Back to the Roots: Solving Polynomial Systems with Numerical Linear Algebra Tools

Philippe Dreesen

Kim Batselier

Bart De Moor

KU LeuvenDepartment of Electrical Engineering
ESAT-STADIUS

Outline

- Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- **6** Applications
- Conclusions

Why Linear Algebra?

System Identification: PEM

- LTI models
- Non-convex optimization
- Considered 'solved' early nineties

Linear Algebra approach

⇒ Subspace methods

- Most regression, modelling and clustering problems are nonlinear when formulated in the input data space
- This requires nonlinear nonconvex optimization algorithms

Linear Algebra approach

⇒ Least Squares Support Vector Machines

- 'Kernel trick' = projection of input data to a high-dimensional feature space
- Regression, modelling, clustering problem becomes a large scale linear algebra problem (set of linear equations, eigenvalue problem)

Feature space

Nonlinear Polynomial Optimization

- Polynomial object function + polynomial constraints
- Non-convex
- Computer Algebra, Homotopy methods, Numerical Optimization
- Considered 'solved' by mathematics community

Linear Algebra Approach

⇒ Linear Polynomial Algebra

Conceptual/Geometric Level

- Polynomial system solving is an eigenvalue problem!
- ullet Row and Column Spaces: Ideal/Variety \leftrightarrow Row space/Kernel of M, ranks and dimensions, nullspaces and orthogonality
- Geometrical: intersection of subspaces, angles between subspaces, Grassmann's theorem,...

Numerical Linear Algebra Level

- Eigenvalue decompositions, SVDs,...
- Solving systems of equations (consistency, nb sols)
- QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

- Modified Gram-Schmidt (numerical stability), GS 'from back to front'
- Exploiting sparsity and Toeplitz structure (computational complexity $O(n^2)$ vs $O(n^3)$), FFT-like computations and convolutions,...
- Power method to find smallest eigenvalue (= minimizer of polynomial optimization problem)

$$(x-1)(x-3)(x-2) = 0$$

-(x-2)(x-3) = 0

$$x^{2} + 3y^{2} - 15 = 0$$
$$y - 3x^{3} - 2x^{2} + 13x - 2 = 0$$

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- 6 Applications
- 7 Conclusions

Diophantus (c200-c284) Arithmetica

Al-Khwarizmi (c780-c850)

Zhu Shijie (c1260-c1320) Jade Mirror of the Four Unknowns

Pierre de Fermat (c1601-1665)

René Descartes (1596-1650)

Isaac Newton (1643-1727)

Gottfried Wilhelm Leibniz (1646-1716)

Etienne Bézout (1730-1783)

Carl Friedrich Gauss (1777-1755)

Jean-Victor Poncelet (1788-1867)

Evariste Galois (1811-1832)

Arthur Cayley (1821-1895)

Leopold Kronecker (1823-1891)

Edmond Laguerre (1834-1886)

James J. Sylvester (1814-1897)

Francis S. Macaulay (1862-1937)

David Hilbert (1862-1943)

Computational Algebraic Geometry

- Emphasis on symbolic manipulations
- Computer algebra

So Far: Emphasis on Symbolic Methods

- Huge body of literature in Algebraic Geometry
- Computational tools: Gröbner Bases (next slide)

Bruno Buchberger

Example: Gröbner basis

Input system:

$$x^{2}y + 4xy - 5y + 3 = 0$$
$$x^{2} + 4xy + 8y - 4x - 10 = 0$$

• Numerical issues! Coefficients become very large

$$-9 - 126y + 647y^2 - 624y^3 + 144y^4 = 0$$

-1005 + 6109y - 6432y^2 + 1584y^3 + 228x = 0

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- 6 Applications
- 7 Conclusions

Homogeneous Linear Equations

$$\begin{array}{cccc} A & X & = & 0 \\ {\scriptstyle p\times q} & {\scriptstyle q\times (q-r)} & & {\scriptstyle p\times (q-r)} \end{array}$$

