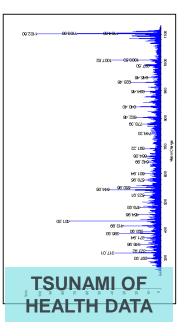
Clinical Decision Support

Bart De Moor

ESAT-STADIUS KU Leuven

MISSION STATEMENT

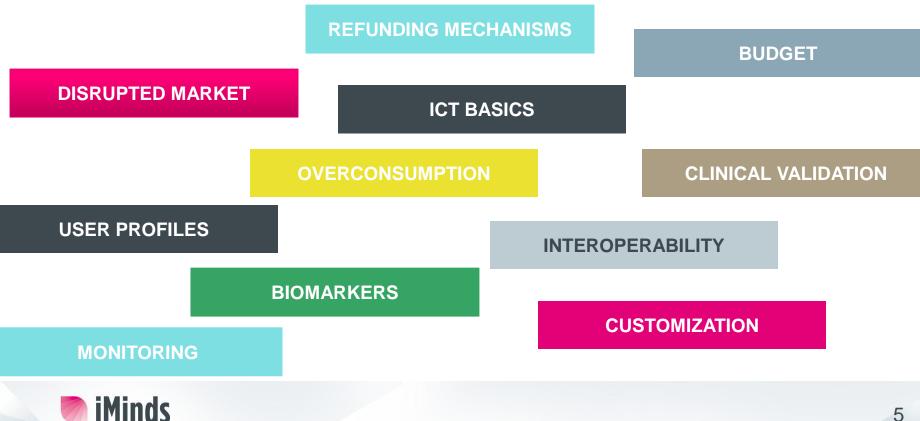
To **SUPPORT** healthcare professionals, patients and policy makers by providing a health innovation accelerator for research, development and deployment of data driven decision support systems


RATIONALE: HEALTHCARE IS CHANGING FAST...

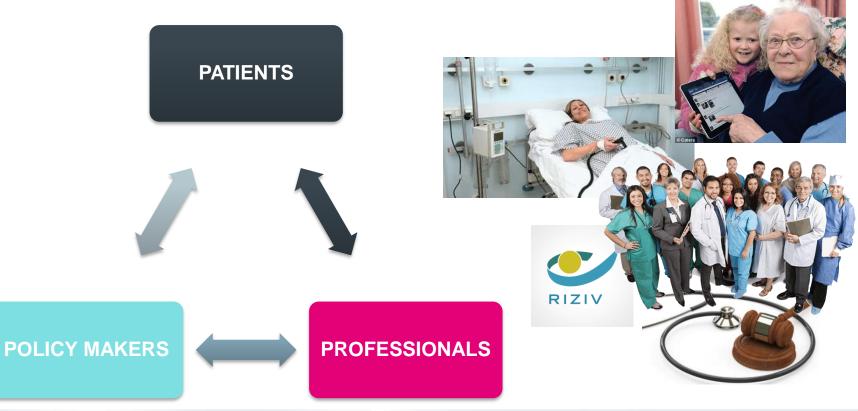
INCREASING HEALTHCARE DEMANDS for QUALITY of LIFE

NEW EMERGING TRENDS demand for new ORGANISATION OF HEALTHCARE

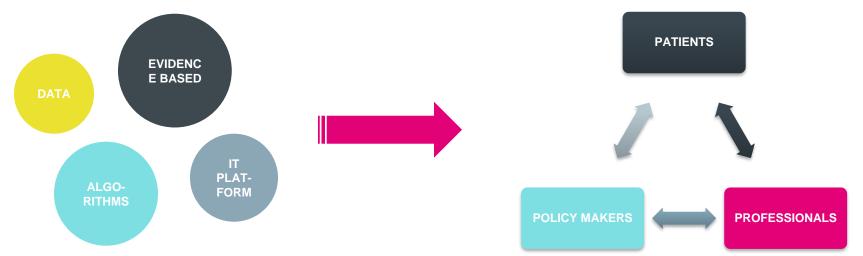
Recent books (Dutch)



DIGITAL HEALTH CHALLENGES


IF WE CARE ABOUT THE FUTURE OF CARE...

...TECHNOLOGY WILL BE KEY


WHO IS IN DEMAND?

