[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0)

Back to the Roots: Solving Polynomial Systems with Numerical Linear Algebra Tools

Philippe Dreesen Kim Batselier Bart De Moor

KU Leuven Department of Electrical Engineering ESAT-STADIUS

Outline

- [Multivariate Polynomials](#page-24-0)
- [Algebraic Optimization](#page-41-0)

System Identification: PEM

- LTI models
- Non-convex optimization
- Considered 'solved' early nineties

Linear Algebra approach

Nonlinear regression, modelling and clustering

- **•** Most regression, modelling and clustering problems are nonlinear when formulated in the input data space
- This requires nonlinear nonconvex optimization algorithms

Linear Algebra approach

- ⇒ Least Squares Support Vector Machines
	- \bullet 'Kernel trick' = projection of input data to a high-dimensional feature space
	- **•** Regression, modelling, clustering problem becomes a large scale linear algebra problem (set of linear equations, eigenvalue problem)

Nonlinear Polynomial Optimization

- \bullet Polynomial object function $+$ polynomial constraints
- Non-convex
- Computer Algebra, Homotopy methods, Numerical **Optimization**
- Considered 'solved' by mathematics community

Linear Algebra Approach

⇒ Linear Polynomial Algebra

Conceptual/Geometric Level

- Polynomial system solving is an eigenvalue problem!
- Row and Column Spaces: Ideal/Variety \leftrightarrow Row space/Kernel of M, ranks and dimensions, nullspaces and orthogonality
- Geometrical: intersection of subspaces, angles between subspaces, Grassmann's theorem,. . .

Numerical Linear Algebra Level

- **Eigenvalue decompositions, SVDs,...**
- Solving systems of equations (consistency, nb sols)
- QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

- Modified Gram-Schmidt (numerical stability), GS 'from back to front'
- Exploiting sparsity and Toeplitz structure (computational complexity $O(n^2)$ vs $O(n^3)$), FFT-like computations and convolutions,...
- \bullet Power method to find smallest eigenvalue (= minimizer of polynomial optimization problem)

Outline

- [Linear Algebra](#page-12-0)
- [Multivariate Polynomials](#page-24-0)
- [Algebraic Optimization](#page-41-0)
- [Applications](#page-44-0)
-

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0)

Solving Polynomial Systems: a long and rich history...

Pierre de Fermat (c1601-1665)

René Descartes (1596-1650)

Isaac Newton (1643-1727)

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0)

[. . . leading to "Algebraic Geometry"](#page-9-0)

Etienne Bézout (1730-1783)

Carl Friedrich Gauss (1777-1755)

Jean-Victor Poncelet (1788-1867)

Evariste Galois (1811-1832)

Arthur Cayley (1821-1895)

Leopold Kronecker (1823-1891)

Edmond Laguerre (1834-1886)

James J. Sylvester (1814-1897)

Francis S. Macaulay (1862-1937)

David Hilbert (1862-1943)

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0) [So Far: Emphasis on Symbolic Methods](#page-10-0)

Computational Algebraic Geometry

- **•** Emphasis on symbolic manipulations
- Computer algebra
- **•** Huge body of literature in Algebraic Geometry
- Computational tools: Gröbner Bases (next slide)

Wolfgang Gröbner (1899-1980)

Bruno Buchberger

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0) [So Far: Emphasis on Symbolic Methods](#page-11-0)

Example: Gröbner basis

Input system:

$$
x^{2}y + 4xy - 5y + 3 = 0
$$

$$
x^{2} + 4xy + 8y - 4x - 10 = 0
$$

- Generates simpler but equivalent system (same roots)
- **•** Symbolic eliminations and reductions
- Monomial ordering (e.g., lexicographic) ٠
- **•** Exponential complexity
- Numerical issues! Coefficients become very large

Gröbner Basis:

$$
-9 - 126y + 647y^2 - 624y^3 + 144y^4 = 0
$$

$$
-1005 + 6109y - 6432y^2 + 1584y^3 + 228x = 0
$$

Outline

[History](#page-7-0)

