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How I met your host
Back to the roots of my interactions with Bart
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Control theory
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Control theory
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What is a 
matrix?



Personal interests
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PhD in machine 
learning?



Machine learning
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Let’s investigate 
health records!



Research at STADIUS
My PhD on machine learning, promoted by Bart De Moor
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Project: text mining health insurance records
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Project: text mining health insurance records
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Project: ???
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Project: ???
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Project: diabetes screening via insurance records
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Marc = Piranha



From research to industry
A brief overview of Aspect Analytics.
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Make sure to 
make impact!
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Aspect Analytics
Beyond bioinformatics.



22



Mission
• Dedicated software solutions for mass spectrometry imaging (MSI)

• focus on high-throughput applications
• enabling integration with other imaging modalities
• scalable by design if and when necessary

Our core offering
• Bioinformatics & machine learning
• Cloud-based software platform
• Customized workflows & integrations

Aspect Analytics in a nutshell
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Same same, but different
A brief overview of Aspect Analytics.
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Customer segmentation

Focus on industrial, high-throughput applications of MSI technology.
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Biomarker discovery &
clinical diagnostics

Big Pharma &
biotech companies

Instrument vendors
& service providers



The pharmaceutical R&D pipeline
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Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical R&D efficiency." Nature reviews Drug discovery 11.3 (2012): 191.



The pharmaceutical R&D pipeline

Only 12% of compounds entering clinical 
trials are ultimately approved by the FDA.1
● inadequate efficiency (57%)2

● safety concerns (17%)2

● commercial reasons (22%)2
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1. Pharmaceutical Research and Manufacturers of America. 2016 biopharmaceutical research industry profile.
2. Hwang, Thomas J., et al. "Failure of investigational drugs in late-stage clinical development and publication of trial results." JAMA internal 

medicine 176.12 (2016): 1826-1833.

Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical R&D efficiency." Nature reviews Drug discovery 11.3 (2012): 191.



The pharmaceutical R&D pipeline

Opportunities in preclinical research:

● “fail fast”: culling unfit compounds early avoids major costs

● deeper biological insights can improve entire process
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Figure taken from Scannell, Jack W., et al. "Diagnosing the decline in pharmaceutical R&D efficiency." Nature reviews Drug discovery 11.3 (2012): 191.



Optimizing human efficiency via workflows
• Full digital pipeline is split into work items
• Individual roles based on expertise
• Streamline communication & collaboration
• Automate data analysis steps when possible

Detecting potential issues via data-driven QC
• Pivotal for robust, high-throughput usage
• Requires deep knowledge of application
• Supported by detailed metadata
• Ideally fully automated

Key challenges in high-throughput
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When you try to fail and you succeed ...

“When you operate at scale, failure is the norm.” - distributed computing adage

In the context of MS imaging, failures can come in many forms, e.g.:
• bad data: problems with sample / sample prep, instrument issues, ...
• poor data analysis: information leaks, problematic assumptions, bad fit, … 
• human error: errors in data input / copying, communication issues, ...

How to deal with impending failures
• observability: can we identify the presence of certain issues? e.g., bad spectral quality
• traceability: can we identify the root cause of an issue? e.g., broken laser
• prevention: how to avoid this issue moving forward? e.g., laser QC protocol
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Observability reduces risk
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high observability

(issues can be detected reliably)

 low observability

(issues cannot be detected reliably)

low impact

(probably does not affect conclusions)

high impact

(may significantly affect conclusions)



Data-driven QC is key

Spend time once to gain time permanently
• Check key assumptions for each sample / batch in an automated way
• Run data-driven QC as a background task, notify team upon anomalies only

Improve reliability and confidence in core outputs
• Rest assured that large swaths of problems are checked by default
• Avoid structural failures that can compromise long-term success

Data-driven QC requires well-curated meta-data
• info on all relevant levels: sample / ROI / measurement / … 

• e.g., control vs. treated animal, technical/biological replicates, # laser shots, ...
• data lineage to enable traceability
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Conclusion
What a long, strange trip it’s been
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What a long, strange trip it’s been
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What a long, strange trip it’s been
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What a long, strange trip it’s been
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What a long, strange trip it’s been
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Let’s go back
to the roots!
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