HEALTH DECISION SUPPORT SYSTEMS

HEALTH DECISION SUPPORT

HDSS RESULT FROM TOP-NOTCH MEDICAL RESEARCH & DATA WELDED WITH INFORMATION TECHNOLOGY AND COMPUTER SCIENCE INTELLIGENCE

R & D ROAD MAP

R & D ROAD MAP

HEALTH CARE = TECHNOLOGY DRIVEN

TAAAACTAGGTCTCGTTTTA GGGATGTTTATAACCATCTT TGAGATTATTGATGCATGGT TATTGGTTAGAAAAAATATA CGCTTGTTTTCTTTCCTAG GTTGATTGACTCATACATGT GTTTCATTGAGGAAGGAAC TTAACAAAACTGCACTTTTT TCAACGTCACAGCTACTTTA

AAAGTGATCAAAGTATATCA

AGAAAGCTTAATATAAAGAC ATTTGTTTCAAGGTTTCGTA

CDN/

AGTGCACA

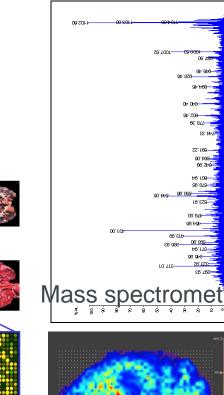
TTTCAGGA

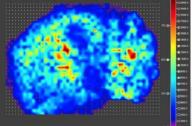
GGTTCGAT

ATCTTATA12 GTCTCGTT

ATAACCAT TGATGCAT

Sequencers

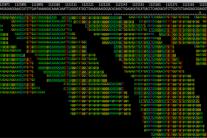

Computer Tomography Magnetic resonance



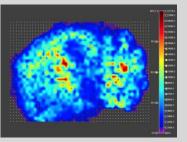
Microarrays (DNA chips)