- [Multivariate Polynomials](#page-24-0)
- [Algebraic Optimization](#page-41-0)
- [Applications](#page-44-0)
-

$$
\bullet \ \ C(A^T) \perp C(X)
$$

$$
\bullet\ \operatorname{rank}(A)=r
$$

$$
\bullet \dim N(A) = q - r = \text{rank}(X)
$$

$$
A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}
$$

$$
X = V_2
$$

James Joseph Sylvester

$$
A \t X = 0
$$

$$
p \times q \t q \times (q-r)
$$

Reorder columns of A and partition

$$
\overline{A} = \left[\overline{A_1}^{p \times q} \overline{A_2} \right] \quad \text{rank}(\overline{A_2}) = r \quad (\overline{A_2} \text{ full column rank})
$$

Reorder rows of X and partition accordingly

$$
\begin{bmatrix} \overline{A_1} & \overline{A_2} \end{bmatrix} \begin{bmatrix} \overline{X_1} \\ \overline{X_2} \end{bmatrix} \begin{bmatrix} q-r \\ r \end{bmatrix} = 0
$$

$$
\begin{array}{|l|}\n\hline\n\text{rank}(\overline{A_2}) & = & r \\
\hline\n\updownarrow & \\
\text{rank}(\overline{X_1}) & = & q - r\n\end{array}
$$

$$
\begin{bmatrix} \overline{A_1} & \overline{A_2} \end{bmatrix} \begin{bmatrix} \overline{X_1} \\ \overline{X_2} \end{bmatrix} \begin{bmatrix} q-r \\ r \end{bmatrix} = 0
$$

- $\bullet \ \overline{X_1}$: independent variables
- \bullet $\overline{X_2}$: dependent variables

$$
\overline{X_2} = -\overline{A_2}^\dagger \overline{A_1} \overline{X_1}
$$

\n
$$
\overline{A_1} = -\overline{A_2} \overline{X_2} \overline{X_1}^{-1}
$$

• Number of different ways of choosing r linearly independent columns out of q columns (upper bound):

$$
\binom{q}{q-r} = \frac{q!}{(q-r)! \; r!}
$$

A p×q X q×(q−rA) = 0 p×(q−rA) and ^B p×t Y t×(t−rB) = 0 p×(t−rB)

What is the nullspace of $[A \ B]$?

$$
\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X & 0 & ? \\ 0 & Y & ? \end{bmatrix} = 0
$$

Let rank($[A \ B]$) = r_{AB} $(q - r_A) + (t - r_B) + ? = (q + t) - r_{AB} \Rightarrow ? = r_A + r_B - r_{AB}$

$$
\begin{bmatrix} A & B \end{bmatrix} \begin{bmatrix} X & 0 & Z_1 \\ 0 & Y & Z_2 \end{bmatrix} = 0
$$

Intersection between column space of A and B :

$$
AZ_1 = -BZ_2
$$

Characteristic Polynomial

The eigenvalues of A are the roots of

$$
p(\lambda) = \det(A - \lambda I) = 0
$$

Companion Matrix

Solving

$$
q(x) = 7x^3 - 2x^2 - 5x + 1 = 0
$$

leads to

$$
\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1/7 & 5/7 & 2/7 \end{bmatrix} \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \\ x^2 \end{bmatrix}
$$

Consider the univariate equation

KU LEUVEN

$$
x^3 + a_1 x^2 + a_2 x + a_3 = 0,
$$

having three distinct roots x_1 , x_2 and x_3

$$
\begin{bmatrix} a_3 & a_2 & a_1 & 1 & 0 & 0 \ 0 & a_3 & a_2 & a_1 & 1 & 0 \ 0 & 0 & a_3 & a_2 & a_1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \ x_1 & x_2 & x_3 \ x_1^2 & x_2^2 & x_3^2 \ x_1^3 & x_2^3 & x_3^3 \ x_1^4 & x_2^4 & x_3^4 \ x_1^4 & x_2^4 & x_3^4 \ x_1^5 & x_2^5 & x_3^5 \end{bmatrix} = 0
$$

- **•** Homogeneous linear system
- **•** Rectangular Vandermonde

•
$$
corank = 3
$$

- **•** Observability matrix-like
- **a** Realization theory!

