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Wishlist

Big Data: Volume, Velocity, Variety, . . .

Dealing with high dimensional input spaces

Need for powerful black box modeling techniques

Avoid pitfalls of nonlinear optimization (convergence
issues, local minima,. . . )

Preferable: (numerical) linear algebra, convex optimization

Algorithms for (un-)supervised function regression and
estimation, (predictive) modeling, clustering and
classification, data dimensionality reduction, correlation
analysis (spatial-temporal modeling), feature selection,
(early - intermediate - late) data fusion, ranking, outlier
and fraud detection, decision support systems (process
industry 4.0, digital health, . . . )

. . .
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Wishlist

Linear Algebra LS-SVM/Kernel
Supervised Least squares Function Estimation

Classification Kernel Classification
Unsupervised SVD - PCA Kernel PCA

Angles - CCA Kernel CCA
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System Identification

System Identification: PEM

LTI models

Non-convex optimization

Considered ’solved’ early nineties

Linear Algebra approach

⇒ Large block Hankel data matrices;
SVD; Orthogonal and oblique projections;
Least squares
⇒ Subspace methods
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Polynomial optimization problems

Multivariate polynomial optimization
problems

Multivariate polynomial object function +
constraints

Non-convex optimization

Computer Algebra, Homotopy methods,
Numerical Optimization

Linear Algebra approach

⇒ Macaulay matrix; SVD; Kernel;
Realization theory
⇒ Smallest eigenvalue of large matrix
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Least Squares Support Vector Machines. . .

Nonlinear regression, modelling and clustering

Most regression, modelling and clustering
problems are nonlinear when formulated in the
input data space

This requires nonlinear nonconvex optimization
algorithms

Linear Algebra approach

⇒ Least Squares Support Vector Machines

‘Kernel trick’ = projection of input data to a
high-dimensional feature space

Regression, modelling, clustering problem
becomes a large scale linear algebra problem (set
of linear equations, eigenvalue problem)
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Least Squares Support Vector Machines. . .
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Least squares

X.w = y

Consistent ⇐⇒ rank(X) = rank(X y)

Then estimate w unique iff X of full column rank

Inconsistent if rank(X y) = rank(X) + 1

Find ‘best’ linear combination of columns of X to
approximate y =⇒ Least Squares
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Least squares

min w ‖y −Xw‖22 =
min w wTXTXw − 2yTXw + yTy

Derivatives w.r.t. w =⇒ normal equations

XTXw = XTy

If X full column rank: w = (XTX)−1XTy
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Least squares

Equivalently: Call e = y −Xw

min e,w ‖e‖22 = eTe subject to y −Xw − e = 0

Lagrangean L(e, w, l) = 1
2e
Te+ lT (y −Xw − e)

∂L
∂e

= 0 = e− l
∂L
∂w

= 0 = XT l

∂L
∂l

= 0 = y −Xw − e

=⇒ e = l

=⇒ XTe = 0

=⇒ XTXw = XTy

15 / 69



Big Data Low is difficult, high is easy Regression Classification Dimensionality reduction Correlation analysis Extensions Applications Conclusions

Least squares

Consider

min
e,w

1

2
eTV −1e+

1

2
wTW−1w

subject to
y = Xw + e

This is maximum likelihood/Bayesian with priors

e ∼ N (0, V ) and w ∼ N (0,W ) .

Lagrangean

L(w, l, e) = 1

2
eTV −1e+

1

2
wTW−1w−lT (y−Xw−e)
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Least squares

∂L
∂w

= 0 = W−1w +XT l

∂L
∂l

= 0 = y −Xw − e
∂L
∂e

= 0 = V −1e+ l

Hence

 0 X I
XT W−1 0
I 0 V −1

 l
w
e

 =

 y
0
0


Karush-Kuhn-Tucker equations
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Least squares

Let X ∈ Rp×q. Eliminate e = y −Xw

V −1y − V −1Xw + l = 0

W−1w +XT l = 0

Primal: Eliminate l
x = (XTV −1X +W−1)−1XTV −1y
→ ‘small’ q × q inverse

Dual: Eliminate w
l = −(V +XWXT )−1y
→ ‘large’ p× p inverse
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Least Squares Support Vector Machine Regression

Given X ∈ RN×q, y ∈ RN with i-th row xi.
Consider a nonlinear vector function ϕ(xi) ∈ R1×q

and the constrained least squares optimization
problem:

min
w,b,e

1

2
wTw +

γ

2
eTe

subject to

y =

 ϕ(x1)
...