Access to high end research infrastructure

Medical imaging

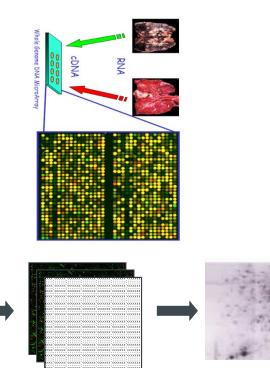

micro-MRI micro-PET

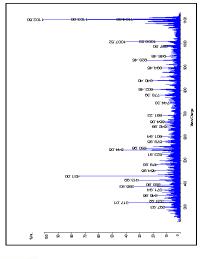
Hospital imaging

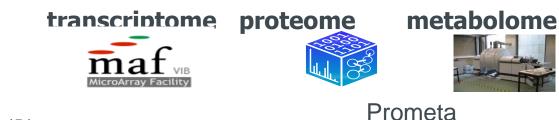


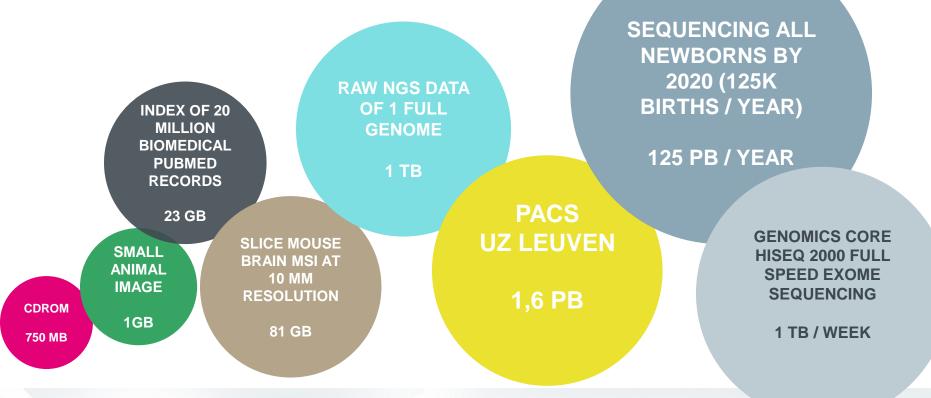
KU Leuven Core Facilities

Genomics Core Next Gen Sequencing GS FLX – HiSeq 2000 - PacBio


SyBioMa Mass Spectrometry FT-ICR, LTQ, MALDI, QTof

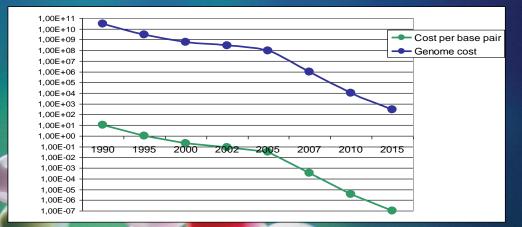




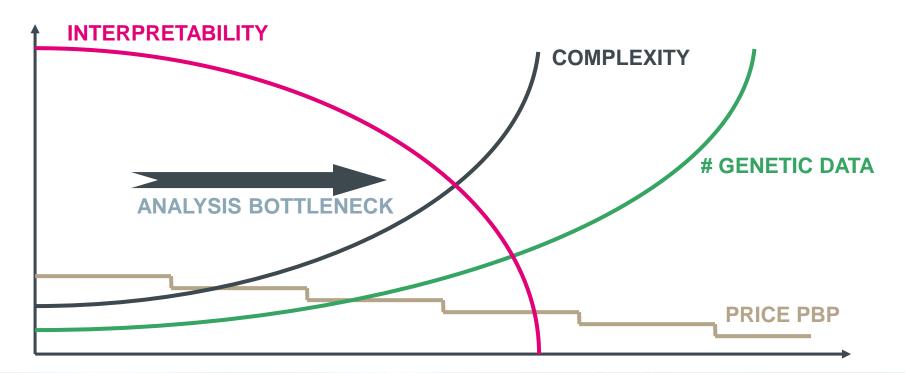


GS-FLX Roche Applied Science 454

interactome


TSUNAMI OF MEDICAL DATA




Genome data

- Human genome project – Initial draft: June 2000 – Final draft: April 2003
- 13 year project
- \$300 million value with 2002 technology
- Personal genome
 - June 1, 2007
 - Genome of James Watson, co-discoverer of DNA double helix, is sequenced
 - \$1.000.000

INTERPRETABILITY OF GENOME DATA

Dr. Algorithm is coming

"In the next 10 years, data science and software will do more for medicine than all the biological sciences together." – Vinod Khosla, Khosla Ventures

> http://techcrunch.com/2013/09/11/vinod-khosla-in-the-next-10-years-datascience-will-do-more-for-medicine-than-all-biological-sciences-combined/

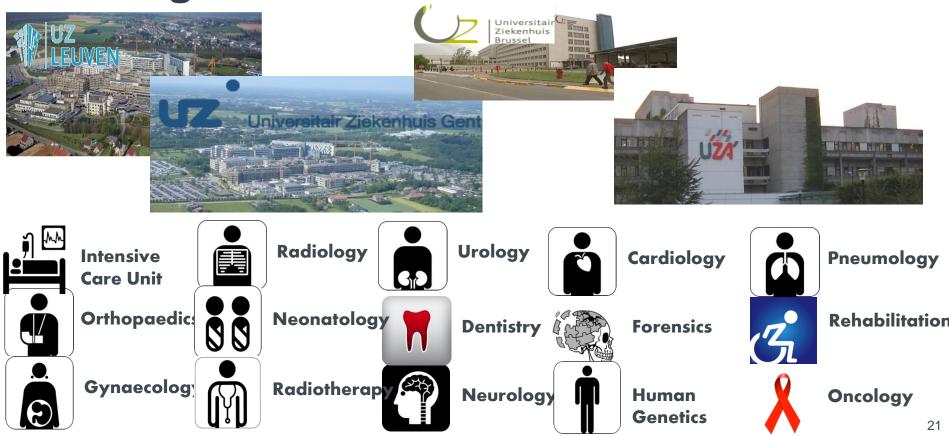
Generic data processing tasks

- Data preprocessing, denoising, normalization
- Clustering and classification; feature detection; profiling;
- Relevance detection, ranking
- Dynamic modelling, time series, longitudinal modelling
- Decorrelation, modelling, (Kalman) filtering
- Predictive analytics
- Vizualisation
- Heterogeneous data fusion
- Prediction, processing and monitoring

