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Why Linear Algebra?

System Identification: PEM

LTI models

Non-convex optimization

Considered ’solved’ early nineties

Linear Algebra approach

⇒ Subspace methods
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Why Linear Algebra?

Nonlinear regression, modelling and clustering

Most regression, modelling and clustering
problems are nonlinear when formulated in the
input data space

This requires nonlinear nonconvex optimization
algorithms

Linear Algebra approach

⇒ Least Squares Support Vector Machines

‘Kernel trick’ = projection of input data to a
high-dimensional feature space

Regression, modelling, clustering problem
becomes a large scale linear algebra problem (set
of linear equations, eigenvalue problem)
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Why Linear Algebra?

Nonlinear Polynomial Optimization

Polynomial object function + polynomial constraints

Non-convex

Computer Algebra, Homotopy methods, Numerical
Optimization

Considered ’solved’ by mathematics community

Linear Algebra Approach

⇒ Linear Polynomial Algebra
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Research on Three Levels

Conceptual/Geometric Level

Polynomial system solving is an eigenvalue problem!
Row and Column Spaces: Ideal/Variety ↔ Row space/Kernel of M ,
ranks and dimensions, nullspaces and orthogonality
Geometrical: intersection of subspaces, angles between subspaces,
Grassmann’s theorem,. . .

Numerical Linear Algebra Level

Eigenvalue decompositions, SVDs,. . .
Solving systems of equations (consistency, nb sols)
QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

Modified Gram-Schmidt (numerical stability), GS ‘from back to front’
Exploiting sparsity and Toeplitz structure (computational complexity
O(n2) vs O(n3)), FFT-like computations and convolutions,. . .
Power method to find smallest eigenvalue (= minimizer of polynomial
optimization problem)
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Four instances of polynomial rooting problems

p(λ) = det(A− λI) = 0
(x− 1)(x− 3)(x− 2) = 0

−(x− 2)(x− 3) = 0

x2 + 3y2 − 15 = 0

y − 3x3 − 2x2 + 13x− 2 = 0

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0
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Solving Polynomial Systems: a long and rich history. . .

Diophantus
(c200-c284)
Arithmetica

Al-Khwarizmi
(c780-c850)

Zhu Shijie (c1260-c1320) Jade
Mirror of the Four Unknowns

Pierre de Fermat
(c1601-1665)

René Descartes
(1596-1650)

Isaac Newton
(1643-1727)

Gottfried
Wilhelm Leibniz

(1646-1716)
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. . . leading to “Algebraic Geometry”

Etienne Bézout
(1730-1783)

Carl Friedrich Gauss
(1777-1755)

Jean-Victor Poncelet
(1788-1867)

Evariste Galois
(1811-1832)

Arthur Cayley
(1821-1895)

Leopold Kronecker
(1823-1891)

Edmond Laguerre
(1834-1886)

James J. Sylvester
(1814-1897)

Francis S. Macaulay
(1862-1937)

David Hilbert
(1862-1943)
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So Far: Emphasis on Symbolic Methods

Computational Algebraic Geometry

Emphasis on symbolic manipulations

Computer algebra

Huge body of literature in Algebraic Geometry

Computational tools: Gröbner Bases (next slide)

Wolfgang Gröbner
(1899-1980)

Bruno Buchberger
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So Far: Emphasis on Symbolic Methods

Example: Gröbner basis

Input system:

x2y + 4xy − 5y + 3 = 0

x2 + 4xy + 8y − 4x− 10 = 0

Generates simpler but equivalent system (same roots)

Symbolic eliminations and reductions

Monomial ordering (e.g., lexicographic)

Exponential complexity

Numerical issues! Coefficients become very large

Gröbner Basis:

−9− 126y + 647y2 − 624y3 + 144y4 = 0

−1005 + 6109y − 6432y2 + 1584y3 + 228x = 0
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Homogeneous Linear Equations

A
p×q

X
q×(q−r)

= 0
p×(q−r)

C(AT ) ⊥ C(X)

rank(A) = r

dimN(A) = q − r = rank(X)

