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Introduction
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Why Linear Algebra?

System Identification: PEM

o LTI models
@ Non-convex optimization

@ Considered 'solved’ early nineties

Linear Algebra approach

= Subspace methods

SUBSPACE
IDENTIFICATION

FOR
'LINEAR SYSTEMS

Theory
Implementation
Applications



Introduction

(o] le}
Why Linear Algebra?

Nonlinear regression, modelling and clustering

@ Most regression, modelling and clustering
problems are nonlinear when formulated in the
input data space

@ This requires nonlinear nonconvex optimization
algorithms

Linear Algebra approach

= Least Squares Support Vector Machines

@ ‘'Kernel trick’ = projection of input data to a
high-dimensional feature space

@ Regression, modelling, clustering problem
becomes a large scale linear algebra problem (set
of linear equations, eigenvalue problem)

Input space

Feature space

=
Least@bSiuareg, |
Suppogt Vector Machines =

-
-
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Introduction
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Why Linear Algebra?

Nonlinear Polynomial Optimization

@ Polynomial object function + polynomial constraints
@ Non-convex

e Computer Algebra, Homotopy methods, Numerical
Optimization
@ Considered 'solved’ by mathematics community

Linear Algebra Approach

= Linear Polynomial Algebra
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Research on Three Levels

Conceptual /Geometric Level

@ Polynomial system solving is an eigenvalue problem!

@ Row and Column Spaces: Ideal/Variety <+ Row space/Kernel of M,
ranks and dimensions, nullspaces and orthogonality

@ Geometrical: intersection of subspaces, angles between subspaces,
Grassmann'’s theorem,. . .

Numerical Linear Algebra Level

@ Eigenvalue decompositions, SVDs,. . .
@ Solving systems of equations (consistency, nb sols)
@ QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

@ Modified Gram-Schmidt (numerical stability), GS ‘from back to front’

@ Exploiting sparsity and Toeplitz structure (computational complexity
O(n?) vs O(n?)), FFT-like computations and convolutions,. ..

@ Power method to find smallest eigenvalue (= minimizer of polynomial
optimization problem)
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Four instances of polynomial rooting problems

p(N) = det(A — AI) = 0
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z2 +3y%2 —15
y—3z3 — 222+ 13z — 2

min
z,y

s. t.

ZZ +y2

y—:r:2+2:1:—1:0

20

/58



Outline

© History



History

Solving Polynomial Systems: a long and rich history. . .

DIOPHANTI
ALEX ANDRINI
ARITHMETICORVM

Diophantus Al-Khwarizmi  Zhu Shijie (c1260-c1320) Jade

(c200-c284) (c780-c850) Mirror of the Four Unknowns
Arithmetica

L

Pierre de Fermat René Descartes Isaac Newton Gottfried
(c1601-1665) (1596-1650) (1643-1727) Wilhelm Leibniz
(1646-1716)



History Linear Multi

...leading to “Algebraic Geometry’

: Vi
Etienne Bézout Carl Friedrich Gauss  Jean-Victor Poncelet Evariste Galois Arthur Cayley
(1730-1783) (1777-1755) (1788-1867) (1811-1832) (1821-1895)

Leopold Kronecker Edmond Laguerre James J. Sylvester Francis S. Macaulay David Hilbert
(1823-1891) (1834-1886) (1814-1897) (1862-1937) (1862-1943)
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So Far: Emphasis on Symbolic Methods

Computational Algebraic Geometry

@ Emphasis on symbolic manipulations

@ Computer algebra

@ Huge body of literature in Algebraic Geometry
°

Computational tools: Grobner Bases (next slide)

David . Cox
John Linle
Danal O'Shes
Using Algebraic
Geometry

Espringer

Wolfgang Grdbner
(1899-1980)

11/58
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So Far: Emphasis on Symbolic Methods

Example: Grobner basis

Input system: .

|
o

x2y+4:cy—5y+3
$2+4my+8y—4x—10 =

o

@ Generates simpler but equivalent system (same roots)

