Linear Algebra in and for Least Squares Support Vector Machines

bart.demoor@kuleuven.be www.bartdemoor.be

Katholieke Universiteit Leuven Department of Electrical Engineering ESAT-STADIUS

Outline

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions

Outline

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
- 8 Applications
- 9 Conclusions

Big Data ●0	Low is difficult, high is easy 00000	Regression 000000000000	Classification 0000	Dimensionality reduction	Correlation analysis	Extensions
Wishlist						

• Big Data: Volume, Velocity, Variety, ...

SCD

- Dealing with high dimensional input spaces
- Need for powerful black box modeling techniques
- Avoid pitfalls of nonlinear optimization (convergence issues, local minima,...)
- Preferable: (numerical) linear algebra, convex optimization
- Algorithms for (un-)supervised function regression and estimation, (predictive) modeling, clustering and classification, data dimensionality reduction, correlation analysis (spatial-temporal modeling), feature selection, (early - intermediate - late) data fusion, ranking, outlier and fraud detection, decision support systems (process industry 4.0, digital health, ...)

Big Data	Regression	Classification	Dimensionality reduction	Correlation analysis	
00					
Wishlist					

	Linear Algebra	LS-SVM/Kernel
Supervised	Least squares	Function Estimation
	Classification	Kernel Classification
Unsupervised	SVD - PCA	Kernel PCA
	Angles - CCA	Kernel CCA

Outline

Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
- 8 Applications
- 9 Conclusions

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
	00000					
System Id	entification					

System Identification: PEM

- LTI models
- Non-convex optimization
- Considered 'solved' early nineties

Linear Algebra approach

⇒ Large block Hankel data matrices;
 SVD; Orthogonal and oblique projections;
 Least squares
 ⇒ Subspace methods

Big Data Low is difficult, high is easy Regr

ssion Class

sification Dimensi

onality reduc O orrelation analysi

Extension:

Polynomial optimization problems

Multivariate polynomial optimization problems

- Multivariate polynomial object function + constraints
- Non-convex optimization
- Computer Algebra, Homotopy methods, Numerical Optimization

Linear Algebra approach

⇒ Macaulay matrix; SVD; Kernel; Realization theory

 \Rightarrow Smallest eigenvalue of large matrix

Least Squares Support Vector Machines...

Nonlinear regression, modelling and clustering

- Most regression, modelling and clustering problems are nonlinear when formulated in the input data space
- This requires nonlinear nonconvex optimization algorithms

Linear Algebra approach

- ⇒ Least Squares Support Vector Machines
 - 'Kernel trick' = projection of input data to a high-dimensional feature space
 - Regression, modelling, clustering problem becomes a large scale linear algebra problem (set of linear equations, eigenvalue problem)

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
00	00000	0000000000000	0000	000000	000000	0000000

Least Squares Support Vector Machines...

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
	00000					
Lanat Cau	ana Cumment Master Mashing					

Least Squares Support Vector Machines...

	Linear Algebra	LS-SVM/Kernel
Supervised	Least squares	Function Estimation
	Classification	Kernel Classification
Unsupervised	SVD - PCA	Kernel PCA
	Angles - CCA	Kernel CCA

Outline

Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
- 8 Applications
- 9 Conclusions

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
		•000000000000				
Least squa	ares					

$$X.w = y$$

$$\mathsf{Consistent} \Longleftrightarrow \mathrm{rank}(X) = \mathrm{rank}(X \ y)$$

Then estimate w unique iff X of full column rank

Inconsistent if rank(X y) = rank(X) + 1

Find 'best' linear combination of columns of X to approximate $y \Longrightarrow$ Least Squares