- \bullet $C(A^T) \perp C(X)$
- rank(A) = r
- $\dim N(A) = q r = \operatorname{rank}(X)$

$$A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}$$

$$\downarrow X = V_2$$

James Joseph Sylvester

$$\begin{array}{ccc}
A & X & = & 0 \\
 & & & \\
p \times q & q \times (q-r) & & p \times (q-r)
\end{array}$$

Reorder columns of A and partition

$$\begin{array}{ll} {}^{p\times q} & {}^{p\times (q-r)} {}^{p\times r} \\ \overline{A} & = \left[\overline{A_1} \ \overline{A_2} \right] & {\rm rank}(\overline{A_2}) = r \quad (\overline{A_2} \ {\rm full \ column \ rank}) \end{array}$$

Reorder rows of X and partition accordingly

$$\begin{bmatrix} \overline{A_1} & \overline{A_2} \end{bmatrix} \begin{bmatrix} \overline{X_1} \\ \overline{X_2} \end{bmatrix} \xrightarrow{q-r} = 0 \qquad \qquad \begin{cases} \operatorname{rank}(\overline{A_2}) & = r \\ & \updownarrow \\ \operatorname{rank}(\overline{X_1}) & = q-r \end{cases}$$

$$\begin{bmatrix} \overline{A_1} & \overline{A_2} \end{bmatrix} \begin{bmatrix} \frac{q-r}{\overline{X_1}} \\ \frac{1}{\overline{X_2}} \end{bmatrix} \xrightarrow[r]{q-r} = 0$$

- \bullet $\overline{X_1}$: independent variables
- \bullet $\overline{X_2}$: dependent variables

$$\begin{array}{rcl} \overline{X_2} & = & -\overline{A_2}^{\dagger} \overline{A_1} \overline{X_1} \\ \overline{A_1} & = & -\overline{A_2} \overline{X_2} \overline{X_1}^{-1} \end{array}$$

• Number of different ways of choosing r linearly independent columns out of q columns (upper bound):

$$\binom{q}{q-r} = \frac{q!}{(q-r)! \ r!}$$

What is the nullspace of $[A \ B]$?

$$[A \quad B] \begin{bmatrix} X & 0 & ? \\ 0 & Y & ? \end{bmatrix} = 0$$

Let rank($[A \ B]$) = r_{AB}

$$(q - r_A) + (t - r_B) + ? = (q + t) - r_{AB} \implies ? = r_A + r_B - r_{AB}$$

Grassmann's Dimension Theorem

$$[A \quad B] \begin{bmatrix} X & 0 & Z_1 \\ 0 & Y & Z_2 \end{bmatrix} = 0$$

Intersection between column space of A and B:

$$AZ_1 = -BZ_2$$

Hermann Grassmann

$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

Characteristic Polynomial

The eigenvalues of A are the roots of

$$p(\lambda) = \det(A - \lambda I) = 0$$

Companion Matrix

Solving

$$q(x) = 7x^3 - 2x^2 - 5x + 1 = 0$$

leads to

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}$$

Consider the univariate equation

$$x^3 + a_1 x^2 + a_2 x + a_3 = 0,$$

having three distinct roots x_1 , x_2 and x_3

- Homogeneous linear system

- Realization theory!

$$x^{3} + a_{1}x^{2} + a_{2}x + a_{3} = 0$$
$$x^{2} + b_{1}x + b_{2} = 0$$

Build the Sylvester Matrix:

Γ	1	a_1	a_2	a_3	0 -	$\frac{1}{x}$	
l-	1 0 0	b ₁ 1 0	b_2 b_1 1	b_2 b_1	0 0 b ₂	x^2 x^3 x^4	= 0

Row Space	Null Space		
Ideal	Variety =intersection spaces	of	null

- Corank of Sylvester matrix = number of common zeros
- null space = intersection of null spaces of two Sylvester matrices
- common roots follow from realization theory in null space
- notice 'double' Toeplitz-structure of Sylvester matrix

Sylvester Resultant

Consider two polynomials f(x) and g(x):

$$f(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)$$

$$g(x) = -x^2 + 5x - 6 = -(x - 2)(x - 3)$$

Common roots iff S(f,g) = 0

$$S(f,g) = \det \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}$$

James Joseph Sylvester

The corank of the Sylvester matrix is 2!

