian networks, we used thirteen variables where the contin-
uous and integer variables were discretized according to the medical literature
and expert knowledge. We built a “heterogeneous” belief network containing
biological models of the underlying mechanism quantifiable by the literature,
parts quantified by a medical expert and parts quantified from previous studies
(for a more detailed description of the model construction process, see [28]). The
prior belief network is shown in Fig. 4.1 and we derived the hyperparameters
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for the Dirichlet parameter priors manually from heterogenous sources shown
in the table in Fig. 4.1.

M_Solid

Locularity

ColorScore

PregnancyAge

Pathology

CA125

Ascites

Bilateral
Papillation

Meno

Fam_Risk
Solid

RIndex

OCFRisk
BCFRisk

Variable Source
Genetic risk [33, 81, 165, 256, 52]
Bilaterality [244]

CA125 [87]
Color score [245]
Locularity [118]
Papillation [118]
Pathology [33, 81, 165, 256, 52, 124]

Resistance index [233]

Figure 4.1: A early BN model for the ovarian cancer problem (left). Relevant publi-
cations providing information for certain variables in addition to the expert’s opinion
(right).

This work started in the “classical” knowledge engineering framework de-
scribed in Section 3.3, but it has been gradually shifted towards the “Bayesian”
knowledge engineering framework described in Section 5.1. Because of the ex-
tensive and complex usage of the prior knowledge, we used a strict documen-
tation method to track the route of the prior information from studies into the
model. With the Bayesian approach to data analysis, it has led to the concept
of a Bayesian computational environment with rich informal and formal knowl-
edge elements, the ABN-KBs and ABNs (see Section 5.2), to the concept of
model profiling and ABN-based information retrieval (see Chapter 5), and to
the concept of ABN-based text-mining (see Chapter 6).

4.3.2 Parameter priors for a small-scale model

In the second experiment of parameter elicitation parameter prior to restrict
the number of free parameters (to 400) we used only highly relevant variables
and relations in a small-scale model (see Fig. A.4).

4.3.3 Elicitation of structural priors

We elicited three kinds of structural information: relevance in the domain, ref-
erence structures and decomposed beliefs for structural properties. To identify
the relevant domain variables, we asked the experts to construct minimal sets
of variables and score their relevance for the prediction of the target variable
Pathology. Because of our assumption of complete observations, this task was
equivalent to score the Markov blankets MB(Pathology). These are identifi-
able from the domain structure; and indeed, for the expert it was difficult to
score abstractly the Markov blankets without considering the structural aspects
behind them. So we used this information only informally for designing experi-
ments and not as an element of a structural prior. Second, the expert specified
three embedded structures, which were used as reference in evaluation and in
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deviation priors. Third, the expert specified his belief in direct pairwise, possi-
bly directed (causal) relations, which can be used in edge priors. We summarize
these results below with their comparisons.

4.3.3.1 Prior structures from a model-based approach

The three Bayesian network structures GH , GM , and GR specified by the med-
ical expert are shown in Fig. 4.2 (they are embedded). We proposed the causal-
mechanistic interpretation for determining the parental sets, even though the
logical relations, the abstraction level and the set of variables corresponding to
the IOTA study sometimes hindered it. In this interpretation, the belief in do-
main models is the belief in the joint collection of mechanisms for each domain
variable. This joint belief in our case can be approximately decomposed (i.e.,
the embedded prior domain models can be conceived of an embedded prior for
each variable for its mechanisms or practically for its parental sets). The cor-
responding set of edges (i.e. parents) for variable Xi with “high”, “moderate”
and “reasonable” relevance are denoted by SH

i , SM
i , and SR

i , which define the
embedded GH , GM , and GR reference structures respectively.
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Figure 4.2: Three Bayesian network structures GH , GM , and GR specified by the
medical expert for the thirty-five IOTA variables used in the second stage. The most
parsimonious BN GH is denoted with dashed lines (containing a highly relevant collec-
tion of parental sets), the medium BN GM with dashed-dotted lines and the relevant
BN GR with dotted lines (they are embedded).
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4.3.3.2 Priors from a pairwise relevance approach

The expert rated the pairwise relations inclusively as ‘highly’, ‘moderately’, ‘rea-
sonably” and ‘weakly” relevant direct dependencies. Furthermore, the expert
provided rankings for the pairwise relations, which was manually transformed
into a prior RExpert(X ; Y ) for undirected edges. We applied the scaling in
Eq. 3.20 to the prior score to satisfy the condition that the average pairwise
direct relations per variable is 3, furthermore we set a lower limit ǫ to avoid the
a priori exclusion of edges. The expert also indicated the tentative causal order-
ing of the pair or the logical relation, specifically as {one, many}×{one, many}
relations.

For example, RExpert(Pathology;Y ) represents an assessment of the rele-
vance of each domain variable Y with respect to the Pathology variable—that
is, to discriminate between benign and malignant tumors. Later we use the no-
tation that Sh denotes the set of “most relevant” relations, Sm denotes the set
of both “most relevant” and “moderately relevant” relations, and Sr denotes
the set of all relations and Sh,m,r

P denote the respective subsets of the relations
corresponding to the central variable Pathology.

4.3.3.3 The causal ordering of variables

The elicited multiparental and pairwise structural relations define embedded
partial orderings of the variables. The reference total ordering ≺c was derived
(Table A.1) by the resolution of the partly logical pairwise relations.

4.3.4 Electronic resources for knowledge engineering

To derive prior knowledge about the domain concepts and their relations from
electronic resources, we experimented with the UMLS meta-ontology, which
includes multiple taxonomies, standardized vocabularies such as the ULT93,
MSH2002-06 and SNMI98 collections [197]. We mapped the IOTA entities
(groups, variables, values) to UMLS concepts. Then we derived structural pri-
ors by inducing quantified relations from UMLS relations and from their various
combinations. The results of these experiments were unsuccessful, because of
the heterogenous and very noisy ontologies within the UMLS, so we report re-
sults w.r.t. electronic free-text.

4.3.4.1 Text kernels

To use the electronic resources we constructed a text kernel for each domain vari-
able, which includes the name of the variable, synonyms, a free-text description
(the kernel) and references to documents. To ensure consistent, objective anno-
tations, we used the IOTA protocols without modification as primary sources.
A corresponding Ph.D. thesis [237] provided an extension for the IOTA descrip-
tions. Together, these compose the text kernels, on average a hundred-word
description for each of the domain variables. Additionally, we let these kernels
contain references to the Merck Manual [141], the Online Medical Dictionary
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[140], the CancerNet Dictionary [139] and the MEDLINE collection of abstracts
of the US National Library of Medicine [142], which are used optionally in de-
riving a vector representation with user-specified weights (see Section 5.3).

4.3.4.2 Document collections

We asked medical experts to select the most relevant journals for the domain (2
journals), the highly relevant (3 journals), the moderately relevant (33 journals)
and the relevant journals (93 journals). Based on these, four embedded collec-
tions of MEDLINE abstracts were constructed containing 5,367, 71,845, 231,582,
and 378,082 abstracts denoted by MEHMR− selected from the MEDLINE cor-
pus. We also constructed a more restricted series of embedded collections based
on the results of Pubmed [142] to the query “ovarian mass/tumor/cancer” in
March of 2003 denoted by PMHMR−, which contain 2, 256, 3, 301, 9, 372, 12, 038,
and 35, 562 abstracts. The Medline corpus contains papers mostly between 1985
and 2000; the PM corpus from 1980 till 2002. The annual number of papers
in the MEDLINE (ME) and in the PubMed (PM) corpora with rates high (3),
medium (2), reasonable (1) and all (0) between 1980 and 2003 are reported in
Fig. 4.3.
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Figure 4.3: The annual number of papers in the MEDLINE and in the PubMed
corpora with rates high (3), medium (2), reasonable (1) and all (0) between 1980 and
2003.

4.3.4.3 Domain vocabularies

We constructed manually a small domain vocabulary containing less than one
thousand words with domain-specific phrases and synonyms. It follows the
IOTA terminology [240] and the guidelines for controlled indices as well [51].
Furthermore, we constructed a domain vocabulary containing more than one
million words by incorporating statistically relevant words and manually curated
general medical vocabularies, such as MeSH∗.

∗http://www.nlm.nih.gov/mesh/meshhome.html



Chapter 5

Fusing BNs and logical
knowledge bases

We first summarize the new context of knowledge engineering of Bayesian net-
works. Second we describe a method for fusion of logical knowledge bases and
complex distributions, knowledge bases including informal (i.e., free-text) infor-
mation and distributions over values or structures of Bayesian networks. Third
we describe a statistical keyword profiling for such hybrid annotated Bayesian
network knowledge bases, which are formalized as elements of the knowledge
base. Finally, we presents an ABN-based information retrieval language for an
integration of knowledge engineering and data analysis.

The availability of electronic resources as prior knowledge with the advent
of Bayesianism shall lead us to the concept of Bayesian knowledge engineering
and knowledge intensive statistical data analysis (see Section 5.1). Because of
the relevance of the informal prior information usually available as free-text, we
developed the concept of an integrated knowledge base of formal and free-text
(informal) prior knowledge organized around a causal Bayesian network of the
domain. The concept of annotated Bayesian network knowledge base (ABN-
KB) was introduced as the collection of free-text, though frequently structured
description of objects related to the Bayesian network representation, such as
sets of discrete values, variables and subgraphs. The purpose was multiple,
though each can be related to Bayesian knowledge engineering. First, its goal is
to support the collection of prior information from electronic textual resources
including the collection of relevant papers and the discovery of relevant infor-
mation from scientific domain literature (i.e., integrating information retrieval
and knowledge engineering). Second, to support the formulation of complex,
knowledge rich probabilistic sentences related to the Bayesian network repre-
sentation (i.e., knowledge engineering and data analysis). Third, to represent
subjective information from the experts relevant for formulating the Bayesian
prior knowledge model (that are not necessarily related to the descriptions),
that is to define priors over consistent combinations of network fragments.
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The integrated knowledge base of factual, free-text prior knowledge embed-
ding also posteriors over Bayesian networks allows statistical keyword profiling
of the annotations of various objects. First, these profiles allow the exploration
of the prior knowledge itself by direct browsing, by clustering of the profiles or by
the visualization of the similarity of the profiles. Second, if the knowledge base
is expanded with collection of domain publications, the keyword profiles allow
the integrated exploration of the knowledge-model and the domain literature.
The exploration methods are based on a simple representation, on standard sta-
tistical keyword profiles of the free-text annotations of various objects and of
publications. First, we report the functions that allow the definition of various
profiles, then their use for the exploration of the model and finally their use
for the joint exploration of the model and publications, such as finding papers
that are relevant for certain aspects of the model (i.e., contextual information
retrieval by providing a personal and domain-specific context). In short, we
report an ABN-based integrated knowledge modeling and information retrieval
system to support the Bayesian knowledge engineering and knowledge-rich sta-
tistical data analysis. Another use of the profiles for extracting prior knowledge
from the publications are reported in Chapter 6 under the title of statistical
text mining with Bayesian networks.

5.1 Bayesian knowledge engineering

Besides the modularity issue discussed in Section 3.3, another factor behind the
problems of the applicability of the “classical” knowledge engineering methodol-
ogy is that its context, particularly the following two background assumptions,
have changed drastically in the last ten years:

1. Immediacy: The domain knowledge is provided by domain expert(s) and
moderate amount of domain literature. That is the prior is conceivable
and manually formalizable by the knowledge engineer and there is no
significant involvement of automated extraction and reformulation from
electronic domain literature or existing knowledge bases.

2. Data independence: The goal of the knowledge engineering process is to
produce and use a self-sufficient knowledge representation without statisti-
cal data. The inductive refinement of the knowledge base and the support
of statistical data analysis are optional.

The current context of knowledge engineering of Bayesian network can be
characterized with three additional features besides the modularity issue:

1. Electronic vs. printed and expert domain knowledge. The availability of
the semantic web with electronic domain literature and knowledge bases
contrary to the earlier case relying exclusively on experts and on printed
domain literature.
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2. Statistical data vs. test cases. The importance of the support of data
analysis and the availability of a significant amount of statistical data for
automated theory refinement contrary to earlier anecdotic test cases.

3. Bayesianist vs. frequentist. The availability of Bayesian methods by in-
creased computational power offers a principled method for prior incorpo-
ration, theory refinement, and using a significant number of models.

These factors have redefined the knowledge engineering process for Bayesian
networks in the following respects.

1. Automated, meta knowledge engineering. The knowledge engineering pro-
cess has to provide methods for exploring and collecting the electronic
domain knowledge, and for extracting or possibly discovering relevant do-
main knowledge in the electronic domain knowledge.

2. Construction of priors. A goal of knowledge representation is to formalize
prior(s). The “final” (usually implicit) knowledge model is provided by
the posterior of the Bayesian update.

3. Interpretation and evaluation of posteriors. Another goal of knowledge
engineering is to provide a context for formulating knowledge rich state-
ments with posteriors for evaluation and interpretation.

In short, because of the electronic domain knowledge and Bayesian meth-
ods, new goals for knowledge engineering are to specify (1) a Bayesian prior
knowledge model, (2) indirectly over the electronic resources, (i.e., meta-prior
specification) and (3) compute the posterior of complex, semantic statements.
We call the knowledge engineering in this context Bayesian knowledge engineer-
ing.

The Bayesian conception of knowledge engineering as prior formulation, up-
date and posterior analysis was envisioned in a seminal paper by Buntine [40]
under the title of “Bayesian theory refinement”. Similarly, the use of already
existing knowledge bases in constructing Bayesian network were investigated
in [255, 209, 84]. This view also fits to the knowledge intensive and “open”
trend of Bayesian statistical data analysis [219, 32]. The usage of the elec-
tronic textual resources for prior formulation and extraction were reported in
our works [22, 23, 20, 16, 25].

5.2 Probabilistic knowledge bases by embedded
Bayesian networks

The Bayesian network G, θ specifying p(V ) = p(X1, . . . , Xn) can be conceived
of a probabilistic propositional knowledge base KB over the domain variables V
by interpreting the propositions Xi = xi as the corresponding random variables
in the Bayesian network. Because the Bayesian network assign a probabil-
ity to each atomistic event x = x1, . . . , xn, this induces a probability for any
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well-formed sentence α over the domain propositions according to the rules of
probability theory (as the expectation of its truth):

p(x : α(x)|KB) = Ep(x|KB)[α(x)] =
∑

α(x) is true

p(x|KB). (5.1)

Similarly, the conceptualization of the posterior p(G|D) over the set of struc-
tures (G) as a probabilistic knowledge base was proposed from the beginning of
the field [40, 57].

The application of Bayesian networks as (1) “monolithic”, (2) “proposi-
tional” and (3) “isolated” probabilistic knowledge base is severely restricted.
First, the set of propositions or in other words the set of domain variables is
fixed and it cannot be changed dynamically according to the domain (e.g., by
duplicating a subset with known probabilistic relations). Second, there are no
objects and relations, functions in propositional logic and the language does not
support the formation of general statements. Third, the probabilistic knowledge
base is separated from the free-text or semi-structured background information,
contrary to first-order logic, in which it can be incorporated in a standard man-
ner.

The “monolithic” restriction of Bayesian networks were addressed in the
works on representing network “fragments” [167], object-oriented Bayesian net-
works [155, 205], probabilistic frame-based systems and relational probability
models [156, 92] to represent complex distributions over dynamically changing
set of domain variables.

The “isolated”restriction were addressed partly by the above mentioned
works and also by the works on textually annotated Bayesian networks inves-
tigating various usage of semantically incorporated free-text or semi-structured
background information text [22, 23, 20, 16, 25].

The “propositional” restriction was addressed in the works on the proba-
bilistic first-order logic.In first-order logic this approach requires a distribution
over possible worlds with interpretations (i.e., over models M containing poten-
tially varying number of objects and predicate and functional relations between
them, see Section 7.4). Related work can be grouped as research on proba-
bilistic logics and on the generalization of Bayesian networks towards first-order
logic (FOL) (for a recent overview see e.g. [62]). One of the early works in the
first group attempted to combine logic and probability [121], which defines the
probabilistic knowledge base from elementary probabilistic building blocks. The
BLOG (Bayesian Logic) language and Markov logic networks are also members
of the first-order probabilistic logic family [76, 187]. The concept of Relational
Bayesian networks [145] is another possible approach.

Following the proposed possible world interpretation from [121], we specialize
this general approach for the fusion of factual (free-text) and uncertain knowl-
edge based on data [25, 21]. We restrict the knowledge base to a voluminous
factual part consisting of established ontologies and papers from the domain and
to an uncertain part defined by an arbitrary distribution over Bayesian network
structures with fixed set of domain variables. This hybrid approach defines the
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distribution over the models p(M) by the combination of a logical knowledge
base and a probabilistic model assuming their independence. The logical knowl-
edge base KBl describes the factual knowledge in the domain and defines the
set of modelsM(KBl) = {M : KBl is true in M}. The probabilistic knowledge
base KBp expresses the remaining uncertain knowledge by defining a distribu-
tion over these models p(M |M ∈ M(KBl)). That is, the uncertain knowledge
does not narrow further the set of models but weighs them.The probability of
a sentence α is defined as the expectation of its truth in valid worlds.

p(M : 1(α, M)|KBl, KBp) =
∑

M∈M(KBl)

1(α, M)p(M |KBp). (5.2)

where 1(α, M) denotes the α’s truth-value in the model M . If the models
vary only in a well-defined aspect such as a given object, this regularity can be
used to define the distribution over the models based on a distribution over this
aspect.

In practice the textual annotations for Bayesian network objects, such as
values, variables and substructures, can be structured, possibly containing for-
malized, even numeric information. The prior knowledge base in the ovarian
cancer domain constructed and used in the thesis includes a four-graded rat-
ing (high/medium/low/none) for the pairwise dependency relations and for the
causal mechanisms (i.e., for the parental sets). Furthermore, the pairwise re-
lations are annotated with monotonicity information (+/-), logical and causal
information, four-graded rating, a derived probability, besides the optional free-
text annotation (see Chapter 4 for details). Because of the multiple uses of tex-
tual annotations for Bayesian networks, we use the term of Annotated Bayesian
Network (ABN) to encompass the enhanced functionalities of such minimally
enriched Bayesian networks.

Definition 5.2.1. A Probabilistic Annotated Bayesian Network Knowledge Base
(pABN-KB) K for a fixed set V of discrete random variables is a first-order
logical knowledge base using standard graph, string and BN related predicates,
relations and functions. Let G represent a target DAG structure including all the
target random variables. The knowledge base includes free-text descriptions for
the subgraphs and for their subsets. We assume that the models of the knowledge
base differs only w.r.t. G (i.e. there is a bijection G↔M) and the distribution
p(G) is available. For a well-formed sentence α, its probability is defined as the
expectation of its truth

Ep(M|K)[1(α, M)] =
∑

G

1(α, M(G))p(G|K), (5.3)

where M(G) denotes the model defined by G.

This hybrid approach defines a distribution over the set of models M by
combining a logical knowledge base with a probabilistic model. The logical
knowledge base describes the factual knowledge in the domain defining a set of
models (legal worlds) and the probabilistic part p(G) expresses the uncertain
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knowledge over these worlds. If the annotations in the knowledge base are com-
patible with a single Bayesian network model, then we use the term Annotated
Bayesian Network . For the approximation of the expectation in Eq. 5.3 see
Section 7.5.

Note that the logical knowledge base usually excludes a priori certain struc-
tures G, so only an unnormalized distribution is available. However, this is not
a serious restriction, since p(G) usually is an unnormalized posterior. Another
problem is that typically not the most probable sentences are the most interest-
ing(e.g., it is possible that a sentence α is a tautology or entailed by the factual
knowledge base K, so it has probability 1). This led us to the formalization of
the most probable sentence subset selection problem [189].

From a syntactic point of view, the model-based semantics can be reformu-
lated as follows. The KBl is extended with a set of predicates SKBp represent-
ing the uncertain part. The extension happens w.r.t. the distribution KBp,
so the probability of a sentence can be defined as the probability of its prov-
ability with a sound and complete inference method ⊢, approximated with a
constrained theorem prover ⊢i:

p(α|KBl, KBp) , p(KBl ∪ SKBp ⊢ α) ≈ p(KBl ∪ SKBp ⊢i α).

An ABN-KB can be formally represented using the formalisms of the object-
oriented Bayesian network approach or the probabilistic frame-based system
approach. In our case the emphasis is not on the formalism, but on the func-
tionality of such textually enriched Bayesian network (or Bayesian network frag-
ments) in knowledge engineering, in model evaluation and refinement by defining
complex ABN-propositions incorporating textual background knowledge and in
learning of Bayesian networks from domain literature and clinical data (see
Section 8.4.1, 8.4.2).

5.3 Keyword profiles of ABN-KB objects

According to our assumption, an ABN-KB contains free-text annotations for
subsets of the variables (e.g., the singular variables themselves), for subsets of
the discrete values and for both directed and undirected subgraphs (see Def. 5.2).
In this chapter we assume again that the ABN-KB defines target models as
single Bayesian networks, a tree-like class hierarchy over the domain variables
and possibly a distribution over the target model to ensure the model-based
probabilistic semantics for ABN sentences as defined in Eq. 5.3. We will focus
on the ABN-KB itself (i.e., on the logical part and not on the probabilistic
extension), which follows our earlier formalization reported in [22, 23].

The keyword profiles for the annotations of ABN-KB objects and later for
the publications are based on an algebraic representation, called the vector space
model, which encodes a document in a vector space where each component rep-
resents a corresponding word in the vocabulary described in Section 4.3.4.3.
This approach thus neglects the grammatical structure of the text. We used
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the Porter stemmer to canonize the words [88], processed the essential domain-
specific phrases and synonyms appropriately and applied a standard stopword
list to remove general words [29, 161, 185]. The weights for the vector model
were computed using the term frequency–inverse document frequency (tf-idf)
term weighting scheme [29, 161, 185], but the raw term frequency and the
boolean presence/absence representation is used as well. The weighted fre-
quency of term tj in document di is

wtf-idf
ij = fij log(

L

ni
), (5.4)

where fij is the number of occurrences of tj in di, L is the total number of
documents and ni is the number of documents containing term i (in our largest
MEDLINE corpus). If the text kernel of a domain variable contains references,
then we used the linear combination of the vector representations of the literal
annotation and of the references with user-specified weights λi for the sources
(e.g., 0.1 for the corpus with medium rate and 0.5 for the IOTA protocol).

A standard similarity metric for a pair of documents di, dj is the cosine of
the angle between their normalized tf-idf vector representation W i, W j :

sim(di, dj) = cos(W i, W j). (5.5)

Continuing the first-order logic (FOL) formalization of an ABN-KB de-
scribed in Section 5.2, we expand it by introducing the following functions (in
addition to the standard set of string functions and relation, we assume standard
axioms of set theory and arithmetics specified in FOL).

Example 5.3.1. 1. Annotation(sE)/A(sE): the concatenation of the de-
scriptions for the objects in the set sE

2. Index(sA,type)/I(sA): the vector representation of a text object sA (or the
set of vector representations of objects in the set sA). The available vector
representations are the boolean, raw frequency and the TF-IDF weights.

3. IndexOperation(sI
1,s

I
2,type): the arithmetic combination of vector repre-

sentations as average or the term-by-term multiplication, which can be
used to select an interesting subset of terms (nulling the rest).

4. Similarity(sI
1,s

I
2,type)/∆(sI

1 , s
I
2, options): the similarity of the vector rep-

resentations, where the similarity can be the cosine similarity in Eq. 5.5
or for Boolean representation a ratio of overlapping terms [185].

These functions allow various keyword profiles for wide range of ABN-KB
objects and collections. Conceptually we can think of them as the following
sequence: the sets of ABN entities, their annotations and their vector represen-
tation (i.e., their keyword profiles):
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1. ABN-(entity) set: set composed by set operations over domain variables
and classes. The properties of the Bayesian network and the ontology can
be used in the set definitions (such as parents or Markov blanket of a given
variable, descendants or ascendants of a class).

2. Annotation set: set composed of the annotations of ABN-(entity) sets and
possibly directly specified free-text.

3. Index set: the corresponding set of vector representations of the members
of an annotation set using a Boolean or TF-IDF scheme. It may be a
certain combination of the vector representations of the members, such as
the average, minimum or maximum value of the index weights. The result
can be restricted to a set of keywords.

4. Word set: a directly specified set of keywords or the keywords of an in-
dex set with average weights above a specified threshold and the union,
intersection, and difference of word sets.

In Section 5.5.2 we will show a formal language corresponding to these con-
structs to use ABN-based keyword profiles in information retrieval.

5.4 Explorations by keyword-based profiles

The profiles allow the exploration of the prior knowledge base itself by direct
browsing, by clustering of the profiles or by the visualization of the similarity
of the profiles.For a more refined usage of the profiles for model exploration we
implemented functions to visualize and explore interactively the cosine similar-
ity of the profiles of the variables defined in Eq. 5.4, 5.5. It offers the direct
visualization as a network and it applies a hierarchical clustering with Ward
linkage over the pairwise cosines. (see Figure 5.1).
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Figure 5.1: (Left) The hierarchical clustering of the variables based on the cosine of
the tf-idf vector representation of the kernel documents of the variables. (Right) The
similarity of the annotations of the variables using the pairwise cosines of the TF-IDF
representations of the variables.
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5.5 An ABN-based information retrieval language

Information retrieval (IR) deals with methods for indexing, searching, and re-
calling data, particularly text and other unstructured data forms [29, 161]. Two
major trends leading to an increased efficiency of the information retrieval pro-
cess are the utilization of user-specific information and domain-specific infor-
mation. The purpose of both is to increase the convenience and the efficiency
of expressing the information need of the user and to increase the quantitative
performance of the retrieval.

Information retrieval

Search

Indexing

Documents

Indices

Query

Result list

Experts &

Knowledge

engineers

Knowledge

engineering

Bayesian

network

Figure 5.2: The current separated information retrieval (left) and the proposed anno-
tated Bayesian network based information retrieval (right) to support the knowledge
engineering and the learning of Bayesian networks. In the first case the knowledge
engineer links the information resources and the built or learned BN model, whereas
in the second case the annotated BN model can be incorporated directly in the infor-
mation retrieval.

The ABN-KB can serve both as a probabilistic user profile and domain ontol-
ogy, which allows another variant of the long suggested probabilistic expansion
of the query [100, 61, 44, 38]. In fact, its use in the information retrieval pro-
cess means its integration in the KE process . First consider the general case
of having a distribution over the target DAGs and then the case of using only
the logical part (the ABN-KB itself). In both cases, formally we assume that
the publications are part of the ABN-KB as structured objects pi whose textual
parts are available by the A(pi)/A(pi) function.

5.5.1 Informational relevance expressed by ABN sentences

If we have a probabilistic ABN-KB with a distribution over the structure of
the target DAG G according to Def. 5.2, then the extension of the ABN-KB
functions in Example. 5.3.1 and the publications allow integrated probabilis-
tic queries incorporating informal knowledge and the formal model properties
(again using the probabilistic semantics of the ABN sentences defined in Eq. 5.3).
For example, the following sentence expresses the query that there is a publica-
tion p that is similar (i.e., relevant) to all the annotations of the variables in the
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Markov blankets of a given variable Y (i.e., it covers the boundary of variable
Y ).

∀XPubl(p) ∧ V ar(Y ) ∧ (X ∈MB(Y, G))⇒ (∆(I(p), I(A(X))) < δ)

5.5.2 An IR language for contextual relevance

Next, we consider the more practical case when we use only the logical part of
the ABN-KB as a user-specific and domain-specific context. To increase the ef-
ficiency of information retrieval, particularly in knowledge modeling and model
building, a special language was proposed for the detailed characterization of
documents. It allows the definition of complex expressions based on the ABN
(i.e., based on the domain model and the personal annotations), which are inter-
preted and evaluated as a relevance measure to select the matching documents
by the information retrieval system. The ABN-based information retrieval lan-
guage implements the functions listed in Example 5.3.1 by using the constructs
listed in Section 5.3: ABN-(entity) sets, annotation sets, index sets, word sets.
The implemented ABN-based information retrieval system was reported in [23],
its language is summarized below (using the formalism of rewrite rules in gram-

mars). The “Publication” non-terminal denotes the publications, []
!
denotes the

selection of exactly one alternative.

S → Relevance

Relevance → ∆(Index set, I(Publication)[cosine|boolean])|scalar|
(Relevance[+| ∗ |min|max . . .]Relevance)

Index set → I(Annotation set)|
IndexOperation(Index set, Index set, [min|max|average| ∗ |null])

Annotation set → A(ABN set)|string|Annotation set[∪| ∩ \]!Annotation set

ABN set → ABN Variable|ABN Class|(ABN set[∪| ∩ \]!ABN set)|
Parents(ABN set)|Children(ABN set)|Markov Blanket(ABN set)

ABN Class → c0|..|cL

ABN Variable → v0|..|vn

(5.6)

Quantitative evaluation of certain aspects of the ABN-based information re-
trieval language were reported in [23].



Chapter 6

Text mining with BNs

We discuss the application of Bayesian networks in statistical analysis of free-
text publications, which offers a generative, publication model-based method. We
discuss conditions for this method, its causal interpretation, and its complemen-
tarity to currently prevailing bottom-up, manually supported extraction methods.

Rapid accumulation of biological data and the corresponding knowledge
poses a new challenge of making this voluminous, uncertain and frequently
inconsistent knowledge accessible. Despite recent trends to broaden the scope
of formal knowledge bases in biomedical domains, free-text electronic literature
is still the central repository of the domain knowledge. This central role will
probably be retained in the near future. The extraction of explicitly stated
knowledge or the discovery of implicitly present latent knowledge requires var-
ious techniques ranging from purely linguistic approaches to machine learning
methods. In this chapter we investigate a domain-model based approach to
statistical inference about dependence and causal relations given the literature
using minimal linguistic preprocessing. We use Bayesian Networks (BNs) as
causal domain models to introduce generative models of publication (i.e., we
examine the relation of domain models and generative models of the corre-
sponding literature).

In a wider sense our work provides support to statistical inference about
the structure of the domain model. In Chapter 8 we present a unified view of
the literature and the data, but one of the attractive alternatives is a two-step
approach, which consists of the reconstruction of the beliefs in mechanisms from
the literature by model learning and their usage in a subsequent learning phase.
Here, the Bayesian framework is an obvious choice. Earlier applications of text
mining provided results for the domain experts or data analysts, whereas our
aim is to go one step further and use the results directly in the statistical learning
of the domain models. The first step consists of reconstructing collective beliefs
from the literature as parameters of generative models. Actually it can be
conceived as an a posteriori belief given the “literature data” (see Sections 6.1
and 8.1). In the second phase the Bayesian inference about the posteriors of
structural properties of the domain model given the clinical or biological data is
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the practical choice. Finally the link between these two steps can be formalized
using the principled probabilistic semantics (i.e., our goal is to provide the a
priori probabilities on the structural properties of the domain model derived
from the literature, see Fig. 1.3).

The central assumption of our work is that causal relations (mechanisms, see
Section 3.1.3.3) are important factors influencing most of biomedical publica-
tions. The explicitly known or implicitly reported mechanisms exert their effects
as building blocks in generative models of the occurrences of domain entities in
publications. Fig. 1.3 illustrates our assumptions about (1) the mechanism
uncertainty in the domain, (2) the corresponding literature data, (3) the recon-
structed generative probabilistic model, and (4) the application of reconstructed
mechanism uncertainty as prior in statistical inferences about domain models.

The chapter is organized as follows. In Section 6.1 we define an algebraic
representation of the literature. In Section 6.2 we review the types of uncertain-
ties in biomedical domains from a causal, mechanism-oriented point of view. In
Section 6.3 we summarize recent approaches to information extraction and liter-
ature mining based on natural language processing (NLP) and “local” analysis
of occurrence patterns. In Section 6.4 we propose generative probabilistic mod-
els for the occurrences of biomedical concepts in scientific papers. Section 6.1
presents textual aspects of the OC domain. In Chapter 8 we present a unified
view of the literature, the data and their models and report results on learning
BNs given the literature.

6.1 The literature data

As the foundation of the followed statistical text-mining approach, we introduce
a vector representation of the text. According to our assumption, for each do-
main variable Xi a name and its synonyms and a text kernel is available (see
Section 4.3.4). We denote the occurrence of the name (and synonyms) of an

ABN variable Xj in document di with a binary xO
ij value. DCO

denotes the
complete matrix for a given document corpus C. This matrix will be used in
the name co-occurrence methods. Note that this co-occurrence representation
cannot handle repetition and proximity or separation into distinct paragraphs,
sentence, and so on; but in our experiments this scheme gave satisfactory per-
formance (for the comparison of such options, see [74]).

We define another binary representation of MEDLINE abstracts based on
the kernel documents using the TF-IDF vector representation and the cosine
similarity in Eq. 5.4, 5.5. It consists of binary values defined as

xR
ij =

{
1 if τ < sim(kj , di)
0 else

, (6.1)

which expresses the relevance of kernel document kj to document di. We will

use an experimentally selected fixed value for τ (τ = 0.1). DCR

denotes the
corresponding matrix for a given corpus C. For later references we introduce
the following concept.
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Definition 6.1.1. The term literature data set (DL, DO, DR) denotes the
binary representation of the occurrence or relevance of predefined concepts in
publications in a given corpus (the corresponding binary random variables of
domain variables Xi are denoted respectively with XL

i ,XO
i , or XR

i ).

Source document collections are described in Section 4.3.4.

6.2 Concepts, associations, and causation

Frequently a biomedical domain can be characterized by a dominant type of un-
certainty w.r.t the causal mechanisms. These types of uncertainty show certain
sequentiality as described below. This sequence is related to the development
of biomedical knowledge, even though a strictly sequential view is clearly an
oversimplification.

(1) Conceptual phase: Uncertainty over the domain ontology (i.e., what are
the relevant entities?).

(2) Associative phase: Uncertainty over the association of entities. Indi-
rect, associative hypotheses, or frequently associated entities are reported in
this phase. Though we accept the general view of causal relations behind as-
sociations, we assume that the exact causal functions and direct relations are
unknown.

(3) Causal relevance phase: Uncertainty over the existence of causal rela-
tions (i.e., over mechanisms). Typically, direct causal relations are reported as
processes and mechanisms.

(4) Causal effect phase: Uncertainty over the strength of the autonomous
mechanisms embodying the causal relations.

We assume that the domain is already in the associative or causal phase (i.e.,
that the entities are more or less agreed upon, but that their causal relations are
mostly in the discovery phase). This assumption holds true in many biomedical
domains, particularly in those linking the biological and clinical levels. There
the associative phase is a crucial but lengthy process of knowledge accumulation,
where a wide range of research methods is used to report associated pairs or
clusters of the domain entities (i.e., transitive closures of partially observed
causal relations).

6.3 Literature mining

Literature mining methods can be classified into bottom-up — usually pairwise
— and top-down (model based) methods. Bottom-up methods assume that the
domain is at least partially in a causal phase and attempt to identify individual
relations leaving the integration to the domain expert. The corresponding lin-
guistic approaches assume that the individual relations are sufficiently known,
formulated and reported for automated detection methods. On the contrary,
top-down methods assumes only that the domain is in an associative phase.
That is they assume that mainly causally associated entities are reported with
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or without tentative relations and direct structural knowledge. Their linguistic
formulation is highly variable, not conforming to simple grammatical charac-
terization. Consequently top-down methods typically use agrammatical text
representations and minimal linguistic support. To compensate, they concen-
trate on identifying consistent domain models by analyzing jointly the domain
literature, which autonomously prune redundant, inconsistent, indirect relations
by evaluating consistent domain models.

Until recently mainly bottom-up methods have been analyzed in the litera-
ture: linguistic approaches extract explicitly stated relations, possibly with qual-
itative ratings [208, 135]; co-occurrence analysis quantifies the pairwise relations
of variables by their relative frequency [230, 147]; kernel similarity analysis uses
the textual descriptions or the occurrence patterns of variables in publications
to quantify their relation [221]; Swanson and Smalheiser [232] discover rela-
tionships through the heuristic pattern analysis of citations and co-occurrences;
in [54] and [184] local constraints were applied to cope with possible hidden
confounders, to support the discovery of causal relations; joint statistical anal-
ysis in [162] fits a generative model to the temporal pattern of corroborations,
refutations and citations of individual relations to identify “true” statements.

The top-down method of the joint statistical analysis of de Campos [71]
learns a restricted BN thesaurus from the occurrence patterns of words in the
literature. Our approach is closest to this and those of Krauthammer et al. and
Mani [162, 184].

The reconstruction of informative priors over domain mechanisms or models
from research papers is further complicated by the multiple aspects of uncer-
tainty about the existence, scope (conditions of validity), strength, causality
(direction), robustness for perturbation and relevance of mechanism and the in-
completeness of reported relations, because they are assumed to be well-known
parts of common sense knowledge or of the already reported paradigmatic knowl-
edge of the community.

6.4 BN models of publications

Considering biomedical abstracts, we adopt the central role of causal under-
standing and explanation in scientific research and publication [234]. Accord-
ing to this causal stance, we assume that the function of an occurrence of a
domain concept (i.e., variable) is “explained” (explanandum) or “explanatory”
(explanans), in addition, we allow the “described” status. This implicitly means
that we assume that publications contain either description of the domain con-
cepts without considering their relations or the occurrences of entities partici-
pating in known or latent causal relations.

Furthermore, we assume that mainly positive statements are reported and
we treat negation and refutation as noise. We assume that exclusive hypotheses
are reported for a given variable (i.e., we treat alternatives as one aggregated
hypothesis) and that there is only one causal mechanism for each set of causes
(i.e., we will equate a given set of causes and the mechanism based on it). Ad-



6.4. BN models of publications 81

ditionally, we presume that most publications are causally (“forward”) oriented
(i.e., explanations mostly follow causal and not diagnostic line of reasoning). We
attempt to model the transitive nature of causal explanation over mechanisms
(e.g., that causal mechanisms with a common cause or with a common effect
are surveyed in an article, or that successive causal mechanisms are tracked to
demonstrate a causal chain). By contrast, we also have to model the lack of
transitivity (i.e., the incompleteness of causal explanations, that is that certain
variables are assumed as explanatory, others as potentially explained, except
for survey articles that describe an overall domain model). Finally, we assume
that the reports of the causal mechanisms and the univariate descriptions are
independent of each other.

First, we experimented with a two-layer Bayesian network. The upper-layer
variables represent the pragmatic functions (i.e., the intentions of the authors
or the property of the given experimental technique), the lower-layer variables
represent their observable occurrences. We assumed that lower-layer variables
are influenced only by the upper-layer ones denoting the corresponding mech-
anisms, and not by any other external quantities (e.g., by the number of the
reported entities in the paper). A further assumption is that the belief in a
compound mechanism is the product of the beliefs in the pairwise dependen-
cies. Consequently we use noisy-OR canonic distributions for the children in
the lower layer [200]. This model cannot represent the dependencies between
the reported associations, and its performance was not satisfactory.

To devise a more advanced model, we relax the assumption of the inde-
pendence between the variables in the upper layer representing the pragmatic
functions, and we adapt the models to the vector representation of publications
(see Section 6.1). Consequently we analyze the possible pragmatic functions
corresponding to the domain variables, which could be represented by hidden
variables. We assume here that the explanatory roles of a variable are not
differentiated (the “uniform transitivity” assumption), and that if a variable
is explained (or described), then it can be explanatory for any other variable
(the “full transitivity” assumption). We assume also the “full transparancy” of
causal relevance (i.e., that the lack of occurrence of an entity in a paper means
causal irrelevance w.r.t. the mechanisms and variables in the paper and not
a neutral omission). These assumptions allow the merging of the explanatory,
explained and described status with the observable reported status (i.e., we can
represent the hidden and observed pairs jointly with a single binary variable).
Fig. 6.1 shows these steps. Note that these assumptions remain tenable in case
of report of experiments, where the pattern of relevances has a transitive, causal
foundation.

Definition 6.4.1. Let us assume that in a domain with variables X1, . . . , Xn a
research community accepts that a causal model G satisfies the Causal Markov
Condition (see Def. 3.1.18). Let XL

1 , . . . , XL
n denote the binary, random vari-

ables in the literature data representation of a corresponding document corpus
C (see Def. 6.1.1). The “forward, transitive, transparent, causal” (FTTC)
publication condition holds if G statisfies the Causal Markov Condition w.r.t.
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Figure 6.1: The derivation of the transitive publication model by the assumptions of
“uniform transitivity”, “full transitivity”, and “full transparancy”.

p(XL
1 , . . . , XL

n ) as well. We call the Bayesian network models of p(XL
1 , . . . , XL

n )
(binary, transitive, fully transparent) literature Bayesian networks (GL, θL).

A possible semantics for the parameters of a binary, transitive, fully trans-
parent literature BN can be derived from a causal point of view that the presence
of an entity Xi is influenced only by the presence of its potential explanatory
entities (i.e., its parents). Consequently, p(Xi = 1|Pa(Xi) = paxi

) can be in-
terpreted as the belief that the parental variables with “present” status in paxi

can explain the entity Xi (Pa(Xi) denotes the parents of Xi and Pa(Xi)→ Xi

denotes the parental substructure). In that way the parameters of a complete
network can represent the priors for parental sets compatible with the implied
ordering:

p(Xi = 1|Pa(Xi) = pa(Xi)) = P (Pa(Xi) = pa(Xi)) (6.2)

where for notational simplicity pa(Xi) denotes both the parental set and a cor-
responding binary representation. This would imply that we can model only full
survey papers, but the general, unconstrained multinomial dependency model
used in the transitive BNs provides enough freedom to avoid this limitation.

The multinomial model allows entity specific modifications at each node,
combined into the parameters of the conditional probability model, which are
independent of other variables (i.e., unstructured noise). This permits the mod-
eling of the description of the entities, the beginning of the transitive scheme of
causal explanation, and the reverse effect of interrupting the transitive scheme
(i.e., incorporating the probability of acausal description, and starting and ter-
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minating a chain of causal explanation). Note that a “backward” model cor-
responding to an effect-to-cause or diagnostic interpretation and explanation
method has a different structure with opposite edge directions.