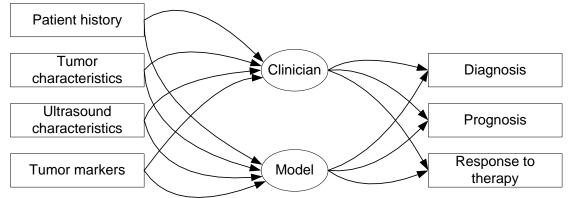
Numerical data science algorithms

Mining

- Regression, total least squares
- Least squares support vector machines
- Probabilistic algorithms (HMM, NN, Bayesian, Random Forests, Genetic algorithms, ...)
- Interactive data visualization
- Modelling
 - System identification, time series, longitudinal data modelling
 - Multilinear algebra, matrix & tensor decompositions
 - Blind source separation
 - nD signal and system theory
- Monitoring
 - control algorithms, automation
 - Signal processing, fault detection



R & D ROAD MAP



Working with and for medical doctors

Example: CDSS Ovarian Cancer

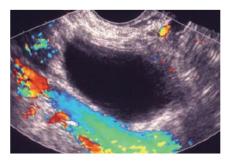
IOTA app to assess ovarian tumour malignancy: population based / standardized

International Ovarian Tumour Analysis

 standardize ultrasonographic ovarian tumor analysis → models giving an indication of the probability of malignancy of an ovarian tumour based on 6 to 12 observed parameters

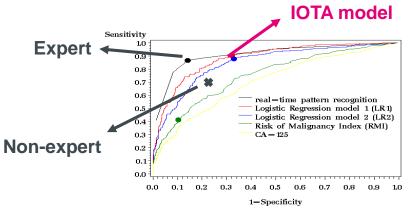
General challenges & opportunities:

- Integration of various heterogeneous data sources
- Connect with Electronic Medical Records
- Need for population data


IOTA app available in iTunes app store and on

http://homes.esat.kuleuven.be/~sistawww/biomed/igta/

PROFESSIONAL for clinicians

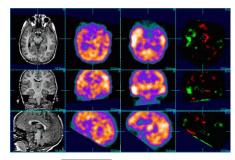

IOTA app to **assess ovarian tumour malignancy**: population based & standardized

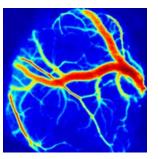
IOTA app available in iTunes app store and on http://homes.esat.kuleuven.be/~sistawww/biomed/iota/

Related

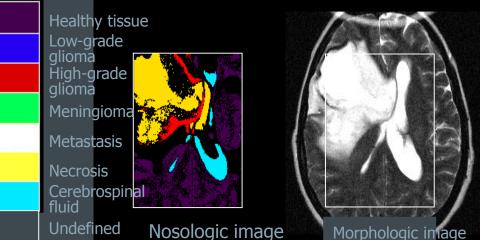
Example: Glycemia control in ICU

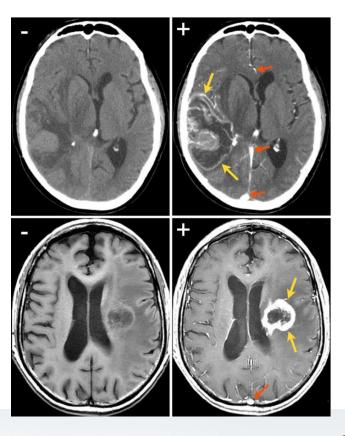
- 10 mio adult ICU patients / year (EU + US) (1-2 b\$ market)
- 'Tight Glycemic Control (TGC) in intensive care unit lowers mortality'
 - implement through LOGIC-Insulin: semi-automatic control system that advises nurse on insulin dosage and blood sampling interval aiming at TGC and avoiding hypoglycemia
- LOGIC-I randomized clinical trial (single-centre): compared with expert nurses, LOGIC-Insulin showed improved efficacy of TGC without increasing rate of hypoglycemia
- LOGIC-II randomized clinical trial (multi-centre): Start February 2014