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
		000000000000000000000000000000000000000				
Least squa	ares					

$$\min_{w} \|y - Xw\|_2^2 = \\\min_{w} w^T X^T X w - 2y^T X w + y^T y$$

Derivatives w.r.t. $w \Longrightarrow$ normal equations

$$X^T X w = X^T y$$

If X full column rank: $w = (X^T X)^{-1} X^T y$

Big Data Low is difficult, high is easy Regression

Least squares

LEUVEN

Equivalently: Call
$$e = y - Xw$$

SCD

$$\min_{e,w} \|e\|_{2}^{2} = e^{T}e$$
 subject to $y - Xw - e = 0$

Lagrangean
$$\mathcal{L}(e,w,l) = rac{1}{2}e^T e + l^T(y-Xw-e)$$

$$\frac{\partial \mathcal{L}}{\partial e} = 0 = e - l \implies e = l$$

$$\frac{\partial \mathcal{L}}{\partial w} = 0 = X^T l \implies X^T e = 0$$

$$\frac{\partial \mathcal{L}}{\partial l} = 0 = y - X w - e \implies X^T X w = X^T y$$

$$\implies X^T X w = X^T y$$

$$\implies X^T X w = X^T y$$

Consider

$$\min_{e,w} \ \frac{1}{2} e^T V^{-1} e + \frac{1}{2} w^T W^{-1} w$$

subject to

$$y = Xw + e$$

This is maximum likelihood/Bayesian with priors

$$e \sim \mathcal{N}(0, V)$$
 and $w \sim \mathcal{N}(0, W)$.

Lagrangean

EŠÁT

SCD

$$\mathcal{L}(w,l,e) = \frac{1}{2}e^{T}V^{-1}e + \frac{1}{2}w^{T}W^{-1}w - l^{T}(y - Xw - e)$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
		000000000000000000000000000000000000000				
Least squa	ares					

$$\frac{\partial \mathcal{L}}{\partial w} = 0 = W^{-1}w + X^{T}l$$
$$\frac{\partial \mathcal{L}}{\partial l} = 0 = y - Xw - e$$
$$\frac{\partial \mathcal{L}}{\partial e} = 0 = V^{-1}e + l$$

Hence

LE

SCD

ESA1

$$\begin{pmatrix} 0 & X & I \\ X^T & W^{-1} & 0 \\ I & 0 & V^{-1} \end{pmatrix} \begin{pmatrix} l \\ w \\ e \end{pmatrix} = \begin{pmatrix} y \\ 0 \\ 0 \end{pmatrix}$$

Karush-Kuhn-Tucker equations

Let $X \in \mathbf{R}^{p \times q}$. Eliminate e = y - Xw

$$V^{-1}y - V^{-1}Xw + l = 0$$

 $W^{-1}w + X^{T}l = 0$

1

Primal: Eliminate
$$l$$

 $x = (X^T V^{-1} X + W^{-1})^{-1} X^T V^{-1} y$
 \rightarrow 'small' $q \times q$ inverse
Dual: Eliminate w

Judi: Eliminate
$$W$$

$$l = -(V + X W X^{T})^{-1} y$$

 \rightarrow 'large' $p \times p$ inverse

Least Squares Support Vector Machine Regression

Given $X \in \mathbf{R}^{N \times q}, y \in \mathbf{R}^N$ with *i*-th row x_i . Consider a nonlinear vector function $\varphi(x_i) \in \mathbf{R}^{1 \times q}$ and the constrained least squares optimization problem:

$$\min_{w,b,e} \frac{1}{2} w^T w + \frac{\gamma}{2} e^T e$$

subject to

$$y = \begin{pmatrix} \varphi(x_1) \\ \vdots \\ \varphi(x_N) \end{pmatrix} w + e = X_{\varphi}w + e$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis			
		000000000000000000000000000000000000000						
Least Squ	east Squares Support Vector Machine Regression							

Lagrangean

$$\mathcal{L}(w, e, l) = \frac{1}{2}w^T w + \frac{\gamma}{2}e^T e + l^T (y - X_{\varphi}w - e)$$

Eliminate $e \mbox{ and } w$ to find

$$l = (X_{\varphi}X_{\varphi}^T + \frac{1}{\gamma}I_N)^{-1}y$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
		000000000000000000000000000000000000000				
Least Squa	ares Support Vector Machine	Regression				

Call
$$(X_{\varphi}X_{\varphi}^{T} + \frac{1}{\gamma}I_{N})$$
 the kernel $K(.,.)$ with element $i, j: K(x_{i}, x_{j}) = \varphi(x_{i}).\varphi^{T}(x_{j})$, an 'inner product'.