Sylvester's construction can be understood from

$$f(x) = 0$$

$$x \cdot f(x) = 0$$

$$g(x) = 0$$

$$x \cdot g(x) = 0$$

$$x^{2} \cdot g(x) = 0$$

$$1 \quad x \quad x^{2} \quad x^{3} \quad x^{4}$$

$$-6 \quad 11 \quad -6 \quad 1 \quad 0$$

$$-6 \quad 5 \quad -1$$

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

The vectors in the canonical kernel K obey a 'shift structure':

$$\begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} x = \begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}$$

The canonical kernel K is not available directly, instead we compute Z, for which ZV = K. We now have

$$S_1KD = S_2K$$

$$S_1ZVD = S_2ZV$$

leading to the generalized eigenvalue problem

$$(S_2Z)V = (S_1Z)VD$$

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 6 Algebraic Optimization
- 6 Applications
- 7 Conclusions

Null space based Root-finding

Consider

$$\left\{ \begin{array}{lcl} p(x,y) & = & x^2 + 3y^2 - 15 = 0 \\ q(x,y) & = & y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{array} \right.$$

- Fix a monomial order, e.g., $1 < x < y < x^2 < xy <$ $y^2 < x^3 < x^2y < \dots$
- Construct M: write the system in matrix-vector notation:

Null space based Root-finding

$$\begin{cases} p(x,y) = x^2 + 3y^2 - 15 = 0 \\ q(x,y) = y - 3x^3 - 2x^2 + 13x - 2 = 0 \end{cases}$$

Continue to enlarge M:

it # form	1	x	y	x^2	xy	y^2	x^3	x^2y	xy^2	y^3	$x^{4} x^{3} y^{3}$	x^2y^2x	y^3y^4	x ⁵ x ⁴	yx^3y^2x	$^{2}y^{3}x$	$y^{4}y^{5}$	\rightarrow
$d = 3$ $\begin{array}{c} xp \\ yp \\ q \end{array}$	- 15 - 2	- 15 - 13	15 1	1 - 2		3	1 - 3	1	3	3								
$d = 4 \begin{cases} x^2 p \\ xyp \\ y^2 p \\ xq \\ yq \end{cases}$		- 2	- 2	- 15 - 13	- 15 - 1 13	- 15 1	- 2	- 2			1 - 3 - 3	3 1	3					
$d = 5 \begin{cases} x^{3} p \\ x^{2} y p \\ xy^{2} p \\ y^{3} p \\ x^{2} q \\ xyq \\ y^{2} q \end{cases}$				- 2	- 2		- 15	- 15 - 1 13	1	- 15	- 2	- 2		1 - 3 -		3	3	
						- 2	÷.	·.	13	<u>1</u>	1. 1.	·.	- 2 ··.·.		- 3	÷.	`	·

- # rows grows faster than # cols \Rightarrow overdetermined system
- rank deficient by construction!

