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NL, Theory: Checking and Imposing Stability of
Recurrent Neural Networks for Nonlinear Modeling

Johan A. K. Suykens, Joos Vandewalle, Fellow, IEEE, and Bart L. R. De Moor

Abstract—1It is known that many discrete-time recurrent neurzal
networks, smeh as e.g., neural state space meodels, multilayer
Hopfield networks, and locally recurrent globally feedforward
peural networks, can be represented as NL, systems, Sufficient
conditions for global asymptotic stability and input/output sta-
bility of NL, systems are available, including three types of
criteria:

1) diagonal scaling;

2) criteria depending on diagonal dominance;

3) condition number factors of certain matrices.

In this paper, it is discussed how Narendra’s dynamic back-
propagation procedure, which is used for identifying recurrent
nenral networks from I/O measurements, can be modified with
an NL, stability constraint in order to ensure globally asymptot-
ically stable identified models. An example illustrates how system
identification of an internally stable model corrupted by process
noise may lead to unwanted limit cycle behavior and how this
problem can be avoided by adding the stability constraint.

Index Terms— Dynamic backpropagation, global asymptotic
stability, LMU’s, multilayer recurrent neural networks, NL, sys-

tems.

I. INTRODUCTION

ECENTLY, NL,, theory has been introduced as a model-

based neural control framework with global asymptotic
stability criteria [20], [24]. It consists of recurrent neural
network models and controllers in state-space form, for which
the closed-loop system can be represented in so-called NL,
system form. NL, systems are discrete-time nonlinear state-
space models with g layers of alternating linear and static
nonlinear operators that satisfy a sector condition. It has
been shown, then, how Narendra’s dynamic backpropagation,
which is classically used to learn a controller track a set of
specific reference inputs, can be modified with NL,, stability
constraints. Furthermore, several types of nonlinear behavior,
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incloding systems with a unique equilibrium, multiple equilib-
ria, (quasi)-periodic behavior, and chaos have been stabilized
and controlled using the stability criteria [20].

In this paper, we focus on nonlinear modeling applications
of NL, theory instead of control applications. For instance,
for tracking problems, where Narendra’s dynamic backpropa-
gation [9], [10] has been modified with a closed-loop stability
constraint [20], we will modify dynamic backpropagation for
system identification with a stability constraint in order to
obtain identified recurrent neural networks that are globally
asymptotically stable. In addition, for linear filters {e.g., [IR
filters [16], [171), this has been an important issue. We will
consider the class of discrete-time recurrent neural networks,
which is representable as NL, systems. Examples are, e.g.,
neural state-space models and locally recurrent globally feed-
forward neural networks that are models consisting of global
and local feedback, respectively.

In order to check stability of identified models, sufficient
conditions for global asymptotic stability of NLgs are applied
[20]. A first condition is called diagonal scaling, which is !
closely related to diagonal scaling criteria in robust control |
theory [3], [13]. Checking stability can be formulated then as :
an linear matrix inequality (LMI) problem, which corresponds
to solving a convex optimization problem. A second condition
is based on diagonal dominance of certain matrices. Certain
results of digital filters with overflow characteristic [8] can be
considered as a special case for ¢ = 1 (one layer NL,).

Finally, we demonstrate how global asymptotic stability
can be imposed on the identified models. This is done by
modifying dynamic backpropagation with stability constraints.
Besides the diagonal scaling condition, criteria based on
condition numbers of certain matrices [20] are proposed for
this purpose. In many applications, one has indeed the a priori
knowledge that the true system is globally asymptotically
stable or onme is interested in a stable approximator. It is
illustrated with an example that process noise can indeed cause
identified models that show limit cycle behavior, instead of
global asymptotic stability, as for the true system. We show
how this problem can be avoided by applying the modified
dynamic backpropagation algorithm.

This paper is organized as follows. In Section II, we present '
two examples of discrete time recurrent neural networks that
are representable as NL, systems: neural state space models
and locally recurrent globally feedforward neural networks. In |
Section 111, we review the classical dynamic backpropagation
paradigm. In Section IV, we discuss sufficient conditions for:
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global asymptotic stability of identified models. In Section V,
Narendra’s dynamic backpropagation is modified with NL,
stahility constraints. In Section VI, an example is given for a
system corrupted by process noise.