ϕ(xN)

w + e = Xϕw + e
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Least Squares Support Vector Machine Regression

Lagrangean

L(w, e, l) = 1

2
wTw +

γ

2
eTe+ lT (y −Xϕw − e)

Eliminate e and w to find

l = (XϕX
T
ϕ +

1

γ
IN)

−1y
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Least Squares Support Vector Machine Regression

Call (XϕX
T
ϕ + 1

γIN) the kernel K(., .) with element

i, j: K(xi, xj) = ϕ(xi).ϕ
T (xj), an ‘inner product’.

Then, obviously

y(x) =
∑N

i=1K(xi, x)li
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Least Squares Support Vector Machine Regression
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Least Squares Support Vector Machine Regression

Observations:

Kernel: N ×N , symmetric positive definite matrix

q can be large (possibly ∞)

ϕ(xi) nonlinearly maps data row xi into a high-(possibly
∞-)dimensional space.

Not needed to know ϕ(.) explicitly. In machine learning, we
fix a symmetric continuous kernel that satisfies Mercer’s
condition: ∫

K(x, z)g(x)g(z)dxdz ≥ 0 ,

for any square integrable function g(x). Then K(x, z)
separates: ∃ Hilbert space H, ∃ map φ(.) and ∃ λi > 0 such
that

K(x, z) =
∑

λiφ(x)φ(z) .

Kernel trick: Work out ‘dual formulation’ with Lagrange
multipliers; generate ‘long’ (∞) inner products with ϕ(.);
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Least Squares Support Vector Machine Regression

Kernels:

Mathematical form: linear, polynomial, radial basis function,
splines, wavelets, string kernel, kernels from graphical
models, Fisher kernels, graph kernels, data fusion
kernels, spike kernels, . . .

Application inspired: Text mining, bioinformatics, images, . . .
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Least Squares Support Vector Machine Regression

Linear Algebra LS-SVM/Kernel
Supervised Least squares Function Estimation

Classification Kernel Classification
Unsupervised SVD - PCA Kernel PCA

Angles - CCA Kernel CCA
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Linear classification
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Linear classification
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LS-SVM classifier
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LS-SVM classifier
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Linear Algebra LS-SVM/Kernel
Supervised Least squares Function Estimation

Classification Kernel Classification
Unsupervised SVD - PCA Kernel PCA

Angles - CCA Kernel CCA
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PCA - SVD

Given data matrix X. Find vectors of maximum variance:

max
w,e

eT e ,

subject to
e = Xw , wTw = 1 .

Lagrangean:

L(w, e, λ) = 1

2
eT e− lT (e−Xw) + λ(1− wTw)

giving

0 = e− l
0 = XT l − 2wλ

0 = e−Xw
1 = wTw
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PCA - SVD

Hence
l = Xw , XT l = w(2λ) , lT l = 2λ .

Call v = l/
√
2λ and σ =

√
2λ, then

Xw = vσ , wTw = 1

XT v = wσ , vT v = 1

SVD !! So, the left singular vectors of X are Lagrange multipliers
in a PCA problem.