Coefficient matrix M:

$$M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix}$$

• Solutions generate vectors in kernel of *M*:

$$Mk = 0$$

Number of solutions s follows from corank

Canonical nullspace K built from s solutions (x_i, y_i) :

1	1		1
x_1	x_2		x_s
y_1	y_2		y_s
x_{1}^{2}	x_{2}^{2}		x_s^2
x_1y_1	x_2y_2		$x_s y_s$
y_1^2	y_{2}^{2}		y_s^2
x_1^3	x_{2}^{3}		x_s^3
$x_1^2 y_1$	$x_2^2y_2$		$x_s^2 y_s$
$x_1y_1^2$	$x_2y_2^2$		$x_s y_s^2$
y_1^3	y_{2}^{3}		y_s^3
x_{1}^{4}	x_2^4		x_4^4
$x_1^3 y_1$	$x_2^3y_2$		$x_s^3 y_s$
$x_1^2 y_1^2$	$x_2^2 y_2^2$		$x_{s}^{2}y_{s}^{2}$
$x_1y_1^3$	$x_2y_2^3$		$x_s y_s^3$
y_1^4	y_2^4		y_s^4
:	:	:	:

ullet Choose s linear independent rows in K

$$S_1K$$

1		1
x_2		x_s
y_2		y_s
x_{2}^{2}		x_s^2
x_2y_2		$x_s y_s$
y_{2}^{2}		y_s^2
x_{2}^{3}		x_s^3
$x_2^2 y_2$		$x_s^2 y_s$
$x_2y_2^2$		$x_s y_s^2$
y_{2}^{3}		y_s^3
x_{2}^{4}		x_4^4
$x_2^3y_2$		$x_s^3 y_s$
$x_2^2 y_2^2$		$x_{s}^{2}y_{s}^{2}$
$x_2y_2^3$		$x_s y_s^3$
y_2^4		y_s^4
:	:	:
	$\begin{array}{c} x_2 \\ y_2 \\ x_2^2 \\ x_2y_2 \\ y_2^2 \\ x_2^3 \\ x_2^2y_2 \\ x_2y_2^2 \\ x_2^3 \\ x_2^2y_2 \\ x_2^3y_2 \\ x_2^2y_2^2 \\ x_2y_2^2 \\ x_2y_2^2 \\ x_2y_2^2 \end{array}$	$\begin{array}{c cccc} x_2 & \dots & \\ y_2 & \dots & \\ x_2^2 & \dots & \\ x_2y_2 & \dots & \\ y_2^2 & \dots & \\ x_2^3 & \dots & \\ x_2^2y_2 & \dots & \\ x_2y_2^2 & \dots & \\ y_2^3 & \dots & \\ x_2^3y_2 & \dots & \\ x_2^3y_2 & \dots & \\ x_2^3y_2 & \dots & \\ x_2^3y_2^2 & \dots & \\ x_2y_2^3 & \dots & \\ x_2y_2^3 & \dots & \\ \end{array}$

Null space based Root-finding

Shifting the selected rows gives (shown for 3 columns)

simplified:

- finding the x-roots: let $D_x = \operatorname{diag}(x_1, x_2, \dots, x_s)$, then

$$S_1 KD_x = S_x K,$$

where S_1 and S_x select rows from K wrt. shift property

- reminiscent of Realization Theory

We have

$$S_1 KD_x = S_x K$$

However, ${\cal K}$ is not known, instead a basis ${\cal Z}$ is computed that satisfies

$$ZV = K$$

Which leads to

$$(S_x Z)V = (S_1 Z)VD_x$$

It is possible to shift with y as well...

We find

$$S_1 K D_y = S_y K$$

with D_y diagonal matrix of y-components of roots, leading to

$$(S_y Z)V = (S_1 Z)V D_y$$

Some interesting results:

- same eigenvectors V!
- $(S_3Z)^{-1}(S_1Z)$ and $(S_2Z)^{-1}(S_1Z)$ commute

Nullspace of ${\cal M}$

Find a basis for the nullspace of M using an SVD:

$$M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}$$

Hence,

$$MZ = 0$$

We have

$$S_1KD = S_2K$$

However, K is not known, instead a basis Z is computed as

$$ZV = K$$

Which leads to

$$(S_2 Z)V = (S_1 Z)VD$$

Realization Theory and Polynomial System Solving

Attasi model

$$v(k_1, \ldots, k_{i-1}, \mathbf{k_i} + 1, k_{i+1}, \ldots, k_n) = \mathbf{A_i} v(k_1, \ldots, k_n)$$