II. NL, SysTeMs
The following discrete time nonlinear state space model is
called an NL, system [20]
Pt =D {ViTa[Va - Fo(Vypr + Byws) - -
+ ngd + B]_‘w'k}
e IAl{Wl .AQ{WQ R Aq(Wqu + quk) L
+ Dowy] + Dywi }

(1)

with state vector p, € IR"*, input vector w, € R™, and
outrt vector e € R™. The matrices V;, B;, W;, and D;
(" - 1,---, ) are constant with compatible dimensions,
and the matrices I'; = diag{v;} and A; = diag{\;} (2 =
1, ---, ¢} are diagonal with diagenal elements -y; (s, wy) and
Ai(pe, wi) € [0, 1] for all py, wy. The term “NL,” stands for
the alternating sequence of linear and nonlinear operations in
the g-layered system description.

In this section, we first explain the link between NL,s and
multifayer Hopfield networks and then discuss two examples:
neural state space models and locally recurrent globally feed-
forward networks, which are models with global feedback
and local feedback, respectively. Other examples of NL,s are,
e.g., (generalized) cellular neural networks, the discrete time
Lur’e problem, and linear fractional transformations with real
diagonal uncertainty block [20], [23].

A. Multilayer Hopfield Networks
NL, systems are closely related to multilayer recurrent
neural networks of the form
Cprrr =0 {Vioa[Va - oy (Vypr + Bywy) -+
+ Bowy| + Bywg }
ex =n{Wina[Ws - 5y (Wypr + Dywy) - --
+ Dowy] + D}

(2)

with o;(. ), (. ) vector-valued nonlinear functions that belong
to sector [0, 1] [28].

Let us illustrate the link between (1) and (2) for the
autonomous NL, system (zero external input)

q
Prtr = [H Li(pe) Vi | px
i=1

by means of the following autonomous Hopfield network with
synchronous updating

Tpyt = tanh (W), (3)
This can be written as
Tpal = F(.’L‘k)mfr;lrk 4)
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with I' = diag {v;} and v = tanh (wf=z,)/(w] ), which
follows from the element-wise notation

&)

The time index is omitted here because of the assignment
operator “:=."" The notation ~y} means that this corresponds to
the diagonal matrix ['(zx). In case w7l x), = 0, de I' Hospital’s
rule can be applied, or a Taylor expansion of tanh (.) can be
taken, leading to y; = 1.

In a similar way the multilayer Hopfield neural network

Zpy1 = tanh [V tanh (Wz)] (6)
can be wrilten as
L1 = Fl(xk)VI‘Q(mk)ka (7)
because
z':= tanh Z ”u; tanh (Z wf:rl)
i 1
:= tanh Z VY Z w] z!
j T
3

bt il
oy 3 vy XD i
j T

B. Neural State Space Models

Neural state space models (Fig. 1) for nonlinear system
identification have been introduced in [19] and are of the form

{ﬁj’c+1 =Wap tanh (Va2 + Veug + Bap) + Kep, ©)
yr = Wep tanh (Voidi + Vour + fop) + e

with estimated state vector & € R™, input vector uy, € R,
output vector y € R, and zero mean white Gaussian noise
input €, (corresponding to the prediction error ¥z — F).
W. and V, are the inferconnection matrices with compatible
dimensions, [, are bias vectors, and K is a steady Kalman
gain. If the multilayer perceptrons in the state equation and
output eqguation are replaced by linear mappings, the neural
state-space model corresponds to a Kalman filter. Defining
Py = Tk, Wr = U €x; 1], and e = y in (1), the neural
state space model is an NL, system with 'y = [, V; = Wag,
Vo = Vs, Be = [V 0 Bag], By = [0 K 0], Ay =1,
Wy =Wep, Wo =V, Dy = [VD 0 ﬂC’D]s andl); = [0 o
For the autonomous case and zero bias terms, the neural
state-space model becomes

Frp1 = Wap tanh (Vady). {(10)
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Fig. 1. Neural state spacc model, which is a discrete time re
a Kalman gain for taking into account process noise.

By introducing a new state variable £ = tanh (Vds), this
can be written as the NL; system

{i'kJrl =Wan &k an

£rr1 = tanh (VaWap &)

C. Locally Recurrent Globally Feedforward Networks

In [26], the locally recurrent globally feedforward (LRGF)
network has been proposed, which aims at unifying several ex-
isting recurrent neural network models. Starting from the Mc-
Cultoch-Pitts model, many other architectures have been pro-
posed in the past with local synapse feedback, local activation
feedback and local output feedback, time-delayed neural net-
works, etc., .2., bf{ Frasconi—Gori-Soda, De Vries—Principe,
and Poddar-Unnikrishnan. The architecture of Tsoi and Back
(Fig. 2) includes most of the latter architectures.