Example: 12 600 genes
72 patients:

- 28 Acute Lymphoblastic Leukemia (ALL)

- 24 Acute Myeloid Leukemia (AML)

- 20 Mixed Linkage Leukemia (MLL)
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PCA - SVD
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PCA - SVD

	

37 / 69



Big Data Low is difficult, high is easy Regression Classification Dimensionality reduction Correlation analysis Extensions Applications Conclusions

Kernel PCA
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Kernel PCA
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Linear Algebra LS-SVM/Kernel
Supervised Least squares Function Estimation

Classification Kernel Classification
Unsupervised SVD - PCA Kernel PCA

Angles - CCA Kernel CCA
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Principal angles and directions. . .

Given two data matrices X,Y . Find directions in the column space
of X, resp. Y that maximally correlate:

min
e,f,v,w

1

2
‖e− f‖22 ,

subject to
e = Xv, f = Y w, eT e = 1, fT f = 1 .

Notice that

‖e− f‖22 = 1 + 1− 2eT f = 2(1− cos θ)

Minimizing distance = maximizing cosine = minimizing angle
between column spaces
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Principal angles and directions. . .

Lagrangean:
L(e, f, v, w, a, b, α, β) = 1− eT f + aT (e−Xv) + bT (f − Y w)

−α(1− eT e)− β(1− fT f)
resulting in

−f + a = −eα e = Xv

−e+ b = −fβ f = Y w

XTa = 0 eT e = 1

Y T b = 0 fT f = 1

Eliminating a, b, e, f gives

XTY w = XTXvα

Y TXv = Y TY wβ

Hence: α = β = λ(say)(= cos θ) .
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Principal angles and directions. . .

Principal angles and directions follow from Generalized EVP(
0 XTY

Y TX 0

)(
v
w

)
=

(
XTX 0
0 Y TY

)(
v
w

)
λ

vTXTXv = wTY TY w = 1

Numerically correct way: use 3 SVD’s (see Golub/VanLoan)
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Kernel CCA
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Kernel CCA
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Kernel CCA
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‘Core’ LS-SVM problems

	

49 / 69



Big Data Low is difficult, high is easy Regression Classification Dimensionality reduction Correlation analysis Extensions Applications Conclusions

Software

	
	

http://www.esat.kuleuven.be/sista/lssvmlab/	
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Enforcing sparsity
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Robustness
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Robustness
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Fixed-size LS-SVM
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Prediction intervals
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Semi-supervised learning
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Tensor data
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Modeling a tsunami of data
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Electric Load Forecasting
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Electric Load Forecasting
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Medical applications

	

PACS 
UZ Leuven 

1,6 PetaByte 

Genomics core 
HiSeq 2000 full 
speed exome 
sequencing 

1 TeraByte / week 

1 small 
animal 
image 

1 
GigaByte 

1 CD-
ROM 
750 

MegaByte 

sequencing all newborns 
by 2020 (125k births / 

year) 
125 PetaByte / year 

index of 20 
million 

Biomedical 
PubMed 
records 

23 GigaByte 

1 slice mouse 
brain MSI at 

10 μm 
resolution 
81 GigaByte 

raw NGS data 
of 1 full 
genome 

1 TeraByte 

1 kB   = 1000  
1 MB  = 1 000 000 
1 GB  = 1 000 000 000 
1 TB   = 1 000 000 000 000 
1 PB   = 1 000 000 000 000 000    
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Magnetic resonance spectroscopic imaging
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Proteomics
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Ranking from data fusion
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Conclusions

LS-SVM = unifying framework for (un-)supervised ML tasks:
regression, (predictive) modeling, clustering and classification,
data dimensionality reduction, correlation analysis
(spatial-temporal modeling), feature selection, (early -
intermediate - late) data fusion, ranking, outlier detection

Form a core ingredient of decision support systems with
‘human decision maker in-the-loop’: Policies in climate,
energy, pollution; Clinical decision support: digital health;
Industrial decision support: yield, monitoring, emission
control; Zillions of application areas;

Tsunami of Big Data (high dimensional input spaces, high
complexity and interrelations, ...) are generated by
Internet-of-Things multi-sensor networks, clinical monitoring
equipment, etc...

Via the Kernel Trick: It’s all linear algebra !
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