Consider

$$
x^{3} + a_{1}x^{2} + a_{2}x + a_{3} = 0
$$

$$
x^{2} + b_{1}x + b_{2} = 0
$$

Build the Sylvester Matrix:

- \bullet Corank of Sylvester matrix $=$ number of common zeros
- \bullet null space $=$ intersection of null spaces of two Sylvester matrices
- common roots follow from realization theory in null space
- notice 'double' Toeplitz-structure of Sylvester matrix

Sylvester Resultant

Consider two polynomials $f(x)$ and $g(x)$:

$$
f(x) = x3 - 6x2 + 11x - 6 = (x - 1)(x - 2)(x - 3)
$$

$$
g(x) = -x2 + 5x - 6 = -(x - 2)(x - 3)
$$

Common roots iff $S(f, g) = 0$

$$
S(f,g) = \det \begin{bmatrix} -6 & 11 & -6 & 1 & 0 \\ 0 & -6 & 11 & -6 & 1 \\ \hline -6 & 5 & -1 & 0 & 0 \\ 0 & -6 & 5 & -1 & 0 \\ 0 & 0 & -6 & 5 & -1 \end{bmatrix}
$$

James Joseph Sylvester

The corank of the Sylvester matrix is 2!

Sylvester's construction can be understood from

$$
f(x) = 0
$$
\n
$$
x \cdot f(x) = 0
$$
\n
$$
g(x) = 0
$$
\n
$$
x \cdot g(x) = 0
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
g(x) = 0
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
g(x) = 0
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
g(x) = 0
$$
\n
$$
-6 \quad 5 \quad -1
$$
\n
$$
g(x) = 0
$$

where $x_1 = 2$ and $x_2 = 3$ are the common roots of f and g

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0) [Two Univariate Polynomials](#page-23-0)

The vectors in the canonical kernel K obey a 'shift structure':

$$
\begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} x = \begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}
$$

The canonical kernel K is not available directly, instead we compute Z, for which $ZV = K$. We now have

$$
S_1KD = S_2K
$$

$$
S_1ZVD = S_2ZV
$$

leading to the generalized eigenvalue problem

$$
(S_2 Z)V = (S_1 Z)VD
$$

Outline

[History](#page-7-0)

[Linear Algebra](#page-12-0)

- [Multivariate Polynomials](#page-24-0)
- [Algebraic Optimization](#page-41-0)

[Applications](#page-44-0)

O Consider

$$
\begin{cases}\n p(x,y) &= x^2 + 3y^2 - 15 = 0 \\
 q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0\n\end{cases}
$$

- Fix a monomial order, e.g., $1 < x < y < x^2 < xy < \infty$ $y^2 < x^3 < x^2y < \ldots$
- \bullet Construct M : write the system in matrix-vector notation:

$$
\begin{array}{ccccccccc}\n & & & & 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 \\
p(x,y) & -15 & & & 1 & 3 & & \\
q(x,y) & -2 & 13 & 1 & -2 & -3 & & \\
x \cdot p(x,y) & & & -15 & & & 1 & & 3 \\
y \cdot p(x,y) & & & & -15 & & & 1 & & 3\n\end{array}
$$

$$
\begin{cases}\n p(x,y) &= x^2 + 3y^2 - 15 = 0 \\
 q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0\n\end{cases}
$$

Continue to enlarge M:

- \bullet # rows grows faster than $\#$ cols \Rightarrow overdetermined system
- • rank deficient by construction!

 \bullet Coefficient matrix M :

$$
M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix}
$$

 \bullet Solutions generate vectors in kernel of M :

 $Mk = 0$

 \bullet Number of solutions s follows from corank

Canonical nullspace K built from s solutions (x_i, y_i) :

 \bullet Choose s linear independent rows in K

S_1K

• This corresponds to finding linear dependent columns in M

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0)

[Null space based Root-finding](#page-29-0)

Shifting the selected rows gives (shown for 3 columns)

simplified:

 x_1

"shift with x " \rightarrow

– finding the x-roots: let $D_x = diag(x_1, x_2, \ldots, x_s)$, then

$$
S_1 K D_x = S_x K,
$$

where S_1 and S_x select rows from K wrt. shift property

– reminiscent of Realization Theory

We have

$$
S_1 \big| KD_x = \big| S_x \big| K
$$

However, K is not known, instead a basis Z is computed that satisfies

 $ZV = K$

Which leads to

$$
(S_x Z)V = (S_1 Z)VD_x
$$

It is possible to shift with y as well...