A =
[
U1 U2

] [ S1 0
0 0

] [
V T

1

V T
2

]
⇓

X = V2

James Joseph Sylvester
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Homogeneous Linear Equations

A
p×q

X
q×(q−r)

= 0
p×(q−r)

Reorder columns of A and partition

p×q

A =
[p×(q−r) p×r

A1 A2

]
rank(A2) = r (A2 full column rank)

Reorder rows of X and partition accordingly

[
A1 A2

] [ q−rX1

X2

]
q−r

r

= 0

rank(A2) = r

m
rank(X1) = q − r
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Dependent and Independent Variables

[
A1 A2

] [ q−rX1

X2

]
q−r

r

= 0

X1: independent variables

X2: dependent variables

X2 = −A2
† A1 X1

A1 = −A2 X2 X1
−1

Number of different ways of choosing r linearly independent
columns out of q columns (upper bound):(

q

q − r

)
=

q!

(q − r)! r!
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Grassmann’s Dimension Theorem

A
p×q

X
q×(q−rA)

= 0
p×(q−rA)

and
B
p×t

Y
t×(t−rB)

= 0
p×(t−rB)

What is the nullspace of [A B ]?

[A B ]

[q−rA t−rB ?

X 0 ?
0 Y ?

]
= 0

Let rank([A B ]) = rAB

(q − rA) + (t− rB)+? = (q + t)− rAB ⇒ ? = rA + rB − rAB
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Grassmann’s Dimension Theorem

[A B ]

[ q−rA t−rB rA+rB−rAB

X 0 Z1

0 Y Z2

]
= 0

Intersection between column space of A and B:

AZ1 = −BZ2

BA

rAB

rA

rA + rB − rAB

rB

#A #B#(A ∪B)

Hermann Grassmann

#(A∪B)=#A+ #B−#(A∩B)
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Univariate Polynomials and Linear Algebra

Characteristic Polynomial
The eigenvalues of A are the roots of

p(λ) = det(A− λI) = 0

Companion Matrix
Solving

q(x) = 7x3 − 2x2 − 5x+ 1 = 0

leads to  0 1 0
0 0 1

−1/7 5/7 2/7

 1
x
x2

 = x

 1
x
x2


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Univariate Polynomials and Linear Algebra

Consider the univariate equation

x3 + a1x
2 + a2x+ a3 = 0,

having three distinct roots x1, x2 and x3

 a3 a2 a1 1 0 0
0 a3 a2 a1 1 0
0 0 a3 a2 a1 1




1 1 1
x1 x2 x3

x2
1 x2

2 x2
3

x3
1 x3

2 x3
3

x4
1 x4

2 x4
3

x5
1 x5

2 x5
3

 = 0

Homogeneous
linear system

Rectangular
Vandermonde

corank = 3

Observability
matrix-like

Realization
theory!
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Two Univariate Polynomials

Consider

x3 + a1x
2 + a2x+ a3 = 0

x2 + b1x+ b2 = 0

Build the Sylvester Matrix:


1 a1 a2 a3 0
0 1 a1 a2 a3
1 b1 b2 0 0
0 1 b1 b2 0
0 0 1 b1 b2




1
x

x2

x3

x4

 = 0

Row Space Null Space
Ideal
=union of ideals
=multiply rows with pow-
ers of x

Variety
=intersection of null
spaces

Corank of Sylvester matrix = number of common zeros

null space = intersection of null spaces of two Sylvester
matrices

common roots follow from realization theory in null space

notice ‘double’ Toeplitz-structure of Sylvester matrix
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Two Univariate Polynomials

Sylvester Resultant
Consider two polynomials f(x) and g(x):

f(x) = x3 − 6x2 + 11x− 6 = (x− 1)(x− 2)(x− 3)

g(x) = −x2 + 5x− 6 = −(x− 2)(x− 3)

Common roots iff S(f, g) = 0

S(f, g) = det


−6 11 −6 1 0
0 −6 11 −6 1

−6 5 −1 0 0
0 −6 5 −1 0
0 0 −6 5 −1


James Joseph Sylvester
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Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester’s construction can be understood from