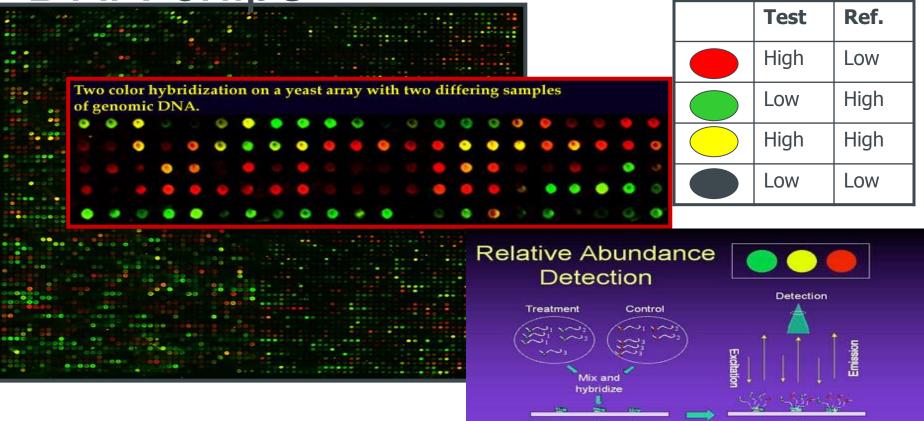


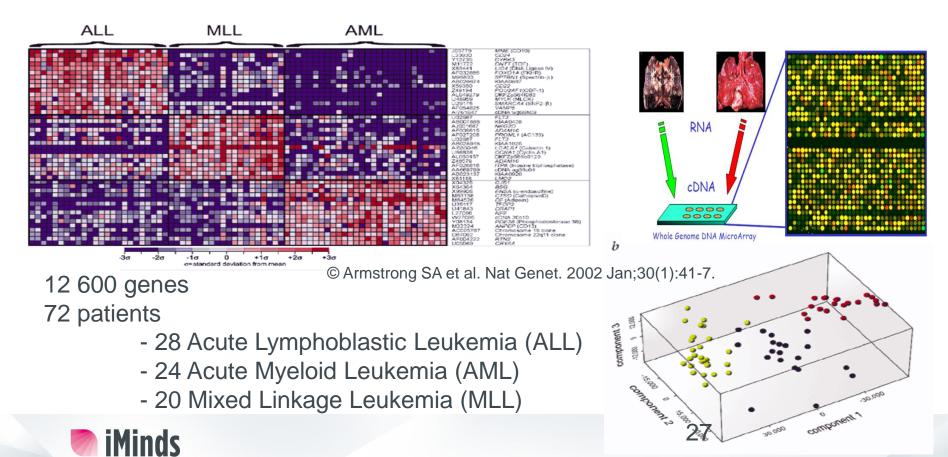


in collaboration with ICU UZ Leuven


Medical imaging decision support



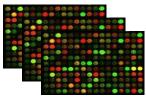

Morphologic image

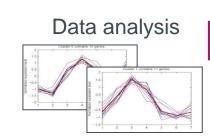


DNA-chips

Spot 1 2 (gene)