In the Bayesian framework, there is a structural uncertainty also (i.e., uncer-
tainty over the structure of the generative models themselves). So to compute
the probability of a parental set Pa(Xi) = pa(Xi) given a literature data set
DL

N ′ , we have to average over the structures using the posterior given the liter-
ature data:

P (Pa(Xi) = pa(Xi)|DL
N ′) (6.3)

=
∑

(pa(Xi)→Xi)∼GL

p(Xi = 1|pa(Xi), G
L)P (GL|DL

N ′)

≈
∑

GL

1((pa(Xi)→ Xi) ∼ GL)P (GL|DL
N ′) (6.4)

Consequently, the result of learning BNs from the literature can be multiple
(e.g., using a maximum a posteriori structure and the corresponding parameters,
or the posterior over the structures, see Eq. 6.3). In the first case, the parameters
can be interpreted structurally and converted into a prior for a subsequent
learning. In the latter case, we neglect the parametric information focusing
on the structural constraints, and transform the posterior over the literature
network structures into a prior over the structures of the real-world BNs (see
Section 8.1).

6.5 Local scores for pairwise relationships

We use the following local (i.e., non-domain model based) score for pairwise
relationships, which are the simplest approaches in statistical text mining (see
Section 6.3 for the comparison of such statistical bottom-up methods).

Let p(XO
1 , . . . , XO

n ) denote the joint probability of occurrence of the names
or synonyms of ABN random variables in a paper from a given corpus. For the
kernel relevance, let p(XR

1 , . . . , XR
L ) denote the joint probability of the relevance

of the kernels of the random variables in the ABN for a certain document. Based
on the previous definitions, we can define several text scores to quantify the
dependency of the pairs of random variables in the ABN. RAND,Ci

COOC (X ; Y ) and

RAND,Ci

COREL (X ; Y ) denote a name co-occurrence and a kernel corelevance score.

RMI,Ci

COOC(X ; Y ) and RMI,Ci

COREL(X ; Y ) denote the mutual information scores based
on name occurrence and kernel relevance over the collection Ci.

RAND
COOC(X ; Y ) , p(XO = 1, Y O = 1|(XO = 1) ∨ (Y O = 1)) (6.5)

RAND
COREL(X ; Y ) , p(XR = 1, Y R = 1|(XR = 1) ∨ (Y R = 1)) (6.6)

RMI
COOC(X ; Y ) , I(XO; Y O) (6.7)

RMI
COREL(X ; Y ) , I(XR; Y R) (6.8)
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Additionally, we introduce a relevance scoring for X and Y inspired by
information retrieval. A standard similarity metric for the kernel descriptions of
KX and KY is the cosine of the angle between their corresponding normalized
tf-idf vector representation as defined in Eq. 5.5. The definition is the following:

RASIM(X ; Y ) , sim(KX , KY ).

We refer to these text-based local relevance scores in general with RL
Text(X ; Y ).

6.6 Results

In the main application domain of the thesis, in ovarian cancer substantial prior
knowledge and clinical data is available, which allows wide range of evaluations
of the BN publication models. Such cross-comparison of expertise, clinical data
based statistical inferences and literature data based statistical inferences are
reported in Chapter 8 using the transitive, fully transparent BN model with a
causal (forward) interpretation. Results w.r.t. complete models are reported
in Section 8.4.2, (sequential) posteriors of simple pairwise structural are in Sec-
tion 8.5.2.1 and posteriors of complex structural features such as MBG(Y ) and
MB(Y ) relations are reported in Section 8.5.2.2. Anticipating these quantitative
evaluations Fig. 6.2 shows a literature Bayesian network.
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Figure 6.2: The maximum a posteriori Bayesian network using the DPMH
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Chapter 7

Inference over BN features

First we categorize structural properties (i.e., features) of Bayesian networks,
and introduce a feature called Markov blanket graph. Second we summarize the
advantages of the Bayesian approach to BN features, and formalize the appli-
cability and the statistical advantages of the ordering-based MCMC estimation
method. Third we discuss the consequences of the exponential cardinality of fea-
ture values for decisions based on their MC estimates. Finally, the integration
of estimation and search of high-scoring MBG feature values is analyzed.

The increasing complexity of the models, the incorporated prior knowledge
and the queries leads to the issue of Bayesian inference over general properties
of Bayesian networks (i.e., to estimation of the expectation of binary random
variables). Although we discuss this problem from the point of inference over
structural features, note that the expectation of functions over the space of
DAGs w.r.t. a posterior appears in a wide range of problems, such as in the
posterior of a feature (i.e., structural model property) Fc, in the posterior of
an ABN sentence (see Def. 5.2), in the expected loss of the selection of a given
model and in the full-scale Bayesian inference over domain values (see Eq. 3.25):

p(Fc = fc|DN ) =
∑

G

1(Fc(G) = fc)p(G|DN ) (7.1)

p(α(G)|K, DN ) =
∑

M(G)∈M(K)

α(M(G))p(G|DN ) (7.2)

LĜ|DN
= Ep(G|DN )[L(G, Ĝ)] =

∑

G

L(G, Ĝ)p(G|DN ), (7.3)

p(y|x, DN ) = Ep(G|DN )[Ep(Θ|G,DN )[p(y|x, Θ, G)]]. (7.4)

First, we overview Bayesian network features in Section 7.1 and introduce
the Markov blanket subgraph feature in Section 7.2. In Section 7.3 and 7.4 we
discuss the advantages of feature posteriors as confidence measures w.r.t. the
bootstrap probabilities. In Section 7.5 we will concentrate on the approximation
of Eq. 7.1, when the feature is a standard graph-theoretic property of DAG G
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with values F (G) = fi, i = 1, . . . K. The growing importance of such model-
based, feature-oriented statistical inferences is the result of (1) frequent high
sample complexity for the identification of the complete model, (2) the lack
of prior for the complete model, (3) the high computational complexity for
the identification of the complete model, (4) the availability of computational
resources and stochastic methods for estimation, and (5) the availability of
complex semantic propositions with statistical semantics as the ABN sentences
in Eq. 7.2.

The most important factor is the relatively small amount of data. A general
expectation is that, in case of small amount of data, at least certain properties
with high significance of a complex model can be inferred and perhaps with
lower computational cost. So the goal is the automated learning of what is
learnable with high confidence in the considered model space given the data and
to support the interpretation of statistical inference by indicating confidence
measures for such properties. Furthermore, the model properties with high
significance can be used heuristically as “hard” constraints or “soft” bias to
support the inference of the complete model, either by influencing it through
priors in learning from heterogeneous sources or in the case of using the same
data set by influencing the optimization process itself (see Chapter 8). Note the
similarity of this approach to the frequentist constraint-based Bayesian network
learning methods, which perform hypothesis tests on local model properties (on
features) and integrate them into a consistent domain model. In a potential
Bayesian analog the hypothesis tests are replaced by the model-based feature
posteriors instead of the significance levels and p-values of hypothesis tests,
enhancing their integration in subsequent phases of learning a complete domain
model.

However, the Bayesian approach to feature learning has many additional as-
pects beside the estimation of the posterior. Such related issues are the effect of
the cardinality of feature values on the selection of optimal value(s) and the in-
tegration of estimation and search processes in case of high numbers of features,
which are discussed in Section 7.6 and 7.7. Additional issues related to classifi-
cation in our case are the support of full scale Bayesian inference over domain
values (i.e., the use of the estimated posterior distribution over the features as
a probabilistic knowledge base) and the transformation or inducement of priors
for a subsequent learning phase either using Bayesian networks or using other
more specialized representations, for example logistic regression or multilayer
perceptrons. These are discussed in Chapter 10.

Whereas these inferences are investigated mainly in fundamental research,
they may soon appear in standard statistical data analysis software and in de-
cision support systems as they can offer a more personalized and knowledge
intensive environment for inductive inferences. For example, the combination of
the electronic clinical and genomic patient data, the semantic web and evidence-
based medicine can be driving force for such complex probabilistic queries over
standardized knowledge bases and data-bases. A special case is the area of
statistical analysis of biomedical literature, where we can treat the domain lit-
erature as a special data set and formulate queries against this voluminous
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knowledge base (see Chapter 8). In general, it means that the knowledge inten-
sive Bayesian approach over large, distributed knowledge and data-bases will
get more and more emphasis within the area of knowledge and data analysis.

7.1 Bayesian network features

Before considering the induction of confidence measures over a Bayesian network
feature F , first we overview standard Bayesian network features, together with
proposed identification methods and the corresponding Bayesian tasks.

There is a large variety of features (i.e., model properties) to provide an
overall or specialized characterization of the underlying model, such as the undi-
rected edges or compelled edges (as direct relations or direct causal relations
under CMA), pairwise or partial ancestral ordering (related to causal ordering),
the parental sets, the pairwise relevance relations, the subset relevance rela-
tions (Markov blankets) or the partially parametric features such as the pair-
wise qualitative features. Despite this variety and the presence of the parental
set features, which are the ultimate building blocks of Bayesian networks, the
usefulness of these features are still seriously restricted by their unexplored
dependency in all application areas, such as in data analysis, in probabilistic
knowledge bases, in prior acquisition and in posterior-to-prior inducement for
later phases of Bayesian learning. This seems to be unavoidable because even
small sets of simple local features quickly become dependent, because of the
DAG constraint, what biases this model-based approach with hardly estimat-
able effects.

A possible solution is the definition of complex features (subtheories) that
are sufficient features for a given aspect of the domain theory and still more
efficiently learnable than the complete domain model. So, it is an open issue to
define complex features that on the one hand exactly model a semantically inter-
esting fragment (subtheory) of the domain and on the other hand they are still
considerable simpler than the complete domain model. Such a feature would
exactly represent the interesting dependencies between the relevant simpler fea-
tures and the statistical and computational complexity of the estimation of its
distribution over the feature space would be lower and better interpretable.

In fact, we can define two approaches to Bayesian network features. The first
approach relies on the assumption that the feature set is fixed, the features are
significantly simpler than the complete domain model, though they provide an
overall characterization as a fragmentary representation, and the number of fea-
tures and feature values are tractable (not exponential, but linear or quadratic
in the number of variables). Such features are the pairwise edge or relevance
features (i.e., the compelled edges and Markov blanket relations). These simple
features are easily interpretable or can be used to support a subsequent learn-
ing phase of a complete Bayesian network model. The main challenge in this
approach is the computation of the corresponding expectations.

At the other extreme of feature learning we find the identification of arbitrary
subgraphs with statistical significance, which is an idealistically autonomous ap-
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proach to feature learning consisting of a mixture of search and the computation
of the achieved significance. This is close to our approach to Bayesian network
features investigated in the thesis, but we restrict the subgraphs to Markov blan-
ket subgraphs to have a focused representation from a single, but complex point
of view (i.e., from conditional modeling) and we use the Bayesian framework
instead of the frequentist framework.

7.1.1 Edges: direct pairwise dependencies

The first family of frequentist algorithms for learning a Bayesian network feature
targets the identification of “direct” (unconditional) causal pairwise relations
(“direct” in the sense discussed in Section 3.1.3.2). If the hypotheses are the
DAGs as causal models, then this feature corresponds to the edges. If the
hypotheses are the observational equivalence classes as independence models,
then such relations are exactly identified by the compelled edges assuming no
hidden variables, the causal Markov condition and stability. The corresponding
posteriors in the Bayesian context are the following

p(Xi →G Xj |DN) =
∑

G

1(Xi →G Xj)p(G|DN ) (7.5)

p(CompE(Xi, Xj |G)|DN ) =
∑

G

CompE(Xi, Xj |G)p(G|DN ). (7.6)

In the presence of possible hidden variables there are more advanced constraint-
based algorithms for identifying relations with various causal interpretations,
though not in the Bayesian framework (see [202, 116], [54, 224]).For the ap-
plication of bootstrap and Bayesian method over edge features, see Section 7.3
and 7.5.2.3.

7.1.2 Ordering of the variables

Whereas the identification of the ordering of the variables rarely appears as a
direct target, indirectly it is usually present in BN learning. In the acausal
approach the identification of an acausal Bayesian network heavily influenced
by the identification of a good ordering of the variables, because the learning
of an acausal Bayesian network structure for a given ordering is computation-
ally efficiently doable (both in the frequentist or Bayesian framework). In the
causal approach when the hypotheses are the DAGs, the causal structures di-
rectly define causal orderings as ancestral orderings. Consequently a score for a
Bayesian network G can be interpreted as an approximate scores for the under-
lying partial orderings. Recall that the ML structure score can be interpreted
as the summed mutual information between the parents-child pairs and that
the BD and the BIC scores are asymptotically equivalent (see Section 3.5.1).
So, in a broad sense, any structure learning can be interpreted as an indirect
learning of orderings, but certain algorithms explicitly use orderings as a central
representation. For example, the use of genetic algorithms has been reported to
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find the best ordering for the learning of Bayesian network structures [166]. The
corresponding posterior over the complete orderings ≺ in the Bayesian context
is the following

p(≺ |DN) =
∑

G

1(G ∈ G≺)p(G|DN ). (7.7)

7.1.3 Relevant variables

The concept of relevance is a fundamental concept in the definitions of the
Bayesian network representation (see Def. 3.1 and 3.3 for the observational and
causal relevance), but it is also central to AI, to decision theory (e.g., the value
of further information) and to statistics (for an overview, see [231]). An im-
portant special case is the relevance of explanatory variables to predict a target
variable given a data set, hopefully with a domain-specific interpretation. The
selection of the relevant variables in this context is called the feature subset
selection (FSS) problem, which is part of the broader problem of input prepro-
cessing, construction of variables (e.g., interaction terms) and dimensionality
reduction. We will discuss only the relation of the FSS problem to BN feature
learning. Note that even in the conditional approach in general the features are
not independent, so the concept of relevance corresponds to the subsets and not
to the individual features.

To explain the generality of the Bayesian approach to relevance using Bayesian
network features, we summarize the most widespread conditional approaches to
FSS in sequence (see Section 9.1 for the conditional Bayesian modeling). We
start with the concept of relevance and with a non-Bayesian approach specific
to the applied optimization algorithm, the data set, the model class, and the
loss function. Then we generalize these specifics step by step, which leads to
a standard conditional probabilistic concept of relevance in the end. Finally,
we relate the Bayesian conditional approach to the general Bayesian approach,
particularly to the Bayesian inference over Bayesian network features. In short,
we show that the Bayesian inference over Bayesian network features offers an
algorithm-free, model-free∗, loss-free and non-conditional (i.e., domain model
based) solution for the feature subset selection problem.

The conditional approach to FSS relies on the separate modeling of the de-
pendence of a target variable Y on X ′ (i.e., without modeling the overall do-
main). It has been investigated using various conditional model classes M ,
such as linear regression, decision trees, logistic regression, multilayer percep-
trons or support vector machines [138, 36, 125, 73]. It defines a score function
SS(X ′, DN , M, L) for the subsets X ′ ⊆ X and performs a search in the space
of subsets of the features.

The wrapper approach to feature selection uses an optimization algorithm
f̂C(X ′) = C(X ′, DN , M, L) [148, 153]. It defines the score function as

SS(X ′, DN , M, L) = SF (f̂C(X ′), DN , M, L).

∗In the assumed case of discrete variables with multinomial conditionals.
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The conditional model score SF (f̂C(X ′), DN , M, L) may incorporate factors
for the interpretability or complexity of the conditional models f(X ′) ∈ MX′

and their estimated expected predictive loss (risk).
In an algorithm-free and asymptotic case the subset score SS(X ′, M, L) can

be defined as the best expected predictive loss in a conditional model class MX′

with features X ′

SS(X ′, M, L) = arg min
f(X′)∈MX′

∫
L(y, f(x′))p(y|x′) dyp(x′) dx′. (7.8)

However, this asymptotic and algorithm-free optimality of a subset for a
given model class is not appropriate to define the relevance of a feature, as it
was demonstrated in [148, 153].

The model-free subset score SS(X ′, L) can be defined as the best achievable
risk with subset X ′ for a given loss L, called Bayes risk

R∗
L =

∫
L(y, g∗(x′))p(y|x′) dyp(x′) dx′, (7.9)

where g∗ is the Bayes decision, which minimizes the expected loss of prediction
for each x (see Section 2.2.4.2).

Because of the specific choice of the loss function L(Y, Ŷ ), it is still possible
that the minimal subset would miss certain features relevant for another loss.
The following theorem for the case of binary output Y shows that the final loss-
free generalization of the concept of relevance necessarily leads to the standard
conditional probabilistic definition of relevance [73].

Theorem 7.1.1 ([73]). A transformation T (X ′) is a mapping from the feature
space Rn to Rn′

and its Bayes risk with loss L is denoted with R∗
L,T . It is called

admissible if for any loss function L, R∗
L,T = R∗

L, where R∗
L is the original

Bayes risk. A transformation is admissible, if T (X′) is a sufficient statistics
(i.e., p(Y |T (X ′), X ′) = p(Y |T (X′))).

The relevance of a feature can be defined in an algorithm-free, asymptotic,
model-free and loss-free way as follows.

Definition 7.1.1. A feature Xi is strongly relevant, if there exists some xi, y
and si = x1, . . . , xi−1, xi+1, . . . , xn for which p(xi, si) > 0 such that p(y|xi, si) 6=
p(y|si). A feature Xi is weakly relevant, if it is not strongly relevant, and there
exists a subset of features S′

i of Si for which there exists some xi, y and s′i for
which p(xi, s

′
i) > 0 such that p(y|xi, s

′
i) 6= p(y|s′i). A feature is relevant, if it is

either weakly or strongly relevant; otherwise it is irrelevant [148, 153].

The model-free, algorithm-free and loss-free conditional approach is called
filter approach (for references, see [148, 153]). In the filter approach to feature
selection we have to select a minimal subset X ′ that fully determines the con-
ditional distribution of the target (p(Y |X ′) = p(Y |X ′)) without modeling the
complete domain p(Y, X ′) or the explanatory variables p(X ′).
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The Bayesian networks as representation of the independencies in the domain
motivated a series of methods for identifying such a subset for the variable Y ,
particularly using the boundary of Y in DAG G in a distribution compatible
with G (see Def. 3.1.9). However this set is not necessarily unique and not even
minimal. The following theorem gives a sufficient condition for both [242].

Theorem 7.1.2 ([242]). If distribution P is stable w.r.t. the DAG G, then
the variables corresponding to the nodes in the boundary of Y , bd(Y, G) (the
parents and children of Y and other parents of its children) forms a unique and
minimal Markov blanket of Y , MBP (Y ) (the Markov boundary). Furthermore,
Xi ∈MBP (Y ), if Xi is strongly relevant.

The Markov Blanket Approximating Algorithm assumes that the number
of relevant variables is usually much larger for the target variable then for the
explanatory variables, so it iteratively omits features for which there is a subset
of features forming a Markov blanket without the target variable, consequently
not influencing the conditional distribution of the target variable [157]. It uses
pairwise correlation for finding a Markov blanket for the features and the KL
distance to test the change of the conditional distribution. Recent extension of
the algorithm and its applicaton to microarray data are reported in [259]. The
Incremential Association Markov Blanket algorithm and its variants similarly
use correlation measures and independence tests in forward-backward phases
for identifying Markov Blankets, with asymptotic correctness and low compu-
tational complexity [242, 243]. Other filter methods directly use Bayesian net-
works for a preliminary feature selection, which provides usually a restricted
set of variables for a computationally more intensive classifier learning in the
next phase. The K2MB method first identifies a parental set for the target
variables from all the explanatory variables using the K2 greedy method (see
Section 3.5.2), then it applies the K2 algorithm for random orderings of this
subset [56]. The learning of a GBN classifier similarly first applies a Bayesian
network learning method [46], then it selects the boundary of the target node
MB(Y, g) as a Markov blanket from the resulting Bayesian network G and ap-
plies a general Bayesian network learning algorithm or the learning of Bayesian
multinets representing also contextual independencies [47, 48, 105].

The wrapper approach to feature selection similarly can apply the Bayesian
networks as classifiers, in this case jointly in the feature selection phase and
the phase of classifier learning [210, 144]. These filter methods indicate that
the feature subset selection problem can be approached in a conditional and a
model-based way. In the first case, to avoid the statistical (sample) and com-
putational complexity corresponding to complete domain models, the Markov
blanket is inferred independently of any other aspect of the domain model (i.e.,
without evaluating the implications of the identified features for the domain
model). Thus these Bayesian network methods have still conditional and fre-
quentist foundation, beside being model free and loss free. So on the one hand,
unavoidably the scores for the subsets in these model-free methods has a vague
relation to the performance of a given loss function and algorithm over specific
model class restricted to the subsets [148, 153]. But on the other hand, (1) the
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scores do not utilize the potential of Bayesian networks as domain models (i.e.,
conditional scores), (2) they have hidden biases, and (3) they have no confidence
measures with clear interpretation, partly because of the sequential application
of statistical tests on a finite, frequently rather small amount of data. These
can be answered in a domain model-based, Bayesian approach to the feature
subset selection problem using Bayesian networks.

In the Bayesian conditional approach to feature selection θ encodes the pres-
ence of the explanatory variables, so p(θ|D) induce a (conditional) posterior
distribution over the subsets (for an overview of using MCMC methods in a
conditional model space over structures with varying input features, see [199],
for applications [72, 215]). A hierarchical conditional approach is the Automatic
Relevance Determination (ARD) method [194], in which certain parameters rep-
resent the weights Wi(relevance) of the inputs (features) Xi, so the parameter
posterior for the inputs p(W1, . . . , Wn|DN ) can be used for the evaluation of a
feature subset.

In the Bayesian domain-based (non-conditional) approach a conditional model
of the target variable cannot be separated from the overall domain model or
at least the conditional model and the model over the potential explanatory
variables are dependent. For example, it is generally so for Bayesian network
structure priors, so, as we shall see, we have to average over the model space to
derive posterior for the part of the model relevant conditionally (see Eq. 9.8).

As we saw in Th. 7.1.2, the boundary of the variable Y in the Bayesian net-
work G identifies a minimal and unique Markov blanket MB(Y, G) for variable
Y in any stable distribution w.r.t. the DAG G. Using Bayesian network with
multinomial local dependency models as unconstrained domain models for dis-
crete values and with Dirichlet parameter priors, the posterior probability of the
Markov blanket expresses exactly the belief in the (observational) probabilistic
relevance of the subset X ′:

p(MB(Y ) = X ′|DN ) =
∑

G

1(MB(Y, G) = X ′)p(G|DN ). (7.10)

Recall that the structure posterior p(G|DN ) represents the posterior belief
in stable distributions w.r.t. G (the non-stables have measure zero see Sec-
tion 3.1.2.3) and that DAGs in a equivalence class G ∈ G∼ represent the same
set of independencies, so imply the same Markov blanket.

Though the concept of relevance corresponds to subsets, a corresponding
pairwise measure can be introduced that defines individual “feature relevance”

p(MBM(Y, Xi)|DN ) =
∑

G

1(Xi ∈MB(Y, G))p(G|DN ). (7.11)

Because of model averaging it is still model-based (!), consequently biased
towards “domain consistency”, contrary to standard pairwise correlation and as-
sociation measures. Note that only the Bayes risk based subset score is mono-
tone, similarly to a mutual information based subset score, which makes the
search in the space of subsets harder. For the application of bootstrap and
Bayesian method over MBM features, see Section 7.3 and 7.5.2.3.



7.1. Bayesian network features 93

7.1.4 MBG subnetworks

The feature subset selection problem does not include explicitly the issue of
dependencies between the features, though the interaction between the selected
features is important for their interpretation. A generalization of the FSS prob-
lem includes the construction of a model containing the variables X ′ relevant to
a target variable Y and their observational dependency and causal dependency
relations w.r.t. Y .

As shown in Eq. 7.13, the classification performance of a Bayesian network
in case of complete data is fully determined by the Markov blanket spanning
subgraph MBG(Y, G) and its parameters (the local models for Y and its chil-
dren). Another interpretation of the MBG feature is that it encompasses all
the causal mechanisms directly related to a given variable Y . Because of the
generality of the MBG feature discussed in Section 7.2, we call such model a
Markov Blanket Graph or Mechanism Boundary Graph (a.k.a. classification
subgraph, feature subgraph).

In the conditional approach, the importance of the MBG feature was already
identified, because early methods used the score of a complete Bayesian network
G to score the classification performance of the model and to score the Markov
blanket of the target variable. As noted in [91] and discussed in Section 9.4.1,
this is incorrect from the point of prediction of the target Y , particularly in the
case of complete data, because this score includes (direct or indirect) complexity
penalization w.r.t. the complete domain model that is not relevant for the MBG
submodel relevant for classification. It is more appropriate to use special scores
for the classification relevance of the MBG subnetwork and possibly even for
scoring the feature subset. Such a classification oriented score is the conditional
node monitor (or MBG monitor), its use was reported in [158, 159, 160, 4].

In conditional approaches using other models, the dependency models may
contain such additional information about the conditional dependence struc-
ture. In Chapter 9 we discuss the logistic regression model, the tree augmented
Bayesian network classifiers [91] and the augmented Bayesian classifier [150],
which explicitly contain interactions and the MLP model, in which such infor-
mation is rather implicit.

In the Bayesian framework using Bayesian networks, the corresponding score
for the MBG feature is the posterior

p(MBG(Y, G) = mbg |DN ) =
∑

G

1(MBG(Y, G) = mbg)p(G|DN ). (7.12)

7.1.5 Learning of subnetworks

The most general structural feature is a general subgraph of a Bayesian network.
The identification of subgraphs with statistical significance was reported in [203].
In the first phase, this method generates confidence measure for the pairwise
Markov blanket memberships MBM(Xi, Xj) using the bootstrap. Next, using a
heuristic threshold on the bootstrap probabilities for the pairs, it identifies com-
ponents as starting seeds for a bottom-up expansion to generate multivariable
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features from the pairwise features. The attractive assumption behind this ap-
proach is that pairwise features corresponding to the same or dependent causal
mechanisms are dependent, so they can be identified jointly with higher sig-
nificance. The evaluation indicated the advantage of this model-based (called
“context specific” in their terminology) approach for detecting “correlation”
compared to the investigation of direct associations of features with Pearson
correlation. The continuation of this work similarly indicated the advantage of
learning parts and modules using a special decomposed representation for the
Bayesian network [220, 204]. This study also investigated the learning of global
pairwise features, such as the existence of a directed path, causal effect between
two variables and the learning of parametric features, such as the qualitative
type of the local dependency models.

7.1.6 The properties and taxonomy of features

We introduce a terminology to analyze Bayesian network features, particularly
the properties of a new BN feature we propose later. The concept of feature over
DAGs (Bayesian networks) has a broad usage, it is used for random variables
(i.e., a mapping from DAGs G to the real line), for their values, and even for
mappings from DAGs G to a set of complete and mutually exclusive compos-
ite events. From another point of view, there are simple quantitative random
graph properties such as mean in-degrees, out-degrees, clique sizes or lengths of
directed paths, and there are complex indicators such as the ABN sentences or
complex mappings to subgraphs such as the essential graphs. We use the term
feature in a broad sense to denote any function over DAGs G or BNs (G, θ) (e.g.,
F (G) : G → F). If the context allows, e.g. in case of binary features, we use
the term feature to refer to the feature function, feature value, and also to the
denoted graph property. Frequently a set of feature functions can be indexed by
the variables Xi ∈ V (i.e., {FXi(G)}) or pairs of the variables, etc., as it would
be another argument of the feature function, so we can talk about univariate
features F (Xi, G) or pairwise features F (Xi, Xj , G), instead of referring to the
corresponding sets of features.

A feature F is a local feature F (V ′, G), if its value depends only on the
subgraph of G spanned by the argument variables V ′ ⊆ V denoted with G|V ′

(i.e., (G
|V ′

1 = G
|V ′

2 ) ⇒ (F (G1) = F (G2)), where G|V ′

contains nodes V ′ ⊆ V
and edges of G from V ′ to V ′). A non-local called global feature indicates a
potential relation to other features and increased computational complexity.

A feature F is a modular, if it depends only on the parental sets in DAG G
(i.e., (Pa(G1) = Pa(G2))⇒ (F (G1) = F (G2))). A feature is ordering-modular,
if for all except at most one feature value f and for each complete ordering ≺
there is a conjunctive normal form C1∧· · ·∧Cn such that each clause Ci(f,≺), G
for i = 1, . . . n depends only on Pa(Xi, G) for all G≺ (i.e., Ci(f,≺, pa(Xi, G)) ).
Note that the compelled edge relation and the pairwise MBM relevance relation
between Xi, Xj are not local, but the MBM relation (through its false value) is
modular [97].

Another general type is the observationally equivalent feature F , if the mapped
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subgraph F (G) over the variables V ′ ⊆ V depends on only the essential graph
of G, G∼ (i.e., (G∼

1 = G∼
2 )⇒ (F (G1) = F (G2))).

A feature F is called a complex feature, if the number of values of the feature
is exponential in the number of domain variables.

A set of features {F1, . . . , FL} called DAG-independent feature set, if the
values of the features can be selected arbitrarily without violating the DAG-
constraint (i.e., for each L-tuples of feature values, there is one or more DAG G
with these feature values: ∀{f1, . . . , fL}∃G : (F1(G) = f1)∧· · ·∧(FL(G) = fL)).

Finally, let S denote an elementary event (e.g., either G or (G, θ)). A set of
features {F1, . . . , FL} is called a complete feature set, if for each S the set of val-
ues {F1(S), . . . , FL(S)} identifies S (i.e., (S1 6= S2)⇒ ({F1(S1), . . . , FL(S1)} 6=
{F1(S2), . . . , FL(S2)})). A set of features {F1, . . . , FL} is called complete w.r.t.
a feature F ∗(S), if for each S the set of values {F1(S), . . . , FL(S)} identifies
F ∗(S). In turn, a feature F ∗(S) is a sufficient feature for a set of features
{F1, . . . , FL}, if ∀ S, i : Fi(S) = Fi(F

∗(S)), consequently p(F1(S), . . . , FL(S))
can be induced from the distribution of the complex feature p(F ∗(S)). If ad-
ditionally, the set of features are complete then the complex feature is called
exact feature for the feature set (as it is a one-to-one/bijective relation).

7.2 The Markov Blanket (sub)Graph feature

In this section we propose a complex feature, Markov Blanket (sub)Graph fea-
ture (MBG(Y ), θMBG), that includes all the direct causal and probabilistic re-
lations corresponding to a given variable. This feature is at an intermediate
level as its complexity is less than of the complete domain model. We show
it is a necessary and sufficient feature w.r.t. classification of Y under the
usual assumptions in the thesis, such as complete data, discrete values, multi-
nomial local dependency models. The MBG feature can be equally derived
from a causal point of view using the mechanism-interventionist interpreta-
tion as the minimal set of mechanisms directly relevant for Y , so we equally
use the term Mechanism Boundary (sub)Graph feature. It means that the
MBG feature represents such a fragment of the domain theory that its distri-
bution is necessary and sufficient to induce the exact posteriors for any classi-
fication related feature, to support full scale Bayesian inference and to induce
various priors for classifiers, such as logistic regression or multilayer percep-
trons. In other words, the complex feature does not violate the dependency
of (sub)features for these tasks by modeling them as independent (obviously
the MBGs for different variables (MBG(Xi), MBG(Xj), Xi 6= Xj) are depen-
dent at the model level in general, so interpreting them as independent using
p(MBG(Xi), MBG(Xj)) = p(MBG(Xi))p(MBG(Xj)) would be incorrect).

Definition 7.2.1 ([25, 21]). The parametric Markov Blanket (sub)Graph fea-
ture or Mechanism Boundary Graph feature for a variable Y pMBG(Y, G, θG)
maps Bayesian network models (G, θG) to Markov Blanket Graphs of variable Y
and to its parameters (MBG(Y ), θMBG(Y )). The (non-parametric) Markov Blan-
ket Graph feature for a given variable Y denotes the mapping of Bayesian net-
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work structures (G) to the Markov Blanket Graphs of variable Y (see Def. 3.1.11,
Fig. 1.1, and Fig. 3.1).

Because of our general assumptions of global parameter independence and
parameter modularity, we always assume that the parameter transformation is
a simple selection, so the parameter distribution is unchanged (i.e., θMBG(Y,G) =
{θY , θch(Y,G)1

, . . . , θch(Y,G)K
} is equal to the corresponding parameters in (G, θ),

where K = | ch(Y, G)|).
The characteristic property of the pMBG feature is that it completely defines

the conditional distribution of Y given the other variables V \ Y in a Bayesian
network model (G, θ) by the local dependency models of Y and its children.

Proposition 7.2.1. If p(V |G, θ) is defined by a Bayesian network (G, θ), then
the conditional distribution of the target variable Y ∈ V p(Y |V \ Y, G, θ) is
defined by its Markov Blanket (sub)Graph feature pMBG(Y, G, θG).

Proof.

p(Y |V \ Y, G, θ) (7.13)

= p(Y |MB(Y, G), G, θ) = p(Y | pa(Y, G), ch(Y, G), pa(ch(Y, G), G), θ)

∝ p(ch(Y, G), Y | pa(Y, G), pa(ch(Y ), G), θ)

= p(Y | pa(Y, G), θ)

| ch(Y,G)|∏

j=1

p(ch(Y, G)j | pa(ch(Y, G)j), θ),

where ch(Xi, G)j denotes the children of Xi in a compatible ordering with G.

For notational simplicity we assume a binary target varible Y . Let us de-
fine a vector-valued feature called conditional distributional feature CD(Y, G, θ)
denoting the conditional distribution p(Y |V \ Y, G, θ).

Furthermore, we can state a Bayesian extension of Proposition 7.2.1.

Proposition 7.2.2. In case of parameter independence, parameter modularity
and Dirichlet parameter priors, the Markov Blanket structural and parametric
marginals p(MBG(Y, G) = mbg) and p(Y |MBG(Y, G) = mbg) define the condi-
tional distribution of Y given other variables V \ Y in the Bayesian framework,
where

p(MBG(Y, G) = mbg) =
∑

G

1(MBG(Y, G) = mbg)p(G) (7.14)

and p(Y |MBG(Y, G) = mbg) denotes the mean distribution EΘ′ [p(Y |mbg, Θ′)].
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Proof.

p(Y |V \ Y ) (7.15)

=
∑

G

p(G)

∫
p(Y |G, θ)p(θ|G) dθ

=
∑

G

p(G)

∫
p(Y |MBG(Y, G), θMBG(Y,G))p(θMBG(Y,G)|G) dθMBG(Y,G)

=
∑

G

p(G)p(Y |MBG(Y, G))

=
∑

MBG(Y,G)=mbg

p(mbg)p(Y |mbg),

Note that Proposition 7.2.2 also indicates that Bayesian model averaging
for prediction can be performed in the MBG space, because the parametric
marginal p(Y |MBG(Y, G) = mbg) is efficiently computable in case of Dirichlet
parameter priors (see Eq. 3.21). However, in general there is no closed formula
for the posterior p(MBG(Y, G) = mbg), but we can state the following theorem.

Theorem 7.2.1 ([25]). If the parental set size is bounded by k and the scores
p(pa(Xi)|DN ) in Eq. 3.34 are available in O(1), then the ordering-conditional
posterior p(MBG(Y, G) = mbg | ≺) can be computed in polynomial time.

Proof. If the parental set size is bounded by k, then

p(MBG(Y, G) = mbg |DN ,≺) (7.16)

= p(pa(Y, mbg)|DN )
∏

Y ≺Xi

Y ∈pa(Xi,mbg)

p(pa(Xi, mbg)|DN )
∏

Y ≺Xi

Y /∈pa(Xi,mbg)

p(Y /∈ pa(Xi, mbg)|DN ),

where
p(Y /∈ pa(Xi, mbg)|DN ) =

∑

Y /∈pa(Xi)

p(pa(Xi)|DN ). (7.17)

Clearly, for a given Markov Blanket structure and ordering Eq. 7.16 directly
defines a conjunctive normal form, which gives the next property.

Corollary 7.2.1 ([25, 21]). The Markov Blanket (sub)Graph feature MBG(Y, G)
is an ordering-modular feature.

The number of MBGs for a given variable |MBG(Y )| in case of n variables is
still super-exponential (even if the number of parents is bounded above with k).
Consider an ordering of the variables such that Y is the first and all the other
variables are children of it, then the parental sets can be selected independently,

so the number of alternatives is in the order of (n− 1)n2

(or (n− 1)(k−1)(n−1)).
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However, at the other extreme, if Y is last in the ordering, then the number of

alternatives (i.e., parental sets) is in the order of 2n−1 or (n− 1)
(k)

). In case of
MBG(Y, G), the types of the variable Xi can be (1) non-occurring in the MBG,
(2) parent of Y (Xi ∈ pa(Y, G)), (3) children of Y (Xi ∈ ch(Y, G)) and (4) (pure)
other parent in the MBG ((Xi /∈ pa(Y, G)∧(Xi ∈ pa(ch(Y, G)j)))). These types
correspond to the categories irrelevant (1) and strongly relevant (2,3,4), as can
be seen directly from the definitions of relevance (see, Def. 7.1.1). The number
of DAG models G(n) compatible with a given MBG and ordering ≺ can be
computed as follows: the contribution of the variables Xi ≺ Y without any
constraint and the contribution of the variables Y ≺ Xi that are not children of
Y. Let us denote the number of such variables with NB and NA respectively, then
assuming that the maximal number of parents is k, the number of compatible
DAGs is 2Θ((k−1)(NB+NA) log(n)).

Proposition 7.2.1 and Proposition 7.2.2 offer two interpretations for the MBG
feature. From a (conditional) probabilistic point of view the MBG(G) feature
defines an equivalence relation over the DAGs w.r.t. the conditional distribu-
tion of Y given all the other variables under parameter modularity and global
parameter independence. This is the consequence of Th. 3.1.3 and Th. 7.1.2,
which allow the reduction of the space of DAGs to the space of MBGs from
the point of view inferring a given variable. If the hypotheses are the ob-
servational classes (i.e. the parameter and structural priors are identical for
observationally equivalent DAGs), then this conditionally induced equivalence
relation is combined with the observational equivalence relation, which allows
further reduction of the space of MBGs (for a partially oriented representa-
tion of the MBGs, see [3, 4]). We show certain properties of this combined
equivalence, although in our exploratory context we assume causal priors, so
we cannot simplify further the MBG space. In the non-Bayesian context let us
define a pairwise relation over Bayesian networks as G1 and G2 are inferentially
equivalent for variable Y , if they can encode the same set of conditional distri-
butional features for Y (i.e., for each CD(Y, G1, θ1), there exists a θ2 such that
CD(Y, G1, θ1) = CD(Y, G2, θ2)). Clearly, observational equivalence and MBG
equivalence of DAGs G1, G2 implies conditional distributional equivalence (IE),
but MBG equivalence and conditional distributional equivalence does not im-
ply observational equivalence. Interestingly, MBG equivalence is not implied by
observational equivalence or by conditional distributional equivalence (i.e., the
MBG feature is not a unique representant of an inferentially equivalent class of
Bayesian networks and it can be different in observationally equivalent DAGs).

From a causal point of view, this feature uniquely represents the minimal set
of mechanism including Y despite the non-uniqueness of the MBG feature w.r.t.
the acausal conditional distributional equivalence. This offers the second inter-
pretation of the MBG feature: the pMBG(Y, G, θ) feature includes exactly the
mechanisms containing the variable Y , hence the name Mechanism Boundary
(sub)Graph feature pMBG(Y, G, θ). The probability of an MBG is the sum of
probabilities of the causal domain models that are compatible with this causal
subtheory for the variable Y (Eq. 7.14), which shows that for example infer-
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entially equivalent MBGs may have different probabilities in a causal context
(e.g., in case of causal prior or interventionist data).

From Proposition 7.2.1 we can conclude that the MBG(Y, G) feature is neces-
sary and sufficient to represent the mechanisms directly relevant for the variable
Y and from the point of view of prediction of Y , it is a sufficient feature for the
conditional distributional features of Y . In other words, under the conditions
such as parameter modularity, global parameter independence and complete
data assumption, this structural and parametric feature of the causal BN do-
main model is necessary and sufficient to support the manual exploration and
automated construction of a causal, probabilistic, interpretable conditional de-
pendency model. This “ultimate” property of the MBG feature suggests the
concept of conditional feature and the generalization of the feature subset se-
lection problem.

Definition 7.2.2. A feature (function) F is called conditional feature for a
given variable Y , if it depends only on (MBG(Y ), θMBG(Y ))

pMBG(Y, G1, θ1) = pMBG(Y, G2, θ2))⇒ (F (G1, θ1) = F (G2, θ2). (7.18)

Definition 7.2.3. In case of a stable distribution p(Y, X), the feature (sub)graph
selection problem (FGS) denotes the identification of a Markov Blanket subgraph
MBG(Y, G), where DAG G denotes a perfect map of distribution p (i.e., it in-
cludes the identification of a Markov Blanket set X ′ ⊆ X w.r.t. p and Y , and a
Bayesian network substructure over X ′ representing the dependencies between
these variables, excluding incoming edges into the parents of Y ).

7.3 The bootstrap confidence measure

The bootstrap approach to induce confidence measures for Bayesian network
features was investigated as an alternative to the Bayesian approach to support
statistical inference from small sample [96, 95]. An important motivation was to
avoid the Monte Carlo simulations usually necessary in the Bayesian approach
by using a simple resampling scheme and optimization.