1 x x2 x3 x4

f(x) = 0 −6 11 −6 1 0
x · f(x) = 0 −6 11 −6 1
g(x) = 0 −6 5 −1
x · g(x) = 0 −6 5 −1
x2 · g(x) = 0 −6 5 −1




1 1
x1 x2

x2
1 x2

2

x3
1 x3

2

x4
1 x4

2

 = 0

where x1 = 2 and x2 = 3 are the common roots of f and g
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Two Univariate Polynomials

The vectors in the canonical kernel K obey a ‘shift structure’:
1
x
x2

x3

x =


x
x2

x3

x4


The canonical kernel K is not available directly, instead we
compute Z, for which ZV = K. We now have

S1KD = S2K

S1ZV D = S2ZV

leading to the generalized eigenvalue problem

(S2Z)V = (S1Z)V D
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Null space based Root-finding

Consider{
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Fix a monomial order, e.g., 1 < x < y < x2 < xy <
y2 < x3 < x2y < . . .

Construct M : write the system in matrix-vector
notation:


1 x y x2 xy y2 x3 x2y xy2 y3

p(x, y) −15 1 3
q(x, y) −2 13 1 −2 −3
x · p(x, y) −15 1 3
y · p(x, y) −15 1 3


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Null space based Root-finding {
p(x, y) = x2 + 3y2 − 15 = 0
q(x, y) = y − 3x3 − 2x2 + 13x− 2 = 0

Continue to enlarge M :

it # form 1 x y x2 xy y2 x3 x2y xy2 y3 x4x3yx2y2xy3y4 x5x4yx3y2x2y3xy4y5→
d = 3

p − 15 1 3
xp − 15 1 3
yp − 15 1 3
q − 2 13 1 − 2 − 3

d = 4

x2p − 15 1 3
xyp − 15 1 3

y2p − 15 1 3
xq − 2 13 1 − 2 − 3
yq − 2 13 1 − 2 − 3

d = 5

x3p − 15 1 3

x2yp − 15 1 3

xy2p − 15 1 3

y3p − 15 1 3

x2q − 2 13 1 − 2 − 3
xyq − 2 13 1 − 2 − 3

y2q − 2 13 1 − 2 − 3

↓ .
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

.
.
.

# rows grows faster than # cols ⇒ overdetermined system

rank deficient by construction!
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Null space based Root-finding

Coefficient matrix M :

M =

[× × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

]

Solutions generate vectors in kernel of M :

Mk = 0

Number of solutions s follows from corank

Canonical nullspace K built
from s solutions (xi, yi):

1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


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Null space based Root-finding

Choose s linear independent rows in K

S1K

This corresponds to finding linear
dependent columns in M



1 1 . . . 1

x1 x2 . . . xs

y1 y2 . . . ys

x2
1 x2

2 . . . x2
s

x1y1 x2y2 . . . xsys

y2
1 y2

2 . . . y2
s

x3
1 x3

2 . . . x3
s

x2
1y1 x2

2y2 . . . x2
sys

x1y2
1 x2y2

2 . . . xsy2
s

y3
1 y3

2 . . . y3
s

x4
1 x4

2 . . . x4
4

x3
1y1 x3

2y2 . . . x3
sys

x2
1y

2
1 x2

2y
2
2 . . . x2

sy
2
s

x1y3
1 x2y3

2 . . . xsy3
s

y4
1 y4

2 . . . y4
s

...
...

...
...


29 / 58



Introduction History Linear Algebra Multivariate Polynomials Algebraic Optimization Applications Conclusions

Null space based Root-finding

Shifting the selected rows gives (shown for 3 columns)

1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


→ “shift with x”→



1 1 1
x1 x2 x3
y1 y2 y3
x21 x22 x23
x1y1 x2y2 x3y3
y21 y22 y23
x31 x32 x33
x21y1 x22y2 x23y3
x1y

2
1 x2y

2
2 x3y

2
3

y31 y32 y33
x41 x42 x44
x31y1 x32y2 x33y3
x21y

2
1 x22y

2
2 x23y

2
3

x1y
3
1 x2y

3
2 x3y

3
3

y41 y42 y43
.
.
.