We find

$$
S_1 K D_y = S_y K
$$

with D_y diagonal matrix of y-components of roots, leading to

$$
(S_y Z)V = (S_1 Z) V D_y
$$

Some interesting results:

- $-$ same eigenvectors $V!$
- $(S_3 Z)^{-1}(S_1 Z)$ and $(S_2 Z)^{-1}(S_1 Z)$ commute

Nullspace of M

Find a basis for the nullspace of M using an SVD:

$$
M = \begin{bmatrix} \times & \times & \times & \times & 0 & 0 & 0 \\ 0 & \times & \times & \times & \times & 0 & 0 \\ 0 & 0 & \times & \times & \times & \times & 0 \\ 0 & 0 & 0 & \times & \times & \times & \times \end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}
$$

Hence,

$$
MZ = 0
$$

We have

$$
S_1KD=S_2K
$$

However, K is not known, instead a basis Z is computed as

$$
ZV=K
$$

Which leads to

$$
(S_2 Z)V = (S_1 Z)VD
$$

[Introduction](#page-2-0) [History](#page-7-0) [Linear Algebra](#page-12-0) [Multivariate Polynomials](#page-24-0) [Algebraic Optimization](#page-41-0) [Applications](#page-44-0) [Conclusions](#page-54-0) [Null space based Root-finding](#page-34-0)

Realization Theory and Polynomial System Solving

Attasi model

$$
v(k_1,...,k_{i-1},k_i+1,k_{i+1},...,k_n) = A_i v(k_1,...,k_n)
$$

• Null space of Macaulay matrix: nD state sequence

$$
\left(\begin{array}{c|c|c|c|c|c} \n\begin{array}{c|c|c|c|c} \n\end{array} & \begin{array}{c|c|c} \n\end{array} & \begin{array}{c|c} \n\end{array} & \begin{array}{c|c} \n\end{array} & \begin{array}{c|c} \n\end{array} & \begin{array}{c|c} \n\end{array} & \begin{array}{c} \n\end{array} & \n\end{array} & \begin{array}{c} \n\end{array} & \begin{array}{c} \n\end{array} & \begin{array}{c} \n\end{array} & \n\end{array} & \begin{array}{c} \n\end{array} & \begin{array}{c} \n\end{array} & \begin{array}{c} \n\end{array} & \n\end{array} & \begin{array}{c} \n\end
$$

 \bullet shift-invariance property, e.g., for x_2 :

$$
\begin{pmatrix}\n-v_{00}- \\
-v_{10}- \\
-v_{01}- \\
-v_{20}- \\
-v_{11}- \\
-v_{02}-\n\end{pmatrix} A_2^T = \begin{pmatrix}\n-v_{01}- \\
-v_{11}- \\
-v_{02}- \\
-v_{12}- \\
-v_{12}- \\
-v_{03}-\n\end{pmatrix},
$$

• corresponding nD system realization

KU LEUVEN

$$
v(k+1,l) = A_1v(k,l)
$$

$$
v(k,l+1) = A_2v(k,l)
$$

$$
v(0,0) = v_{00}
$$

- choice of basis null space leads to different system realizations
- eigenvalues of A_1 and A_2 invariant: x_1 and x_2 components

There are 3 kinds of roots:

- **Q** Roots in zero
- **2** Finite nonzero roots
- **3** Roots at infinity

Applying Grassmann's Dimension theorem on the kernel allows to write the following partitioning

$$
[M_1 \ M_2] \ \left[\begin{array}{ccc} X_1 & 0 & X_2 \\ 0 & Y_1 & Y_2 \end{array} \right] = 0
$$

- \bullet X_1 corresponds with the roots in zero (multiplicities included!)
- \bullet Y_1 corresponds with the roots at infinity (multiplicities included!)
- \bullet $[X_2; Y_2]$ corresponds with the finite nonzero roots (multiplicities included!)

Mind the Gap!