Null space of Macaulay matrix: nD state sequence

 \bullet shift-invariance property, e.g., for x_2 :

Null space based Root-finding

$$\begin{pmatrix} \frac{-v_{00}-}{-v_{10}-} \\ \frac{-v_{01}-}{-v_{20}-} \\ -v_{11}-\\ -v_{02}- \end{pmatrix} A_2^T = \begin{pmatrix} \frac{-v_{01}-}{-v_{11}-} \\ \frac{-v_{02}-}{-v_{21}-} \\ -v_{12}-\\ -v_{03}- \end{pmatrix},$$

 \bullet corresponding $n\mathsf{D}$ system realization

$$v(k+1,l) = A_1v(k,l)$$

 $v(k,l+1) = A_2v(k,l)$
 $v(0,0) = v_{00}$

- choice of basis null space leads to different system realizations
- \bullet eigenvalues of A_1 and A_2 invariant: x_1 and x_2 components

Roots in zero

Complications

- 2 Finite nonzero roots
- 8 Roots at infinity

Applying Grassmann's Dimension theorem on the kernel allows to write the following partitioning

$$[M_1\ M_2]\ \left[\begin{array}{ccc} X_1 & 0 & X_2 \\ 0 & Y_1 & Y_2 \end{array}\right] = 0$$

- X_1 corresponds with the roots in zero (multiplicities included!)
- \bullet Y_1 corresponds with the roots at infinity (multiplicities included!)
- $[X_2; Y_2]$ corresponds with the finite nonzero roots (multiplicities included!)

Mind the Gap!

- dynamics in the null space of $M(\boldsymbol{d})$ for increasing degree \boldsymbol{d}
- nilpotency gives rise to a 'gap'
- mechanism to count and separate affine from infinity

$$\left(\begin{array}{c|c} v(k+1) \\ \hline w(k-1) \end{array}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right) \left(\begin{array}{c|c} v(k) \\ \hline w(k) \end{array}\right),$$

• Action of A_i and E_i represented in grid of monomials

Complications

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$\left[\begin{array}{c|c} v(k+1) \\ \hline w(k-1) \end{array}\right] = \left[\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right] \left[\begin{array}{c|c} v(k) \\ \hline w(k) \end{array}\right]$$

Singular $n\mathsf{D}$ Attasi model (for n=2)

$$\begin{array}{rcl}
v(k+1,l) & = & A_x v(k,l) \\
v(k,l+1) & = & A_y v(k,l)
\end{array}$$

$$w(k-1,l) = E_x w(k,l)$$

$$w(k,l-1) = E_y w(k,l)$$

with E_x and E_y nilpotent matrices.

Complications

Summary

- solving multivariate polynomials
 - question in linear algebra
 - realization theory in null space of Macaulay matrix
 - nD autonomous (descriptor) Attasi model
- decisions made based upon (numerical) rank
 - # roots (nullity)
 - # affine roots (column reduction)
- mind the gap phenomenon: affine vs. infinity roots
- not discussed
 - multiplicity of roots
 - column-space based method
 - over-constrained systems

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- 6 Applications
- 7 Conclusions

$$\min_{x,y} x^{2} + y^{2}$$
s. t.
$$y - x^{2} + 2x - 1 = 0$$

Lagrange multipliers give conditions for optimality:

$$L(x, y, z) = x^{2} + y^{2} + z(y - x^{2} + 2x - 1)$$

we find

Introduction

$$\partial L/\partial x = 0 \rightarrow 2x - 2xz + 2z = 0$$

 $\partial L/\partial y = 0 \rightarrow 2y + z = 0$
 $\partial L/\partial z = 0 \rightarrow y - x^2 + 2x - 1 = 0$