.

.

.

.

.

.


simplified: 1 1 1

x1 x2 x3
y1 y2 y3
x1y1 x2y2 x3y3
x31 x32 x33
x21y1 x22y2 x23y3

[ x1
x2

x3

]
=


x1 x2 x3
x21 x22 x23
x1y1 x2y2 x3y3
x21y1 x22y2 x23y3
x41 x42 x44
x31y1 x32y2 x33y3


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Null space based Root-finding

– finding the x-roots: let Dx = diag(x1, x2, . . . , xs), then

S1 KDx = Sx K,

where S1 and Sx select rows from K wrt. shift property

– reminiscent of Realization Theory
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Null space based Root-finding

We have
S1 KDx = Sx K

However, K is not known, instead a basis Z is computed that satisfies

ZV = K

Which leads to

(SxZ)V = (S1Z)V Dx

32 / 58



Introduction History Linear Algebra Multivariate Polynomials Algebraic Optimization Applications Conclusions

Null space based Root-finding

It is possible to shift with y as well. . .

We find
S1KDy = SyK

with Dy diagonal matrix of y-components of roots, leading to

(SyZ)V = (S1Z)V Dy

Some interesting results:

– same eigenvectors V !

– (S3Z)
−1(S1Z) and (S2Z)

−1(S1Z) commute
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Null space based Root-finding

Nullspace of M

Find a basis for the nullspace of M using an SVD:

M =

 × × × × 0 0 0
0 × × × × 0 0
0 0 × × × × 0
0 0 0 × × × ×

 = [ X Y ]
[

Σ1 0
0 0

] [
WT

ZT

]
Hence,

MZ = 0

We have
S1KD = S2K

However, K is not known, instead a basis Z is computed as

ZV = K

Which leads to
(S2Z)V = (S1Z)V D
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Null space based Root-finding

Realization Theory and Polynomial System Solving

Attasi model

v(k1, . . . , ki−1,ki + 1, ki+1, . . . , kn) = Aiv(k1, . . . , kn)

Null space of Macaulay matrix: nD state sequence | | | | | | | | | |
v00 v10 v01 v20 v11 v02 v30 v21 v12 v03

| | | | | | | | | |

 =

 | | | | | | |
v00 A1v00 A2v00 · · · A3

1v00 A2
1A2v00 A1A

2
2v00 A3

2v00

| | | | | | |


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Null space based Root-finding

shift-invariance property, e.g., for x2:

−v00−
−v10−
−v01−
−v20−
−v11−
−v02−

AT2 =



−v01−
−v11−
−v02−
−v21−
−v12−
−v03−

 ,

corresponding nD system realization

v(k + 1, l) = A1v(k, l)
v(k, l + 1) = A2v(k, l)

v(0, 0) = v00

choice of basis null space leads to different system realizations

eigenvalues of A1 and A2 invariant: x1 and x2 components
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Complications

There are 3 kinds of roots:

1 Roots in zero

2 Finite nonzero roots

3 Roots at infinity

Applying Grassmann’s Dimension theorem on the kernel allows to
write the following partitioning

[M1 M2]

[
X1 0 X2

0 Y1 Y2

]
= 0

X1 corresponds with the roots in zero (multiplicities included!)

Y1 corresponds with the roots at infinity (multiplicities included!)

[X2;Y2] corresponds with the finite nonzero roots (multiplicities
included!)
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Complications

Mind the Gap!