@ Symbolic eliminations and reductions
@ Monomial ordering (e.g., lexicographic)
@ Exponential complexity

@ Numerical issues! Coefficients become very large T

Grobner Basis:

o 5 o ]

o

—9 — 126y + 647y> — 624y + 144y* = L
—1005 + 6109y — 6432y° +1584y° + 228z = 0 S
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Linear Algebra
0

Homogeneous Linear Equations

A X = 0

pXq  gx(g—r) pX(q—r)

e C(AT) L O(X)
o rank(A) =r
e dim N(A) = g —r = rank(X)

TR EHI 2

U, James Joseph Sylvester

X =1




Linear Algebra
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Homogeneous Linear Equations

A X = 0

pxq  gx(q—r) px(g—r)
Reorder columns of A and partition

PXq pX(g—r) pxr

A =[4 4] rank(Az) =r (A full column rank)

Reorder rows of X and partition accordingly

A, A X1:| qg—r
A A hink =0 _
[ ' 2] [X2 r rank(X)

3

rank(4s) = r

Q

~

I
2
|
=




Linear Algebra
o

Dependent and Independent Variables

q—r
— . [xX]
A A it =0
& w3
e X;: independent variables
@ X5: dependent variables
X, = -ALTAX
A = A X X!

@ Number of different ways of choosing r linearly independent
columns out of ¢ columns (upper bound):

(W5) =



Linear Algebra
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Grassmann's Dimension Theorem

A X = 0 B Y = 0
and
pXq qx(q—ry) pX(g—"4) pxt tx(t—rp) pX(t—rp)

What is the nullspace of [A B]?

q—ry t—rp ?

a3 Y] -
Let rank([A B]) =rap

(q=ra)+(t—rp)+?=(q+t)—rap = T=ra+rp—ran



Linear Algebra
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Grassmann's Dimension Theorem

a—TA t—=rp TAtTB—TAB
X 0 7 _
[A B][ 0 v 7 } = 0

Intersection between column space of A and B:

AZy = —-BZ,

TAB

rA

B Hermann Grassmann

— TA+7TB—TAB

#(AUB)=#A+ #B — #(ANB)




Linear Algebra
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Univariate Polynomials and Linear Algebra

@ Characteristic Polynomial
The eigenvalues of A are the roots of

p(A) =det(A—AI)=0

@ Companion Matrix

Solving
qx) =723 —22° — 52 +1=0

leads to
0 1 0 1 1
0 0 1 T | =x| x
-1/7 5/7 2/7 x? z?



Linear Algebra
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Univariate Polynomials and Linear Algebra

Consider the univariate equation
3 2 _
z° + a1z + asx +az =0,

having three distinct roots x1, x2 and x3

@ Homogeneous
linear system

1 1 1 @ Rectangular
as as a1 0 0 oL &2 &3 Vandermonde
0 as a2 a1 1 0 L2 T 0 e corank =3

Ty T2 I3
0 0 a3 a2 a1 1 ot zd ol @ Observability
] x5} matrix-like

@ Realization
theory!



Linear Algebra

Two Univariate Polynomials

Consider

[ Jele]e]

$3+a1$2+a2$—|—a3 =
bbby =

Build the Sylvester Matrix:

1 al asg as 0 1
0 1 al ag as z
T b, b2 0 0 2
0 1 by by 0 z3
0 0 1 by bo z4

Row Space

Null Space

Tdeal

=union of ideals
=multiply rows with pow-
ersof

Variety
=intersection  of
spaces

null

@ Corank of Sylvester matrix = number of common zeros

@ null space = intersection of null spaces of two Sylvester
matrices

@ common roots follow from realization theory in null space

@ notice 'double’ Toeplitz-structure of Sylvester matrix

21/58



Linear Algebra
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Two Univariate Polynomials

@ Sylvester Resultant
Consider two polynomials f(z) and g(x):

flz) =23 —622 + 11z — 6 = (x — 1)(z — 2)(x — 3)
g(x) = —2® + 5z — 6 = —(z — 2)(x — 3)