The bootstrap is a general purpose, computationally intensive statistical in-
ference method using resampling to assess the accuracy of a statistical estimate
given a finite sample [83, 125]. We discuss it here as we refer to it only in
this context, but it is a general statistical methodology and applicable with
arbitrary model classes (or without as a nonparametric bootstrap). Assume a

fixed i.i.d. sample DN = {X1, . . . , XN} and let us denote θ̂(DN ) the statistical
estimate of interest and θ0, the unknown true parameter. For a given sample
size N its distribution, particularly its deviation θ̂(DN ) − θ0 is also of interest
for constructing confidence intervals and hypothesis testing. The standard fre-
quentist approach analytically derives its distribution, confidence intervals for
restricted sets of sampling models and estimates (e.g., Gaussian data genera-
tion and mean estimate). Note that if we had access to the generative model
p(X |θ0)), we could sample it for any complex estimate. The standard Bayesian
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approach would define a probabilistic model for the observations p(X |θ) with

prior p(θ) providing a distribution for the estimate
∫

p(θ̂(DN )|θ)p(θ) dθ, which
can be analyzed or sampled to explore. The central idea of nonparametric boot-
strap is the characterization of the distribution of the unobservable deviation
θ̂− θ0 with the following distribution θ̂∗(D∗

N )− θ̂(DN ), where the data set D∗
N

of N samples (the boostrap replicate) is drawn uniformly from the observed
DN with replacement. That is, given a fixed sample DN we define a bootstrap
sample distribution over the finite (!) number of possible data sets D∗

N , which

allows the assessment of the accuracy of the estimate θ̂(DN ) by the distribution

of θ̂∗(D∗
N ). In general, the bootstrap for θ̂(DN ) is called consistent if

p(θ̂∗(D∗
N )− θ̂(DN ))→ p(θ̂(DN )− θ0) as N →∞ in distribution. (7.19)

For example, the ideal (nonparametric) bootstrap estimate of the variance

varp(DN )(θ̂(DN )) is defined as varp(D∗
N )(θ̂

∗(D∗
N )) (see [83]), which can be shown

to provide a consistent estimate [83]. Because of the large number of bootstrap
data sets with size N , the ideal bootstrap estimate is approximated by its Monte
Carlo estimate using B number of randomly drawn bootstrap data sets D∗

b,N

for b = 1, . . . , B and the corresponding quantities θ̂∗b (D∗
b,N ) as follows

v̂arB(θ̂∗) =

B∑

b=1

(θ̂∗b − θ̂∗(.))
2/(B − 1) where θ̂∗(.) =

B∑

i=1

θ̂∗b/B. (7.20)

The Monte Carlo estimate of the ideal bootstrap estimate itself has a vari-
ance, which is asymptotically c1/N2+c2/NB, so relatively low number of boot-
strap replicates suffices in practice [83]. This also indicate that the distribution

of θ̂∗b (D∗
b,N) is more spread than of the target θ̂(DN ), so it cannot be used

directly (e.g., for constructing quantiles for θ̂(DN )).
Now we can turn to the application of the bootstrap to induce confidence

measures for model structures and its properties. This is not without prob-
lems as its first application in the model space of phylogenetic trees has shown
(phylogenetic trees represent evolutionary relationships between entities corre-
sponding to its nodes [80]). We will follow the terminology and explanations
from that field [134, 86, 35, 82, 7]. Assume that the i.i.d. data set DN is gen-
erated from an unknown Bayesian network model M0 = (G0, θ0) and a fixed
algorithm C induces the model structure ĜC(DN ), more exactly our hypothesis
space are the observation equivalence classes of DAGs G∼. Because the estimate
is a model structure without a semantic metric, we cannot define confidence in-
tervals for models with an accuracy parameter, so the probably approximately
correct (PAC) terminology is only partly applicable [246]. This frequentist def-
inition of a confidence value is the probability of exact model induction with
data sets of size N

p(DN : Ĝ∼
C (DN ) = G∼

0 |M0, N). (7.21)

The essence of the argument for the assessment of Eq. 7.21 with bootstrap is
as follows (adapted for discrete valued Bayesian network learning from [86, 82,
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83]). By assuming the naive table representation with d =
∏

i |Xi| entries we can
interpret a complete (!) data set as corresponding empirical relative frequencies

for the complete configurations denoted with θ̂, which geometrically is located on
the d-dimensional simplex. Note that for a fixed size N , this determines both
Bayesian network learning scores, so we can write Ĝ∼(θ̂). Disregarding that
this statistical estimate changes non-continuously across boundaries, it looks
like a standard bootstrap problem to assess its accuracy, that is to estimate
the probability that θ̂ is in the same region as θ0 (i.e., Ĝ∼(θ̂) = G∼

0 (θ0)). For

a given fixed data set DN and corresponding θ̂, this is estimated using the

bootstrap frequencies θ̂
∗
, similarly to the standard case when the distribution

of θ̂(DN ) − θ0 is assessed with the distribution of θ̂∗(D∗
N ) − θ̂(DN ). So the

probability of exact model induction for an induced model Ĝ∼
C (DN ) given a

data set DN theoretically can be characterized with the bootstrap probability
and approximated with its Monte Carlo estimate

p(D∗
N : Ĝ∼

C (D∗
N ) = Ĝ∼

C (DN )|DN ) ≈ 1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = Ĝ∼
C (DN )). (7.22)

For phylogenetic trees with model structure T it is shown that the posterior
for T = T̂ using uninformative prior is nearly equal to the bootstrap probability
for T̂ ∗ = T̂ (called the “poor man’s” Bayes posterior [125]).

We can proceed analogously for the structural features for Bayesian net-
works. The ideal confidence value is the probability of the induction of the
structural feature of the underlying essential graph F (G0) = f0 with data set
of size N [96, 95]

p(DN : F (Ĝ∼
C (DN )) = f0|M0, N). (7.23)

This quantity is called “accuracy” in phylogenetics [134, 86]. As noted
in [35, 86], this concept is still applicable for a non consistent induction al-
gorithm widely used in a domain as indicating non-repeatability by the lack
of support from a well-accepted method. With consistent structure learning
algorithms as in the case of Bayesian networks, this value will converge to 1
with increasing N . Though the theoretical background for the application of
bootstrap is still unsolved, because of the discrete valued estimate and the con-
sistency properties of the induction algorithm C, in empirical experiments the
bootstrap probabilities of features were adopted as assessing the confidence val-
ues for features in the induced model F (Ĝ∼

C (DN )) = fDN given a data set
DN [96, 95].

p(D∗
N : F (Ĝ∼

C (D∗
N )) = fDN |DN ). (7.24)

This is also backed by the arguments for phylogenetic trees. The bootstrap
probabilities are approximated with their Monte Carlo estimates,

1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = fDN ), (7.25)



102 Chapter 7. Inference over BN features

with Monte Carlo variance rapidly decreasing with B, as mentioned above.
However, the variation of the bootstrap probabilities depending on DN in case
of phylogenetic trees led to the concept of “repeatability” and its classical in-
vestigations empirically [134] and analytically [86]. An important clarification
of a potential misuse of bootstrap was that the quantity

p(D∗
N : F (Ĝ∼

C (D∗
N )) = f0|DN ) (7.26)

is not approximating the accuracy (i.e., the probability of induction of “true”
features in Eq. 7.23). As suggested [86], a bootstrap probability p for an induced
feature can be interpreted as a 1-p-value for the hypothesis that the feature is not
present. For phylogenetic trees, a (computationally intensive) correction of the
bootstrap probability for its use in the standard hypothesis testing framework
is suggested in [82].

For Bayesian networks the bootstrap approach was applied for the following
structural features: compelled edges CompE(Xi, Xj|G) (as direct causal re-
lation), Markov blanket membership MBM(Xi, Xj |G) (as pairwise relevance),
pairwise precedence Xi ≺G Xj (as causal relation) [96, 95] (see results for partly
parametric features [203]). The bootstrap probabilities in Eq. 7.24 for the fea-
tures were interpreted as “support from a given algorithm” [96] and later in
testing various induction algorithms as the assessment of the confidence of the
induced feature as defined in Eq. 7.23. The experiments were conducted on a
gold standard model as reference, which allowed the generation of multiple data
sets for proper evaluation of the bootstrap, and on data sets from a genomic
and text domain as well.

In summary, earlier works provided an empirical support for the applicability
of the bootstrap for Bayesian network features with the following conclusions [96,
95]. It yields a cautious, conservative estimate (no false-positive error) for the
features, but its applicability seems sensitive to the domain (e.g., the selection
of a confidence threshold for reporting the features), and to the optimization
algorithm. Certain pairwise features can be more reliably estimated, especially
the pairwise Markov blanket relation (MBM), which can be explained by the
topological robustness of this feature (i.e., a given relation can occur in large
number of DAGs). The induced confidence measures were reported visually
(as colors and thickness of the Bayesian network edges) to support efficient
interpretation of the result of statistical inference from small amounts of data
with large number of variables. Another use of the induced confidence measure
also gave promising results, to support the second-phase learning of full Bayesian
network models and subnetworks using the feature confidences as soft and hard
constraints.

However, the relation of the bootstrap approach to the Bayesian approach
is subtle w.r.t. the induced confidence measures for Bayesian network features,
despite that under specific conditions the bootstrap probabilities approximate
the corresponding posteriors [80, 82]. The Bayesian approach is capable to
provide updated beliefs — the posterior — for an arbitrary fixed structural
feature F (G) = f0 given the observations DN , either by Monte Carlo sampling
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or sometimes analytically. This posterior practically can be approximated by
the set of models GHPD

C with high posteriors identified using an optimization
algorithm C with some heuristic randomization (to correct its bias for local
minima):

p(F (G) = f0|DN ) =
∑

G

1(F (G) = f0)p(G|DN ) (7.27)

≈ 1∑
G∈GHPD

C
p(G|DN )

∑

G∈GHPD
C

1(F (G) = f0).

Conversely, the bootstrap approach can provide confidence values for fea-
tures in the frequentist, hypothesis testing framework by the bootstrap proba-
bilities (i.e., by its Monte Carlo estimates):

p(F (Ĝ∼
C (DN )) = f0|M0, N) ≈ p(F (Ĝ∼

C (D∗
N )) = fDN |DN )

≈ 1

B

B∑

b=1

1(Ĝ∼
C (D∗

b,N ) = fDN ). (7.28)

Indeed, as the similarity of the final sums suggests in Eq. 7.27 and Eq. 7.28,
the bootstrap can be conceived as a heuristic method using perturbed data
sets to generate a good subset of models GHPD

C with high posteriors around the
maximum a posteriori or maximum likelihood Bayesian network structure. But
it cannot be used in general as an approximation to the sampling distribution
p(DN |M0, N), consequently to sample p(ĜC(DN ))|M0, N) or to approximate
the posterior p(G|DN ), particularly not in the small sample case, which is the
primary goal of learning Bayesian network features.

Furthermore, as the learning of Bayesian network is NP-hard, the compu-
tational complexity of the heuristic algorithms used in practice is comparable
to the computational complexity of the application of Monte Carlo methods for
Bayesian networks with computationally efficient sampling. In fact, after the
investigation of the bootstrap approach [96, 95], the authors also reported an
efficient Bayesian approach for inducing Bayesian confidence measures for cer-
tain Bayesian network features, which is applied in this thesis and described in
the next section.

7.4 On the advantage of feature posteriors

After the overview of BN features, certain frequentist identification methods,
and the bootstrap methodology to induce confidence measures, we now turn to
the Bayesian approach.

The main disadvantage of the frequentist identification methods is that
the significance level, if there is any or which in principle what could be de-
rived with general aggregation methods of significances, is not model-based.
Furthermore, the methods are fragmented by the type of the features (i.e.,
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there are dedicated algorithms for the identification of local causal features
(RCEdge(X, Y )), relevant variables and their subsets (MB(X), MBM(X, Y ))
or subtheories (G′ ⊆ G)).

The bootstrap methodology provides a model-based confidence value, its
asymptotic behavior for increasing sample size is guaranteed with a consistent
induction algorithm, although there are no theoretical results for its application
on structural features for small sample size and it can be applied uniformly for
arbitrary features. Furthermore, as it includes a model identification for each
bootstrap replicates, its computational complexity can be considerable (e.g.,
compared to Bayesian Monte Carlo methods).

The introduction of Dirichlet parameter priors with parameter independence
for Bayesian networks by Spiegelhalter et al. [227] (conjugate for the multino-
mial sampling, see Sections 3.2.1.2) provided an efficiently computable closed
form for the posterior for the parental sets and for the structure conditional on
a given ordering. Based on this, in the beginning of the 1990’s the full Bayesian
approach was proposed and advocated in a seminal paper [40]. In this paper
Buntine proposed the posterior knowledge base view and analysis of the prop-
erties of the Bayesian network model conditioned on a given ordering. He also
developed a construction method of an approximate posterior offline knowledge
base to support theory (i.e., prior) refinement and full scale Bayesian inference.
In [57], Cooper et al. discussed the general use of the posterior over Bayesian
network structures as an inductive probabilistic knowledge base (i.e., to com-
pute the posterior of arbitrary model properties). However this work had not
proposed method to carry out the Bayesian inference. In [178], Madigan et al.
proposed an MCMC scheme to approximate such Bayesian inference using the
space of DAGs and PDAGS (utilizing also the orderings of the variables). They
also developed the Ockham window algorithm for the construction of a small,
selective set of models to support exploration of the posterior and inference
with it. In [133], Heckerman considered the application of this full Bayesian
approach to causal Bayesian networks (under the Causal Markov Condition).
The DAG-based MCMC method was improved by Castelo et al. [112]. In [66],
Dash et al. reported a method to perform exact full Bayesian inference in a re-
stricted case of naive Bayesian classifiers. In [97, 98], Friedman et al. reported
another MCMC scheme utilizing the ordering of the variables (hence its name,
ordering-based MCMC method), which used a closed form for the ordering-
conditional posterior of Markov blanket membership, beside the earlier closed
form for parental membership. In [154], Koivisto et al. reported a method to
perform exact full Bayesian inference over modular features in O(n2n) time.
Note that the treatment of the submodels as independent hypotheses differs
from our approach, which treats them as aggregates of compatible complete
models. It would include the assumption of the existential uncertainty of the
domain objects represented by the random variables (for the discussion of treat-
ing orderings as sets of compatible DAGs or as separate objects, see 7.5.2.2).

Before discussing these methods and their application for complex features,
first we summarize the properties of the Bayesian approach and open issues.
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1. Normativity. The Bayesian approach is a normative, model-based combi-
nation of prior and data, so the inputs and the outputs are probabilities
conditional on the observed data, which are applicable in the Bayesian
decision-theoretic framework. Consequently, its application and interpre-
tation in the small sample region is unconstrained.

2. Probabilistic knowledge base. The feature posteriors can be embedded
into a probabilistic knowledge base, possibly with textual enrichment as
in the case of ABN-KBs. An important question particularly for complex
features is the efficient or approximate representation of the distribution
over the feature space.

3. Probabilistically linked model spaces and induced priors. The feature pos-
teriors can be used to induce priors for linked model spaces. For classifiers,
see Chapter 10 and for the comparison of learning dual-Bayesian networks
and the two-phased learning of Bayesian networks from literature data and
clinical data, see Section 8.1).

4. Optimally selected feature complexity. The induced posteriors for the fea-
tures are dependent in general. A solution followed in the thesis is the
definition of a semantically important complex feature, (i.e., subtheory),
which includes many dependent simpler features and estimate its posterior
distributions.

5. Integrated estimate and search method. An already investigated and solved
question is the estimation of a moderate number of posterior values (ex-
pectations) (e.g., pairwise features such as edge relation or Markov blanket
membership with O(n2) cardinality). However, the number of values of a
complex feature can be exponentially large (e.g., the number of Markov
blanket subsets is O(2n)), so search methods have to be integrated into
the Monte Carlo inference methods to find feature values with relevant
posterior.

7.5 MC methods for a feature posterior

As we discussed in Section 7.1, there are two approaches to the use of BN
features. The first approach (reported in [40, 180, 131, 96, 95, 97, 98]) is
based on a set of simple features to construct a fragmentary representation for
the distribution over the complete domain model from multiple, though simple
aspects using various interdependent marginals, such as edge probabilities. The
other approach is based on a complex feature (or subtheory), which is a focused
representation from a restricted, but still comprehensive point of view. In our
case, this is the MBG feature to support classifier construction.

In both cases we have to use Monte Carlo methods to perform the Bayesian
inference, because of the lack of analytical formulas for the posterior of the
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features. So first, we summarize MC methods: the most direct DAG/PDAG-
MCMC method and a latter developed method, the so-called ordering-based
MCMC method to estimate the posterior of a limited number of features.

7.5.1 The DAG-based MCMC methods

The basic task is the estimation of the expectation of a given random variable
F (G) over the space of DAGs with a specified confidence level.

F̂ ≈ F̄ = Ep(G|DN )[F (G)]. (7.29)

In Eq. 3.44), we derived an efficiently computable closed formula for the (un-
normalized) posterior of DAGs or for PDAGs in case of likelihood equivalent
priors and our standard assumptions, such as complete data, discrete domain
variables, multinomial local conditional distributions and Dirichlet priors at the
parametric level. As the posterior over DAGs cannot be sampled directly in
general and the construction of an approximating distribution to use in im-
portance sampling is frequently not feasible, the standard approach is to use
MCMC methods, such as the Metropolis-Hastings algorithm over the DAG or
PDAG space (see Section 2.3.1.2).

The first application of DAG-based MCMC methods for BN feature esti-
mated the posterior of compelled edges [178]. It investigated two proposal dis-
tributions. The first constructs a candidate by perturbing directly the edges
with insertions, deletions and reversals. The second constructs a candidate by
perturbing the partial ordering of the variables and then perturbing the edges
to be compatible with this candidate ordering.

7.5.2 The ordering-based MCMC methods

The DAG-based MCMC method for estimating a given expectation is generally
applicable, but its statistical properties frequently can be improved by specializ-
ing it to a certain type of features. In this section we consider the ordering-based
MCMC method, which is a hierarchic, semi-analytic MCMC method [97]. We
shall see in Section 7.7 that this method can be utilized also to integrate the
estimation and the search process in the case of large numbers of features.

7.5.2.1 The ordering-conditional feature posteriors

Assuming modular structure priors, parameter independence, and modularity
and complete data, the structure posterior has the following product form:

p(G, DN ) =

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)).

The ordering-based MCMC method relies on the following two uses of this
product form [40, 66, 97]. First, we note that the set of DAGs compatible with
an ordering ≺ can be constructed as the Descartes product of sets of parental
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sets compatible with the ordering, so combining this with the product form of
the probability of DAG G we have

p(DN | ≺) =
∑

G∈Gk(n),≺

p(DN , G| ≺) (7.30)

=
∑

G∈Gk(n),≺

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=

n∏

i

∑

pa(Xi,G)∼≺

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺),

where pa(Xi, G) ∼≺ denotes the compatibility of a parental set pa(Xi, G) with
ordering ≺. Second, for an ordering-modular feature F (G) = f defined as∧n

1 Ci(f,≺, pa(Xi, G)), where Ci is true for some parental sets possibly con-
ditionally on a given ordering ≺, we have

p(f, DN | ≺) =
∑

G∈Gk(n),≺

F (G)=f

p(DN , G| ≺) (7.31)

=
∑

pa(Xi,G)∼≺
F (G)=f

n∏

i

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=

n∏

i

∑

pa(Xi,G)∼≺
Ci(f,≺,pa(Xi,G))

p(DN | pa(Xi, G))p(pa(Xi, G)| ≺).

This gives the following proposition (the generalization of Th. 7.2.1).

Proposition 7.5.1. For an ordering-modular feature F (G) = f defined as∧n
1 Ci(f,≺, pa(Xi, G)), the ordering conditional posterior is decomposed as

p(f |DN ,≺) =
p(f, DN | ≺)

p(DN | ≺)
(7.32)

=

n∏

i

∑
pa(Xi,G)∼≺

Ci(f,≺,pa(Xi,G))

p(DN | pa(Xi, G))p(pa(Xi, G), f | ≺)

∑
pa(Xi,G)∼≺ p(DN | pa(Xi, G))p(pa(Xi, G)| ≺)

=
n∏

i

p(Ci(f,≺, pa(Xi, G))|DN ,≺).

The possible special (“complementer”) value without such form can be man-
aged by appropriate summations for the other feature values. Note that if the
maximum number of parents is bounded by k, then the ordering conditional
feature posterior in Eq. 7.32 can be computed in polynomial time O(nk+1) in
contrast to the exponential number of DAGs compatible with an ordering in-
volved in the summations in Eq. 7.30, 7.31 [97].
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7.5.2.2 Advantages of ordering-based MCMC

The existence of the unnormalized posterior for the orderings and the normalized
ordering-conditional posterior for a feature allows semi-analytic ordering-based
MC methods with advantageous properties w.r.t. DAG-based MC methods.

First, consider the statistical effect of using orderings instead of DAGs and
ignore the effect of the MC method used. By assuming a binary feature F (G)
and using the identity E[X ] = EY [EX [X |Y ]] the target quantity can be rewritten
as

E[F (G)|DN ] = Ep(≺,DN )[E[F (G)| ≺, DN ]], (7.33)

where the random variable p(F (G)| ≺, DN ) = E[F (G)| ≺, DN ] has variance
varp(≺|DN )(E[F (G)| ≺, DN ]). We can decompose it as follows, which directly
follows from the identity var(X) = EY [var(X |Y )] + varY (E[X |Y ]) [108].

Proposition 7.5.2. The variance of a binary feature F (G) varp(G|DN )(F (G))
using the augmented space of G × {≺} with the distribution p(G| ≺)p(≺) is the
sum of its mean variance and the variance of its mean:

varp(G|DN )(F (G)) (7.34)

= Ep(≺|DN )[var(F (G)| ≺, DN)] + varp(≺|DN )(E[F (G)| ≺, DN ]).

Consequently, the availability of the ordering conditional posterior for a
feature allows the cancellation of the term Ep(≺|DN )[var(F (G)| ≺, DN)] in the
ordering-based MC approach compared to a DAG-based method with identical
DAG posteriors. It can be a significant reduction because of the asymptotic
behavior of the two terms. The expected variance of the ordering conditional
probability of a feature is the expectation of the variance of a Bernoulli ran-
dom variable with parameter p(F (G)| ≺, DN ). In contrast, the other term can
be close to zero, if the ordering-conditional posterior of a feature has a simi-
lar value for the orderings compatible with the essential graph generating the
observations.

The decrease of the variance is not simply the consequence of “collapsing”
the G(n) space into the space of orderings with smaller cardinality of n!, but
of the augmentated state space with the orderings G × {≺} and the analytic
marginalization of the ordering conditional DAGs in the case of ordering modu-
lar features (for the general effects of hierarchical approaches and collapsing the
state space by analytical marginalization, a.k.a. Rao-Blackwellisation, on MC
sampling, see [107]).

However, note that Proposition 7.5.2 treats the DAG space as part of an
extended space and the explicit, autonomous use of the orderings in the joint
distribution p(G| ≺)p(≺) can introduce a bias (cf. the implicit use of the or-
derings as sets of compatible DAGs with an induced distribution from p(G)).
If the uniform distribution p(≺) is used as non-informative, then it has a bias
towards DAGs compatible with many orderings. For example the empty graph
is n! times more probable than any complete graph. However, this bias is not
related to standard measures of model complexity (i.e., to Ockham principle)
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as the number of compatible orderings is different for observationally equivalent
DAGs (e.g., a Markov chain with different, but observationally equivalent orien-
tations, see Example 3.1.2). An interesting direct consequence is the following
proposition.

Proposition 7.5.3. The induced prior p(G) ∝ ∑
≺∼G p(≺) from a uniform

p(≺) violates the structural prior equivalence (see Section 3.1.5.2.4).

A computationally expensive solution to maintain uniformity over the DAGs
is to weight the DAGs through p(G| ≺) properly.

Second, let us compare the ordering-based MC method against the DAG-MC
method computationally. Assume that the posteriors of the ordering-conditional
parental set are available in O(1) time (they can be precomputed in O(Nnk)
time and stored in O(n(k+1)) space, which is either directly acceptable or can
be significantly decreased by caching only the high-scoring parental sets). Let
P (n) denote the time complexity of the drawing a sample or proposal, which is
typically O(n2), and F (n) the time complexity of the target feature F (G(n)),
which is O(1) for edges, O(n) for the MBM, MBG and MB features. The
unnormalized posterior p(G, DN ) can be computed in O(n) (assuming the pre-
computation and storage of the local scores). Thus the overall time complexity
of one step of DAG-based MC method is O(n2). For the ordering-based MC
method this is O(nk+1) , but it evaluates nkn or 2O(kn log(n)) DAGs in one step.

Furthermore, to perform exact full Bayesian inference over modular features
a dynamic programming method can be used over subsets instead of the naive
enumeration of the orderings [154]. This method reduces the super-exponential
O(n!) to O(n2n) time, but it requires O(n2n) space.

7.5.2.3 Estimating edge and pairwise relevance

In the proposal of the ordering-based MCMC method and in subsequent ap-
plications the setting was the following [97, 98]. The ordering prior p(≺) was
uniform. The ordering-conditional structure prior p(G| ≺) was a modular prior
with uniform weights for the size of the parental sets up to a limit k and with
uniform weights for the parental sets with a given size. The parameter inde-
pendence and modularity were assumed, and the BDeu parameter prior was
used. The MCMC method in the ordering space used two kinds of operations
in the proposal distribution: the replacement of pairs and the circular (modulo)
shifting of the ordering. The number of variables was 35 in a medical domain,
100-1000 in the genetic and text-mining domains. The target features were the
edges (Xi → Xj), the pairwise relevance relations (MBM(Xi, Xj)), the pairwise
precedence relations (Xi ≺ Xj) and the pairwise causal relations (Xi 99K Xj).
There is a closed form for the ordering-conditional posterior, except for the ex-
istence of a directed path between two nodes. By noting that the edge feature
fXi→Xj is an ordering-modular feature and for a given ordering only one clause
is relevant in Eq. 7.32, its ordering-conditional posterior is as follows:
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p(fXi→Xj |DN ,≺) (7.35)

=

∑
Xi∈pa(Xj ,G)
pa(Xj ,G)∼≺

p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

∑
pa(Xj ,G)∼≺ p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

.

The ordering-conditional posterior of the Markov Blanket Membership fea-
ture fMBM(Xi,Xj) given ≺ can be derived by noting that for a given ≺ the
clauses in the conjunctive normal form for the false value are as follows (assum-
ing Xi ≺ Xj): earlier parental sets are irrelevant (empty for Xi ≺ Xj), Xi is
not parent of Xj (the clause for Xj includes the parental sets without Xi), and
there is no common child of Xi and Xj (the clauses for variables after Xj ≺ Xl

include the parental sets without Xi and Xl)

p(f¬fMBM(Xi,Xj)
|DN ,≺) (7.36)

= p(Xi /∈ pa(Xj , G)|DN ,≺)

n∏

l=j+1

p(Xi, Xj /∈ pa(Xl, G)|DN ,≺),

where

p(Xi /∈pa(Xj , G)|DN ,≺)=

∑
Xi /∈pa(Xj ,G)
pa(Xj ,G)∼≺

p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

∑
pa(Xj ,G)∼≺ p(DN | pa(Xj , G))p(pa(Xj , G)| ≺)

p(Xi, Xj /∈pa(Xl, G)|DN ,≺)=

∑
Xi,Xj /∈pa(Xl,G)

pa(Xj ,G)∼≺

p(DN | pa(Xl, G))p(pa(Xl, G)| ≺)

∑
pa(Xl,G)∼≺ p(DN | pa(X,G))p(pa(Xl, G)| ≺)

.

The summations involve a polynomial number of terms if the parental set is
bounded by k. For approximations using a restricted set of parental sets with
high probability, see [97].

7.6 Decision over features using MC estimates

In the previous overview of estimation methods of the posteriors of pairwise
features, we ignored that the estimated feature posteriors are usually used jointly
and we simplified the problem to the estimation of a single posterior. However,
the number of target features can be as high as 104 − 106 features even for a
given type of pairwise features and moderate domain complexity with 100−1000
variables. For complex features the number of feature values is exponential in
the number of variables. Such a high number of feature values makes for example
the manual analysis of the estimated edge posteriors intractable. It is thus
a typical expectation that the MCMC method should estimate the posteriors
uniformly well for all the n2 features or over a predefined set of features rated a
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priori as highly relevant. Another typical expectation in bioinformatics is that
the estimates allow the correct ranking of the features or at least the selection
of the most probable K feature values. These expectations indicate that the
problem of the joint usage of the estimated posteriors in case of large number of
features requires an additional level of analysis of the overall MCMC process. In
a formal approach we will define an additional frequentist decision-theoretic level
over the Bayesian layer of posteriors and their MC estimates. We analyze the
effect of feature cardinality on the error of selecting the most probable features.

7.6.1 The Most Probable Features problem

We consider the case of a single complex feature with set of values F , when the
unknown feature posteriors form a single multinomial distribution P = p(F |DN ).
The decision problem of feature selection includes the feature posteriors P as
the unknown parameters, the event space consists of M (possibly dependent)
samples D′

M given by a MC method A as a sampling distribution, and the set of
actions consists of the report of the estimates and selections of the parameters.
The decision rule δ(D′

M ) = (I, P̂M ) in general can give a binary vector I indi-

cating the selection and a scalar vector P̂M containing the estimates p̂M (f |DN).
If the overall estimation is important, then general distance measures such

as L2(P , P̂M ) can be adopted as loss function. However, frequently the overall
estimates or rankings of the feature values are irrelevant and only the selection
of feature values with high posteriors is important.

Definition 7.6.1. The Most Probable Features problem (MPFs) consists of the
selection of a predefined K number of feature values f ∈ F with high posteriors
p(f |DN), which minimize the following loss based only on I ∈ IK (IK denotes
the set of |F| dimensional binary vectors with exactly K ones)

L(I) = L(P , I) =
∑

i

IiL(si), where L(si) = 1− Pi. (7.37)

Note that the estimates of the selected feature values are secondary and
not involved in the loss function, and with this decomposable loss function this
problem is not a set selection problem. The Most Probable Features problem
with the Markov Blanket subset feature generalizes the feature subset selection
problem and reformulates it in the Bayesian framework. With the Markov
Blanket subgraph feature it generalizes and reformulates the feature subgraph
selection problem Def. 7.2.3.

7.6.2 Effect of feature cardinality in MPFs

First, assume that the MC estimates of the posteriors are available for all the
feature values and let us investigate the statistical consequences of using these
estimates of the feature posteriors in the most probable feature selection problem
with loss Eq. 7.37. That is we neglect momentarily the computational aspects
of the search of the most probable features, and the integrated estimate and
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search problem. Specifically, we investigate the effect of the cardinality of the
feature values |F| on the mean error of the selected set of features.

Theorem 7.6.1 ([189]). Let us assume that we solve the K Most Proba-
ble Features problem in Def. 7.6.1 using an i.i.d. data set D′

M containing
M samples from the feature posterior P = p(F |DN) and applying the follow-
ing decision rule δ(D′

M ) = I∗M defined as I∗M = arg minI∈IK L(P̂M , I) (i.e.,
we select the most probable feature values). The loss function is defined in
Eq. 7.37. Let L̂(I), L̂(si) denote the corresponding estimated losses based on P̂M ,
I∗=arg minI∈IK L(P , I) denotes an optimal set, and I∗M =argminI∈IK L(P̂M , I)
denotes an empirically† optimal set. The error is defined as 1/K(L(I∗M ) −
L(I∗)). Then the sample complexity and the expected error of the selection of
the K most probable features are proportional to the logarithm of the number of
feature values |F|:

p(
1

K
|L(I∗M )− L(I∗)| ≥ ǫ) ≤ δ, if M ≥ 2/ǫ2(log(2|F|) + log(1/δ)), (7.38)

Ep(D′
M )[

1

K
(L(I∗M )− L(I∗))] ≤

√
log(2|F|) + 1

M/2
. (7.39)

Proof. We proceed analogously as in the case of selecting the best (binary)
classifier, in fact we treat each feature value as a classifier and this theorem is
the generalization of the earlier results for selecting the single best classifier [73].

1
K (L(I∗M )− L(I∗))

= 1
K (L(I∗M )− L̂(I∗M ) + L̂(I∗M )− L̂(I∗)︸ ︷︷ ︸

≤0

+L̂(I∗)− L(I∗))

≤ 1
K (L(I∗M )− L̂(I∗M ) + L̂(I∗)− L(I∗))

≤ 1
K |L(I∗M )− L̂(I∗M )|+ |L̂(I∗)− L(I∗)|

≤ 2 max
f∈F
|p(f |DN )− p̂M (f |DN )|. (7.40)

It means that if we can estimate uniformly well the probabilities of the
features, then we can bound the error of the selected set of features. Using the
Hoeffding inequality [73], we get for ǫ accuracy and δ confidence

p(
1

K
|L(I∗M )− L(I∗)| ≥ ǫ)

≤ p(max
f∈F
|p(f |DN)− p̂M (f |DN)| ≥ ǫ/2) ≤ 2|F|e−Mǫ2/2 ≤ δ,

which shows that the sample complexity is

M ≥ 2/ǫ2(log(2|F|) + log(1/δ)). (7.41)

†We use the empirical term w.r.t. the stochastic simulations as well.
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Furthermore, the expected average error of the selected set of features can

be bounded as follows using the inequality E[Z] ≤
√

log(ce)
2M (which holds if

p(Z ≥ ǫ) ≤ ce−2Mǫ2 for all 0 ≤ ǫ and some 0 ≤ c) [73]:

Ep(D′
M )[1/K|L(I∗M )− L(I∗)|] ≤

√
log(2|F|) + 1

M/2
. (7.42)

Note that the best K-term approximation of P in L1 is the K MAP feature
posterior represented by I∗.

This result was derived assuming an i.i.d. sample from the feature poste-
rior. Analogic results for estimates based on dependent MCMC samples can be
derived using MCMC variants of the Hoeffding inequality (e.g., see [117]).

7.7 Integrating estimation and search of MBGs

Until now we have assumed that the estimates of the posteriors are available for
all the feature values. As discussed below this assumption is implicitly fulfilled
by DAG-MC methods, but it is computationally prohibitive for ordering-based
MC methods. The DAG-MC methods perform an implicit feature selection
by generating a sample D′

M = G1, . . . , GM , which can be used to construct
a feature-tree containing the maximum M number of distinct feature values
usually in O(Mn2) time to compute the non-zero single-feature scores in O(M),
and to select the K optimal feature values in O(M log(K)) time. This total
O(M(n2 + log(K))) time and O(Mn2) space complexity is usually acceptable
in practice, although the additional costs of confidence estimation methods, the
extra cost of achieving convergence for features that are not part of the solution
and the space requirement suggest some selection or search method to process
only the promising features (ideally only the finally reported K features).

On the contrary, the issue of an integrated feature selection method within
the ordering-based MC method is relevant, because an ordering-based MC
method does not generate implicitly a feature set, as usually an exponential
number of features are compatible with an ordering. The alternative approaches
are as follows: (1) we treat estimation embedded in a search method, (2) we per-
form an implicit estimation by sampling, precomputing, and storing to support
the subsequent search, or (3) we perform an integrated estimation and search
method. We investigate these options in turn focusing on the MBG feature.

First, we consider the separation of estimation and search (cases (1) and
(2)). The time complexity of the computation of the posterior of an ordering
p(≺ |DN ) and an ordering-conditional posterior p(f | ≺, DN) of a modular or
ordering-modular feature is O(nk+1), where the effect of the real sample size in
computing the likelihood terms for a parental set is O(Nk). We will assume
that this polynomial number of scores for the parental sets (or at least for the
high-scoring sets) is cached in O(nk+1) space. We also consider the advantages
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of precomputing ordering-conditional factors for subsequent feature search. For
example, the sets of parental sets for a fixed ordering and for a given MBG
feature value Si(f,≺) can be either completely independent of the feature value
(i.e., containing all the parental sets compatible with the ordering), completely
determined by the MBG value (i.e., containing the parental set specified by it)
or they can be dependent on both the ordering and the MBG value. However,
this last option means less than n distinct sets of parental sets for each ordering
(despite the exponential number of feature value, see Eq. 7.16). This shows
that in the case of MBG feature we can precompute also n ordering-conditional
factors with O(1) computational overhead and store in O(Mn) space together
with the O(nk+1) ordering-free parental scores and M orderings in case (2). If
the search process evaluates L number of feature value in cases (1) and (2), the
overall time complexities are O(LMnk+1) and O(M(nk+1 + Ln)) (O(nk+1 +n)
corresponds to a separate ordering-based MCMC step).

Second, now we consider the embedding of search into the estimation to
overlap them computationally and to decrease the number of estimated feature
values L close to the number of selected feature values K (i.e., case (3)). This
is particularly relevant if K is large (i.e., it is in the range of nk), which is the
case if our goal is the construction of an offline knowledge base for exploring the
MBG space. Another reason is that features that are not part of the solution
cause not only extra computational costs because of the computation of their
estimates, but can delay the convergence of the MCMC simulation.

In such an integrated scheme the search method at step i can be based on
the sequentially refined estimates of earlier selected features and on the cur-
rently available ordering-conditional posteriors p(F | ≺i, DN ). By noting that
the extra cost of an additional feature statistics collection is negligible (i.e.,
L can be increased to nk without having significant effect), a robust strategy
applies a search method on p(F | ≺i, DN) for collecting high-scoring features us-
ing constraints from the earlier selected features (e.g., threshold for the score).
The selected features are estimated, convergence and confidence quantities are
computed (note that automated methods are necessary for convergence diag-
nostics, such as described in Section 2.3.1.3). If the number of features grows
over a given limit L, then they are pruned to maintain efficiency and space lim-
its. In fact this approach can be conceived as a two phased sample-then-search
method with a special search method exploiting the estimation steps and using
increasing prefixes of an offline sample to decrease time complexity.

The search method for finding high-probability features can be any general
search such as the deterministic greedy beam search or just the sampling of
the ordering-conditional posterior p(F | ≺i, DN) in each step i or an overpeaked
p(f | ≺i, DN)α with 1 < α. Note that the goals of exploring the space of feature
values and estimating their posteriors are distinct for ordering-modular features.

To develop better estimate and search methods the following observations
and constructs can be exploited. First, the product form of the ordering-
conditional posterior of an ordering-modular feature allows a decomposed iden-
tification of the feature with maximal posterior for a given ordering ≺i.
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Lemma 7.7.1. For an ordering-modular feature function F the most probable
feature value f∗ compatible with a given ordering ≺ can be found by independent
optimizations per variable using the posterior p(F | ≺, DN ) .

Proof. It is the direct consequence of the existence of decomposed ordering
conditional posterior

f∗ = argmax
f∼≺

p(f | ≺, DN) = arg max
f∼≺

n∏

i=1

p(Si(f,≺)| ≺, DN ) (7.43)

=
n∏

i=1

arg max
Si(f,≺)

p(Si(f,≺)| ≺, DN). (7.44)

The possible special (“complementer”) value without such form can be managed
by appropriate summations per variable.

Furthermore, this decomposed form allows the sorting of the set of potential
parental sets Si(F,≺) = {Si(f,≺) : ∀f ∈ F}, which allows specialized search
techniques in the space of S1(F,≺) × . . .× Sn(F,≺).

Based on this observation we introduce the following concepts.

Definition 7.7.1. The ordering conditional (truncated) MBG space for variable
Y is the most probable subspace of S1(MBG(Y ),≺)× . . .× Sn(MBG(Y ),≺) (the
truncation in each dimension and the optional sorting is discussed below).

An MBG state is represented by an n′ ≤ n dimensional vector s, where n′ is
the number of variables not preceding the target variable Y in the ordering ≺:

n′ =

n∑

i=1

1(Y � Xi). (7.45)

In each dimension, the range of the values are integers si = 0, . . . , ri repre-
senting either separate parental sets or a special set of parental sets not including
the target variable. This special value is present only for variables after the tar-
get variable and not for the target variable. So |Si(MBG(Y, G),≺)| is O(nk),
which implies that f∗ in Lemma 7.7.1 from the potentially exponential number
of features (O(nnk))) can be found in polynomial time O(nk+1) , which drops to
O(1) extra time factor if it is done in parallel with the ordering-based MCMC
simulation. The product of the ordering conditional posteriors of the represented
sets of parental sets gives the ordering conditional posterior of the represented
MBG state. We assume that the conditional posteriors of the represented sets
of parental sets are monotone decreasing w.r.t. their indices:

∀si < s′i : p(si|DN ,≺) ≥ p(s′i|DN ,≺). (7.46)

Second, in the most probable features problem the loss of the selected fea-
tures in Eq. 7.37 is a sum of non-negative terms, which allows an exact (!)
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prefiltering (i.e., thresholds ti to select only the potentially optimal features).
Clearly, it is enough to process features with ordering-conditional posteriors
above τ = maxKth

f∈F p̂M (f |DN) (where maxKth denotes the Kth value in a
set in decreasing ordering), because for a feature value f part of the set of K
features with maximal MC-estimate

τ ≤ p̂M (f |DN ) =
1

M

M∑

i=1

p(f | ≺i, DN) ≤ max
i=1,...,M

p(f | ≺i, DN). (7.47)

Because such a threshold τ usually is not available a priori, a sample specific
threshold τi can be used at sample i as the following lemma shows.

Lemma 7.7.2. If for all MCMC sample ≺i i = 1, . . . , M a feature value f is
always below a threshold τi = maxKth

f∈F≺

i
p(f | ≺i, DN )/M , then f cannot be

part of the set of K features with maximal MC-estimate, because there are at
least K feature with larger estimate.

(∀M
i=1 ≺i: p(f | ≺i, DN) < τi)⇒ (p̂M (f | ≺, DN ) ≤ maxKth

f ′∈F≺j p(f ′|DN))

Proof.

p̂M (f |DN ) =
1

M

M∑

i=1

p(f | ≺i, DN ) ≤ max
i=1,...,M

p(f | ≺i, DN ) (7.48)

< maxKth
f ′∈F≺j p(f ′| ≺j, DN )/M

≤ 1

M

M∑

i=1

p(f∗| ≺i, DN) = p̂M (f∗|DN ),

where j = argmaxi=1,...,M p(f | ≺i, DN ) and f∗ can be any feature in the set

{f ′′ ∈ F≺j : maxKth
f ′∈F≺j p(f ′| ≺j , DN) ≤ p(f ′′| ≺j , DN)}.

Eq. 7.48 also shows that with small variance varp(≺i|DN )(p(f | ≺i, DN )) the

threshold factor 1
M can be selected in practice to be smaller (i.e., when the

maximum value is closer to the mean).
This truncation per orderings can be specialized for ordering-modular fea-

tures to truncation per orderings and variables, because of their decomposed
score in Eq. 7.43. In the case of MBG(Y, G) feature, this specialized filtering
can guide the truncation of the MBG space as follows. We can apply the thresh-
olds per variable j at step i with a given ordering for limiting the O(nk) number
of set of parental sets to ri,j . Furthermore, these can be sorted, which means
an O(ri,j log(ri,j)) extra time factor if it is done in parallel with the ordering-
based MCMC simulation). This allows a uniform-cost search or a cost-limited
depth-first search. A corresponding estimation and search algorithm based on
the orderings and on the ordering-conditional MBG spaces is reported in Sec-
tion 8.5.1.