– dynamics in the null space of M(d) for increasing degree d

– nilpotency gives rise to a ‘gap’

– mechanism to count and separate affine from infinity
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Complications

Kronecker Canonical Form decoupling affine and infinity roots(
v(k + 1)

w(k − 1)

)
=

(
A 0

0 E

)(
v(k)

w(k)

)
,

Action of Ai and Ei represented in grid of monomials

x1

x2

E2

E1

A2

A1
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Complications

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity[
v(k + 1)
w(k − 1)

]
=
[
A 0
0 E

] [
v(k)
w(k)

]

Singular nD Attasi model (for n = 2)

v(k + 1, l) = Axv(k, l)
v(k, l + 1) = Ayv(k, l)

w(k − 1, l) = Exw(k, l)
w(k, l− 1) = Eyw(k, l)

with Ex and Ey nilpotent matrices.
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Complications

Summary

– solving multivariate polynomials

– question in linear algebra
– realization theory in null space of Macaulay matrix
– nD autonomous (descriptor) Attasi model

– decisions made based upon (numerical) rank

– # roots (nullity)
– # affine roots (column reduction)

– mind the gap phenomenon: affine vs. infinity roots

– not discussed

– multiplicity of roots
– column-space based method
– over-constrained systems
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Introduction

Polynomial Optimization Problems are EVP

min
x,y

x2 + y2

s. t. y − x2 + 2x− 1 = 0

Lagrange multipliers give conditions for optimality:

L(x, y, z) = x2 + y2 + z(y − x2 + 2x− 1)

we find
∂L/∂x = 0 → 2x− 2xz + 2z = 0
∂L/∂y = 0 → 2y + z = 0
∂L/∂z = 0 → y − x2 + 2x− 1 = 0
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Introduction

Observations:

– everything remains polynomial

– system of polynomial equations

– shift with objective function to find minimum/maximum

Let
AxV = xV

and
AyV = yV

then find min/max eigenvalue of

(A2
x +A2

y)V = (x2 + y2)V
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System Identification: Prediction Error Methods

PEM System identification

Measured data {uk, yk}Nk=1

Model structure

yk = G(q)uk +H(q)ek

Output prediction

ŷk = H−1(q)G(q)uk + (1−H−1)yk

Model classes: ARX, ARMAX, OE, BJ

A(q)yk = B(q)/F (q)uk+C(q)/D(q)ek

H(q)

G(q)

e

u y

Class Polynomials

ARX A(q), B(q)

ARMAX A(q), B(q),
C(q)

OE B(q), F (q)

BJ B(q), C(q),
D(q), F (q)
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System Identification: Prediction Error Methods

Minimize the prediction errors y − ŷ, where

ŷk = H−1(q)G(q)uk + (1−H−1)yk,

subject to the model equations

Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
A(q) = 1 + aq−1, B(q) = bq−1, C(q) = 1 + cq−1, N = 5

min
ŷ,a,b,c

(y1 − ŷ1)
2 + . . .+ (y5 − ŷ5)

2

s. t. ŷ5 − cŷ4 − bu4 − (c− a)y4 = 0,

ŷ4 − cŷ3 − bu3 − (c− a)y3 = 0,

ŷ3 − cŷ2 − bu2 − (c− a)y2 = 0,

ŷ2 − cŷ1 − bu1 − (c− a)y1 = 0,
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Structured Total Least Squares

Static Linear Modeling

Rank deficiency

minimization problem:

min
∣∣∣∣[ ∆A ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = b + ∆b,

v
T
v = 1

Singular Value Decomposition:
find (u, σ, v) which minimizes σ2

Let M =
[
A b

]


Mv = uσ

MT u = vσ

vT v = 1

uT u = 1

Dynamical Linear Modeling

Rank deficiency

minimization problem:

min
∣∣∣∣[∆A ∆b

]∣∣∣∣2
F
,

s. t. (A + ∆A)v = b + ∆b,

v
T
v = 1[

∆A ∆b
]

structured

Riemannian SVD:
find (u, τ, v) which minimizes τ2

Mv = Dvuτ

MT u = Duvτ

vT v = 1

uTDvu = 1 (= vTDuv)
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Structured Total Least Squares

min
v

τ2 = vTMTD−1
v Mv

s. t. vT v = 1.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

theta

ph
i

 

 

STLS Hankel cost function

TLS/SVD soln

STSL/RiSVD/invit steps

STLS/RiSVD/invit soln

STLS/RiSVD/EIG global min

STLS/RiSVD/EIG extrema

method TLS/SVD STLS inv. it. STLS eig
v1 .8003 .4922 .8372
v2 -.5479 -.7757 .3053
v3 .2434 .3948 .4535