Assuming in Fig. 2 that the transfer functions Gi(z) (i =
i, ..., n) (which may have both poles and zeros) have a
state-space realization (4;, B, C;), an LRGF network can

currens nevral network with multilayer perceptrons for the state and output eguaticn and

be described in state-space form as

60 = AOEP £ BOUP,  i=1,0 n—
z,(:) @ f;(:)
€0, =AM 4 BO S| S AP
4 =
zfcn) — C(n)gi(gn)
Yr = f Z z,{j} .
\ j=1
(12)

Here, ui‘), zg) €eR(i=1,- -, n—1)are the inputs and local
outputs of the network, y, € IR is the output of the network, ;
and 7\ € R the filtered output of the network. f(.) is a|
static nonlinearity belonging to sector [0, 1]. Applying the state §
augmentation 7, = f[3.7_, 291, an NL; system is obtained

(2), gcn—l); E;E.n); TIA], input

with state vector p, = [0 £V, .+
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1
m 2
u « — G 1 (z)
(2)
u K —_— Gz(z)
(n-1)
u K i Gn—l (z)

Vo2
fo oack and G,{z) for local output feedback.

vector wy = [u}cl); . ufc""l) ], and matrices in (12a), shown
at the bottom of the page.

IH. CLASSICAL DYNAMIC BACKPROPAGATION

Dynamic backpropagation, according to Narendra and
Parthasarathy [9], [18], is a well-known method for training
recurrent neural networks. In this section, we shortly review
this method for models in state-space form because this fits
into the framework of NL, representations.

Let us consider discrete-time recurrent neural networks that
can be written in the form

x = Q(Lg, Ug, €1 O); Tg = i
{k+1 (&K, vk, €x; a); $o = xp given (13)

Pk = U(Ee, ur; B)
where (. ), U(.) are twice continuously differentiable non-
L ar mappings, and the weights «, 3 are elements of the

parameter vector f to be identified from a number of N
input/output data ZV = {ug, g }i=

. 1 &
min (6, Z2V) = & ; er(8)]. (14

Focally recurrent globally feedforward network of Tsoi and Back,
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G, @

consisting of linear filters Gi(z)}{i = 1,---,n — 1) for local synapse

A typical choice for [(¢,) in this prediction error algorithm is
1 T'¢;. with prediction error e = gy — J3. For gradient-based
optimization algorithms, one computes the gradient
Odx _ L g g O
8 N R\ a0)

=1

(15)

Dynamic backpropagation [9], [10] then makes use of a
sensitivity model

(O _ 00 0, 00
da 8% 8a | Oa
By OV Jiy
s _ 7 IR 16
\ Ba ~ 33, Ba (16)
o3 _ov
L 88 a3

in order to generate the gradient of the cost function. The
sensitivity model is a dynamical system with state vector
dir/8c € R™ driven by the input vector comsisting of
8% /8a € R®, 8% /68 € R, and at the output, 3g; /0 € R',
81, /808 € R' are generated. The Jacobians 88/0%; € R™*"
and 80 /8%, € R'™™ are evaluated around the nominal
trajectory.

[ AW 0 0
A@
h= A=) 0 0
0 0 0 A B
CcL AT o2 4(2) cn-1) g(n=1) or) glr) ) B
- B -
B2
B= Bln-1) (12a)
0 0 0
_C(I)B(l) cep) ((n=1} gln—1)
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Examples and applications of dynamic backpropagation ap-
plied to neural state-space models, are discussed in [19]-[211.
For aspects of model validation, regularization, and pruning
of neural network models, see, e.g., [11, [15], and [18].

IV. CHECKING GLOBAL ASYMPTOTIC
STABILITY OF IDENTIFIED MODELS

In many applications, recurrent neural networks have been
used in order to model systems with a unique or multiple
equilibria, (quasi)-periodic behavior or chaos. On the other
hand, one is often interested in obtaining models that are
globally asymptotically stable, e.g.. in case one has this a priori
xnowledge about the true system or one is interested in such
an approximator. In this section, we present two criteria that
are sufficient in order to check global asymptotic stability of
the identified model, which is represented as NL, system.