Chapter 8

Analysis and fusion

The availability of formalized prior domain knowledge, literature and statistical
data calls for an integrated analysis. We present their separate analysis, their
cross-comparison for validation and discovery, and their fusion. We also re-
port the application of new concepts and methods, such as the ordering-based
MCMC over complex conditional features and the application of rank statistics,
classification, causal measures, and annotations in the analysis.

The expert prior reported in Chapter 4 included parameter prior and var-
ious structure priors. The literature data and publication models reported in
Sections 6.4 and 6.1 allow the reconstruction of the history of consensus beliefs.
The availability of such heterogeneous information with different biases, limi-
tations and costs poses two kinds of questions: about their differential analysis
for knowledge discovery and about their fusion. We adopt the view that com-
parison of the sources is frequently as important as their fusion — given that
it is a prerequisite for proper fusion. This was our motivation for developing
many IT methods and the ABN-KB besides working on methods for the fusion
of heterogeneous information.

The chapter starts with presenting methods for unified probabilistic fusion
of expert prior knowledge, literature data, and medical data at the level of data,
model features, and complete domain models. The next section evaluates the
parameter prior mainly to assess its quality and its dependence on the prior
structure. Section 8.3 summarizes work at the pairwise level with two goals:
corroborate the potential of the compiled literature data in ovarian cancer and
introduce the use of new quantitative measures for the evaluation of feature
learning, such as rank statistics, and classification methods. Section 8.4 present
results at the level of models that investigate the validity of expert structure
priors as gold standard and corroborate the potential of the compiled literature
data for fusion. Section 8.5 reports the learning of features, particularly the
use of complex conditional features and the corresponding method. Finally, the
effects of fusion are reported, particularly the effect of incorporating the expert
priors and the text mined priors in Bayesian inference with medical data. The
effect of priors on classification performance is reported in Chapter 10.

117
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8.1 Fusion of expertise, literature, and data

The fusion of heterogeneous information resources, particularly the integration
of electronic prior knowledge, such as knowledge bases and free-text with exper-
tise and experimental data is of vital importance and induced many heuristic
approaches. The pABN-KB defines a general framework for an integration of
logical and free text prior knowledge (i.e., literature and expertise) with prob-
abilistic prior knowledge and experimental data through the combination of
model posterior and model-based probabilistic semantics (see Section 5.2 and
5.5.1). This chapter goes one step further by presenting a practically applica-
ble Bayesian fusion of literature, experimental data and expertise based on the
concept of literature data in Def. 6.1.1 and on the FTTC probabilistic model
of publication in Def. 6.4.1. It results in a model posterior given the literature,
experimental data and expertise, which can also be incorporated in a pABN-KB
as a more refined, jointly derived probabilistic engine.

8.1.1 Fusion through linked models

The assumption of a probabilistic link between the domain model and the cor-
responding publication model allows the computation of the posterior over the
(true) domain models given the literature data DL

N ′ as

p(G, θ|DL
N ′) =

∑

GL

p(GL|DL
N ′)

∫

θL

p(G, θ|GL, θL) dp(θL|GL, DL
N ′), (8.1)

or by keeping only the structures as

p(G|DL
N ′) =

∑

GL

p(G|GL)p(GL|DL
N ′). (8.2)

Besides literature, the expertise can be incorporated as follows.

Theorem 8.1.1 ([26]). In a given domain with causal models G, a real data
set DN , and sampling distributions p(DN |G), let p(G) denote the expert belief,
DL

N ′ denote the literature data representation of a given document collection (see
Def. 6.1.1), and let GL denote the corresponding FTTC literature Bayesian
networks with its sampling distributions p(DL

N ′ |GL) and its bijective relation
T (G) = GL (see Def. 6.4.1). Then the posterior is as follows

p(G|DN , DL
N ′) ∝ p(G)p(DN |G)p(DL

N ′ |T (G)). (8.3)

If a more flexible probabilistic link p(GL|G) is allowed, then the posterior is

p(G|DN , DL
N ′) ∝ p(G)p(DN |G)

∑

GL

p(DL
N ′ |GL)p(GL|G). (8.4)
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Proof. We can proceed as follows by using the assumed naive Bayesian network
formalization (DN ← G→ GL → DL

N ′)

p(G|DN , DL
N ′) =

p(DN , DL
N ′ |G)p(G)

p(DN , DL
N ′)

(8.5)

=
p(G)

p(DL
N ′)p(DN |DL

N ′)
p(DN |DL

N ′ , G)p(DL
N ′ |G) (8.6)

= p(G)
p(DL

N ′ |G)

p(DL
N ′)︸ ︷︷ ︸

p(G|DL
N′)

p(DN |G)

p(DN |DL
N ′)

(8.7)

∝ p(G)p(DL
N ′ |G)p(DN |G) (8.8)

∝ p(G)p(DN |G)
∑

GL

p(DL
N ′ |GL)p(GL|G) (8.9)

= p(DN |G)p(G|DL
N ′), (8.10)

which shows that the prior is updated by the literature (data) and then by
the (clinical) data in the Bayesian update scheme. Note that p(G|DL

N ′) can
be conceived of a “posterior-prior”, because it incorporates both the original
structure prior p(G) and the literature through the likelihood term p(DL

N ′ |G).
The assumption of a bijective relation between the domain model structures

G and the publication model structures GL (T (G) = GL) provides the posterior
given the literature and possibly the clinical data as:

p(G|DN , DL
N ′) (8.11)

∝ p(G)p(DN |G)p(DL
N ′ |T (G))

∝ p(DN |G)p(T (G)|DL
N ′ ), (8.12)

showing the contributions of the literature, the clinical data, and the expertise.

An interesting feature of this approach is that it integrates literature data
and clinical data exactly (within the limits of the applied statistical natural
language processing and the vector representation of the free-text). Neverthe-
less, it has a considerable cost on optimization or Bayesian computation due to
the computation of the likelihood with literature data. Additionally, in inte-
grated learning from heterogeneous sources, rescaling of belief for the sources is
advisable to express our confidence in them.

8.1.2 Fusion through linked features

A possible solution is the approximation of the “posterior-prior” p(T (G)|DL
N ′ , ξ)

with the product of feature posteriors

p(T (G)|ξ+) , p(T (G)|DL
N ′ , ξ) ≈

∏

i

p(Fi(T (G))|DL
N ′ , ξ), (8.13)
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where a feature posterior p(Fi(T (G))|DL
N ′ , ξ) can be seen as an approximation of

the reconstructed posterior belief neglecting the parametric layer (see Eq. 6.3).
Standard feature sets are the parental sets, the directed edges and undirected
edges. The advantage of such feature posterior-prior is that it can be precom-
puted without the experimental data, analyzed, scaled if necessary (assuming
interpretable features), stored offline and used as a structure prior beside the
experimental data in MAP optimization or Bayesian computations without the
additional run-time costs.

Further possibilities are the use of deviation priors

p(G|T −1(GL,MAP )), where GL,MAP = arg max
GL

p(G|DL
N ′), (8.14)

and feature-deviation priors with literature-based reference model or feature
posteriors (see Section 8.6 for an application).

8.1.3 Fusion of pairwise text-based scores and models

Finally we discuss the fusion of pairwise (therefore indirect!), symmetric text-
based scores RText(Xi; Xj) from Section 6.5, which is a model-free analysis of
the literature data. As an approximation we use the prior from Eq. 3.19, which
defines a prior belief for structure G based on the beliefs in direct influences
w.r.t. its skeleton. Therefore p(Xj ∈ pa(Xi)|ξ+) (using pij as a shorthand
notation) can be defined by the pairwise text scores:

pij , p(Xj ∈ pa(Xi)|ξ+) ∼ RText(Xi, πik). (8.15)

Note that for all text scores 0 ≤ RText(Xi, πik) ≤ 1 and that we guarantee a
lower limit ǫ and an upper limit 1− ǫ for all pij to avoid the a priori exclusion or
inclusion of edges and consequently structures. This relative definition of edge
probabilities can be refined to satisfy prior knowledge on higher-order statistics
by an appropriate scaling to achieve a given expectation of the number of edges
as described in Section 3.1.5.2.4.

8.2 Data-based evaluation of the small BN

This section analyzes the elicited prior parameters, the parameter priors, and
the elicitation structure based on the clinical data. The main purpose is the
analysis of the quality of the parameter prior, the analysis of its hyperparameters
and its sensitivity to prior transformation.

8.2.1 From prior parameters to hyperposteriors

As reported in Section 4.3.2, a domain expert specified point-valued prior pa-
rameters for a BN containing 11 variables.

Table 8.1 reports the percentage of elicited probabilities per variable in the
posterior 95%, 99% and 99.9% credible regions using BDeu priors and prior



8.2. Data-based evaluation of the small BN 121

virtual sample size equal to 1. The figure on the left reports the sample size of
“strong divergence”, from which the respective estimate in a sequential analysis
is always outside of a given credible region (only for the variable ColorScore).
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Figure 8.1: The comparison of the expert’s estimates of the conditional probabilities
to estimates from the data at different confidence level and with different sample sizes.
(Left) The histogram of the sample sizes of “strong divergence” corresponding to the
expert’s probability estimates for the conditional probabilities of the ColorScore vari-
able. Above the “strong divergence” sample size the respective estimate in a sequential
analysis is always outside of a HPD region with given credibility. The rightmost column
represents the percentages of the estimates without such threshold. Note that these
perhaps failed in the sequential analysis temporarily. (Right) Percentage of elicited
probabilities in the posterior 95%, 99% and 999% credible regions using BDeu prior.

For the Bayesian analysis we need also a parameter prior expressing the
expert’s confidence. In our case, the expert’s experience includes the ultra-
sonographic examination of more than 10,000 cases [237] and it is a reasonable
assumption that his prior belief over parameters can be approximated by using
a single global prior virtual sample size (see Th. 3.1.6). In our earlier study with
the IDO variables and data set, we estimated this value in the range of 10 to
100 partly based on the results of various prior transformations in classification
using continuous variables as well (see Section 10.6). With the more specialized
IOTA variables we expected its value to be comparable to the IOTA data set
(i.e., in the range of 100 to 1000). Here we present a formal Bayesian inference
about this hyperparameter by exactly computing its posterior p(N ′|M, DN ) us-
ing various domain models M and discretization schemes. Assuming a general
uniform prior p(N ′|ξ) in [1, 10000], the posterior is given by

p(N ′|M, DN ) =
p(DN |M, N ′)

=p(M)︷ ︸︸ ︷
p(M |N ′) p(N ′)

p(DN |M)p(M)
(8.16)

= p(N ′)

∫
p(DN |θ, M, N ′)Dir(θ|θ0, M, N ′) dθ, (8.17)

where the integral has a closed form given in Eq. 3.34 and the hyperparameters
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in Eq. 3.1.6. Fig. 8.2 shows the model log-likelihoods and the corresponding
unnormalized posteriors.
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Figure 8.2: The posterior of the hyperparameter for the prior virtual sample size
(i.e., the posterior belief for the count of the a priori seen samples after observing
the data). The investigated Bayesian network models are composed of (1) the naive,
best-inductive (Trained), and elicited prior structures and (2) noninformative — BDeu

— (NI) and informative (I) parameter priors. (Left) The model log-likelihoods in the
[1, 1000] interval with step size 10. (Right) The corresponding unnormalized posteriors
over the virtual sample size in the [1, 300] interval with step size 10 using uniform priors
in [1, 1000].

Because the analytic treatment of a probabilistic approach of prior virtual
sample size is not possible, we adopt an approach to select an appropriate
value [175]. The posterior confirms that a reasonable global prior sample size is
around 150 for the prior structure, which is in the lower part of our expectation.
Preliminary results indicate that it is partly the consequence of the adopted sin-
gle prior sample size and that an analog posterior analysis per variable would
give larger modes for their hyperparamaters except for some variables, such as
PillUse or PapSmooth. The mode of the hyperparameter posterior is around
70 for a MAP structure containing these variables (see Fig. A.4) and around
50 for the respective naive BN. Note that its mode is around 40 and 20 for a
non-informative uniform prior BDeu as well. The interpretation of these results
can be helped by the following intuitive explanation (beside the standard count-
ing interpretation of the Dirichlet hyperparameters). Assuming an i.i.d. case
with finite, discrete values, the prequential score is a logarithmic cumulative
score summing losses until convergence equal on average to the cross-entropy
corresponding to the actual estimates. Then it sums losses equal on average to
the entropy. A larger prior sample size N ′ with its conservative bias may help
to decrease the initially accumulated loss by ensuring smaller variance for the
step-by-step updated estimates in the BFS, which explain the non-informative
case, though it can delay the convergence. The advantageous effect of initially
good estimates in a BN with local multinomial models lasts until they are not
updated in all parental configuration, including configurations with small prob-
abilities, to which a larger prior sample size can put more weight. This explains
that in simpler models such as in the naive BN or in BNs optimal to the data
smaller prior sample size is enough for the same bias effect.



8.2. Data-based evaluation of the small BN 123

This explanation can be also helpful to interpret the prequential comparison
of models with different priors, e.g. it is informative to find the sample size from
that the difference in loss accumulation disappears.

8.2.2 Evaluation of parental sets and configurations

First we report the prequential performance of the model and its decomposition
to the contributions of each variable using an informative and a noninformative
parameter prior, see Fig. 8.3. This shows a strong beneficial effect of the prior
in general until 200 samples. The effects of the prior becomes flat after 300,
although it remains significantly positive. This range is reasonable w.r.t. the
complexity of the prior BN (e.g., number of parameters, number of parents,
non-extremity of the conditional probabilities). The most influential variables
are the ColorScore, Ascites, and CA125 (+) and PapillationSmooth (-).
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Figure 8.3: The advantage of the expert parameter estimates for each parental set
per variable. The vertical axis shows the sequential predicted data log-likelihood using
the expert updated estimates relative to a reference model of the updated BDeu priors.
The PillUse and Meno variables are not reported, because their absolute values are
below 1.5. The horizontal axis gives the sample size.

Next Fig. 8.4 presents a parallel result comparing again the parental set
monitors using an informative and a noninformative parameter prior with prior
sample size 150 and 30 respectively, which shows again the strong positive effect
of ColorScore, Ascites and CA125.

8.2.3 Evaluation of models and transformed priors

After the prequential analysis of the elicited prior parameters and parameter
priors, we investigate now their transformation to other model classes, related
to Chapter 10 on Bayesian classifiers with informative priors. We discuss two
other BN models including the same 11 variables. A Naive BN, because of its
relevance for classification and a maximum a posteriori Bayesian network over
the eleven variables given the IOTA-1.2 data set (see A.4) as an objective “best”
structure reference. Fig. 8.5 reports the effect of prior parameters in the Naive
BN model and the performance of the Naive BN as a domain model and not as
a classifier (!). It shows that the transformed parameter prior in the Naive BN
has a strong beneficial effect until 100 samples and has no significant effect after
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Figure 8.4: The advantage of the expert parameter estimates for each parental set
per variable. The vertical axis shows the sequential predicted data log-likelihood using
the expert updated estimates with the value of virtual sample size 150 relative to a
reference model of the updated BDeu priors with the value of virtual sample size 30.
The horizontal axis is the sample size.

200 cases. The smaller scale of the values w.r.t. original model is compatible
with the different model complexity. From the point of view of the structure, the
elicitation model structure is significantly better, only the Locularity variable
with 3 parents needs a longer convergence period.

Finally, Fig. 8.6 reports the performances of the BN models from the combi-
nations of the naive, best inductive, and elicited structures and of the noninfor-
mative and informative parameter priors. It shows the insufficiency of the naive
BN structure and the advantage of the MAP model. Its performance is influ-
enced by the parameter prior slightly less than the original structure, but still it
determines whether it is better or not than the original structure with an infor-
mative prior. It also shows the beneficial effect of the prior parameters in each
model (i.e., of the transformed parameter prior in the sense of Section 10.2.1).

8.3 Analysis of local scores

To corroborate the potential of the compiled literature data and the associative
text scores RL

Text(X ; Y ) (see Section 6.5) we compared them against pairwise
data scores based on the IOTA-1.1 data set using rank statistics and classifica-
tion methods[16]. We introduced similar associative data scores RData(X ; Y ) to
quantify the pairwise informational relevance of X and Y . Under the assump-
tions that the stochastic variables are discrete and the cases in the data set are
complete, a natural choice is to use the mutual information:

RMI
Data(X ; Y ) , I(X ; Y ). (8.18)

In the Bayesian approach a symmetric, pairwise data score RBD
Data(X ; Y ) can

be defined analogously to the complete structure score (see Eq. 3.34, 3.44), which
expresses the probabilities of the individual pairwise structures p(Y → X |DN):
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Figure 8.5: (Left)The advantage of the transformed expert parameter estimates in
the naive model for each parental set per variable. The vertical axis shows the se-
quential predicted data log-likelihood using the expert updated estimates relative to a
reference model of the updated BDeu priors. The variables Pathology, WallRegularity,
Ascites, PapSmooth, PillUse, and Bilateral are not shown, because their value are
less than 10. (Right) The advantage of the expert parameter estimates and original
parental sets relative to the parental sets in the naive model with the transformed
informative prior. The vertical axis shows the sequential predicted data log-likelihood
using the expert updated estimates in the original model relative to the naive model
with the transformed parameter estimates. The variables Ascites, Locularity, Col-
orScore, PillUse, Bilateral, and Volume are not shown, because their value are less
than 10. The horizontal axis is the sample size.

RBD
Data(X ; Y ) ∝

rY∏

j=1

rX∏

k=1

Γ(NY X
jk +

1

rXrY
). (8.19)

Here rX , rY denote the number of discrete values of variables X and Y and
NY X

jk denotes the number of times we observe value j for variable Y and value
k for variable X in the data DN .

In the analysis, we also included the expert priors RExpert(X ; Y ) for pairwise
relevance (see Section 4.3.3.2), though we expected it to be biased toward direct
dependencies.

In general, we can characterize the RExpert as an expert reference, the an-
notation similarity RASIM as a kind of textual expression of expert belief, the
co-occurrence relation RCOOC as an unbiased literature relation, the corelevance
relation RCOREL as a mixture of expert belief and literature, and finally the data
scores RData as objective pairwise references.

The main goal of this analysis was to understand the characteristics and
usability of the text scores in learning Bayesian networks. First we compare
the constructed text scores against the expert score RExpert and the data scores
RBD

Data and RMI
Data. In the comparison, we applied two quantitative evaluation

methods: the efficiency of detecting the pairwise relations from the expert and
the Spearman rank correlation.

The relation detection means that we try to find back a set of important rela-
tions (specified by the medical expert) using a score for these pairwise relations
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Figure 8.6: The evaluation of the combinations of (1) the naive, best-inductive
(Trained) and elicited prior structures and (2) noninformative (NI) and informative (I)
parameter priors. The vertical axis shows the sequential predicted data log-likelihood
relative to a reference model of the elicited structure with informative priors. The
horizontal axis is the sample size.

and some threshold. (We use the sets Sr and Sh as defined in Section 4.3.3, Sm

is omitted for simplicity, Sr
P and Sh

P are the respective subsets containing only
the relations corresponding to the variable Pathology.)

To quantitatively evaluate different text scores and understand their rela-
tions, we computed the Area Under the ROC curve (AUC) to detect the rele-
vance relations identified by the expert (see Section 4.3.3.2) and the Spearman
rank correlation coefficient RS with the expert score and with the data scores.
The first column of Table 8.1 shows the AUC values for detecting the Sh, Sm,
and Sr relations. The second column of Table 8.1 shows the specificity values
for detecting these sets corresponding to 50% sensitivity. The third column of
Table 8.1 shows the sensitivity values for detecting these sets corresponding to
50% specificity. The upper triangle of Table 8.2 presents the Spearman rank
correlation coefficients for all pairs of the expert score, text scores and data
scores as introduced above and in Sections 4.3.3, and 6.5. Beside the Spearman
rank correlation coefficients for all the relations, the lower triangle of Table 8.2
shows the Spearman rank correlation coefficients for the relations of the variable
Pathology. Bold, underscore, and bold underscore typesettings indicate signif-
icant monotonic relationship between the ranks with p < 0.05, p < 0.001, and
p < 0.001 respectively.

First, using the AUC values and sensitivity-specificity values from Table 8.1,
we examine which of the text prior or the data can select better the relations
from the expert. We expect that the domain is known enough, thus we ex-
pect the highest correspondence between the prior and the data scores (we
expect the text scores to be less accurate due to the noise and bias). Surpris-

ingly, the text scores performed better than expected; for example the RMI,C3
COREL

achieved an AUC value of 82.01 and RMI
Data achieves AUC=85.95 for selecting
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Table 8.1: The AUC values for detecting important expert relations using the dif-
ferent text scores and the data scores (Sh contains only the most important relations
identified by the expert, Sr contains a broader range of relevant relations as described
in Section 4.3.3, Sr

P and Sh
P are their respective restrictions to the pairwise relations

involving the variable Pathology). The specificity column presents the specificity values
corresponding to 50% sensitivity (i.e., it shows the percentage of not relevant relations
that are correctly classified as not relevant when we demand that 50% of the relevant
relations are correctly detected). The sensitivity column presents the sensitivity val-
ues corresponding to 50% specificity (i.e., it shows the percentage of relevant relations
that are correctly detected when we allow only 50% of the not relevant relations to be
incorrectly classified as relevant). In each column, the three best values are indicated
with bold.

Area under the ROC curve (%) | Specificity (%) | Sensitivity (%) |

Settings Sr Sh Sr
P Sh

P Sr Sr
P Sr Sr

P

R
MI,C3
COREL 82.01 93.24 78.26 95.83 90.43 71.43 90.74 82.61

R
MI,C0
COREL 75.17 88.79 68.32 91.67 80.53 71.43 86.42 73.91

R
AND,C3
COREL 82.10 92.68 78.26 79.17 89.44 100.00 90.74 82.61

R
AND,C0
COREL 75.71 89.86 67.70 90.97 81.85 71.43 83.95 82.61

R
MI,C3
COOC 61.61 66.95 54.04 37.50 73.27 71.43 66.05 52.17

R
MI,C0
COOC 64.95 72.05 65.84 42.36 81.52 85.71 72.84 73.91

R
AND,C3
COOC 67.36 68.70 60.87 39.58 84.49 71.43 76.54 65.22

R
AND,C0
COOC 64.58 72.15 63.35 42.36 73.60 85.71 69.75 69.57
RASIM 65.83 88.48 75.78 88.89 80.20 100.00 67.28 69.57

RBD
Data 75.99 95.64 91.30 75.69 94.39 100.00 77.16 91.30

RMI
Data 85.95 97.53 93.17 72.92 94.72 100.00 93.21 91.30

the Sr relations. Although the data scores are slightly better, the differences
are not statistically significant. The opposite behavior of Sr

P is investigated be-

low. Another unexpected result is that RMI,C3
COREL outperforms the RASIM relation

(AUC=65.83), although the corelevance methods is a mixture of experts belief
and literature, while the annotation similarity is closer to the expert belief.

Second, we examine the effect of increasing the size of the document collec-
tion from C3 to C0, which basically means a broader scope with less domain
specificity and thus a higher noise level. As Table 8.1 shows, the (name) co-
occurrence-based scores perform better on a larger collection—that is, they gain
more from the larger number of publications than they lose from the fact that the
documents are less domain-specific (e.g., AUC=61.61 for C0 versus AUC=64.95
for C3 of the RMI

COOC for the set Sr). This is probably caused by the scarcity of
names (i.e., the lack of a nomenclature). Conversely, the corelevance methods
perform better on the smaller, more specific collection C3 (e.g., AUC=75.17 for

RMI,C0

COREL versus AUC=82.01 for RMI,C3

COREL for the Sr set). It means that the vector
representation and the applied relevance measure cannot cope with the broader
scope of the corpus, while is still much better than the simpler co-occurrence
methods.

Third, we examine the effect of detecting the “most relevant” relations Sh

and all the relevant relations Sr. As we expected, the “most relevant” relations
are more easy to identify for all the text scores and data scores in the case of Sr
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Table 8.2: The Spearman rank correlation coefficients for the cross-comparison of
the expert score, the text scores, and the data scores (because of symmetry, the upper
triangle presents the coefficients for comparing all the relations and the lower triangle
presents the coefficients for comparing the relations related to the variable Pathology).
The level of significance is indicated by underscore (p < 0.05), bold (p < 0.001), and
bold underscore (p < 0.001).

settings R
MI,C3
COREL R

MI,C0
COREL R

MI,C3
COOC R

MI,C0
COOC RASIM RBD

Data RMI
Data RExpert

R
MI,C3
COREL 0.726 0.101 0.111 0.508 0.385 0.408 0.507

R
MI,C0
COREL 0.787 0.028 0.081 0.555 0.363 0.346 0.413

R
MI,C3
COOC -0.042 -0.117 0.766 -0.022 0.139 0.193 0.175

R
MI,C0
COOC 0.021 0.003 0.684 0.035 0.179 0.268 0.237

RASIM 0.672 0.677 -0.109 -0.006 0.427 0.271 0.297

RBD
Data 0.572 0.473 0.010 0.160 0.541 0.629 0.471

RMI
Data 0.513 0.439 0.037 0.223 0.534 0.968 0.546

RExpert 0.627 0.527 -0.119 0.009 0.537 0.640 0.650

versus Sh. It also holds for the data scores, which means that on average the
expert score is in close correspondence with what the data says. Interestingly,
this trend is mixed in the case of the relations including variable Pathology (Sr

P

versus Sh
P ), in which the data scores are less effective to select the most relevant

variables than a broader scope of related variables. A preliminary evaluation has
shown that the expert ranking of certain factors as “most relevant” and “mod-
erately relevant” is responsible for this, for example the top-rated papillation
related variables were rated lower by the data. Furthermore, the co-occurrence
scores RCOOC, which can be seen as objective literature scores beside the objec-
tive data scores, are similarly less effective to select the most relevant variables
than to select the broadest scope of variables. Note that this is not the case for
the annotation-based score RASIM, which reflects the expert’s textual ranking.
However, in a detailed analysis of the ranking of the expert, data and literature,
the limitations of the pairwise approach should be taken into consideration also,
because the variables are strongly dependent — which makes it difficult for the
expert to select pairwise relations.

Finally, we examined the effect of using the mutual information (MI) and
the co-occurrence (AND) formulas. Because the name co-occurrence method
in our domain is prone to generating extreme relations (i.e., with uncommon
variable names that never occur), the corelevance method is more appropriate
for this investigation, but as Table 8.1 illustrates we could not find a significant
difference or qualitative difference along this dimension.

The other quantitative method for the comparison of the scores is the com-
parison of the correspondence of their ranking by the Spearman ranking coeffi-
cient RS (note that the scaling of the scores defined in Eq. 3.20 is monotonic, so
does not influence ranking). Table 8.2 presents all the cross-comparisons, both
for all of the relations and for only the Pathology relations (the AND options are
not shown for simplicity, because they are not different from the MI case). From
Table 8.2, we can conclude that the expert score RExpert is significantly, strongly
rank correlated with the data scores, so its reference status is corroborated (see
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Equation 8.20). Similarly, the text scores, more specifically the corelevance
RCOREL and the annotations similarity RASIM are significantly, strongly rank
correlated with the prior and somewhat weakly with the data scores (see Equa-
tion 8.21). Furthermore, the corelevance RCOREL and the annotation similarity
RASIM are really better rank correlated with the expert score than with the
“objective” literature-based co-occurrence score (see Equation 8.22). However,
contrary to our expectations, the corelevance relation RCOREL outperforms the
annotation similarity RASIM (see Equation 8.22), which indicates that the an-
notations does not reflect completely the expert prior and can be refined in this
respect using the literature by the corelevance method. Finally, the RCOREL

score is strongly rank correlated with RASIM but not with RCOOC, and similarly
RASIM is not rank correlated with RCOOC (see Equation 8.23). This conclusions
can be grouped and summarized as follows (by indicating the strength of a rank
correlation in increasing order with ∼, ≈, ≃, and ∼=):

1. Quality of expert prior. The expert score RExpert strongly rank correlates
with the data scores RBD

Data and RMI
Data:

RBD
Data

∼= RMI
Data and RData ≃ RExpert. (8.20)

2. Quality of text-based priors. The text scores RText strongly rank correlate
with the expert score RExpert and weakly with the data scores RData:

RText ≃ RExpert and RText ≈ RData. (8.21)

3. Subjectivity of text scores. The annotation-based score RASIM is the most
subjective (i.e., closest to the expert prior RExpert):

RASIM ≃ RExpert, RCOREL ≈ RExpert , and RCOOC ∼ RExpert. (8.22)

In other words, the hybrid corelevance method RCOREL is between the
expert (subjective) RASIM and the literature (objective) RCOOC:

RCOOC ∼ RASIM, RCOOC ≈ RCOREL and RASIM ≈ RCOREL. (8.23)

8.4 Analysis at the model level

After the comparison of the local scores, we continue with the model level analy-
sis. We discuss questions of compatibility of expert priors (w.r.t. clinical data),
sufficiency of clinical data for learning complete domain models (w.r.t. expert
prior), and validity of literature BNs (w.r.t. data and expert priors). Again, as
with local scores, we try to cross-validate the expert priors and data, to deter-
mine references (e.g., by selecting between GH , GM , and GR expert structures),
and to use them for evaluation of literature models.
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8.4.1 Structure priors vs. clinical data

We investigate the compatibility of the clinical data and structural priors, par-
ticularly the multiparental priors (see comments on the relation of domain and
multiparental relations in Section 4.3.3.1). Our goal is twofold: to explore the
validity of the structure priors (e.g., by estimating confidence based on the sam-
ple size), and to explore the sufficiency of the data w.r.t. learning multiparental
relations and domain models over this set of variables.

In Section 8.2.2 we already applied the node monitors, specifically the mech-
anism monitor to track the performance of a parental set. Because of the
availability of a total ordering, we use again this monitor with two extensions.
First, taking advantage of the polynomial-time computable posterior for a mod-
ular feature given an ordering and a threshold over the parental set size, we
investigated ordering conditional posteriors with uniform priors (i.e., normal-
ized likelihood). Fig. 8.7 reports the sequential ordering-conditional posteriors
of the parental sets in GH .
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Figure 8.7: The temporal evolution of the belief in the local models (i.e., parental sets
) in the expert’s GH Bayesian network; inferred from growing amount of clinical data
(IOTA-1.2), BDeu prior, uniform structure prior, and given the expert’s total causal
ordering. The majority of posteriors are highly varying below 200 samples, but most of
them are stabilized above 500 samples. (Left) The sets (i.e., children) with posteriors
below 0.05 for the complete IOTA-1.2 data set (the variables Meno, Hysterectomy,
PapSmooth, Solid, TAMX, PI, ColScore, and PillUse, Parity, Locularity, Echogenicity,
Shadows are omitted, because their values are less than 0.05 for all sample sizes and for
sample sizes larger than 200). (Right) The sets (i.e., children) with posteriors above
0.95 (the variables ReprYears, Famhist, Age, and PostmenoY are omitted, because
their values are larger than 0.95 for sample sizes larger than 200). The vertical axis
shows the posterior, the horizontal axis is the sample size.

Second, taking advantage of the ABN-KB we defined “knowledge-based”
modular features Fi (called “ABN-node-monitor”) for each variable Xi based on
the multiparental and pairwise prior relations. We found the following features
(expressions) particularly useful

Fi(pa) = c ≥ (|∆(S
H|M|R
i , pa) ∩ S

h|m|r|n
i |), (8.24)



8.4. Analysis at the model level 131

where c denotes an arbitrary threshold. Fig. 8.4.1 reports the sequential poste-
riors of more than one variable difference in the parental sets of the variables in
the expert’s GM model given the expert’s total causal ordering.

0

0.2

0.4

0.6

0.8

1

1 201 401 601

PapSmooth

CycleDay

PostMenoY

PapFlow

PMenoAge

0

0.2

0.4

0.6

0.8

1

1 201 401 601

Parity

Echogenicity

IncomplSeptum

Volume

TAMX

Pain

Figure 8.8: The temporal evolution of the posteriors of more than one variable differ-
ence in the parental sets of the variables in the expert’s GM model. The posteriors are
computed with BDeu priors, with noninformative structure priors and conditionally
on the expert’s total ordering. The majority of posteriors are highly varying below
200 samples, but most of them are stabilized above 500 samples. (Left) The sets (i.e.,
children) with posteriors below 0.05 for the complete IOTA-1.2 data set (the variables
ReprYears, Famhist, and FamhistBrCa are omitted, because their values are less than
0.05 for sample sizes larger than 200). (Right) The sets (i.e., children) with posteri-
ors above 0.95 (the variables PillUse, Pathology, Locularity, PI, ColScore, Bilateral,
CA125, Fluid, RI, PSV, Septum, HormTherapy, Shadows and Meno, Hysterectomy
are omitted, because their values are larger than 0.95 for all sample sizes or for sample
size larger than 200).

Note that such ABN-node monitors can be combined into a semantic model
(global) monitor, expressing for example the posterior probability of deviation
smaller than a specified threshold for all the nodes from the reference structure.

The usage of posteriors of such complex statements is an exact and informa-
tive method for evaluating the compatibility of the data and the prior knowl-
edge, but it requires either strong assumptions or computational resources. In
a simplified approach we can investigate their compatibility by comparing only
a MAP BN against the prior knowledge. We defined and applied the following
scoring function based on the prior pairwise edge rating Sh/m/r/n

LKB(Ĝ) =
∑

i

λiEdgeDiff(Gi, h|m|r|n, Logical, Orientation, DiffType), (8.25)

where the EdgeDiff() function returns the number of the edges that have a given
h, m, r, n status and logical pairwise status in the ABN-KB KB and differ in Ĝ
and Gi (where Gi are reference structures, such as the GH/M/R structures from
Section 4.3.3.1). It can respect the orientation and the type of the difference
(+/-) depending on the setting of bOrientation and DiffType. Fig. 8.9 shows
the learning curve of the edge difference between clinical data-based maximum
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a posteriori Bayesian networks and the expert overall GM Bayesian network
model w.r.t. the Sh/m/r/n rating.
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Figure 8.9: The temporal evolution of the typed h|m|r|n (left) and overall (right)
edge-differences between the expert overall GM Bayesian network model and clinical
data-based maximum a posteriori Bayesian networks labelled as BDeu and CH. The
MAP Bayesian network was trained with noninformative BDeu and CH parameter
priors, uniform structure priors, and using the IOTA-1.2 data set. The decomposition
by types shows that most of differences are rated as not relevant ones, and only the
relations rated as highly relevant have monotonically improving scores.

Another type of semantic comparison of a prior structure and a MAP BN
uses the causal interpretation of the BNs. It is based on the comparison of
the Causal edge (E), Causal path (P), (Pure) Confounded (Conf), and Inde-
pendent (I) pairwise relations in the models (see Section 3.1.3.4). For example,
Table 8.3 shows these differences between the GM and a MAP network in a
matrix containing the number of relations of a given type in the models.

Table 8.3: Detailed causal comparison of prior and data based BNs using the Causal
edge (E), Causal path (P), (Pure) Confounded (Conf), and Independent (I) pairwise
relations. The most important differences are between the I vs. Conf. vs. P/E. We

used the DPMH
R data set, the BDeu parameter priors and noninformative structure

priors and exhaustive search to 3 parents with K2 greedy continuation over 106 random
ordering.

I Conf P E
I 6 2 0 4

Co 0 66 50 16
P 54 486 336/0 50/0
E 0 10 40/0 70/0

Scalar scores can be derived from this matrix similarly by summing the
elements with different weights as in Eq. 8.25 [58, 258], for example a simple
acasual indicator is the number of extra and missing pairwise independencies
(I + /I−). Table 8.4 reports the typed and causal differences between the prior
GH , GM , and GR and the MAP BNs based on clinical data.

The experiments providing these results confirmed that the GH network is
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Table 8.4: Typed and causal differences between the prior GH , GM and GR and the
clinical data based MAP BN Ĝ≺

CH counting the extra(+) and missing (-) edges with
Sh/m/r/n rating and the difference w.r.t. Independent (I) pairwise relation. We used
the CH parameter prior, uniform structure priors and exhaustive search to 5 parents
with K2 greedy continuation given the total ordering (see A.5). The last three rows
shows the undirected edge differences excluding the pairs with logical relations.

h+ m+ r+ n+ h- m- r- n- I+ I-
GH 8 15 3 24 3 0 0 0 540+472 0
GM 1 7 3 24 6 18 1 0 194+140 0
GR 1 7 0 24 6 22 19 0 4+8 0+6
GH 1 3 2 32 3 0 0 0 - -
GM 0 1 2 25 6 18 1 0 - -
GR 0 1 0 25 6 22 19 0 - -

Table 8.5: Typed and causal differences between the prior GH , GM and GR and the
clinical data based MAP BN ĜCH counting the extra(+) and missing (-) edges with
Sh/m/r/n rating and the difference w.r.t. Independent (I) pairwise relation. We used
the CH parameter prior, uniform structure priors and exhaustive search to 3 parents
with K2 greedy continuation using 106 random orderings (see A.6). The last three
rows shows the undirected edge differences excluding the pairs with logical relations.

h+ m+ r+ n+ h- m- r- n- I+ I-
GH 6 13 4 23 6 0 0 0 544+468 0
GM 0 7 4 23 10 20 1 0 192+142 0
GR 0 7 0 23 10 24 18 0 4+8 0+6
GH 1 2 2 28 3 0 0 0 - -
GM 0 1 2 20 6 19 1 0 - -
GR 0 1 0 19 6 23 18 0 - -

a sound, but incomplete reference structure. The GM and the GR network can
provide valuable prior information, but their use as a gold standard for evalu-
ating learning methods requires caution, because none of them can be recon-
structed exactly. However the manual investigation exposed that the structural
prior is more reliable w.r.t. the classification aspects in the clinical diagnostics,
which further supports its use as a reference in Bayesian learning of complex
conditional features. In conclusion, neither these structure priors nor MAP do-
main models based on some part of the clinical data can serve as an exclusive
gold standard, but both can provide a point of view for evaluation. A reason-
able choice is the selection of the pair of the GM or GR prior structure and the
ĜBDeu

MAP model.

Finally, we discuss the validity of our general limit of the parental set size (4),
which is a high-level structural prior fundamental in both optimization and MC
methods. This is smaller than five in the GM network and the MAP structures
have not refuted it. We tested this structural assumption against the clinical
data in the Bayesian framework as well by computing the posterior distribution
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Table 8.6: Typed and causal differences between the prior GH , GM , and GR and the
MAP BN ĜBDeu based on clinical data counting the extra(+) and missing (-) edges
with Sh/m/r/n rating and the difference w.r.t. Independent (I) pairwise relation. We
used the BDeu prior, uniform structure priors, and exhaustive search up to 3 parents
with K2 greedy continuation using 106 random orderings (see A.7). The last three
rows show the undirected edge differences excluding the pairs with logical relations.

h+ m+ r+ n+ h- m- r- n- I+ I-
GH 6 8 3 18 5 0 0 0 588+352 0
GM 0 4 3 18 9 22 1 0 200+62 0
GR 0 4 3 18 9 22 1 0 4+2 0+72
GH 1 1 2 19 2 0 0 0 - -
GM 0 0 2 12 5 20 1 0 - -
GR 0 0 2 12 5 20 1 0 - -

over the parental set sizes for each variable given the total ordering, which also
confirmed the validity of this bound.

8.4.2 Evaluating literature models

The evaluation of the literature data based on the domain model and the appli-
cation of BNs involves many options. The selection of the source and derivation
of the literature data (i.e. the selection of the corpus ME or PM possible re-
stricted by the H, M, R journal rating and the selection of the co-occurrence
or co-relevance method with a threshold); the selection of reference structures
based on the prior knowledge or selection of a setting for learning a BN using
the clinical data set; the selection of a setting for learning a BN using the liter-
ature data set. We analyzed most of the combinations, where the selection was
partly influenced by the experiments in Section 8.3 (i.e., focused corpus with the
corelevance method) and in Section 8.4.1 (the GM and GR prior structures) and
partly by the result of these manual exploration. We will report results under
the following conditions that reflect the characteristics of the results and show
the effects of the narrower or wider corpus, parameter prior, total ordering, and
expert or data reference. We will use the corelevance method with a threshold
of 0.01, the more focused PM corpus and optionally the highly relevant journal
filter. As a reference we will use the GM prior structure and a MAP BN (ĜBDeu

based on clinical data, see A.7). For learning literature BNs, we use the prior

total ordering in learning from literature data DPMR
R and from DPMH

R (in the
later case with both CH and BDeu parameter priors). There is no ordering

constraint in one case when learning from DPMH
R . The models are respectively

Ĝ≺
BDeu

(DPMR
R ) (Fig. A.8), Ĝ≺

BDeu
(DPMH

R )(Fig. A.9), Ĝ≺
CH(DPMH

R )(Fig. A.10)

and ĜBDeu(DPMH
R )(Fig. 6.2). Table 8.7 reports the typed and causal compari-

son of these reference structures and the literature BNs.