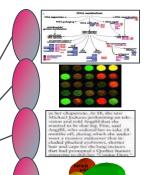
Example: Genomic markers for Leukemia




Example: Genomic Data Fusion

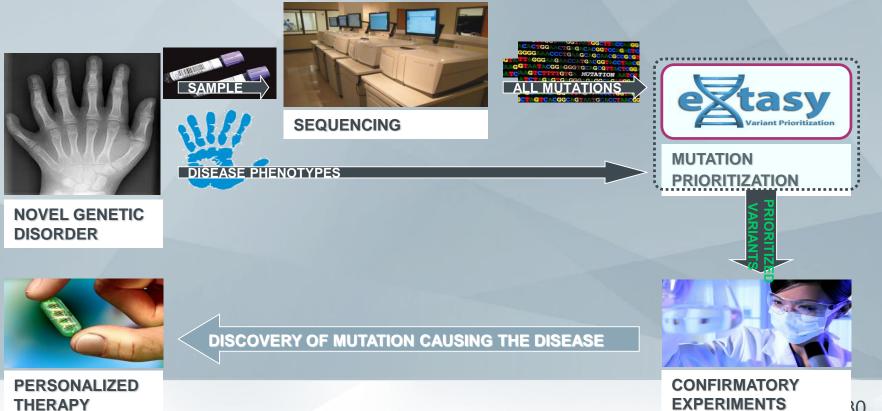
High-throughput genomics

Validation



Candidate prioritization

Information sources


Candidate genes

Name	Ensembl
TTR	ENSG00000118271
PAH	ENSG00000171759
G6PC	ENSG00000131482
IGF1	ENSG00000017427
ALB	ENSG00000163631
CRP	ENSG00000132693
HABP2	ENSG00000148702
IF	ENSG00000138799
FST	ENSG00000134363
ARAF1	ENSG0000078061
HMGA2	ENSG00000149948
C9	ENSG00000113600
PCBP2	ENSG00000111406
НОХВ6	ENSG00000108511
RERE	ENSG00000142599
HOXA11	ENSG0000005073
CLIC1	ENSG00000096238
ERCC3	ENSG00000163161
ERCC3	ENSG00000163161
TLL2	ENSG0000095587
SYT4	ENSG00000132872
SYT4	ENSG00000132872
PIK4CB	ENSG00000143393
PKD2	ENS600000118762
	ENSG0000081026
ANKRD3	ENSG00000183421
F13A1	ENSG00000124491
BPAG1	ENSG00000151914
KCNN3	ENSG00000143603
GRIN2AIGRIN2B	ENSG00000150086
SIM1	ENSG00000112246
51011	ENSG00000174891
	ENSG00000089195
C14orf10	ENSG00000092020
	ENSG00000170310
STX8	
10115	ENSG00000107671
MSH5	ENSG0000096474
CRH	ENSG00000147571
MID1	ENSG00000101871
	ENSG00000184508
	ENSG00000113460
TGFB3	ENSG00000119699
C1QR1	ENSG00000125810
NR4A2	ENSG00000153234
PDGFC	ENSG00000145431
PDGFC	ENSG00000145431
NR3C2	ENSG00000151623
NEYA	ENSG0000001167
	ENSG00000101898
C8orf4	ENSG00000176907
TM4SF13	ENSG00000106537
MMP3[MMP1	ENSG00000149968
▲ [

Endeavour: Aerts et al., Nature Biotechnology, 2006

Mutation prioritization

Proven record

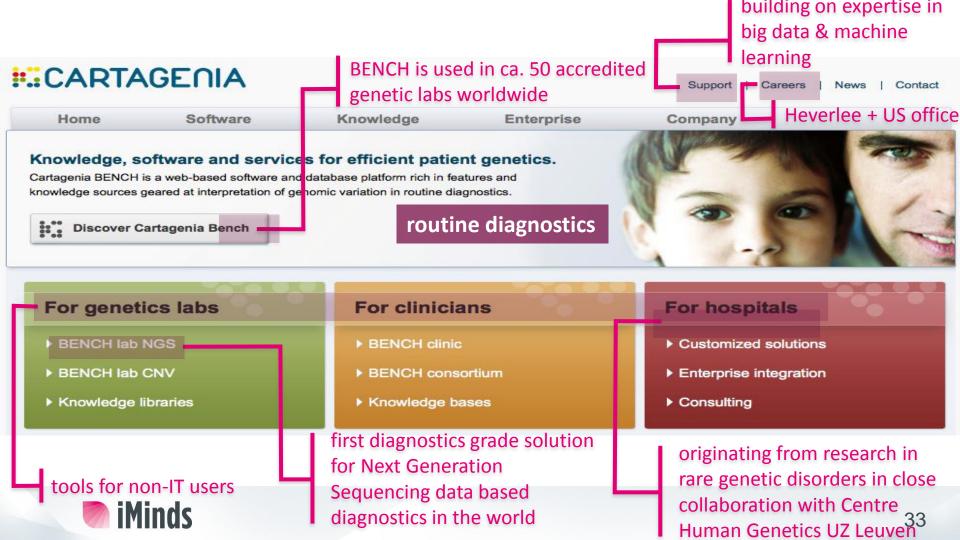
Dr. Algorithm is coming

"In the next 10 years, data science and software will do more for medicine than all the biological sciences together." – Vinod Khosla, Khosla Ventures

> http://techcrunch.com/2013/09/11/vinod-khosla-in-the-next-10-years-datascience-will-do-more-for-medicine-than-all-biological-sciences-combined/