Theorem 1—Diagonal Scaling [20]: Consider the au-
" tonomous NL, system
q
Pr+1 = [H Pi(pk)vé:| Pk (17)
=1
and let
0 Vs 0
0 W
V;;on - i
0V
Vi 0

Vi e R™ 5™ mp =g, = Tip.
A sufficient condition for global asymptotic stability of (17}
is to find a diagonal matrix D;,; such that

Dyt Vior Dyox 15 = 8p < 1 (18)

where D,oi = diag{Ds, D3, -+, Dy, D1}, and D; €
R™: % are diagonal matrices with nonzero diagonal
elements.
Proof: See [20]. [
The condition is based on the Lyapunov function V(p) =
|| D1p!l2, which is radially unbounded in order to prove that the
origin is a unique equilibrium point. Finding such a diagonal
matrix Dyo for a given matrix Vo, can be formulated as the
linear matrix inequality (LMI) in D2,

Kzthot‘/tDt < Dt20t' (19)

It is well known that this corresponds to solving a convex
optimization problem [3], 12}, [27]. Similar criteria are known
in the field of control theory as “diagonal scaling” [3], 171,
{13]. However, it is also known that such criteria can be
conservative.

Sharper criteria are obtained by considering a Lyapunov
function V (p) = || Prpli2 with a nondiagonal matrix P; instead
of D,. The next theorem is expressed then in terms of diagonal
dominance of certain matrices. Let us recall that a matrix
Q € R"*" is called diagonally dominant of level bo = 1if

gii > éQ Z |quli Vi= ]-1 sy T
i=1(j#)
holds [20]. The following Theorem then holds.

(20
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Theorem 2—Diagonal Dominance [20]: A sufficient con-
dition for global asymptotic stability of the autonomous NL,
system (17) is to find matrices P;, N; such that

q 5o, \ M2
H( E ) | Prot Vior Prot 15 < 1

21
oy @1)

i=1

with Pt = blockdiag{Fs, F3, - -, P, P}, and P €

R7:*™: full rank matrices. The matrices & = PTPN,

are diagonally dominant with 6, > 1, and N; are diagonal
matrices with positive diagonal elements.

Proof: See [20]. O

In order to check stability of an identified model, i.e., for a
given matrix V.1, one might formulate an optimization prob-
lem in P; and N; such that (21) is satisfied. LMI conditions
that correspond to (21) are derived in [203.

For the case of neural networks with a sat(.) activation
function (linear characteristic with saturation), Theorem 2 can
be formulated in a sharper way [20]. In that case, it is sufficient
to find matrices F;, N, with

| Prot Viot Pos ll2 < 1
(=1,

such that dg, = 1
(22)

The latter follows from a result on stability of digital filters
with overflow characteristic by Liu and Michel [8], which
corresponds to the NL; system

Thp1 = sat (V) 2%

A sufficient condition for global asymptotic stability is then to
find 2 matrix @ = PTP with

|[PVP Y|z <1 suchthat &g =1. (24)
We also remark that for a linear system
Tpp1 = ATy (25}
one obtains the condition
|PAP Y2 < 1 (26)
from the Lyapunov function V(z) = ||Pxll2, where P is a

full-rank matrix. The spectral radius of A corresponds to

A)= mi PAP s,
p(4)= min | ll2

27

V. MODIFIED DYNAMIC
BACKPROPAGATION: IMPOSING STABILITY

In this section, we discuss modified dynamic backpropaga-
tion algorithms by adding an NL, stability constraint to the
cost function (14). In this way, it will be possible to identify
recurrent neural network models that are guaranteed to be
globally asymptotically stable.

Based on the condition of Theorem 1, one may solve the
constrained nonlinear optimization problem

N
. ; 1
uin Ini6, Z¥) = ~ Z 1ex(6)) such that -
k=1

tat

Vit ()T D2, V2o (0) < D2, (28)
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Fig. 3. Comparison between dynamic backpropagation (), modified dynamic backpropagation with diagonal scaling (- —) and condition number constraint
(-++) for the emor on the training date (*) and test data (0). The errors are plotted with respect to the experiment number. Twenty random initial parameter
vectors were chosen. The experiments were sorted with respect to the error on the training set.
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Fig. 4. Behavior of the true system 1o be identified. State variables of the autonomons system for some randomly chosen initial state and zero noise are shown.