Then, obviously

$$\mathbf{y}(\mathbf{x}) = \sum_{i=1}^{N} K(x_i, x) l_i$$

Least Squares Support Vector Machine Regression

LS-SVM regression: dual problem

Model:

$$\hat{y} = \sum_{i} \, \alpha_i \, K(x_i, x) + b$$

where α, b follows from

$$\begin{bmatrix} 0 & 1_N^T \\ \hline 1_N & \Omega + I/\gamma \end{bmatrix} \begin{bmatrix} b \\ \hline \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ \hline y \end{bmatrix}$$

where

$$\Omega_{ij} = \varphi(x_i)^T \varphi(x_j) = K(x_i, x_j)$$

for i, j = 1, ..., N and $y = [y_1; ...; y_N]$.

Observations:

- \bullet Kernel: $N\times N$, symmetric positive definite matrix
- q can be large (possibly ∞)
- $\varphi(x_i)$ nonlinearly maps data row x_i into a high-(possibly ∞ -)dimensional space.
- Not needed to know $\varphi(.)$ explicitly. In machine learning, we fix a symmetric continuous kernel that satisfies Mercer's condition:

$$\int K(x,z)g(x)g(z)dxdz \ge 0 ,$$

for any square integrable function g(x). Then K(x, z) separates: \exists Hilbert space \mathcal{H} , \exists map $\phi(.)$ and $\exists \lambda_i > 0$ such that

$$K(x,z) = \sum \lambda_i \phi(x) \phi(z) .$$

• Kernel trick: Work out 'dual formulation' with Lagrange multipliers; generate 'long' (∞) inner products with $\varphi(.)$;

Kernels:

Mathematical form: linear, polynomial, radial basis function, splines, wavelets, string kernel, kernels from graphical models, Fisher kernels, graph kernels, data fusion kernels, spike kernels, ...

Application inspired: Text mining, bioinformatics, images,

$$\begin{split} &K(x,x_i) = x_i^T x \text{ (linear SVM)} \\ &K(x,x_i) = (x_i^T x + \tau)^d \text{ (polynomial SVM of degree } d), \ \tau \geq 0 \\ &K(x,x_i) = \exp(-\|x - x_i\|_2^2/\sigma^2) \text{ (RBF kernel)} \\ &K(x,x_i) = \tanh(\kappa \, x_i^T x + \theta) \text{ (MLP kernel)} \end{split}$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis				
		00000000000000							
Least Sou	east Squares Support Vector Machine Regression								

	Linear Algebra	LS-SVM/Kernel
Supervised	Least squares	Function Estimation
	Classification	Kernel Classification
Unsupervised	SVD - PCA	Kernel PCA
	Angles - CCA	Kernel CCA

Outline

Big Data

- 2 Low is difficult, high is easy
- **3** Regression

4 Classification

- 5 Dimensionality reduction
- 6 Correlation analysis

7 Extensions

- 8 Applications
- 9 Conclusions

Learning: unsupervised, supervised, semi-supervised

Given data can be labeled, unlabeled or partially labeled (clustering = unsupervised, classification = supervised)

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extension
Linear clas	ssification					0000000

Requirement that all training data are correctly classified:

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
			0000			
Linear clas	ssification					