- dynamics in the null space of $M(d)$ for increasing degree d
- nilpotency gives rise to a 'gap'
- mechanism to count and separate affine from infinity

• Kronecker Canonical Form decoupling affine and infinity roots

$$
\left(\frac{v(k+1)}{w(k-1)}\right) = \left(\begin{array}{c|c} A & 0 \\ \hline 0 & E \end{array}\right) \left(\begin{array}{c} v(k) \\ \hline w(k) \end{array}\right),
$$

• Action of A_i and E_i represented in grid of monomials

Roots at Infinity: nD Descriptor Systems

Weierstrass Canonical Form decouples affine/infinity

$$
\left[\begin{array}{c}v(k+1)\\w(k-1)\end{array}\right]=\left[\begin{array}{c|c}A&0\\0&E\end{array}\right]\left[\begin{array}{c}v(k)\\w(k)\end{array}\right]
$$

Singular nD Attasi model (for $n = 2$)

$$
v(k + 1, l) = A_x v(k, l)
$$

\n
$$
v(k, l + 1) = A_y v(k, l)
$$

\n
$$
w(k - 1, l) = E_x w(k, l)
$$

\n
$$
w(k, l - 1) = E_y w(k, l)
$$

with E_x and E_y nilpotent matrices.

Summary

- solving multivariate polynomials
	- question in linear algebra
	- realization theory in null space of Macaulay matrix
	- nD autonomous (descriptor) Attasi model
- decisions made based upon (numerical) rank
	- $-$ # roots (nullity)
	- $-$ # affine roots (column reduction)
- mind the gap phenomenon: affine vs. infinity roots
- – not discussed
	- multiplicity of roots
	- column-space based method
	- over-constrained systems

Outline

[History](#page-7-0)

- 3 [Linear Algebra](#page-12-0)
- 4 [Multivariate Polynomials](#page-24-0)
- 5 [Algebraic Optimization](#page-41-0)
- 6 [Applications](#page-44-0)

Polynomial Optimization Problems

$$
\min_{x,y} \qquad x^2 + y^2
$$
\n
$$
\text{s.t.} \qquad y - x^2 + 2x - 1 = 0
$$

Lagrange multipliers give conditions for optimality:

$$
L(x, y, z) = x2 + y2 + z(y - x2 + 2x - 1)
$$

we find

$$
\begin{aligned}\n\partial L/\partial x &= 0 &\to 2x - 2xz + 2z = 0\\
\partial L/\partial y &= 0 &\to 2y + z = 0\\
\partial L/\partial z &= 0 &\to y - x^2 + 2x - 1 = 0\n\end{aligned}
$$

Observations:

- everything remains polynomial
- system of polynomial equations
- shift with objective function to find minimum/maximum

Let

$$
A_x V = xV
$$

and

$$
A_yV=yV
$$

then find min/max eigenvalue of

$$
(A_x^2 + A_y^2)V = (x^2 + y^2)V
$$

Outline

1 [Introduction](#page-2-0)

2 [History](#page-7-0)

- 3 [Linear Algebra](#page-12-0)
- 4 [Multivariate Polynomials](#page-24-0)
- 5 [Algebraic Optimization](#page-41-0)
- 6 [Applications](#page-44-0)

- **PEM System identification**
- Measured data $\left\{u_k, y_k\right\}_{k=1}^N$
- Model structure

 $y_k = G(q)u_k + H(q)e_k$

• Output prediction

$$
\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k
$$

 \bullet Model classes: ARX, ARMAX, OE, BJ

$$
A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k
$$

• Minimize the prediction errors $y - \hat{y}$, where

$$
\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,
$$

subject to the model equations

• Example

 ${\sf ARMAX}$ identification: $G(q)=B(q)/A(q)$ and $H(q)=C(q)/A(q)$, where $A(q) = 1 + aq^{-1}, B(q) = bq^{-1}, C(q) = 1 + cq^{-1}, N = 5$

Static Linear Modeling

- Rank deficiency 0
- \bullet minimization problem:

min $\|\begin{bmatrix} \Delta A & \Delta b \end{bmatrix}\|_F^2$, s. t. $(A + \Delta A)v = b + \Delta b,$ $v^T v = 1$

Singular Value Decomposition: find (u, σ, v) which minimizes σ^2 Let $M = \begin{bmatrix} A & b \end{bmatrix}$ \int \mathcal{L} $\begin{array}{rcl} Mv &=& u\sigma \\ M^Tu &=& v\sigma \end{array}$ $v^T v = 1$ $u^T u = 1$

Dynamical Linear Modeling

- ۰ Rank deficiency
- \bullet minimization problem:

min $||[\Delta A \quad \Delta b]||_F^2$, s. t. $(A + \Delta A)v = b + \Delta b,$ $v^T v = 1$ $|\Delta A \quad \Delta b|$ structured