The cost function is differentiable, but the constraint becomes alternative formulation of the problem is
nondifferentiable when the two largest eigenvalues of the
matrix Vit (8)T D2, Vioe(#) — D2, coincide [14]. Convergent
algorithms for such nonconvex nondifferentiable optimization . =

problems have been described, e.g., by Polak and Wardi [14]. Fa [Deor Veor (8) Digefiz < 1. 2
The gradient-based optimization method makes use of the The evaluation of the constraint corresponds then to solving a
concept of a generalized gradient [2] for the constraint. An convex optimization problem.

N
, Ny L
min Jn (8, Z2%) = & :L:;z[ek(e)] such that
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Fig. 5. Unwanted limit cycle behavior of the identified model after applying classical dynamic backpropagation. The /O data were generated by a globally
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Fig. 6. Model identified by applying modified dynamic backpropagation with diagonal scaling constraint. The model is guaranteed to be globally asymptotically

stable as is iHustrated for some randomly chosen initial state on this figure.

Though LMI conditions have been formulated for the con-
dition of diagonal dominance of Theorem 2, the use of these
L.MI conditions is rather impractical for a modified dynamic
backpropagation algorithm. Therefore, we will make use of
another theorem in order to impose stability on the identified
models.

State variables of the identified model for the autonomous case are shown.

Theorem 3 Condition Number Factor [20]: A sufficient
condition for global asymptotic stability of the autonomous
NL, (17) is to find matrices P; such that

g

IT 6(P) Pt Vior P 113 < £

i=1

(30)
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Fig. 7. Model identified by applying modified dynamic backpropagation with condition number constraint. Local stability at the origin is imposed. Its region
of attraction is determined by the condition number. State variables of the identified model for the autonomous case are shown.

where P, = blockdiag {F, P3, -+, Py, P}, and P; €
R™: *™*: are full rank matrices. The condition numbers x(F;)
are, by definition, equal to || P||2lP iz,
Proof: See [20]. O
In practice, this theorem is used as

such that || Pyo: Vier Por ll2 < 1.

3D

min max {m(Pi)}

tot i

The constraint in (31) imposes local stability at the origin. The
I " of attraction of the origin is enlarged by minimizing the
condition numbers. Even when condiiion (30) is not satisfied,
the basin of attraction can often be made very large (or
probably infinitely large as simulation results suggest). This
principle has been demonsirated on stabilizing and control-
ling systems with one or muitiple equilibria, periodic and
quasiperiodic behavior, and chaos [20].

Based on (31), dynamic backpropagation is modified then as

1 N
N > len(0)]
k=1

Vcoz(g)TthVtot(g) < Qo
I<Q;<all

9%in In(8, ZN) = such that

g tot

(32)

The latter LMI corresponds to w(FP;) < o; and Q. =
PT P.ow, @; = PTP,. An alternative formulation to (32) is

Z Hew(9)

||2 < 1 with max {x(

mm In(8, ZN) = such that

mm | Piot Vioe (8) Prgs Pl <e (33)

!.Ot

with ¢ a user-defined upper bound on the condition numbers.
For (29)—(33), the difference in computational complexity
between classical and modified dynamic backpropagation is
in the LMI constraint that has to be solved at each iteration
step and is @(m*L!®) for L inequalities of size m [27]. One
can avoid solving LMI's at each iteration step at the expense of
introducing additional unknown parameters to the optimization
problem as Qio¢ in (32). Finally, for the case of NL; systems,
the problem can be formulated by solving a Lyapunov equation

min _Jy(f, ZV) = such that

73
#,0<y<1

Vit (8)T QVion (0 )+I—'Y Q

1:511211016 st R=Q+6I>0 (34)

x(P)<c, R=PTP.

V1. EXaMPLE: A SYSTEM CORRUPTED BY PROCESS NOISE

A. Problem Statement

In this example, we consider system identification of the
following neural state space model as true system.