These results show that the difference between the literature models and the
prior GM model is considerably larger than that of models based on clinical
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Table 8.7: Typed and causal comparison of literature based BNs against the prior
structure GM (first 4 rows) and a MAP structure based on clinical data (see A.7). The
counts of the extra(+) and missing (-) edges with Sh/m/r/n rating and the difference
w.r.t. Independent (I) pairwise relation are reported.

h+ m+ r+ n+ h- m- r- n- I+ I-

Ĝ≺
BDeu

(DPMR
R ) 3 12 6 38 7 19 1 0 196+198 0

Ĝ≺
BDeu

(DPMH
R ) 0 5 3 33 10 21 1 0 144+238 0+10

Ĝ≺
CH(DPMH

R ) 0 2 8 15 14 20 1 0 60+118 128+86

ĜBDeu
(DPMH

R ) 0 2 2 46 24 21 1 0 216+116 24+14

Ĝ≺
BDeu

(DPMR
R ) 10 14 4 35 5 3 1 15 24+108 0

Ĝ≺
BDeu

(DPMH
R ) 7 9 2 30 8 7 2 15 22+104 0+16

Ĝ≺
CH(DPMH

R ) 5 7 7 12 10 7 2 15 18+54 264+106

ĜBDeu(DPMH
R ) 2 5 2 43 17 6 3 15 74+48 70+20

data, the number of different edges is roughly twofold. However the decom-
position of the different edges shows that the errors w.r.t. the typed h, m, r
pairwise relations are comparable for the BNs based on clinical data and liter-
ature data, which is in line with our expectation that these relations are better
reported and represented in the literature. Another interesting feature is that
the differences between the literature BNs and the GM model are comparable
to their differences against the clinical data based BN. This is compatible with
the conclusion from the pairwise investigation of the prior, clinical data and the
literature data (see Section 8.3) that the expert priors, the clinical data and the
literature with the derived models and relations reflect three different points of
view of the domain, though they are inevitably linked, particularly w.r.t. the
basic, already established relations. This excludes the usage of one of them
as a gold standard to validate the others and strengthens our view that our
knowledge rich analysis (focusing on complex model properties and full-scale
probabilistic fusion) is necessary.

8.5 Feature learning

In Section 7.7, we overviewed many approaches to estimate and find complex
BN features. For complex features for classification, we proposed the use of
the MBG space within ordering-based methods. The ordering and the ordering
conditional MBG spaces can be used independently by deterministic heuristic
searches and by MC methods. Fitting to the OC domain we will report the
following combination: (1) the reference total ordering or MCMC method over
the unconstrained orderings and (2) heuristic search in the MBG space. Besides
this we report results about simple pairwise features as well.
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8.5.1 An estimation and search method for MBGs

The usage of ordering for learning BN features relies on the polynomial-time
approximation of the ordering posterior and on the polynomial-time approxi-
mation of the ordering conditional posterior for ordering-modular BN features
discussed in Section 7.5.2. The usage of ordering means an overlapping clus-
tering of the DAG space and an analytic solution in each cluster corresponding
to an ordering (i.e., over the DAGs compatible with a given ordering). An
expectable effect of the smoother posterior of the orderings and the analytic
ordering conditional posterior are better convergence and confidence properties
for the MC methods (see Section 7.5.2.2). Another advantage is that, in case
of an ordering-modular complex feature, its ordering-conditional posterior can
be used in search methods for finding high-scoring values both to guide the in-
tegrated search-estimate method and to approximate the ordering conditional
posterior of non ordering-modular features.

Furthermore, for ordering-modular BN features, specifically for complex clas-
sification BN features in Section 7.7, we proposed the use of the ordering con-
ditional MBG space 7.7.1. The purpose of the MBG space is twofold: selecting
high-scoring MBGs for estimation and updating the estimates of already se-
lected MBGs.

In the ordering space we will use the following options. The total ordering is
used to generate sequential results (i.e., to compute the posterior for increasing
size of the data, to compute a baseline using all the clinical data, and to calibrate
the settings of the methods working in the MBG space). The prior partial
orderings and the informative priors over the orderings are not used. For the
unconstrained orderings a general purpose MCMC method is used.

The overview of the method implemented is shown in Alg. 1. This algorithm
is aimed at solving the Feature Subset Selection problem, the Feature subGraph
Selection problem, and the Most Probable Features problem with the Markov
Blanket subset feature, the Markov Blanket subgraph feature (see Def. 7.2.3
and Def. 7.6.1). Besides searching and estimating MAP MBG values for a given
variable, it also estimates the posteriors of simple conditional features, such as
edge and MBM relations, the MB feature of the given variable, and the pos-
teriors of prespecified ABN-KB sentences. The method can be parameterized
to use different training proportions of the input data set with various averag-
ing schemes, so it provides a Bayesian, four-level, sequential relevance analysis
at the levels of Markov Blanket Memberships, Markov Blanket sets, Markov
Blanket graphs, and complete Bayesian networks.

For notational simplicity only the MCMC case is shown, but the imple-
mented method includes deterministic enumeration methods and the importance
sampling over the orderings as well.

Alg. 1 on the one hand reflects the relative independence of the search and
the estimation process (e.g., without the expand option it simply estimates the
posteriors of the a priori specified MBGs). But on the other hand it also shows
their overlap (e.g., the selected high-scoring MBGs can be used for expanding
the set of the estimated feature values and for restricting the computationally
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Algorithm 1 Ordering based search and MC estimation of conditional features

Require: [ordering prior]set of allowed orderings;
Require: [noninformative structural prior p(G| ≺, ξ−)] ]limit of the maximum

parental set size k, uniform parental prior, “uniform over and within sizes”
parental prior;

Require: [informative structural prior p(G| ≺, ξ+)] a priori excluded/included
edges and a priori edge probability matrix;

Require: [parameter prior p(θ|G)] prior point specification θ0 and prior virtual
sample size N ′;

Require: [targets] the target variable Y , the set of a priori specified MBGs
SMBG, the set of ABN-KB sentences Sα;

Require: [targets]the number of the most probable MBGs and MBs to be re-
ported K, K ′

Require: [settings] R, ρ, LS, ρS ,LU , ρU ,bExpand,bPartialUpdate,LT ,M ;
Require: [learning curve] training proportion and averaging scheme;
Ensure: Estimates of the posteriors of directed and undirected edges, MBM

relations, and the ABN-KB sentences in Sα;
Ensure: K MAP MBGs with their estimates;
Ensure: K ′ MAP MBs with their estimates;
Ensure: MCMC convergence and confidence estimates for the posteriors of the

elements in SBN , SMBG, SMB;
Cache ordering-free parental posteriors Π = {∀ i, | pa(Xi)| < k :
p(pa(Xi)|DN )}
Initialize MCMC, the MBG-tree T , MBM and edge posterior matrices R, E ;
Insert the induced a priori MBGs in T and store them in a set SMBG;
Store the a priori specified BN and MB sets SBN , SMB;
for l = 0 to M do {the sampling cycle}

Draw next ordering using the “flip-flop” and “cutting” operators;
Cache ordering specific common factors Ψ
p(| pa(Xi)| ≤ k| ≺l) for all Xi

p(Y /∈ | pa(Xi)| ≤ k| ≺l) for Y ≺l Xi;
Compute edge posteriors p((→ Xi, Xj)|DN ) and update E ;
Compute pairwise relevances p(MBM(Xi, Xj)|DN ) and update R;
Compute p(≺l |DN);
if bExpand then

Construct ordering conditional MBG-Subspace(Π, Ψ, R, ρ)=Φ
if bPartialUpdate then

SS, SU=Search(Φ,LS, ρS ,LU , ρU );
else

SS=Search(Φ,LS, ρS);
for all mbg ∈ SS do

if mbg /∈ T then
Insert(T , mbg) with counter n(mbg)=0;

if LT < |T | then
T =PruneToHPD(T ,LT );

for all mbg ∈ T do
increase counter n(mbg)=n(mbg)+1;
if ¬ bPartialUpdate or bPartialUpdate and mbg ∈ SU then

p̂(mbg |DN )+ = p(mbg | ≺l, DN );
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costly update of the estimates). This is supported by the expand and partial-
update options (bExpand, bPartialUpdate) and their independent parameters
LS, ρS and LU , ρU regulating the construction of the sets for expansion and
update (SS , SU ).

The identification of high-scoring MBGs is based on the observation that
the ordering conditionally MAP MBG can be found in O(nk+1) time with a
negligible constant increase only. Similarly, there is only a R log(R) extra mul-
tiplicative factor for the construction of the MBG-space including the maximum
R values for the n′ dimension representing the most probable sets of parental
sets as described above. Additionally, we allow the restriction of the MBG sub-
space separately for each dimension to values less than R by requiring that the
corresponding posteriors are above the exp(−ρ) ratio of the respective MAP
value, which can be calibrated as described in Section 7.7.

We experimented with two search algorithms in the constructed MBG sub-
space. The first method simply used the hypercube defined by the R, ρ values,
but its exponential nature makes it not feasible. The second is a uniform-cost
search starting from the ordering conditional MAP MBG, which stops after the
expansion of LS number of states or if the most probable MBG in its search list
(fringe) drops below exp(ρS) ratio of the ordering conditional posterior of the
starting (MAP) MBG. Because the expansion is more costly computationally
than the update, the algorithm continues with LU , ρU parameters if necessary
(we assume that bPartialUpdate implies bExpand). However the full, exact
update has an acceptable run-time cost, if the size of the estimated MBG set
LT is below 106]. This LT value ensures that the newly inserted MBGs are not
pruned before their estimates reliably indicate their high-scoring potential and
still allows an exact update. In larger domains this balance can be different and
the analysis of this question in general is for future research. So subsequently
we will report results using always a false value for the bPartialUpdate and we
will discuss in the next section that R = 20, ρ = 4 and LS = 104, ρS = 10−6 are
reasonable choices. Another aspect of the R, ρ, LS, ρS parameters is that com-
plex feature values with high posterior are not necessarily ranked high based on
the ordering conditional posterior (see comments for Eq. 7.47 and 7.48). How-
ever in practice for a relatively peaked posterior over the orderings, the globally
high-scoring feature values are determined by the high-scoring feature values
for the most significant orderings, which are evaluated by a standard MCMC
simulation. Note that in the case of applying the algorithm for a single ordering
the parameters LS , ρS are functionally equivalent to the parameters LU , ρU . In
this case the estimates of the posteriors of non-ordering-modular features, such
as the MB feature based on the collected high-scoring MBGs are always under-
estimated and the increasing value of the equivalent LS , LU , LT parameters in
the limit ensures their exact posteriors (in practice this underestimation can be
counterbalanced by normalization).

In the standard settings used in this section the length of the burn-in and
MCMC simulation was 104, the probability of the pairwise replace operator was
0.8, the parameter prior was the BDeu and the structure prior was uniform prior
for the parental sets with size less than k. The maximum number of parents
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was 4, which is consistent with the prior and the posterior of the parental set
size conditional on the ordering ≺0. In general, for the reported MB and MBG
values after burn-in with this setting the single-chain convergence test from
Geweke comparing averages has a z-score of approximately 0.1, the R value
of the multiple-chain method of Gelman-Rubin convergence test with 5 chains
drops below 1.01 (see Section 2.3.1.3). The variances of the MCMC estimates
of the feature values drop below 10−5.

The method implemented can incorporate parameter priors, structure priors,
and priors over the orderings including the dichotomy of the variables to causes
vs. influencing factors and applying the ordering-based MCMC in these spaces.
In this section we will focus on the tabula rasa application of the method.

8.5.2 The exact treatment of the orderings

If the set of a priori allowed ordering S≺ is very restricted, the exact posteriors
for an ordering-modular feature F , such as edge, MBM and MBG features can
be computed analytically for any prespecified value f .

This is not possible for non-ordering modular features, such as the MB fea-
ture, and the identification of high-scoring values is an additional issue in case
of complex features. In the OC domain a total ordering is available, whose pri-
mary usage was to compute a baseline using all the clinical data and to calibrate
the parameters of Alg. 1 that are used independently in the outer cycle working
in the ordering space, such as the ordering-based MCMC.

The investigated parameters includes the R, ρ, and LT parameters speci-
fying the constructed MBG subspace and the maximum number of estimated
MBGs, the LS and ρS parameters controlling the expansion of the estimated
MBGs. Related parameters are the partial update option (bPartialUpdate) and
its additional parameters LU , ρU . All these parameters depend on the peakness
of the ordering conditional posteriors of the parental sets, or more exactly of
the sets of parental sets constructing the MBG subspaces. Table A.4 shows the
ordering conditional distributions of the parental sets for the total ordering ≺0

and the posteriors of the corresponding MBG subspace. We can observe that
the peakness (rate of decrease) ensures that the ordering conditional posterior
of the tenth most probable value is less than a hundredth (exp(−5) < 0.01) of
the MAP value (see last column). Furthermore, the aggregated value in the
MBG space are mostly present (see differences in the last column). In fact,
it is frequently the most probable value (see differences in the first column).
Exceptions are the strong indicator variables, such as CA125 and PapFlow, for
which the parental sets without the target variable has insignificant posteriors.
This suggests that it is sufficient to set the parameter R above 10. We used
20 because the CH parameter prior is more widespread and we used ρ = −20
corresponding to a cut-off ratio less than 10e− 8.

The ranked ordering conditional posteriors of the most probable complete
BN structures, MBGs and MB sets are reported in Fig. 8.10.

The ranked posterior curves indicate that the parameter LS has to be larger
than 103, and the parameter LT as well. We computed the ordering conditional
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Figure 8.10: The rate of decrease of the posteriors of the most probable MB sets,
MBGs, and BN structures. In each cases the posteriors are insignificant for objects
with ranks larger than 100. The horizontal axis shows the relative logarithm of the
ordering conditional posteriors of the most probable complete BN structures, MBGs
and MB sets w.r.t. the respective MAP value. The vertical axis corresponds to the
appropriate ranks.

posterior of the set SS containing the most probable MBGs returned by the
uniform cost search with different sizes. To make it computationally feasible we
restricted the number of parents to two, which is still a realistic selection in case
of the BDeu parameter prior (see Fig. A.6). The ordering conditional posterior
p(mbg : mbg ∈ SS| ≺0, DN ) is 0.76 (103), 0.81(104), 0.93 (105) and 0.9911
(106) for the respective set sizes indicated in parenthesis. We used the values
LS = 103 and LT = 105, which proved to be sufficient compared to checks with
LS = 104 and LT = 106. Furthermore, we performed the same analysis for
some random orderings, which indicated even more peaked posteriors.

8.5.2.1 Posteriors of Markov blanket memberships

The MBM(Y, G) feature is a symmetric, pairwise and observationally equivalent
feature. Table A.5 reports the posteriors of the MBM(Pathology,Xi) features
for the combinations of CH/BDeu parameter priors and single/unconstrained
orderings. The qualitative analysis of the MBM posteriors shows that the
(7,10)/(8,12) variables have posteriors less than 0.05 and larger than 0.95 for
the expert’s ordering and (10,7)/(11,10) in the unconstrained case (the values
corresponding to the thresholds (< 0.05,0.95 <) are separated by ’,’, and the ’/’
indicates the use of CH/BDeu priors respectively). The effect of the parameter
priors w.r.t. the 0.05 and 0.95 thresholds is negligible, as the only differences
are the Locularity in the fixed, and the TAMX and Hysterectomy in the un-
constrained ordering case. However the effect of the parameter priors at the
quantitative level is significant as the L1 difference of the posteriors is larger
than 0.05 for 9 variables in the case of fixed and for 10 variables in the case of free
orderings. Whereas this issue is for future research, to simplify the exposition
we shall report results using the BDeu parameter priors, which provides more
compact models in our experiments, except its anomaly in the small sample re-
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gion. The effect of the restriction to the expert’s total ordering is considerable,
because 8 variables have different status w.r.t. the 0.05 and 0.95 thresholds
(Age, Meno, HormTherapy, PapSmooth PI TAMX, Hysterectomy Solid) and
the L1 difference of the posteriors is larger than 0.05 for 11 variables in the case
of BDeu priors.

We investigated the relation of the MBM posteriors to the prior domain
knowledge only in an overall comparison using the expert’s rating of pairwise
Sh/m/r dependencies (see Section 4.3.3.2) and the induced Markov blankets
of the multiparental SH/M/R dependencies (see Section 4.3.3.1, 4.3.3.2), which
represent associative, pairwise priors and model-based priors. Table 8.8 reports
the AUC values of MBM posteriors based on clinical and literature data w.r.t.
the SH/M/R and Sh/m/r relations. The relatively high AUC values indicate
success particularly for the Markov blanket induced by the GM structure, which
was concluded as the most reliable prior structure (see Section 8.4.1, 8.4.2). For
the Sh/m/r priors, its performance is below that of the pairwise approaches
based on data (see Table 8.1), which can be explained by the fact that these
elicited expert priors represent indirect pairwise dependencies, in contrast to
the model-based MBM relations.

Table 8.8: The learnability of the expert’s opinion that a given variable is relevant
for the preoperative diagnostics of ovarian cancer. We used the posteriors of the
MBM(Pathology,Xi) features as scores to discriminate the expert’s Sh|m|r and SH|M|R

relations; and reported the corresponding AUC values. High AUC values (above 0.8)
indicate both the sufficiency of the data and the good quality of the prior as gold
standard (e.g., the Sh and SM cases). The posteriors are computed for single (FixO.)
and unconstrained (MCMC) orderings using the maximum parental set size 4 and the
IOTA-1.2 data set. The last line (Lit-FixO./BD) report the analog AUC values in
case of BDeu priors and the PMCR

R0
Pubmed corpus.

Sh Sm Sr SH SM SR

FixO./CH .809 .691 .675 .731 .871 .759
FixO./BD .828 .660 .700 .709 .886 .831

MCMC/CH .721 .649 .642 .762 .852 .757
MCMC/BD .726 .642 .742 .716 .856 .831

Lit-FixO./BD .737 .687 .679 .827 .686 .646

To provide more information about the posteriors we computed the pos-
teriors of the membership of each variable in the Markov blanket set of the
Pathology variable for increasing data size using the original temporal sequence
of the cases (i.e., the posterior learning curves). Note that these are different
from the pure likelihood-based prequential curves (see Section 2.4.1 and 3.4),
as these are combined with the prior and normalized in each step. Because of
computational reasons this is computed only for the expert’s total causal order-
ing. We classified the variables as simple vs. complex and positive vs. negative
depending on the rate of convergence in this sequential evaluation and their fi-
nal status using all the clinical data (the only exception is the Age variable, see
below). This characterization is based on the fact that the rate of convergence
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of an MBM feature represents the average rate of convergence of the domain
models that makes it true. For example if MBM(Pathology,Xi) is true only in
complex models requiring large sample size for a significant posterior including
the limiting equivalence class as well, then the feature is a complex, positive
feature with slow increasing rate. Fig. 8.11, 8.12 shows the respective curves.

These classification of the variables allows a qualitative evaluation of the
sufficiency of the sample size of the clinical data set with 782 cases w.r.t. these
MBM features. Because of the general non-monotonicity of the sequential pos-
terior curves with multiple maxima we cannot exclude the possibility of the
changes of the trends for further cases, but the reported results suggest that
all variables would continue its convergence to the 0/1 value according to its
status at using the complete data set. Additional computations using 2 and 3
as maximum parental set sizes also confirmed this opinion.

The MBM pairwise features in general are not independent, and in Fig. 8.12
we can observe an illustrative example. This figure shows the MBM features
with slow convergence to 0, except the MBM(Pathology,Age), which has a slowly
increasing trend. Because the Age and the Meno variables are the most sig-
nificant potential parents in this ordering and semantically they are quite re-
dundant, the observable complementary characteristics from 200 samples indi-
cates their antagonist dependence (the sum of their posterior is in the [0.95, 1.1]
range).
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Figure 8.11: The temporal evolution of the belief — inferred from growing amount
of clinical data — that a given variable is relevant for the preoperative diagnostics
of ovarian cancer. Belief in relevance is represented by the posterior of the MBM
feature, thus the figure shows the sequential posteriors of MBM(Pathology,.) features
with fast/slow convergence to 1 given the expert’s total causal ordering. In both
groups the majority of posteriors are highly varying below 200 samples, but they
are stabilized above 500 samples. The posteriors are computed with BDeu priors, with
noninformative structure priors and conditionally on the expert’s total causal ordering.
The horizontal axis is the sample size with step size 10.

Finally we report the sequential posteriors of the MBM(Pathology,.) fea-
tures using the temporal sequence of publications between 1980 and 2005 in
the large PubMed corpus. Analogously to the clinical data case we tried to
classify the variables w.r.t. rate of convergence and assumed limiting value as
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Figure 8.12: The temporal evolution of the belief — inferred from growing amount
of clinical data — that a given variable is not relevant for the preoperative diagnostics
of ovarian cancer. Belief in relevance is represented by the posterior of the MBM
feature, thus the figure shows the sequential posteriors of MBM(Pathology,.) features
with fast/slow convergence to 0 using the sequence of clinical samples and given the
expert’s total causal ordering. The posteriors are computed with BDeu priors, with
noninformative structure priors and conditionally on the expert’s total causal ordering.
The horizontal axis is the sample size with step size 10.

MBM(Pathology,.) features with fast or slow convergence to 0 or 1, but we de-
fined a class with “mixed status” instead of “fast convergence to 0” class (with
one element). The comparison of the clinical data based “fast convergence to 0”
class against the opposite literature based “fast convergence to 1” class revealed
only 1 common item (Locularity). The comparison of the clinical data based
“fast convergence to 1” class against the opposite literature based “slow conver-
gence to 0” class revealed only 2 common items (Echogenicity and Shadows).
These are semantically related and the different classifications probably indicate
the relatively recent status of these diagnostic features.

8.5.2.2 Posteriors of MB sets and MB graphs

The pairwise MBM(Y, Xi) features are model-based, but they treat indepen-
dently the variables Xi. If this assumption is acceptable for example because of
the general assumption of a naive BN with parent Y, then the MBM posteriors
p(MBM(Y, .)|DN ) can be used to approximate the posterior of Markov blanket
sets as follows

p(MB(Y )=mb|DN )≈
∏

Xi∈mb

p(MBM(Y, Xi)|DN )
∏

Xi /∈mb

(1−p(MBM(Y, Xi)|DN )). (8.26)

Similarly, the posterior of the Markov blanket spanning subgraph can be
approximated using edge posteriors

p(MBG(Y ) = mbg |DN ) ≈
∏

eij∈mbg

p(eij |DN )
∏

eij /∈mbg

(1− p(eij |DN )). (8.27)

Within this approximation high-scoring MB and MBG features can be found
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Figure 8.13: The temporal evolution of the collective belief — inferred from the
literature — that a given variable is not relevant for the preoperative diagnostics of
ovarian cancer. Belief in (pairwise) relevance is represented by the posterior of the
MBM feature, thus the figure shows the sequential posteriors of MBM(Pathology,.)
features with mixed status with fast convergence to 0 using the temporal sequence
of publications between 1980 and 2005 in the large PubMed corpus binarized with
corelevance, BDeu priors, noninformative structure priors and conditionally on the
expert’s total causal ordering.

in O(n2) time by exhaustively collecting and combining the most probable pair-
wise feature values.

Without such strong assumptions, we can use the MBG-ordering based
search-estimate algorithm described in Alg.1 to search for high-scoring com-
plex features and estimate their posterior exactly in the limit. Fig. 8.14 shows
the estimated ranked posteriors and their MBM-based approximations as in
Eq. 8.26 for the 20 most probable MB set (w.r.t. estimated posteriors).

The MBM-based approximation performs relatively well, particularly w.r.t.
ranking in the case of the expert’s ordering ≺0, but it performs poorly in the un-
constrained case both w.r.t. estimates and ranks (note that it excludes relevant
MB sets). As a cross-check we also computed the MB-based MBM posteriors
using the 100 most probable MB set

p(MBM(Y, Xi)|DN ) ≈
∑

mb∈S100
MB

p(mb |DN)1(Xi ∈ mb), (8.28)

which provided good estimates (see Table A.5), because of the relatively peaked
MB posterior (see Fig. 8.14).

The 10 most probable MB sets are reported in Table A.7. The sum of
the posteriors of these 10 sets (i.e., their coverage) is around 0.4. The vari-
ables with changing status are FamHist, IncomplSeptum, Pain, Locularity, PI,
TAMX, FamHistBrCa, Shadows, ColScore, PI and PSV, which coincides ap-
proximately with the set of variables with MBM(Pathology,.) posterior in the
range of [0.1, 0.9]. Note that because of the exact posterior interpretation, vari-
ables with MBM posterior close to 0.5 are affected earlier by increasing the
coverage of the reported top MB sets. From a theoretical point of view this
shows that the set of DAGs spanning the high-ranking MB sets are approxi-
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Figure 8.14: The MBM-based, pairwise approximations of the posteriors and ranks
of the 20 most probable MB(Pathology) sets. In the general (unconstrained) case the
MBM-based approximation give misleading results w.r.t. the multivariate analysis
by excluding relevant MB sets (additionally to its seriously perturbed ranking). We
used combinations of CH/BDeu parameter priors and single/unconstrained orderings
(FixO./MCMC) with uniorm structure prior, the IOTA-1.2 data set, and the maximum
parental set size 4. The vertical axis corresponds to the ranks of the MB sets w.r.t.
the case of CH prior and unconstrained orderings.

mately representative. From a practical point of view this backs up the literal
definition of the MBM feature that its posterior can be used to indicate the
uncertainty of the relevance of a variable status in a model-based manner, but
it performs poorly in a multivariate context to estimate or rank the overall MB
sets (see Table 8.14). Table 8.9 shows the classification performance of high-
scoring MB sets from Table A.7 and for a MB set based on literature using the
PMCR

R0
Pubmed corpus, which corresponds to the settings reported in Table 8.8.

The relatively low misclassification rates, particularly the .15− .25 values for
the M∗ MB set induced by the most relevant GM structure indicate that the
data based MB sets approximate well the expert’s references. Interestingly, the
most probable set based on the MBM posteriors reported in Fig. 8.14 under the
title MBM-MCMC/CH has similarly high classification performance, which is
partly the consequence of these simple performance measure (see Fig. 8.14 for
the performance of the MBM posteriors to rank and estimate real posteriors of
MB sets).

Finally we compared the MBG(Y, GMAP) and MB(Y, GMAP) feature values
defined by the MAP BN structure GMAP against the MAP MBG feature value
MBG(Y )

MAP
and the MAP MB feature value MB(Y )

MAP
including the MB

feature value defined by the MAP MBG feature value MB(Y, MBG(Y )MAP)
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Table 8.9: The sensitivity, specificity and misclassification rate of the most probable
MB sets of the Pathology variable w.r.t. the Sh/m/r relations and the Markov blankets
induced by the GH/M/R structures (denoted with (H/M/R)∗). The MBM line reports
the performance of the most probable set based on the MBM posteriors in the same

settings. The Lit. line report the analog values in case of the literature data DPMR
R .

Sensitivity | Specificity (%) | Misclassification rate (%)
MB set h m r H∗ M∗ R∗ h m r H∗ M∗ R∗ h m r H∗ M∗ R∗

FixO1 .87 .64 .6 .75 .77 .67 .26 .22 0 .46 .08 0 .21 .32 .35 .41 .18 .26
FixO6 .87 .64 .57 .75 .77 .63 .21 .11 0 .42 0 .18 .29 .38 .38 .15 .29
MCMC1 .67 .56 .53 .75 .68 .59 .32 .22 0 .38 .08 0 .32 .38 .41 .35 .24 .32
MCMC2 .73 .6 .57 .75 .73 .63 .32 .22 0 .42 .08 0 .29 .35 .38 .38 .21 .29
Lit. .6 .56 .53 .88 .55 .56 .37 .22 0 .35 .33 .14 .38 .38 .41 .29 .41 .38
MBM .87 .68 .6 .88 .82 .67 .37 .33 .5 .5 .17 .29 .26 .32 .41 .41 .18 .32

MBGMAP = argmax
mbg

p(mbg |DN ) MBMAP = arg max
mb

p(mb |DN ) (8.29)

First note that because of its goal in general the best scoring network found
in the MCMC simulation is significantly worse than the best MAP structure
found in optimization (with scores of -14294.48 vs. -14069.72). So we also
performed the comparison using the best BN structure found in the MCMC
simulation, beside the empirically best ordering conditional model (reported in

Fig. A.5). The MAP MBG feature value MBG(Y )
MAP

differed significantly
from both MAP domain model, as it was already suggested by the difference
between the ordering conditional parental set space and MBG space reported in
Table A.4. Different parental sets or variables in the MAP MBG are, for example
the additional Meno variable (vs. Age in the domain models) and missing
Solid and Fluid variables (against their child status in domain models). The

MAP MB feature value MB(Y )MAP similarly differs from the MB sets defined
by the MAP domain models for example w.r.t. the vascularization variables,
such as PI. Interestingly, the MAP MB feature value also differs from the MB
feature value defined by the MAP MBG feature value MB(Y, MBG(Y )MAP),
for example w.r.t. the Age vs. Meno variables and TAMX, PI, Solid variables.
In conclusion these results together with the comparison against the simple
feature-based analysis, such as MBM-based analysis, shows the relevance of the
complex feature-based analysis.

Similarly to the pairwise case, to provide information about the sequential
and sample size aspects of the posteriors we computed the sequence of posteriors
of high-scoring MBG and MB feature values for increasing data size. We used
the original temporal sequence of the cases and the expert’s ordering≺0. Fig. 1.4
reports the MB case, Fig. 1.5 the MBG case and Fig. 1.4 reports the sequence
of posterior of an empirically MAP domain model conditionally on ordering ≺0

reported in Fig. A.5.
The trends of the ordering conditional sequential posteriors of the MBG and

MB values indicate that the complex MAP feature values at this sample size
are in a transitional phase when the posterior is not concentrated around a
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single model and not even around a single complex feature value. On the one
hand, for half of the sample size, the final MAP feature values have negligible
posteriors (see Fig. 1.5 and 1.4) and the ranked posterior of complex feature
values for the complete sample in Fig. 8.14 shows that there are approximately
20-30 feature values with posterior above 0.01 (both for the ordering ≺0 and for
unconstrained orderings). In fact this multivariate uncertainty can be expected
based on the uncertainty on the more simple pairwise level of the MBM features
(e.g., see Fig. 8.11 and 8.12). This shows the necessity of the exact estimation
of the posteriors of complex feature values with known confidence values.

8.5.3 Applying MCMC methods over the orderings

After the discussion of the aspects of searching complex features given an or-
dering and the sample size aspects of feature posteriors given an ordering, this
section describes the aspects of the estimation of simple and complex features.
To determine a standard setting, we applied single chain and multiple chain con-
vergence methods for one of the simple feature (MBM) related to classification
and for two complex features (MB and MBG). We also quantify the MCMC
sampling variance by reporting its estimates using the batch approach. The
burn-in was 10000 which will be the standard settings in the Section, though
the results proved to be robust for burn-in larger than 1000. The ZG values for
the log(p(≺)) for the 4 chains were less than 0.5363 and the R̂ was 1.0611, which
does not refute convergence in general, though it has to be tested for individual
feature values as well (see Section 2.3.1.3).

For the pairwise features, the maxima of the ZG values was less than 0.7286,
the maximum of the R̂ values is 1.12 and the square root of the variance of
the posterior was less than 0.0794, see Table A.6.For the complex features, we
report the convergence scores and the estimated posterior with their estimated
variances for the most probable values. Table A.10 reports the most probable
MBGs, Table A.11 reports their ZG and R̂ convergence values with the square
root of the variance of the posterior averages. Table A.7 and Table A.8 reports
the same for the most probable MB sets.

8.6 Effect of fusion

The Section 8.1 described multiple approaches to the fusion of expert prior, lit-
erature (data) and clinical data, including a particularly simple. It infers feature
posteriors from the literature data and creates composite priors by integrating
them with expert priors through hyperparameters. We apply this approach in
this section using informative deviation priors with the most relevant GH and
GM structures from the expert and various edge priors, such as the edge prior
from the expert and edge priors derived from various literature data sets (as
a test case we also included edge priors derived from the training part of the
clinical data set). To quantify the overall effect of the incorporation of structure
priors, we use the first half of the IOTA-1.2 data set as training sample to select
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MAP BN models and report their (prior free) log-likelihood using the second
part w.r.t. a MAP model with a reference prior. To minimize the effects of
the optimization, the learning was performed using the expert’s total ordering
of the variables with exhaustive search up to five parents with a subsequent
K2 greedy search. The expert’s informative edge deviation priors are combined
with the GH and the GM structure (i.e., the GH or the GM structure were
applied as an a priori structure to define a deviation prior). The tested priors
are the noninformative prior as the reference, the uniform edge deviation prior
with p = 0.1 (denoted by the NI01 postfix in the graph legend), the expert’s
rating of edges without scaling and by scaling to 3 average parents as described
in Section 3.1.5.2 ((denoted by the E and E3 postfixes)), the expert’s rating of
edges with 0.01, 0.3, 0.6, 0.9 (EXP963), the mutual information scaled to 3 av-
erage parent (MI), the Bayesian pairwise score from Eq. 8.19 scaled to 3 average
parent (PW) and (EPW) the exact edge posteriors using the second-half of the

IOTA-1.2 data set (EPW) and the literature data set DPMR
R (PM-R-R) with the

expert’s total ordering of the variables and the limit of four on the number of
parents. Fig. 8.15 reports the effect of the expert’s structure prior on learning
MAP Bayesian networks for varying sample sizes. The effect of the structure
priors on classification are reported in Section 10.7.
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Figure 8.15: (Left) The effect of the expert’s informative edge deviation priors w.r.t.
the GH (H) and the GM structure (M). The tested priors are the uniform edge devi-
ation prior with p = 0.1 (NI01), the expert’s rating of edges without scaling and by
scaling to 3 average parents (E and E3). (Right) The effect of various edge deviation
priors w.r.t. the GM prior structure. The tested priors are the expert’s rating of
edges (EXP963), the mutual information (MI) and Bayesian pairwise scores (PW),
and the exact edge posteriors using the second-half of the IOTA-1.2 data set (EPW)

and the literature data set DPMR
R (PM-R-R). The first half of the temporal sequence

of the IOTA-1.2 data set is used in the structure learning incrementally (showed on
the x-axis). The performance measure of the MAP Bayesian network is the relative
likelihood score computed on the second half of the IOTA-1.2 data set w.r.t. MAP
models with the reference, uniform prior.



Chapter 9

Bayesian classification

We overview the application of the Bayesian framework to model a dependency
relation (i.e., its conditional application). We summarize performance measures
for classification and regression. Then we discuss the application of Bayesian
networks for classification. Finally logistic regression and multilayer perceptrons
are summarized, particularly their relation to the Markov blanket subgraph fea-
ture.

In the conditional approach the primary interest is in modeling and under-
standing the uncertain dependency relation between the output variables Y
and the input variables X . For ovarian cancer, this is the dependence of the
Pathology variable. If the output variable is discrete the problem is called a
classification problem, otherwise a regression problem. Other naming conven-
tions for the output and input variables are the response, outcome, or dependent
variables and predictor, explanatory, or independent variables (or covariates).
If the dependency is uncertain, then the probabilistic approach can be adopted
using the same reasoning as in Section 2.1, that is our goal is to model

p(YN+1|XN+1, (X1, Y1), . . . , (XN , YN )). (9.1)

Furthermore, an analogous parametric Bayesian representation can be de-
rived for conditionally exchangeable distributions [72]

p(y1, . . . , yN |x1, . . . , xN ) =

∫
(

N∏

i=1

p(yi|θ(xi)))p(θ(x)) dθ(x), (9.2)

where p(θ(x)) is a prior over the parameters for a parametric function class
specifying p(yi|θ(xi)).

A significant computational challenge for Bayesian classification models,
such as Bayesian logistic regression and its extensions, is the lack of conju-
gate prior, in contrast to the availability (and even necessity) of the Dirichlet
parameter prior for Bayesian networks.

Clearly, the prior belief corresponding to a domain model determines the
validity of a usually computationally and statistically simpler conditional mod-

149
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eling, but a general structure and parameter prior p(G), p(θ|G) for a Bayesian
network modeling the complete domain does not decompose to a prior for a
conditional model p(Y |X). That is, for {Y, X} ⊂ V

p(y|x) =
∑

G

p(G)

∫

Θ

p(y|x, θ, G) dp(θ). (9.3)

In general, a prior domain model can guide the whole process of constructing
a classifier, for example by performing inferences about properties of the domain
model relevant to construct the structure of the classification model. Another
usage is that the modular parameter and structure priors can be used directly as
building blocks in priors for various simpler classification models, or as sources
for probabilistically inducing such priors. It can support the definition of real,
informative priors for classification models — a largely open problem for many
conditional model classes. It can also support the interpretation of posteriors
from the conditional modeling. These issues, particularly the usage of the do-
main model in classifier construction, the issue of probabilistically linked model
spaces and induced priors are central issues in this thesis and we will investigate
the relation of classification models and their relation to the domain model in
Section 9.5.

Bayesian network classifiers are specially restricted Bayesian networks. As
such, they are eligible for the causal interpretation as well and can incorpo-
rate directly prior information. This made them a natural choice as classifica-
tion models in this thesis. Logistic regression (LR) was applied, because of its
biomedical interpretation and to provide a baseline with its established method-
ology. The multilayer perceptron model was selected, because of its derivation
from the LRs and its universal approximating capacity as a parametric function.

To treat the binary classification task, we introduce the following notation:
ω ∈ Rd denotes the model parameters, and when distinction is necessary, ω
denotes the parameters of the multilayer perceptron and θ the parameters of
the Bayesian network. We assume the existence of a labeled training set DN =
{(xk, yk)}Nk=1, (xk, yk) ∈ Rd × {0, 1}, where x is a real-valued l-dimensional
input vector and y is the corresponding class label.

9.1 On the validity of the conditional approach

In the pragmatist Bayesian approach, the assumptions for the conditional repre-
sentation in Eq. 9.2 means independent beliefs corresponding to the modeling of
the dependence of the output variable Y on X (i.e., without modeling the over-
all domain). Let us assume that the distribution over the observables p(Y, X)
is defined by the prior p(θ) and the sampling distribution p(Y, X |θ), where the
parameter θ is composed of (φ, ω), the parameter φ corresponds to X as X 6⊥⊥ φ
and (X ⊥⊥ ω|φ) and ω corresponds to Y |X as Y 6⊥⊥ {X, ω} and (Y ⊥⊥ φ|ω, X). The
conditional approach assumes that ω ⊥⊥ φ (i.e., decomposed priors, Fig. 9.1 shows
the corresponding Bayesian network).
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Figure 9.1: The Bayesian network representation of the assumptions of the Bayesian
conditional modeling. The dependent and independent variables are denoted with Y
and X, the corresponding parameters are ω and φ (jointly forming θ).

Decomposed priors ensures the basis of the conditional approach, because it
implies decomposed posteriors for complete observations

p(θ|x, y) , p(ω, φ|x, y) ∝ p(x, y|ω, φ)p(ω, φ) (9.4)

= p(y|x, ω)p(x|φ)p(ω|φ)p(φ) (9.5)

= p(y|x, ω)p(ω)p(x|φ)p(φ) (9.6)

∝ p(ω|x, y)p(φ|x). (9.7)

That is, if we are interested only in the conditional model (i.e., in ω), then
in the conditional approach

p(ω|x, y) ∝
∫

φ

p(y|x, ω, φ)p(x|φ)p(ω|φ)p(φ) dφ (9.8)

= p(y|x, ω)p(ω) (9.9)

9.2 The Bayesian modeling of class probabilities

In binary classification problems, we are interested, for a given x, in the class
label, which are the observable quantities. Because of the uncertain dependency
of Y on X , we shall model their distribution in the conditional, parametric
Bayesian framework by a parametric probabilistic regression model or regression
function P (Y = 1|x, ω) = f(x, ω) ∈ [0, 1] and a prior distribution over the model
parameters ω. Note that E[Y |ω, X ] = f(x, ω), that is by defining the output
values as in [138]:

y = f(x, ω) + ǫ, where ǫ =

{
1− f(x, ω) with probability f(x, ω)
−f(x, ω) with probability 1− f(x, ω)

(9.10)

a corresponding regression problem can be defined, where the conditional model
corresponds to the conditional mean with this Bernoulli error term, instead of
a Gaussian one.

In this approach, the goal is the modeling of the uncertain dependency of
Y on X through the mean regression function Ep(ω)[f(x, ω)] and not the direct
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modeling of the optimal class label under a given fixed loss L(y, ŷ) through a
decision function g(x) with range {0, 1}. Furthermore, if the function class is
interpretable, the goal is the modeling of the uncertainties at that level as well.
In general, the regression approach allows a wider range of applications, but it is
statistically harder because optimal decisions can be reached using an imprecise
regression estimate in a threshold-based decision rule [73].

In the Bayesian regression approach to classification, the prior distribution
can be transformed into the posterior distribution pΩ(ω|DN) by using the ob-
served data DN and applying Bayes’ rule:

pΩ(ω|DN) =
pY (y1, . . . , yN |ω, x1, . . . , xN )pΩ(ω)

p(DN)
∝ L(ω; DN )pΩ(ω).

L(ω; DN) denotes the likelihood function and f(x, Ω) denotes the induced
random variable on [0, 1] for the predicted posterior class probability. Note that,
in general, because of the nonlinearity of f(.), f(x) = E[f(x, Ω)] is not equal to
f(x, ω̄), where ω̄ = E[ω] or with f(x, ωMAP) where ωMAP = argmax p(ω|DN )
(for an overview of approximations, see [36], p.405).

So this conditional, parametric Bayesian approach to binary classification,
for a given x, provides the random variable f(x, Ω) corresponding to the prob-
ability P (Y = 1|x, ω), where Ω is a random parameter vector. In this way
the distribution of f(x, Ω) gives us uncertainty information about the predicted
class probability.

9.3 Reporting as decision in Bayesian classifica-
tion

We can define the following decision problems for a given x having the distri-
bution of the class probability P (Y = 1|x, ω) as f(x, Ω). The outcome can be
either the binary class label y corresponding to the observable quantity or a
scalar class probability p(y|x) in some imaginary reporting situation. The ac-
tion can be the report of a predicted the class label g(x) (defined by a decision
function) or the scalar class probability f(x) (defined by a regression function),
possibly combined with the option of “no decision” and rejection, where g(.)
and f(.) are based on f(x, Ω).

9.3.1 Reporting the class label

If the outcome y and the reporting action ŷ are binary, the loss is defined by a
binary cost matrix Cy,ŷ, such as the misclassification rate (C0,1 = C1,0 = 1 and
C0,0 = C1,1 = 0). The minimal loss decision is

argmin
ŷ

C0,ŷP (Y = 0|x)+C1,ŷP (Y = 1|x), where p(Y |x) =

∫
p(Y |x, ω)p(ω) dω,

(9.11)
which shows that only the mean class probabilities are present in the decision.
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9.3.2 Reporting the class probability

If the outcome y is binary and the reported value is the conditional probability
p̂(y|x), then the logarithmic loss is a standard choice,

L(y, f(x)) = y log(f(x)) + (1− y) log(1− f(x)), (9.12)

which corresponds to the cross-entropy error function [36] and was characterized
as a score function for the multinomial case used in the prequential analysis.