Common roots iff S(f,g) =0

-6 11 —6 1 0
0 -6 11 —6 1
S(f,g)=det | -6 5 -1 0
0 -6 5 -1
0 0 -6 5 -1

—_

Jaes Joseph Sylvester

o O



Linear Algebra
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Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester's construction can be understood from

1z 22 2 2t
f(z) =0 6 11 -6 1 0 11
z-f(x)=0 -6 11 -6 1 T1 T2
g(z)=0 -6 5 -1 3 23| =0
z-g(x)=0 -6 5 -1 3 a3
22 g(z) =0 -6 5 -1 i

where £1 = 2 and z2 = 3 are the common roots of f and g



Linear Algebra
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Two Univariate Polynomials

The vectors in the canonical kernel K obey a ‘shift structure’:

The canonical kernel K is not available directly, instead we
compute Z, for which ZV = K. We now have

S1KD = SK
S1Z2VD = SZV

leading to the generalized eigenvalue problem
(S22)V = (512)VD

24 /58
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Multivariate Polynomials

00000000000

Null space based Root-finding

@ Consider
plz,y) = 22 +3y°—15=0 !
qglz,y) = y—323-222+13x—-2=0 //\\ /

// V\\m (/
/ \ i

@ Fix a monomial order, e.g., 1 <z <y < 22 < zy <

y2<:1:3<:1:2y<...

@ Construct M: write the system in matrix-vector

notation:
1 x Y x? Ty y2
pley)  [-15 1 3
q(z,y) -2 13 1 -2
z - p(z,y) -15
y-p(x,y) —15

3 :732y wa 3

-3
1 3

26 /58



Multivariate Polynomials
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Null space based Root-finding

p(z,y) = 22+3y2—-15=0
q(z,y) y—3z3—222 4132 -2=0

Continue to enlarge M:

it # |f0rm|| 1| x y| 22 xy y2| 23 22y 2y? o3| atadya2y?ayByd] 252tyady222ySayt y5| }
|
d=3 TP
yp
q
z‘p
a—d 8
zq
ya
z7p
Z2gp
iy~
d =15 ,3,
zzq
zydq|
ygq

@ # rows grows faster than # cols = overdetermined system

@ rank deficient by construction!

{ v Leuven -



Multivariate Polynomials
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Null space based Root-finding

Canonical nullspace K built

@ Coefficient matrix M: from s solutions (s, ys ):
X X% 0 0 0 _ i}
_ |0 xix x o0 0 1 1 1
M= 0 0 X X X 0
0 0 0 x X X x X9 Ts
. . Y1 Y2 cee Ys
@ Solutions generate vectors in kernel of M: 5 5 5
1 o Ts
Mk=0 T1Y1 | 2Y2 | ... | TsYs
2 2 2
. Y1 Y5 e Ys
@ Number of solutions s follows from corank 3 a3 | ... ] 2B
2 2 2
TiY1 ToY2 Ts5Ys
w1yl | woy3 | ... | wsy?
3 3 3
Y1 Yo ce Ys
x4 T x4
z3y1 | zdy2 | ... | @3ys
2,2 | 22,2 2,2
1Yy | 2Y2 | --- | Z5Ys
Ily? CEQyS e xsyg
4 4 4
Yy Yo “e Ys




Multivariate Polynomials
000e0000000

Null space based Root-finding

@ Choose s linear independent rows in K
S1K

@ This corresponds to finding linear
dependent columns in M

1 1 1
1 T2 Ts
Y1 Y2 Ys
1Yl | T2Y2 ZsYs

2 2 2
Y1 Y2 Ys
af | a3 3
z?y1 | 232 x2ys

2 2 2
1Yy z2Ys TslYg

3 3 3
Yi Y2 Ys
af | 23 j
ziyr | 23y2 z3ys
2.2 2.2 2.2
T1Y1 | TY3 TsYs
1y} | @203 zsy3