SVM: maximize the margin

$$\mathsf{Margin} = \frac{2}{\|w\|}$$

SCD

SA

 $\begin{array}{ll} \min_{w,b} & \frac{1}{2} w^T w \\ \text{subject to} & y_i [w^T x_i + b] \geq 1 \quad \ , \ i=1,...,N \end{array}$

Big Data		Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
00	00000	000000000000000000000000000000000000000	0000	000000	000000	0000000
LS-SVM c	lassifier					

- Preserve support vector machine [Vapnik, 1995] methodology, but simplify via least squares and equality constraints [Suykens, 1999]
- Primal problem:

$$\min_{w,b,e} \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^{N} e_i^2 \quad \text{s.t.} \quad y_i [w^T \varphi(x_i) + b] = 1 - e_i, \ i = 1, ..., N$$

• Dual problem:

$$\begin{bmatrix} 0 & y^T \\ \hline y & \Omega + I/\gamma \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ \hline 1_N \end{bmatrix}$$

where $\Omega_{ij} = y_i y_j \varphi(x_i)^T \varphi(x_j) = y_i y_j K(x_i, x_j)$ and $y = [y_1; ...; y_N]$.

 LS-SVM classifiers perform very well on 20 UCI data sets [Van Gestel et al., ML 2004] Winning results in competition WCCI 2006 by [Cawley, 2006]

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
			0000			
LS-SVM	lassifier					

• Lagrangian:

$$\mathcal{L}(w, b, e; \alpha) = \mathcal{J}(w, e) - \sum_{i=1}^{N} \alpha_i \{ y_i [w^T \varphi(x_i) + b] - 1 + e_i \}$$

with Lagrange multipliers α_i .

• Conditions for optimality:

$$\left\{egin{array}{ll} rac{\partial \mathcal{L}}{\partial w} = 0 &
ightarrow w = \sum_{i=1}^{N} lpha_i y_i arphi(x_i) \ rac{\partial \mathcal{L}}{\partial b} = 0 &
ightarrow \sum_{i=1}^{N} lpha_i y_i = 0 \ rac{\partial \mathcal{L}}{\partial e_i} = 0 &
ightarrow lpha_i = \gamma e_i, & i = 1, ..., N \ rac{\partial \mathcal{L}}{\partial lpha_i} = 0 &
ightarrow y_i [w^T arphi(x_i) + b] - 1 + e_i = 0, & i = 1, ..., N \end{array}
ight.$$

Eliminate w, e and write solution in α, b .

Outline

Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
- 8 Applications
- 9 Conclusions

Big Data	Regression	Classification	Dimensionality reduction	Correlation analysis	
00					

	Linear Algebra	LS-SVM/Kernel
Supervised	Least squares	Function Estimation
	Classification	Kernel Classification
Unsupervised	SVD - PCA	Kernel PCA
	Angles - CCA	Kernel CCA

Given data matrix X. Find vectors of maximum variance:

 $\max_{w,e} e^T e \ ,$

subject to

$$e = Xw , \ w^T w = 1$$

Lagrangean:

$$\mathcal{L}(w, e, \lambda) = \frac{1}{2}e^{T}e - l^{T}(e - Xw) + \lambda(1 - w^{T}w)$$

giving

$$0 = e - l$$

$$0 = X^T l - 2w\lambda$$

$$0 = e - Xw$$

$$1 = w^T w$$

SCD

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
				00000		
	/D					

Hence

$$l=Xw\;,\;X^Tl=w(2\lambda)\;,l^Tl=2\lambda\;.$$

Call $v=l/\sqrt{2\lambda}$ and $\sigma=\sqrt{2\lambda},$ then

$$\begin{aligned} Xw &= v\sigma \quad , \quad w^Tw = 1\\ X^Tv &= w\sigma \quad , \quad v^Tv = 1 \end{aligned}$$

SVD !! So, the left singular vectors of X are Lagrange multipliers in a PCA problem.