The reported conditional distribution allows a refined assessment of the per-
formance of a probabilistic classifier using the Area Under the Receiver Operat-
ing Characteristic (ROC) Curve (AUC), which is an utility-independent perfor-
mance measure particularly widespread in medical applications (see [123, 122]).
It evaluates a score (test) function t(x) : X →R in the case of a binary outcome
by analyzing its sensitivity and specificity on a given data set for all effectively
different utilities (i.e., for all threshold τ ∈ [0, 1] assuming optimal decisions) as
follows. The score function in case of a probabilistic classifier is the regression
function or the mean regression function f(x). The sensitivity is defined as

Sens(τ) = p(τ ≤ t(x)|y = 1) ≈
∑N

i=1 yi1(τ ≤ t(x))
∑N

i=1 yi

, (9.13)

and specificity is defined as

Spec(τ) = p(τ ≥ t(x)|y = 0) ≈
∑N

i=1(1 − yi)1(τ ≥ t(x))
∑N

i=1 1− yi

. (9.14)

For a finite sample (and because of the possible discreteness of X), the
Receiver Operating Characteristic (ROC) Curve is defined over the effectively
different values of the threshold parameter (Sens(τi),1−Spec(τi)) for τi ∈ [0, 1].
For test statistics, see [123, 122, 236].

9.4 Bayesian network classifiers

First we discuss the case where the modeling of the dependence of Y on X
cannot be separated from the modeling of the input variables X in the sense of
Eq. 9.9 and possibly from the modeling of other domain variables X ∪ Y ∪ Z.

9.4.1 Domain models as classifiers

Using the Bayesian network representation, the conditional is

p(y|x, DN ) (9.15)

= Ep(G|DN )[Ep(θ|G,DN)[p(y|x, θ, G)]] (9.16)

=
∑

G

p(G|DN )

∫
p(y|x, θ, G)p(θ|G, DN ) dθ (9.17)

=
∑

MBG(Y )=mbg

p(mbg |DN )

∫
p(y|x, θ, mbg)p(θ|mbg, DN ) dθ, (9.18)
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which requires efficient model averaging technique.
The use of the domain model as a classifier has many advantages, for example

to handle missing values. However, the knowledge engineering (parameter and
structural prior construction), statistical (sample collection), and computational
aspects suggest the use of restricted domain models that are specialized to the
classification of Y using X . A special case is the MBGs in Eq 9.18 exactly
representing the relevant information from the domain model. Ideally, these
restricted Bayesian networks have the following properties: (1) the optimization
or the Bayesian inference in the model class is computationally more efficient,
(2) it can gradually approximate the structural (dependency) and parametric
information of an unrestricted Bayesian network w.r.t. classification Y |X , and
(3) it preserves the interpretation of the Bayesian network, so it can incorporate
direct or transformed (induced) priors from the unrestricted Bayesian network
and its posteriors can be analyzed and interpreted.

Besides these general attempts to avoid the larger cost of domain modeling,
there are specific problems in applying a domain model as classifier both in
the Bayesian and the frequentist framework. Because of the centrality of the
likelihood term both in the frequentist model selection (e.g., in the MDL score
in Eq. 3.46) and Bayesian model selection (e.g., in the prequential framework in
Eq. 2.33), let us consider first the decomposition of the complete data likelihood
for a fixed model G, θ containing only X, Y [91]:

LL(G, θ; DN ) = log p(DN |G, θ) (9.19)

= CLLY (G, θ; DN ) +

N∑

i=1

log p(Xi|G, θ) (9.20)

where

CLLY (G, θ; DN ) =

N∑

i=1

log p(Yi|G, θ, X i). (9.21)

The first term is the conditional data log-likelihood CLLY (G, θ; DN ), which
solely determines the classification. The other term is a price for not working
with a conditional model class, which as we shall see either introduces biased
parameters and statistical noise or causes ordering-dependency in the case of
its absence. First, because of the generality of the Bayesian network (e.g., the
presence of non-factorizing normalizing constants), the optimal parameters for
classification arg maxθ CLLY (G, θ; DN ) are not equal to the maximum likeli-
hood parameters for the domain model argmaxθ LLY (G, θ; DN ) nor with the
mean parameters Ep(θ|G,DN )[θ] for some prior p(θ), and their determination
requires optimization. This is in contrast with the existence of efficiently com-
putable closed forms for the other two cases. The only exception is if the output
variable is a leaf node [91], such as in the noisy-OR classifier [252]. Second, the
term CLLY (G, θ; DN ) is dominated by the n − 1 analog terms for the output
variables, which could cause erroneous model selection and especially feature
selection [91]. Now consider the exclusive use of the first term in the Bayesian
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framework as suggested and applied in [227, 158, 160]. Let us factorize the
marginal model likelihood as follows (using the notation Y l = (Yi)i=1,...,l and
X

l
= (X i)i=1,...,l)

p(DN |G) = p(Y N , X
N
|G) =

N∏

i=1

p(Yi, Xi|Y i−1, X i−1
, G) (9.22)

=
N∏

i=1

p(Yi|Y i−1, X i
, G)

N∏

i=1

p(Xi|Y i−1, Xi−1
, G). (9.23)

The logarithm of the first product is identical to a prequential score called
conditional node monitor or MBG monitor (see Eq. 3.38 and 3.39), but this
score is ordering-dependent, so it cannot be used directly as a batch score only
as a sequential cumulative score (for approximations, see [160]). It is so, despite
the ordering independence of the global monitor (see 3.35) and the ordering
independence of the cross-entropy score of a binary regression model M fθ(x):

log p(Y N |XN
, M) =

N∑

i=1

log p(Yi|Y i−1, Xi
, M), (9.24)

which holds because of the independence of the belief ω in a conditional model
and Xi (ω ⊥⊥ Xi) until Yi is given according to Eq. 9.9.

9.4.2 The naive Bayesian network and its extensions

The Naive Bayesian network (N-BN) model with a single parent and not inter-
connected children has a long history of successful applications both for numeric
and nominal variables and both in the regression, but particularly in the clas-
sification approach. The independence structure of a naive BN over the output
variable Y (= X0) and the n potential input variables X1, . . . , Xn satisfy the fol-
lowing constraint Xi ⊥⊥ {Xj : j 6= i}|Y for all input variable Xi. The conditional
independence assumption allows the well-known inference computable in O(n)
time

log P (y|X) =

n∑

i=1

log p(Xi|y) + log P (y)− log P (X), (9.25)

which shows that in the binary and in general in the nominal case, this is a linear
classifier (discriminator). However, if the variables are continuous, nonlinear or
disconnected regions can arise [79, 75]. The successful applications of the naive
BN model as threshold-based classifiers on its regression estimate p(Y = 1|x)
in domains violating significantly its assumption prompted theoretical investi-
gations [89, 75].

Because of the frequently untenable assumption of the N-BN model, various
extensions were proposed to increase its representational power w.r.t. p(Y |X):
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the Tree Augmented Naive Bayesian Network (TAN) and the contextual multi-
net [91], the semi-naive and the Augmented Naive Bayesian Network classi-
fier [75, 150, 174], the Bayesian Network Augmented Naive Bayesian Network
(BAN) [48], and the Hierarchical Naive Bayesian Network [164]. We used the
TAN and the BAN models because of their robust performance, low computa-
tional complexity and their ability to incorporate prior information.

The TAN model class (over the output variable Y and the n − 1 potential
input variables X1, . . . , Xn−1) is defined as complete N-BNs augmented with
a complete tree over the input variables. This avoids the filtering of input
variables and it allows globally and conditionally optimalized insertion of n− 1
edges keeping the maximum number of parents k ≤ 2 [91].

The Bayesian Network Augmented Naive Bayesian Network (BAN) model
class is defined as complete N-BNs augmented with a general Bayesian network
tree over the input variables, possibly with certain restrictions such as the max-
imum number of parents. In this case, there are no constructive methods, so
general search methods have to be applied.

9.5 Logistic regression and its extensions

After the discussion of domain model based classifiers, now we overview a condi-
tional parametric model class applicable if Eq. 9.2, 9.9 can be assumed, includ-
ing the logistic regression and multilayer perceptron. These are well-performing
parametric regression models over nominal and continuous inputs as well, which
makes them an ideal candidate for investigating the support of their construction
using annotated Bayesian networks. The interpretation of the logistic regression
model allows a more direct support for its construction methodology, whereas
the multilayer perceptron with its increased expressive power requires special
supportive techniques, both discussed in Chapter 10, particularly to construct
informative parameter priors. In each model class, we used the hybrid Monte
Carlo Markov Chain to perform predictive inference (see Section 2.3.2).

9.5.1 Logistic regression

Logistic regression is a standard choice for the investigation of the structural
and parametric aspects of the conditional relation of an output variable Y from
the input variables X based on observational data or even data from case-
control studies. In case of binary output with values y, ȳ and binary inputs
with values xi, x̄i, the model without interaction terms (LR-I) includes the odds
ratios corresponding to the inputs xi, i = 1, . . . , n and a bias (or intercept) term
Ψ0 (x0 , 1):

Ψi =
P (y|xi)P (ȳ|x̄i)

P (ȳ|xi)P (y|x̄i)
, expβi (9.26)

and defines for a given x the odds P (y|x)/P (ȳ|x) as their multiplicative combi-
nation
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P (y|x)/P (ȳ|x) =

n∏

i=0

Ψxi

i (9.27)

log(P (y|x)/P (ȳ|x)) =
n∑

i=0

βixi (9.28)

P (y|x) = σ(

n∑

i=0

βixi), (9.29)

in which σ() denotes the logistic sigmoid function σ(x) = 1/(1 + e−x). In the
general case the mixture of binary and continuous inputs is allowed and higher-
order interaction terms:

P (y|x) = σ[

n∑

i=0

(βixi +

n∑

j=1

(βi,jxixj +

n∑

k=1

(βi,j,kxixjxk + . . .)))], (9.30)

which shows that, based on the LR-I model, a linear discriminating function
can be defined.

The Eq. 9.29 for the logistic regression model can be derived under various
assumptions [138, 36, 125]. The most general view is that the formula in Eq. 9.30
can be seen as a regression model in a two-class problem assuming binomial
noise as in Eq. 9.10, in which case model fitting means the maximization of the
conditional likelihood (i.e., the cross-entropy error function):

p(DN |β) =

N∑

i=1

yi log(p̂(y = 1|xi, β)) + (1− yi) log(1 − p̂(y = 1|xi, β))

=

N∑

i=1

yi log
(p̂(y = 1|xi, β))

(1− p̂(y = 1|xi, β))
+

N∑

i=1

log(1− p̂(y = 1|xi, β))

=

N∑

i=1

yiβxi −
N∑

i=1

log(1 + exp(βxi)), (9.31)

or the L2 error (see [36],p.247 for conditions on error functions for interpreting
the output as probabilities)

p(DN |β) =

N∑

i=1

(yi − p(y = 1|xi, β))2. (9.32)

Another derivation is based on the assumption that the class-conditional
distributions of the independent variables p(X|Y ) are normal with equal covari-
ance matrices, N(µ, Σ). In this view, model fitting can be seen as a result of a

maximum likelihood estimation based on the class probabilities p̂(y) and µ̂, Σ̂,
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which determines the logistic regression parameters or as a result of finding an
optimal linear discriminant function.

A similar derivation of a logistic regression model, which we use later, is
based on the assumption of independent binary features (i.e., on the Naive BN).
Applying the Bayes rule to invert Y and X , we get a formula with parameters

that appear directly in a Naive Bayes model (i.e., Ψi = P (xi|y)P (x̄i|ȳ)
P (x̄i|y)P (xi|ȳ) ), and we

can express Ψ0 also in terms of the parameters of the Naive Bayes model by
rewriting Eq. 9.27:

P (y|x)

P (ȳ|x)
=

P (y)
∏n

i=1 p(xi|y)

P (ȳ)
∏n

i=1 p(xi|ȳ)
(9.33)

=
P (y)

P (ȳ)

n∏

i=1

P (xi|y)

P (xi|ȳ)

xi P (x̄i|y)

P (x̄i|ȳ)

1−xi

(9.34)

=

n∏

i=1

P (xi|y)P (x̄i|ȳ)

P (xi|ȳ)P (x̄i|y)︸ ︷︷ ︸
Ψi

xi P (y)

P (ȳ)

n∏

i=1

P (x̄i|y)

P (x̄i|ȳ)
︸ ︷︷ ︸

Ψ0

(9.35)

Multiple observations are in order. First, clearly an LR model without in-
teraction terms and a Naive BN model can be conditionally equivalent and the
parameter transformation is local and transparent, but not one-to-one (for the
bijective relation between the conditional part of a Noisy-OR classifier and LR
model, see [252]). However, the LR model is basically conditional with n + 1
parameters, a special case of the causal local dependency model [130]

p(Y = 1|X) = f(g1(X1), . . . , gn(Xn)), (9.36)

whereas the Naive BN models is the joint distribution with 2n + 1 parameters
(the input distribution is the difference).

9.5.2 The relation between MBG and LR models

If a distribution contains additional dependencies w.r.t. a Naive BN, then the
induced conditional distribution cannot be represented by an LR model without
interaction terms. More specifically we can state the following constraints on
the LR model in case of a complete domain model represented by a BN. First
note that assuming complete data x the conditional aspects are completely rep-
resented by MBG(Y, G), so it is enough to consider the parametric constraints
of MBG(Y, G) instead of G on the LR model (see Proposition 7.2.1 and Proposi-
tion 7.2.2). About the MBG contraints we can state the following two lemmas.

Lemma 9.5.1. A Markov Blanket subgraph MBG(Y, G, θ) with binary variables
can be transformed to a BAN Bayesian network that is equivalent w.r.t. the
conditional p(Y |X, G, θ).



9.5. Logistic regression and its extensions 159

Proof. Let us define a BAN model over the variables Xi ∈ MBG(Y, G) that
Y = X0 is the root node, the children of Y and their parental sets are identical,
and the X ′

i ∈ (pa(Y, G) = X ′) are converted to a child clique of X0 (i.e., to a
completely connected subgraph, in which each X ′

i is connected to Y ), treat-
ing them as an aggregated mega-variable. By setting the new conditionals to
p(X ′|Y ) ∝ p(Y |X ′)/p(Y ) (and, for example, p(Y ) = p(¬Y ) = 0.5), we have
that

p(Y |X, MBG(Y )) ∝ p(Y |X ′)p(Xc|Y, X ′) (9.37)

∝ p(X ′|Y )p(Y )p(Xc|Y, X ′) ∝ p(Y |X, BAN),

where Xc = X \ (X ′ ∪ {X0}).

This MBG-to-BAN transformation is not minimal (e.g., in case of a special
p(Y |X ′) it is possible that only one of the X ′

is has to be connected to Y and
the others are only directed into this node).

Lemma 9.5.2. A BAN Bayesian network (G, θ) with binary variables can be
transformed to logistic regression model with interaction terms that is equivalent
w.r.t. the conditional p(Y |X, G, θ).

Proof. Let us the odds as follows

p(Y |X)

p(Ȳ |X)
=

p(Y )

p(Ȳ )

n∏

i=1

p(Xi|Pa(Xi))

p̄(Xi|Pa(Xi))
=

p(Y )

p(Ȳ )

n∏

i=1

Qi(Xi, Pa(Xi)), (9.38)

where p̄ denotes Y = 0 and the factor Qi is the product of all the corresponding
2|Pa(Xi)|+1 configurations, selecting always the active as k = |Pa(Xi)|:

Qi(Xi, Pa(Xi)) =
p(x̄i| pa(Xi) = 0)

p̄(x̄i| pa(Xi) = 0)

(1−Xi)(1−pa(Xi)1)...(1−pa(Xi)k)

...

=
p(xi| pa(Xi) = 1)

p̄(xi| pa(Xi) = 1)

(Xi)(pa(Xi)1)...(pa(Xi)k)

(9.39)

By collecting the exponents, this directly defines the coefficients for the single
terms and the interaction terms, also showing that the largest interaction term
with variable Xi is maximized by the largest clique size after moralizing the BAN
network (i.e., connecting all the parents and dropping the orientations).

Again, this is sufficient, but not minimal, for example because of causal
local conditional models and contextual conditional independencies in the BAN
or because of the encoded unstable distribution.

In summary the two step mapping in Lemma 9.5.1 and Lemma 9.5.2 of
the BN (MBG) to an LR model shows that the conditional independencies, as
high-level common constraints on the model spaces, create links between the
structure of a BN model and the parametric structure of an LR model. It
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allows the use of BN features in the LR model construction and interpretation,
as reported in Section 10.4.

Regarding the optimization of the model parameters, note that in the LR
model the parameters are optimized by maximizing the conditional likelihood of
the data (e.g., we use the scaled conjugate gradient method for the LR and MLP
models [190]; for an overview of methods, see [6]), whereas in the BN model the
parameters are optimized by maximizing the likelihood of the complete data
by setting the observed frequencies. More significant differences arise in the
Bayesian framework as different priors are used in the LR model (Laplace or
Gaussian) and in the BN model (Dirichlet).

In the hypothesis testing framework, the model fitting and selection is prob-
lematic both from the computational point of view and more seriously from the
statistical point of view in case of large number of potential inputs and of a small
sample size. The first problem of the search for potential candidates can be au-
tomated using standard forward and backward stepwise scheme with heuristics
[223, 215, 216]. But the large number of tests to explore the huge hypothesis
space (2n) worsens the second problem to ensure an overall significance level.
Consequently, the proper exploitation of the prior domain knowledge can be
crucial both from the computational and from the statistical point of view, but
in the hypothesis testing framework the use of prior knowledge is problematic.
For the construction of informative priors to support the Bayesian application
of the MLP and LR models, see Chapter 10.

9.5.3 The multilayer perceptron extension

Another view of the LR model is that it is a baseline model of further extensions
to allow adaptive, unconstrained higher-order interaction terms resulting in the
multilayer perceptron (MLP). A multilayer perceptron defines a complex non-
linear input-output mapping defined by consecutive layers of summation and
elementary nonlinear mappings forming a feedforward structure without feed-
back, ensuring arbitrary approximation capacity even with one hidden layer
containing a sufficient number of units [129, 36, 79]. For example an MLP with
one hidden layer with L units is given as follows:

f(x, ω) = σ[

L∑

i=1

(ωi tanh[

|X|∑

j=1

(ωijxj + ωi0)])],

in which the activation or transfer function is a hyperbolic tangent or the logistic
function σ(x) = 1/(1+e−x); and ω contains all the parameters including the bias
parameters ωi0. The application of the logistic function ensure that f(x, ω) :
Rd → [0, 1].



Chapter 10

Bayesian classifiers with a
prior domain model

We discuss the modeling of the uncertain dependency relation of an output vari-
able from a set of input variables, if informative prior knowledge is available
formalized using Bayesian networks. We show how can we use a distribution
p(G, θ) over Bayesian networks as a probabilistic knowledge base for this pur-
pose, specifically how can we link this distribution to the distribution over a
parametric classification model p(S, ω). This specification of a joint distribution
can be seen as prior transformation in our context. We then report the compari-
son of the different prior transformation methods by presenting the performance
of learning methods for Bayesian networks and multilayer perceptrons.

The modeling and understanding of the dependency relation of output vari-
ables from the input variables frequently can be done at least as an approxima-
tion in the conditional Bayesian approach without complete domain modeling.
However, the validity of this approximation is frequently not explored and the
application and the fair evaluation of conditional model classes is hindered by
the lack of methods for incorporating prior knowledge into black-box classifiers.
This is in contrast with the availability of techniques and frequently resources
for constructing probabilistic domain models, in which such classification sub-
models are grounded. We argue for the coexistence of domain and classifier
models, particularly for the supportive role of a domain model through the
whole process of classifier construction. We propose a two-step hybrid method
for probabilistically linking these model spaces, specifically for inducing informa-
tive priors for classifiers. First, we review the analytic transformation of priors
for Bayesian Network classifiers. Then we describe our developed conditional
distance minimization method for inducing informative parameter priors for
parametric black-box classifiers, such as logistic regression and multilayer per-
ceptron models from Bayesian networks. We compare this method with prior
transformation methods based on a virtual sample and other transformation
techniques. Then we present the joint posteriors of various conditional features

161
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and performance measures using the domain model, which also allows inducing
structure priors for properties of regression models, such as for its inputs and for
its complexity. Next, we evaluated the classification performance of Bayesian
network classifiers and logistic regression models with informative priors.

10.1 Reasons for the dual representation

In the thesis we make the following assumptions about the classification task
we consider:

1. The classification is binary with continuous and nominal input variables
and the prediction of the class probability and of an uncertainty measure
about this probability is advantageous.

2. The size of the sample is small or medium with respect to the learnability
of the problem and missing data are infrequent.

3. A large amount of prior knowledge is available about the domain, the
variables, the dependencies between variables and the quantification of
these dependencies.

These assumptions are inspired partly by the ovarian tumor problem and our
mathematical derivations will be formulated in this context. It is however im-
portant to stress that the methods proposed can straightforwardly be extended
to multiclass classification and to regression.

If standard statistical tools, such as logistic regression, do not give satisfac-
tory results, we need to use more complex models like data-driven black-box
methods (such as MLPs, decision trees and kernel-based methods) or more
knowledge-oriented white-box methods (such as BNs).

In the case of black-box methods, the possibilities to incorporate prior knowl-
edge in the model or in the learning process are limited, even though this incor-
poration is frequently essential. It is generally confined to the selection of the
input variables, of the model structure and of the learning algorithm and to the
management of missing values. In the Bayesian context, an inherent problem
for black-box parametric models is that it is not possible to directly construct
an informative prior distribution.

In the case of white-box methods, particularly for Bayesian networks, the
possibilities to incorporate domain knowledge in the model are greatly enhanced.
A prior distribution for the parameterization of a given model structure or
for the model structures can be constructed by established methods (see Sec-
tions 3.1.5.1 and 3.1.5.2). However, the sample complexity of parameter learn-
ing is in practice frequently higher than for black-box models. The full scale
Bayesian inference or general structure learning is hindered by the superexpo-
nential cardinality of the structure space and the high sample complexity (see
Section 3.5). Additionally, the general structure learning methods — the data
dependent terms and regularization terms — are optimal for learning the joint
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distribution. It means they are more appropriate to solve a much harder task
than is necessary in a standard classification (see Section 9.4.1). As a solution,
special Bayesian network classifiers with restricted structures were suggested
(see Section 9.4). Another approach is to combine the predictions of multi-
ple models, such as the conditional model and the domain model [253] or to
combine the regression model into the domain model [94]. Paradoxically, an
additional problem for domain models, because the prior domain models is usu-
ally formalized using a discretization scheme for the continuous variables, is that
the learning process has to refine this jointly with learning the structure and
parameter priors (for an integrated BN learning scheme, see [93]). Finally in
general domain models the computational complexity of inference is typically
much higher both in the frequentist and Bayesian framework.

Beside the research on Bayesian network classifiers, the sequential applica-
tion of the white-box and black-blox techniques arises from the standpoint of
black-box learning. The appearance of learning theories [247, 37, 73] made it
possible to formalize how the incorporation of domain knowledge in inductive
techniques reduces the statistical complexity of learning (in the classical statis-
tical context [126, 109, 2] and in the Bayesian context [127]). On the practical
side, Abu-Mostafa [2] and Niyogi et al. [198] reported methods for exploiting a
priori known regularities and symmetries in the input space. Another approach,
the Knowledge-Based Artificial Neural Network, used the prior knowledge for
selecting an appropriate multilayer perceptron architecture [241]. This method
formalizes the domain knowledge in propositional logic to construct the struc-
ture of a multilayer perceptron. Further works reported results about the induc-
tive refinement of the initial network structure, the extension of the translation
and transformation of symbolic rules into a feedforward artificial neural network
(for surveys about Knowledge-Based Neurocomputing, see [222, 53]). Sowmya
et al. [225] extended the symbolic paradigm for the transformation of domain
theories into a feedforward neural network by proposing Bayesian networks with
certain local models for knowledge modeling. Another proposal [193] similarly
emphasized the appropriateness of Bayesian networks for prior knowledge for-
malization and described a mapping of Bayesian networks onto stochastic neu-
ral networks to support parallel computations. The potential of the Bayesian
framework using Bayesian networks as domain models for supporting the con-
struction of a classifier, particularly for inducing priors for black-box classifiers
was described in [10]. The methodology proposed in this paper generalizes the
earlier symbolic methods and the frequentist Bayesian network based methods
to the Bayesian framework.

Because small or medium size samples are frequent in medical problems and
a good prior Bayesian network was available [28], we decided to investigate the
incorporation of prior knowledge into a multilayer perceptron as an evaluation
of a general methodology for such problems. Partly because general structure-
learning algorithms have failed in our preliminary experiments to achieve a
good quantitative performance, while multilayer perceptrons reached nearly the
performance of expert diagnosticians [237], but only in the large sample region
(i.e., for all the cases occurred in two years in a large, referral medical center).
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Our two-step methodology combines certain complementary advantages of
Bayesian networks and multilayer perceptrons by (1) formalizing the prior knowl-
edge with the Bayesian network and (2) incorporating the formalized knowl-
edge into the Bayesian learning and inference of the multilayer perceptron (see
Fig. 1.6). The use of a black-box method in the inductive phase provides a
computationally and statistically efficient solution to refine jointly the a priori
structure, the prior over the parameters, and the a priori discretization corre-
sponding to the prior Bayesian network. The existence of a prior domain model
also allows a more refined management of missing values [12].

Furthermore, if a distribution over causal Bayesian networks is available as
a probabilistic knowledge base, then we can link this distribution to the dis-
tribution over a parametric classification model space p(S, ω), which allows the
exploration of the validity of the conditional model class, inducing parameter
and structure priors for it and supporting its interpretation. Indeed, it shows
that the Bayesian network methodology is not only an alternative to the “black
box approach” of classifier construction, but it provides a general complemen-
tary tool to support the complete process of classifier construction.

10.2 Parameter priors for Bayesian classifiers

In this section we will assume (1) that we have a parameter prior p(θ|G0) for-
malized for a transparent, domain model G0, whose fixed model structure is
restrictive to ease knowledge elicitation and (2) that our goal is to derive a
parameter prior p(ω|S) for a parametric black-box model with an arbitrary
structure S, which is more powerful w.r.t. modeling the conditional distribu-
tion. More specifically, we assume a parameter prior p(θ|G0) for given Bayesian
network structure G0 and our goal is to define and analytically compute or nu-
merically approximate an informative domain model-based posterior p(ω|S) for
any MLP structure S. In this context such a link between parameter spaces for
different models corresponds to the transfer of prior information from a seman-
tically transparent model class to a “black-box” model class, but these methods
can be equally interpreted as general transformation methods supporting fair
Bayesian comparison of models by ensuring the same priors for each model [195].

The methods can be divided into two groups. The first group contains
the so-called prior or virtual sample based methods, which assume that the
prior knowledge p(θ|G0, ξ

+) can be expressed as the posterior update of a prior
p(θ|G0, ξ

−) with an observed single prior virtual data set D+
N ′ or more generally

that the prior can be expressed as a distribution p(D+
N ′) over data sets with size

N ′. We will summarize the conditions for this assumption. This assumption
allows the usage of such a prior (e.g., the prior data set) to update the target
parameter prior p(ω|S, ξ−) to a posterior p(ω|S, ξ−, D+

N ′) as well, and use this
virtual posterior as an informative prior p(ω|S, ξ+).

The second group contains methods based on mapping T : Θ → Ω that
transforms a prior distribution p(θ) over the Bayesian network parameter space
into a prior probability distribution p(ω) over the black-box model parameter



10.2. Parameter priors for Bayesian classifiers 165

space. An illustration of this idea is a bijective mapping between the condition-
ally relevant parameters of a discrete Bayesian network and the parameters of
a logistic regression model (see Section 9.5.2). The outline of the general map-
ping is the following: the black-box model fω(x) is used for approximating the
conditional distribution of the output class P (c1|x) conditioned on the input x,
which is defined by the Bayesian network. Thus we can define a mapping from
every Bayesian network parameter θ ∈ Θ to the “best” approximating black-box
function parameter ω ∈ Ω. Note that this is not a marginalization because of
its approximative nature. This method can be seen as the asymptotic version of
a prior sample method, though the role of the data set here is purely technical,
outside the Bayesian context (e.g., the sample size does not express confidence).
Then we either directly use this induced distribution in Bayesian inferences or
approximate p(ω) with a mixture of Gaussians

∑L
i=1 αiNt(ω|µi

, Σ
i
).

We also discuss the relation of these methods. In Section 10.6, we present
results about the effect of parameter priors on classification in ovarian cancer
using the informative prior from the domain expert described in Section 8.2.1.

10.2.1 Prior transformation between BNs

First we discuss the derivation of parameter priors for Bayesian network clas-
sifiers, such as for the Naive BN (used with exact model averaging) and for
the TAN and BAN models (in each case the mean parameterization is used, see
Section 3.2.1.2 for its discussion in the conditional approach). As these classifica-
tion models are standard Bayesian networks, we can use the general results from
Section 3.1.5.1 for parameter prior elicitation and transformation for Bayesian
networks. Specifically, Th. 3.1.6 states that parameter independence and mod-
ularity with likelihood equivalence implies that the parameter prior is the prod-
uct of Dirichlet priors with hyperparameters N ′p(Xi = k, pa(Xi, G) = paij |ξ+),
where p(V |Gc, ξ

+) is a point parameter for a complete or for maximally detailed
model p(θ|Gc, ξ

+) and N ′ expresses confidence by specifying a prior sample size
N ′ representing the complete cases underlying the point estimates. Then for any
classification Bayesian network G we can compute its hyperparameters by the
marginalization of the distribution p(V |Gc, ξ

+) into p(V |G, ξ+) and multiplying
the appropriate local probability models with N ′. In the “counting” interpre-
tation of the Dirichlet hyperparameters this means the if a prior virtual data
set D+

N ′ is available then the prior distribution p(V |Gc, ξ
+) is set to the relative

frequencies or vice versa the prior distribution p(V |Gc, ξ
+) and N ′ can be used

to reconstruct a prior virtual data set D+
N ′ or we can define a distribution over

prior virtual data sets as

p(D+
N ′ |ξ+) =

∫ N ′∏

l=1

p(Dl|Gc, θ)p(θ|Gc, ξ
+, N ′) dθ, (10.1)

where p(θ|Gc, ξ
+, N ′) is the product of Dirichlets with the hyperparameters

defined above (N ′p(Xi = k, pa(Xi, G) = paij |ξ+)). Though this may seem an
unnecessary complication in this context, the prior distribution over (prior) data
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sets offers a more general method for expressing prior knowledge than a single
prior data set as we discuss in Section 10.2.3.2.

10.2.2 Noninformative priors for LRs and MLPs

The parameters of the multilayer perceptron are the weights and biases of the
composing neurons at layer k (ωki, ωk0), which are hard to interpret in a multi-
layer model. This prohibits the incorporation of prior knowledge into this model
by directly specifying a prior distribution over the parameters (versus the intu-
itive interpretation of the Bayesian network or logistic regression parameters).
In practice, the prior is used only for controlling the complexity of the model
class, because the implementable functions are equally dependent on the num-
ber of neurons and on the size of the parameters. The first factor is related
to the overall irregularity of the function, such as disconnected regions with
some τ < f(x, ω). The second factor is more related to abrupt local changes,
discontinuities as the activation functions have a more and more stepwise form
with increasing weights. In fact, large weights typically arises in MLP models
overtrained to a particular data set in the frequentist optimization framework,
which impairs the inductive capacity of the model for new cases. This lead to
various weight-decay regularizers such as

∑

i

ω2
i or

∑

i

|ωi|, (10.2)

and to the corresponding Gaussian and Laplacian priors assuming independent
parameters (e.g., see [36, 110])

p(ωi|N(0, σi)) ∝ exp(−ω2
i /σ2

i ) or p(ωi|λ) ∝ exp(−λ|ωi|). (10.3)

We used Gaussian priors, so we follow this terminology. Because of the as-
sumed zero covariance terms, the goal is the specification of the variances σ2

i . In
the simplest approach the same variance is used for all parameters, leading to
the Gaussian prior distribution N(0, σ2I). However, this prior does not recog-
nize the different effect of the bias terms and the weights on each layers, which
would lead to different variances for each such group [36]. Another refinement
is to define a hyperprior for the variances for example using the Gamma dis-
tribution [194]. Because our goal was to investigate the effect of incorporating
informative priors, we used the Gaussian prior with the same variance. For the
usage of different variances and hyperpriors for MLPs in overian cancer and for
the usage of the full covariance structure of the parameters through modeling
their distribution with a continuous Gaussian Bayesian network, see [85].

10.2.3 Informative MLP prior from a Bayesian network

If the encoded prior knowledge in the Bayesian network comes from N previ-
ously seen complete cases, then this prior data set can be used as well as a
real, potentially weighted data set in the Bayesian inference with the multilayer
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perceptron. Therefore, we examine the possibility of generating a prior data set
from the domain model. The generalization of this method is to allow a prior
over prior data sets [195].

However, if the Bayesian network is hyperparametrized from heterogeneous
sources (e.g., various parts of the model are quantified by different experts or
studies), then such prior complete data sets are not appropriate. Even if a com-
plete prior data set is available and reconstructed, then its direct usage as real
data loses certain aspects of the prior uncertainty modeling (e.g., the Dirichlet
assumption). So we introduce a second method that directly transforms the do-
main knowledge encoded in the prior distribution of the Bayesian network into
an informative prior (conditional) distribution for the multilayer perceptron.

First we overview transformation methods, then we describe three supple-
mentary methods used with all transformation methods: (1) a probabilistic
smoothing schemes to convert the discrete values into continuous ones, (2) an
estimation scheme to approximate the transformed informative priors with mix-
ture of Gaussians, and (3) symmetry elimination schemes to cope with symme-
tries in the MLP parameter space.

10.2.3.1 Using a prior data set

In the context of eliciting and constructing parameter priors for Bayesian net-
work the concept of prior or virtual data set has a widespread use because of the
“counting” interpretation of the hyperparameters of the frequently used Dirich-
let distributions. The elicitation of a prior data set to enhance the classification
performance of a Bayesian network was reported in [179]. The usage of data
sets from earlier studies to define an informative prior for logistic regression
models was reported in [45]. In our approach we assumed that this prior data
set is implicitly formalized in the elicited prior domain model formalized as a
Bayesian network.

To illustrate the effect of the prior sample, let us first assume that the prior
domain knowledge consists of N complete cases, called the prior sample D+

N ′ ,
which will be used together with the real data DN . Assuming a noninformative
prior distribution P (ω|ξ−) for the multilayer perceptron, the Bayesian update
is defined as follows:

Definition 10.2.1.

P (ω|D+
N ′ , DN , ξ−)∝P (DN |ω)P (ω|D+

N ′ , ξ
−)=P (DN |ω, ξ−)P ′(ω|ξ−). (10.4)

This grouping of the terms illustrates that the prior sample D+
N ′ transforms

the noninformative prior distribution P (ω|ξ−) into an informative prior P (ω|ξ+)
(, P (ω|D+

N ′ , ξ−)), so we call this distribution transformation a prior sample
transformation (PS-T). If the prior data set follows the real conditional distri-
bution, then the effect of this Bayesian update by the prior sample is the same as
by real data. A problematic issue is the selection of the prior sample size — par-
ticularly, if the prior Bayesian network is heterogeneously hyperparametrized. It
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is difficult in general, because it means selecting an optimal complexity regular-
ization, consequently it can be influenced by the real sample size, the problem,
the general correctness of the prior domain model and in practice even by the
inference scheme. In our domain the results of this method proved robust for a
virtual sample size in the range of 15 to 50 (cf. Fig.8.2).

In our experiments, we use a stochastic scheme to generate a prior sample
equivalent to N ′ samples. We fix the mean parameterization in the Bayesian
network and use it to generate the i.i.d. complete samples. Instead of generating
a sample of size N ′, we generate a larger number of prior samples that we rescale
to an effective sample size in the update and inference process. This approach
reduces the impact of stochastic effects.

10.2.3.2 Using a prior over data sets

This method is the generalization of the prior data set method by a distribution
over prior virtual data sets p(D+

N ′) with a given size N ′ instead of a fixed data
set D+

N ′ , specified as

p(D+
N ′ |ξ+) =

∫
p(D+

N ′ |θ)p(θ|ξ+) dθ =

N ′∏

l=1

p(D+
l |θ)p(θ|ξ+) dθ, (10.5)

which suggests to call this distribution transformation a prior over prior samples
transformation (PPS-T). It was proposed by R.M.Neal in [195], assuming a
somewhat different context than ours. First, his approach assumes that the
“donor” model with p(θ) is more restrictive than the “recipient” model with
p(ω), making the donor model more appropriate for parameter elicitation. This
differs from our domain model and classification model assumption and that
interpretability differentiates between the model spaces. Actually, the domain
model can be more complex, even its conditionally relevant subpart. Second,
he rightly identified the issue of fair model comparison as an equally important
motivation for such prior transformation methods, besides our goals to derive
informative priors for enhancing predictions and to investigate the probabilistic
link between a domain model and a classification submodel. Third, he propose
the usage of a sample size N ′ with an appropriately selected scaling to exploit
the “fuzzifying” effect of finite data sets, which is different from our earlier
reported method in [10, 18] corresponding to its asymptotic case.

The transformed informative prior is as follows

p(ω|ξ+) ,
∑

D+

N′

p(ω|D+
N ′ , ξ

−)p(D+
N ′ |ξ+) (10.6)

=
∑

D+

N′

p(ω|D+
N ′ , ξ

−)

∫
p(D+

N ′ |θ)p(θ|ξ+) dθ (10.7)

∝
∑

D+

N′

p(ω|ξ−)p(D+
N ′ |ω)

∫
p(D+

N ′ |θ)p(θ|ξ+) dθ. (10.8)
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That is we assume that all our prior information is transferred by the prior data
sets D+

N ′with size N ′.
The definition of the transformed informative prior p(ω) as the marginal

of the joint p(ω, D+
N ′) defined conditionally by p(ω|D+

N ′) and p(D+
N ′) suggests

the following scheme for sampling p(ω): sample the joint probability distri-
bution by sampling p(D+

N ′), and sequentially sampling p(ω|D+
N ′) (and discard

the prior data set). In the general case if there is no closed form for p(D+
N ′)

to sample it directly, then the prior is the marginal of p(ω, D+
N ′ , θ) defined as

p(ω|D+
N ′)p(D+

N ′ |θ)p(θ) in Eq. 10.5, which allows sampling p(D+
N ′) again condi-

tionally. The complete conditional sampling scheme consists of the following
three steps:

Algorithm 2 Sampling MLP parameters from a BN through data sets.

1, Sample Bayesian network parametrizations {θ1, . . . , θl}.
2, Sample blocks of prior samples from the parametrizations {Dp

1 , . . . , D
p
l }.

3, Sample multilayer perceptron parametrizations from the posterior based
on the blocks, resulting in a block of MLP parametrizations {ω1, . . . , ωl}.

In the first and second phase we applied direct sampling, in the third phase
the hybrid MCMC was used from Section 2.3.2 (for a discussion of various MC
schemes, see [195]). For applications, see [15, 14])

As in the method using a single prior data set it is possible to reduce the
impact of stochastic effects while keeping the effect of the prior sample on a
prespecified level by generating a larger data set with size N ′′ and rescale it
to an effective sample size N ′ in the update and inference process (e.g., by

p(D′
N ′′ |ω)

N ′

N ′′ ).

10.2.3.3 Using conditional distance minimization transformation

Let us consider the asymptotic behavior of the prior transformation method
defined by Eq. 10.7 if N ′ goes to infinity. It means that for a θ drawn from p(θ),
we draw ω from

lim
N ′→∞

p(ω|D+
N ′), where p(ω|D+

N ′) ∝ p(D+
N ′ |ω)p(ω). (10.9)

If the parameter for the conditional model ω would correspond to a discrete
domain model specifying a joint distribution, which domain model is nested in
the set of distributions over this domain encoded by θ, then according to Sanov’s
theorem under the i.i.d. sampling from p(D+

N ′ |θ) the probability that the empir-
ical joint distribution is in this smaller set depends roughly exponentially from
the distance of the best approximation of θ (see [59],p.292)

inf
ω

KL(p(V |θ)‖p(V |ω)). (10.10)

To see the effect of increasing N ′ in our conditional context let us rewrite
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the transformed prior as

p(ω|ξ+) ,

∫
p(θ|ξ+)

∑

D+

N′

p(ω|D+
N ′ , ξ

−)p(D+
N ′ |θ)

︸ ︷︷ ︸
pN′(ω|θ)

dθ. (10.11)

By assuming that V = X ∪ Y and that they are discrete variables, the
p(ω|D+

N ′) term can be rewritten as

p(ω|D+
N ′) =

p(ω)

p(y′
N ′ |x′

N ′)

N ′∏

l=1

p(y′
l|x′

l, ω) (10.12)

∝ p(ω)
∏

X

∏

Y

p(y|x, ω)N
′

y,x (10.13)

= p(ω)(
∏

X

(
∏

Y

p(y|x, ω)

N
′

y,x

N ′

x )
N

′

x

N ′ )N ′

(10.14)

= p(ω)(
∏

X

(
∏

Y

p(y|x, ω)p̂N′(y|x))p̂N′ (x))N ′

, (10.15)

as p̂N ′(y|x) and p̂N ′(x) converge to p(y|x, θ) and p(x|θ) by taking logarithm for
large enough N ′:

log p(ω|D+
N ′) ≈ N ′

∑

X

p(x|θ)
∑

Y

p(y|x, θ) log p(y|x, ω) + c (10.16)

= N ′ Ep(X|θ)[Ep(Y |X,θ)[log p(Y |X, ω)]] + c (10.17)

= N ′ Ep(X|θ)[Ep(Y |X,θ)[log p(Y |X,ω)
p(Y |X,θ) ]] + c′ (10.18)

= N ′ Ep(X|θ)[−KL(p(Y |X, θ)‖p(Y |X, ω))] + c′. (10.19)

This shows that this term is N ′ times the expected conditional log-likelihood
(cross-entropy) of the conditional model parameterized with ω w.r.t. the domain
model parameterized with θ or after an expansion with a constant independent
of ω, it is N ′ times the expected KL distance of the conditional model w.r.t. θ:

pN ′(ω|θ) =
∑

D+

N′

p(ω|D+
N ′ , ξ

−)p(D+
N ′ |θ) (10.20)

≈ exp(N ′ Ep(X|θ)[Ep(Y |X,θ)[log p(Y |X, ω)]]) (10.21)

≈ exp(N ′ − Ep(X|θ)[KL(p(Y |X, θ)‖p(Y |X, ω))]). (10.22)

Because the effect of a non-restrictive prior becomes negligible (i.e., N ′-free)
and the Bayes normalizing constant does not depend on ω, asymptotically this
determines the transformation θ to ω, which is more and more concentrated
around ω∗ (assuming uniqueness — which is an important issue discussed later)
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ω∗ = arg max
ω

Ep(X|θ)[Ep(Y |X,θ)[log p(Y |X, ω)]] (10.23)

= arg min
ω

Ep(X|θ)[KL(p(Y |X, ω)‖p(Y |X, θ))]. (10.24)

This also shows that we can define directly an asymptotic mapping from
θ to ω without sampling and averaging over prior data sets. Based on this
concept of minimizing the difference between the predictions of a domain and
a conditional model on average we proposed the following transformation [10]
(for applications, see [18, 11]).

