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FLANDERS Al RESEARCH PROGRAM
WHERE TO MAKE THE DIFFERENCE ?

|. Applied Al — Complex Decision Making
=  Big Data is not always Good Data
= adding Domain Knowledge is crucial

2. Al at the Edge
= Central cloud-based Al is not sustainable
= Al will be distributed and federated
= Edge computing needs a boost
3. Autonomous Agents
= Central Control is not sustainable
4. Communicate & Collaborate with Humans

= Stories & Speech will be the interface
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FLANDERS Al PROGRAM STRUCTURE

4 GRAND CHALLENGES

HELP TO MAKE EXTRACT AND PROCESS
COMPLEX DECISIONS INFORMATION AT THE EDGE

INTERACT AUTONOMOUSLY WITH
OTHER DECISION-MAKING ENTITIES

COMMUNICATE AND COLLABORATE
SEAMLESSLY WITH HUMANS
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Help to make complex decisions through data science

HELP TO MAKE Decision makers for industrial processes and societal systems face an ever more daunting task. Every
COMPLEX DECISIONS choice they make needs to be based on:

knowledge and knowhow from experts such as doctors, engineers or market analysts;
vast amounts of unstructured and structured data;

numerous rules, guidelines and regulations on safety, ethics and privacy.

Luckily, future decision support systems will come to the rescue. To maximize their impact on the
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Flemish economy, we must make sure that they are:

automated — By automating aspects of the data science process — such as raw data processing
- we unlock its potential to all stakeholders, regardless of their technical data science skill
level.

hybrid — We need to unify the power of generated data with domain and expert knowledge.
For example, by combining medical science with data from patient records, personal health
monitoring sensors and clinical test targets.

actionable — We have to turn data and knowledge into models that readily provide insights
and inspire reliable decisions. These models must also give feedback to human experts, e.g.
with interactive visual interfaces.

trustworthy — All this has to be done with regard to the human in the loop and with respect
for the data subjects’ privacy and right to fair treatment.
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DATAWRANGLING, INTEGRATION & QUALITY HANDLING: TREAT THE INPUT DATA

errors

variant

e Data acquisition —

e Labeling and
annotation

* Integration structured
/ unstructured data

* Imperfect data handling

* Data quality estimation
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Data Data
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KNOWLEDGE MODELS & REASONING: BRING IN THE EXPERTS
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Graphs
e Simulation models
e Physical models

* Ontologies

* Digital twins
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DATA EXPLORATION:YOU DON’'T KNOW WHAT’S IN THE DATA

Dimensionality reduction
* Topological data analysis
» Subjective interestingness

* Personalized visual analytics
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AUTOMATED MACHINE LEARNING: HOW SELECT THE BEST ML APPROACH
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Data selection
Model selection
Feature engineering
Hyperparameter tuning
* Neural architecture search
* Bayesian optimization
Hybrid modeling
Transfer learning
Surrogates/digital twins
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TRUSTWORTHY Al: IS IT ROBUST, EXPLAINABLE AND PRIVATE ?

Learning Techniques (today) Explainability

(notional)
Neural Nets

Graghucal e

Fair and Explainable
Robust and hardened
Transparent, traceable,
reproducible
Federated Al
Privacy-preserving Al
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THE BIG PICTURE

Insi & Discoveries

Al-Assisted
Data

Human & W . Knowledge,
Environment S— Sranging, lopebe Models & m Experts

Integration Human-in-the-loop
& Quality Ethical (privacy & fairness)

Handling

Data Reasoning

Automated
Machine

Learning

L

ML Models & Predictions




USE CASE EXAMPLE: HEALTHCARE

INTERACT AUTONOMOUSLY
WITH OTHER
ENTITIES
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WHO IS IN DEMAND?

PATIENTS

/




IF WE CARE ABOUT THE FUTURE OF CARE...

PATIENT HEALTH RECORD |

HEALTH DATA ANALYTICS
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...OMICS (genomic, proteomics,
metabolomics, interactomics,...)