Example: 12 600 genes 72 patients:

SCD

- 28 Acute Lymphoblastic Leukemia (ALL)
- 24 Acute Myeloid Leukemia (AML)
- 20 Mixed Linkage Leukemia (MLL)

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extension
PCA - SV	/D		0000		000000	0000000

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
				000000		

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
				000000		
Kernel PC	A					

• Primal problem:

$$\min_{w,b,e} \quad -\frac{1}{2}w^T w + \frac{1}{2}\gamma \sum_{i=1}^{N} e_i^2 \quad \text{s.t.} \quad e_i = w^T \varphi(x_i) + b, \ i = 1, ..., N.$$

• Dual problem = kernel PCA :

 $\Omega_c \alpha = \lambda \alpha$ with $\lambda = 1/\gamma$

with $\Omega_{c,ij} = (\varphi(x_i) - \hat{\mu}_{\varphi})^T (\varphi(x_j) - \hat{\mu}_{\varphi})$ in centered kernel matrix.

Big Data		Regression	Classification	Dimensionality reduction	Correlation analysis	
				000000		
Kernel PC	A					

Outline

Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
 - 7 Extensions
- 8 Applications
- 9 Conclusions

Big Data	Regression	Classification	Dimensionality reduction	Correlation analysis	

	Linear Algebra	LS-SVM/Kernel
Supervised	Least squares	Function Estimation
	Classification	Kernel Classification
Unsupervised	SVD - PCA	Kernel PCA
	Angles - CCA	Kernel CCA

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	
					• 00 000	
Principal a	angles and directions					

Given two data matrices X, Y. Find directions in the column space of X, resp. Y that maximally correlate:

$$\min_{e,f,v,w} \frac{1}{2} \|e - f\|_2^2 \,,$$

subject to

$$\boldsymbol{e} = \boldsymbol{X}\boldsymbol{v}, \boldsymbol{f} = \boldsymbol{Y}\boldsymbol{w}, \boldsymbol{e}^T\boldsymbol{e} = \boldsymbol{1}, \boldsymbol{f}^T\boldsymbol{f} = \boldsymbol{1}$$
 .

Notice that

$$||e - f||_2^2 = 1 + 1 - 2e^T f = 2(1 - \cos \theta)$$

Minimizing distance = maximizing cosine = minimizing angle between column spaces

Principal angles and directions...

LE

Lagrangean:

$$\begin{split} \mathcal{L}(e,f,v,w,a,b,\alpha,\beta) &= 1 - e^T f + a^T (e - Xv) + b^T (f - Yw) \\ &- \alpha (1 - e^T e) - \beta (1 - f^T f) \\ \end{split}$$
resulting in

$$\begin{aligned} -f + a &= -e\alpha & e &= Xv \\ -e + b &= -f\beta & f &= Yw \\ X^T a &= 0 & e^T e &= 1 \\ Y^T b &= 0 & f^T f &= 1 \end{aligned}$$

Eliminating a, b, e, f gives

$$\begin{aligned} X^T Y w &= X^T X v \alpha \\ Y^T X v &= Y^T Y w \beta \end{aligned}$$

Hence: $\alpha = \beta = \lambda(\text{say})(=\cos\theta)$.

Big Data			Classification	Dimensionality reduction	Correlation analysis	
00	00000	000000000000000000000000000000000000000	0000	000000	00000	0000000
Principal a	angles and directions					

Principal angles and directions follow from Generalized EVP

$$\begin{pmatrix} 0 & X^T Y \\ Y^T X & 0 \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} = \begin{pmatrix} X^T X & 0 \\ 0 & Y^T Y \end{pmatrix} \begin{pmatrix} v \\ w \end{pmatrix} \lambda$$
$$v^T X^T X v = w^T Y^T Y w = 1$$

Numerically correct way: use 3 SVD's (see Golub/VanLoan)

Big Data 00	Low is difficult, high is easy 00000	Regression	Classification 0000	Dimensionality reduction	Correlation analysis	Extensions
Kernel CC	A					