τ2 4.8438 3.0518 2.3822
global solution? no no yes
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Maximum Likelihood Estimation

CpG Islands

genomic regions that contain a high frequency of sites where a
cytosine (C) base is followed by a guanine (G)

rare because of methylation of the C base

hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA

CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island
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Maximum Likelihood Estimation

The model

4-dimensional state space [m] = {A,C,G,T}
Mixture model of 3 distributions on [m]

1 : CG rich DNA
2 : CG poor DNA
3 : CG neutral DNA

Each distribution is characterised by probabilities of observing
base A,C,G or T

Table : Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

DNA Type A C G T

CG rich 0.15 0.33 0.36 0.16

CG poor 0.27 0.24 0.23 0.26

CG neutral 0.25 0.25 0.25 0.25
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Maximum Likelihood Estimation

The probabilities of observing each of the bases A to T are given by

p(A) = −0.10 θ1 + 0.02 θ2 + 0.25

p(C) = +0.08 θ1 − 0.01 θ2 + 0.25

p(G) = +0.11 θ1 − 0.02 θ2 + 0.25

p(T ) = −0.09 θ1 + 0.01 θ2 + 0.25

θi is probability to sample from distribution i (θ1 + θ2 + θ3 = 1)

Maximum Likelihood Estimate:

(θ̂1, θ̂2, θ̂3) = argmax
θ

l(θ)

where the log-likelihood l(θ) is given by

l(θ) = 11 logp(A) + 14 logp(C) + 15 logp(G) + 10 logp(T )

Need to solve the following polynomial system
∂l(θ)
∂θ1

=
∑4
i=1

ui
p(i)

∂p(i)
∂θ1

= 0

∂l(θ)
∂θ2

=
∑4
i=1

ui
p(i)

∂p(i)
∂θ2

= 0
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Maximum Likelihood Estimation

Solving the Polynomial System

corank(M) = 9

Reconstructed Kernel

K =



1 1 1 1 . . .

0.52 3.12 −5.00 10.72 . . .

0.22 3.12 −15.01 71.51 . . .

0.27 9.76 25.02 115.03 . . .

0.11 9.76 75.08 766.98 . . .

...
...

...
...

...



1

θ1

θ2

θ21
θ1θ2

...

.

θi’s are probabilities: 0 ≤ θi ≤ 1

Could have introduced slack variables to impose this constraint!

Only solution that satisfies this constraint is θ̂ = (0.52, 0.22, 0.26)

53 / 58



Introduction History Linear Algebra Multivariate Polynomials Algebraic Optimization Applications Conclusions

And Many More

Applications are found in

Polynomial Optimization Problems

Structured Total Least Squares

Model order reduction

Analyzing identifiability nonlinear model structures

Robotics: kinematic problems

Computational Biology: conformation of molecules

Algebraic Statistics

Signal Processing

. . .
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Conclusions

Conclusions

Finding roots: linear algebra and realization theory!

Polynomial optimization: extremal eigenvalue problems

(Numerical) linear algebra/systems theory translation of
algebraic geometry/symbolic algebra

These relations ‘convexify’ (linearize) many problems

Algebraic geometry
System identification (PEM)
Numerical linear algebra (STLS, affine EVP Ax = xλ+ a, etc.)
Multilinear algebra (tensor least squares approximation)
Algebraic statistics (HMM, Bayesian networks, discrete
probabilities)
Differential algebra (Glad/Ljung)

Convexification: projecting up to higher dimensional space
(difficult in low number of dimensions; ‘easy’ in high number
of dimensions)
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Conclusions

Open Problems

Many challenges remain!

Efficient construction of the eigenvalue problem - exploiting
sparseness and structure

Algorithms to find the minimizing solution directly (inverse
power method?)

Unraveling structure at infinity (realization theory)

Positive dimensional solution set: parametrization eigenvalue
problem

nD version of Cayley-Hamilton theorem

. . .
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Questions?

“At the end of the day,
the only thing we really understand,

is linear algebra”.
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