Riemannian SVD: find (u, τ, v) which minimizes τ^2 \int \mathfrak{t} $Mv = D_v u \tau$
 $M^T u = D_u v \tau$
 $v^T v = 1$ $u^T D_v u = 1 (= v^T D_u v)$

$$
\begin{aligned}\n\min_{v} \qquad & \tau^2 = v^T M^T D_v^{-1} M v \\
\text{s.t.} \qquad & v^T v = 1.\n\end{aligned}
$$

CpG Islands

- genomic regions that contain a high frequency of sites where a cytosine (C) base is followed by a guanine (G)
- rare because of methylation of the C base
- hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island

The model

- 4-dimensional state space $[m] = \{A, C, G, T\}$
- Mixture model of 3 distributions on $[m]$
	- **0** : CG rich DNA
	- **2** : CG poor DNA
	- \odot : CG neutral DNA
- Each distribution is characterised by probabilities of observing base A,C,G or T

 \bullet The probabilities of observing each of the bases A to T are given by

$$
p(A) = -0.10 \theta_1 + 0.02 \theta_2 + 0.25
$$

\n
$$
p(C) = +0.08 \theta_1 - 0.01 \theta_2 + 0.25
$$

\n
$$
p(G) = +0.11 \theta_1 - 0.02 \theta_2 + 0.25
$$

\n
$$
p(T) = -0.09 \theta_1 + 0.01 \theta_2 + 0.25
$$

- \bullet θ_i is probability to sample from distribution i $(\theta_1 + \theta_2 + \theta_3 = 1)$
- Maximum Likelihood Estimate: \bullet

$$
(\hat{\theta_1}, \hat{\theta_2}, \hat{\theta_3}) = \arg \max_{\theta} \ l(\theta)
$$

where the log-likelihood $l(\theta)$ is given by

$$
l(\theta) = 11 \log p(A) + 14 \log p(C) + 15 \log p(G) + 10 \log p(T)
$$

Need to solve the following polynomial system ۰

$$
\begin{cases}\n\frac{\partial l(\theta)}{\partial \theta_1} = \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_1} = 0 \\
\frac{\partial l(\theta)}{\partial \theta_2} = \sum_{i=1}^4 \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_2} = 0\n\end{cases}
$$

Solving the Polynomial System

- corank $(M) = 9$
- Reconstructed Kernel

- θ_i 's are probabilities: $0\leq \theta_i\leq 1$
- Could have introduced slack variables to impose this constraint!
- Only solution that satisfies this constraint is $\hat{\theta} = (0.52, 0.22, 0.26)$

.

Applications are found in

- Polynomial Optimization Problems
- Structured Total Least Squares
- Model order reduction
- Analyzing identifiability nonlinear model structures
- Robotics: kinematic problems
- Computational Biology: conformation of molecules
- Algebraic Statistics
- Signal Processing
- \bullet

Outline

[Introduction](#page-2-0)

[History](#page-7-0)

- [Linear Algebra](#page-12-0)
- [Multivariate Polynomials](#page-24-0)
- [Algebraic Optimization](#page-41-0)

[Applications](#page-44-0)

Conclusions

- Finding roots: linear algebra and realization theory!
- Polynomial optimization: extremal eigenvalue problems
- (Numerical) linear algebra/systems theory translation of algebraic geometry/symbolic algebra
- These relations 'convexify' (linearize) many problems
	- Algebraic geometry
	- System identification (PEM)
	- Numerical linear algebra (STLS, affine EVP $Ax = x\lambda + a$, etc.)
	- Multilinear algebra (tensor least squares approximation)
	- Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
	- Differential algebra (Glad/Ljung)
- Convexification: projecting up to higher dimensional space (difficult in low number of dimensions; 'easy' in high number of dimensions)

56 / 58

Open Problems

Many challenges remain!

- Efficient construction of the eigenvalue problem exploiting sparseness and structure
- Algorithms to find the minimizing solution directly (inverse power method?)
- Unraveling structure at infinity (realization theory)
- Positive dimensional solution set: parametrization eigenvalue problem
- nD version of Cayley-Hamilton theorem
- \bullet ...

Questions?

"At the end of the day, the only thing we really understand, is linear algebra".