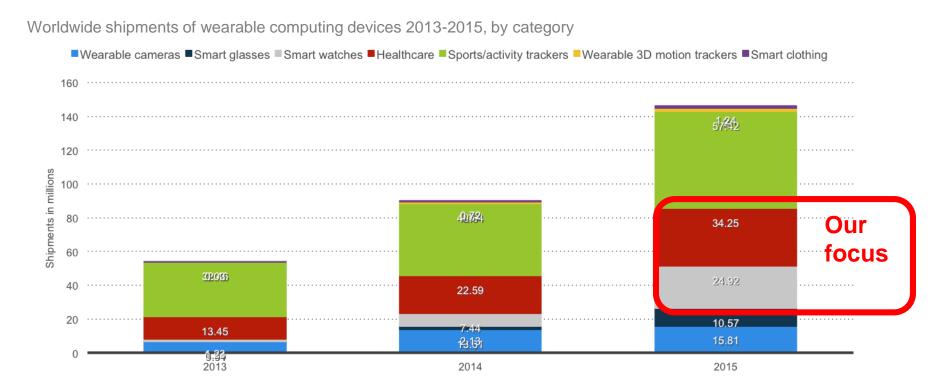
- Mining
 - Health and Clinical Decision Support systems/software
 - Clinical genomics:
 - Variant prioritization by genomic data fusion
 - Predicting in silico drug-target interaction
 - 10 000 compounds \rightarrow 250 (preclinical) \rightarrow 5 (clinical) \rightarrow (drug)
 - Mode of action; Side effect prediction; Drug repositioning;
 - Genome wide target ranking
- Predictive analytics in oncology
 - Cancer: Ovarian, breast, rectal, brain,...
 - Biomarkers
- Monitoring

•


- Stress monitoring via EMG & HRV (Heart Rate Variability)
- Neonatal brain monitoring
- Glycemia control @ ICU
- EEG-based epilepsy monitoring
- Sleep monitoring
- Event-Related potential analysis
- Signal Processing:
 - EEG: distributed SP, beamforming, probes SP, neuroimplants
 - Hearing Aids: binaural implants, wireless acousticnetworks
 - Wireless Body Area Networks
- Medical Image Processing

#..CARTAGENIA

- BENCH = web-based software and database platform for interpretation of genomic variation in routine diagnostics
- array-CGH + Next Gen Seq: first diagnostics grade solution for NGS data based diagnostics in the world
- SaaS go-to-market model
- Leuven + US office
- large customer base of diagnostic labs, private labs, academic institutes, and consortia in Europe, Northern America and Australia
- rare genetic disorders, extension towards cancer and prenatal



R & D ROAD MAP

SERIOUS WEARABLES = SERIOUS BUSINESS

SERIOUS WEARABLES: 3 HURDLES

SERIOUS WEARABLES

Serious wearables = Wearables that are clinically relevant validated and tested, as part of a decision support system.

3 HURDLES FOR MARKET ADOPTION

Degree of clinical validation needed (class I, IIa,IIb or III)

How to bridge the second valley of death

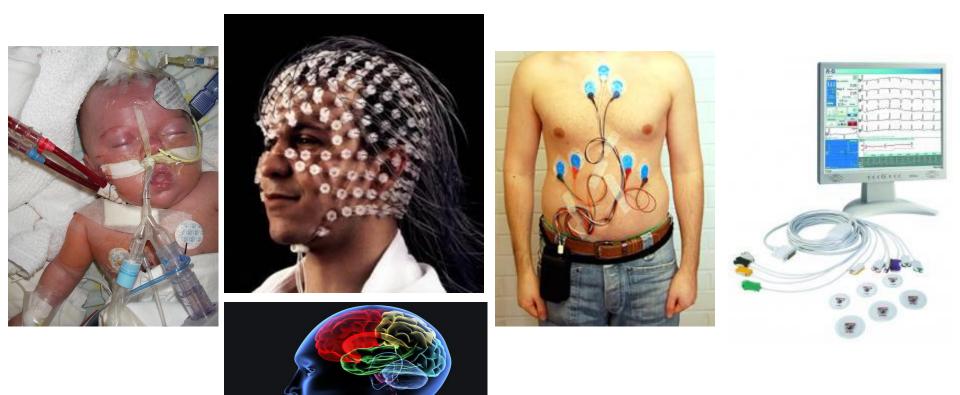
Security and privacy aspects.

1 CLINICAL VALIDATION OF DEVICES & APPS

Measured Blood Glucose 4.0 mmol/L	Saturday, 29 November 2014
+ + Planned Carbohydrate Intake 0.0 portions	19:49 Suggested imagested im
- Set + + Planned Exercise None - touch to change	08:49 Carbs BG RAI (Meal + Corr - IOB) 4.5 7.9 6.5 (7.7 +1.2 -2.5)
BG not measured / Extra Carbs	07:54 Carbs BG RAI (Meal + Corr - IOB) (i 1.5 4.5 3.0 (2.6 -)

Device

- Sensors
- Other hardware that measure and generate data


Apps/software

- Diagnose or support in diagnosis
- Sleep, stress, cardio...

Which class type of medical device: I, IIa or IIb (class III is mostly for implants such as defibrillators)?