Applications of kernel CCA [Suykens et al., 2002, Bach & Jordan, 2002] e.g. in:

- bioinformatics (correlation gene network gene expression profiles) [Vert et al., 2003]
- information retrieval, fMRI [Shawe-Taylor et al., 2004]
- state estimation of dynamical systems, subspace algorithms [Goethals et al., 2005]

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
Kernel CC	A	000000000000000000000000000000000000000	0000	000000	000000	0000000

Kernel CCA

• Kernel CCA: primal formulation [Suykens et al., 2002] (related work [Bach & Jordan, 2002])

$$\min_{w,v,b,d,e,r} w^T w + v^T v + \nu \sum_i (e_i - r_i)^2 \text{ s.t. } \begin{cases} e_i = w^T \varphi_1(x_i) + b, \forall i \\ r_i = v^T \varphi_2(z_i) + d, \forall i \end{cases}$$

- Data $\{x_i\}$: **past** of time-series
- Data $\{z_i\}$: future of time-series
- State vector sequence from kernel CCA
- System order estimate from kernel CCA
- Dual problem: generalized eigenvalue problem

Big Data 00	Low is difficult, high is easy 00000	Regression	Classification 0000	Dimensionality reduction	Correlation analysis ○○○○○●	Extensions
Kernel CC	A					

• Score variables: $z_x = w^T(\varphi_1(x) - \hat{\mu}_{\varphi_1}), z_y = v^T(\varphi_2(y) - \hat{\mu}_{\varphi_2})$ Feature maps φ_1, φ_2 , kernels $K_1(x_i, x_j) = \varphi_1(x_i)^T \varphi_1(x_j), K_2(y_i, y_j) = \varphi_2(y_i)^T \varphi_2(y_j)$

• Primal problem: (Kernel PLS case: $\nu_1 = 0, \nu_2 = 0$ [Hoegaerts et al., 2004])

$$\begin{split} & \max_{w,v,e,r} \qquad \gamma \sum_{i=1}^{N} e_i r_i - \nu_1 \frac{1}{2} \sum_{i=1}^{N} e_i^2 - \nu_2 \frac{1}{2} \sum_{i=1}^{N} r_i^2 - \frac{1}{2} w^T w - \frac{1}{2} v^T v \\ & \text{such that} \quad e_i = w^T (\varphi_1(x_i) - \hat{\mu}_{\varphi_1}), \ r_i = v^T (\varphi_2(y_i) - \hat{\mu}_{\varphi_2}), \ \forall i \\ & \text{with } \hat{\mu}_{\varphi_1} = (1/N) \sum_{i=1}^{N} \varphi_1(x_i), \hat{\mu}_{\varphi_2} = (1/N) \sum_{i=1}^{N} \varphi_2(y_i). \end{split}$$

• Dual problem: generalized eigenvalue problem [Suykens et al. 2002]

$$\begin{bmatrix} 0 & \Omega_{c,2} \\ \Omega_{c,1} & 0 \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \lambda \begin{bmatrix} \nu_1 \Omega_{c,1} + I & 0 \\ 0 & \nu_2 \Omega_{c,2} + I \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} , \lambda = 1/\gamma$$
with $\Omega_{c,1_{ij}} = (\varphi_1(x_i) - \hat{\mu}_{\varphi_1})^T (\varphi_1(x_j) - \hat{\mu}_{\varphi_1}), \Omega_{c,2_{ij}} = (\varphi_2(y_i) - \hat{\mu}_{\varphi_2})^T (\varphi_2(y_j) - \hat{\mu}_{\varphi_2})$

Outline

Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
 - 8 Applications
- 9 Conclusions

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
						000000
10 110	0.04					

Regression

$$\min_{w,b,e} w^T w + \gamma \sum_i e_i^2 \text{ s.t. } y_i = w^T \varphi(x_i) + b + e_i, \quad \forall i$$