Definition 10.2.2 ([10, 18]). Let θ and ω denote the parameters of a domain
model and a conditional model. The direct transformation of an informative
prior from a domain model into an informative prior over a parametric black
box conditional model (T : Θ→ Ω) is defined as

TKL(θ) = argmin
ω′

Ep(X|θ)[KL(p(Y |X, ω′)‖p(Y |X, θ))] + c(ω) (10.25)

TL2(θ) = argmin
ω′

Ep(X|θ)[L2(p(Y |X, ω′), p(Y |X, θ))] + c(ω). (10.26)

The term c(ω) is a weight regularization term (see Eq. 10.2), which ensures
the existence of such parameters (i.e., the existence of parameters corresponding
to infω′ Ep(X|θ)[d(p(Y |X, ω′), p(Y |X, θ))], where d(, ) denotes the distances KL
or L2). For handling aliasing (underidentified parameters), see Section 10.2.3.5.

We call this distribution transformation a Conditional Distance Minimiza-
tion Transformation (CDM-T). Note that it is not based on prior data sets with
a given size N ′, so the direct method avoids the “fuzzifying” effect of a finite
N ′ in PPS-T method of [195] and avoids the corresponding computational and
statistical consequences.

This definition of informative priors for black-box conditional models was
proposed by the author in [10], its first application in a real world domain was
reported in [18], independently of the PPS-T method [195]. This method applies
the same technique as the recently proposed model projection method used for
model selection [214], p.370.

The main steps for the practical application of this technique in the case of
multilayer perceptron are as follows:

Algorithm 3 Sampling MLP parameters from a BN by direct transformation.

1, Generate Bayesian network parameters {θ1, . . . , θl}
2, Generate block of prior samples from each parameter {Dp

1 , . . . , D
p
l }

3, Train a multilayer preceptron for each block of samples resulting in a block
of perceptron parameters {ω1, . . . , ωl}

The Bayesian network parameters are generated from the Dirichlet distribu-
tion by standard methods. The sample blocks are generated according to the
drawn Bayesian network parameters. Note that the role of the size of the prior
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data sets technically is to eliminate the uncertainty in the mapping by selecting
it to be large enough and not to control the fuzzifying effect in the mapping.
For the L2 based transformation it is advantageous to use the prior probabilistic
domain model to compute P (c1|x) for each sample instead of random generated
class labels, to eliminate a stochastic element (the class labels). For training the
perceptron model on a block of samples, we used the scaled conjugate gradient
algorithm [190]. In the terminology of the prior data sets method, this defines
a transformation of the prior probability measure pθ over the parameter space
of the donor model (the Bayesian network in our case denoted by BN-I) to a
prior probability measure pω over the parameter space of the recipient model
(the MLP model).

10.2.3.4 Discrete-continuous transformations

The prior knowledge is frequently formalized using various discretization schemes
for the otherwise continuous domain variables. Consequently the prior domain
model built with domain experts may contains one or more discrete variables
for the same continuous variable. For example in ovarian cancer, two discretiza-
tion schemes are in use for the variable CA125. Because of the availability
of earlier studies for both schemes in certain models we tried to include both
versions. However the conditional model is often more powerful for continuous
variables than for their discretized versions. Those discretizations are usually
influenced by nonstatistical factors and not tailored to a particular data set.
This means that all three methods require an additional prior as a smoothing
scheme for generating continuous samples, which are using prior data sets D+

N ′

either technically as the direct transformation method or semantically as the
methods using a prior data set or a prior over prior data sets.

The probabilistic smoothing scheme is ideally an integral part of the do-
main model, allowing complex dependencies between the continuous variables
and their discretized variables, but in practice exactly the presence of discrete
variables indicates that such background knowledge is not available. In ovarian
cancer, we used purely technical probabilistic smoothing schemes treating in-
dependently each continuous-discrete variable pairs Xc

i , Xi by specifying fixed
separate conditionals p(Xc

i |Xi) independent of the beliefs for the parameter
prior θ. The conditional distribution of a smoothed prior data set is

p(Dc
N ′ |D+

N ′) =

N ′∏

l=1

n∏

i=1

p(xc
li|xli), (10.27)

with the understanding that the non-discretized variables are left unchanged.

We used two approaches to define p(Xc
i |Xi = xi), where the interval of the

discretization bin xi is [li, ui]. The random sub-bin method mainly for test
purposes requires the number of sub-bins s and defines a uniform distribution
over the discrete values li + ui−li

s (j + 1
2 ) for j = 0, . . . , s − 1. The uniform

method simply defines a uniform distribution over the interval [li, ui].
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10.2.3.5 Analytic approximation of the transformed informative prior

The informative parameter priors for conditional models defined by the PPS-
T and CDM-T methods does not allow the application of advanced Bayesian
predictive methods, because in general there is no closed formula for the (un-
normalized) transformed prior. This suggests the analytic approximation of the
transformed priors, which can be advantageous for the PS-T method as well,
because it eliminates the additional computational cost of using the prior data
set. Additional advantage of an analytic prior is the possibility of expressing
the certainty measure in the prior knowledge by changing its hyperparameters,
which offer richer possibility than selecting an appropriate prior sample size N ′

in the PS-T and PPS-T methods.
To estimate the transformed prior distribution pMLP−Informative(ω) over the

black-box model parameter space ω from the trained perceptrons, we used a
mixture of Gaussians

p(ω) ≈
L∑

i=1

αiN(ω|µ
i
, Σ

i
), where 0 ≤ αi ≤ 1,

L∑

i=1

αi = 1.

The use of a Gaussian mixture was motivated by the asymptotic normality
of a parameter posterior under broad conditions (see Section 2.2.4.1) and by its
analytic tractability in EM methods. However, the conditions for asymptotic
normality are violated by the parameters for a given MLP structure, because of
the existence of finite number of underidentified parameters that are equivalent
w.r.t the likelihood function called aliasing (see [108], p.102)

∃ω, ω′, ω 6= ω′ such that ∀ x : f(x, ω) = f(x, ω′). (10.28)

The total number of equivalences (due to possible permutations and sign
symmetries) in a multilayer perceptron with k hidden layers and Li neurons in

layer i is given by
∏k

i=1 2LiLi! and this prior estimation requires proper manage-
ment of symmetries in the parameter space [217]. We applied a heuristic clus-
tering algorithm exploiting the symmetries to map the parameters into clusters
with minimal within-cluster variance [18, 85]. This method avoids the discon-
tinuity of restricting the parameter space to a canonic subspace (i.e., mapping
the parameters to a subspace without aliasing).

10.3 Structure priors for Bayesian classifiers

An informative structure prior for general Bayesian networks p(G|ξ+) can be
used directly for Bayesian network classifiers simply by restricting it to a given
model class BNC

p′(GBNC) ∝ p(G)1(G ∈ BNC). (10.29)

An informative structure prior can be defined by any standard method dis-
cussed in Section 3.1.5.2, and it can incorporate reference models and estimates
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for the properties of domain models from the domain expert or the literature-
based automatically derived reference models and feature posteriors.

The specification of informative priors for LR and MLP models p(ω, S|ξ+) is
similarly separated into the specification of the parameter prior p(ω|S, ξ+) and
into the specification of the structure prior p(S|ξ+). Because of the interpretabil-
ity of the LR model, a direct specification is possible for both the parameter
and structure priors (for the interpretation of its parameters and (parameter)
structure, see Section 9.5.1). However despite its established semantics, the LR
model is a conditional, feedforward representation without intermediate vari-
ables, so the Bayesian network representation still offers a much richer language
for prior specification both parametrically and structurally. We thus consider
the question of the specification structure priors both for the LR and the MLP
models (denoted equally as p(SMLP|ξ+)) based on the assumption that an in-
formative structure prior for BNs p(G|ξ+) is available.

Depending on the form of p(G|ξ+) the derivation can be as follows. First
consider the simplest case when the prior knowledge ξ+ can be formalized as a
prior data set D+

N ′ (see Section 10.2.3.1 for the analogous the case of parameter
priors). Assuming a noninformative parameter prior and structure prior for the
parametric conditional model satisfying the conditional modeling requirements,
the informative structure prior is defined as

P (S|ξ+) , P (S|D+
N ′ , ξ

−) ∝ P (S|ξ−) P (YN ′ |S, XN ′ , ξ−)︸ ︷︷ ︸
(conditional) marginal model likelihood

.(10.30)

It shows that the informative structure prior is the (conditional) marginal
model likelihood or the evidence for this structure based on the prior sample.
For the application of this approach for the LR model with an additional hyper-
layer on an analog of N ′, see [45], p.270.

After the prior sample approach, we consider now the analog of the CDM-T
method for directly inducing the informative structure prior from p(G|ξ+) with
a transformation T : G → SMLP as p(G : T −1(SMLP)|ξ+). First, consider the
case of LR models without interaction terms, then the transformation TMB→LR :
MB(G, Y ) → LR induces an informative structure prior for the LR structure
space as

p(G : G ∼ T −1
MB→LR(SLR)|ξ+), (10.31)

which defines the probability of the LR structure as the probability of the
Markov blanket for the output variable Y containing exactly the inputs of the
LR model. However, because the independence structure of the BN depends on
the discretization of the variables (see Section 3.1.4), the possible smoothing into
continuous variables described in Section 10.2.3.4 weakens the validity of this
approach, which can be represented with an additional uncertainty factor. In
Section 9.5.2, we show a transformation from the structure of binary BNs (from
MBGs in fact) onto LR structures with interaction terms as parametrically suf-
ficient to represent the embodied conditional in an MBG. Let us denote this
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transformation with TMBG→LR, which induces an informative structure prior
for the LR structure space as

p(G : G ∼ T −1
MBG→LR(SLR)|ξ+). (10.32)

It can be used again as a basis for an analytic approximation as in Sec-
tion 10.2.3.5. However this is not minimal, only a small fraction of the LR
models is used, the smoothing weakens its validity and it is not enough for the
MLP model class, which has potentially multiple hidden layers (not just directly
the inputs and their interactions).

Finally, we discuss a third option for defining a probabilistic link between the
structures of domain models and conditional models through common high-level
properties. We propose to use conditional features F1(G), . . . , Fk(G) related
to the properties of an MLP structure F ′

1(MLP ), . . . , F ′
k(MLP ) (such as the

later discussed Markov blanket set and Markov blanket memberhsip features).
This allows the definition of a feature prior for the MLP structures by defining
p(SMLP|F1(G), . . . , Fk(G)) as

p(SMLP|F1(G), . . . , Fk(G)) ∝ p(SMLP|ξ−)
∏

i

p(F ′
i (S

MLP)|F1(G), . . . , Fk(G)),

and the derivation of an informative structure prior p(SMLP|ξ+) as the marginal

p(SMLP|ξ+) =
∑

F1(G),...,Fk(G)
F ′

1(S),...,F ′
k(S)

p(SMLP|F1(G), . . . , Fk(G))p(F1(G), . . . , Fk(G)|ξ+). (10.33)

To apply Eq. 10.33, we need the following: (1) high-level features with related
interpretation in the BN and MLP classes (e.g., the set of relevant variables for
a target variable), (2) the joint distribution of the BN feaures (e.g., the posterior
of the MB(Y ) feature), and (3) the probabilistic formalization of the relation
between the BN and MLP features in Eq. 10.33 (e.g., Th. 7.1.2). Note that the
probabilistic link between the features has to bridge both the different model
spaces and the possibly different subdomains (in our case the literature vs.
clinical subdomains).

In the thesis we investigated the following conditional features in this con-
text: the Markov Blanket feature MB(Y, G), the size of the Markov Blanket
(i.e., the number of inputs |MB(Y, G)|), the number of edges between the chil-
dren of Y in the BAN converted MBG |BANEdges(Y, G)| denoted as defined
in Section 9.5.2 and the number of free parameters |θMBG(Y,G)|. Additional
features were the misclassification rate MR(Y, G, DN) and the AUC measure
AUC(Y, G, DN ) to support manual interpretation and exploration. The next
subsection presents results about their joint distribution in the OC domain,
which allows a manual exploration to evaluate or to construct and refine an
MLP structure.
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Combining this method with the CDM-T transformation for deriving infor-
mative parameter prior, we created a complete probabilistic link between the
parameter and structure spaces of Bayesian networks as domain models and of
conditional models (i.e., we defined a full informative prior for the conditional
models as the marginal of p(ω, SMLP|θ, G)p(θ, G|ξ+)).

10.4 Joint probabilities of conditional features

The earlier section discussed a method to induce informative structure priors
through high-level common or related features of model spaces using the joint
distribution of the feature in the donor model space and a probabilistic link
between them. However the conditional features of a domain model has a more
basic usage simply to support the manual classifier construction process in the
phases of data exploration and model construction, evaluation, and refinement.
In fact, this usage logically precedes the more advanced, automated applica-
tion with the probabilistic link. This use of the conditional features based on a
domain model in the Bayesian framework is similar to the univariate and con-
founder analysis of the data set before the LR and MLP analysis to clarify the
prior background knowledge relevant for the LR analysis, such as input selection,
interaction term construction and transformations. The estimation and search
method reported in Section 10.1 allows the offline construction of a knowledge
base with the high-scoring MBGs, which can be used for subsequent complex,
first-order like queries incorporating textual domain knowledge as well, such as
discussed in Section 5.2.

In this section, we will present results about conditional features for the
Pathology variable in ovarian cancer using the fourteen variables selected in the
standard LR analysis in Section 10.5. The ordering-based MCMC algorithm
from Section 8.5.1 is used with the clinical data set, without restrictions on the
structure and on the orderings and using the standard settings.

Fig. 10.1 reports the estimated distribution of the AUC performance measure
based on the fourteen classification variables and the clinical data set using
the selected MBGs in the set Ŝ∗

K with their estimated values p̂(mbg). The
estimated mean and variance for the AUC variable are 0.9386 and 0.0242 (for the
misclassification rate (MR) are 0.0756 and 0.0093). The estimated distribution
of the ratio of the number of parameters and the number of inputs are reported
as well (the estimated mean and variance are respectively 21.6916 and 5.1318).
The histogram of the number of parameters and inputs for the MBGs in the set
Ŝ∗

K are reported in Fig. 10.2 (the estimated mean and variance are 283.9048 and
70.7626, and 12.4651 and 0.6827 respectively). The estimated mean of the AUC
variable conditioned on this ratio and its estimated conditional distribution is
shown in Fig. 10.3.
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Figure 10.1: The estimated posterior distribution of the performance measure and
the model complexity w.r.t. classification. The classification performance is measured
by the AUC value, the model complexity is defined as the ratio of the number of
parameters and the number of inputs. The models are the MBGs over the fourteen
classification variables. The posterior corresponds to the IOTA-1.2 data set, which
was approximated using the 104 MAP MBGs generated by Alg. 1. Interestingly, the
domain model based posterior induces multiple, distinct modes, specifically the set
of models with worse classification performance than AUC = 0.92 has a considerable
posterior sum.

10.5 The frequentist LR modeling

After the discussion of methods to derive informative parameter and structure
priors for BN classifiers in Sections 10.2 and 10.3, and before the experimental
evaluation in Sections 10.6 and 10.7, this section summarize the frequentist LR
analysis in ovarian cancer using standard statistical packages (SPSS 14.0 and
STATA 8.2). The purpose is threefold and related to classification using the LR
model and not to its possible role in causal modeling. First, we provide a base-
line for classification performance. Second, we provide a baseline for selection
of features (inputs) and interaction terms. Third, we provide a baseline for the
preprocessing of the data for more complex classification models. The IOTA-1.2
data set will be used restricted to three sets of variables. The first “complete”
set includes the thirty-five variables used in the BN-feature analysis and au-
tomated structure prior construction. The second “elicited” set includes the
eleven variables used in parameter elicitation. The third set includes fourteen
variables that were selected as relevant for the classification of Pathology.

Besides the discretization described in Section 4.1.1 we evaluated the uni-
variate discriminative power of the variables using the AUC value and we deter-
mined the optimal cut-off value empirically and introduced corresponding binary
variables.We evaluated also an approximation of the univariate conditional prob-
ability p(y|Xi) to ensure that its logit transformation is approximately linear
and applied a logarithmic transformation on Age, ReproductiveYears, Volume,
PI, RI, PSV, TAMX, and CA125.

The following interaction terms are allowed in the LR models to express their
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Figure 10.2: The estimated posterior of the number of parameters and the number
of inputs for the MBGs based on the fourteen classification variables. The posterior
diminishes outside the presented region, specifically below 10 inputs and 200 param-
eters (i.e., most of the variables are relevant and their effects are not independent).
The posterior corresponds to the IOTA-1.2 data set, which was approximated using
the 104 MAP MBGs generated by Alg. 1.

joint effect: PostMenoY-Meno, lnPI-cat2ColScore, lnRI-cat2ColScore, lnPSV-
cat2ColScore, lnTAMX-cat2ColScore, and NrLocules-Multilocular (some of these
are technical as the value of one of the pair is only conditionally interpretable).
We used the default settings for the model construction in the SPSS 14.0 sys-
tem (FSTEP (LR) /CRITERIA=BCON(0) LCON(0) ITERATE 50 PIN(0.05)
POUT(0.1)). The selected variables in the final model with their corresponding
coefficients and significance (using the Wald test) is shown in Table A.3. These
variables compose the “medium” variable set, except NrofLocules, which was
not included in the BN-based analysis using thirty-five variables. We also con-
structed a “large” variable set including the variables IncompleteSeptum and
Echogenicity as well, because of their borderline significance levels (Bilateral and
Shadows with similar significance were omitted finally to maintain simplicity,
because of their negligible effect on classification performance).

10.6 Effect of parameter priors on classification

First, we investigated the performance of the prior Bayesian network described
in Section 4.3.1. The misclassification rate is 12.0% on the data set and the
mean of the Bayesian area under the ROC curve is 0.905. To get a more detailed
understanding of the performance of the model we compared its predictions with
those of medical experts. In a previous study six ultrasonographers (denoted
by A to F in Table 10.1) have evaluated the 300 patients in the IDO data
set based on the corresponding medical records and ultrasound images. Two
of them were highly experienced (A and B), one moderately experienced (C)
and three less experienced (D, E and F) [237]. Since these classifications were
based on the original observations (such as images), in a recent experiment an
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Figure 10.3: The estimated distribution of the ratio of the number of parameters
and the number of inputs for the MBGs based on the fourteen classification variables.
The high value of the ratio indicates multiple interactions (on average 3 variables).
The posterior corresponds to the IOTA-1.2 data set, which was approximated using
the 104 MAP MBGs generated by Alg. 1.

expert (G) has performed the classification using only the discrete values of the
variables present in the prior Bayesian network. In this experiment the expert
has also rated the cases as 1 = very certain benign, 2 = uncertain benign,
3 = uncertain, 4 = uncertain malignant and 5 = very certain malignant, which
is an aggregate expression of the mixed nature of the adnexal mass (“fuzziness”)
and the probabilistic uncertainty.

Table 10.1 presents the number of previously performed examinations, the
misclassification rate and the agreements with the prior model (Cohen’s kappa)
for the diagnosticians [30]. The correspondence with the prior model is the
highest for expert A (indicated in bold) which is in line with our expectation
because expert A participated in the construction of the prior model.

Table 10.1: Expert agreement with the prior domain model in discriminating benign
and malignant adnexal masses [237] (number of examinations (#), misclassification
rate (MR[%]), Cohen’s kappa (κ)).

Expert A B C D E F G Prior-BN
# ≥4000 ≥10000 ≥1000 200 300 300 300 -
MR 8.3 8.3 11.0 17.7 7.7 13.3 18.0 12.0
κ 0.713 0.687 0.650 0.577 0.503 0.590 0.577 -

To evaluate the effect of the prior incorporation methods, we compare them
in a retrospective setup with standard learning algorithms for Bayesian net-
works and multilayer perceptrons. For Bayesian networks, we present results
for four models with a noninformative prior distribution (BN-Naive, BN-Fixed-
Noninformative, BN-TAN and BN-General) and one with an informative prior
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distribution (BN-Fixed-Informative). For the MLP model class, we describe one
model with a noninformative prior (MLP-Noninformative), one with prior sam-
ples (MLP-Prior sample) and one with an informative prior (MLP-Informative)
as explained in Sections 10.2.2, 10.2.3.1, and 10.2.3.3. The BN-Fixed-Informative
and the BN-Fixed-Noninformative methods use the same fixed structure as the
prior domain model shown in Fig. 4.1. In all the other learning methods two
variables that are functions of the variable Locularity were removed, because
these auxiliary variables were introduced to support knowledge elicitation.

The BN-Fixed-Noninformative, BN-Fixed-Informative and the BN-Naive
methods perform only parameter learning (the BN-Naive method uses a Naive
Bayes structure, a tree where all variables are direct childs of the predicted
variable Pathology). The BN-TAN method searches in the space of generalized
tree-augmented networks, which are extended Naive Bayesian network struc-
tures [91, 48]. Finally, the BN-General method searches the space of directed
acyclic graphs (in each crossvalidation session, 105 random orderings of the
variables are generated, for each ordering the parental sets are evaluated ex-
haustively up to three parents, and if necessary, by the greedy (not exhaustive)
K2 algorithm [57]).

In the prior sample (MLP-Prior sample) method, 1,000 samples are gen-
erated from the prior Bayesian network rescaled to an effective sample size of
30 in the Bayesian inference scheme as explained in Section 10.2.3.1. In the
informative prior (MLP-Informative) method, the informative prior was esti-
mated on 5,000 multilayer perceptron parameterizations using the mixture of
3 Gaussian kernels. Each multilayer perceptron parameterization is computed
from an independently drawn Bayesian network parameterization by training
the multilayer perceptron on 1,000 random samples produced by the Bayesian
network, as explained in Section 10.2.3.3.

For the Bayesian inference, direct sampling was used for the Bayesian net-
work and hybrid Monte Carlo methods were used for multilayer perceptrons to
draw 100 parameterizations from the a posteriori distribution, thus performing
100 inferences for the test set. This process was repeated for 100 cross-validation
sessions (different partitions of the data set into test and training set). Fig. 1.7
shows the detailed effect of the prior incorporation for varying proportions of
samples used in the training set.

Two characteristic points from this learning curve (the small and large sam-
ple region) are shown in Fig. 10.4 and 10.5 corresponding to the 5%–95% and
75%–25% training–test proportions.

10.7 Effect of structure priors on classification

To evaluate the value of the text-based prior distributions for Bayesian net-
work structures, we report results for the classification of ovarian tumors. (For
previous results about the application of Bayesian networks and multilayer per-
ceptrons to classify ovarian tumors, see [15].) We report the classification per-
formance of a Bayesian network using the Area Under the Receiver Operating
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Figure 10.4: The effect of informative parameter prior on classification perfor-
mance in case of small sample size. The a posteriori distribution of the area un-
der the ROC curve at the 5%–95% training–test proportion for the MLP-Informative
(MLP-I), MLP-Noninformative (MLP-NI), MLP-Prior sample (MLP-PS), BN-Fixed-
Informative (BN-I), BN-Fixed-Noninformative (BN-NI), BN-TAN, BN-General (BN-
G) and BN-Naive models. Besides the significantly better mean performance, the
informative prior decreased the variance as well.

Curve (AUC). Since we work in the Bayesian framework, we have a posterior
distribution P (G|DN ) over the network structures and a conditional posterior
P (Θ|G, DN ) over its parameters, resulting in a posterior distribution of the
AUC. We report the mean of this AUC using an informative text-based prior,
the expert prior, or a noninformative uniform prior over the structure space:

E[AUCG,Θ(Dte)|Dtr] =
∑

G

P (G|Dtr)

∫

Θ

AUCG,θ(D
te) dP (θ|G, Dtr).

where Dtr and Dte denote the training and test data. Because we want to
focus on the usage of textual prior knowledge for learning Bayesian network
structures, we used always the noninformative Bayesian Dirichlet prior BDeu

for the parameters [131].
We approximate the summation over the network structures with a Monte-

Carlo approximation using 200 networks with a high posterior probability. We
evaluate 200 randomly drawn orderings for the variables. Using a set of complete
and discrete samples, we learn a Bayesian network structure by maximizing the
RBD

Data score for each variable for the given ordering [57]. For each fixed order-
ing, the parents are selected using an exhaustive search up to three parents.
If this exhaustive search finds three parents, the greedy (not exhaustive) K2
algorithm continues the search [57]. The probabilities for the Bayesian network
substructures are computed using both the training data and the edge probabil-
ities according to Equation 3.19. The edge probabilities derived from the text
were scaled with a ν value that results in prior networks with 3 parents for each
node on average.
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Figure 10.5: The a posteriori distribution of the area under the ROC curve
at the 75%–25% training–test proportion for MLP-Informative (MLP-I), MLP-
Noninformative (MLP-NI), MLP-Prior sample (MLP-PS), BN-Fixed-Informative
(BN-I), BN-Fixed-Noninformative (BN-NI), BN-TAN, BN-General (BN-G) and BN-
Näıve models. The classification performance is not improved significantly by the in-
formative prior at this sample size (i.e., its initial advantage has diminished smoothly
without delaying the long term improvement of the performance.

For these learned structures, the parameters are set to the maximum a pos-
teriori value using the noninformative BDeu prior for the parameters and the
training set Dtr. Predictions for the test samples are generated using the proba-
bility propagation in tree of cliques (PPTC) algorithm and these predictions are
used to compute the AUC value on the test set Dte. The AUC values reported
in Figure 10.6 are the averages over 300 cross-validation sessions with random
training–test partitioning of the data set DN into (Dtr, Dte). The x axis in-
dicates the number of samples in the training set, ranging up to 150 samples
(out of a total of 604), the y axis contains the AUC averages for that specific
training–test proportion.

The upper part of Figure 10.6 reports the learning curves for the co-occurrence-

and corelevance-based text priors (RAND,MLR

COOC and RAND,MLH

COREL ), together with
the kernel similarity prior RASIM, the expert prior RExpert, and no prior, all
scaled by ν(3). The bottom part shows the effect of scaling the best performing
prior based on the kernel similarity score RASIM by ν(0.1), ν(0.5), ν(1), ν(2),
and ν(3). The noninformative case is again reported for comparison.

10.8 Effect of model averaging on classification

In Section 10.6 and 10.7, we used fixed structures or MAP structures in pre-
diction, and not Bayesian model averaging. In this section we report the effect
of BMA on classification in ovarian cancer. In case of Naive-BNs we use the
exact averaging [66]. We report the performance of the MAP MBG, which is
already an aggregation of models and the approximation of the BMA for BNs
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Figure 10.6: (Left) The AUC performance for BNs using different text-based priors

(RAND,MLR

COOC , RAND,MLH

COREL ), and RASIM, the expert prior RExpert, and no prior. The
priors are scaled to an average of 3 parents per variable. (Right) The AUC performance
for BN using the RASIM prior for different ν scalings (average number of parents is
scaled to 0.1, 0.5, 1, 2, and 3) together with the performance without any prior.

using MBGs. Note that earlier the parameters were exactly averaged in BN
classifiers, which will be also used here for BN classifiers, though in conditional
applications the mean parameters are not optimal (see Section 9.4.1). We report
results at three levels of model complexity: (1) for the eleven variables used in
parameter elicitation in Section 4.3.2 (the “small” set), (2) for the fourteen vari-
ables selected in conditional LR modeling in Section 10.5 (the “medium” set),
and (3) for all the thirty-five variables used in general modeling (the “large”
set).

As a reference, we include a non-informative LR (MLP) model, a non-
informative MLP model with two hidden units and the TAN method as the best
performing BNC. In the case of the medium set of variables, we use the equiv-
alent set of input variables possibly with continuous variables and in the case
of the thirty-five variables, the larger variable set as described in Section 10.5.
In both cases, the MLP models include 2 hidden units with hyperbolic tan-
gent transfer function before the output unit with logistic function. Note that
the MLP models have fixed structure, conditionally optimized parameters and
optionally use the original continuous values.

Additionally we report the effect of parameter priors from Section 4.3.2. To
simplify the presentation the exact BMA is not reported for the Naive BN,
because its effect was negligible and only the virtual sample size 150 is used in
reporting the effect of parameter prior. The effect of BMA with non-informative
and informative parameter priors for BN classifiers using the small, medium, and
large set of variables are shown in Fig. 10.7, Fig. 10.8, and Fig. 10.9.

The standard deviations are between 0.01-0.04 for training proportions 0.1-
0.9 in the cross-validations. The results in Fig. 10.7, Fig. 10.8, and Fig. 10.9
correspond to growing number of variables (i.e., increasing model complexity)
and their left and right columns correspond to the non-informative and infor-
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Figure 10.7: The effect of BMA using the learning curves of the AUC perfromance
measure. The eleven variables from the elicited model were used. Naive, TAN, BN,
MBG and LR, MLP denotes the appropriate structure learning method and model
classes. The n/i postfix denotes the noninformative/informative case followed by
the applied virtual sample size. The E/A postfix denotes the exact or approximate
Bayesian model averaging.

mative cases in a tabular form. Their comparison again illustrates the effect of
the complexity of the model class on the rate of its learning curve (model com-
plexity is jointly defined by the growing number of variables and by the applied
models, such as Naive-BN, lR, TAN, MLP, MBG). The comparison also shows
the advantageous effect of the informative priors, particularly the effect of the
prior w.r.t. the different number of variables (see the ). It also illustrates the
advantageous effect of Bayesian model averaging, because the MBG/A option
(which is equivalent to the Bayesian averaging of BNs) has significantly better
performance than its MAP approximation (MBG) in large regions. However,
for the 90% training proportion, the differences of the MR and the AUC per-
formances are not significant for the LR, MLP, MBG and TAN models using
paired t-test (0.05 < p).

10.9 Discussion

As more and more domain knowledge becomes available beside statistical data,
machine learning increasingly needs methods that integrate domain knowledge [8].
The first step in this prior incorporation is the acquisition, formalization, eval-
uation, and fusion of the heterogeneous a priori information. The second step
is the incorporation of the formalized prior knowledge in a task specific model.
The prior incorporation methods make it possible to integrate probabilistic do-
main knowledge into black-box models. This hybrid use of knowledge-oriented
and data-driven methods can be particularly advantageous in constructing a
classifier when the size of the sample is small or medium and a large amount of
domain knowledge is available.

The efficiency and simplicity of the prior sample method makes it attractive.
This method has the advantage that the generation of the prior data set from a
Bayesian network is straightforward, computationally simple and that it can be
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Figure 10.8: The effect of BMA using the learning curves of the AUC perfromance
measure. The fourteen variables were used selected in the conditional LR modeling.
Naive, TAN, BN, MBG and LR, MLP denotes the appropriate structure learning
method and model classes. The n/i postfix denotes the noninformative/informative
case followed by the applied virtual sample size. The /E/A postfix denotes the exact
or approximate Bayesian model averaging.

applied to nonparametric models, such as support vector machines. Prior incor-
poration significantly enhances the performance for small sample sizes. More
surprisingly, we also observed slight improvements when the size of the real data
exceeds the effective prior sample size by a factor two to four (the 0.2-0.4 region
on Fig. 1.7). The rescaled large prior sample block — which may contain in-
frequent samples as vital hints from the prior Bayesian network — is probably
the source of this improvement.

Similarly, the informative prior method immediately achieves the same per-
formance as the prior Bayesian network and gives better performance than the
noninformative multilayer perceptron for any amount of real data available in
the experiment. It means that the estimated prior is efficient in the small sample
region and not restrictive in the large sample region; it has a balanced, lasting
positive impact. Beside this statistical (machine learning) aspect, the related
computational aspect of the inference similarly provides certain advantages.
The high computational complexity of deriving the informative prior (when
compared to simply generating blocks of samples in the prior sample method)
is compensated by a lower complexity in the inference. Note that the additional
blocks of prior samples slow down the likelihood and gradient computations in
the Bayesian inference in MLP models. This precomputation property of the
informative prior method is similarly relevant in the Bayesian network context.
Remember that, for Bayesian networks (even using only a single structure with
a point parameterization), the computational complexity of the exact inference
or its approximation is NP hard [64]. Consequently, the transformation itself —
the precomputation of the collapse of a complex general Bayesian model into a
task specific, simpler classification model — can be advantageous, if the com-
putational efficiency of the Bayesian inference is important — for example if a
regular classification task in medical decision support involves only a relatively
small, but fixed subpart of a complex a priori Bayesian network covering the
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Figure 10.9: The effect of BMA using the learning curves of the AUC perfromance
measure. All the thirty-five variables were used. Naive, TAN, BN, MBG and LR, MLP
denotes the appropriate structure learning method and model classes. The n/i postfix
denotes the noninformative/informative case followed by the applied virtual sample
size. The /E/A postfix denotes the exact or approximate Bayesian model averaging.

overall domain.
Multilayer perceptrons perform generally better than Bayesian networks, but

part of this difference comes from the refinement of the a priori discretization.
Indeed, the performance of a corresponding noninformative multilayer percep-
tron with the original nominal inputs is similarly worse (for 70%–30% train–test
ratio, the mean AUC is 0.945 and the misclassification rate is 9%).

Fig. 10.4 and 10.5 give a more detailed characterization of the different
models, showing that in the small sample region (5%) the prior based meth-
ods have the best performance (BN-Fixed-Informative, MLP-Informative and
MLP-Prior sample). From the tabula rasa methods (MLP-Noninformative, BN-
General, BN-TAN and BN-Naive) the BN-Naive has the best performance. An-
other effect of the incorporation of the prior domain knowledge is that the per-
formance of these models has smaller variance. In the large sample region (75%)
the MLP methods have the best performance, specifically the MLP-Informative
is still slightly better than the MLP-Noninformative.

In the classification task, the automatically constructed text-based prior for
Bayesian network structures is beneficial in the small sample range, while it
is not restrictive and vanishes in the middle and large sample range. That is,
it provides advantages comparable to those of a manually constructed expert
prior, which achieved classification performance as that of expert diagnosticians
(see Table 10.1).



Chapter 11

Conclusion

The central motif of the thesis was the formalization, comparison and fusion
of multiple models corresponding to different levels of human knowledge. The
main goal was to investigate a probabilistic inference in this context, partic-
ularly the inductive inference incorporating prior domain knowledge, one of
the most challenging problems in knowledge representation and machine learn-
ing. The investigated models included Bayesian networks as domain models
based on personal belief, literature or publication domain models based on the
statistical analysis of voluminous free-text corpus, classification subtheories as
Markov Blanket subgraphs, and classification models used in clinical practice.
These models embrace the causal-probabilistic and the conditional-domain as-
pects, which are heavily investigated in causal and statistical research. In the
investigation, the Bayesian framework was adopted, especially because of the
incorporation of prior knowledge. These allow the following views of the the-
sis. From the point of view of knowledge representation, how can we represent
and formulate statements fusing together domain literature, expert priors and
observational data. From the point of view of machine learning, how can we
perform inductive probabilistic inference about knowledge-intensive, possibly
causal statements.

11.1 Contributions of this dissertation

The contributions of the thesis are the following.

1. Collection and formalization of the prior information related to the pre-
operative classification of ovarian masses. We constructed parameterized
Bayesian networks of the clinical aspect of the ovarian cancer domain [28].
We elicited logical, qualitative, probabilistic and causal characterizations
of pairwise relations of the domain variables [16]. The models were also
annotated by domain experts with free-text and links to the electronic lit-
erature. We constructed various collections of electronic domain literature
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resources and compiled domain vocabularies [22]. Whereas the construc-
tion of a Bayesian network, even with attached informal knowledge is
more and more common, our knowledge base is unique, because of its di-
versity. We discussed the consequences of Bayesianism and the increasing
amount of electronic prior knowledge, statistical data, and computational
resources for knowledge engineering of Bayesian networks and identified
the challenges for this “Bayesian” knowledge engineering (see Section 5.1).
Using the annotated Bayesian network knowledge base we developed a cor-
responding model-based information retrieval language and various profil-
ing (explanation) methods to support information retrieval and knowledge
engineering for complex Bayesian networks [23]. This method can be con-
ceived as a work on ontology based information retrieval, which is unique
in its use of keyword profiles and concepts related to Bayesian networks,
and in its integration of knowledge engineering and information retrieval
(i.e., that the applied and the expanded probabilistic “ontology” are the
same).

2. Knowledge extraction and discovery with Bayesian networks from domain
literature. We proposed various causal probabilistic models of biomedical
publications and formalized their assumptions (see Def. 6.4.1). Further-
more, we introduced a related text mining method with Bayesian networks
to support model-based knowledge extraction and exploration from free-
text literature. We evaluated the inferred clinical models of ovarian cancer
against gold standard priors and Bayesian networks based on clinical data
at multiple levels of complexity such as pairwise, feature and full model
level. The results showed that the proposed inferences based on literature
are comparable to the gold standard priors w.r.t. the inferences based
on clinical data (i.e., the clinical data ensures a reference, which is closer
to each of them), and the proposed Bayesian network based text mining
method gives more cautious (sparse) results than its currently prevailing
bottom-up counterparts [19, 20, 13, 16, 114, 24, 25, 26]. In short, we
demonstrated that the Bayesian network based Bayesian statistical analy-
sis of the domain literature offers a feasible, complementary, model-based
analysis besides non-model based co-occurrence and linguistic approaches
(e.g., see [208, 135]).

3. Learning Bayesian network features from heterogeneous sources. We pro-
posed a new structural Bayesian network feature called Markov Blanket
(sub)Graph (MBG), a.k.a. classification subgraph, feature subgraph. We
proved that it is a necessary and sufficient feature for conditional modeling
(see Proposition 7.2.1 and Proposition 7.2.2). We gave an exact general-
ization of the feature subset selection (FSS) problem — which corresponds
to the Markov Blanket set (MB) feature — by formulating its equivalent at
the level of the MBG feature, as the feature (sub)Graph Selection (FGS)
problem (see Def. 7.2.3). We discussed the probabilistic and causal inter-
pretations of the MBG feature, and its relation to logistic regression (see
Lemma 9.5.1 and Lemma 9.5.2). We discussed the application of the MBG
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feature in ordering-based Monte Carlo methods (see Proposition 7.5.2 and
Th. 7.2.1). The proposed Bayesian analysis of compact, but complex fea-
tures (i.e., well-defined subtheories) led to the problem of joint estimation
and selection with new statistical and computational challenges. Then
we formalized the Most Probable Features problem (MPFs) (Def. 7.6.1)
and we analyzed the effect of feature cardinality on estimating and se-
lecting the most probable features. Here we proved that in the probably
approximately correct (PAC) framework the sample complexity and the
expectation of the average error of the empirically optimal feature val-
ues are similarly related to the logarithm of the cardinality of the feature
set (Th. 7.6.1). We devised a new ordering-based estimation and search
method for Markov Blanket sets and Markov Blanket subgraphs using
the concept of truncated MBG space (see Def. 7.7.1, Lemma 7.7.2, and
Alg. 1). With it we demonstrated that the normative Bayesian solution to
the FSS problem, the FGS problem, and in general to the MPFs problem
with the MB and MBG features are viable with recent computational re-
sources in typical biomedical problems. In the Bayesian context we showed
the relative independence of the MBG and MB feature levels (i.e., their
autonomy) by evaluating them against complete models and simple fea-
tures [25, 21]. With its options about the training proportion of the input
data set (and averaging schemes), the Alg. 1 implements a “Bayesian,
four-level, sequential relevance analysis” at the levels of Markov Blanket
Memberships, Markov Blanket sets, Markov Blanket graphs, and complete
Bayesian networks. The proposed Bayesian estimation and search method
for the MBG feature can be seen as the integration of three research areas.
These areas are the inference of posteriors of complex model properties
(e.g., see [98]), the search for high-scoring complex model properties (e.g.,
see [203]), and the construction of offline, probabilistic knowledge bases
(e.g., see [40, 181]). We formalized alternatives for Bayesian fusion of
information in learning Bayesian network at the level of data sets, fea-
tures, and models (see Th. 8.1.1 and Section 8.1.2). We proposed a direct
fusion method for fusing clinical and literature data with expert priors
(see Th. 8.1.1) and a two-step methodology based on the level of features,
as an interpretable and computationally efficient way to fuse clinical and
literature data with expert priors (i.e., to fuse heterogeneous information
sources) [24, 26]. Within the “Bayesian knowledge engineering” frame-
work, we realized that to ensure complex, knowledge rich queries is an
equally important way of the incorporation of prior knowledge in statis-
tical data analysis (besides influencing the posteriors). For such fusion
of voluminous (electronically available) factual knowledge and complex,
uncertain knowledge from data analysis we formulated the idea of Prob-
abilistic Annotated Bayesian Network Knowledge Base, which allows the
introduction and strict definition of a probabilistic truth value (i.e., proba-
bility) of first-order sentences (see Def. 5.2 and [25, 21, 189]). This hybrid
approach embedding complex distributions specified by Bayesian networks
into logical knowledge bases extended the research of probabilistic first-
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order logic [121, 192, 145, 151, 187, 76]. We implemented a corresponding
inference engine, which offers full Bayesian inference over complex state-
ments including semantic conditions and the properties of the underlying
model using wide range of expert priors and multiple, possibly temporal
statistical data sets and electronic literature corpora [25, 26, 21, 189].