Clinically validated wearables

iMinds

R & D ROAD MAP

Policy mining

Belgian Cancer Registry

Collaboration modi

Direct contract research

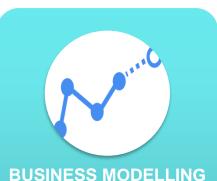
Consortia: ICON, Cluster Policy, IWT, H2020, KIC Health

Service Catalogue Health Lab

Health House

IMINDS HEALTH LAB: SERVICE CATALOGUE

- Assist in certification acquisition
- •Assist in clinical trials for software/apps
- Process validation
- Device validation
- •Validation of analytical methods


LIVING LAB USER RESEARCH

- •Qualitative and quantitative surveys
- •Community/panel management
- •Construe user experience
- •Co-creation sessions

INTEROPERABILITY

- Comply and test to health standards
- Define use cases
- Facilitate mini labs
- Project coordination
- Education

•Define business cases

- •Analyse value network (user ⇔buyer ⇔ payer)
- •Business development health support (for start-ups/spin-offs)

ACCESS TO & DISCLOSING

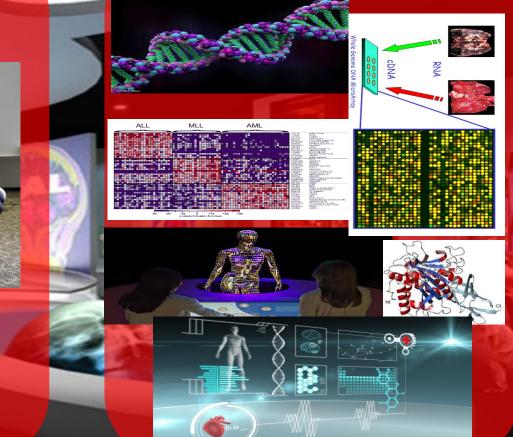
OF DATA

FUNCTIONAL HEALTH KNOWLEDGE

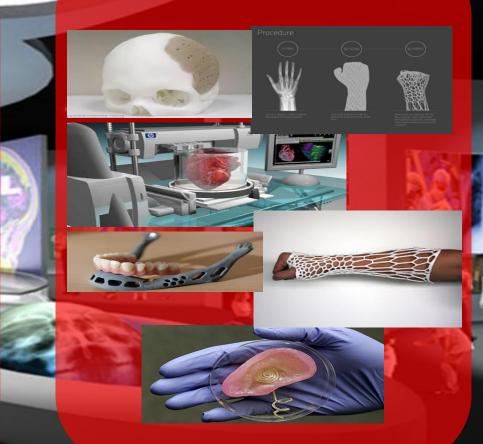
INFRASTRUCTURE

METHODOLOGY

HOUSE



Omics big data



EASE

Wearables & Implants

3D printing

EASE

0:28

Pacemaker

Pecemaker pulse generator

Computer assisted surgery

EASE

Visualization

Obama http://www.whitehouse.gov/blog/09/04/27/The-Necessity-of-Science/

But in order to lead in the global economy and to ensure that our businesses can grow and innovate, and our families can thrive, we're also going to have to address the shortcomings of our health care system.

The Recovery Act will support the long overdue step of *computerizing America's medical records*, to reduce the duplication, waste and errors that cost billions of dollars and thousands of lives. But it's important to note, *these records also hold the potential of offering patients the chance to be more active participants in the prevention and treatment of their diseases*. We must maintain patient control over these records and respect their privacy. At the same time, we have the opportunity to offer billions and *billions of anonymous data points to medical researchers who may find in this information evidence that can help us better understand disease*.

History also teaches us the greatest advances in medicine have come from scientific breakthroughs, whether the discovery of antibiotics, or improved public health practices, vaccines for smallpox and polio and many other infectious diseases, antiretroviral drugs that can return AIDS patients to productive lives, pills that can control certain types of blood cancers, so many others.

Because of recent progress -- not just in biology, genetics and medicine, but also in physics, chemistry, computer science, and engineering -- we have the potential to make enormous progress against diseases in the coming decades. And that's why my administration is committed to increasing funding for the National Institutes of Health, including \$6 billion to support cancer research -- part of a sustained, multi-year plan to double cancer research in our country. (Applause.)

Clinical Decision Support

Bart De Moor

ESAT-STADIUS KU Leuven