4 4 4
Y1 Yo Ys

29 /58



Multivariate Polynomials
0O000e000000

Null space based Root-finding

Shifting the selected rows gives (shown for 3 columns)

1 1 1 7

Z1 2 z3

y; y% ’yg

fEl .’1)2 fL‘d
T1Y1 13232 x3g3

Y1 y% Y3

@y ;’2 o

2 2
T1yl | w2y | T3Y3 —> “shift with " —>

Y1 yg Y3
af | ap | 2d
3 3
T1Y1 ToY2 T3Y.
3 3 343

Y1 Yo Y3
simplified:
1 1 1
1 T2 T3
Y1 Y2 y3
T1Y1 r2Y2 *3Y3
g E0) 23]

2 2 2
ziy1 | z3y2 | 23y3



Multivariate Polynomials
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Null space based Root-finding

— finding the z-roots: let D, = diag(z1, z2,...,s), then

Sy KD, = -K,

where S7 and S, select rows from K wrt. shift property

— reminiscent of Realization Theory



Multivariate Polynomials
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Null space based Root-finding

We have

Sy KD, = -K

However, K is not known, instead a basis Z is computed that satisfies

Which leads to



Multivariate Polynomials
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Null space based Root-finding

It is possible to shift with y as well. ..

We find
$1KD, = S,K

with D, diagonal matrix of y-components of roots, leading to
(Sy2Z)V = (512)V D,
Some interesting results:

— same eigenvectors V!
- (S3Z)7Y(512) and (522)71(S1Z) commute



Multivariate Polynomials

00000000800

Null space based Root-finding

Nullspace of M
Find a basis for the nullspace of M using an SVD:

X X X 0 0 0
10 x x X7 0 o _ 1 0 wT
M= 18 "o X x X1 0 =[x Y][o OHZT]
0 0 0 x X X
Hence,
MZ =0
We have
S1KD = 5K

However, K is not known, instead a basis Z is computed as

ZV =K

Which leads to
(S.Z2)V = (81Z2)VD



Multivariate Polynomials . c Optimization A
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Null space based Root-finding

Realization Theory and Polynomial System Solving

@ Attasi model
’U(kl, vy ki, ki ki, .. kn) = Ai’l)(kl, e kn)

@ Null space of Macaulay matrix: nD state sequence

3 2 2 3
voo | A1voo  A2voo | --- | Ajvoo AjAsvoo  A1A3ve0  Asv00




Intro io istory / Multivariate Polynomials
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Null space based Root-finding

@ shift-invariance property, e.g., for zo:

—Vo0— —V01—
—V10— —V11—
—U01— AT _ —Vo2— :
—U20— —U21—
—V11— —Vi2—
—V02— —V03—

@ corresponding nD system realization
vik+1,1) = Av(k,l)
v(k,l+1) = Agv(k,l)
U(O, 0) = o0
@ choice of basis null space leads to different system realizations

@ eigenvalues of A; and A invariant: x1 and x5 components



te Polynomials A c Optimization A
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Complications

There are 3 kinds of roots:
@ Roots in zero
@ Finite nonzero roots
© Roots at infinity

Applying Grassmann’s Dimension theorem on the kernel allows to
write the following partitioning

(M, M) [Xl 0 Xg}_o

0 Y1 Y
@ X, corresponds with the roots in zero (multiplicities included!)
@ Y7 corresponds with the roots at infinity (multiplicities included!)

@ [X5;Y5] corresponds with the finite nonzero roots (multiplicities
included!)



Complications

Mind the Gap!

Multivariate Polynomials

[¢] le]e]e}

— dynamics in the null space of M (d) for increasing degree d

— nilpotency gives rise to a ‘gap’

— mechanism to count and separate affine from infinity

Vb

affine roots

!
— — —
— — —
— — —
- ] o=
= — v
<
< -

column reduction

gap

nilpotency

38/58



History / . c Optimization

Complications

@ Kronecker Canonical Form decoupling affine and infinity roots

o) - (ot) ()

@ Action of A; and FE; represented in grid of monomials

.S
/
Ay [ / /
Ay Eq 1



Algebraic Optimization

Complications

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

s = ]

Singular nD Attasi model (for n = 2)

vk+1,0) = Agv(k,l)
vk, l+1) = Ayv(k,l)
w(k—1,1) = Ezw(k,l)
w(k,l—1) = Eyw(k,l)

with E; and £, nilpotent matrices.