4. Bayesian classification with informative priors. We evaluated the classi-
fication performance of Bayesian classifiers including logistic regression,
multilayer perceptrons and various Bayesian network models [28, 27, 11].
For Bayesian networks we analyzed the induced joint posterior over var-
ious structural features and performance measures [21]. We proposed a
transformation based on “conditional distance minimization” for deriving
structural and parametric priors for black-box classifiers (see Def.10.2.3.3
and [10]). We specialized it to derive informative priors for generalized
logistic regression models, such as multilayer perceptrons (see Alg.3 and
[18, 11]). We showed that it is an asymptotic version of the “prior sample”
and “prior over sample” based methods (see Alg.2). This method avoids
the problem of selecting prior virtual sample size of the other methods,
because it allows the direct transformation of the priors (i.e., the trans-
formation of the “prior over incomplete samples”). We evaluated the
performance of the “prior sample”, the “prior over sample”, and the “con-
ditional distance minimization” methods, which showed that classification
performance is significantly improved in the small and medium sample size
region [18, 15, 12, 14]. We formalized also a Bayesian decision problem
including rejection besides classification and evaluated the effect of the
rejection [17].

11.2 The developed software platform

The corresponding software platform to this research contains many modules for
text-processing, knowledge engineering, learning Bayesian networks and multi-
layer perceptrons, and performing Bayesian inferences about Bayesian network
features and about general ABN-KB statetements. The source of the imple-
mented methods exceeds 105 lines of code written in C++ and MATLAB. It has
a graphical user interface in the MS-Windows environment. Its command line
version runs in a parallel computing grid environment. Its development started
at the Technical University of Budapest in 1997 for performing inference and
learning Bayesian networks. The main development happened at the Depart-
ment of Electrical Engineering at the Katholieke Universiteit Leuven under the
name of Software Environment for Bayesian and Neural Networks (SEBANN).
It was expanded with knowledge engineering modules and methods for multi-
layer perceptrons with the help of Geert Fannes. It was used to compute the
results in the papers written between 1999 and 2002. In 2002 on the one hand
Geert Fannes started the development of a LINUX based version of the system
and its expansion to continuous variables used in his doctoral thesis [85]. On the
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other hand the development of the System for Probabilistic Annotated Networks
(SPAN) had started to support the sequential analysis and the inference over
complex Bayesian network features including the MB and the MBG features.
The modules for the text-mining and for the Bayesian, four-level, sequential
relevance analysis are currently integrated into a new software platform, which
supports the design and analysis of “genomic” experiments including clinical
observations, genotypic information about the patient, and genomic profiles of
the related tissue.

11.3 Applicability in the postgenomic era

The original goal of the research was to develop new methods for knowledge rich
statistical data analysis in biomedicine, specifically to develop methods, which
can incorporate prior background knowledge. Such methods in turn support
the development of new decision support models used in clinical practice. Due
to its roots in both prior knowledge and statistical data, this research covered a
broad spectrum of problems from biological knowledge discovery to clinical de-
cision support. Another factor influencing the developed methodology was the
timing: 1999-2002, the spread of high-throughput measurement methods and
the “birth” of bioinformatics. The availability of massive amount of information
about the underlying genomical and proteomical level had a major impact on
the biomedical research. The availability of the genotypic information about the
patient such as a profile of her/his single nucleotide polymorphisms (SNPs), and
the availability of the genomic profiles of the related tissue, such as from com-
parative genome hybridization (CGH) analysis or gene expression (GE) analysis
together with clinical information led to the concept of personalized medicine
(i.e., to personalized prevention, diagnostics, and treatment).

This new situation motivated many elements in the developed methodology
and in the corresponding software platform. We used in fact the clinical aspect of
the ovarian cancer domain as the better explored aspect to develop and evaluate
methods applicable in other biomedical domains with corresponding genomic
data. Thus we enumerate in Section 11.3.3 some of the future applicability of
the developed methods in this new context of biomedicine. Technically it does
not change our goal of developing methods to engineer decision support models
for clinical use incorporating prior information, but we assume that some of our
input variables are “genomic” (e.g., denoting genomic information from SNP,
CGH or GE analysis).

11.3.1 Main constructs and methods

First we summarize the relevant constructs, methods, and methodologies devel-
oped in thesis.

ABN The probabilistic annotated Bayesian network knowledge base (see Def. 5.2).

TM Textmining with Bayesian networks (see Def. 6.4.1 and Section 8.4.2).
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MBG The Markov Blanket graphs for exploration and classification (see Def. 7.2.1,
Proposition 7.2.2, Lemma 9.5.1, and Lemma 9.5.2).

MPFs Inferring the most probable Markov Blankets and Markov Blanket graphs
(see Def. 7.2.3, Def. 7.6.1, Lemma 7.7.1, and Th. 7.6.1).

B-4S The “Bayesian, four-level, sequential relevance analysis” at the levels of
Markov Blanket Memberships, Markov Blanket sets, Markov Blanket graphs,
and complete Bayesian networks (Th. 7.2.1, Def. 7.7.1, and Alg. 1).

iMLP Informative parameter priors for multilayer perceptrons from Bayesian
networks (see Section 10.2.3.3).

11.3.2 Main types of the prior knowledge

The following priors were constructed for these methods. Note that the purpose
of these priors was also comparison (e.g., to evaluate methods using a reference).
Furthermore, we conceive the formulation of knowledge-rich queries also as a
kind of prior incorporation (besides the standard Bayesian interpretation of
influencing the posterior). This referential and auxiliary use of priors is the
consequence of an important lesson in bioinformatics that the interpretation
of the results of the data analysis — i.e. the recognition of new and relevant
knowledge — is a serious bottleneck. Table 11.1 shows the relation of the priors
and methods (the MBG and the MPFs columns are not shown as they are
included in the column of “Bayesian, four-level, sequential relevance analysis”
(B-4S)).

Table 11.1: Main types of the elicited prior knowledge and their relation to constructs
and methods.
prior ABN TM B-4S iMLP
Document collections x x x
Domain vocabulary x x x
Variables with annotations and references x x x
Groupings of the variables x x
Partial and complete orderings of the variables x x x
Complete causal models x x
Pairwise relevance x x
Parameters of local probabilistic dependencies x x

11.3.3 From current results to proposed uses

The advantage of the probabilistic annotated Bayesian network knowledge base
(pABN-KB) is that it retains the richness of the natural language publications,
yet the uncertain raw results from statistical data analysis can be incorporated
(i.e., the posterior over domain models). So this is a new kind of integration of
knowledge engineering and statistics, which is essential in domains with huge
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amount of factual knowledge like studies associating the clinical level and the
biological level. However, there are many open issues, such as the design of the
factual knowledge base and a corresponding scalable theorem prover, the user
interface, the problem of the trivial sentences (e.g., tautologies with probability
1), and the design of biologically inspired schemes of queries [189].

The Bayesian network based text-mining (TM) method, using the document
collections, domain vocabularies, and annotations of the variables, gave more
cautious results than the co-occurrence methods. It could reconstruct structural
prior information comparable to that of an expert. Because of its vector rep-
resentation it is not sensitive to ill-formed relationships (i.e., it can be applied
in a different phase than natural language processing (NLP) methods, see Sec-
tion 6.2). Furthermore, because of its unique model-based foundation, Bayesian
model averaging can be applied to derive posteriors about complex relationships
such as Markov Blankets and Markov Blankets graphs, contrary to the typical
pairwise usage of the co-occurrence and NLP methods. Due to the fact that
the Bayesian network based text-mining method is multivariate, it can be a
useful ingredient of domain exploration tools in genomic domains, specifically
in designing genomic experiments or suggesting genomic test for a patient. This
remains so, even if more and more curated databases are available, because it
is model-based and multivariate, and because the document collections and the
domain vocabularies used in the analysis can be selected arbitrarily.

The feature subset selection (FSS) problem is at the heart of the emerging
personalized biomedicine, due to the multifactorial aspect of most of the diseases
and the enormously big number of potential genomic variables (e.g., millions of
SNPs, thousands of genes). The Feature (sub)Graph Selection problem (FGS)
based on the concept of Markov Blanket subGraph is an exact generalization of
the FSS problem, which helps to understand the conditional relevance of cer-
tain features, presumably common in diseases with many factors. The Most
Probable Features problem over the MBG features is another kind of general-
ization of the FSS problem, as the typical data size in genomic experiments is
not enough to ensure a feature value with dominant posterior, i.e. multiple se-
lection is unavoidable. The developed algorithm provides a flexible, unique tool
to solve the MPFs problem in case of Markov Blanket graphs and Markov Blan-
ket sets, incorporating logical and numeric priors for the orderings, structural
aspects, and parameters. It provides estimates for standard features, such as
Markov Blanket Memberhsip and compelled edge relations as well. It allows a
“Bayesian, four-level relevance analysis” at the levels of Markov Blanket Mem-
berships, Markov Blanket sets, Markov Blanket graphs, and complete Bayesian
networks. Additionally, it provides a sequential analysis as well, which proved to
be an essential tool to explore the sufficiency of the data besides confidence mea-
sures. Because of the high computational complexity, the sequential analysis was
greatly enhanced by the availability of priors for the ordering and grouping of
the variables, which are optional prior constraints for the developed algorithm.
Note that the multiple level analysis with growing model complexity together
with the sequential option allows a broad vision to understand the power of
the prior and the data. In short, the proposed “Bayesian, four-level, sequential
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relevance analysis” capable for incorporating diverse priors is an up-to-date re-
sponse for the challenges of the personalized medicine, and generally applicable
in non-medical domains as well to facilitate knowledge-rich data analysis.

Finally the induced informative parameter priors for MLPs were efficient
in the small sample region, although their effect on classification performance
was not significant in the large sample region (for larger sample size than 200).
This observation is consistent with posterior analysis of the hyperparameter
expressing confidence in the prior estimates as a prior virtual sample size, which
also peaked around 200 samples. Furthermore the effect of prior was similarly
fading away above this limit in various prequential analysis as well. However,
this small sample size region remains an important challenge in the postgenomic
era, because of the subpopulations in personalized medicine and the more and
more threatening problem of rapidly adapting (i.e., changing) diseases.

11.4 Challenges

First we summarize general challenges present in the fields of knowledge repre-
sentation, intelligent data analysis, machine learning or data and text mining:

1. Data heterogeneity: the growing importance of interventional and struc-
tured data, besides heterogeneous observational, unstructured data sets,

2. Electronic semi-formal priors: the role of formal and semi-formal knowl-
edge bases will increase, besides expert knowledge and free-text reposito-
ries,

3. Complex models: the learning of interpretable, hierarchially decomposed,
relational and object-oriented models will be more and more important,
besides the classical function and density estimation view of induction,

4. Inference of complex properties of models: the normative estimation and
search of complex, semantic features formalized using a rich language will
be more and more important, besides MAP model identification and learn-
ing simple properties.

From this perspective, we discuss possible future research related to the
contributions of the thesis.

The constructed priors for ovarian cancer, including parametric and many
cross-comparable structural elements could serve as a benchmark tool for the
evaluation of other prior extraction, incorporation, and fusion methods. The
annotated Bayesian network based information retrieval language can serve as
a guide for the future development of biomedical information retrieval search
engines and interfaces, because it illustrates the type of complex queries from
the point of view of Bayesian knowledge engineering and Bayesian learning.

Text mining with Bayesian networks includes two open issues. On the one
hand the current “publication” models for information extraction and knowl-
edge discovery have to be expanded to handle explicitly the neutral omission and
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the negation; and to cope with the references, the full-text, and the sequential-
temporal nature of the publications. On the other hand, the purpose of learning
generative publication models (i.e., information extraction and knowledge dis-
covery) will probably be expanded to the analysis of the cognitive aspects of
scientific explanations and understanding, and to the analysis of the social and
the economic aspects of the collective behaviour of the research communities
(e.g., for designing scientific policies and research programmes). It means that
decision networks have to be learned as “publication” models, which means the
incorporation of actions and utilities (e.g., scientific credits and financial costs)
into the Bayesian network models of publication.

As for the estimation and search method for MBG feature, the task is more
mundane. First of all note that our assumption of a single target variable was
technical, and all the concepts and methods can be easily extended to a group of
target variables (e.g., instead of Pathology we can define an aggregated variable
representing the subtypes of the tumor and the follow-up of the patient). Sec-
ond, the same MCMC scheme can be easily extended to continuous variables,
because there exists a closed formula for the conditional posterior of DAG struc-
tures in case of Gaussian local models as for the discrete case with multinomial
local models used in the thesis [106]. Third, we have to generalise the method
to cope with incomplete data, using imputation, “Expectation-Maximization”,
or embedding this problem into the MCMC scheme (e.g., using an additional
Gibbs sampler) [108]. Finally, we have to computationally scale up the capa-
bility of the module performing the Bayesian, sequential, four-level relevance
analysis from hundred variables (enough currently for a restricted biomedical
domain) to the range of thousand variables (usual in genomics). This means
application of more advanced MCMC schemes (e.g., hierarchical-MCMC and
coupled-MCMC) and more efficient parallel computing.

The use of informative priors for parametric black-box classifier, such as
logistic regression and MLPs misses currently a natural step: the joint usage
of informative structure and parameter priors. This can be done using MC
methods over the space of model structures with varying dimensions and pa-
rameters [119].

One of the grand challenges besides the discussed scaling-up to genomic do-
mains is the extension of the platform towards image analysis, i.e., to design an
integrated Bayesian decision support system, which could utilize raw or crudely
preprocessed images as the input, instead of the current manually constructed
symbolic input features.

On the list of general challenges, currently we are focusing on the hierarchi-
cal, decomposed, annotated models, heterogeneous data sets, domain literature
as electronic prior, and a rich language to formulate complex queries about the
model posterior. Our goal is to provide a probabilistic framework for inference
over linked, multiple, hierarchical models using heterogeneous data sets (includ-
ing the domain literature), free-text annotations, and the power of first-order
logic for formulating queries about the models.



196 Chapter 11. Conclusion



197



198 Appendix A.

Appendix A

Table A.1: The abbreviations and the short description of the domain variables
taken from the IOTA protocol [240]. The ordering is the reference causal ordering ≺c.

Variable Description
(FamHistBrCa) Number of first degree relatives with breast cancer.
(FamHistOvCa) Number of first degree relatives with ovarian cancer.
(FamHist) A derived nominal(6) variable for the genetic risk based on FamHistBrCa

and FamHistOvCa.
(PMenoAge) Derived from Age and PostMenoY.
(ReprYears) Derived from Age, PostMenoY and the assumption of 12.0 years for the

age at menarche.
(Meno) Menopausal status.
(Age) (years)
(PostMenoY) Years after menopause.
(Hysterectomy)
(CycleDay) Day of cycle.
(PillUse) Total years of oral contraceptive use.
(Parity) Number of deliveries.
(HormTherapy) Hormonal therapy.
(Pathology) Manual peer-reviewed histopathology.
(PapFlow) The presence of flow within a papillary projection.
(PapSmooth) Solid papillary projections are described as being “smooth” or “irregular”

(e.g., cauliflower-like)
(Papillation) Solid papillary projection.
(Solid) Solid means echogenicity suggesting the presence of tissue.
(WallRegularity) The internal wall is also noted as being smooth or irregular.
(Septum) A septum is defined as a thin strand of tissue running across the cyst

cavity.
(IncomplSeptum) An incomplete septum.
(Locularity) All lesions are qualitatively classified as unilocular, unilocular cyst with

solid component, multilocular, multilocular with solid component, solid
and as “not classifiable as before”.

(Echogenicity) The dominant feature of the cystic contents is described as anechoic, low-
level echogenic, “ground glass”, hemorrhagic or mixed echogenic.

(Shadows) The presence of acoustic shadows.
(TAMX) Time-averaged maximum velocity.
(PSV) Peak systolic velocity.
(PI) Pulsatility index.
(RI) Resistance index.
(ColScore) A subjective semiquantitative assessment of the amount of blood flow.
(Volume) The volume of the tumor is calculated from the three diameters in two

perpendicular planes.
(Ascites) The presence of ascites (i.e.fluid outside the pouch of Douglas).
(Fluid) Fluid in the pouch of Douglas.
(Bilateral) Patients with bilateral tumours are included in the study with both tu-

mours.
(Pain) Pelvic pain during the scan: “is the mass painful?”
(CA125) CA 125 serum tumour marker.
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Table A.2: Univariate statistics based on the IOTA-1.1 data set for the thirty-one
variables containing 604 cases.

Variable Value %

Age

< 30 13.08
30 − 40 18.21
40 − 50 20.03
50 − 60 22.19
60 − 70 11.75
70 < 14.74

Ascites (presence) yes 16.56
Bilateral yes 33.77

CA 125
< 35 61.09

35 − 65 11.59
65 < 27.32

ColScore

none 46.19
minimal 27.98
moderate 20.86
strong 4.97

CycleDay

none 46.19
1 − 16 27.98
16 − 40 20.87
40 < 4.97

Echogenicity

Anechoic 43.87
Low-level 16.72

’Ground glass’ 20.20
’Hemorrhagic’ 9.90

Mixed 11.09
No cyst fluid 7.12

Familial history risk

normal 86.59
increased 9.44
significant 3.31

high 0.170
very high 0.50

Fluid yes 29.64
Hormonal Therapy yes 24.50

Hysterectomy yes 8.11
Incomplete Septum yes 5.30

Locularity

Unilocular 28.81
Unilocular-solid 13.25

Multilocular 15.23
Multilocular-solid 29.30

Solid 12.91
Unclassified 0.50

Variable Value %

Menopause
pre 53.81
post 38.08

hysterectomy 8.11
Pain yes 28.81

Papillation Flow
no papillation 74.67

yes 14.40
Papillation yes 74.67

Papillation smooth
no papillation 74.67

yes 17.22

Parity

0 36.75
1 20.20
2 26.82
3 10.10

4 <= 6.13
Pathology
(benign/malignant)

benign 72.35
malignant 27.65

Pulsitality index
(PI)

no flow 28.97
< 1.0 44.37

PillUse (years)
< 0.5 52.32

0.5 − 5.0 19.70
5.0 < 27.98

PostMenopausal
Years

< 10 14.74
10 − 20 10.60
20 − 30 6.79

30 − 405.96
40 < 61.92

Peak Systolic
Velocity (PSV)

no flow 28.97
< 20.0 47.52

Resistance Index
(RI)

no flow 28.97
< 0.5 20.20

Septum yes 43.71
Shadows yes 8.28

Solid yes 55.46
Time Averaged
Velocity(TAMX)

no flow 28.97
< 15.0 19.87

Volume(ml)

< 10 13.08
10 − 50 27.31

50 − 40040.72
400 < 19.20

WallRegularity irregular 43.87
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Figure A.1: The biplot of the domain variables and 604 cases used of the IOTA-1.1
data set (not all of the thirty-one variables are shown). The variables are denoted by
‘o’, the malignant cases by ‘♦’ and the benign cases by ‘x’.
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Figure A.2: The biplot of the domain variables and 782 cases of the IOTA-1.2 data
set (not all of the thirty-five variables are labelled). The variables are denoted by ‘o’,
the malignant cases by ‘+’ and the benign cases by ‘o’.
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Figure A.3: The sorted eigenvalues of the covariance matrix of the IOTA-1.2 data
set.
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Figure A.4: (Left) The Bayesian network structure with eleven variables used in the
parameter elicitation. (Right) The maximum a posteriori PDAG (Bayesian network
equivalence class) over the eleven variables present in the parameter elicitation model
(using the IOTA-1.2 data set, the BDeu parameter priors and noninformative structure
priors in an exhaustive search.)
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Figure A.5: The maximum a posteriori Bayesian network compatible with the ex-
pert’s total ordering of the thirty-five variables using the IOTA-1.2 data set, the CH
noninformative parameter priors and noninformative structure priors and exhaustive
search to 3 parents with K2 greedy continuation.
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Figure A.6: The maximum a posteriori essential graph over the thirty-five variables
using the IOTA-1.2 data set, the BDeu parameter priors and noninformative structure
priors and exhaustive search to 3 parents with K2 greedy continuation over 106 random
ordering.
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Figure A.7: The maximum a posteriori Bayesian network using the IOTA-1.2 data
set, the CH noninformative parameter priors and noninformative structure priors and
exhaustive search to 3 parents with K2 greedy continuation over 106 random ordering.
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Figure A.8: The maximum a posteriori Bayesian network compatible with the ex-

pert’s total ordering of the thirty-five variables using the DPMR
R data set, the BDeu

parameter priors and noninformative structure priors and exhaustive search to 3 par-
ents with K2 greedy continuation.
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Figure A.9: The maximum a posteriori Bayesian network compatible with the ex-

pert’s total ordering of the thirty-five variables using the DPMH
R data set, the BDeu

parameter priors and noninformative structure priors and exhaustive search to 3 par-
ents with K2 greedy continuation.

Pathology

FamHist

Age

Parity

Meno

ReprYears

CycleDay

HormThera

PillUse

Bilateral

Volume

Pain

Ascites

Fluid
Septum

IncomplSe

Papillati

PapFlow

PapSmooth

Locularit

WallRegul

Shadows
Echogenic

ColScore

CA125

PI

RIPSV

TAMX

Hysterect

Solid

PMenoAge FamHistOvFamHistBr

PostMenoY

Figure A.10: The maximum a posteriori Bayesian network compatible with the ex-

pert’s total ordering of the thirty-five variables using the DPMH
R data set, the CH

noninformative parameter priors and noninformative structure priors and exhaustive
search to 3 parents with K2 greedy continuation.
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Table A.3: The properties of the forward selected LR models over the elicited,
medium and complete variable sets.

Variables B S.E. Wald df Sig.
PersHistOvCa 2.88114 1.0702 7.2473 1 0.007100
dPostMenoY 9.9386 3 0.019095

dPostMenoY(1) 0.9766 0.3673 7.0692 1 0.007841
dPostMenoY(2) 0.8837 0.5098 3.0049 1 0.083008
dPostMenoY(3) -0.4629 0.6658 0.4833 1 0.486931

lnVolume 0.2303 0.0894 6.6321 1 0.010015
Pain(1) -0.7946 0.3480 5.2110 1 0.022443

Ascites(1) 1.2476 0.4194 8.8466 1 0.002936
Papillation(1) -2.6262 0.6364 17.028 1 3.68E-05

PapNr 0.6078 0.1790 11.531 1 0.000684
PapFlow(1) 1.5077 0.4864 9.6081 1 0.001937

Solid(1) 3.0475 0.8185 13.862 1 0.000196
IrregularWall(1) 1.4707 0.3629 16.420 1 5.07E-05

lnCA125 0.7065 0.1154 37.462 1 9.31E-10
lnTAMX 0.7596 0.1509 25.315 1 4.86E-07
dPI(1) -1.2664 0.3480 13.240 1 0.000273

NrLoc.byMLoc.(1) 0.4249 0.1747 5.9141 1 0.015020
Constant -9.0173 0.9848 83.830 1 5.39E-20
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Table A.4: The ordering conditional posteriors of the sets of parental sets in the
expert’s total ordering ≺0. Only the logarithm of the eight most probable values are
reported descending from left to right for each variable. The first 22 rows corresponds
to the MBG case, the rest to the BN. The Pathology variable is not reported in the
BN part as being identical. To easy comparison, the BN part does not report the
aggregated parental sets (i.e., parental sets without the target variable), so this can
be the only difference.

Pathology -0.60 -1.00 -3.03 -4.39 -4.86 -5.12 -5.73 -5.96
PapFlow 0.00 -6.30 -6.50 -10.06 -12.99 -14.76 -19.59 -28.78
PapSmooth 0.00 -6.12 -445.99 -452.35 -452.54 -454.19 -458.67 -460.57
Papillation -0.06 -3.48 -3.49 -435.62 -436.48 -437.86 -440.04 -442.35
Solid -0.20 -2.39 -2.40 -65.30 -122.26 -122.66 -123.51 -125.01
WallReg. -0.05 -3.74 -3.75 -25.43 -112.02 -170.96 -176.16 -178.47
Septum 0.00 -6.90 -12.58 -12.71 -12.92 -14.20 -15.43 -16.68
IncomplSep. -0.28 -1.40 -12.56 -13.64 -14.31 -14.84 -14.91 -16.93
Locularity 0.00 -421.82 -424.46 -662.87 -674.67 -675.59 -780.30 -845.39
Echogenicity 0.00 -49.15 -83.43 -104.25 -105.84 -107.30 -113.34 -125.29
Shadows 0.00 -11.61 -42.24 -42.29 -42.56 -42.65 -43.89 -44.82
TAMX 0.00 -7.62 -13.01 -17.47 -20.81 -21.92 -22.03 -22.12
PSV -0.01 -4.33 -607.86 -614.00 -620.51 -626.36 -628.41 -629.31
PI 0.00 -9.66 -14.56 -421.53 -432.88 -435.15 -438.35 -442.95
RI 0.00 -12.93 -92.14 -92.85 -500.80 -510.17 -513.65 -521.53
ColScore -0.61 -0.79 -5.76 -33.16 -33.45 -439.34 -441.15 -445.63
Volume 0.00 -9.83 -14.29 -16.05 -18.34 -18.61 -20.27 -20.65
Ascites -0.40 -1.87 -2.57 -3.67 -3.71 -3.88 -4.33 -5.35
Fluid 0.00 -5.79 -73.37 -74.30 -75.04 -75.26 -76.40 -76.43
Bilateral -0.12 -3.19 -4.19 -4.28 -4.66 -4.82 -4.90 -5.11
Pain -0.12 -2.50 -4.44 -5.23 -5.53 -5.54 -6.01 -6.97
CA125 0.00 -7.25 -14.75 -15.24 -16.78 -19.71 -20.41 -23.66
PapFlow 0.00 -6.30 -6.50 -10.06 -12.99 -14.76 -19.59 -28.78
PapSmooth -6.12 -445.99 -452.35 -452.54 -454.19 -458.67 -460.57 -461.93
Papillation -3.48 -3.49 -435.62 -436.48 -437.86 -440.04 -442.35 -443.21
Solid -0.20 -2.39 -2.40 -122.26 -122.66 -123.51 -125.01 -125.70
WallReg. -0.05 -3.74 -3.75 -112.02 -170.96 -176.16 -178.47 -180.01
Septum -6.90 -12.58 -12.71 -12.92 -14.20 -15.43 -16.68 -16.77
IncomplSep. -0.28 -12.56 -13.64 -14.31 -14.84 -14.91 -16.93 -17.02
Locularity -421.82 -424.46 -662.87 -674.67 -675.59 -780.30 -845.39 -849.10
Echogenicity -49.15 -83.43 -104.25 -105.84 -107.30 -113.34 -125.29 -127.75
Shadows 0.00 -42.24 -42.29 -42.56 -42.65 -43.89 -44.82 -45.15
TAMX 0.00 -7.62 -13.01 -17.47 -20.81 -21.92 -22.03 -22.12
PSV -4.33 -607.86 -614.00 -620.51 -626.36 -628.41 -629.31 -629.71
PI -9.66 -14.56 -421.53 -432.88 -435.15 -438.35 -442.95 -444.48
RI 0.00 -92.14 -92.85 -500.80 -510.17 -513.65 -521.53 -521.76
ColScore -0.61 -0.79 -33.16 -33.45 -439.34 -441.15 -445.63 -453.21
Volume 0.00 -9.83 -14.29 -16.05 -18.34 -18.61 -20.27 -20.65
Ascites -0.40 -1.87 -2.57 -3.67 -3.71 -3.88 -4.33 -5.35
Fluid -5.79 -73.37 -74.30 -75.04 -75.26 -76.40 -76.43 -77.46
Bilateral -0.12 -3.19 -4.28 -4.66 -4.82 -4.90 -5.11 -5.48
Pain -2.50 -4.44 -5.23 -5.53 -5.54 -6.01 -6.97 -7.46
CA125 0.00 -7.25 -14.75 -15.24 -16.78 -19.71 -20.41 -23.66
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Table A.5: The posteriors for the MBM(Pathology, Xi) features for the combinations
of CH/BDeu parameter priors and single/unconstrained orderings (Fix/MC) using
the IOTA-1.2 data set and the maximum parental set size 4. The approximated
posteriors based on the posteriors of the 100 most probable Markov blanket sets are
reported respectively in the last 4 columns.

Fix/CH Fix/BD MC/CH MC/BD MB-
Fix/CH

MB-
Fix/BD

MB-
MC/CH

MB-
MC/CH

FamH. 4.1E-01 7.5E-02 2.0E-01 1.5E-01 2.1E-01 4.4E-02 6.2E-02 1.9E-01
Age 9.9E-01 5.5E-01 1.1E-05 3.6E-07 9.3E-01 4.8E-01 7.9E-08 0.0E+00
Pari. 1.5E-03 6.5E-07 1.2E-03 2.9E-07 0.0E+00 0.0E+00 1.5E-06 0.0E+00
Meno 6.3E-01 4.6E-01 1.0E+00 9.8E-01 5.5E-01 3.8E-01 1.0E+00 9.8E-01
RYear. 1.7E-03 6.9E-06 1.7E-03 2.5E-06 0.0E+00 0.0E+00 1.5E-06 1.6E-06
CDay. 4.9E-03 6.5E-03 8.2E-04 9.6E-04 0.0E+00 0.0E+00 3.4E-13 2.7E-04
HTh. 5.5E-02 1.4E-01 3.0E-02 2.7E-02 0.0E+00 1.0E-01 6.5E-03 2.3E-02
PUse. 4.6E-04 2.5E-05 5.9E-03 3.7E-05 0.0E+00 0.0E+00 3.7E-04 0.0E+00
Bil. 9.1E-01 9.8E-01 9.4E-01 9.8E-01 8.5E-01 8.6E-01 9.5E-01 9.9E-01
Vol. 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
Pain 6.7E-02 1.1E-01 1.1E-01 1.4E-01 2.8E-03 5.9E-02 2.9E-02 1.1E-01
Asc. 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
Fluid 4.7E-02 1.2E-02 3.9E-02 9.5E-03 1.2E-03 0.0E+00 4.2E-03 4.9E-03
Sept. 9.9E-01 1.0E+00 9.8E-01 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
ISept. 2.1E-01 7.8E-01 3.4E-01 8.8E-01 5.8E-02 6.9E-01 6.4E-01 8.4E-01
Pap. 1.0E+00 9.9E-01 7.5E-01 1.0E+00 9.3E-01 8.6E-01 8.9E-01 1.0E+00
PFl. 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
PSm. 1.5E-01 1.7E-01 3.1E-02 8.0E-03 4.1E-02 1.1E-01 1.5E-03 1.4E-03
Loc. 4.7E-01 8.7E-05 9.8E-01 7.9E-01 1.8E-01 0.0E+00 5.6E-01 8.3E-01
WReg. 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
Sh. 1.0E+00 1.0E+00 9.9E-01 1.0E+00 9.3E-01 8.6E-01 5.9E-01 1.0E+00
Egen. 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
CSc. 9.9E-01 9.9E-01 9.8E-01 9.9E-01 9.3E-01 8.6E-01 5.7E-01 9.6E-01
CA125 1.0E+00 1.0E+00 1.0E+00 1.0E+00 9.3E-01 8.6E-01 1.0E+00 1.0E+00
PI 9.8E-01 1.0E+00 5.7E-01 3.8E-01 9.2E-01 8.6E-01 4.8E-01 3.2E-01
RI 9.8E-01 1.0E+00 9.9E-01 1.0E+00 9.2E-01 8.6E-01 9.9E-01 1.0E+00
PSV 6.0E-01 5.4E-01 6.4E-01 8.5E-01 5.7E-01 4.7E-01 7.8E-01 8.9E-01
TAMX 1.0E+00 1.0E+00 8.6E-01 4.2E-01 9.3E-01 8.6E-01 6.0E-01 4.5E-01
Hyst. 8.2E-01 1.2E-01 7.7E-01 3.2E-02 8.4E-01 7.6E-02 9.0E-01 3.3E-02
Solid 1.0E+00 1.0E+00 9.3E-01 2.8E-01 9.3E-01 8.6E-01 9.7E-01 2.3E-01
PAge 1.0E-02 1.3E-04 5.8E-03 1.6E-05 0.0E+00 0.0E+00 9.7E-11 1.0E-05
FHOC 7.8E-01 6.7E-02 1.7E-01 5.5E-02 7.3E-01 2.7E-02 1.1E-01 3.2E-02
FHBC 9.6E-01 2.8E-01 8.7E-01 2.2E-01 9.1E-01 2.1E-01 9.4E-01 2.8E-01
PMY 3.4E-02 7.6E-06 5.0E-03 1.5E-06 0.0E+00 0.0E+00 2.4E-07 0.0E+00
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Table A.6: The MCMC estimates of the posterior of the MBM(Pathology,.) features
(w.r.t. one chain), their standard error, the maximum of the |ZG| single chain
convergence test value ZG per variable for all the chains, and the R̂ multiple chain
score per variable. The settings is the IOTA-1.2 data set, the BDeu parameter prior
and unconstrained ordering-MCMC simulation with 1000 burn-in sample, M=5000
used sample, four chains, and 10 batches for the std. error estimation.

Variable p̂(MBM(Pathology, Xi)|DN ) std.error maxZG R̂
FamHist 0.1638 0.00754 0.2874 1.0028

Age 0.000001198 8.648E-07 0.1765 1.0044
Parity 2.365E-07 3.171E-08 0.0991 1.024
Meno 0.9884 0.0002863 0.6293 1.0044

ReprYears 0.000002625 1.488E-07 0.2253 1.0164
CycleDay 0.0008844 0.0002904 0.1021 1.0011

HormTherapy 0.02856 0.001065 0.2395 1.0036
PillUse 0.00004162 0.00000586 0.0997 1.1235

Bilateral 0.9886 0.0003922 0.1307 1.0008
Volume 1 0 0 0
Pain 0.1431 0.003487 0.1906 1.001

Ascites 1 0.000005155 0.1508 1.0026
Fluid 0.007042 0.0004665 0.1061 1.0004

Septum 1 7.108E-07 0.2921 1.0068
IncomplSeptum 0.877 0.005371 0.3086 1.0002

Papillation 1 1.938E-08 0.2806 1.0013
PapFlow 1 7.508E-07 0.4168 1.0031

PapSmooth 0.007686 0.0005047 0.1012 1.0002
Locularity 0.7928 0.05257 0.352 1.0124

WallRegularity 1 0 0 0
Shadows 0.9999 0.000002754 0.1652 1.0023

Echogenicity 1 0.000003014 0.7286 1.0085
ColScore 0.9771 0.01251 0.1206 1.0069
CA125 1 0 0 0

PI 0.3292 0.07948 0.3449 1.0157
RI 1 2.164E-07 0.4655 1.0094

PSV 0.9079 0.03741 0.5214 1.0126
TAMX 0.3632 0.05354 0.3141 1.0112

Hysterectomy 0.03078 0.002982 0.4107 1.0093
Solid 0.3022 0.05622 0.2821 1.0127

PMenoAge 0.00001654 7.112E-07 0.1754 1.0003
FamHistOvCa 0.06255 0.005788 0.2423 1.0012
FamHistBrCa 0.2088 0.006869 0.0394 1.0008
PostMenoY 0.000001546 1.656E-07 0.2115 1.0536
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Table A.7: The most probable MB sets of the Pathology variable. The first ten
column reports the Markov blanket sets of Pathology among the thirty-five variables
using the IOTA-1.2 data set, the BDeu parameter prior, a uniform structure prior for
the fixed ≺0 ordering, the second part of the unconstrained case using ordering-based
MCMC simulation. The estimated posteriors with convergence and confidence values
are reported in Table A.8.

FamHist 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Age 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0
Parity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Meno 0 0 1 1 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1
ReprYears 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CycleDay 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
HormTherapy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
PillUse 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Bilateral 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Volume 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Pain 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Ascites 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Fluid 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Septum 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
IncomplSept. 1 1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 1
Papillation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PapFlow 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PapSmooth 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Locularity 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1
WallReg. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Shadows 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Echogenicity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ColScore 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
CA125 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PI 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1
RI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
PSV 1 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 1 1 1
TAMX 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1 0 1 1
Hysterectomy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Solid 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 0
PMenoAge 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FamHistOvCa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FamHistBrCa 0 0 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0
PostMenoY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Table A.8: The estimated posteriors with convergence and confidence values of
the most probable MB sets of the Pathology variable reported in Table A.7 (in the
unconstrained case). The columns report their estimated posterior p̂(mb |DN ), the
corresponding standard error, maximum of the |ZG| single chain convergence test
value for all the chains, and the R̂ multiple chain score. The IOTA-1.2 data set, the
BDeu parameter prior were used in an unconstrained ordering-MCMC simulation
with 10000 burn-in sample, M=4 chains, L=50000 used sample.

rank(Table A.7) p̂(mb |DN) std.error max ZG R̂
1. 0.1579 0.009062 0.2006 1.0022
2. 0.05419 0.004213 0.1396 1.0002
3. 0.04589 0.002821 0.0705 1.0004
4. 0.0237 0.001195 0.1204 1.0003
5. 0.01931 0.005172 0.3002 1.0073
6. 0.01892 0.007267 0.2766 1.009
7. 0.0162 0.001847 0.0986 1.0002

Table A.9: The most probable MBGs using the IOTA-1.2 data set, the BDeu

parameter prior, and a uniform structure prior for the fixed ≺0 ordering. The MBGs
are reported in child, parent∗ form.

Pathology,Age Solid,Pathology,Papillation Age TAMX,Pathology,Septum Wall-
Regularity,Pathology,Papillation Shadows,Pathology,Echogenicity Echogenic-
ity ColScore,Pathology,TAMX CA125,Pathology,Ascites Bilateral,Pathology Vol-
ume,Pathology,Septum PI Ascites,Pathology RI,Pathology,PI Septum IncomplSep-
tum,Pathology,Septum Papillation PapFlow,Pathology
Pathology,Age Solid,Pathology,Papillation Age WallRegularity,Pathology,Papillation Shad-
ows,Pathology,Echogenicity Echogenicity ColScore,Pathology,PSV CA125,Pathology,Ascites PI
Bilateral,Pathology Volume,Pathology,Septum RI,Pathology,PI Ascites,Pathology PSV Septum
IncomplSeptum,Pathology,Septum Papillation PapFlow,Pathology TAMX,Pathology,Septum
Pathology,Meno Solid,Pathology,Papillation TAMX,Pathology,Septum WallReg-
ularity,Pathology,Papillation Meno Shadows,Pathology,Echogenicity Echogenic-
ity ColScore,Pathology,TAMX CA125,Pathology,Ascites Bilateral,Pathology Vol-
ume,Pathology,Septum PI Ascites,Pathology RI,Pathology,PI Septum IncomplSep-
tum,Pathology,Septum Papillation PapFlow,Pathology
Pathology,Meno Solid,Pathology,Papillation WallRegularity,Pathology,Papillation Shad-
ows,Pathology,Echogenicity Meno Echogenicity ColScore,Pathology,PSV CA125,Pathology,Ascites
PI Bilateral,Pathology Volume,Pathology,Septum RI,Pathology,PI Ascites,Pathology PSV Septum
IncomplSeptum,Pathology,Septum Papillation PapFlow,Pathology TAMX,Pathology,Septum
Pathology,Age TAMX,Pathology,Septum Age Solid,Pathology,Papillation WallRegular-
ity,Pathology,Papillation Shadows,Pathology,Echogenicity Echogenicity ColScore,Pathology,PSV
CA125,Pathology,Ascites Bilateral,Pathology Volume,Pathology,Septum PI Ascites,Pathology
RI,Pathology,PI Septum PSV Papillation PapFlow,Pathology
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Table A.10: The most probable MBGs of the Pathology variable in child, parent∗

form. The estimated posteriors with convergence and confidence values are reported
in Table A.11. The IOTA-1.2 data set, the BDeu parameter prior were used in an
unconstrained ordering-MCMC simulation with 10000 burn-in sample

Pathology TAMX Locularity,Pathology WallRegularity,Pathology,Papillation
Meno,Pathology,Echogenicity Shadows,Pathology,Echogenicity Echogenicity
ColScore,Pathology,TAMX CA125,Pathology,Ascites Bilateral,Pathology Vol-
ume,Pathology,Septum PI Ascites,Pathology RI,Pathology,Septum Septum PSV,Pathology,PI
Papillation PapFlow,Pathology,Papillation
Pathology,RI PapFlow,Pathology,Papillation RI Locularity,Pathology,Septum
Meno,Pathology,Echogenicity WallRegularity,Pathology,Papillation Shad-
ows,Pathology,Echogenicity Echogenicity ColScore,Pathology,PSV Bilateral,Pathology Vol-
ume,Pathology,Septum CA125,Pathology,Ascites Ascites,Pathology PSV,Pathology,RI Septum
IncomplSeptum,Pathology,Septum Papillation
Pathology WallRegularity,Pathology,Papillation Shadows,Pathology,Echogenicity Echogenic-
ity Meno,Pathology,Echogenicity ColScore,Pathology,TAMX CA125,Pathology,Ascites PI
RI,Pathology,Septum Bilateral,Pathology Volume,Pathology,Septum PSV,Pathology,PI As-
cites,Pathology TAMX Septum IncomplSeptum,Pathology,Septum,FamHistBrCa Papillation
PapFlow,Pathology,Papillation FamHistBrCa Locularity,Pathology

Table A.11: The estimated posteriors with convergence and confidence values of
the most probable MBGs of the Pathology variable reported in Table A.10. The
columns report their estimated posterior p̂(mbg |DN ), the corresponding standard
error, maximum of the |ZG| single chain convergence test value for all the chains, and
the R̂ multiple chain score. The IOTA-1.2 data set, the BDeu parameter prior were
used in an unconstrained ordering-MCMC simulation with 10000 burn-in sample,
M=4 chains, L=50000 used sample.

rank(Table A.10) p̂(mbg |DN ) std.error max ZG R̂
1. 0.01109 0.001531 0.1729 1.0003
2. 0.00964 0.001339 0.0549 1
3. 0.009497 0.001073 0.1409 1.0003
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