- everything remains polynomial
- system of polynomial equations
- shift with objective function to find minimum/maximum

Let

Introduction

$$A_xV = xV$$

and

$$A_yV = yV$$

then find min/max eigenvalue of

$$(A_x^2 + A_y^2)V = (x^2 + y^2)V$$

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- 6 Applications
- Conclusions

- PEM System identification
- Measured data $\{u_k, y_k\}_{k=1}^N$
- Model structure

$$y_k = G(q)u_k + H(q)e_k$$

Output prediction

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k$$

Model classes: ARX, ARMAX, OE, BJ

$$A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k$$

Class	Polynomials
ARX	A(q), B(q)
ARMAX	A(q), $B(q)$,
	C(q)
OE	B(q), $F(q)$
BJ	B(q), $C(q)$,
	D(q), F(q)

• Minimize the prediction errors $y - \hat{y}$, where

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,$$

subject to the model equations

Example

ARMAX identification:
$$G(q)=B(q)/A(q)$$
 and $H(q)=C(q)/A(q)$, where $A(q)=1+aq^{-1}$, $B(q)=bq^{-1}$, $C(q)=1+cq^{-1}$, $N=5$

$$\min_{\hat{y},a,b,c} \qquad (y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2
s. t. \qquad \hat{y}_5 - c\hat{y}_4 - bu_4 - (c - a)y_4 = 0,
\hat{y}_4 - c\hat{y}_3 - bu_3 - (c - a)y_3 = 0,
\hat{y}_3 - c\hat{y}_2 - bu_2 - (c - a)y_2 = 0,
\hat{y}_2 - c\hat{y}_1 - bu_1 - (c - a)y_1 = 0,$$

Structured Total Least Squares

Static Linear Modeling

- Rank deficiency
- minimization problem:

$$\begin{aligned} & \min & & \left| \left| \left[\begin{array}{cc} \Delta A & \Delta b \end{array} \right] \right| \right|_F^2 \,, \\ & \text{s. t.} & & (A + \Delta A)v = b + \Delta b, \\ & & v^T v = 1 \end{aligned}$$

$$\begin{cases}
Mv &= u\sigma \\
M^T u &= v\sigma \\
v^T v &= 1 \\
u^T u &= 1
\end{cases}$$

Dynamical Linear Modeling

- Rank deficiency
- minimization problem:

$$\begin{aligned} & \min & & & |||[\Delta A \quad \Delta b]||_F^2 \;, \\ & \text{s. t.} & & & (A + \Delta A)v = b + \Delta b, \\ & & & v^T v = 1 \\ & & & & [\Delta A \quad \Delta b] \; \text{structured} \end{aligned}$$

• Riemannian SVD: find (u, τ, v) which minimizes τ^2

$$\begin{cases} Mv &= D_{v}u\tau \\ M^{T}u &= D_{u}v\tau \\ v^{T}v &= 1 \\ u^{T}D_{v}u &= 1 (= v^{T}D_{u}v) \end{cases}$$

$$\begin{aligned} \min_{v} & \quad \tau^2 = v^T M^T D_v^{-1} M v \\ \text{s.t.} & \quad v^T v = 1. \end{aligned}$$

TLS/SVD	STLS inv. it.	STLS eig	
.8003	.4922	.8372	
5479	7757	.3053	
.2434	.3948	.4535	
4.8438	3.0518	2.3822	
no	no	yes	
	.8003 5479 .2434 4.8438	.8003 .4922 54797757 .2434 .3948 4.8438 3.0518	

CpG Islands

- genomic regions that contain a high frequency of sites where a cytosine (C) base is followed by a guanine (G)
- rare because of methylation of the C base
- hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island

The model

- 4-dimensional state space $[m] = \{A, C, G, T\}$
- ullet Mixture model of 3 distributions on [m]