Classification

$$\min_{w,b,e} w^T w + \gamma \sum_i e_i^2 \text{ s.t. } y_i(w^T \varphi(x_i) + b) = 1 - e_i, \ \forall i$$

• Kernel pca (V = I), Kernel spectral clustering $(V = D^{-1})$

$$\min_{w,b,e} - w^T w + \gamma \sum_i v_i e_i^2 \text{ s.t. } e_i = w^T \varphi(x_i) + b, \ \forall i$$

• Kernel canonical correlation analysis/partial least squares

$$\min_{w,v,b,d,e,r} w^T w + v^T v + \nu \sum_i (e_i - r_i)^2 \text{ s.t. } \begin{cases} e_i = w^T \varphi_1(x_i) + b \\ r_i = v^T \varphi_2(y_i) + d \end{cases}$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
Software						

http://www.esat.kuleuven.be/sista/lssvmlab/

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
						0000000
Enforcing	sparsity					

Sparsity

- through loss function: model
$$\hat{y} = \sum_i \alpha_i K(x,x_i) + b$$

min
$$w^T w + \gamma \sum_i L(e_i)$$

 $\Rightarrow \mathsf{sparse} \ \alpha$

• through regularization: model $\hat{y} = w^T x + b$

$$\min \; \sum_j |w_j| + \gamma \sum_i e_i^2$$

 \Rightarrow sparse w

with v_i determined from $\{e_i\}_{i=1}^N$ of unweighted LS-SVM [Suykens et al., 2002]. Robustness and stability [Debruyne et al., JMLR 2008, 2010].

• SVM solution by applying iteratively weighted LS [Perez-Cruz et al., 2005]

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions
						0000000
Robustnes	s					

Example: robust regression using weighted LS-SVM

using LS-SVMlab v1.8 http://www.esat.kuleuven.be/sista/lssvmlab/

Big Data 00	Low is difficult, high is easy 00000	Regression 000000000000	Classification 0000	Dimensionality reduction	Correlation analysis	Extensions
Fixed-size	LS-SVM					

Fixed-size method

- Find finite dimensional approximation to feature map $\tilde{\varphi}(\cdot) : \mathbb{R}^p \to \mathbb{R}^M$ based on the eigenvalue decomposition of the kernel matrix (on a subset of size $M \ll N$).
- Based on [Williams & Seeger, 2001]: relates KPCA to a Nyström approximation of the integral equation

$$\int K(z,x)\phi_i(x)dP_X=\lambda_i\phi_i(z)$$

- Fixed-size method [Suykens et al., 2002; De Brabanter et al., 2009]:
 - selects subset such that it represents the data distribution P_X
 - optimizes quadratic Renyi entropy citerion (instead of random subset)
 - estimate in primal by ridge regression (sparse representation):

$$\min_{\tilde{w},b} \frac{1}{2} \tilde{w}^T \tilde{w} + \gamma \frac{1}{2} \sum_{i=1}^N (y_i - \tilde{w}^T \tilde{\varphi}(x_i) - b)^2$$

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions	
						000000	
Duralization interview							

Pointwise and simultaneous 95% prediction intervals for LS-SVM model [De Brabanter K. et al., IEEE-TNN, 2011], from LS-SVMlab v1.8

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	Extensions	

Semi-supervised learning: part labeled and part unlabeled Assumptions for semi-supervised learning to work: [Chapelle, Schölkopf, Zien, 2006]

- Smoothness assumption: if two points x_1, x_2 in a high density region are close, then also the corresponding outputs y_1, y_2
- Cluster assumption: points from the same cluster are likely to be of the same class
- Low density separation: decision boundary should be in low density region
- Manifold assumption: data lie on a low-dimensional manifold