DECISION SUPPORT SYSTEMS

... AIWILL BE KEY



4 P’s OF MEDICINE
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Customized diagnosis and treatment Better than curation
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Data tsunami
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Applied Science 454

Sequencers
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MicroArray Facilit

Microarrays
(DNA chips)
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Example: Genomic markers for Leukemia

12 600 genes

72 patients
- 28 Acute Lymphoblastic Leukemia (ALL)
- 24 Acute Myeloid Leukemia (AML)
- 20 Mixed Linkage Leukemia (MLL)




Sleep apnea detection from data streams

Automating Data Science

Automated detection of sleep apnea events
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Example: Glycemia control in ICU

~ implement through LOGIC-Insulin: semi-automatic control system that
advises nurse on insulin dosage and blood sampling interval aiming at TGC

and avoiding hypoglycemia

LOGIC-I randomized clinical trial (single-centre): compared with expert nurses,
LOGIC-Insulin showed improved efficacy of TGC without increasing rate of

hypoglycemia
LOGIC-1l randomized clinical trial (multi-centre): Start February 2014

in collaboration
with ICU UZ
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USE CASE EXAMPLE: INDUSTRY 4.0

24



Automating Data Science

Automated ML model building for predictive maintenance

loT collected data V// o}

Operator

Data Time series
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Mechanical structure monitoring DSS

STADIUS

Center for Dynamical Systems,
Signal Processing and Data Analytics
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Chemical process DSS
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USE CASE EXAMPLE: MOBILITY AND LOGISTICS — SMART CITIES
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Propagation of uncertainty
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Traffic & Mobility DSS

Detector technology: inductive loops, Gatso-meters, camera’s

Density — Flow

8000 -

7000 -

6000

5000 -

4000

flow (#vehicles/h)

3000

2000

1000

50 100 150 200 250
density (#vehicles/km)

Voertuigen per minuut

Traffic jam prediction

012 W12-24 W24-36 W 36-48 W 48-60 60-72 72-84 84-96 96-108 108-120 120-132
Average speed [km/h]

10

10:00
11:00
12:00
13:00
14:00
15:.00

Speed!

—— Zaterdag — Zondag Maandag —Dinsdag - Woensdag -

Flow [vehicles/minute]




Traffic & Mobility DSS: control

Speed harmonisation Ramp metering DRIP
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Flanders O3/fine particle DSS »vito_

O, air-quality stations
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Demer Flood Regulation DSS
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Belgian smart electricity grid DSS

. J ; X 1\ s e .
. - - i
B i Pl
e \ . . 0ol
6 \ ] 8
T‘é 08
=
E 07
&
=
= osf
g8
3
Z osf

Mon ;  Tue . Wed . Thu Fri : Sat Sun
o 24 48 72 96 120 144 168
Hour

1 post, 1 week

250 transformer substations
Every 15 min,5years ,

2

s
E °

5 g

= L1
2

kS

20 |

| 4
oz "
Z

-

Weekindex 60 \\
STADIUS "

Center for Dynamical Systems,

Signal Processina and Data Analviics Sea so n a I iti es ih

—— 160 110



Normalized Load

Normalized Load
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normalized load

Electricity load: 245 substations in Belgian grid (1/2 train, 1/2 validation)
x; € R*3824: gpectral clustering on high dimensional data (5 years)

3 of 7 detected clusters:

- 1: Residential profile: morning and evening peaks

- 2: Business profile: peaked around noon

- 3: Industrial profile: increasing morning, oscillating afternoon and evening
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Fraud Detection DSS (phones, credit cards,

tax declaration,...)

[ Monitoring ]

Short Long High International Same off Call Behaviour
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X X L S
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Flanders Al program structure
4 GRAND CHALLENGES

HELP TO MAKE EXTRACT AND PROCESS INTERACT AUTONOMOUSLY WITH COMMUNICATE AND COLLABORATE
COMPLEX DECISIONS INFORMATION AT THE EDGE OTHER DECISION-MAKING ENTITIES SEAMLESSLY WITH HUMANS




Deliver artificial intelligence to the edge

EXTRACT AND PROCESS
INFORMATION AT THE EDGE

Smartphones, drones, robots on the manufacturing floor, electric vehicles, ... Devices at the edge
come with ever more performing and power-efficient Al processors. That enables them to take on
advanced edge computing and distributed machine learning tasks, driven by three factors:

+ increased real-time performance;
+ enhanced power-efficiency;
« greater need for data security.

It gives rise to an entirely new set of Al use cases based on intelligent, low-power (often battery-
powered) devices, as well as cases requiring on-the-spot, real-time and secure decision support.

The challenge is to create:

« distributed and hierarchical Al systems;

» advanced signal processing;

» algorithms and technologies for extracting actionable information directly at the edge.

This move to the edge is technically feasible and very relevant for many use cases. Edge inference
is forecasted to occupy about one third of the total market in 2023.