: CG rich DNA : CG poor DNA : CG neutral DNA

 Each distribution is characterised by probabilities of observing base A,C,G or T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type	Α	С	G	Т
CG rich	0.15	0.33	0.36	0.16
CG poor	0.27	0.24	0.23	0.26
CG neutral	0.25	0.25	0.25	0.25

• The probabilities of observing each of the bases A to T are given by

$$p(A) = -0.10 \theta_1 + 0.02 \theta_2 + 0.25$$

$$p(C) = +0.08 \theta_1 - 0.01 \theta_2 + 0.25$$

$$p(G) = +0.11 \theta_1 - 0.02 \theta_2 + 0.25$$

$$p(T) = -0.09 \theta_1 + 0.01 \theta_2 + 0.25$$

- θ_i is probability to sample from distribution i $(\theta_1 + \theta_2 + \theta_3 = 1)$
- Maximum Likelihood Estimate:

$$(\hat{\theta_1}, \hat{\theta_2}, \hat{\theta_3}) = \arg \max_{\theta} \ l(\theta)$$

where the log-likelihood $l(\theta)$ is given by

$$l(\theta) = 11 \log p(A) + 14 \log p(C) + 15 \log p(G) + 10 \log p(T)$$

Need to solve the following polynomial system

$$\begin{cases} \frac{\partial l(\theta)}{\partial \theta_1} &= \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_1} &= 0\\ \frac{\partial l(\theta)}{\partial \theta_2} &= \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_2} &= 0 \end{cases}$$

Solving the Polynomial System

- $\operatorname{corank}(M) = 9$
- Reconstructed Kernel

$$K = \begin{bmatrix} 1 & 1 & 1 & 1 & \dots \\ 0.52 & 3.12 & -5.00 & 10.72 & \dots \\ 0.22 & 3.12 & -15.01 & 71.51 & \dots \\ 0.27 & 9.76 & 25.02 & 115.03 & \dots \\ 0.11 & 9.76 & 75.08 & 766.98 & \dots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} \begin{bmatrix} 1 \\ \theta_1 \\ \theta_2 \\ \theta_1^2 \\ \vdots \\ \theta_1\theta_2 \end{bmatrix}$$

- θ_i 's are probabilities: $0 < \theta_i < 1$
- Could have introduced slack variables to impose this constraint!
- Only solution that satisfies this constraint is $\hat{\theta} = (0.52, 0.22, 0.26)$

Applications are found in

- Polynomial Optimization Problems
- Structured Total Least Squares
- Model order reduction
- Analyzing identifiability nonlinear model structures
- Robotics: kinematic problems
- Computational Biology: conformation of molecules
- Algebraic Statistics
- Signal Processing
- . . .

Outline

- 1 Introduction
- 2 History
- 3 Linear Algebra
- 4 Multivariate Polynomials
- 5 Algebraic Optimization
- 6 Applications
- 7 Conclusions

Conclusions

- Finding roots: linear algebra and realization theory!
- Polynomial optimization: extremal eigenvalue problems
- (Numerical) linear algebra/systems theory translation of algebraic geometry/symbolic algebra
- These relations 'convexify' (linearize) many problems
 - Algebraic geometry
 - System identification (PEM)
 - Numerical linear algebra (STLS, affine EVP $Ax = x\lambda + a$, etc.)
 - Multilinear algebra (tensor least squares approximation)
 - Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
 - Differential algebra (Glad/Ljung)
- Convexification: projecting up to higher dimensional space (difficult in low number of dimensions; 'easy' in high number of dimensions)

Open Problems

Conclusions

Many challenges remain!

- Efficient construction of the eigenvalue problem exploiting sparseness and structure
- Algorithms to find the minimizing solution directly (inverse power method?)
- Unraveling structure at infinity (realization theory)
- Positive dimensional solution set: parametrization eigenvalue problem
- nD version of Cayley-Hamilton theorem
- . . .

Questions?

"At the end of the day, the only thing we really understand, is linear algebra".