Multivariate Polynomials
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Complications

Summary

solving multivariate polynomials
— question in linear algebra
— realization theory in null space of Macaulay matrix
— nD autonomous (descriptor) Attasi model

decisions made based upon (numerical) rank

— # roots (nullity)
— # affine roots (column reduction)

mind the gap phenomenon: affine vs. infinity roots
not discussed

— multiplicity of roots
— column-space based method
— over-constrained systems
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Introduction

Outline

© Algebraic Optimization



Algebraic Optimization
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Introduction

Polynomial Optimization Problems

min x4 y?
-’I:,y

s. t. y—a>4+22-1=0

o054

Lagrange multipliers give conditions for optimality:
L(z,y,2) = 2" +y* + 2(y — 2° + 20 — 1)

we find
OL/0x =0 — 2x—2xz+4+22z=0

OL/0y=0 — 2y+2=0
OL/0z=0 — y—2*+2x—-1=0



Algebraic Optimization A
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Observations:
— everything remains polynomial
— system of polynomial equations

— shift with objective function to find minimum/maximum

Let
AV =2V

and
AV =yV

then find min/max eigenvalue of

(A2 4+ A2)V = (2 + )V
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Applications
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System Identification: Prediction Error Methods

@ PEM System identification

Measured data {uy, yk}szl

@ Model structure

yr = G(q)ur + H(q)ex

@ Output prediction Class Polynomials
ARX A(q), B(q)
g = H Y (q)G(q)ur + (1 — H M)yy, ARMAX égqg, B(q),
q
: OE B(q), F(q)
@ Model classes: ARX, ARMAX, OE, BJ B Bla) Ol
D(q), F(q)

A(Q)yr = B(q)/F(q)ur+C(q)/D(q)ex



Applications
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System Identification: Prediction Error Methods

@ Minimize the prediction errors y — ¢, where
gk = H ' (9)G(Q)ur + (1 — H "y,

subject to the model equations

@ Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
Alq)=1+aq™ ', B(q)=bg", Clq) =14cqg ', N=5

@ngiglc (1 —91)> + ...+ (5 — 95)°
s. t. U5 — cfa — bug — (c — a)ys = 0,
Ja — ¢z — bug — (¢ — a)ys = 0,
93 — 2 — buz — (¢ — a)y2 = 0,
g2 — cf1 — bur — (¢ — a)yr = 0,
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Structured Total Least Squares

Static Linear Modeling Dynamical Linear Modeling

o

@ Rank deficiency

@ Rank deficiency

@ minimization problem:

@ minimization problem:

g 2
min H[AA Ab]Hiﬂ LTS [[[aa Ab]H}W
- (A+ AAdyw = b+ Ab, s. t. (A+ AA)v = b+ Ab,
T Ty =1
vio=1
[AA  Ab] structured

@ Singular Value Decomposition:

find (u, o, v) which minimizes o2 @ Riemannian SVD:
Let M =[A b find (u, 7, v) which minimizes 72
Mv = uo Mv = Dyut
MTy = vo MTy = Dyvr
T = 1 WTo = 1
wTu = 1 uwI'Dyu = 1(=vTDyv)



Structured Total Least Squares

min
v

s. t.

% =T MT D, M

v =1.