DISTRIBUTED SYSTEMS
DATA versus COMPUTE TRADE-OFF

Exascale Super Cloud . :
Computers Computing Edge Computing l Devices

LOTS OF

data reduction
KNOWLEDGE
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REAL-TIME DISTRIBUTED AND HIERARCHICAL Al
FROM EXTREME EDGE TO CLOUD

Distributed learning
Distributed inference

« >
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Learning
Inference

Learning Learning
Inference Inference
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REAL-TIME DISTRIBUTED AND HIERARCHICAL Al
FROM EXTREME EDGE TO CLOUD Distributed learning

- criputed inference
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EXTREME EDGE
SENSORS WITH HARDWARE ACCELERATION

FOR MACHINE LEARNING




SOLVING THE ENERGY EFFICIENCY BOTTLENECK (ANALOG IN-
MEMORY COMPUTE)
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SOLVING THE ENERGY EFFICIENCY BOTTLENECK (ANALOG IN-
MEMORY COMPUTE)
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FLANDERS Al PROGRAM STRUCTURE
4 GRAND CHALLENGES

COMMUNICATE AND COLLABORATE

HELP TO MAKE EXTRACT AND PROCESS INTERACT AUTONOMOUSLY WITH
SEAMLESSLY WITH HUMANS

COMPLEX DECISIONS INFORMATION AT THE EDGE OTHER DECISION-MAKING ENTITIES

CONFIDENTIAL

“umec



Interact autonomously with other decision-making entities

INTERACT AUTONOMOUSLY WITH  Autonomous decision-making entities each have their own goals and intentions. In multi-agent
OTHER DECISION-MAKING ENTITIES  gystems, they need to interact with each other. Multi-agent systems are radically different from
distributed systems. In multi-agent systems:

» No agent knows the whole system.

/—\ » No agent directly controls all the other agents.
Multi-agent systems can be anywhere on the spectrum between cooperative and competitive.
P P And you'll find them in the real as well as the virtual world. Examples in the world of information
\\ are trading systems, routing systems and privacy-sensitive systems — where agents can't share
\_/ certain information with each other. A lot of cyber-physical systems are also multi-agent. Think

about smart power systems, traffic and fleet control systems and autonomous vehicles. All this
poses a unique set of challenges.

Multi-agent systems need to:
» adapt rapidly to unpredictably changing environments;
+ adhere to constraints, rules and regulations, even in the absence of central control;
» be accountable and manageable by their creators;
» interact with humans, by understanding their intentions and explaining their own behavior;

» be open-ended, so new agents, users and technologies can join at any time.
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AUTONOMOUS AGENTS
NO ONE SIZE FITSALL
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FLANDERS Al PROGRAM STRUCTURE
4 GRAND CHALLENGES

HELP TO MAKE EXTRACT AND PROCESS INTERACT AUTONOMOUSLY WITH COMMUNICATE AND COLLABORATE
COMPLEX DECISIONS INFORMATION AT THE EDGE OTHER DECISION-MAKING ENTITIES SEAMLESSLY WITH HUMANS
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Communicate and collaborate seamlessly with humans

COMMUNICATE AND COLLABORATE Can an Al system really equal human performance when it comes to complex tasks? Or have we
SEAMLESSLY WITH HUMANS merely created good pattern matching techniques up to now? Many industrial applications need to
go beyond such pattern matching.

They have to be capable of complex reasoning in a way that is autonomous, intelligent and
trustworthy. This requires them to:

« communicate in ways that are effortless to humans, such as natural language;
« perform multi-step, human-like reasoning that entails perception and understanding of a
complex environment.

If we achieve this goal, we're able to enrich our society and workplaces with artificial entities that
can identify and solve problems, take on unseen tasks with the same agility as humans - all while
interpreting their social and physical environment and involving, informing and supporting their
human colleagues.

Will we ever be able to equip technology with real human intelligence? Despite recent Al
advancements, that goal is still far in the future.

We need systems that can integrate and interpret, represent and understand their complex
environment in multiple styles and domains, over large timescales and in shared human-machine
contexts. Therefore, we can identify two main objectives. Machines need to:

» seamlessly understand humans and interact with them;

» mirror the human capacities for learning, adapting, complex reasoning and decision-making
across tasks, contexts & time.
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FLANDERS Al PROGRAM STRUCTURE

4 GRAND CHALLENGES

HELP TO MAKE EXTRACT AND PROCESS
COMPLEX DECISIONS INFORMATION AT THE EDGE

INTERACT AUTONOMOUSLY WITH
OTHER DECISION-MAKING ENTITIES

COMMUNICATE AND COLLABORATE
SEAMLESSLY WITH HUMANS

“mumec



Al PROGRAM FLANDERS

ToP RESEARCH

Data ethics and society | mio €/year
Training and education 3 mio €/year
Public Outreach | mio €/year

DIGITIZATION AND
IMPLEMENTATION IN
INDUSTRY

ETHICS, EDUCATION
AND TRAINING
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