Big Data 00	Low is difficult, high is easy 00000	Regression 000000000000	Classification 0000	Dimensionality reduction	Correlation analysis	Extensions
Tensor dat	ta					

Tensor completion

Mass spectral imaging: sagittal section mouse brain [data: E. Waelkens, R. Van de Plas] Tensor completion using nuclear norm regularization [Signoretto et al., IEEE-SPL, 2011]

Outline

1 Big Data

- 2 Low is difficult, high is easy
- 3 Regression
- 4 Classification
- 5 Dimensionality reduction
- 6 Correlation analysis
- 7 Extensions
- 8 Applications
- Onclusions

Big Data Low is difficult, high is easy Regression

Classification Dii

Dimensionality reduction Co

rrelation analysis E 00000 0

Modeling a tsunami of data

High-quality predictive models are crucial

biomedical

process industry

bio-informatics

brain-computer interfaces

traffic networks

Big Data	Regression	Classification	Dimensionality reduction	Correlation analysis	

Electric Load Forecasting

Short-term load forecasting, important for power generation decisions Hourly load from substations in Belgian grid (ELIA transmission operator) Seasonal/weekly/intra-daily patterns [Espinoza et al., IEEE CSM 2007]

NARX and AR-NARX model structures: 98 explanatory variables:

- lagged load values previous two days (48)
- effect of temperature on cooling and heating requirements (3)
- calendar information: month, day, hour indications (43)

Electric Load Forecasting

asy Regression Classification Dimensionality reduction Correla	i Correlation analysis Extensi	

Electric Load Forecasting

Power grid: kernel spectral clustering of time-series

Electricity load: 245 substations in Belgian grid (1/2 train, 1/2 validation) $x_i \in \mathbb{R}^{43.824}$: spectral clustering on high dimensional data (5 years)

3 of 7 detected clusters:

- 1: Residential profile: morning and evening peaks
- 2: Business profile: peaked around noon
- 3: Industrial profile: increasing morning, oscillating afternoon and evening

[Alzate, Espinoza, De Moor, Suykens, 2009]

Big Data Low is difficult, high is easy

ication Dimensiona 000000

nensionality reduction Correla

elation analysis Ex 000 00

Magnetic resonance spectroscopic imaging

Magnetic resonance spectroscopic imaging

Multiclass LS-SVM classifier: white matter gray matter CSF grade II glioma grade III glioma

Big Data Low is difficult, high is easy 00 00000

Proteomics

Regression

onality reductio

rrelation analysis 0000 Extensions 0000000

Proteomics

Mass spectral imaging (MSI): section of mouse brain SVM prediction on 1734 mass spectra (6490 variables/spectrum, 279 pixels, 4 classes) cerebellar cortex - Ammon's horn section of hippocampus - cauda-putamen - lateral ventricle area [Luts et al., ACA 2010]

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	

Ranking from data fusion

Outline

- Conclusions
 - LS-SVM = unifying framework for (un-)supervised ML tasks: regression, (predictive) modeling, clustering and classification, data dimensionality reduction, correlation analysis (spatial-temporal modeling), feature selection, (early intermediate - late) data fusion, ranking, outlier detection
 - Form a core ingredient of decision support systems with 'human decision maker in-the-loop': Policies in climate, energy, pollution; Clinical decision support: digital health; Industrial decision support: yield, monitoring, emission control; Zillions of application areas;
 - Tsunami of Big Data (high dimensional input spaces, high complexity and interrelations, ...) are generated by Internet-of-Things multi-sensor networks, clinical monitoring equipment, etc...
 - Via the Kernel Trick: It's all linear algebra !

SCD

Big Data	Low is difficult, high is easy	Regression	Classification	Dimensionality reduction	Correlation analysis	

Conclusions

STADIUS - SPIN-OFFS "Going beyond research" www.esat.kuleuven.be/stadius/spinoffs.php

Automated PCR analysis www.ugentec.com

Smart Treed nis & Intenti Maji