{$k+1 =Wap tanh (Vaze + Veur) + or (35)

e = Wep tanh (Vory + Vpite)

It is corrupted by zero mean white Gaussian process noise ¢
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I/O data were generated by taking as

- 0.4157 —0.2006  0.1260 —0.02377
Wig = 1.1271 —0.0401 —0.6084  0.4073
: —0.2141  0.4840 —0.2966 —0.0027
|—0.1986 ~0.6325  0.4208 —1.0233]
—0.3152 —0.8392 —0.2323 —0.51197
v, = —0.2872 —0.7385 —0.4354  0.4126
‘ —0.1009 -0.6593 —0.5717 —0.8109
| —0.8550 —0.7005 —0.0671  0.0592
- 0.1256
1.2334
Va =1 10509
| -1.7554
Wep =[—0.5546 —0.2603 1.3030 —1.3587]
- 0.3600 0.5972 1.7870 —1.4743
Vo = 1.3145 —0.2945 0.0347  0.2681
—1.2125 —0.9360 0.3255  1.7658
| 0.5938 —0.2655 0.5651 —1.7682
- 1.6275
~2.3663
Vb =1 _g.8700
| —0.7000

with zero initial state. The input u; is zero mean white
Gaussian noise with standard deviation 5. The standard de-
viation of the noise ¢ was chosen equal to 0.1. A set
of 1000 data points was generated in this way, with the
first 500 data for the training set and the next 500 data for
the test set. Some properties of the autonomous system are
p(WapVa) = 098 < 1 and minp,,, ||DiotVietDigtllz =
1.66 > 1, which means that the origin is locally stable,
but global asymptotic stability is not proven by the diagonal
scaling condition. However, simulation of the autonomous
system for several initial conditions suggests that the system
is globally asymptotically stable (Fig. 4).

Because the state space representation of neural state space
representation is only unique up to a similarity transformation
and sign reversal of the hidden nodes [20], we are interested in
identifying the true system, not in the sense of finding back the
original matrices, but in order to obtain the same qualitative
behavior for the autonomous system of the identified model
as for the true system.

B. Application of Classical versus Modified
Dynamic Backpropagation

System identification by using classical dynamic backpropa-
gation and starting from randomly chosen parameter vectors g
[deterministic neural state space model with the same number
of hidden neurons as (35)] yields identified models with limit
cycle behavior for the autonomous system (Fig. ). This effect
is due to the process noise ;. No problems of this kind
were met for the system (35) in the purely deterministic
case or in the case of observation noise. In order to impose
global asymptotic stability on the identified models, a medified
dynamic backpropagation procedure was applied with diagonal
scaling (28) and with condition number constraint (34). The
autonomous system of (35) can be represented as the NL
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system (11). Fig. 3 shows a comparison between classical
and modified dynamic backpropagation for the error on the
training set and test set, starting from 20 random parameter
vectors § for the three methods. Besides the fact that the
identified models appear to be globally asymptotically stable
for modified dynamic backpropagation (Figs. 6 and 7), the
performance on the test data is often better than with respect
to classical dynamic backpropagation. One might argue that
by taking a Kalman gain into the predictor, the limit cycle
problem might be avoided as well. However, the deterministic
part is often identified first, and second, the Kalman gain
is identified while keeping the other parameters constant.
Moreover, the stability constraint can also be taken into
account for stochastic models.

C. Software

In the experiments, a quasi-Newton optimization method
with BFGS updating of the Hessian [4], [6] was used for
classical dynamic backpropagation (function fminu in Mat-
lab [25]). For modified dynamic backpropagation, sequential
quadratic programming [4], [6] was used (function constr in
Matlab). Numerical calculation of the gradients was done.
In the experiments, 70 iteration steps were taken for the
optimization (Fig. 3). For the case of diagonal scaling the
Matlab function psv was used in order to calculate (28). Other
software for solving LMI problems is, e.g., LMI lab [5]. For
the case of condition numbers, ¢ = 100 was chosen as upper
bound in (34).

VH. CONCLUSION

In this paper, we discussed checking and imposing stabil-
ity of discrete time recurrent neural network for nonlinear
modeling applications. The class of recurrent neural networks
that is representable as NL, systems has been considered.
Sufficient conditions for global asymptotic stability on di-
agonal scaling and diagonal dominance have been proposed
for checking stability. Dynamic backpropagation has been
modified with NL, stability constraints in order to obtain
models that are globally asymptotically stable. Therefore,
criteria of diagonal scaling and condition nurnber factors have
been used. It has been illustrated on an example of how a
globally asymptotically stable system, corrupted by process
noise, may lead to unwanted limit cycle behavior for the
autonomous behavior of the identified model if one applies
classical dynamic backpropagation. The modified dynamic
backpropagation algorithm overcomes this problem.
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