X Tisisvoson
Al sTsumisvDini seps
STLSRISVD/nvi son
STLSRISVDIEIG global mi
15X stsmisvoeG exrema

&> STLs Hankelcost function

Applications

o] ]

theta

method TLS/SVD STLS inv. it. STLS eig
vy .8003 .4922 .8372
vo -.5479 -.7757 .3053
v3 .2434 .3948 .4535
T2 4.8438 3.0518 2.3822
global solution? no no yes
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Maximum Likelihood Estimation

CpG Islands

@ genomic regions that contain a high frequency of sites where a
cytosine (C) base is followed by a guanine (G)

@ rare because of methylation of the C base

@ hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA
CCGTGACGCGTGTAGCAGCGGCTCA

Decide whether the observed sequence came from a CpG island



Applications
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Maximum Likelihood Estimation

The model

@ 4-dimensional state space [m| = {A,C,G, T}
@ Mixture model of 3 distributions on [m)]

@ : CGrich DNA
@® : CG poor DNA
®© : CG neutral DNA

@ Each distribution is characterised by probabilities of observing
base A,C,Gor T

Table : Probabilities for each of the distributions (burbin; Pachter & Sturmfels)

DNA Type | A C G T
CG rich 0.15 |1 0.33 | 0.36 | 0.16
CG poor | 0.27 | 0.24 | 0.23 | 0.26

CG neutral | 0.25 | 0.25 | 0.25 | 0.25
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Maximum Likelihood Estimation

@ The probabilities of observing each of the bases A to T are given by

p(A) = —0.100; +0.020 +0.25
p(C) = +0.086; —0.016;+0.25
p(G) = +0.116; —0.0262 +0.25
p(T) = —0.0961 +0.016 +0.25

@ 0; is probability to sample from distribution i (61 + 02 + 65 = 1)

@ Maximum Likelihood Estimate:
(61,02,05) = arg max 1(9)
where the log-likelihood [(6) is given by
1(0) = 111logp(A) + 141logp(C) + 151ogp(G) + 10logp(T)

@ Need to solve the following polynomial system

oue) 4 i op(i)
901 - Zi:l plzi) 961 =0
ae) 4 w; 9pl)
904 = Zi:l p(i) 502 =0



aic Optimization Applications
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aximum Likelihood Estimation

Solving the Polynomial System

@ corank(M) =9

@ Reconstructed Kernel

1
0.52
0.22
K= 027
0.11

1
3.12
3.12
9.76
9.76

1
—5.00
—15.01
25.02
75.08

@ 0;'s are probabilities: 0 < 6; <1

1
10.72
71.51

115.03
766.98

01

07
0105

@ Could have introduced slack variables to impose this constraint!

@ Only solution that satisfies this constraint is 6 = (0.52,0.22, 0.26)

53 /58
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And Many More

Applications are found in

Polynomial Optimization Problems

Structured Total Least Squares

Model order reduction

Analyzing identifiability nonlinear model structures
Robotics: kinematic problems

Computational Biology: conformation of molecules
Algebraic Statistics

Signal Processing

54 /58
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c Optimization A Conclusions

@00

Conclusions

Conclusions

@ Finding roots: linear algebra and realization theory!
@ Polynomial optimization: extremal eigenvalue problems

@ (Numerical) linear algebra/systems theory translation of

algebraic geometry/symbolic algebra
@ These relations ‘convexify' (linearize) many problems

e Algebraic geometry

System identification (PEM)
Numerical linear algebra (STLS, affine EVP Az = z\ +a, etc.)
Multilinear algebra (tensor least squares approximation)
Algebraic statistics (HMM, Bayesian networks, discrete
probabilities)
e Differential algebra (Glad/Ljung)

e Convexification: projecting up to higher dimensional space

(difficult in low number of dimensions; ‘easy’ in high number
of dimensions)

M 56 /58
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Conclusions

Open Problems

Many challenges remain!

o Efficient construction of the eigenvalue problem - exploiting
sparseness and structure

Algorithms to find the minimizing solution directly (inverse
power method?)

Unraveling structure at infinity (realization theory)

Positive dimensional solution set: parametrization eigenvalue
problem

nD version of Cayley-Hamilton theorem



Conclusions
[ ]

Questions?

“At the end of the day,
the only thing we really understand,
is linear algebra”.
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